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Abstract. In this paper a new shape optimization algorithm is presented. As a model
application we consider state problems related to fluid mechanics, namely the Navier-Stokes
equations for viscous incompressible fluids. The general approach to the problem is described.
Next, transformations to classical optimal control problems are presented. Then, the dynamic
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are given. A new numerical method to find the approximate value function is developed.
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1. INTRODUCTION

Recently, shape optimization problems have received a lot of attention, particularly
in relation to a number of applications in physics and engineering that require a focus
on shapes instead of on parameters or functions. The goal of these applications is to
deform and modify the admissible shapes in order to comply with a given cost function
that needs to be optimized. Here the competing objects are shapes, i.e. domains of
RN , instead of functions or controls, as it usually occurs in problems of the calculus
of variations or in optimal control theory. This constraint often produces additional
difficulties that lead to a lack of existence of a solution and to the introduction of
suitable relaxed formulations of the problem. In calculus of variations and optimal
control theory we have close at hand many tools to calculate (at least theoretically) the
optimal solution for a given cost functional. To mention a few: existence of solutions
together with necessary optimality conditions, first order necessary conditions with
second order sufficient optimality conditions, field theory (necessary and sufficient
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optimality conditions), dynamic programming approach (primal and dual). Most of
these methods are not developed for shape optimization problems. In the existing
literature we can find only approaches that concern the existence of solutions together
with necessary optimality conditions see e.g. [2, 5, 14, 15], and second order sufficient
optimality conditions see e.g. [4,6,7,9]. To the knowledge of the authors there are no
papers using the dynamic programming approach except for the two – [12,17], where
some attempts to use the primal and dual dynamic programming are described.

In the paper, as a model application, we consider state problems related to fluid
mechanics, namely the Navier-Stokes equations for viscous incompressible fluids. The
main problem is to search for the optimal shape of a given objective. Although the
theoretical background of the presented method is expressed in general terms, as an
example a structural optimization problem for an elastic body – shape optimization
of a dividing tube – is being considered. In that case, the structural optimization
problem consists in finding the shape of the boundary of the domain occupied by the
body, such that the outflow profile should be close to a given target profile. For an
incompressible fluid, conservation laws for momentum and mass are assumed to be
in force. The displacement field of the body is governed by the Reynolds-averaged
Navier-Stokes (RANS) equations with an algebraic mixing length turbulence. The
volume of the body is assumed to be bounded.

In [14, 15] the results concerning the existence, regularity and finite-dimensional
approximation of solutions to the mentioned problem are given. Shape optimization
of many problems are considered, among others, in [7–9, 14, 19] where necessary op-
timality conditions, results concerning convergence of the finite-dimensional approxi-
mation and numerical results are provided. In [7, 8] a boundary variational approach
was proposed in combination with the boundary integral representations of the shape
gradient and the shape Hessian. The considered class of model problems allowed the
use of boundary integral methods to compute all ingredients of the functional, the
gradient, and the Hessian,which arise from the state equation. In combination with
a fast wavelet Galerkin method to solve the boundary integral equations, some very
efficient first and second order algorithms for shape problems in two and three space
dimensions were developed. In the monograph [19], the material derivative method is
employed to calculate both the sensitivity of solutions and the derivatives of domain
depending functionals with respect to variations of the boundary of the domain oc-
cupied by the body. To formulate the necessary optimality condition for shape and
topology optimization, the shape and topological derivatives are employed. The notion
of the topological derivative and results concerning its application in optimization of
elastic structures are reported among others in papers [1, 11,13,20–22].

The approach presented in this article is different than the one given in the papers
mentioned above. It stays close to the classical optimization problems and gives suffi-
cient optimality conditions of first order, while in [7,8,19] only second order optimality
conditions are stated which require more regularity of the data and regularity of the
perturbation of domains. We provide a dynamic programming approach to structural
optimization problems. This approach allows us to obtain the sufficient conditions for
optimality in the problems considered. We believe that the conditions for problems
considered in terms of dynamic programming, that we formulate here, have not been
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provided earlier. There are two main difficulties that must be overcome in structural
optimization problems. The first one consists in that we have to perturb the set Ω
with boundary condition – compare the one-dimensional case given in e.g. [10]. The
second one is that we deal with the stationary Navier-Stokes equation for the state
and we have no explicit controls. To overcome these difficulties we introduce to the
definition of perturbation of a given set, a control. We do that following the pertur-
bation defined by Zolésio (see e.g. [19, p. 44]) and adding to the part of the original
domain a control curve. In this way the deformation and so a corresponding functional
depend on control. Thus, the situation is similar to the one in classical optimal control
theory. The main difference between other approaches to shape optimization and ours
is that we do not need to prove existence of the optimal value, which would necessitate
considering a special family of perturbations of a given domain which must be compact
in some topology and the functional considered at least lower (upper) semicontinuous
with respect to this topology. In our case the constructed deformation needs not be
and, in fact, is not compact. Thus we cannot prove the existence result. However,
the advantage of our dynamic programming approach is that if we are able to find
in any way (simply guess) a function G and the admissible pair (xε(·, w, vε), vε) and
check that they satisfy (3.23), (3.24) of the verification theorem (Proposition 3.3) then
this pair approximates our optimal shape. Moreover, it allows us to describe a new
numerical algorithm for that optimization problem.

The paper is organized as follows: in Section 2 a model problem of dividing tube is
described. In Section 3 a general shape optimization problem is formulated and next
its reduction to a classical control problem is described (Section 3.1). In Section 3.2
a dynamic programming approach is constructed to formulate and proving sufficient
conditions for the approximate value function being the approximate solution for the
general shape optimization problem. In Section 4 a numerical approximation of the
value function is constructed. In Section 5 a numerical algorithm is constructed.

2. MODEL PROBLEM FORMULATION: A DIVIDING TUBE

As a model of the shape optimization problem we consider a problem governed by the
Navier-Stokes equations for a viscous incompressible fluid, described and numerically
solved in the book [14]. Following [14] we consider two-dimensional fluid flow in a
header Ω(α) (see Figure 1).
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Fig. 1. Dividing tube
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The fluid flows in through the part Γin of the boundary and flows out through the
small tubes on the boundary Γout; there is also a small outflow on Γrec. The parameters
H1, H2, L1, L2, L3 defining the geometry are fixed. Γ(α) - the only changing part of
the boundary ∂Ω(α) is defined by the formula

Γ(α) =
{
x = (x1, x2) : L1 < x1 < L1 + L2, x2 = α(x1), α ∈ Uad

}
,

where

Uad =
{
α ∈ C0,1([L1, L1 + L2]) : 0 < αmin ≤ α ≤ αmax, α(L1) = H1,

α(L1 + L2) = H2, |α′| ≤ L0, a.e. in [L1, L1 + L2]
}
,

αmin, αmax and L0 are given parameters. We assume that αmin, αmax ∈ Γ(α). For a
compressible fluid (two dimensions) the conservation laws are:

−∂τij(u, p)
∂xj

+ ρuj
∂ui
∂xj

= 0 in Ω(α), i = 1, 2,

div u = 0 in Ω(α).

