
 
 

 
 

Bioenergetics and Trophic Impacts of Invasive Indo-Pacific Lionfish  

by David S. Cerino 

March, 2010 

Director: Dr. Anthony S. Overton 

Department of Biology 

East Carolina University  

 

Indo-Pacific lionfish, Pterois volitans and Pterois miles, are non-native marine fish with 

established populations in the western North Atlantic Ocean and Caribbean Sea. Rapid 

population growth threatens native fish communities and they are considered invasive species. A 

bioenergetics model was developed for lionfish and applied to populations inhabiting the western 

North Atlantic Ocean to model the potential impact of these predators on native reef ecosystems. 

Model parameters were derived by laboratory evaluation of consumption and respiration rates 

from 14 to 32° C and fish size ranging from 19 to 400 g. The model was calibrated with 

laboratory growth and consumption data, and model performance was analyzed to evaluate the 

parameters most sensitive to error. The optimal temperature for lionfish consumption is 29.8° C. 

Energy allocated to gamete production reduces female lionfish growth rate compared to males 

and limits maximum body size. Based on the environmental conditions and observed growth, 

daily consumption estimates of 393 lionfish ∙ ha-1 could remove up to 2.186 kg prey ∙ d-1 during 

the summer in the Bahamas. The corroborated model is a useful tool for examining the influence 

of temperature on predation rates, and exploring the interaction between lionfish and prey.
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CHAPTER 1: INTRODUCTION 

Invasive Species 

An invasive species is a species that is both non-native to a habitat and is likely to cause 

economic or environmental harm or harm to human health (U.S. Invasive Species Executive 

Order 13112). For thousands of years, since humans began traveling long distances, intentional 

and unintentional transplantations of plants, insects and animals have altered ecosystems, 

shifting them to a new steady state. In recent history, the global human population has grown and 

become more connected, and the incidence of invasions has increased drastically (Lin et al., 

2007).  

Freshwater and terrestrial invasions are numerous and costly (Pimentel et al., 2000). Over 

400 marine invasive species have been documented in U.S. waters in recent decades (Ruiz-Carus 

et al., 2006). Many non-native introductions are executed by natural resource managers 

intending to benefit a system by controlling a native pest (Simberloff & Stiling, 1996) or for 

fishery development (Ogutu-Ohwayo, 1990). Unintended ecosystem-altering cascading effects 

can ensue, such as habitat degradation (Dermott & Kerec, 1997), decrease in species diversity 

and richness (Kaufman, 1992), and changes in community structure and food web dynamics 

(Jude & Leach, 1999).  

 

Lionfish Description 

Lionfish Pterois spp., are very recognizable, their ornate fins and striking coloration make 

them a prized aquarium specimen. Body color varies, typically orange to red, but sometimes 

almost black and is covered in multiple thin white bars with irregular patterns. The pectoral fins 

are large and frilly and can be spread and used to corral and corner prey, or flush prey from the 
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substrate (Fishelson, 1975). The armored head features knobs and spikes, cheek spines, frilly 

cirri at the mouth corners, and some individuals have supraocular tentacles (Fishelson, 2006; 

Morris & Freshwater, 2008). The mouth of a lionfish has many small teeth and opens rapidly, to 

create suction, then closes, expelling water through the gills to capture whole prey. 

All lionfish spines (13 dorsal, three anal, and one pelvic) are venomous. Pterois spp. dorsal 

spines are elongate and slender with anterolateral glandular grooves that run along both sides of 

the spines. The venom-producing glandular epithelium lies within these grooves. The spine and 

glands are covered by a thin integumentary sheath. When the spine penetrates flesh, the 

integumentary sheath is displaced, and the venom is exposed and introduced into the victim 

(Halstead et al., 1955).  

Lionfish are physoclistous and have striated muscles along the dorsal surface of the swim 

bladder. Many fish species use similar muscles for sound production, and this has been reported 

for some Scorpaenids, Notesthes robusta (Pusey et al., 2004) and Sebastiscus marmoratus 

(Miyagawa & Takemura, 1986), but not for lionfish. Hornstra et al. (2004) described how the 

contraction of these muscles changes the shape and position of the gas bladder and adjusts the 

fish’s orientation or “pitch and yaw” without the use of its fins. Lionfish are often observed 

inverted along the underside of a rocky outcropping. 

 

Lionfish Taxonomy 

Two species of tropical marine Indo-Pacific scorpionfish, the Red lionfish Pterois volitans 

and Devil firefish P. miles, are established invasive species in the Northwestern Atlantic Ocean 

and Caribbean Sea. Lionfishes, including the genus Pterois, are Actinopterygian teleosts in the 

order Scorpaeniformes, the family Scorpaenidae and subfamily Pteroinae. P. miles is native to 



 
 

3 

the Red Sea, Persian Gulf, and Indian Ocean (excluding western Australia) and P. volitans is 

native to the western and central Pacific Ocean and western Australia (Schultz, 1986). Genetic 

analysis of the two species has identified differences in the mitochondrial DNA (Kochzius et al., 

2003) and has supported the distinction of separate species (Hamner et al., 2007; Freshwater et 

al., 2009a). Meristic characteristics are distinct where the species are geographically separate 

with P. volitans possessing one more dorsal and anal soft fin-ray than P. miles (Schultz, 1986). 

In Indonesia, where the species are sympatric, the meristics can overlap (Freshwater et al., 

2009a), and few samples from this region have been included in genetic analyses. While there is 

no published evidence of hybridization between the two species, additional genetic analysis of 

specimens from western Indonesiais warranted.   

In the Atlantic, the meristic counts can overlap, making genetic analysis the only reliable 

method of distinguishing species (Hamner et al., 2007). P. volitans comprised 93% of lionfish 

samples from the invaded range analyzed by Hamner et al. (2007), and a strong population 

founder effect was detected. Freshwater et al. (2009b) analyzed lionfish mitochondrial DNA 

from North Carolina and the Bahamas and found that the populations are genetically similar, 

indicating a common source, but found only P. volitans in Bahamian samples. Morris (2009) 

detected no differences in reproductive morphology between P. miles and P. volitans. Given that 

P. miles and P. volitans are closely related (Hamner et al., 2007; Freshwater et al., 2009a), and 

likely have evolved as sympatric species (distinguishable as separate species only by genetics in 

part of range), it is assumed that there is no difference in physiology between the two species. In 

this study, genetic differentiation was not attempted and both species may be included, P. miles 

and P. volitans will be referred to collectively as lionfish.  
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The Lionfish Introduction 

The most likely pathway of the lionfish introduction was the accidental or intentional 

release of captive aquarium specimens (Semmens et al., 2004). Lionfishes are popular among 

aquarists. Fast growth and relatively large adult body size cause them to outgrow smaller 

aquaria, possibly triggering intentional releases. Unintentional releases have also been 

documented (Courtenay, 1995). Invasion chronology (Schofield, 2009) and genetic analysis 

(Freshwater et al., 2009b) support the theory indicating South Florida as the potential 

introduction source, a documented “hot-spot” of marine ornamental introductions (Semmens et 

al., 2004). Exchange of ballast water is a common vector for many marine invasive species, but 

is less likely than an aquarium introduction for lionfish (Whitfield et al., 2002; Semmens et al., 

2004).  

Since 2000, the documented establishment and spread of invasive Indo-Pacific lionfish in 

the western Atlantic Ocean has gained considerable attention from researchers, media outlets, 

environmentalists, fishermen, and SCUBA divers. The first documented lionfish sighting in the 

Atlantic was off the East Coast of Florida in 1985 (Morris & Akins, 2009). Additional sightings 

were documented from Florida in the 1990s (Courtenay, 1995), and in 2000, confirmed sightings 

were reported from North Carolina, South Carolina, and Florida. By 2002, lionfish were 

considered established from Miami to Cape Hatteras, and by 2010, had established populations 

throughout much of the Caribbean (Schofield, 2009; USGS NAS, 2010). Recently, two lionfish 

have been confirmed in the southern Gulf of Mexico (Aguilar-Perera & Tuz-Sulub, 2010). Based 

on thermal tolerance, the range could include the entire Gulf of Mexico, and the eastern South 

American coast, including the entire coast of Brazil (Kimball et al., 2004; Morris & Whitfield, 

2009). 
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Density estimates of lionfish in their native area range from 2.2 lionfish · ha-1 in Palau 

(Grubich et al., 2009) to 80 lionfish · ha-1 in the Red Sea (Fishelson, 1997). In the Bahamas, 

mean densities have been reported as high as 393 lionfish · ha-1 (Green & Côté, 2009). Off the 

coast of North Carolina, mean densities were reported as 21 lionfish · ha-1 in 2004 (Whitfield et 

al., 2007) and have increased, with over 400 lionfish · ha-1 observed at some locations in 2007 

(Morris & Whitfield, 2009). Invasive species often undergo rapid population growth in a novel 

environment (Brown, 1989), and the effect that high densities of lionfish will have on 

community structure and ecosystem function of Atlantic and Caribbean reefs should be 

measured. 

