
ABSTRACT

James Anderson. ENFORCING ROLE-BASED ACCESS CONTROL IN A SOCIAL

NETWORK. (Under the direction of Dr. Junhua Ding). Department of Computer Science, May

1, 2012.

Social networks supply a means by which people can communicate with each other while

allowing for ease in initiating interaction and expressions. These systems of human

collaboration may also be used to store and distribute information of a sensitive nature that must

be secured against intrusions at all times. Given the massive operation embodied by social

networks, multiple methods have been developed that control the flow of information so that

those with authorization can gain access. Before allowing a social network to begin distributing

its contents, a prudent prerequisite should be that the security protocols prevent unauthorized

access.

 Formal modeling and analysis of security properties, particularly those of Role-Based

Access Control (RBAC), in social networks is the main focus of this thesis. A social network

system and its security assurance mechanisms are modeled using the input language of Symbolic

Model Verifier (SMV), and the properties of the system are specified using computation tree

temporal logic (CTL*). Those properties are then verified using the SMV model checker. A real

case was studied to demonstrate the effectiveness of model checking security properties in a

social network system. The case consists of an account in which a group of users share various

resources and access privileges which are controlled by RBAC. The case study results show that

model checking is capable of formally analyzing security policies particularly RBAC in a social

network system. In addition, the counter examples generated from model checking could help to

create test cases for testing system implementation, and they can help us to find defects in the

model as well. Formally modeling and model checking security policies in a complex system,

like a social network, can greatly improve the security of these systems.

ENFORCING ROLE-BASED ACCESS CONTROL ON A SOCIAL NETWORK

A Thesis

Presented to the Faculty of the Department of Computer Science

East Carolina University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

By

James Carold Anderson

May , 2012

©(James Carold Anderson, 2012)

ENFORCING ROLE-BASED ACCESS CONTROL ON A SOCIAL NETWORK

By

James Carold Anderson

APPROVED BY:

DIRECTOR OF

DISSERTATION/THESIS:__

Junhua Ding, PhD

COMMITTEE MEMBER: __

Qin Ding, PhD

COMMITTEE MEMBER: __

Karl Abrahamson, PhD

COMMITTEE MEMBER: __

NassehTabrizi, PhD

CHAIR OF THE DEPARTMENT

OF COMPUTER SCIENCE: ___

 Karl Abrahamson, PhD

DEAN OF THE

GRADUATE SCHOOL: __

Paul J. Gemperline, PhD

ACKNOWLEDGEMENTS

 The completion of this thesis is a significant milestone in my life, not because of the

degree it will earn me, but because of the personal and intellectual growth necessitated by the

journey. In order to accomplish this I have had to set aside wasteful habits, abandon

preconceptions and focus on achieving a distant and often frustrating goal.

 First and foremost I would like to thank my thesis advisor, Dr. Junhua Ding. He dealt

calmly with my obstinate procrastination and taught me to adopt a productive daily schedule

which I will keep from now on.

 No words can describe how indebted I am to my supportive family. To my father, who

taught me to pursue my eclectic interests and encouraged a civitas mindset. I must also

acknowledge my mother‟s constant sacrifice and effort to create a better life for her family,

especially her children. Her love and dedication to her family motivated her to sacrifice

everything for their good, ensuring opportunities denied herself and granting them a brighter

future. I am thankful to my sisters, Tara and Heather, who imparted the wisdom they gained

from their lives to me so that I could benefit from it as well.

 Wassail eða hale við minn weddbroder! No matter the distance between us we shall

forever be as close as the Einherjar gebeorscipe njóta Valhöll. The gilpswide and beot that I

made over meodugal and ydromellum may always be hatan hlíta.

TABLE OF CONTENTS

LIST OF FIGURES………………………………………………………………………… viii

LIST OF SYMBOLS OR ABBREVIATIONS……………………………………………... ix

1 Introduction…………………………………………………………………………. 1

1.1 Defcon Policy of Networking Systems……………………………………… 2

1.2 Privacy Aware……………………………………………………………….. 4

1.3 RBAC and its Implementation in WBSN…………………………………….. 7

1.4 Model Checking……………………………………………………………... 8

1.5 Thesis Overview……………………………………………………………... 10

2 Social Networks……………………………………………………………………... 13

2.1 Identity Management System……………………………………………….. 13

2.2 Security of Social Networks………………………………………………… 14

2.3 Role-Based Access Control………………………………………………… 15

2.4 Mandatory Access Control…………………………………………………… 19

2.5 Discretionary Access Control………………………………………………… 21

2.6 Forms of Authorizing Access Control Permissions………………………….. 22

3 Model Checking……………………………………………………………………… 23

3.1 Overview of Model Checking……………………………………………… 23

3.2 Steps of Model Checking…………………………………………………… 27

3.3 Modeling Phase……………………………………………………………… 27

3.3.1Temporal Logic……………………………………………….. 28

3.3.2 Syntax of CTL………………………………………………… 30

3.3.3 Semantics of CTL……………………………………………… 30

3.4 Running and Analysis Phases………….…………………………………….. 32

4 Modeling RBAC in a Social Network…………………………………………………… 34

4.1 Overview of the Program Structure………………………………………….. 35

4.2 Modeling the Resources……………………………………………………… 38

4.3 Modeling the Roles…………………………………………………………… 42

4.4 Modeling Users‟ Interaction with the Resources……………………………… 45

4.5 Modeling User Sessions………………………………………………………. 49

5 Model Checking RBAC in a Social Network……………………………………….. ……. 57

5.1 Access Control Properties..…………………………………………………….. 57

5.2 Permission Hierarchy…………………………………………………………... 70

5.3 Minimum Duties……………………………………………………………….. 75

5.4 Static Separation of Duties (SSOD)……………………………………………. 79

5.5 Role Hierarchy…………………………………………………………………. 82

5.6 Dynamic Separation of Duties…………………………………………………. 91

6 Case Study……………………………………………………………………………….. 104

6.1 Building the Model………………………………………………………….. 106

6.2 Overview of the SMV Program…………………………………………….. 108

6.3 Modeling the Social Network Account Resources………………………….. 110

6.4 Modeling the Social Network Account Roles………………………………. 111

6.5 Modeling User Interaction with the Project Resources……………………… 121

6.6 Case Study Access Control Specifications…………………………………… 132

6.7 Case Study Permission Hierarchy Specifications…………………………….. 136

6.8 Case Study Minimum Duties Specifications………………………………… 139

6.9 Case Study SSOD Specifications……………………………………………. 144

 6.10 Case Study Role Hierarchy Specifications…………………………………. 151

 6.11 Case Study DSOD Specification…………………………………………… 161

7 Conclusion……………………………………………………………………………….. 172

8 References………………………………………………………………………………... 175

A. Example Model SMV Coding……………………………………………………………. 178

B. Case Study Model SMV Coding……………………………………………………………. 190

LIST OF FIGURES

1. User/role relationships with objects……………………………………………… 16

2. Classification Levels of Security in the U.S. Government………………………. 19

3. Kripke Structure for Mutual Exclusion…………………………………………… 25

4. Model of the Example Network………………………………………………….. 34

5. The Kripke Structure of a video resource with the requirements to reach each

state………………………………………………………………………………. 40

6. The Kripke Structure of a text resource with the requirements to reach each

state………………………………………………………………………………. 41

7. (a) The movie resource is sent three different commands at the same during the running

phase of the model checker. (b) The Process Selector of the model checker randomly

chooses the user that the resource will accept…………………………………….. 45

8. Model Representation of the Case Study………………………………………….. 106

LIST OF SYMBOLS OR ABBREVIATIONS

WBSN Web-Based Social Networks………………………………………….. 1

CBIR Content-Based Image Retrieval………………………………………. 1

PEP Policy Enforcement Point………………………………………….. … 3

DPL DEFCon Policy Language………………………………………….. .. 4

RBAC Role-Based Access Control…………………………………………… 6

API Application Program Interface………………………………………… 14

MAC Mandatory Access Control………………………………………….. … 15

DAC Discretionary Access Control………………………………………….. 15

CTL* Computation Tree Logic………………………………………….. ….. 29

SMV Symbolic Model Verifier……………………………………………… 34

Chapter 1: Introduction

 Web-based social network (WBSN) systems provide a communication median by which

people can develop personal relationships through digital interactions. Each user creates an

account that allows him or her to build a profile for creating and managing resources, such as

blogs and picture albums, which can be viewed, altered, or commented upon by their fellow

users in the system. These compilations of writings and graphics can be stored onto a social

network account with the assurance that a specific category of user, such as those with similar

backgrounds or cultural tastes, can locate and view them.

 The urge to develop many positive relationships with others have led social networking

users to connect with as many people as possible and not screen the motives of people requesting

to link with their profile. (Hogben et al., 2007) Not all of the users are truly sincere in their

desire for amicable relationships and are only interested in trying to exploit the information

stored within social networks. Profiles and their contents have become targets of opportunity

that can be used for malicious purposes.

 One possible means by which a victim‟s profile can become a source of illicit profit is

called digital dossier aggregation, which is the act of having a profile‟s contents downloaded and

stored for use by third parties. (Hogben et al., 2007) This digital copy of the original profile can

be a boon to those wishing to steal someone‟s identity or to commit fraud. Another way in

which the contents of a profile can be used for threatening its owner are techniques such as

Content-based Image Retrieval (CBIR), in which the features depicted in images can be used to

determine the location where it was taken. (Hogben et al., 2007) CBIR can assist in allowing

people, who wish to commit harm to a person, to discover the whereabouts of their targets.

2

Malicious users have also developed viruses and worms that can cause mayhem as soon

as they are uploaded into a user profile. These programs can execute commands while

disguising themselves as the user and perform inappropriate behavior, such as sending vulgar

messages and/or images to coworkers and employers. Equally worse is when the rogue

processes either steal or destroy the contents stored inside the profile.

For social networking sites to convince users to operate within their systems, they must

convince the users that whatever is uploaded into their accounts can only be access by those that

are authorized to and that their data and privacy is never intruded upon. To assuage these

concerns various forms of security are implemented into these complex systems that will ensure

that users will always be the sole controllers of the resources they upload.