(2.1)

Here u = (u1, u2) is the velocity, τ = (τij)
2
i,j=1 is the stress tensor, p is the static

pressure, ρ is the density of the fluid. The stress tensor, the strain rate tensor ε(u)
and the pressure p satisfy the law

τij(u) = 2µ(u)εij(u)− pδij , i, j = 1, 2,

where µ(u) is the viscosity and ε(u) = (εij(u))2
i,j=1 with εij(u) = 1

2 ( ∂ui

∂xj
+

∂uj

∂xi
). The

following boundary conditions are imposed:

u(x) = 0 on ∂Ω(α)\(Γin ∪ Γout ∪ Γrec),

u = uin on Γin,

u = urec on Γrec,

u1 = 0 on Γout,

2µ(u)ε2j(u)νj − pν2 − cu2
2 = 0 on Γout.

(2.2)

The viscosity µ(u) = µ0 + ρl2m( 1
2εij(u)εij(u))1/2 with ( 1

2εijεij)
1/2 being the second

invariant of the strain rate tensor and

lm =
1

2
H(x)

[
0.14 = 0.08

(
1− 2d(x)

H(x)

)2

− 0.06

(
1− 2d(x)

H(x)

)4
]
,

where

H(x) =


H1, 0 ≤ x1 ≤ L1,

α(x1), L1 ≤ x1 ≤ L1 + L2,

H2, x1 > L1 + L2,

and d(x) = dist(x, ∂Ω(α)\(Γin ∪ Γout ∪ Γrec)).
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The shape optimization problem Pm for the dividing tube is as follows (see [14]):

find α∗ ∈ Uad such that J(u(α∗)) ≤ J(u(α)), α ∈ Uad, (2.3)

where
J(u(α)) =

∫
Γ̃

(u2(α)− uad)2dx1, (2.4)

u(α) is the solution to (2.1)–(2.2) and Γ̃ ⊂ Γout given and uad = constant is a given
target profile. Γ̃ is used instead of Γout because in practice the velocity profile must
be close to the target profile only.

3. GENERAL PROBLEM AND APPROACH TO IT

In this section the general problem, not limited only to the problem presented in
previous section, is described. We consider the following shape optimization problem:

minimize J(Ω) =

∫
Ω

L(x, u(x),∇u(x))dx (3.1)

subject to
Ω ∈ Θ,

Au(x) = f(x, u(x)), (3.2)
Bu(x) = φ(x) on ∂Ω, (3.3)

where Θ is a certain family of bounded with C3 boundary domains of D ⊂ R2 which
will be defined precisely in subsection 3.1 and A is a differential operator e.g. defining
the Navier-Stokes equations and B an operator acting on the boundary. We assume
that L : R2 × R2 × R4 → R is Lipschitz continuous with respect to all variables,
f : R2 × R2 → R2 is continuous and Lipschitz continuous with respect to the last
variable, φ(·) is continuous on ∂Ω. The assumption that Ω is a domain with C3

boundary is not essential, it is enough to assume that the set Ω has Lipschitz boundary,
however this stronger assumption simplifies some considerations below – we need not
to go in to some technical details, which are not essential here. Then, in dividing the
tube problem (from the former section) we can simply round the corners.

3.1. REDUCTION OF SHAPE OPTIMIZATION PROBLEM
TO A CLASSICAL CONTROL PROBLEM

Let vmin be a C3 curve lying in Ω with ends of it on the boundary ∂Ω and entering the
boundary in a smooth C3 way. Next let vmax be a C3 curve lying out of Ω̄ with ends
of it lying on the boundary ∂Ω between the ends of vmin and entering the boundary
in a smooth C3 way. Denote by Γl the portion of ∂Ω between the end of vmin and the
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end of vmax and by Γr the portion of ∂Ω between the end of vmax and the end of vmin.
Moreover, we assume that the domain Φ bounded by: curve vmin, Γl, curve vmax, Γr
is simply connected. Denote by Ω(vmin) = Ω\Φ̄ and by Ω(vmax) = Ω∪Φ (see Figures
2 and 3).
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Fig. 2. Notation used in Section 3.1
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Fig. 3. Notation used in Section 3.1

Of course Ω(vmin) ⊂ Ω and Ω ⊂ Ω(vmax). Denote by U the family of all noninter-
secting C3 curves whose graphs are in Φ and having one end on Γl and the second on
Γr and entering both curves in a smooth C3 way. Elements of U we will denote by
v. For v ∈ U let Ω(v) ⊂ Ω(vmax) be a domain bounded by: ∂Ω(vmin) ∩ ∂Ω, portion
of Γl between end of vmin and end of v, curve v, and portion of Γr between end of v
and end of vmin. Put Φ(v) = Ω(v)\Ω̄(vmin), v ∈ U . Let v1(s), v2(s), s ∈ [0, 1] be two
curves from U parametrized by the same parameter s. The distance between them
we define as dist(v1, v2) = sups∈[0,1] |v1(s)− v2(s)|. We say that U 3 vn → v ∈ U if
dist(vn, v)→ 0 and the same that Ω(vn)→ Ω(v) or Φ(vn)→ Φ(v).
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We intend to construct the deformation of Ω(v), v ∈ U . To this effect let us denote
the part of the boundary ∂Ω(vmin) corresponding to the curve vmin as Γ0 while the
part of the boundary ∂Ω(v) corresponding to the curve v as Γ(v). Next the boundary
value problem is constructed:

Find zmax ∈ C2(Ω(vmax)) such that
∆z(x) = 0 in Ω(vmax)\Ω̄(vmin),

z(x) = 0 on Γ0,

z(x) = 1 on Γ(vmax).

(3.4)

For 0 ≤ t ≤ 1 put

z−1
max(t) = {x ∈ Ω(vmax)\Ω̄(vmin) : zmax(x) = t}.

From the equations above, we have

Γ0 = z−1
max(0) and Γ(vmax) = z−1

max(1).