 

Life History Characteristics 

Lionfish in the Indo-Pacific primarily occupy reef habitats to depths of 50 m (Schultz, 

1986). In North Carolina, most observations have occurred in 30-100 m depths, as inshore 

distribution is limited by cold winter water temperature (Kimball et al., 2004). In the warmer 

waters of the Bahamas and Caribbean, lionfish are common on shallow coastal reefs, inshore 

waters, and mangrove habitats (Morris & Akins, 2009; Schofield, 2009; Barbour et al., 2010).  

Lionfish feed on a variety of fishes and invertebrates, and small fish are the dominant 

prey item (Fishelson, 1975 and 1997; Morris & Akins, 2009). The diet composition is variable 

and correlated with the local species community. Lionfish are ambush predators, and Morris and 

Akins (2009) found as many as 21 fish in the stomach of an individual lionfish. Fishelson (1997) 

observed the stomach of large adults can expand 30 times in volume to accommodate large 

meals and that lionfish can withstand starvation for 12 weeks.  
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Adult lionfish have no known predators and juvenile lionfish may have low vulnerability 

to predation. Juvenile lionfish have been documented in the stomachs of Bahamian groupers 

(Maljkovic et al., 2008) and cannibalism by adult lionfish has been observed in captivity 

(Fishelson, 1997); however, avoidance of small lionfish as a prey item was exhibited in 

experimental interactions with native Atlantic Serranids (Morris, 2009). Lionfish do not exhibit 

escape behavior in the presence of potential predators (Morris, 2009). Long dorsal spines and 

pectoral fins increase the apparent size of juveniles and venom delivery mechanisms in the 

dorsal, anal and pelvic spines may deter predators.  

About 50% of lionfish males reach maturity at 100 mm TL and females at 175 mm TL 

(Morris, 2009). Spawning frequency analysis by Morris (2009) estimated that female lionfish 

spawn every 3.6 d from North Carolina samples and every 4.1 d from Bahamian samples (a total 

annual fecundity of approximately 2 million eggs). The courtship behavior of lionfish is similar 

to Dendrochirus brachypterus and can last for several hours prior to a synchronized ascent 

towards the surface with release and fertilization of two gelatinous egg masses (Fishelson, 1975). 

The eggs are buoyant and encompassed within a gelatinous, largely protein matrix. The closely 

related Dendrochirus zebra has similar reproductive features, and Moyer & Zaiser (1981) 

observed that these egg masses may be chemically defended against predation. After hatching, it 

is estimated that the time to settlement is approximately 26 d (Ahrenholz & Morris, in press). 

Potential Impacts 
 Invasive lionfish occur at high densities, have few predators, and consume abundant prey. 

The addition of lionfish to fish communities in the Western Atlantic, Caribbean Sea, and Gulf of 

Mexico could have profound impacts on the ecology and socio-economics of these important 

natural resources (Morris & Whitfield, 2009). The reef communities of the Southeast U.S. and 

Caribbean may be particularly vulnerable to an invasive predator because of pre-existing 
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ecological stressors. Global climate change is causing a shift in reef communities off the 

Southeastern U.S. to more tropical species (Quattrini et al., 2004). Coral bleaching has been 

recognized as a widespread problem in this region, a trend which may worsen with increased 

temperatures, pollution, and ocean acidification (Hoegh-Guldberg et al., 2007; Hughes et al., 

2003). Fish community structures have been altered by systematic removal of top level predators 

by fishing (Jennings & Polunin, 1996), and most of the economically important reef fishes are 

currently considered overfished (Jackson et al., 2001). The absence of predatory reef fishes could 

represent a vacant niche that lionfish may fill. In the eastern Mediterranean, where numerous 

invasive fish have established populations, niche takeover has been demonstrated for multiple 

species (Goren & Galil, 2001), and the food web has been altered (Goren & Galil, 2005). 

 

Bioenergetics 

Bioenergetics models are becoming increasingly popular in fisheries research. The 

foundation of fish energetics lies in the first law of thermodynamics which states that all energy 

must be conserved; it can be transformed, but not created or destroyed. In this perspective, all 

biological organisms can be viewed as packets of energy. By “counting calories” and tracking 

the fate of the energy uptake by a fish, a mathematical model can be created and later applied in 

an ecological framework. Winberg (1960) presented the balanced energy equation which is the 

basis for these models. All energy consumed as food will be converted to body growth or 

reproductive tissue, expelled as waste products or used as energy for respiration, digestion, 

swimming or other activity. Further development of modeling strategies began with Kitchell et 

al. (1974; 1977). Modern models use computer programs, such as Fish Bioenergetics 3.0 

(Hanson et al., 1997), the “Wisconsin model” developed at the University of Wisconsin and 
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distributed by Wisconsin Sea Grant. Ecopath, network modeling software for ecosystems, has 

bioenergetic equations as an underlying model for each species in an ecosystem. 

Models can be used to predict any of the bioenergetic equation components, and the input 

parameters can be derived from laboratory experiments, field observations, literature, or may be 

“borrowed” from similar species. Optimal design of a specific laboratory experiment is highly 

dependent on the intended application of the model. Fish are poikilotherms, and water 

temperature and body size strongly affect metabolic function. Mathematical equations that 

accurately reflect the relationship between these factors and consumption and respiration rates 

are the backbone of bioenergetics models. Therefore, it is important to include measurements at a 

broad range of temperatures and fish sizes (Hartman & Hayward, 2007). Bioenergetics models 

are more commonly used to predict consumption rather than growth (Hartman & Hayward, 

2007). 

Bioenergetics have been used to model all types and life stages of fishes from eggs and 

larvae (Madon & Culver, 1993) to small, freshwater species including mosquitofish, Gambusia 

holbrooki (Chipps & Wahl, 2004) to large-bodied tunas, Thunnus spp. (Boggs, 1984) as well as 

invertebrates (Schneider, 1992). Questions addressed with bioenergetics models include, but are 

not limited to: larval fish consumption rates (Worischka & Mehner, 1998), habitat suitability 

(Niklitschek, 2001), predator-prey interactions (Wahl & Stein, 1988), consumption by fish 

populations (Hartman & Brandt, 1995), optimizing aquaculture conditions (Claireaux & 

Lagardere, 1999), and measuring mercury bioaccumulation (Korhonen et al., 1995). 

In this study, a bioenergetics model was created to predict food consumption by lionfish. 

It is designed to be used as a tool for measuring impacts on fish communities in the current and 

future invaded range. Controlled laboratory experiments were conducted to determine the effect 
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of temperature and body size on the consumption and respiration rates of lionfish across the 

range of thermal tolerance. The energy content of lionfish, lionfish egg masses, and experimental 

prey were measured using proximate chemical composition analysis. Independent growth trials 

were conducted to calibrate the model, and parameter sensitivity was tested and found to be low. 

The model was then applied to a population of lionfish from data collected in the Bahamas in 

2008. 
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CHAPTER 2:  

DEVELOPMENT AND APPLICATION OF A LIONFISH BIOENERGETICS MODEL 

 

Introduction 

The Indo-Pacific Red lionfish, Pterois volitans (Linnaeus, 1758) and Devil firefish, 

Pterois miles (Bennett, 1828) represent the first successful invasion of non-native marine 

carnivorous fishes in the western North Atlantic (Meister et al., 2005). Likely introduced through 

the aquarium trade (Courtenay, 1995; Whitfield et al., 2002), lionfish are established and 

becoming increasingly abundant in hard-bottom and reef habitats off the Southeast United States, 

Bermuda, the Bahamas, and the Caribbean (Schofield, 2009). They have also been documented 

in the southern Gulf of Mexico (Aguilar-Perera & Tuz-Sulub, 2010). Lionfish commonly inhabit 

reef habitats to depths of 50-100 m (Schultz, 1986; Whitfield et al., 2007). On the U.S. East 

Coast north of Florida lionfish are not common in near-shore waters because of winter 

temperature limitations (Kimball et al., 2004), but are common on shallow coastal reefs, and in 

inshore waters and mangrove habitats in the warmer waters of the Bahamas and Caribbean 

(Morris & Akins, 2009; Schofield, 2009; Barbour et al., 2010). 