1.1 Defcon Policy of Networking Systems

Complex information networks are not always used by a single organization, but are

sometimes employed as a resource pool by multiple administrations. To better provide for their

staff, networks can be contained in one core location that will allow for other sites to access it. A

network can also be split into multiple partitions so that separate parts of an organization can

access their allocated partition.(Migliavacc et al., 2010)The more domains that are incorporated

into a system, each with their own methods of exchanging data, the harder it becomes to

guarantee the integrity of the security policies. As the number of components used increases for

each system, the chances that one component may have a bug that does not follow the security

specification increases as well. Thus any, and all, information that is sent or within reach of this

breach becomes accessible to unauthorized persons. This problem is further compounded by the

fact that each system may be built by different developers, and that each could interpret the

3

security policy incorrectly. Thus while the developers of one domain of the networks believe it

is complying with the required security specification, it is actually countermanding it and

allowing for intrusions.

 The most desired arrangement of a system is the integration of different client entities

that “enables the free flow of information and promises better service” (Migliavacc et al., 2010)

and thus inspiring a process that is less interfering in the acquisition of resources. For software

components of multi-domain systems to better align with each other, “they are often

implemented as event-driven architectures, in which components, potentially belonging to

different domains, must process and exchange data in the form of event messages.”(Migliavacc

et al., 2010) Applications, such as those used by social networks, that share information between

users with event messages must always follow the information handling policies. “This flow of

sensitive data is an open problem of how to encode and enforce such flow-based security policies

in the context of multi-domain event-driven applications.”(Migliavacc et al., 2010) This

complication stems from the imbalance between the “high-level policies governing the handling

of confidential data and low-level technical enforcement mechanisms.”(Migliavacc et al., 2010)

“Traditional event-based and message-oriented software assists in correcting this malady by

having the developers themselves enforcing the security policies inside of their

applications.”(Migliavacc et al., 2010) This task is handled by the creation of policy enforcement

points (PEPs) inside all of the components that will verify that the validity of sensitive operations

before execution of any command. PEPs make use of access control policies to ensure that any

data‟s movement does not compromise the system‟s security integrity. “However, these low-

level mechanisms require the configuration of permissions at the lowest level of the system

architecture. Each component would be required to outline all its requirements for approved data

4

transfer and thus would be difficult to observe and police across a multi-domain

environment.”(Migliavacc et al., 2010)It is possible to alleviate some of the burden by

implementing constraints on permitted data flows by the applications themselves. This method

requires that “all domains must enforce the security policy uniformly across every domain by

requiring all policy enforcement occur automatically when data flows across boundaries between

components and domains and not perform tedious access control checks upon the whole scope of

individual operations.”(Migliavacc et al., 2010) An example of setting the system‟s allowed

behavior is by implementing “an event-based middleware that enforces event flow security

policy in distributed, multi-domain applications.”(Migliavacc et al., 2010)The flow policy, called

DEFCon Policy Language (DPL), sets the constraints on permitted component to component

transactions through the use of security labels that outline the specifications of the security

requirements. These labels will function as a set standard that all data flow must follow in order

for components to send and receive the labeled data. This will force the system, no matter how

many domains are incorporated at startup or added later, will adhere universally to the security

specification.

1.2 Privacy Aware

WBSNs allow for participants to use the system in order to “share and publish

information in the forms of annotations, blogs, etc., for a variety of purposes.”(Carminati et al.,

2008) The information to be shared with a person is determined by the relationship they have

with others inside the network, which can be specified by assigning a trust level to each other.

“The availability of this huge amount of information within a WBSN is a cause of concern for

both the privacy of its users and the confidentiality of their information.”(Carminati et al.,

2008)To handle these concerns, WBSN began to implement safeguards in which the users can

5

“decide whether their data, relationships, and resources should be public, accessible only by

themselves, or by users with whom they have a direct relationship.”(Carminati et al.,

2008)However, this form of access control is deemed too restrictive towards the goal of secure

information sharing and too simple to ensure that unauthorized persons never can access their

data. Desired model of “more flexible strategies, that allow a user to define his/her own rules,

denoting the set of network participants authorized to access his/her resources and personal

information.”(Carminati et al., 2008)

The Privacy-aware strategy is one form of security enforcement of WBSN resources

where a user must present proof, of their existing relationship, to the resource‟s owner before

access is granted. This version of client-side access control requires that the relationships

established by WBSN users are not revealed during operation. These relationships are further

used in the WBSN‟s security by first cataloging the relationships into types, depths, and trust

levels. Afterwards, the relationships are “encoded through certificates and their protection

requirements are expressed through a set of distribution rules, which basically state who can

exploit a certificate for access control purposes.”(Carminati et al., 2008) The relationship is kept

hidden by having the certificate encrypted with a symmetric key that is only sent to users listed

in the distribution rules contained within the certificate. All certificates of the WBSN are stored

and updated inside a secured central node which is trusted by all. Though more flexible than the

earlier access control policy, there are a few weaknesses that can be exploited by malicious

users. The creation of central node seems logical when dealing with a small number of users.

However, WBSN are massive and can contain millions of users and would require an almost

unmanageable set of certificates for all the possible connections and relationships that may exist

6

inside of a system. “This bottleneck of performance makes the central node vulnerable to a

Denial of Service attack.”(Carminati et al., 2008)

Another strategy, that does not use the central node to hold the certificates, allow for the

WBSN to compensate for these shortcomings by having the users, in a collaborative effort,

enforce security. Each of the owners‟ resources would “regulate access only to users authorized

by the owner. Also, the owner interacts only with resources of those that satisfy his/her own

distribution rules.”(Carminati et al., 2008)Afterwards, any requester can be easily seen as either

approved or not by seeing it is possible for them to access the resource. Therefore, every

resource is aware of any relationships between all users and the distribution rules that must be

followed. A user‟s account will then only be invited to a collaboration of accounts if it satisfies

all of the distribution rules of the whole group. Incorporating other forms of security, such as

encryption and signature techniques, to reveal falsified certificates will further assist in enforcing

the distribution rules.

While many of the methods described above can be used to enforce social network

security specifications, they sometimes are not easily administered in reality. The varying

degree of technical acumen required for a person to operate these techniques may make them

logistically unfeasible in real life scenarios. An ideal form of verifying security protocol would

be for a social network to use a method that does not require much technical ability of its

supervisor while also being autonomous. This thesis seeks to demonstrate that a social network

site‟s access control specifications can be simulated and verified using model checking. Model

checking would allow for a system administrator to confirm if the security properties, such as

requiring that the system adheres to role-based access control (RBAC), are followed inside of a

7

social network model and allow for the administrator to both locate and remedy any discovered

errors.

1.3 RBAC and its implementation in WBSN

RBAC is frequently used as a median by which to control and restrict the actions of a

system‟s users. Access control decisions are based upon a user‟s assigned role. This role

commonly represents the position of the user in an organization‟s personal hierarchy and dictates

what responsibilities the user will have. Each role implemented will have a pre-specified set of

permissions that determine what objects the user with the role may have access to and what

commands they will be able to execute upon the object. An additional benefit of RBAC is the

ability to centrally control and maintain all of the existing access rights. The system

administrators can determine which specific roles all of the users should have, and can easily

alter them at a later time should the need arise.

While providing their communication services and applications, some WBSN are

implemented with RBAC in order to prevent the unwanted disclosure of user information. Users

are able to set and control their own access control policies. After the account holders have

uploaded their materials, this process begins by the holders determining which roles of the

system are allowed to interact with the stored resources. The level of interaction can range from

just knowing their existence on the accounts profile to being able to view, write comments, or

even add further materials upon it. Once the role-permission sets have been finalized, the owner

of the account determines which users of the account should be given roles. Afterwards

whenever that user accesses the account, they are given the pre-specified role and thus use their

granted permissions upon the resources.

8

The RBAC policy of a WBSN give the users total control of all materials stored onto the

network in a manner that does not require interference or even oversight from an administrative

body. If implemented correctly, the administration can focus less on the security of the user to

user interactions. However, should the policy arrange within the WBSN prove to be inadequate,

the private materials of the networks users‟ that was only meant to be seen by a privileged few

may be received by others. The possibility of such an occurrence requires no room for errors

when setting the security specification. Therefore, WBSN must have an efficient means of

thoroughly testing that the RBAC policies are followed inside of the network.

1.4 Model Checking

 “Model Checking is an automatic technique for verifying finite-state reactive systems,

such as sequential circuit designs and communication protocols.”(Clarke et al., 1992) The

specifications to be tested are written in a propositional logic that can express system changes

over a period of time, and the reactive system itself is modeled in the form of a state-transition

diagram to better display these changes. The process of determining if the representative model

handles all of the specifications is done by searching through all possible states, and their

transitions, then evaluating if they follow the desired model behavior.

 One of the most advantageous features of model checking over other proof checkers is its

ability for the procedure to be autonomous. After a detailed model representation of a reactive

system and its specifications are created, the model checker will run to completion and terminate

with a true answer if the model‟s behavior does not violate any of the outlined specifications. If,

however, the model‟s behavior allows for a violation to occur, the model checker will output a

trace of the model‟s states. This trace will show in what state of the model the fault was allowed

9

to occur the thus shows why the specification was not satisfied. These counterexamples will

allow for the user to determine which components of the system, and relevant specification, is

the source of the failure.

 Although a user can create models of great size and complexity to represent systems, it is

unfeasible to try to represent many of the realistic systems due to their immense proportions.

One method available to the users is to fabricate their models based on the modular structure of

their desired system. In this way, the model can only consist of parts of the system that are vital

to be correct in and during operation, and remove parts that have no need, or no requirement, to

be represented in testing. “The specifications of the system can then be decomposed into

properties that describe the behavior of small parts of the whole system.”(Clarke et al., 1992)

The model checker can then singularly determine if each separate part of the system handles

their local specification requirements. If all of sections return true, then by default the complete

system will satisfy the complete set of specifications. Another way to represent systems of large

size is to focus on the data paths. The symbolic model used to create the working model can be

made to handle the system‟s nontrivial data manipulations, but at the cost of making the

verification process very complex. “This abstract approach is based on the observation that the

specifications of systems that include data paths usually involve fairly simple relationships

among the data values in the system.”(Clarke et al., 1992) One such example is that one

component in a circuit must output a value greater than the output of three specific components

after some period of time. The abstraction curtails mapping all possible data values of the

system‟s parts in exchange of only working with a small set abstract data values. If collaborated

with a states and transitions graph an abstract model of the system can be fabricated that would

be both much smaller than the original model and easier to verify properties with.