Next for v ∈ U , v 6= vmin, find z ∈ C2(Ω(v)\Ω̄(vmin)) such that
∆z(x) = 0 in Ω(v)\Ω̄(vmin),

z(x) = 0 on Γ0,

z(x) = zmax(x) on Γ(v).

(3.5)

Solution to (3.5) belongs to C2(Φ(v)) and in fact they are restrictions of zmax to Φ(v).
By construction z(x) depends (in a continuous way) on v, we will use the notation
z(x, v) for the solution of (3.5), which is obtained for a given v. In that case, v is a
parameter and not a variable. The family Θ of sets over which the problem (3.1)–(3.3)
is considered is defined as:

Θ = {Ω(v) : v ∈ U}. (3.6)

The sets from Θ are called admissible sets for problem (3.1)–(3.3). Following Zolésio
[19], for a given Φ(v), we introduce the field (again v is a parameter, not a variable)

V (x, v) = ‖∇z(x, v)‖−2∇z(x, v). (3.7)

Then the deformation is defined as

Ts(w, v) = x(s, w, v), s ∈ [0, 1],

where x(·, w, v) is a solution to

d

ds
x(s, w, v) = V (x(s, w, v), v), s ∈ [0, 1], w ∈ Γ0 (3.8)

with the initial condition
x(0, w, v) = w, w ∈ Γ0.
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Notice, that for a given fixed w ∈ Γ0, the point x(1, w, v) belongs to Γ(v). Defining
a new functional I(v) as

I(v) = J(Ω(v)) =

∫
Ω(v)

L(x, u(x),∇u(x))dx (3.9)

we can reformulate the problem (3.1)–(3.3) in terms of the family Θ:

minimize {I(v) : v ∈ U} (3.10)

subject to
Ω(v) ∈ Θ, (3.11)

Au(x) = f(x, u(x)), x ∈ Ω(v), (3.12)
Bu(x) = φ(x) on ∂Ω(v). (3.13)

However, it is still difficult to study (3.10) with the tools of optimal control theory:
variables are still domains Ω(v), in spite of that they are dependent on control v.
In the classical control theory variables of functionals are functions. In the next step
we will reformulate the functional (3.10) in terms of functions so that we can apply
known methods of optimal control theory to our problem (3.10).

For a given control v ∈ U , define z(·) by (3.5). Hence we can write

d

ds
x(s) = V (x(s), v), s ∈ [0, 1], x(0) = w. (3.14)

Formula (3.14) defines a family of trajectories x(s), s ∈ [0, 1], depending on control
function v and initial parameter w ∈ Γ0. Note that as ∂Ω(v) is of C3 thus V is of C1

with respect to x and continuous with respect to v. Hence, by the well known theorem
on ODEs, we know that the solution x of (3.14) depends on (w, v) in a continuous way
and we shall denote our functions x as x(·, w, v) and call them states of the problem
(3.10) and v will be called “controls” of this problem. Let us take v1, v2 ∈ U such that
Ω(v1) ⊂ Ω(v2) and let x ∈ Ω(v2)\Ω(v1), then there exists w1 ∈ Γ0 and trajectory
x(·, w1, v1) in [0, 1] such that it can be extended with x(·, w2, v2) in such a way that
x(1, w1, v1) = x(t1, w2, v2), for some t1 ∈ (0, 1) and there exists t2 ∈ (0, 1), t1 < t2
such that x(t2, w2, v2) = x. This new trajectory (it is still absolutely continuous) we
will call extension of x(·, w1, v1) to x and will denote it by x(·, w1, v1, v2).

The boundary Γ(v) is the image of Γ0 by the map x(1, ·, v). Thus, for a given
v 6= vmin, we have an alternative definition of Φ(v) = Ω(v)\Ω̄(vmin):

Φ(v) = {x : x = x(s, w, v), 0 < s < 1, w ∈ Γ0}.

This means that we can construct and study some objects over the set Ω(v) with the
help of the family F (v):

F (v) = {x(s, w, v) : 0 < s < 1, w ∈ Γ0}
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of solutions defined by (3.8). The functional (3.9) in terms of the family F (v) can be
rewritten as

I(v) =

∫
Ω(vmin)

L(y, u(y),∇u(y))dy +

∫
Ω(v)\Ω̄(vmin)

L(x, u(x),∇u(x))dx = J(F (v))

=

∫
Ω(vmin)

L(y, u(y),∇u(y))dy

+

1∫
0

∫
Γ0

L(x(s, w, v), u(x(s, w, v)),∇u(x(s, w, v)))

∣∣∣∣ ∂∂sx ∂

∂w
x

∣∣∣∣ dwds,
where u satisfies (3.12)–(3.13) and

∣∣ ∂
∂sx

∂
∂wx

∣∣ denotes the determinant of the Jaco-
bian matrix ( ∂∂sx

∂
∂wx). We shall denote

L̂(x(s, w, v), u(x(s, w, v)),∇u(x(s, w, v)))

= L(x(s, w, v), u(x(s, w, v)),∇u(x(s, w, vt)))

∣∣∣∣ ∂∂sx ∂

∂w
x

∣∣∣∣
and then

I(v) =

∫
Ω(vmin)

L(y, u(y),∇u(y))dy

+

1∫
0

∫
Γ0

L̂(x(s, w, v), u(x(s, w, v)),∇u(x(s, w, v)))dwds.

Therefore we are able to reduce the shape optimal control problem (3.10) to the
classical optimal control problem (P):

minimize I(v) (3.15)

subject to

d

ds
x(s, w, v) = V (x(s, w, v), v), s ∈ [0, 1], x(0, w, v) = w, w ∈ Γ0, v ∈ U,

where u satisfies (3.12)–(3.13). In order to formulate any sufficient optimality condi-
tions for (3.15) we apply a classical dynamic programming scheme.