Both P. volitans and P. miles, are sympatric species of the family Scorpaenidae, 

subfamily Pteroinae. They have been identified in the Atlantic through genetic analysis, though 

P. volitans represented 93% of samples (Hamner et al., 2007). However, a recent study did not 

detect P. miles in samples collected in the Bahamas (Freshwater et al., 2009a). P. miles is native 

to the Indian Ocean and the Red Sea and has invaded the Mediterranean Sea via the Suez Canal 

(Golani & Sonin, 1992). P. volitans occurs mostly in the Pacific, its range overlaps with P. miles 

in western Indonesia. Initial mitochondrial DNA analysis did not distinguish if they were 
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separate species or two populations of the same species (Kochzius et al., 2003). Hamner et al. 

(2007) and Freshwater et al. (2009b) confirmed the separation of species. In the Atlantic Ocean, 

morphometric and meristic characteristics can overlap, making it difficult to distinguish between 

the two species (Hamner et al., 2007). To date, no reproductive differences have been observed 

between P. miles and P. volitans (Morris, 2009). For this study, both species are collectively 

referred to as lionfish, and it is assumed that there is no difference in physiology between the two 

species. 

Lionfish are generalist piscivores; most fish species common to the habitat are 

represented in the diet including juveniles of the economically important families Serranidae 

(groupers) and Lutjanidae (snappers) (Morris & Akins, 2009). Finfish represent >78% of lionfish 

diet by volume in the Bahamas (Morris & Akins, 2009). Finfish become more important through 

ontogeny where adults >260 mm TL are almost exclusively piscivorous (>90% by volume) 

(Morris & Akins, 2009). Lionfish can consume prey up to 48% of its body length (Morris & 

Akins, 2009). Lionfish predation reduced recruitment of forage fishes to experimental patch reefs 

by 79% (Albins & Hixon, 2008). Direct predation by lionfish may inhibit the recovery of 

suppressed stocks of the snapper/grouper complex in the Atlantic Ocean, and adults of these 

species might also compete with lionfish for space and food (Morris & Whitfield, 2009).  

Lionfish populations may have a considerable impact on reef communities (Meister et al., 

2005) by altering food web structure and species interactions. Therefore, there is an increasing 

need to determine the trophic impacts of the lionfish invasion. Fundamental to understanding and 

predicting lionfish trophic impacts is the quantitative assessment of lionfish energetic 

requirements. Here, a bioenergetics model was constructed to predict consumption rates of 

lionfish across various temperatures of the invaded range. 
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The specific objectives of this study were to: 1) develop parameters for the bioenergetics 

model through a series of laboratory experiments, 2) calibrate the model via independent growth 

trials, 3) conduct sensitivity analysis of each model parameter, 4) use the model to estimate field 

consumption rates as a proportion of the maximum, 5) demonstrate differential growth between 

male and female lionfish, and 6) estimate total consumption rate of lionfish populations. 

 

Bioenergetics Model Development 

Materials and Methods 

Model Overview  

The bioenergetics of lionfish is summarized by the balanced energy equation: C = G + R 

+ S + F + U, where C is the total energy consumed, which is partitioned into somatic and 

gonadal growth G, metabolism as respiration R and specific dynamic action S = SDA · (C - F), 

and waste products as egestion F = FA · C and excretion U = UA · C  (Winberg, 1960). Somatic 

growth estimates are typically derived from field measurements, and gonadal growth is lost 

during spawning events. C and R are described by temperature and weight-dependent functions, 

while SDA, FA, and UA are constants. The consumption model follows the equation C = Cmax · p 

· f(T) (Hanson et al., 1997), where C is the energetic equivalent of specific consumption 

measured in g prey · g lionfish mass-1 · d-1, Cmax = CA · WCB is a weight-dependent function of the 

maximum rate, p is the proportion of the physiological maximum consumed and f(T) is a 

temperature dependence function. The respiration model follows the equation R = RA · WRB · f(T) 

· ACT, where R is the energetic equivalent of the weight-specific respiration rate measured in g 

O2 · g lionfish mass-1 · d-1; RA is the intercept of the weight-dependent function and RB is the 
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slope; f(T) is the temperature-dependence function and ACT is the activity multiplier. Most 

parameters for the lionfish model were derived from laboratory experiments (Table 1). 

Laboratory Experiments 

Fish Acquisition 

 Lionfish (n=70) were collected by SCUBA divers in 2007 and 2008 approximately 35 

km south of Beaufort Inlet, North Carolina, USA. They were transported live to holding tanks 

and aquaria at the Center for Coastal Fisheries and Habitat Research in Beaufort, North Carolina. 

Lionfish <30 g were rare in the wild collections; therefore an additional 30 lionfish (1-10 g) were 

obtained from the Phillippines via an aquarium supplier. All lionfish were acclimated to the 

laboratory for approximately one month prior to experimentation.  

Consumption 

To investigate the relationships between maximum consumption (Cmax) of lionfish, 

temperature, and fish size, Cmax was measured in the laboratory at seven temperatures from 14.4-

32.5° C, with lionfish ranging in size from 19-400 g. Kimball et al. (2004) observed cessation of 

feeding at 13° C, so 14° C was set as the target temperature for the lowest treatment; 32.5° C 

proved to be the maximum temperature achievable without detrimental stress to the fish 

(personal observation). Consumption was measured for individual lionfish in 20, 40, or 110 l 

glass aquaria placed in a water bath and connected to a recirculating seawater system with 

biological and mechanical filtration and temperature controlled by a heat pump. System water 

flowed through each aquarium with a minimum 10 daily turnovers. Fish were acclimated to the 

experimental temperature at a maximum of 1° C · d-1 then fed ad libitum for a minimum of 5 d 

prior to initiating a feeding trial. Live mummichogs, Fundulus heteroclitus were selected as prey 

because they are a hardy species, survive well in captivity, and were readily available. 
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Mummichogs were held in tanks with flow through sea water at ambient temperatures and fed ad 

libitum once daily with a marine fish crumbled diet. Prey fish ranged from 0.2 to 4.0 g and 

individual TL was <40% lionfish TL. The mass and number of prey was recorded upon addition 

to lionfish tanks. Tanks were visually inspected daily to estimate the number of prey consumed. 

Consumed prey was replaced with live prey; prey that died but were not consumed, and prey 

remaining at the end of the trial, were removed and the unconsumed mass subtracted from the 

total mass of prey added to determine total consumption during the trial. Presence of live prey 

remaining in the tank at all times after initial feeding indicated that fish were feeding ad libitum 

(Whitledge et al., 2003). Trials generally lasted 6-9 d. During the 14 °C trial few feeding events 

were observed during the initial period, so it was extended to 15 d to allow for enough feeding 

events to accurately estimate mean daily consumption rate. Some fish were tested at multiple 

temperatures, because of the limited availability of lionfish and the growth that occurred during 

the study period. No individuals were used in consecutive trials. Temperature was recorded 

hourly by a digital temperature logger, salinity was maintained between 32 and 36 ppt, and 

ammonia-nitrogen and nitrite-nitrogen concentrations remained < 1 mg ∙ l-1.  