10

 Given the immense size of WBSNs and the complex security policies implemented

within them, determining whether the system‟s RBAC properties are fully followed can be an

onerous task. Model checking can fulfill this niche by creating a formal model that represents all

parts of the network that must follow RBAC. The RBAC policies can then be then be added in

the form of a meaningful logic specification that will be used to determine if the model is able to

violate them. Model checking can determine whether the existing RBAC policy of the WBSN is

adequate in ensuring that only authorized users can access the networks contents. Should a

deficiency exist, the model checker will demonstrate how the trespassing user was able to

interact with an object the system should have restricted from them. Counterexamples will

report which system variables allowed the user to circumvent the failed RBAC policy and help

determine how best to update the network and/or the access control policies for an effective

security strategy.

1.5 Thesis Overview

 This thesis explores the use of model checking in determining if a WBSN‟s RBAC

policies are properly followed within the network. The process begins by building a formal

model of the WBSN along with a set of specification representing its RBAC policies. The model

checker will then analyze the system‟s behavior to determine if it is possible for the access

control to be bypassed, and if so then determine which access control rule and component

compromised the security enforcement.

 In this work, a model of a custom social network is built to represent the proposed design

of a company needed WBSN. This model represents not only the sharing of resources common

in WBSN, but also the RBAC that is also implemented within it. The model is then sent as input

11

to the model checker which verifies that all the RBAC properties are followed. In order to be

sure that the model checker can find erroneous operations within the model, counterexamples are

made in which each property are purposely made to fail. The model checker finds each of these

problems within the design of the WBSN model that must be found early within the development

of the system, or else the mistakes made in early development will problematic and costly later.

Before the WBSN is deployed into usage, developers must be sure that its security follows the

required RBAC properties. For if users are allowed access to a flawed network, a potentially

devastating and unrecoverable leak of the sensitive and protected materials may occur.

Chapter 2 introduces the purpose and functionality of social networks. The security

capabilities of complex systems will be presented along with multiple methods of access control.

 Chapter 3 will cover the usage of model checking to determine system behavior. Also

included will be the steps taken to create a model and the role that temporal logic has in assisting

in the endeavor.

 Chapter 4 outlines the model design that must be followed in order to properly emulate a

social network profile. The access control policies governing an account‟s resources are covered

in depth.

 Chapter 5 covers the model checking procedure that is used to verify that the model

created in chapter 4 adheres to the required access control polices of the account. The CTL

specifications used by the model checker will be covered in depth.

 Chapter 6 is the case study done on the subject of whether or not model checking can

determine if a breach in the access control policies of the system can located. Experiences, both

positive and negative, are covered in the process.

12

 Chapter 7 concludes the work and provides an outlook of how the model checking

process can be beneficial in developing proficient security protocols for a complex system.

Chapter 2: Social Networks

 The proliferation of the internet has allowed people to rapidly gather information, and instantly

communicate with each other. One of the most common communication methods is the use of

social networks. A social network consists of a finite set of actors and the relations defined

between them. (Wasserman et al., 1994)These relationships define the level of intimacy the

actors have to each other in the social network as well as the level of interaction that is allowed

between linked associates. Actors can range from being a single person to an entity consisting of

multiple liaisons, such as a corporation. In a social network where the actors interact with as

many people as they desire, the network‟s operation must ensure users that their uploaded data is

secure against unwanted intruders. This process begins with the users‟ ability to confirm the

identity of a user.

2.1 Identity Management System.

 The Identity Management System is an important oversight feature of social networks.

This process allows users to upload their data onto the social network and control how it is

displayed and accessed. (Hogben et al., 1994) Users can decide what credentials others must

have in order to view the data. For example, a user may determine that only those listed as a

family member will be allowed to view all of their information. Another would be that members

of a larger social group, like the employees of a company, will only allow coworkers access to

the stored data. The user can even specifically target other users and control their access in great

detail. Another feature of the Identity Management System is its ability to track who has

accessed a user‟s data. This allows the user to make sure others are only querying the data they

are supposed to and ensure that unauthorized access is not taking place. Should someone not

14

follow the access control settings, the user can then take steps to restrict the trespasser‟s access to

prevent future violations.

Once the customers of a social network are sufficiently assured that only the authorized

users have access to their profiles, some may wish to expand the number of ways in which their

profiles are accessed, such as with Application Program Interface(API). API allows users to take

their social network profiles and frame it inside a third party web application. This allows

increased data portability for the users but also raises concerns about maintaining security and

privacy in such an easily accessible format. Strict authorization schemes and other forms of

access control must be strictly enforced to protect data sent through this new median of

connection. (Hogben et al., 1994)

2.2 Security of Social Networks

 One implementation of social network security is a public/private key system. Upon

joining a social network, the Identity Management System issues each of the users a token.

These tokens contain the users‟ standard profile information as well as attribute levels of trust

which cannot be alter. As the users interact with each other over the network the trust ratings of

their tokens are altered. After many users vouch for the integrity of one user, that user‟s token

will have a positive value. Should the users doubt the sincerity of a user, then that user‟s token

will contain a negative value. If other users completely distrust one user, they may even revoke

any association with the perpetrator using the system‟s certificate management and block the

maleficent user from their perspective parts of the network. All of these token values assist users

in determining if new acquaintances are trustworthy or insidious by evaluating the network‟s

token opinion of them. In the event of a user wishing to move to another social network that

15

uses the same token system, the user can have their token transferred with them to the new

network.

 This scheme is particularly useful in maintaining the appropriate level of privacy within

a network. One could arrange it so that only people with a certain trust level and minimum level

of interaction inside the network are able to view their information. The tokens, arranged in a

private/public key setup, can even be used to send encrypted data between users (Hogben et al.,

1994). However, this scheme relies upon the administration of a whole group of users to vouch

for the integrity of others and leaves open the possibility of nepotism or corruption inside the

system. A malicious person can create multiple accounts inside the network and have all the

profiles rated positive. This will disguise their malignant nature by having an inflated positive

trust value.

 Though the public/private key system may be useful in certain informal collaboration

networks, it cannot be relied upon to secure a user‟s account from intrusion since it relies too

much on the input of other users. What is instead required is a form of security in which account

holder can determine who else in the system can access their materials and to what degree. Thus

many social networks include a form of access control in which users can manually set the

access control requirements of their uploaded resources. The most frequently used are RBAC,

Mandatory Access Control (MAC), and Discretionary Access Control (DAC).

2.3 Role-Based Access Control

RBAC is defined as allowing a system to clearly outline access control objectives in a

mathematical and rigorous framework while also giving the users of the system a clear picture of

the system‟s security arrangements and authoritarian obligations. (Sandu et al., 2001) RBAC has

16

the actors of a social network interact with the objects that are contained within the network.

These actors, however, are given specific roles to determine what actions they can execute, what

objects they can access, and where in the system they can go. Roles do not always need to be

directly given to a user. Instead, users can be encompassed into a group. This group is then

assigned a set of permissions that all members of that group can use. (Sandu et al., 1994) Each

of the objects created in the system have a level of clearance for all the data they contain. No

actor can gain control of that object without a relevant role, and thus permission, assigned to

them.

Figure 1: User/role relationships with objects

 Roles define who inside of a system can access certain resources and how much

interaction they can have with those resources. As seen in Figure 1, users of role 1 can execute

read, write and delete on objects 1 and 2 while users of role 2 can only do read on object 2. An

example of current systems that uses roles for operational purposes is Novell‟s Netware and

Windows NT. An administrator of a server or a database benefit from implementing their

17

systems with RBAC, which allows provides an easier format by which to police their domains.

Some benefits of using them are: (Sandu et al., 1994)

 Access control decisions are based on “the roles that individual users take on as

part of the organization”;

 Preferred in order to centrally control and maintain access rights that reflect the

organization‟s protection guidelines.

RBAC can also found in both operating systems and in user-level applications. Over

time many variations of RBAC have been implemented. Some variations include whether or not

relations exist between roles, roles and permissions, and users and roles. An example would be a

role in which multiple users should not have access to, such as President of the United States.

There should only ever be one person with this role at any one time, or else there could be an

error. Some roles may even be able to inherit properties of other roles, so the system

administrator does not need to repeatedly give permissions that are commonly used by everyone

inside of the network. Roles can even be arranged so that a ranked hierarchy is made or that a

separation of duties and responsibilities are outlined in the system.

One of the administrative benefits of roles is when system administrators must

incorporate new users into their domain. It is far easier, and less technical, for a system

administrator to give a new user a role with predefined permissions than to assign them the

permissions directly. There is always the chance that the system‟s permissions will be altered to

meet a new security requirement, and so it would be less troublesome to only change the

permissions to the finite set roles than it would be to change the permissions to a massive

number of users individually.

18

To access the maximum benefit of RBAC system, three principles must be followed.

 Least Privilege: Only those permissions required for the tasks to be performed by

the user are assigned to the role.

 Separation of Duties: Invocation of mutually exclusive roles can be required to

complete a sensitive task, such as requiring both an accounting clerk and an

account manager to participate in issuing a check.

 Data Abstraction: Instead of using permissions typical of operating systems, such

as read and write, abstract permissions, such as credit and debit for an account

object, can be implemented.

However, these principles are not fully necessary for every system, and the level to which each

of the properties are followed is left to the system administrator to decide on their own. Take the

separation of duties property, which can be separated as dynamic or static. In the static

separation of duties, specific permissions should only be given exclusively to certain roles.

Dynamic separation of duties requires analyzing the roles authorized to each user and requiring

that users should not be given roles that do not conflict with the static separation of duties. An

example of this is where a user, while in one role during a session, is not allow a specific

permission, but may start again in a new session with a role that contains said conflicted

permission.

Other forms of access control that are used in parallel with RBAC are that of

discretionary access control, DAC, and mandatory access control, MAC. MAC is based upon

the labeling of objects and users with security labels and only allowing interactions between

those with similar labels. DAC is based on the users‟ permissions or denials to objects, whose

19

access is arranged by the object‟s owner. While RBAC is a form of access control on its own, it

can also be incorporated with elements of both DAC and MAC when the need arises.

2.4 Mandatory Access Control

MAC is a type of RBAC security commonly seen in database operations. Its main focus

is the security of all accessed items while also ensuring secrecy. MAC begins this process by

having all users and system objects to be assigned an attribute level. Afterwards, users in the

system can only access an object with an equal attribute level. This is similar to the

classification levels used on government documents, such that Top Secret documents are only

known and accessed by the higher echelons of the intelligence community, and Unclassified

materials are seen and given to almost anyone that requests it.