3.2. A DYNAMIC PROGRAMMING APPROACH AS A METHOD
OF SOLUTION TO (3.15)

Let us take any x ∈ Ω(vmax)\Ω̄(vmin) and denote by Ux a subfamily of U such that
x ∈ v for each v ∈ Ux. By (3.14) for each v ∈ Ux there is a trajectory x(·, w, v) such
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that x = x(1, wv, v), for some wv ∈ Γ0. The problem (P) falls into the category of
Lagrange control problems treated in many books (e.g. [10]). Following Chapter IV
of this book we define a value function for (3.15), for x ∈ Ω(vmax):

S(x) = inf

{ ∫
Ω(vmin)

L(y, u(y),∇u(y))dy

+

1∫
0

∫
Γ0

L̂(x(s, w, v), u(x(s, w, v)),∇u(x(s, w, v)))dwds

}
,

(3.16)

where the infimum in (3.16) is taken over all pairs

(x(·, w, v), v) (3.17)

satisfying

d

ds
x(s, w, v) = V (x(s, w, v), v), s ∈ [0, 1], v ∈ Ux, w ∈ Γ0 (3.18)

and for v ∈ Ux, x(1, wv, v) = x, for some wv ∈ Γ0

and where u satisfies (3.12)–(3.13) in Ω(v). Each pair (x(·, w, v), v) satisfying (3.18)
will be called admissible for the point x ∈ Ω(vmax)\Ω̄(vmin). If it happens that S(·)
is of C1 in Ω(vmax)\Ω̄(vmin) then it satisfies the Hamilton-Jacobi-Bellman equation

max

{
Sx(x)V (x, v)

−
∫
Γ0

L̂(x(1, w, v), u(x(1, w, v)),∇u(x(1, w, v)))dw : v ∈ Ux

}
= 0.

(3.19)

The terminal value for equation (3.19) we assume

S(w) =

∫
Ω(vmin)

L(y, umin(y),∇umin(y))dy, w ∈ Γ0,

where umin is a solution to (3.12) for Ω(vmin). Moreover, if there exists a pair
(x̄(·, w, v̄), v̄) satisfying (3.18) and

Sx(x(τ, w̄, v̄))V (x(τ, w̄, v̄), v̄)

−
∫
Γ0

L̂(x(τ, w, v̄), ū(x(τ, w, v̄)),∇ū(x(τ, w, v̄)))dw = 0,

τ ∈ (0, 1], for some w̄ ∈ Γ0, x(1, w, v̄) ∈ Γ(v̄), w ∈ Γ0,
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where ū is a solution to (3.12) for Ω(v̄), then

S(x(1, w̄, v̄)) =

∫
Ω(vmin)

L(y, ū(y),∇ū(y))dy

+

1∫
0

∫
Γ0

L̂(x(s, w, v̄), ū(x(s, w, v̄)),∇ū(x(s, w, v̄)))dwds

is the optimal value for problem (3.15), and so

I(v̄) =

∫
Ω(vmin)

L(y, ū(y),∇ū(y))dy

+

1∫
0

∫
Γ0

L̂(x(s, w, v̄), ū(x(s, w, v̄)),∇ū(x(s, w, v̄)))dwds

is an optimal value for problem (3.15) and thus for (3.10). However, in practice, we
cannot expect that S(·) is of C1 in Ω(vmax)\Ω̄(vmin), this is why we are interested
in the numerical approximation of S(·). Therefore, we shall look for ε-value function
Sε(·). For a given ε > 0 we call any Sε : Ω(vmax)\Ω̄(vmin)→ R, ε-value function if

S(x) ≤ Sε(x) ≤ S(x) + ε, x ∈ Ω(vmax)\Ω̄(vmin). (3.20)

It is clear that there exists infinitely many ε-value functions Sε(·).
We tell that for a given x ∈ Ω(vmax)\Ω̄(vmin) the pair (xε(·, w, vε), vε), such that

xε(1, wε, v
ε) = x, is ε-optimal if

S(xε(1, w, vε)) + ε ≥
∫

Ω(vmin)

L(y, u
ε

(y),∇u
ε

(y))dy

+

1∫
0

∫
Γ0

L̂(xε(l, w, vε), u
ε

(xε(l, w, vε)),∇u
ε

(xε(l, w, vε)))dwdl

and vε ∈ Ux, where u
ε

is a solution to (3.12) for Ω(vε). In the next proposition we
show that our ε-value function Sε(·) has analogous properties to the classical value
function.

Proposition 3.1. Let (x(·, w, v), v) be any admissible pair for x defined in [0, 1] i.e.
v ∈ Ux and w1 ∈ Γ0 such that x(1, w1, v) = x. Then along x(s, w1, v), s ∈ [0, 1], for
any s1 ≤ s2 s1, s2 ∈ [0, 1] we have

Sε(x(s2, w1, v))−
s2∫

0

∫
Γ0

L̂(x(l, w, v), u(x(l, w, v)),∇u(x(l, w, v)))dwdl

≤ Sε(x(s1, w1, v))−
s1∫

0

∫
Γ0

L̂(x(l, w, v), u(x(l, w, v)),∇u(x(l, w, v)))dwdl + ε,
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where u is a solution to (3.12) for Ω(v). Moreover, along an ε-optimal pair
(xε(·, w, vε), vε) such that vε ∈ Ux we have the inequality:

Sε(x
ε(s, wε, v

ε)) ≤
∫

Ω(vmin)

L(y, uε(y),∇uε(y))dy

+

s∫
0

∫
Γ0

L̂(xε(l, w, vε), uε(xε(l, w, vε)),∇uε(xε(l, w, vε)))dwdl + ε, s ∈ [0, 1],

where wε ∈ Γ0 is such that xε(1, wε, vε) = x and uε is a solution to (3.12)–(3.13)
in Ω(vε).

Proof. We prove only the first part of the proposition as the second one is simply
a consequence of the first and the definition of an ε-optimal pair. Let (x(·, w, v), v)
be any admissible pair for x, i.e. defined in [0, 1] such that x(1, w1, v) = x, for some
w1 ∈ Γ0. According to the definition of an admissible pair, the pair (x(s, w, v), v),
s ∈ [0, s1] is also admissible for the point x(s2, w1, v). Next, take any admissible pair
(x2(s, w, v2), v2), s ∈ [0, s1] for the point (s1, x(s1, w1, v)) such that x2(s1, w2, v

2) =
x(s1, w1, v), for some w2 ∈ Γ0. Hence

Sε(x(s2, w1, v)) ≤
s2∫
s1

∫
Γ0

L̂(x(l, w, v), u(x(l, w, v)),∇u(x(l, w, v)))dwdl

+

∫
Ω(vmin)

L(y, u2(y),∇u2(y))dy

+

s1∫
0

∫
Γ0

L̂(x2(l, w, v2), u2(x2(l, w, v2)),∇u2(x2(l, w, v2)))dwds+ ε,

where u2 is a solution to (3.12) for Ω(v2). As the pair (x2(s, w, v2), v2), s ∈ [0, s1],
was chosen in an arbitrary way and x2(s1, w2, v

2) = x(s1, w1, v), we have

Sε(x(s2, w1, v))−
s2∫

0

∫
Γ0

L̂(x(l, w, v), u(x(l, w, v)),∇u(x(l, w, v)))dwdl

≤ inf

{ ∫
Ω(vmin)

L(y, û(y),∇û(y))dy

+

s1∫
0

∫
Γ0

L̂(x̂(l, w, v̂), û(x̂(l, w, v̂)),∇û(x̂(l, w, v̂)))dwds

}

−
s1∫

0

∫
Γ0

L̂(x(l, w, v), u(x(l, w, v)),∇u(x(l, w, v)))dwdl + ε,
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where the infimum is taken over all admissible pairs (x̂(s, w, v̂), v̂), s ∈ [0, s1] for the
point x(s1, w1, v) and û is a solution to (3.12) for Ω(v̂). The last inequality implies
the first assertion of the proposition.