Respiration 

Resting metabolic respiration rates of lionfish (n=25) from 19 to 309 g were measured at 

three temperatures (mean ± SD): 17.5 ± 0.4° C, 23.3 ± 0.9° C, and 29.1 ± 0.4° C. Fish were 

placed in automated intermittent flow respirometers, with chamber sizes modified to suit fish 

size. Small fish (≤100 g) were placed in a gasket-sealed 4.3 l acrylic tube and larger fish in a 40 l 

glass aquarium with a sealed lid. Systems were submerged in a temperature controlled water 

bath. Water was pumped into respirometers from an aerated reservoir containing seawater that 

had passed through a 5 µm paper cartridge filter and ultra-violet sterilizer to minimize microbial 



 
 

20 

respiration. The recirculating pump ran continuously and the flush pump ran intermittently (timer 

controlled) to supply the system with oxygenated water. Laminar flow through the chambers at 

0.1 - 0.3 cm · s-1 allowed the fish to be in a resting state. An automated data logger attached to a 

galvanic dissolved oxygen (DO) probe recorded DO concentrations at 5-60 second intervals 

throughout the trial. Between flushes, the system was closed and the observed rate of decline in 

DO was used to calculate specific rate of respiration in g O2 · g fish-1 · d-1. The length of interval 

between flushes was adjusted to maintain minimum DO levels above 5 mg · l-1. After the fish 

was acclimated to the chamber, a minimum of five cycles was recorded for each fish, and the 

mean rate used for further analyses. At least two trials at each temperature were run with no fish 

in the chamber to account for microbial consumption of oxygen, and none was detectable.  

Excretion, Egestion, and SDA 

Total ammonia nitrogen (TAN) excreted into the water at 27° C was measured for nine 

individual lionfish 4-15 g to estimate excretion rate. Fish were placed in 10 l containers with 

flow-through ammonia-free seawater. Each fish was fed grass shrimp (Palaemonetes spp.) to 

satiation (2-5 individual prey) and the mass consumed recorded. The TAN concentration was 

measured hourly for 12 h by which time the concentration was zero. The TAN concentration for 

each hour interval was multiplied by the flow rate and the resulting mass was then summed for 

the entire period. The mass of ammonia-nitrogen was converted to energy using the oxycaloric 

coefficient of 0.0249 KJ · mg-1 (Elliot & Davidson, 1975). The energy density of grass shrimp 

was reported by Anderson (1974) and de la Cruz (1983) as 18.42 KJ · g-1 dry weight; the wet 

weights were converted to dry weights using the formula x = 0.254y + 0.05, where x is individual 

dry weight and y is individual wet weight (Anderson, 1974). The amount of energy excreted as 

ammonia-nitrogen was divided by the amount of energy consumed to predict UA.  
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 The proportion of energy egested (FA) was calculated based on fecal production reported 

by Fishelson (1997). He reported the range of masses of dried feces produced by lionfish fed 

known meal sizes (40-80 g of live tilapia Oreochromis spp. yielded 1.03-3.03 g dry feces and 20-

24 g of mosquitofish Gambusia affinis yielded 0.92-1.45 g dry feces). The prey fish wet weights 

were converted to dry weights using the formula D = 0.24W, where D is whole fish dry weight 

and W is whole fish wet weight. This equation is based on the reported moisture content for 

tilapia (Wang et al., 2002; Tartiel et al., 2008) and closely matches the moisture content of 

mummichogs measured in this study. The proportion of mass remaining as feces was calculated 

for the minimum and maximum consumption reported by Fishelson (1997) and the mean of 

those values is reported as FA. SDA, the metabolic cost of digestion, is an insensitive parameter 

typically between 0.15 and 0.2 (Hanson et al., 1997). High protein diets of carnivores require 

more digestive energy (Tytler & Calow, 1985), so a value of 0.2 was chosen for the lionfish 

model. 

Energy Density 

Gross energy content was measured by proximate chemical composition analysis on 

samples of whole lionfish, released egg masses collected in the laboratory, and whole 

mummichogs. Samples were freeze-dried, homogenized, and a subsample was weighed and 

lipids extracted in a Soxhlet apparatus with petroleum ether as the solvent (Dobush et al., 1985). 

Ash content was determined by burning off all remaining organic content at 450° C for 12 hr in a 

muffle furnace. Carbohydrate content of fish is assumed to be zero (Henken et al., 1986). The 

protein content was calculated by subtracting the percent fat and ash from 100%. Proportional 

dry matter compositions were multiplied by caloric values of 0.0396 and 0.0237 KJ · g-1 for fat 
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and protein, respectively (Henken et al., 1986) and summed. This methodology gives results 

equivalent to combustion in a bomb calorimeter (Henken et al., 1986). 

 

Model Construction 

Model parameters for C were determined from the temperature and weight-dependent 

functions derived from experimental data. Weight-specific mean daily consumption rate at the 

optimal temperature was plotted against fish mass, and an allometric mass function in the form 

Cmax = CA · WCB was fit to the data using a least squares regression, where CA is the intercept of 

the function, CB is the slope, and W is the fish wet weight. For determination of temperature 

dependence (f(T)), equation 2 from Kitchell et al. (1977) for temperature dependence in warm 

water fishes was used to determine the optimal temperature using an optimizer, Microsoft 

Excel® Solver (Redmond, WA). f(T) = Vx · e(x(1-v)), V = (CTM-T)/(CTM-CTO), X = (Z2 · 

(1+((1+40/Y)0.5)2)/400, Z = ln(CQ) · (CTM-CTO), Y = ln(CQ) · (CTM-CTO+2) where CTO is the 

optimal temperature at which maximum consumption occurs, CTM is the lethal thermal 

maximum, and CQ approximates a Q10 over relatively low water temperatures. CTM was set at 

34.5° C because mortality was observed at that temperature during an attempted consumption 

trial; this value is assumed to be near the thermal maximum for lionfish and is within the range 

of lethal maxima for tropical marine fishes (Menasveta, 1981). Values for CA and CB were 

entered into the consumption equation along with the experimental data for W, T and C. The 

optimizer calculated the values for CQ and CTO that minimized the sum of squares of the 

residual values between calculated and observed consumption rates.  

The weight and temperature-dependence of respiration was modeled using the same 

function (Equation 2), but with different parameters. Parameters for the respiration model were 
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derived from experimental respirometry data. The slope (RA) and intercept (RB) of the allometric 

mass function were determined from the negative power regression of data from the 29.1° C 

trial. Based on consumption trial results, this temperature is near the lionfish metabolic optimum. 

Resting metabolic rate as a function of temperature was fit using equation two (Hanson et al., 

1997). RTM, the thermal maximum, remained 34.5° C. RTO, the optimal temperature was fit to 

the function and set at 32° C. RQ was calculated with the same method as CQ using respiration 

rates of lionfish > 19 g at 17.5 and 23.3° C.  

 

Model Calibration and Determination of ACT    

Thirteen individual lionfish 121-693 g were held in 100 l tanks and fed various rations 

(0.10-0.35 g · g-1 · d-1) of live prey for 19-20 d. Each individual was weighed at the beginning 

and end of the growth trial, and the mass of prey consumed determined. Water temperatures 

were recorded daily. Mean temperatures for the trials ranged from 21° to 28° C. The results of 

these trials were used to calibrate the model by entering growth and daily temperature values, 

and comparing predicted consumption to observed consumption. The model was calibrated by 

iteratively adjusting the activity multiplier ACT to minimize the percent error of model 

predictions during validation trials where both feeding and growth were known. The resulting 

value for ACT was 1.8, which is within the range of commonly used values (Tytler & Calow, 

1985).  

 

Sensitivity Analysis 

A sensitivity analysis was conducted to identify the relative influence of parameters on 

model output. One individual growth trial was selected, representing a median lionfish size and 



 
 

24 

feeding ration. The model was run repeatedly, and each parameter was individually altered ±10% 

in each direction, except temperatures were adjusted ±1° C, and the predicted mass of prey 

consumed was recorded (Kitchell et al., 1977). The mean percent change in consumption was 

calculated for each parameter. 

 

Results 

Laboratory Experiments and Model Construction 

Consumption 

Results from 75 individual Cmax trials were used to fit the weight-dependent and 

temperature-dependent functions for consumption. The best-fit weight-dependent function is C = 

0.603W-0.465 at 29.7° C (N = 10, R2 = 0.92) (Fig.1). Within f(T), the Q10 (CQ) is 4.0 based on 

linear regression (N = 16, R2 = 0.74). When the experimental data was fit to Equation 2, the 

optimizer predicted the optimal temperature for consumption (CTO) to be 29.8° C (Fig. 2). 

Respiration 

 Results from 36 individual respiration trials were used to fit the weight-dependent and 

temperature-dependent functions for respiration. The best-fit weight-dependent function is R = 

0.0085W -0.28 at 29.1° C (N =11, R2 = 0.42) (Fig. 3). Within f(T), the calculated Q10 (RQ) is 2.08 

(N = 11, regression R2 = 0.70).  