Figure 2: Classification Levels of Security in the U.S. Government

Some MAC environments take this step further by creating a multi-leveled security

system. This is arranged by having the objects organized in order of their security level with

20

“ability to access anything in the system is reviewed by a reference monitor.”(DoD et al., 1985)

The reference monitor determines if the actor attempting to access an object has the required

security clearance. Once approved the actor is allowed to perform actions that are allowed in his

role. The reference monitor also ensures two rules are in effect. The first is the no-read-up rule,

meaning that no user can access any object with clearance level higher than the one given in

his/her role. The second rule is that of no-write-down, in which information flows from lower

clearance levels to higher levels and prevents information from flowing from higher to lower

levels. Thus a Top Secret document may contain references to a Classified document, but not

the other way around. Having the flow of information fashioned as such helps to preserve

secrecy. This is especially true in cases involving a Trojan horse virus inside of a MAC

environment.

 A Trojan horse is malicious code that is hidden within a program. The goal is for the

system to treat the program as an actor with a role of the highest, or at least higher, clearance.

This will allow the Trojan horse to use system authorized functions on highly restrictive objects,

thus violating all security policy under the eyes of the reference monitor. Afterwards the Trojan

horse will then undermine the information integrity by having system objects relabeled to a

different clearance, or embed the data of a higher access object into a lower one. MAC

principles prevent either from occurring by first having all data objects of the system predefined

with no actor able to alter them. Second, MAC‟s rule of no-write downs, in which data of higher

clearance is never sent to a lower clearance document, prevents the Trojan horse of embedding

sensitive data into an unrestricted file.

21

2.5 Discretionary Access Control

 DAC is an access scheme in which the creator of an object determines who can interact

with an object and what functions can be performed. (Osborn et al., 2000) The owner, who is

usually the creator, is the only user that can set the permissions of the object. These permissions

are then used to determine which commands specific users or group of users can perform upon

the object. A DAC system in essence must follow three rules of operation (Osborn et al., 2000).

 The creator of an object is also the owner.

 The object will only have one owner.

 The deletion of the object can only be undertaken by the owner.

It should be noted that some systems allow for ownership of an object to change. These

changes could be that the object is given to a new user, a user has taken a copy of someone else‟s

object and makes it their own, or that ownership of an object is set by whoever uses the object

last. Enforcement of this rule has led to variations into the DAC scheme.

1. Strict DAC is where the owner of the object is the only one who can set the permissions

to the object. However whoever has read access to the object can easily copy its contents

into their own object.

2. Liberal DAC is where the owner of the object can set the permissions and can even allow

a set of users the ability of granting authority to other users. The number of repetitions of

granting authority is delegated by the original owner of the object.

22

3. DAC With Changes to Ownership is where ownership of an object can be reissued and

revoked by those accessing it. For example, one user may grant access to their object to

another user. The new user can then grant access to whoever they want, and possibly

causing a chain of grants. However, each user can still have their access permission

revoked by the one gave it to them.

2.6 Forms of Authorizing Access Control Permissions

No matter which of the above forms of access control is implemented for a complex

system, the main priority is to control the permissions given to each person. Information systems

as we know them today offer services in which people can store, modify, and query the

information that is contained within the system. (Thion et al., 2006) The main basis of the access

control mechanisms that are used center around whether a subject, which could be a user or a

process, is able to perform an operation, such as read or write, upon an object, such as a file or a

folder. These operations upon objects are seen as system permissions. Permissions are usually

not directly assigned to each user. As stated before, this would be time consuming and would

lead to an increase chance of administrative mishandling. (Bertino et al., 2003) Instead, the

permissions are categorized by the roles that need them within the system organization. The

necessary roles are then given to the proper users and in turn, those users are only assigned

permissions they need.

 RBAC has three ways in which permissions can be implemented. Positive authorization

is based on users having the required permissions to perform some action upon an object. For

example, a user must have the write permission in order to execute write on an object. Systems

using this for the basis of an access control policy are said to be following an open RBAC model.

23

Negative authorization is where the permissions deny users from interacting with objects. In this

case, any user given the write permission cannot execute write upon the object. This access

control policy is known as a closed RBAC model. There is also the option of using a

combination of the two, which is known as hybrid RBAC, and also a form temporal RBAC that

is based upon the amount of time in which a user has permission to an object. (Barker et al.,

2003) If a system uses a hybrid model of RBAC, it is possible for a user to have positive

authorization to an object and also have a conflicting negative authorization. In order to resolve

this problem, “the system should support a conflict resolution strategy to determine which of the

authorization policy should be followed.”(Castano et al., 1995)

Chapter 3: Model Checking

 Modeling is used to demonstrate the relative shape and purpose of an object. This is

done either on something that was already made but hard to see in person or for an object before

it is constructed. The latter is done to give people a general idea of what the actual article will

appear when finished, the materials used to build it and to determine the estimation of the cost to

construct the object. More thorough forms of modeling can even show points of weakness and

assist in the removing of unnecessary or unwanted attributes from the design. One example

would be a shipwright making a model in order to show the scaled design of a project. This will

assist in planning the needed financial and material assets to begin construction.

 3.1 Overview of Model Checking

 In computers, modeling is used to simulate the design of hardware and software in order

to determine the behavior of the system with a set of inputs. In the case of circuits, simulation is

performed on a model design of a circuit which involve providing certain inputs and observing

the corresponding outputs. (Clarke et al., 1999) This behavioral model simulation is then used

with various scenarios to observe how the system operates, what types of errors can occur, and

can the system handle an error exception without fatally crashing. This is very similar to Formal

Methods, whose main purpose is to take the “applied mathematics for modeling and analyzing

ICT systems.”(Baier et al., 2008) While attempting to check the correctness with a mathematical

mindset, Formal Methods can be made to work with both hardware and software designs. They

are frequently used by multiple international organizations for their potential in detecting costly

defects.

25

 A model of a system‟s behavior is made to display the functionality and reactions during

its runtime or show what flaws are currently present that may compromise its operation. This is

called “deductive verification and involves the use of axioms and proof rules to prove

correctness in the system.” (Clarke et al., 1999) In the beginning this was arduously done by

hand by developers to ensure that all possible test cases were taken into account. This time

consuming process was overtaken with the use of software tools to allow for a systematic

analysis of the proofs in the system.

 Model Checking is a more preferable process to deductive verification of a concurrent

finite state system. The overall process can be done without much manual input from the user

and instead mostly involves the software checking all possible states automatically. “The

procedure normally uses an exhaustive search of the state space of the system to determine if

some specification is true or not and, if given sufficient resources, the procedure will always

terminate with a yes/no answer.” (Clarke et al., 1999)

Figure 3: Kripke Structure for Mutual Exclusion (Clarke et al., 1999)

26

While the scope of the systems used may seem limited, due to the requirement of being

finite, all hardware and software designs are finite state systems in reality and can be displayed

in the form of a Kripke structure.“A Kripke structure is used to better illustrate the formal model

and its various finite states by displaying the entire set of states, the transitions between states,

and a function that labels each state with a set of properties that are true in this state.” (Clarke et

al., 1999) The transitions displayed in a Kripke structure show the required actions needed to be

taken by the system to reach the next state. This form of the model further assists the model

checking process by demonstrating the cumulative after effects of the system‟s operation over

time.

Kripke structures are formally defined: (Clarke et al., 1999)

Let AP be a set of atomic propositions. A Kripke structure M over AP is a four tuple M = (S, S0,

R, L) where

1. S is a finite set of states.

2. S0 ⊆ S is the set of initial states.

3. R ⊆ S x S is a transition relation that must be total, that is,

for every state s ε S there is a state s′ε such that R(s, s′).

4. L ∶ S → 2AP is a function that labels each state with the set of atomic propositions true in

that state.

27

3.2 Steps of Model Checking

 “Model-based verification is the process of creating a model of a system‟s behavior in a

mathematically precise and singular manner.” (Baier et al., 2008) Once accomplished, an

accurate rendition of the system will usually allow the engineers to notice signs of

incompleteness, ambiguities, and inconsistencies that would be expensive to repair at a later

stage of the project‟s life cycle. “Model checking is in essence the exploration of all possible

system states in a brute force manner.”(Baier et al., 2008) Some problems that are examined in a

system are classic computer science obstacles, such as deadlock and starvation. However, others

can be more specific to the requirements of the project. Will the system always send a reply in

twenty seconds, can the system consistently recover from failure during its lifetime of use, and

will the system always be able to reach a certain state after an operation? Model checking can

accommodate whatever requirements the developers must observe with the ability to track any

necessary system states and further develop a realistic rendered model.

 Once an accurate finite-state model of a system is created, the model checker will explore

all relevant system states in an attempt to verify that the model follows all necessary properties.

If the model checker should come across a state that shows otherwise, a counterexample will

trace the path of how the system could reach such an unacceptable situation. A user will then be

able to study the path to assist in remodeling the design. This entire process can be classified

into the following three states: Modeling Phase, Running Phase, and Analysis Phase.

3.3Modeling Phase

 The obvious first step to model checking is to begin building a model for the model

checker to analyze. The system design to be considered is converted into the formalism accepted

28

by the model checking tool. (Clarke, Grumberg, Peled 1999)Once the general shape is

formulated, the system‟s model is then given an initial state.” A state is a snapshot or

instantaneous description of the system and captures the values of the variables at a particular

instant of time.” (Clarke et al., 1999) These states are used to show the transitional changes of

the system during its operation and allows for the display of these transitions in the form of

before and after shots.

After the proposed design of a system is finished, the choice of which properties will be

verified and checked must be made. These properties can be anything from deadlock detection

to unauthorized user access and can lead to an unlimited number of desired properties planned

during the modeling phase, but sometimes only the most important are included into the model.

This junction of the modeling phase is known as specification. Specification is handled by a

form of logic formalism, called temporal logic, which is expressive of the system‟s behavior over

time and has proved to be useful for specifying concurrent systems. (Clarke, Grumberg, Peled

1999) The syntax and semantics of the branch of temporal logic used in this thesis is discussed

below.

3.3.1Temporal Logic

“Temporal logic is a formal logic for describing sequences of transitions between states

in a reactive system while not mentioning time explicitly.” (Clarke et al., 1999) This logic is also

termed to be linear in nature since, as the Kripke structure is transversed over time, there is only

ever one successor state that is used from the previous state. Temporal logic‟s specification

formulas are designed to test if the model will enter a certain state eventually or never enter an

error state.