It can be noticed easily that the conditions stated in the above proposition are
in fact necessary conditions of ε-optimality. It turns out that they are also sufficient
conditions of ε-optimality.

Proposition 3.2. Let G(·) be any function defined in Ω(vmax)\Ω̄(vmin). Assume that
for any s1 ≤ s2, s1, s2 ∈ [0, 1] and any admissible pair (x(·, w, v), v) for x, i.e. defined
in [0, 1] and x(1, w1, v) = x, for some w1 ∈ Γ0, we have

G(x(s2, w1, v))−
s2∫

0

∫
Γ0

L̂(x(l, w, v), u(x(l, w, v)),∇u(x(l, w, v)))dwdl

≤ G(x(s1, w1, v))−
s1∫

0

∫
Γ0

L̂(x(l, w, v), u(x(l, w, v)),∇u(x(l, w, v)))dwdl + ε,

(3.21)

where u is a solution to (3.12) for Ω(v) and G(w) =
∫

Ω(vmin)
L(y, umin(y),∇umin(y))dy,

w ∈ Γ0. If there exists an admissible pair (xε(·, w, vε), vε) for x, i.e. defined in [0, 1]
and xε(1, w1, v

ε) = x such that

G(xε(1, w1, v
ε)) ≥

∫
Ω(vmin)

L(y, uε(y),∇uε(y))dy

+

1∫
0

∫
Γ0

L̂(xε(l, w, vε), uε(xε(l, w, vε)),∇uε(xε(l, w, vε)))dwdl,

(3.22)

where uε is a solution to (3.12) for Ω(vε), then (xε(·, w, vε), vε) is an ε-optimal pair
for Sε(x) = G(x).

Proof. Let (x(·, w, v), v) be any admissible pair for x, i.e. defined in [0, 1] and
x(1, w1, v, v2) = x (w1 ∈ Γ0). Then by (3.21)

G(x(1, w1, v))−
∫

Ω(vmin)

L(y, u(y),∇u(y))dy

−
1∫

0

∫
Γ0

L̂(x(l, w, v), u(x(l, w, v)),∇u(x(l, w, v)))dwdl ≤ ε,
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where u is a solution to (3.12) for Ω(v). Thus

G(x(1, w1, v)) ≤ inf

{ ∫
Ω(vmin)

L(y, û(y),∇û(y))dy

+

1∫
0

∫
Γ0

L̂(x̂(l, w, v̂), û(x̂(l, w, v̂)),∇û(x̂(l, w, v̂)))dwdl

}
+ ε,

where the infimum is taken over all admissible pairs (x̂(s, w, v̂), v̂), s ∈ [0, 1] for the
point x and where û is a solution to (3.12) for Ω(v̂). For the pair (xε(·, w, vε), vε) we
have (3.22), therefore this pair is an ε-optimal pair for Sε(x) = G(x).

Now, we formulate and prove the so-called verification theorem for problem (P).

Proposition 3.3. Let G(·), defined in Ω(vmax)\Ω̄(vmin), be a C1 solution of the
inequality

0 ≤ max

{
Gx(x)V (x, v)

−
∫
Γ0

L̂(x(1, w, v), u(x(1, w, v)),∇u(x(1, w, v)))dw : v ∈ Ux

}
≤ ε,

(3.23)

where u is a solution to (3.12) for Ω(v) and boundary condition

G(w) =

∫
Ω(vmin)

L(y, umin(y),∇umin(y))dy, w ∈ Γ0,

where umin is a solution to (3.12) for Ω(vmin). If there exists a pair (xε(s, w, vε), vε),
s ∈ [0, 1], satisfying (3.18) and for some wε ∈ Γ0,

0 ≤ Gx(xε(s, wε, v
ε))V (xε(s, wε, v

ε), vε)

−
∫
Γ0

L̂(xε(s, w, vε), uε(xε(s, w, vε)),∇uε(xε(s, w, vε)))dw ≤ ε, (3.24)

where uε is a solution to (3.12) for Ω(vε), then∫
Ω(vmin)

L(y, uε(y),∇uε(y))dy

+

1∫
0

∫
Γ0

L̂(xε(s, w, vε), uε(xε(s, w, vε)),∇uε(xε(s, w, vε)))dwds

is the ε-optimal value for problem (3.15) and thus for (3.10). Moreover, the
pair (xε(s, w, vε), vε) is ε-optimal for the ε-value function Sε(x

ε(1, wε, v
ε)) =

G(xε(1, wε, v
ε)).
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Proof. Take any admissible pair (x(·, w, v), v) and wε as in (3.24). Then by (3.23), for
τ ∈ [0, 1],

d

dτ
G(x(τ, wε, v)) = Gx(x(τ, wε, v))V (x(τ, wε, v), v)

≤
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw + ε.

Hence we infer that G(·) satisfies (3.21). Similarly by (3.24) we get (3.22). Thus, by
Proposition 3.2, we get the assertion of the proposition.

Remark 3.4. It is clear that, in practice, finding any solution to (3.21), directly,
is almost impossible, similarly to find an admissible pair (xε(·, w, vε), vε) satisfying
(3.24). This is why in the next section we develop a numerical approximation of the
value function. However the above verification theorem can also be of use if we are able
to find in any way (simply guess) a function G and the admissible pair (xε(·, w, vε), vε)
and check that they satisfy (3.24), (3.23). This theorem is also the essential part of
the numerical approximation.

4. NUMERICAL APPROXIMATION OF THE VALUE FUNCTION

This section is an adaptation of the method developed by Pustelnik in his Ph.D. thesis
[18] for the numerical approximation of the value function for the Bolza problem from
optimal control theory.

Let us define the following set

T =
{
x : x ∈ Ω(vmax)\Ω̄(vmin)

}
.