Egestion and Excretion 

 The proportion of consumed energy expelled as waste products was 0.26. The calculated 

energy content egested as feces from Fishelson (1997) was 20% of the consumed prey (F = 

0.20). Results from the excretion trials determined that 6% of the energy in consumed prey was 
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excreted as aqueous ammonia-nitrogen (U = 0.06 ± 0.04 SD). These values are similar to those 

used in bioenergetics models of other carnivorous fishes (Hanson et al., 1997). 

Energy Density 

 The energy density of lionfish increases with body size (Fig. 4). Lionfish energy density 

(ED in KJ · g-1) can be inferred from percent dry weight using the formula ED = 0.331d-3.548 

(R2 = 0.91) (Fig. 4a), where E is total energy (KJ) and d is the percent of whole lionfish wet 

weight remaining after drying. In terms of wet weight, energy density of lionfish exhibits an 

allometric increase and can be described by ED = 2708w0.1504 (R2 = 0.85), where w is the fish 

wet weight (Fig. 4b). The total energy content of an average spawn for a female lionfish is 

estimated to be 31.3 (±17.3 SD) KJ, based on the proximate analysis of five egg masses collected 

from a holding tank immediately after being released by three females within 24hr after capture 

from the wild. 

Model Calibration 

 The predicted consumption for specific growth intervals observed during 13 19-20 d 

laboratory growth trials was compared to the measured mass of prey consumed during each trial 

(Fig. 5). Eight of the model predictions had an error ≤15.0% and the remaining observations 

were within 40% of the consumption estimate for observed temperature and growth during the 

trial. The mean error was -5.4% ± 2.1 SD. 

 

Sensitivity Analysis 

Overall, the model exhibited very low sensitivity to 10% perturbations in individual 

parameter estimates. A 10% reduction in prey energy density is the only alteration that resulted 

in greater than 10% change in predicted g of prey consumed (+11.6%). The Respiration model 
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parameters RB, RA, and ACT had the next highest sensitivity rankings, with 4% to 6% impact. 

All of the consumption parameters had low sensitivity, with the result changing less than 1% 

(Fig. 6).  

 

Model Application 

Methods 

Consumption Rate 

The rate of lionfish consumption as a proportion of Cmax (p) was determined by entering 

field estimates of growth and temperature into the Fish Bioenergetics 3.0 lionfish model, and 

iteratively solving for the p value. Growth was directly measured in a mark-recapture study, and 

calculated from a preliminary size-at-age analysis from otolith annuli. The length-weight 

regression equation W = .000002285L3.335 (R2 = 0.97) from pooled collections of 782 individuals 

from North Carolina and the Bahamas (J. Morris, National Oceanic and Atmospheric 

Association (NOAA), unpublished data) was used to convert total lengths to wet weights.  

 In-situ growth rates of eight individual lionfish were measured in the field in 2007-2008. 

The lionfish were tagged using Streamer tags (Floy Tag Seattle, WA) and recaptured in the 

Bahamas after being at-large for 29-178 d (mean = 64 d); total length was measured at each 

capture (L. Akins, Reef Environmental and Education Foundation, S. Green, Simon Frasier 

University & J. Morris, NOAA, unpublished data). Sea surface temperatures (SST) for this area 

were obtained for each at-large period from the NOMADS database (Rutledge et al., 2006). SST 

is representative of bottom temperatures in water depth less than 30m (Kimball et al., 2004). The 

mean of the proportional consumption rates (p) calculated by the model for these individuals is 

0.6 ±0.15 SD.  
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 An estimate of annual growth was obtained using a Von-Bertalanffy growth function 

developed from otolith analysis of 134 individuals from North Carolina (J. Potts, National 

Marine Fisheries Service, unpublished data). While the annual increments have not yet been 

validated for this species, the curve provides an estimate of annual growth by the population. 

Each year’s growth up to age eight was entered into the model with mean sea surface 

temperatures for each month from offshore North Carolina (NOMADS, Rutledge et al., 2006). 

The mean p-value from the eight year-long simulations was 0.6 ± 0.06 SD.   

Because of the strong agreement between the short-term and long-term estimates of 

proportional feeding rate, p = 0.6 was considered to be a reasonable value and was applied in all 

further modeling scenarios. All other model parameters reported in Table 1 were also held 

constant: only lionfish size, energy density (as a function of size), and temperature were 

adjusted. 

Sex-Specific Growth 

To demonstrate the effect that lionfish reproductive output has on growth, a male and 

female lionfish were modeled feeding at the same proportion of Cmax (p = 0.6) for one year, only 

the female spawning was different between the two. The simulation began on January 1, 2008 

and used mean monthly sea surface temperatures from the mid-Florida Keys (24.6° - 29.7° C) 

(NOMADS; Rutledge et al., 2006). Starting size was set at 100 g (about 200 mm TL) because all 

males and >90% of females this size are sexually mature (Morris, 2009). Spawning frequency 

analysis reported by Morris (2009) estimated that female lionfish spawn on average every 3.85 d; 

thus, one spawn every 4 d was used in this exercise. Dry weight and energy content of five 

recovered egg clutches was measured after females (n=3) each released 2 gelatinous egg masses 

in the laboratory one day after collection from the wild. One female was captured and euthanized 



 
 

28 

immediately after spawning and freeze-dried along with her eggs. The energy content of the eggs 

equaled 1% of the energy content of the female; so 1% of the female’s energy was lost every 

four days. Male spawning energetic output was considered negligible. Male gonads average 

0.1% of the fish mass by wet weight and approximately 0.05% of total fish energy content 

according to proximate chemical composition analysis of the testes of eight male lionfish. Since 

only a fraction of the testes can be released as sperm each day, the loss is unlikely to 

significantly hinder growth. 

Consumption by Lionfish Populations 

The size structure of lionfish population was defined by length-frequency analysis of 586 

lionfish collected in the Bahamas in 2008 (L. Akins, Reef Environmental and Education 

Foundation, & J. Morris, NOAA, unpublished data). The fish were collected by SCUBA divers 

that attempted to collect every lionfish as it was encountered; thus, size bias is considered 

minimal. The population was divided into four size classes and the median size fish in each size 

class (SC) was converted to mass via the length weight regression equation, (SC1 = 8.8 g (6.1%), 

SC2 = 82.3 g (35.7%), SC3 = 309.6 g (49.7%), SC4 = 834.1 g (8.5%)) and was modeled to 

calculate daily consumption at ten temperatures, from 14° to 32° C, at 2° intervals, at a range of 

lionfish densities. The consumption for each size class was multiplied by the proportion of the 

population represented and the number of lionfish in the population to yield daily population 

consumption rates at each temperature.  

Consumption rates were calculated for a lionfish population with the density of 393 fish · 

ha-1 reported by Green & Côté (2009) off southwest New Providence Bahamas. Monthly sea 

surface temperatures were obtained for this location, and daily consumption for a population 

with the size structure described above was summed to obtain monthly and annual consumption. 
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The size structure was assumed to be the same each day and a constant proportional feeding rate 

of 0.6 was applied. 

Results 

Sex-Specific Growth 

 During the one year simulation, female lionfish grew from 100 g (~200 mm TL) to 294 g 

(~270 mm), while males grew to 496 g (~315 mm). Total consumption was 1,830 g by a female 

and 2,226 g by a male (Fig. 7). Males consumed 21% more prey and gained twice as much mass. 

Females allocated 20% of the total consumed energy to somatic growth and 12.6% to egg 

production. 

Consumption by Lionfish Populations 

The daily consumption estimates of lionfish populations varied greatly with temperature 

and population density. Consumption estimates increase nearly eight fold from 14° C to 30° C, 

and increased in direct proportion to population density (Fig. 8). The simulation of a New 

Province population of 393 lionfish · ha-1 predicts daily consumption of 2.124 - 2.186 kg of prey 

from June through October when mean temperatures are greater than 28° C. The cumulative 

annual consumption is 680 kg · ha-1; if the diet is 78% finfish (Morris & Akins, 2009), then 530 

kg · ha-1 of fish would be removed by lionfish consumption.  