29

 Computation Tree Logic, or CTL, is a branching-time logic version of temporal logic,

meaning that its model of time is a tree-like structure in which the future is not determined; there

are different paths in the future, any one of which might be the „actual‟ path realized. (Huth et

al., 2004) In order to selectively analyze the states of the model path quantifiers, which are used

to express the branching of a computation tree, and temporal quantifiers, which are used to

describe the properties of a path in a tree, are used. There are two path quantifiers used in CTL.

A is used to represent “for all computation paths,” and E, representing “from some computation

path”. A’s meaning is that starting at a particular state, all of its successor states must uphold

some property. E represents that starting at a particular state, there should exist a path to a

successor state in which some property is upheld. Used in conjunction with these path quantifiers

are five basic temporal operators:

 X (“next time”) requires that a property holds in the second state of the path.

 F (“eventually” or “in the future”) operator is used to assert that a property will hold at

some state on the path.

 G (“always” or “globally”) specifies that a property holds at every state on the path.

 U (“until”) first property listed holds until a particular state in which the second property

will then hold.

 R (“release”) the second property holds along the path up to and including the first state

where the first property holds, but does not require the first property to hold eventually.

30

3.3.2 Syntax of CTL

 In reference to the aforementioned path quantifiers and temporal operators, CTL

statements can be defined as such.

Definition (Huth et al., 2004)

CTL formulas are defined inductively via a Backus Naur form:

𝜙 ∶≔ ⊥ T 𝑝 ¬ 𝜙 𝜙 ∨ 𝜙 𝜙 ∧ 𝜙 𝜙 → 𝜙

 𝐴𝑋 𝜙 𝐸𝑋𝜙 𝐴𝐹𝜙 𝐸𝐹 𝜙 𝐴𝐺 𝜙 𝐸𝐺 𝜙 𝐴 𝜙𝑈𝜙 𝐸[𝜙𝑈𝜙]

3.3.3 Semantics of CTL

Definition: Let 𝑀 = (𝑆, →, 𝐿) be a model for CTL, 𝑠 ∈ 𝑆, and 𝜙 a CTL formula. The relation

𝑀, 𝑠 ⊨ 𝜙 is defined by structural induction on 𝜃:

1. 𝑀, 𝑠 ⊨ 𝑇 and 𝑀, 𝑠 ¬⊨⊥

2. 𝑀, 𝑠 ⊨ 𝑝 iff 𝑝 ∈ 𝐿(𝑠)

3. 𝑀, 𝑠 ⊨ ¬𝜙 iff 𝑀, 𝑠¬⊨ 𝜙

4. 𝑀, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝑀, 𝑠 ⊨ 𝜙1and 𝑀, 𝑠 ⊨ 𝜙2

5. 𝑀, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝑀, 𝑠 ⊨ 𝜙1or 𝑀, 𝑠 ⊨ 𝜙2

6. 𝑀, 𝑠 ⊨ 𝜙1 → 𝜙2 if 𝑀, 𝑠¬⊨ 𝜙1or 𝑀, 𝑠 ⊨ 𝜙2

7. 𝑀, 𝑠 ⊨ 𝐴𝑋 𝜙 iff for all 𝑠1 such that 𝑠 → 𝑠1 we have 𝑀, 𝑠1 ⊨ 𝜙. Thus, 𝐴𝑋 says:

„in every next state.‟

31

8. 𝑀, 𝑠 ⊨ 𝐸𝑋 𝜙 iff for some 𝑠1 such that 𝑠 → 𝑠1 we have 𝑀, 𝑠1 ⊨ 𝜙. Thus, 𝐸𝑋

says: „in some next state.” E is a dual to A – in exactly the same way that ∃ is the

dual to ∀ in predicate logic.

9. 𝑀, 𝑠 ⊨ 𝐴𝐺 𝜙 holds iff for all paths 𝑠1 → 𝑠2 → 𝑠3 → ⋯, where 𝑠1equals 𝑠, and

all 𝑠𝑖 along the path, we have 𝑀, 𝑠𝑖 ⊨ 𝜙. Mnemonically: for all computation

paths beginning in 𝑠 the property 𝜙 holds Globally. Note that „along the path‟

includes the path‟s initial state.

10. 𝑀, 𝑠 ⊨ 𝐸𝐺 𝜙 holds iff there is a path𝑠1 → 𝑠2 → 𝑠3 → ⋯, where 𝑠1equals 𝑠, and

for all 𝑠𝑖 along the path, we have 𝑀, 𝑠𝑖 ⊨ 𝜙. Mnemonically: there exists a path

beginning in 𝑠 such that 𝜙 holds Globally along the path.

11. 𝑀, 𝑠 ⊨ 𝐴𝐹 𝜙 holds iff for all paths𝑠1 → 𝑠2 → 𝑠3 → ⋯, where 𝑠1equals 𝑠, there

is some 𝑠𝑖 such that 𝑀, 𝑠𝑖 ⊨ 𝜙. Mnemonically: for All computation paths

beginning in 𝑠 there will be some Future state where 𝜙.

12. 𝑀, 𝑠 ⊨ 𝐸𝐹 𝜙 holds iff for all paths𝑠1 → 𝑠2 → 𝑠3 → ⋯, where 𝑠1 equals 𝑠, there

is some𝑠𝑖 such that 𝑀, 𝑠𝑖 ⊨ 𝜙. Mnemonically: for All computation paths

beginning in 𝑠 there will be some Future state where𝜙.

13. 𝑀, 𝑠 ⊨ 𝐴[𝜙1 𝑈 𝜙2] holds iff for all paths 𝑠1 → 𝑠2 → 𝑠3 → ⋯, where 𝑠1equals

𝑠, that path satisfies 𝜙1 𝑈 𝜙2, i.e., there is some 𝑠𝑖 along the path, such that such

that 𝑀, 𝑠𝑖 ⊨ 𝜙2, and, for each 𝑗 < 𝑖, we have 𝑀, 𝑠𝑗 ⊨ 𝜙1. Mnemonically: All

computation paths beginning in 𝑠 satisfy that 𝜙1Until 𝜙2holds on it.

14. 𝑀, 𝑠 ⊨ 𝐸[𝜙1 𝑈 𝜙2] holds iff there is a paths 𝑠1 → 𝑠2 → 𝑠3 → ⋯, where

𝑠1equals 𝑠, and that path satisfies 𝜙1 𝑈 𝜙2 as specified in 13. Mnemonically:

there Exists a computation path beginning in 𝑠 such that 𝜙1Until 𝜙2holds on it.

32

3.4 Running and Analysis Phases

Once the specifications of the system properties have been finished, the running phase

commences. This begins by giving the model checker as input the model M and a set of

temporal logic specification 𝜙. With S being the entire set of states in M, the model checker will

transverse all states 𝑠 ∈ 𝑆 to determine whether or not 𝑠 ⊨ 𝜃 holds. Once the model checker is

finished, it will output all of the temporal logic specifications that were followed in side of the

model. Should the model not uphold any of the formulas the model checker will print a history

trace. This trace will show a path through the model‟s states to show how to reach the state

where the error occurs.

An error can be discovered for many reasons during the model checking process. A

likely occurrence is that of a memory error during the running phase, in which the model was too

large for the program and thus had to abort. The only real solution, other than modifying the

model checker to have more memory, is to break the model into multiple separate parts and test

each one individually. The latter abstract process relies upon the fact that if all the parts of a

system operate correctly and follow the specifications then the entire system should work as

well. Another source of an error could be that the system was incorrectly modeled before any

testing and analysis is attempted and thus returns vitiated results. This means that the model and

its verification properties do not accurately reflect the required design of the system. A return to

the modeling phase would be required to ensure that all faulty components and specification

properties are removed or reconfigured. If the properties within the specification language are

correct, then a flaw in the model is the cause of the error. The model has a state in which the

system could compromise a specification property that must be upheld. The system design must

then be improved to eliminate the flaw. However, if the specification properties are flawed and

33

the model is actually correctly designed, then the analysis phase will report that an unacceptable

state is reachable inside of the model. The only solution is to change the specification into a

form that can properly test the given model. Once the verification phase of the model checking

process is finished, the developers will be able to evaluate and correct the discovered of the

deficiencies that exist inside of the current design of a system.

Chapter 4: Modeling RBAC in a Social Network

Before beginning to outline how the RBAC properties of a social network are to be

represented by a formal model, the model checker must be discussed. In this paper, the New

Symbolic Model Verifier (NuSMV) model-checking system is used to assist in determining if

our social network model adheres to a set of temporal logic specification that will verify that the

model upholds the required RBAC properties. NuSMV provides a language for describing the

models and directly checks if the temporal logic formulas are valid inside of the model. (Huth et

al., 2004) The model checker takes as input a text describing our social network model and print

as output TRUE if a temporal logic specification holds within the model. If any of the

specifications do not hold, the program will then print a trace showing why the specifications are

false inside of the model.

Figure 4: Model of the Example Network.

35

To use as an example, imagine a small social network consisting of the roles of editor, writer

and intern. This network contains within it resources consisting of a movie and a review of the

movie. Each role is granted specific permissions that allow them to execute commands upon the

two resources. Writer‟s have the ability to Read and Write the movie review resource. Editors

should be able to Play, Copy, and Delete the movie resources and Intern‟s should only be able

use the Play command on movies. Editor‟s also have subordinate interns to whom the editor

authorizes to use Play on the Movie Resource.

The SMV language of our model will consist of multiple modules which are identical to

classes. Modules can declare variables and functions within their scope and reassign new values

to variables during the operation of the model checker. To aid in readability and construction,

our social network model will be broken down into various modules that are used to represent

roles, user and resources. Just like in other programming languages, the program must start with

a main module.

4.1 Overview of the Program Structure

MODULE main

The scope of the main module begins the line after this one and ends when another MODULE is

written. This scope includes three sections. VAR, ASSIGN, and SPEC. The scope of main will

include declarations of all of the resources needed for this model in the VAR section.