Since Ω(vmax)\Ω̄(vmin) is bounded, the set T̄ is compact. Let T 3 x → g(x) be an
arbitrary function of class C1 in T̄ such that g(x) = c, x ∈ Γ0, where c is some constant
which we will determine later. For a given function g, we define (x, v)→ Gg(x, v) as

Gg(x, v) = gx(x)V (x, v)

−
∫
Γ0

L̂(x(1, w, v), u(x(1, w, v)),∇u(x(1, w, v)))dw, (4.1)

v ∈ Ux, where x(·, w, v), u are defined as in (3.18). Next, we define the function
x→ Fg(x) as

Fg(x) = max {Gg(x, v) : v ∈ Ux} . (4.2)

Note that by the assumptions on L and V , the function Fg is continuous in T . By
continuity of Fg and compactness of T̄ , there exist kd and kg such that

kd ≤ Fg(x) ≤ kg for x ∈ Ω(vmax)\Ω̄(vmin).
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4.1. DEFINITION OF COVERING OF T

Let η > 0 be fixed and {qηj }j∈Z be a sequence of real numbers such that qηj = jη,
j ∈ Z (where Z is the set of integers). Denote

J = {j ∈ Z : there is x ∈ T such that jη < Fg(x) ≤ (j + 1)η},

i.e.
J = {j ∈ Z : there is x ∈ T such that qηj < Fg(x) ≤ qηj+1}.

Next, let us divide the set T into the sets P η,gj , j ∈ J , as follows

P η,gj :=
{
x ∈ T : qηj < Fg(x) ≤ qηj+1

}
, j ∈ J.

As a consequence, we have for all i, j ∈ J , i 6= j, P η,gi ∩ P η,gj = ∅,
⋃
j∈J P

η,g
j = T an

obvious proposition:

Proposition 4.1. For each x ∈ T there exists an ε > 0, such that a ball with center
x and radius ε is either contained in one set P η,gj , j ∈ J , only or contained in a union
of two sets P η,gj1

, P η,gj2
, j1, j2 ∈ J . In the latter case |j1 − j2| = 1.

4.2. DISCRETIZATION OF Fg

Define in T a function

hη,g(x) = −qηj+1, x ∈ P
η,g
j , j ∈ J. (4.3)

Then, by the construction of the covering of T , we have

0 ≤ Fg(x) + hη,g(x) ≤ η, x ∈ T. (4.4)

Let (x(·, w, v), v) be any admissible pair with the trajectory defined in [0, 1], start-
ing at the point x(0, w, v)), w ∈ Γ0 fixed. We show that there exists an increasing
sequence of m points {τi}i=1,...,m, τ1 = 0, τm = 1, such that for τ ∈ [τi, τi+1]

|Fg(x(τi, w, v))− Fg(x(τ, w, v))| ≤ η

2
, i = 2, . . . ,m− 2,

|Fg(x(τ2, w, v))− Fg(x(τ, w, v))| ≤ η

2
, τ ∈ (τ1, τ2],

|Fg(x(τm−1, w, v))− Fg(x(τ, w, v))| ≤ η

2
, τ ∈ [τm−1, τm).

(4.5)

Indeed, it is a direct consequence of two facts: Lipschitz continuity of x(·, w, v) with a
common Lipschitz constant and continuity of Fg. From (4.5) we infer that for each i ∈
{1, . . . ,m− 1} if x(τi, w, v) ∈ P η,gj for a certain j ∈ J , then we have for τ ∈ [τi, τi+1)

x(τ, w, v) ∈ P η,gj−1 ∪ P
η,g
j ∪ P η,gj+1.

Define
hη,g(x(τ1, w, v)) = hη,g(x(τ, w, v)) for some τ near τ1
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and
hη,g(x(τm, w, v)) = hη,g(x(τ, w, v)) for some τ near τm.

Thus for τ ∈ [τi, τi+1]

hη,g(x(τi, w, v))− η ≤ hη,g(x(τ, w, v)) ≤ hη,g(x(τi, w, v)) + η, (4.6)

and so, for i ∈ {2, . . . ,m− 1}

hη,g(x(τi, w, v))− hη,g(x(τi−1, w, v)) = ηix(·,w,v), (4.7)

where ηix(·,w,v) is equal to −η or 0 or η. Integrating (4.6) we get for each
i ∈ {1, . . . ,m− 1}

[hη,g(x(τi, w, v))− η](τi+1 − τi) ≤
τi+1∫
τi

hη,g(x(τ, w, v))dτ

≤ [hη,g(x(τi, w, v)) + η](τi+1 − τi)

and, as a consequence,

∑
i∈{1,...,m−1}

[hη,g(x(τi, w, v))(τi+1 − τi)]− η ≤
1∫

0

hη,g(x(τ, w, v))dτ

≤
∑

i∈{1,...,m−1}

[hη,g(x(τi, w, v))(τi+1 − τi)] + η.

Now, we will present the expression
∑
i∈{1,...,m−1}[h

η,g(x(τi, w, v))(τi+1−τi)] in a dif-
ferent, more useful form. By performing simple calculations, we get the two following
equalities: ∑

i∈{2,...,m−1}

[hη,g(x(τi, w, v))− hη,g(x(τi−1, w, v))]τm

= −hη,g(x(τ1, w, v))τm + hη,g(x(τm−1, w, v))τm,∑
i∈{2,...,m−1}

[hη,g(x(τi, w, v))− hη,g(x(τi−1, w, v))](−τi)

=
∑

i∈{1,...,m−1}

[hη,g(x(τi, w, v))(τi+1 − τi)]

+ hη,g(x(τ1, w, v))τ1 − hη,g(x(τm−1, w, v))τm.

(4.8)

From (4.8) we get∑
i∈{2,...,m−1}

[hη,g(x(τi, w, v))− hη,g(x(τi−1, w, v))](τm − τi)

=
∑

i∈{1,...,m−1}

[hη,g(x(τi, w, v))(τi+1 − τi)]− hη,g(x(τ1, w, v))(τ1 − τm),
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and next, we obtain∑
i∈{2,...,m−1}

[hη,g(x(τi, w, v))− hη,g(x(τi−1, w, v))](τm − τi)

+ hη,g(x(τ1, w, v))(τm − τ1)− η(τm − τ1)

≤
τm∫
τ1

hη,g(x(τ, w, v))dτ

≤
∑

i∈{2,...,m−1}

[hη,g(x(τi, w, v))− hη,g(x(τi−1, w, v))](τm − τi)

+ hη,g(x(τ1, w, v))(τm − τ1) + η(τm − τ1)

and, taking into account (4.7), we infer that∑
i∈{2,...,m−1}

ηix(·,w,v)(τm − τi) + hη,g(x(τ1, w, v))(τm − τ1)− η(τm − τ1)

≤
τm∫
τ1

hη,g(x(τ, w, v))dτ

≤
∑

i∈{2,...,m−1}

ηix(·,w,v)(τm − τi) + hη,g(x(τ1, w, v))(τm − τ1) + η(τm − τ1).