 

Discussion 

Lionfish are capable of consuming the most prey when water temperatures approach 30° 

C, and lionfish populations at reported densities are estimated to consume over a half tonne of 

prey fish per year within one hectare of reef habitat. While the replenishment rates of lionfish 

prey are unknown, it is probable that lionfish populations are causing substantial trophic impacts 
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on the food web dynamics of these ecosystems. The correlation of consumption rate with 

temperature indicates that the rate will vary seasonally in the temperate areas of their range, but 

has the potential to remain high in the tropics throughout the year.  

Some studies have evaluated the metabolism of warmwater marine reef fish adults 

(Kline, 2004; Claireaux & Lagardere, 1999) and juveniles (Weunschel et al., 2004). However, 

lionfish have several unique characteristics with unknown associated energetic demands that 

make them difficult to compare with other modeled fish, including venom defense, large pectoral 

fins, slow swimming speed and skin sloughing (Fishelson, 1973). While many bioenergetics 

models “borrow” parameters determined for other species with similar body size, feeding habits, 

activity level, and life history characteristics, it was prudent to develop as many species-specific 

parameters as possible for lionfish. 

The previous study most comparable to this study is an assessment of the impact of 

invasive roi, Cephalopholis argus (Bloch & Schneider, 1801) on Hawaiian reefs estimated by a 

gastric evacuation model (Dierking, 2007). C. argus was intentionally released, along with 

several other species, for fishery development in the Hawaiian Islands in 1956 (Randall, 1987). 

Because of concerns of ciguatera poisoning, it is banned from sale in fish markets (Dierking & 

Campora, 2009) and there are concerns regarding the negative impact these fish are having on 

the reef communities. Dierking (2007) estimated that the local roi population removed 11.2% of 

the standing stock biomass of the reef system annually, or an average of 0.03% each day. The C. 

argus study objectives were similar to those presented here, and roi and lionfish occupy similar 

marine reef habitats. Both estimates, using different techniques, are of the same order of 

magnitude which indicates the predictions may have merit. The daily estimate of % fish biomass 

consumed by a Bahamian lionfish population is six-fold higher than roi, indicating that the 
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impact on the fish community by lionfish may be greater, or that differences among methods 

exist. 

Fish energy budgets change with fish size, and some species have separate model 

parameters for juveniles and adults. In the population structure applied in this modeling exercise, 

only 6% of the fish were ≤30 g, and consumption by this group was <0.2% of the population 

total, indicating that even if there are differences not captured by the size-dependent variables, 

the resulting error is insignificant. Development of a separate juvenile model may be useful if 

coupled with better estimates of juvenile abundance. 

Laboratory growth trials were conducted, and the activity multiplier was set at 1.8 to fit 

the model to those growth data. This value is similar to the ACT estimated for southern flounder, 

Paralichthys lethostigma (2.1), another recognized low activity piscivore (Burke & Rice, 2002). 

Fishelson (1997) reported on the consumption and growth of P. volitans [ P. miles, (see Hamner 

et al., 2007)], and model simulations using the reported temperature, prey type, lionfish size and 

growth, gave consumption estimates considerably lower than those reported. Adjusting the 

activity multiplier to greater than five predicted consumption similar to Fishelson’s (1997), but 

this is unrealistically high for the activity level observed and reported for lionfish in aquaria or in 

the wild. Additionally, with the elevated ACT the model sensitivity increased considerably. 

Possible explanations for the differences in growth trial results between the two studies 

include: 1) varied duration of growth periods (Fishelson’s (1997) growth intervals ranged from 

1-14 months vs. 19-20 d in this study); 2) geographically and genetically different populations of 

lionfish used in each study, and subsequent potential differences; 3) different laboratory 

conditions such as tank size, habitat availability (Fishelson (1997) provided structure, but this 

study did not), prey type, and feeding schedule changed fish behavior, metabolic function or 
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both. However, an annual estimate of population consumption of lionfish in the Red Sea using 

the bioenergetics model, given the same population and environmental assumptions, provides 

similar results. Fishelson (1997) estimated a population of 80 lionfish of 300-400 g body size to 

consume 228.48 kg · yr-1. Modeling the cumulative daily consumption of 80 350 g lionfish at 

25.5° C for one year with a p-value of 0.6 using the bioenergetics model estimates 181.04 kg 

prey · yr-1 consumed. This is approximately 80% of the consumption predicted by Fishelson 

(1997), whose laboratory methods stated ad libitum feeding (i.e., p = 1).  

The population estimates of consumption assume that fish are feeding at 60% (p = 0.6) of 

physiological capacity, because this was the mean rate fit to field measurements of growth. There 

is individual variability in proportional feeding rates, and it is unknown if proportional feeding 

rates change seasonally or with changes in prey availability. Additional estimates of growth rates 

should be obtained for both male and female lionfish from both direct measurement (tagging 

studies) and otolith increment analysis. The samples used to determine growth rates did not 

include sex, and given that females grow slower because of year round spawning, the 

consumption rates reported here should be considered conservative. 

Harbone et al. (2008) reported mean fish biomass densities from surveys of several 

Bahamian reefs of 742 kg · ha-1 and the data within Lang (2003) indicate similar fish densities 

near Andros Island in 1997 and 1998. The daily fish consumption estimates calculated for 393 

Bahamian lionfish · ha-1 are 0.17-0.21% of this total fish biomass.  

Biological and ecological models inherently incorporate a certain degree of error. The 

sensitivity analysis used to evaluate the lionfish bioenergetics model is a simple one and does not 

account for the potential of multiple sources of error or interactions between parameters; 

however, it does show that the sensitivity of each individual parameter is fairly low. Prey energy 
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density and respiration model parameters have the greatest sensitivity to error. The respiration 

parameters are typically sensitive in this type of model (Rice et al., 1983). Prey energy density is 

not commonly the most sensitive parameter. The low sensitivity of other parameters may be a 

result of low resting metabolic rates and high consumption rates. The energy density of prey used 

for laboratory trials was measured and variability was low. The same prey energy density was 

also used during model simulations of lionfish in reef habitats because estimated energy content 

for species common to lionfish diet were not available in the published literature. Deriving the 

majority of parameters from direct laboratory measurement improves the robustness of the 

model. Bioenergetics models typically most precisely estimate consumption from observed 

growth (Kitchell et al., 1977), and in some instances consumption rate can be modeled solely as 

a function of temperature and fish size (Bartell et al., 1986). Strong agreement between the 

calibrated model’s predictions of prey consumption and observed rates in the laboratory trials 

invoke further confidence that the lionfish model will accurately predict consumption. 

Gamete propagation clearly has a major effect on the somatic growth of female lionfish. 

This is corroborated by the observation that all of the largest lionfish (>390 mm TL) observed in 

collections (N>2000) thus far, are males (J. Morris, NOAA, unpublished data). Size-at-age 

analysis of lionfish populations will help to elucidate the sex-specific growth on a population 

level once a validated Von-Bertalanffy Growth Function is created for each sex. While Morris 

(2009) confirmed that spawning occurs throughout the calendar year, additional estimates of 

spawning periodicity are needed to determine if it varies seasonally or with temperature. 

The “Wisconsin” Fish Bioenergetics 3.0 model platform was chosen because it has a 

large distribution (>1000) (Hartman & Kitchell, 2008), and the Microsoft Windows-based format 

is user friendly. Researchers and managers will be able to model potential or realized impacts of 
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lionfish on local fish communities. This type of model initially was developed for freshwater 

fishes in the 1970s and applied mostly to lake systems (Hewett & Johnson, 1992). In the decades 

since, the diversity of applications has expanded to include invasive species such as sea lamprey 

Petromyzon marinus (Kitchell, 1990) and zebra mussel Dreissena polymorpha (Schneider, 

1992); and marine fish such as cod Gadus morhua (Hansson et al., 1996), tunas Thunnus 

albacares, Euthynnus affinis, and Katsuwonus pelamis. (Boggs & Kitchell, 1991) and rockfish 

Sebastes spp. (Harvey, 2005). This unique application of the platform to an invasive, tropical 

marine reef fish expands the breadth of model applications and provides scientists a tool to 

measure the impact of lionfish in the invaded range, which is presently expanding.  

The ecological consequences of lionfish establishment and dispersal in the Atlantic will 

be realized in the coming decades. This physiological model describes how lionfish predation 

and growth are affected by temperature, and will be a valuable tool for estimating the 

consumptive impacts on growth of lionfish populations. Additional data on growth of lionfish in 

specific habitats or regions will be essential for estimating lionfish feeding rates. These estimates 

can be obtained readily by mark-recapture studies, otolith increment analysis, or both. Also, 

measurement of the energy content of common reef fish species will improve model 

performance, because prey energy density is the most sensitive parameter. 