VAR

movie : videoResource();

movieReview : textFileResource();

36

In our example the needed resources are that of movie and the movie review. To model these

resources a variable is declared with the names of movie and movieReview. The text to the right

of the semicolon in the statement assigns a type to the variable. The videoResource() and

textFileResource() are modules used to represent resources of a video and text type and will be

covered later. By having the variables declared with their type specifer as the modules, each is a

new instance of the module. Along with the resources, the permissions to each role connected to

main must also be declared.

editorPermA : array 0..2 of boolean;

writerPermA : array 0..2 of boolean;

The editorPermA and writerPermA are variables of the permissions that roles editor and writer

will have to the movie variable. The array following the semicolon tells us that the variables are

an array and the 0..2 refers to the range of elements that will exist within the array, meaning zero

to two. Each element represents a permission to the movie variable; zero for Play, one for Copy,

and two for Delete. Following the of is the type of values the array will be allowed to contain,

in this case Boolean. If the element of the permission is true, then the role will allow the user to

have that permission to the movie resource. If the element is false, then the role will not allow

the user to have that permission to the movie resource. Of course, since there are two resources

the roles will need another set of permission arrays in this model.

editorPermB : array 0..1 of boolean;

writerPermB : array 0..1 of boolean;

37

The editorPermB and writerPermB follow the same principles of the previous variables except

that they refer to the permissions the roles will have to the movieReview variable. The only

permissions that the roles can send to movieReview are that of Read and Write. Thus the array

is set to a range of zero to one with zero for the Read permission and one for the Write

permission. Once the permission array variables are declared the values to their elements may

then be given in the ASSIGN section.

ASSIGN

editorPermA[0] := TRUE;

editorPermA[1] := TRUE;

editorPermA[2] := TRUE;

editorPermB[0] := FALSE;

editorPermB[1] := FALSE;

writerPermA[0] := FALSE;

writerPermA[1] := FALSE;

writerPermA[2] := FALSE;

writerPermB[0] := TRUE;

writerPermB[1] := TRUE;

38

As explained within the example, the editor should only have the permissions to Play,

Copy, and Delete the movie variable while not having Read and Write to the movieReview

variable. The writer should only be assigned Read and Write to movieReview and should not

have the Play, Copy and Delete permissions to the movie variable. To set the permissions each

array‟s elements are assigned, represented by the := symbol, the necessary Boolean value to the

role‟s required permission. Thus editorPermA‟s elements from zero to two are set to TRUE and

editorPermB‟s element zero and one are set to FALSE while writerPermA elements zero to two

are false and writerPermB elements zero to one are set to true. After the resource variables and

the role permission arrays are set, main will then send those variables that are instances of the

next role modules. This is accomplished by declaring two variables in VAR once again.

role1 : editorRole(movie, movieReview, editorPermA, editorPermB);

role2 : writerRole(movie, movieReview, writerPermA, writerPermB);

As with the movie and movieReview variables, role1 and role2 are instances of the editorRole

and writerRole modules. This time however, the role modules require the instances of both

resource objects and the related permission arrays as parameters. From these variables the

model‟s development moves from main to the editorRole and writerRole modules, but before

continuing on with the role modules, the resource modules must be explained.

4.2 Modeling the Resources

 In main, the movie variable‟s type specifier is that of videoResource(), which makes the

variable an instance of that module in the NuSMV file.

MODULE videoResource()

39

The module begins just like many using MODULE to state where the scope of videoResource()

beings and what parameters it requires when a variable instance is created. By having the

parentheses blank, this instance needs no parameters when declared. In our example, the

commands that users can execute on movie are that of Play, Copy, and Delete. In order to model

that an object of type videoResource() is receiving the commands a variable must be included

that changes to the next user command the object receives.

VAR

state : {Wait, Play, Copy, Delete};

In the VAR section, a variable state is declared. Unlike the other variables so far, state is an

enumerated type variable with the commands as possible values that state can be equated to.

Wait is included in the enumeration for when a user does not send any of the commands or does

not have permissions to execute any of the commands. Based upon this knowledge, a Kripke

structure of video resource variable can be constructed. The Kripke transition values will be

covered later on in the user module.

40

Permission Copy = TRUE

Permission Play = TRUE
Permission Delete = TRUE

P
er

m
is

si
on

 D
el

et
e

=
 T

R
U

E

Figure 5: The Kripke Structure of a video resource with the requirements to reach each state.

Since state is an enumerated variable, its initial state must be assigned. Otherwise the model

checker will set it at random.

ASSIGN

init(state) := Wait;

The init() function takes the variable within its parameters and sets its starting value to the

enumeration following the := symbol. State is thus set to Wait since when the model begins, no

one has sent any commands to the resource yet.

41

Figure 6: The Kripke Structure of a text resource with the requirements to reach the each state.

 The textFileResource() module follows the same layout as videoResource().

MODULE textFileResource()

VAR

state : {Wait, Read, Write};

ASSIGN

init(state) := Wait;

42

The module has not passed any parameters from main. Its state variable is set to the possible

commands users‟ can send the resource and the initial state is set to Wait.

4.3 Modeling the Roles

 In main, the instances of variables of type editorRole and writerRole were made. These

modules are passed instances of the resource variables created in main and the roles‟ permission

arrays in order to model what permissions will be allowed to these roles inside of the network.

MODULE writerRole(movie, movieReview, writerPermA, writerPermB)

VAR

user2 : process User(movie, movieReview, writerPermA, writerPermB);

In the module writerRole, the system resources and the writer‟s permission arrays to those

resources are received from main as parameters and passes them to the user2 variable, whose

type specifier is a module titled User. The User module is used to model how users will be able

to interact with the system resources based upon the permissions received from the role modules.

MODULE editorRole(movie, movieReview, editorPermA, editorPermB)

VAR

user1 : process User(movie, movieReview, editorPermA, editorPermB);

internPermA : array 0..2 of boolean;

internPermB : array 0..1 of boolean;

43

The editorRole module follows the same outline as the writerRole. It receives the resources and

permission arrays from main and sends them to a variable that is an instance of the User module.

However, unlike the writerRole, the editorRole module has a subordinate role underneath it and

thus the function of the editor setting that role‟s permissions and passing them to their module

must be modeled. This requires that a new set of permission arrays are created for the connected

role module. As before in main, internPermA is a three element array of the permissions a user

may have to the movie resource and internPermB is a two element array to the movieReview

resource. These elements must then be set in the ASSIGN section with values required by our

example.

ASSIGN

internPermA[0] := TRUE;

internPermA[1] := FALSE;

internPermA[2] := FALSE;

internPermB[0] := FALSE

internPermB[1] := FALSE;

As stated before, the intern role should only have the Play permission to the movie resource.

Thus only interPermA[0] is set to TRUE and all others are made FALSE.

role3 : internRole(movie, movieReview, internPermA, internPermB);

44

The instances of the resources and the now assigned permission arrays are then passed as

parameters to the role3 variable, which is an instance of the internRole module, in the VAR

section.

MODULE internRole(movie, movieReview, internPermA, internPermB)

VAR

user3 : process User(movie, movieReview, internPermA, internPermB);

The internRole module takes the resource instances and permission arrays and uses them as

parameters to its own User instance variable user3.

45

4.4 Modeling Users’ Interaction with the Resources

Figure 7(a): The movie resource is sent three different commands at the same during the

running phase of the model checker. (b) The Process Selector of the model checker randomly

chooses the user that the resource will accept.

The User module represents what commands a user will be allowed to send to the

network resources. The user1, user2, and user3 variables are declared with a type specifier of the

module User with their parameters being the resources and the permission arrays that were sent

to the variables‟ role module. During the declaration of each variable, the keyword process is

added after the semicolon. This is because every user variable will be interacting with the same

instance of the resources and attempt to send commands simultaneously. Each resource,

however, can only execute one command at a time. To ensure that only one command is

accepted by the network resources, the user variables are designated as processes. During the

46

running phase of the model checker, a variable called process_selecter will randomly choose one

of the variables and have its command sent to the resources while the commands of the other

user processes are ignored.

MODULE User(movie, movieReview, permA, permB)

VAR

myCommandA : {Wait, Play, Copy, Delete};

myCommandB : {Wait, Read, Write};

The User module shows once again that it is receives as parameters the same instances of the

system resources and the permission arrays from the role module. Within the scope of the User

module, the permission arrays passed to the module as parameters are called permA and permB.

This is because it is unknown which role instance the User module was declared to. Two

enumerated variables, myCommandA and myCommandB, are declared within the scope of the

module and model the user sending commands to the resources. Variable myCommandA is the

user‟s command to movie and myCommandB is to movieReview. Thus the possible values of

the variables are identical to the state of the resources.

ASSIGN

init(myCommandA) := Wait;

init(myCommandB) := Wait;

Since the module has yet to analyze the permissions in the array, both myCommandA and

myCommandB are set to the Wait value.

47

next(myCommandA) := case

The next() function takes the variable within its parentheses and sets its next value. The possible

values of myCommandA are based upon the possible values of the user‟s permissions to the

movie resource. To determine the next value a case expression is used, starting where the case

keyword is displayed is used to analyze the values of the permission array.

 (permA[0] & !permA[1] & !permA[2]) : {Wait, Play};

 (!permA[0] & permA[1] & !permA[2]) : {Wait, Copy};

 (permA[0] & permA[1] & !permA[2]) : {Wait, Play, Copy};

 (!permA[0] & !permA[1] & permA[2]) : {Wait, Delete};

 (permA[0] & !permA[1] & permA[2]) : {Wait, Play, Delete};

 (!permA[0] & permA[1] & permA[2]) : {Wait, Copy, Delete};

 (permA[0] & permA[1] & permA[2]) : {Wait, Play, Delete};

The statements following the case keyword are the cases of the case expression. To the left of

the semicolon are the values the permissions must have in the case and the right contains the

allowed next values of myCommand. Elements without the exclamation point must equal true

and elements with the exclamation point must equal false. Examining the first case statement,

the next value of myCommandA can be either Wait or Play should the permA[0] be true and

permA[1] and permA[2] are false. However, if the user does not receive any permissions from

their role a default case must be included.

 TRUE : Wait;

48

 esac;

The last case is exercised if none of the above cases are used and results in the user only sending

Wait commands to the resource. The esac; is the key word used to end the switch statement.

next(myCommandB) := case

 (permB[0] & !permB[1]) : {Wait, Read};

 (!permB[0] & permB[1]) : {Wait, Write};

 (permB[0] & permB[1]) : {Wait, Read, Write};

 TRUE : Wait;

 esac;

The function of next(myCommandB) follows the same outline as myCommandA except

that there are only three possible cases, and the default, that may result from the second

permission array. During the running phase of the model checker, the program will randomly

select the value of the commands from the results of the relevant switch statement repeatedly.