(4.9)

We would like to stress that (4.9) is very useful from a numerical point of view:
we can estimate the integral hη,g(·, ·) along any trajectory x(·, w, v) as a sum of a
finite number of values, where each value consists of a number from the set {−η, 0, η}
multiplied by τm−τi. Moreover, for two different trajectories: x(·, w1, v1), x(·, w2, v2),
the expressions ∑

i∈{2,...,m−1}

ηix(·,w1,v1)(τm − τi) + hη,g(x(τ1, w
1, v1))(τm − τ1)

and ∑
i∈{2,...,m−1}

ηix(·,w2,v2)(τm − τi) + hη,g(x(τ1, w
2, v2))(τm − τ1)

are identical if
hη,g(x(τ1, w

1, v1)) = hη,g(x(τ1, w
2, v2)) (4.10)

and
ηix(·,w1,v1) = ηix(·,w2,v2) for all i ∈ {2, . . . ,m− 1}. (4.11)

The last one means that in the set B of all trajectories x(·, w, v), w ∈ Γ0, v ∈ Ux, we
can introduce an equivalence relation r: we say that two trajectories x(·, w1, v1) and
x(·, w2, v2), w1, w2 ∈ Γ0, v1, v2 ∈ Ux are equivalent if they satisfy (4.10) and (4.11).
We denote the set of all disjoint equivalence classes by Br. The cardinality of Br,
denoted by ‖Br‖, is finite and bounded from above by 3m+1.
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Define

X =
{
x = (x1, . . . , xm−1) : x1 = 0, xi = ηixj ,

i = 2, . . . ,m− 1, xj ∈ Br, j = 1, . . . , ‖Br‖
}
.

It is easy to see that the cardinality of X is finite.
The considerations above allow us to estimate the approximation of the value

function.

Theorem 4.2. We have the following estimation, for any w1 ∈ Γ0,

min
x∈Br,w0∈Γ0

(
−

τm∫
τ1

hη,g(x(τ, w0, v))dτ − g(x(τm, w0, v))

)

≤ max
x∈Br

{ τm∫
τ1

(
−
∫
Γ0

L̂(x(s, w, v), u(x(s, w, v)),∇u(x(s, w, v)))dw

)
ds

− g(x(τ1, w1, v))

}

≤ max
x∈Br,w0∈Γ0

(
−

τm∫
τ1

hη,g(x(τ, w0, v))dτ − g(x(τm, w0, v))

)
+ η(τm − τ1),

where u is a solution to (3.12) for Ω(v).

Proof. By inequality (4.4)

0 ≤ Fg(x) + hη,g(x) ≤ η,

we have
−hη,g(x) ≤ Fg(x) ≤ −hη,g(x) + η.

Integrating the last inequality along any x(·, w0, ṽ) in the interval [τ1, τm], we get

−
τm∫
τ1

hη,g(x(τ, w0, ṽ))dτ ≤
τm∫
τ1

(
max
v∈Ux

{
gx(x(τ, w0, ṽ))V (x(τ, w0, ṽ), v)

−
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw

})
dτ

≤ −
τm∫
τ1

hη,g(x(τ, w0, ṽ))dτ + η(τm − τ1),
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where u is a solution to (3.12) for Ω(v). Thus,

−
τm∫
τ1

hη,g(x(τ, w0, ṽ))dτ

≤ max
v∈Ux

τm∫
τ1

(
gx(x(τ, w0, ṽ))V (x(τ, w0, ṽ), v)

−
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw
)
dτ

≤ −
τm∫
τ1

hη,g(x(τ, w0, ṽ))dτ + η(τm − τ1).

Hence, we get two inequalities

min
x∈Br,w0∈Γ0

− τm∫
τ1

hη,g(x(τ, w0, ṽ))dτ − g(x(τm, w0, ṽ))


≤ min
x∈Br,w0∈Γ0

max
v∈Ux

τm∫
τ1

(
− g(x(τm, w0, ṽ))

+ gx(x(τ, w0, ṽ))V (x(τ, w0, ṽ), v)

−
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw

)
dτ

and

max
x∈Br,w0∈Γ0

max
v∈Ux

τm∫
τ1

(
− g(x(τm, w0, ṽ))

+ gx(x(τ, w0, ṽ))V (x(τ, w0, ṽ), v)

−
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw

)
dτ

≤ max
x∈Br,w0∈Γ0

− τm∫
τ1

hη,g(x(τ, w0, ṽ))dτ − g(x(τm, w0, ṽ))

+ η(τm − τ1).
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Both inequalities imply that, for any w1 ∈ Γ0,

min
x∈Br,w0∈Γ0

max
v∈Ux

τm∫
τ1

(
− g(x(τm, w0, ṽ)) + gx(x(τ, w0, ṽ))V (x(τ, w0, ṽ), v)

−
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw

)
dτ

≤ max
v∈Ux

(
− g(x(τm, w1, v)) +

τm∫
τ1

(
gx(x(τ, w1, v))V (x(τ, w1, v), v)

−
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw

)
dτ

)

≤ max
x∈Br

max
,w0∈Γ0v∈Ux

τm∫
τ1

(
− g(x(τm, w0, ṽ)) + gx(x(τ, w0, ṽ))V (x(τ, w0, ṽ), v)

−
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw

)
dτ.

As a consequence of the above we get, for any w1 ∈ Γ0,

min
x∈Br,w0∈Γ0

− τm∫
τ1

hη,g(x(τ, w0, ṽ))dτ − g(x(τm, w0, ṽ))


≤ max
x∈Br

{ τm∫
τ1

(
−
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw

)
dτ

− g(x(τ1, w1, v))

}

≤ max
x∈Br,w0∈Γ0

− τm∫
τ1

hη,g(x(τ, w0, v))dτ − g(x(τm, w0, ṽ))

+ η(τm − τ1)

and thus the assertion of the theorem follows.

Now, we use the definition of an equivalence class to reformulate the theorem
above in a way that is more useful in practice. To this effect let us note that, by the
definition of an equivalence relation r, we have

min
x∈Br

{
−

∑
i=2,...,m−1

ηix(τm − τ1)
}

= min
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τ1)
}
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and

max
x∈Br

{
−

∑
i=2,...,m−1

ηix(τm − τ1)
}

= max
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τ1)
}
.