The trophic impacts of lionfish are likely to be the greatest consequence of the invasion. 

This study demonstrates that lionfish populations at the high densities observed in the Atlantic 

are capable of consuming a measurable proportion of the standing stock biomass of reef 

communities. The influence this consumption will have on the community structure and food 

web dynamics of the system merits further investigation. Measures of replenishment rates or 

turnover of prey fish biomass within these systems are needed to elucidate the relative scale of 
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this consumption estimate. Additionally, estimates of in-situ growth of lionfish in different 

habitats, coupled with estimates of local prey abundance, will allow for accurate estimates of the 

proportional feeding rate of lionfish populations, which is likely site-specific and may have 

seasonal trends. In order to measure the impact lionfish consumption on community structure 

and food web dynamics, lionfish can be incorporated into network models that have been 

developed for marine reef ecosystems (Opitz, 1993; Deehr et al., 2007). Many studies have 

characterized reef community structure (e.g. Harbone et al., 2008) and recruitment (e.g. 

Tolimieri et al., 1998), and observed patterns may change as lionfish alter energy flow within 

these food webs.  

High-quality site-specific data are needed to accurately define simulation inputs, and the 

habitat variability and geographic scale of the lionfish invasion is immense. Other applications of 

the model may provide useful relative comparisons. Gag grouper, Mycteroperca microlepis 

(Goode & Bean, 1879) is a valuable game fish and adults occupy reef habitats currently being 

invaded by lionfish. While a complete gag grouper bioenergetics model has not been published, 

metabolic rates (Kline, 2004) have been measured, and gastric evacuation models have been 

developed (Berens, 2005). Development of a bioenergetics model for gag might provide insight 

to how lionfish energetics and consumption rates compare to native predators, giving more 

meaning to observed changes in reef fish community structure.  

This study represents the first complete bioenergetics model for a tropical marine reef 

fish developed by laboratory experimentation. The low sensitivity of parameters and strong 

agreement of model predictions with laboratory growth data indicate this model accurately 

reflects the physiological characteristics of invasive lionfish. Future research can use the 
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framework provided here and further calibrate the model while expanding its capabilities and 

applications to more fully quantify the impacts of lionfish on reef communities and fisheries. 
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Table 1. Parameters of Fish Bioenergetics 3.0 (Hanson et al.,1997) model for lionfish. 

Parameters were derived from data collected in laboratory experiments in this study except 

*from Hanson et al. (1997) and **calculated from data presented by Fishelson (1997). 

Parameter name Description Value 

Consumption Eq. 2   
CA Intercept for a 1g fish at CTO 0.603 
CB Coefficient of mass dependence -0.465 
CQ Q10 value for consumption 3.1 

CTO Optimum temperature (°C) for consumption 29.8 
CTM Maximum temperature(°C) for consumption 34.5 

Respiration Eq. 2   
RA Intercept for a 1g fish at RTO (g·g-1·d-1) 0.0085 
RB Slope of allometric respiration function -0.28 
RQ Q10 value for respiration 2.08 

RTO Optimum temperature for respiration 32 
RTM Maximum temperature (°C) for respiration 34.5 
ACT Activity multiplier 1.8 

 SDA* Specific Dynamic Action 0.2 
Egestion/Excretion   

  FA** Proportion of food consumed egested 0.2 
UA Proportion of food consumed excreted 0.06 

Energy Density   
Predator KJ·g-1 of lionfish wet weight (w) ED = 2.708w.1504 

Prey KJ·g-1 of Fundulus heteroclitus  4.58  

Reproduction Percent mass released per spawn (female) 1 
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Figure 1. Weight-dependent mass-specific maximum consumption rates of lionfish from 

laboratory experiments at 29.7° C.  
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Figure 2. Weight-specific maximum consumption rate of lionfish 71-400g (N=52). The line 

represents f(T), the temperature-dependence function for consumption. The arrow indicates the 

optimal temperature for consumption, CTO = 29.8° C. 
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Figure 3. Weight-specific resting metabolic rate in g O2 · g of lionfish-1 · d-1 of lionfish 36-309 g. 

(N=11) at 29.1° C. RA (intercept) and RB (slope) for equation 2 in Fish Bioenergetics 3.0 

generated from the least-squares regression equation (negative power function). 
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a)      b) 

 

Figure 4. a) Lionfish energy density as a function of % dry weight, i.e. 100 · (dry weight/wet 

weight) (N=29). b) Relationship between fish wet weight and energy density (N=29). 
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Figure 5. Model performance. Each point represents the model-predicted consumption based on 

observed growth and the actual consumption observed during 19-20 d laboratory trials. The line 

signifies a 1:1 relationship. Four categories of mean water temperatures are represented       

     =18° C,     = 21-22° C,    = 24-26° C, and + = 28° C. 
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Figure 6. Sensitivity analysis. Bars indicate the percent change in predicted consumption of a 

lionfish that grew from 146.6 g to 168.7 g during a 19 d growth trial with a mean temperature of 

24.8° C. One parameter was altered for each model run. The grey bars indicate the parameter 

values increased by 10% and the white bars indicate the parameter values reduced by 10%. The 

original model prediction was 86.1 g (0%) and the measured consumption was 84.5 g of 

Fundulus heteroclitus. 
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Figure 7. Model simulation depicting differences in sex-specific growth of lionfish due to female 

spawning every 4 d over the course of one year. Initial start weight is 100 g and consumption 

rate is p = 0.6. 
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Figure 8. Effect of lionfish density and temperature on daily consumption rate of lionfish 

populations feeding at p = 0.6.  
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CHAPTER 3: CONCLUSION 

 

Future Model Applications 

The bioenergetics model presented in Chapter 2 is a valuable tool for quantifying the 

consumptive impacts of lionfish. Understanding lionfish physiology and metabolic 

characteristics provides a fundamental framework for assessing the ecological ramifications of 

this unprecedented invasive species. While a basic model application was demonstrated, more 

complex scenarios can be executed at broader and finer spatial and temporal scales.  

Perhaps the most useful application of the model is the ability to model prey consumption 

across the habitats where lionfish are capable of surviving, as the model encompasses the range 

of thermal tolerance. The availability of high quality site-specific data will improve model 

predictions. Currently, there are several reports on reef fish assemblages in the Caribbean (e.g. 

Lang, 2003) using a variety of visual survey methods and habitat classifications. The reef fish 

survey data collected in recent decades will serve as a reference to measure how lionfish change 

fish communities. Linking fish community data, recruitment rate estimation, and lionfish metrics 

for the same site will provide the opportunity to test and calibrate the model in the field and 

begin to understand the role of invasive lionfish in the trophodynamics of reef communities. The 

following data are required to simulate daily lionfish population consumption for a specific site 

or region: 1) estimates of lionfish densities, 2) size-structure of lionfish populations, 3) sex ratio 

of populations, 4) lionfish growth rates, 5) water temperature, 6) diet composition, and 7) energy 

density of diet constituents. To model populations over longer time scales, it is important to 

estimate annual and seasonal mortality, recruitment and spawning frequency. 
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Trophic Impacts of Invasive Lionfish 

Once accurate predictions of lionfish consumption are obtained, a more difficult task is 

interpreting how this consumption will affect community structure. Multiple factors have been 

indicated as affecting the community structures of reef fishes such as latitude (Ferreira et al., 

2004; Floeter et al., 2004), habitat complexity (Ferreira et al., 2001), fishing pressure (Roberts, 

1995; Jennings & Polunin, 1996), variable recruitment rates (Tolmieri et al., 1998), presence of 

adjacent nursery habitats (Mumby et al., 2004), changes in inverterbrate community (Lessios et 

al., 1984; Robertson, 1991), presence of abundant non-native species (Dierking, 2007), and 

island biogeography (Sandin et al., 2008). Coral reefs are the native habitats for lionfish; 

however, in the invaded range they are also found in or on rocky hardbottoms, blue holes, canals, 

artificial reefs, shipwrecks, and mangroves (Morris & Akins, 2009). Since reported lionfish 

densities have been highest in coral reef habitats, and coral reefs are prevalent in warm climates 

where lionfish consumption rates are highest, the consumptive effects on reef fish communities 

are of specific concern. Coral reef communities are complex, and subject to a variety of 

environmental and anthropogenic stressors. As demonstrated in Chapter 2, invasive lionfish is 

another potential stressor for coral reefs of the Northwestern Atlantic, Caribbean Sea, and Gulf 

of Mexico. 