For example if the second case was used, the model checker will randomly select the values of

Wait or Write for myCommandB and do so again and again while the model checker is

operating. Whichever values are chosen for the user commands will be used to change the state

of the resources.

next(movie.state) := case

 myCommandA != Wait : myCommandA;

49

 TRUE : Wait;

 esac;

next(movieReview.state) := case

 myCommandB != Wait : myCommandB;

 TRUE : Wait;

 esac;

The next function of the resources is used to change the values of the resources‟ state

variable and thus models the users‟ ability to alter resources by the commands that they send. As

before with the user commands, the next enumerated value of the states is determined by a

switch statement of two cases. The first case being that should the user command to the resource

not equal Wait, the value of the resource state is changed to the value of the command.

Otherwise by default, the state is set to the Wait value.

4.5 Modeling User Sessions

In a complex system, users may be granted more than one role in order for them to

perform their required tasks within the network. If the user is using a role that does not grant

them the necessary permissions, they may log out and log back into the system with the

appropriate role. In order to model this procedure the main module will need a set of variables

containing what roles a user is assigned in the account.

 jamesRoles : array 0..2 of boolean;

 brianRoles : array 0..2 of boolean;

50

 jacobRoles : array 0..2 of boolean;

 willyRoles : array 0..2 of boolean;

In this example four users will be assigned roles that are implemented within the account.

Those roles are intern, editor, and writer. The above four variables are arrays of three Boolean

elements whose values will be used to determine the users‟ given roles. For example, should

jamesRoles[0] be equal to true, then in our model the user James is able to log in as an intern.

Element one refers to the editor role and element two is for the writer role. The elements of the

arrays will have their values set in the ASSIGN section of the main module.

 jamesRoles[0] := TRUE;

 jamesRoles[1] := TRUE;

 jamesRoles[2] := FALSE;

 brianRoles[0] := FALSE;

 brianRoles[1] := FALSE;

 brianRoles[2] := TRUE;

 jacobRoles[0] := TRUE;

 jacobRoles[1] := FALSE;

 jacobRoles[2] := FALSE;

51

 willyRoles[0] := TRUE;

 willyRoles[1] := FALSE;

 willyRoles[2] := FALSE;

For our model, user James is to be allowed the roles of intern and editor. Brian will be assigned

the writer role and users Jacob and Willy will only be permitted to log in as interns.

 In the example model, only one user is allowed to use the editor and writer roles at any

given time. To model the system preventing multiple users from using the same restrictive roles

at the same time, a semaphore must be included.

 semEditor : semaphore();

 semWriter : semaphore();

In the VAR section of main, a variable is declared with a type specifier of semaphore for each of

the two restrictive roles. These variables are thus instances of the semaphore module.

MODULE semaphore()

VAR

 sema : boolean;

 userName : { None, James, Brian, Jacob, Willy};

52

The semaphore module takes no parameters and declares a variables sema, of type Boolean, and

an enumerated variable userName. Variable sema will be used to determine if a user will be

allowed to log in as the role protected by the semaphore. If the value is true, the user is allowed

to change their role to the exclusive role, and if it is false, the user may not. Variable

userName‟s possible values are the names of the users that exist in the system and will be used to

determine which of the users triggered variable sema.

ASSIGN

 init(sema) := FALSE;

 init(userName) := None;

Variable sema‟s initial value is set to false and userName is that of None.

VAR

 name1 : { None, James, Brian, Jacob, Willy};

 name2 : { None, James, Brian, Jacob, Willy};

 name3 : { None, James, Brian, Jacob, Willy};

 name4 : { None, James, Brian, Jacob, Willy};

ASSIGN

 name1 := James;

53

 name2 := Brian;

 name3 := Jacob;

 name4 := Willy;

 Since the semaphores keep track of the user that is using the exclusive role, a variable

must be initialized in main that will allow semaphore to know which user is specifically using

the role. In the above VAR section of main, four enumerated variables are declared whose

possible values are the names of the users in the account. They are each given an unused

enumeration value in ASSIGN.

 userJames : process userSessions(semEditor, semWriter, jamesRoles, name1);

 userBrian : process userSessions(semEditor, semWriter, brianRoles, name2);

 userJacob : process userSessions(semEditor, semWriter, jacobRoles, name3);

 userWilly : process userSessions(semEditor, semWriter, willyRoles, name4);

As the last part of the process all of the semaphore variables, a paired set of role array

and name variable are used as parameters for a set of specific named user variable instances of

the userSessions modules. These variables model each user‟s ability to change roles between

sessions in the account. The variables are also processes since multiple users may attempt to

trigger the semaphores at the same time.

MODULE userSessions(semEditor, semWriter, givenRoles, myName)

54

VAR

 activeRole : {loggedOut, intern, editor, writer};

ASSIGN

 init(activeRole) := {loggedOut};

 The userSessions module takes as parameters the semaphores declared in main, the name

of the user represented in this instance and their assigned roles. The variable activeRole is

declared in the scope of the module to track the status of the user‟s current role. ActiveRole is an

enumerated variable with all user roles and loggedOut as a possible value. LoggedOut is used to

represent when the user is no longer actively using a role and is not engaged in a session within

the account. The initial value of activeRole is set to loggedOut since the module has yet to

analyze the values in the givenRoles array.

 next(activeRole) := case

 (givenRoles[2] & !semWriter.sema) : {loggedOut, writer};

 (givenRoles[1] & !semEditor.sema) : {loggedOut, editor};

 (givenRoles[0]) : {loggedOut, intern};

 TRUE : loggedOut;

 esac;

The next value of activeRole is determined by the results of a switch statement that examines the

givenRoles array from highest to lowest with the relevant semaphore. If the element inside the

55

array is true and the sema variable in the semaphore is false, activeRole‟s value is changed to

that value. Should none of the switch statement cases be used, the result of the default case

makes the activeRole variable set to loggedOut. For example, if user James only has

givenRoles[1] set true and the semEditor sema variable if false, James‟s activeRole may become

either loggedOut or the editor role as shown in the second case. If semEditor‟s sema is true,

which means someone else is using the role at the time, the default case is evoked and user

James‟s activeRole can only be set to loggedOut. Once semEditor‟s sema is equal to false again,

the second case will result in user James activeRole being set to either loggedOut or editor.

 next(semEditor.userName) := case

 activeRole = editor : myName;

 TRUE : None;

 esac;

 next(semWriter.userName) := case

 activeRole = writer : myName;

 TRUE : None;

 esac;

 Should the user‟s activeRole be one of the restricted roles, the semaphore of the role must

be set to true in order to prevent another user from logging in with that same role. The above

next functions change the value of the semaphore‟s userName variable to the name of user if that

user‟s activeRole is equal to the role of the semaphore. It should be noted that these next

56

functions of the semaphores‟ username variable are implemented after the sema variable next

function since the value of userName must not be changed until after the sema is altered.

 next(semEditor.sema) := case

 activeRole = editor : TRUE;

 activeRole != editor & semEditor.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 next(semWriter.sema) := case

 activeRole = writer : TRUE;

 activeRole != writer & semEditor.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 The first switch statement case of the semaphore results in the sema variable set to TRUE

should the user‟s activeRole equal the semaphore role. The second statement is used when the

user logs out of the exclusive role and sets the sema variable to false. When the user changes

their activeRole out of the semaphore‟s exclusive role, their activeRole will not be equal to the

role but the userName has not yet been changed. With the user no longer using the role and

user‟s name stored as the person who activated the semaphore, the sema variable is thus set to

false. If the first two cases are not used then by default the sema variable is false.

Chapter 5: Model Checking RBAC in a Social Network

During the modeling phase, a model is developed to represent the operation and features of a

social network. Since the main priority and concern of a social network is the strength and

efficacy of its security, the model and its checker will focus on the RBAC properties that must be

correctly implemented by the Social Network.

The NuSMV model checker, works by taking a model as input and checks all existing and

possible states of that model to determine if it fails to uphold a given set of specifications. These

specifications, made in CTL and added to the model‟s modules, represents specific rules that the

model must follow in order to adhere to RBAC. Should a discrepancy exist during the analysis

phase of the model, the model checker will print a false value for the violated specification and

traces the state transitions to where the trespass occurs. These statements provided by the model

checker will not only assist developers in determining if their current access control

implementation is operating as required, but also aid in locating why certain components are not

following the specification.

5.1 Access Control Properties

 In order to access any of the project resources existing within the social network account,

users are given permissions from their role. These permissions determine what actions they are

allowed to execute to the resources and thus ensures that a user is only able to perform

commands dictated by their role. However, in order to ensure that any user is ever able to

perform an action not licensed by their role, a CTL specification must be included for each of the

permissions in the model. These specifications will check if a user is able to send a command to

the resources while not having the required permission.

58

SPEC AG ! (permA[0] = FALSE & myCommandA = Play)

Above is the specification is added to the scope of the User module to test that access

control for the Play command is followed. The keyword SPEC notifies the model checker that

the line is a CTL statement and that should the model not adhere to the requirement of the

temporal logic, a printout stating that the model is not compliant to the specification and a trace

of why is made. The AG is the path and operation quantifier demands that the model checker

examines all possible global states within the scope of the User module during the running phase.

The rough translation of the specification is that in “all global states,” myCommandA should not

be equal to Play while permA[0] is equal to FALSE. In our model, permA[0] is the permission

need for the user to send the Play command to the movie resource, and myCommandA is the

variable that represents the user‟s current command to the movie resource. The possible values

of myCommandA will be based upon a switch statement that analyzes all the elements of the

permA array. The value of myCommandA should not be able to equal Play without permA[0]

being TRUE and is the requirement of the specification for the model to pass.

 TRUE : {Wait, Play};

To see if the model checker can discover a flaw in the model that violates the

specification, the result of the default case for myCommandA is changed to allow the user to

either use the Wait or Play command. Originally the default case is used when the permission

array‟s elements are all false and thus the user is forced to only send the Wait command to the

movie resource.