Taking into account (4.9) we get

min
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)
}

+ min
x∈Br,w0∈Γ0

{−hη,g(x(τ1, w0, v))(τm − τ1)

−g(x(τm, w0, v))} − η(τm − τ1)

≤ min
x∈Br

{
−

τm∫
τ1

hη,g(x(τ, w0, v))dτ − g(x(τm, w0, v))
}

≤ min
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)
}

+ max
x∈Br,w0∈Γ0

{−hη,g(x(τ1, w0, v))(τm − τ1)

−g(x(τm, w0, v))}+ η(τm − τ1)

and a similar formula for supremum. Applying that to the result of the theorem above,
we obtain the following estimation, for any w1 ∈ Γ0,

min
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)
}

+ min
x∈Br,w0∈Γ0

{−hη,g(x(τ1, w0, v))(τm − τ1)

−g(x(τm, w0, v))} − 2η(τm − τ1)

≤ max
x∈Br

{ τm∫
τ1

(
−
∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw

)
dτ

− g(x(τ1, w1, v))
}

≤ max
x∈X

{
−

∑
i∈{1,...,m−1}

xi(τm − τi)
}

+ max
x∈Br,w0∈Γ0

{−hη,g(x(τ1, w0, v))(τm − τ1)

−g(x(τm, w0, vxn+1
))
}

+ η(τm − τ1).

(4.12)

Thus, we come to the main theorem of this section, which allows us to reduce an
infinite dimensional problem to a finite dimensional one.

Theorem 4.3. Let η > 0. Assume that there are θ > 0, v̄ and w̄ ∈ Γ0 such that

min
x∈X

{ ∑
i∈{1,...,m−1}

xi(τm − τi)
}

+ min
x∈Br,w0∈Γ0

{hη,g(x(τ1, w0, v)) + g(x(τm, w0, v))}

≥ max
x∈X

{ ∑
i∈{1,...,m−1}

xi(τm − τi)
}

+ max
x∈Br,w0∈Γ0

{hη,g(x(τ1, w0, v)) +g(x(τm, w0, v))}+ θ,

(4.13)
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max
x∈Br,w0∈Γ0

{hη,g(x(τ1, w0, v))+g(x(τm, w0, v))} = {hη,g(x(τ1, w̄, v̄)) + g(x(τm, w̄, v̄))} .

Then

−(η + θ) + hη,g(x(τ1, w̄, v̄)) + g(x(τm, w̄, v̄)) + max
x∈X

{ ∑
i∈{1,...,m−1}

xi(τm − τi)
}

(4.14)

is the ε-optimal value at x(τm, w̄, v̄) for ε = 3η + θ with

g(w) =

∫
Ω(vmin)

L(y, ū(y),∇ū(y))dy, w ∈ Γ0,

where ū is a solution to (3.12) for Ω(v̄).

Proof. From the formulae (4.12), (4.13) and equality τm − τ1 = 1 we infer

max
x∈X

{ ∑
i∈{1,...,m−1}

xi(τm − τi)

}

+ max
x∈Br,w0∈Γ0

{
hη,g(x(τ1, w0, v)) + g(x(τm, w0, v))

}
+ 2η

≥ min
x∈Br

{ τm∫
τ1

(∫
Γ0

L̂(x(τ, w, v), u(x(τ, w, v)),∇u(x(τ, w, v)))dw

)
dτ

+

∫
Ω(vmin)

L(y, ū(y),∇ū(y))dy

}

≥ max
x∈X

{ ∑
i∈{1,...,m−1}

xi(τm − τi)

}
+ max
x∈Br,w0∈Γ0

{hη,g(x(τ1, w0, v))

+g(x(τm, w0, v))} − η − θ.

Next, using the definition of the value function (3.16), we get (4.14).

5. THE SHAPE OPTIMIZATION PROBLEM Pm

In this paragraph we are going to summarize the results presented in that section in a
form of a numerical algorithm. The algorithm itself does not have a form of computer
code or pseudocode and has to be tailored to the precise form of the problem being
solved. Therefore it is rather a mathematical framework serving as a guidance for
developing computer oriented algorithms.

The algorithm follows a sequence of steps detailed below. The general approach
is iterative – generate the mesh, repeat all the steps and obtain the approximation
together with the number indicating the quality of the approximation, and if the
quality is not sufficient – generate a denser mesh and repeat the algorithm.
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1. Create a mesh M covering the domain Ω(vmax) \ Ω̄(vmin) – during further com-
putations only nodes from the mesh are taken into consideration. The mesh can
be generated using various mesh generating methods, and the quality of the mesh
generation will impact the speed of the program (in terms of the number of nec-
essary iterations entailing generating denser and denser meshes but also the time
necessary for running a single iteration over the generated mesh).

2. Create a set W of points x ∈M ∩ Γ0.
3. Create a finite set U of curves that cover the generated mesh (i.e. for evey m ∈M

there exists v ∈ U such that m ∈ v). The shape of the curves beetween the
nodes is not important in theory, but in practice for the fastest convergence of the
algorithm the graph of U should approximate the set Ω(vmax)\ Ω̄(vmin) as close as
possible. We have found out that it is very good to use a family of Bézier (spline)
curves to this effect.

4. For every v ∈ U and every w ∈ W generate a trajectory for which x(0, w, v) = w
and x(1, w, v) ∈ v (i.e. the trajectory starts at Γ0 and ends at v). Because of
assumption from the point 1, trajectories consist of a finite number of points
coresponding to (some) nodes from mesh. Denote the set of points representing
trajectories as T . It approximates the set of points representing all trajectories for
the problem under consideration. The quality of this approximation depends on
the quality of the mesh.

5. For every point x ∈ T find the set Ux
6. For every point x ∈ T calculate

Fg(x) = max {Gg(x, v) : v ∈ Ux} .

This calculation is also an approximation, and an appropriate numerical algorithm
should be used to achieve best convergence in the whole method.

7. Find θ and v̄ for which inequality (4.13) from Theorem 4.3 holds and calculate the
ε-optimal value.This means using the approximate values obtained in previous
steps to calculate the discrete maximum and minimum in formula (4.13). The
values v̄ and θ can be used to obtain the ε - optimal value from the formula
(4.14) together with the ε representing the precision of the approximation. If the
precision is not sufficient, the whole algorithm should be repeated with denser
mesh and more precise approximation methods in subsequent steps.
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