Marine reserves are becoming an increasingly popular management tool, especially in 

coral reef habitats. Marine reserves are geographic areas that are protected from extractive and 

destructive activities that are intended to conserve resources within that area and enhance the 

resources in surrounding areas (Lubchenco et al., 2003). Many studies have demonstrated that 

fish community structure within no-take reserves is significantly different from unprotected areas 

(Côté et al., 2001). Larger predatory fish within reserves (Polunin & Roberts, 1993) are 
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attributed to the absence of human fishing pressure within the reserve (Roberts, 1995; Mosqueira 

et al., 2000). Remote areas that contain “pristine” reef environments that have not been heavily 

fished typically have a high biomass of large predators and lower biomass (by %) of small forage 

fish (Friedlander & DeMartini, 2002).  

Several studies have focused on the presence, abundance, and community effects of large 

piscivores on global (e.g. Jackson et al., 2001; Myers & Worm, 2003), regional (Paddack et al., 

2009) and local (Roberts, 1995) scales. These observations may indicate that coral reef 

communities can support a large biomass of piscivores, and are out of balance. Areas that have a 

high biomass of prey may appear less susceptible to negative impacts from lionfish predation; 

however, this might represent greater niche availability (Morris & Whitfield, 2009). For 

example, Harbone et al. (2008) observed 2.2 kg · ha-1 of large serranids (groupers) and lutjanids 

(snappers) at sites outside the Exuma Cays Land and Sea Park (ECLSP) reserve, and 99 kg · ha-1 

of these same species in similar habitats within the reserve. For perspective, the lionfish 

population modeled in Chapter 2, estimated to be a realistic 2008 Bahamian population, has a 

biomass density of 100 kg · ha-1. The ECLSP was established in 1958 (Chiappone & Sullivan-

Sealey, 2000), so reef fish populations within the reserve are likely close to equilibrium. If 

lionfish populations are reaching biomass densities similar to unfished populations of predatory 

fishes that are absent due to fishing pressure, this supports the theory that lionfish may be 

exhibiting niche takeover of economically important exploited reef fish species with similar 

feeding habits. This theory is supported by Byers (2002) who postulated that invasive species in 

systems disturbed by anthropogenic stressors, including removal of apex predators by 

overfishing, may have a competitive advantage over the native populations. 
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Reef fish biomass density estimates typically are derived from visual census surveys with 

observed fish recorded in categories of estimated length, and then converted to biomass by the 

species-specific length-weight relationships available from Fishbase (Froese & Pauly, 2010) for 

most species. Three common visual census survey methods include the stationary point count 

method (Bohnsack & Bannerot, 1986), belt transect, and roving diver. Each method has unique 

biases, and all methods incorporate individual observer bias and human error. These different 

methods have been shown to be comparable (Bortone et al., 1989; Watson & Quinn, 1997; 

Samoilys & Carlos, 2000), but differences have been demonstrated as well (Colvocoresses & 

Acosta, 2007). Using identical survey methods at sites before and after invasion and at different 

stages of the lionfish invasion will reveal what changes in fish community structure have 

occurred.  

Analyzing census data to estimate prey availability and competitive interactions will be 

complimented by better estimates of lionfish growth rates in different habitats and temperature 

regimes. Field growth measurements will be valuable for calibrating the model to accurately 

reflect lionfish consumption rates within a community in the invaded range. Diet composition 

should be monitored within habitats, and estimates of the energy density of small coral reef fish 

common in lionfish diets should be obtained. These estimates are not available in the literature, 

but can have a significant impact on the model’s estimation of consumption or growth (Chapter 

2).  

Additional measures of reef fish abundance and population dynamics will improve the 

predictions of lionfish impacts on these systems. For example, fishes from the family Gobiidae 

rank in the top three in importance in lionfish diets (Morris & Akins, 2009), but are generally 

excluded from visual census surveys due to small body sizes and cryptic nature. Currently, 
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research effort is being devoted to better estimating the composition and density of small forage 

fish communities that lionfish prey upon off the coast of North Carolina (R. Muñoz, National 

Marine Fisheries Service, personal communication) and the Bahamas (S. Green, Simon Frasier 

University, personal communication). Additionally, more habitat-scale rates of fish recruitment 

to reefs are needed. The findings of Albins & Hixon (2008) that lionfish consumption 

contributed to a 79% reduction in recruitment of settling juvenile fishes to experimentally 

manipulated patch reefs is striking; however, it is difficult to extrapolate that observation to 

larger reef systems. 

 

Future Research Needs 

Much has been learned about lionfish prior to and since the invasion was first 

documented, and much can be learned from the invasion. Some studies have reported on lionfish 

biology and ecology in the native range including dietary and feeding observations (Fishelson, 

1975 and 1997; Harmelin-Vivien & Bouchon, 1976), reproductive behavior and physiology 

(Fishelson, 1975 and 1978) and venom structure description (Halstead, 1955). Morris et al. 

(2009) and Morris & Whitfield (2009) provide comprehensive reviews of the biology and 

ecology of lionfish in the invaded range and describe the invasion chronology, taxonomy, local 

abundance, reproduction, early life history and dispersal, venomology, feeding ecology, 

parasitology, potential impacts, and control and management options. Larval fish dispersal 

patterns in the Southeast U.S., Caribbean, and Gulf of Mexico can be investigated by tracking 

the spread of lionfish through the region and assertions regarding connectivity between regions 

and habitats can also be tested by studying the invasion chronology (Morris, 2009; Ahrenholz & 

Morris, in press). 
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The long term consequences of the lionfish invasion are difficult to predict. The rapid 

increase in population size will likely asymptote and the population will eventually reach 

density-dependent equilibrium. Site-specific variability will make identifying the carrying 

capacity of lionfish for each reef system complex. Continuous monitoring of lionfish populations 

in regions that have established populations e.g. North Carolina, Bermuda, (Whitfield et al., 

2002), and the Bahamas (Schofield, 2009), in addition to areas with recent documented sightings 

such as the Southern Caribbean (e.g. Aruba, Costa Rica, Panama, and Honduras) (USGS NAS, 

2010) and the Southern Gulf of Mexico near the Yucatan Peninsula (Aguilar-Perera & Tuz-

Sulub, 2010) is needed to quantify population growth, and predict and possibly mitigate the 

impacts. 

Human fishing pressure has attributed to the collapse of hundreds of species of marine 

organisms worldwide (Jackson et al., 2001), and may be the only way to control lionfish 

populations (Morris & Whitfield, 2009). Effective capture methods for lionfish include net and 

spearfishing by divers; some traps have been effective while limited captures have been reported 

with hook and line (Morris & Whitfield, 2009). It is important to consider the protection of 

native fish stocks such as snapper-grouper species currently undergoing stock rebuilding, so 

promotion of harvest methods that target lionfish with little or no incidental harvest or bycatch is 

prudent. Lionfish are considered excellent table fare and small individuals have a high value as 

aquarium specimens; thus, economic incentive for the harvest of lionfish by humans does exist. 

Current management options and control strategies being considered in the U.S. include 

developing federal, regional or state fishery management plans, as well as control and 

monitoring within National Parks, National Marine Sanctuaries and Marine Protected Areas 

(MPAs) (Morris & Whitfield, 2009). 
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The results of this research indicate that lionfish are likely to impact reef fish communities in 

the Western Atlantic and Caribbean, and that a quantitative energetic model based on laboratory 

parameters will aid in predicting and measuring those impacts. Future research should focus on 

the reef fish community and trophic structure, prey community replenishment rates, lionfish 

growth rates and feeding rates. Ecosystem network models exist for Caribbean coral reef systems 

(Opitz, 1993, Deehr et al., 2007) and incorporating the lionfish energetics reported here should 

be investigated. The impact of invasive lionfish is likely to vary by location and less disturbed 

areas, such as marine reserves, may be less vulnerable than sites with few native apex predators. 

If this hypothesis is shown to be valid, it may strengthen the movement towards use of MPAs as 

a management tool. 
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