-- specification AG !(permA[0] = FALSE & myCommandA = Play) IN role1.userEditor is true

59

-- specification AG !(permA[0] = FALSE & myCommandA = Play) IN role1.role3.userIntern is

true

-- specification AG !(permA[0] = FALSE & myCommandA = Play) IN role2.userWriter is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 editorPermA[0] = TRUE

writerPermA[0] = FALSE

 role1.userEditor.myCommandA = Wait

 role1.internPermA[0] = TRUE

role1.role3.userIntern.myCommandA = Wait

role2.userWriter.myCommandA = Wait

-> Input: 1.2 <-

 _process_selector_ = role2.userWriter

 running = FALSE

 role2.userWriter.running = TRUE

 role1.role3.userIntern.running = FALSE

60

 role1.userEditor.running = FALSE

-> State: 1.2 <-

 role2.userWriter.myCommandA = Play

 The output statement from the model checker reports that the access control specification

for Play was followed by both the editor and intern users but not by the writer user. In our

example model, the writer user‟s myCommandA switch statement results in the default case

since the writer should not be able to send Play to the movie resource. The changes to the switch

statement violate this principle and a trace is printed revealing the flaw. State1.1contains the

starting values held by the variables within the model and shows that the permA[0] for editor and

intern are both true while writer is false. Input1.2, the process selector, chooses a user process

that will transition to a flawed state. The selector has the userWriter to run and shows that its

myCommandA is changed to the value of Play even though its permA[0] is false.

SPEC AG ! (permA[1] = FALSE & myCommandA = Copy)

The access control specifications for the other permissions follow the same outline as the

first. The above specification wants the model checker to verify that in “all global states” of the

model, myCommandA should not be set to Copy if the user‟s permA[1], which is the permission

element for Copy, is false.

 (permA[0] & !permA[1] & !permA[2]) : {Wait, Play, Copy};

For a counterexample, the first case of myCommand is altered to allow for its value to be

set to Copy while permA[1] is equal to false.

61

-- specification AG !(permA[1] = FALSE & myCommandA = Copy) IN role1.userEditor is true

-- specification AG !(permA[1] = FALSE & myCommandA = Copy) IN role1.role3.userIntern is

false

-> State: 1.1 <-

 movie.state = Wait

 movieReview.state = Wait

 editorPermA[1] = TRUE

 writerPermA[1] = FALSE

 role1.userEditor.myCommandA = Wait

 role1.internPermA[1] = FALSE

 role1.role3.userIntern.myCommandA = Wait

 role2.userWriter.myCommandA = Wait

-> Input: 1.2 <-

 _process_selector_ = role1.role3.userIntern

 running = FALSE

 role2.userWriter.running = FALSE

 role1.role3.userIntern.running = TRUE

 role1.userEditor.running = FALSE

62

-> State: 1.2 <-

 role1.role3.userIntern.myCommandA = Copy

-- specification AG !(permA[1] = FALSE & myCommandA = Copy) IN role2.userWriter is true

The model checker outputs that the userWriter and userEditor both followed the Copy

specification and that userIntern did not. This is due to only the internRole user‟s

myCommandA would have used the faulty case while the others did not. The value of

userIntern‟s internPermA[1] is false in State 1.1 and that the user was still able change

myCommandA into Copy.

SPEC AG ! (permA[2] = FALSE & myCommandA = Delete)

 The Delete Specification wants the model checker to verify that in “all global states” of

the model, myCommandA cannot be set to Delete the related permission element, permA[2], is

false.

 TRUE : {Wait, Delete};

The default case is changed to allow users without any permission to have

myCommandA‟s value equal to either Wait or Delete.

-- specification AG !(permA[2] = FALSE & myCommandA = Delete) IN role1.userEditor is true

-- specification AG !(permA[2] = FALSE & myCommandA = Delete) IN role1.role3.userIntern

is true

-- specification AG !(permA[2] = FALSE & myCommandA = Delete) IN role2.userWriter is

false

63

-> State: 1.1 <-

 movie.state = Wait

 movieReview.state = Wait

 editorPermA[2] = TRUE

 writerPermA[2] = FALSE

 role1.userEditor.myCommandA = Wait

 role1.userEditor.myCommandB = Wait

 role1.internPermA[2] = FALSE

 role1.role3.userIntern.myCommandA = Wait

 role2.userWriter.myCommandA = Wait

 -> Input: 1.2 <-

 _process_selector_ = role2.userWriter

 running = FALSE

 role2.userWriter.running = TRUE

 role1.role3.userIntern.running = FALSE

 role1.userEditor.running = FALSE

-> State: 1.2 <-

64

 role2.userWriter.myCommandA = Delete

The editor and intern users have both followed specification while the writer caused a failure.

State 1.1 shows the writer not having true in permA[2], but has still executed Delete in its

myCommandA in state 1.2.

SPEC AG ! (permB[0] = FALSE & myCommandB = Read)

The Read specification has the model checker verify that in “all global states” of the

model, the user‟s myCommandB must not be equal to Read if permB[0], which is the permission

element for Read, is false.

 TRUE : {Wait, Read};

To test the specification, Read is included in the default case of myCommandB.

-- specification AG !(permB[0] = FALSE & myCommandB = Read) IN role1.userEditor is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 movie.state = Wait

 movieReview.state = Wait

 editorPermB[0] = FALSE

65

 writerPermB[0] = TRUE

 role1.userEditor.myCommandA = Wait

 role1.userEditor.myCommandB = Wait

 role1.internPermB[0] = FALSE

 role1.role3.userIntern.myCommandB = Wait

 role2.userWriter.myCommandB = Wait

-> Input: 1.2 <-

 _process_selector_ = role1.userEditor

 running = FALSE

 role2.userWriter.running = FALSE

 role1.role3.userIntern.running = FALSE

 role1.userEditor.running = TRUE

-> State: 1.2 <-

 role1.userEditor.myCommandB = Read

-- specification AG !(permB[0] = FALSE & myCommandB = Read) IN role1.role3.userIntern is

false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

66

Trace Type: Counterexample

-> State: 2.1 <-

 movie.state = Wait

 movieReview.state = Wait

 editorPermB[0] = FALSE

 writerPermB[0] = TRUE

 role1.userEditor.myCommandA = Wait

 role1.userEditor.myCommandB = Wait

 role1.internPermB[0] = FALSE

 role1.role3.userIntern.myCommandB = Wait

 role2.userWriter.myCommandB = Wait

-> Input: 2.2 <-

 _process_selector_ = role1.role3.userIntern

 running = FALSE

 role2.userWriter.running = FALSE

 role1.role3.userIntern.running = TRUE

 role1.userEditor.running = FALSE

67

-> State: 2.2 <-

 role1.role3.userIntern.myCommandB = Read

-- specification AG !(permB[0] = FALSE & myCommandB = Read) IN role2.userWriter is true

The model checker reports that the editor and intern users did not follow the specification while

the writer did. The first trace printed shows that the editor‟s permB[0] is false and that the user

was still able to have myCommandB send Read to the resource. The second trace shows the

intern user in the same circumstances.

SPEC AG ! (permB[1] = FALSE & myCommandB = Write)

The Write specification states that in “all global states” of the model, myCommandB

should not be equal to Write if the Write permission in permB[1] is false.

 TRUE : {Wait, Write};

Altering the myCommandB‟s default case to result in Wait and Write will test the specification.

-- specification AG !(permB[1] = FALSE & myCommandB = Write) IN role1.userEditor is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 movie.state = Wait

68

 movieReview.state = Wait

 editorPermB[1] = FALSE

 writerPermB[1] = TRUE

 role1.userEditor.myCommandA = Wait

 role1.userEditor.myCommandB = Wait

 role1.internPermB[1] = FALSE

 role1.role3.userIntern.myCommandB = Wait

 role2.userWriter.myCommandB = Wait

-> Input: 1.2 <-

 _process_selector_ = role1.userEditor

 running = FALSE

 role2.userWriter.running = FALSE

 role1.role3.userIntern.running = FALSE

 role1.userEditor.running = TRUE

-> State: 1.2 <-

 role1.userEditor.myCommandB = Write

-- specification AG !(permB[1] = FALSE & myCommandB = Write) IN role1.role3.userIntern is

false

69

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

 movie.state = Wait

 movieReview.state = Wait

 editorPermB[1] = FALSE

 writerPermB[1] = TRUE

 role1.userEditor.myCommandA = Wait

 role1.userEditor.myCommandB = Wait

 role1.internPermB[1] = FALSE

 role1.role3.userIntern.myCommandB = Wait

 role2.userWriter.myCommandB = Wait

-> Input: 2.2 <-

 _process_selector_ = role1.role3.userIntern

 running = FALSE

 role2.userWriter.running = FALSE

70

 role1.role3.userIntern.running = TRUE

 role1.userEditor.running = FALSE

-> State: 2.2 <-

 role1.role3.userIntern.myCommandB = Write

-- specification AG !(permB[1] = FALSE & myCommandB = Write) IN role2.userWriter is true

The model checker determines that editor and intern violates the specification while writer does

not. The traces show that both the editor and intern users were not assigned the permission for

Write, but were still able to have myCommandB equal to Write.

5.2 Permission Hierarchy

Permission Hierarchy is the property where if the permissions are arranged in a tier

system, a user assigned a permission must also receive the permissions in the tiers below it.

Taking the three permissions of the movie resource as an example, if the user was assigned the

Copy permission they must also receive the Play permission as well.

SPEC AG ((permA[1]) -> (permA[0]))

The Permission Hierarchy specifications are added to the User module to monitor the

values of the user permission arrays. The above CTL statement asks that in “all global states”

should permA[1] be true implies, represented by the -> symbol, that permA[0] is true as well.

Thus if the user is assigned the Copy permission, permA[1], they must also have been assigned

the Play permission, permA[0]. As a counter example, the editorPermA[0]is set to false while

editorPermA[1] is still true.

71

-- specification AG (permA[1] -> permA[0]) IN role1.userEditor is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 movie.state = Wait

 movieReview.state = Wait

 editorPermA[0] = FALSE

 editorPermA[1] = TRUE

 writerPermA[0] = FALSE

 writerPermA[1] = FALSE

 role1.userEditor.myCommandA = Wait

 role1.userEditor.myCommandB = Wait

 role1.internPermA[0] = TRUE

 role1.internPermA[1] = FALSE

-- specification AG (permA[1] -> permA[0]) IN role1.role3.userIntern is true

-- specification AG (permA[1] -> permA[0]) IN role2.userWriter is true

72

The model checker reports the intern and writer users followed the specification since

writer did not have any of the permissions to the movie resource while the intern only had its

permA[0] set to true and not its permA[1]. The editor user did fail the specification as shown in

the trace where in state 1.1 the editorPermA[0] is false and editorPermA[1] is true. This violates

the specification property and must be fixed in order for editor to pass.

SPEC AG ((permA[2]) -> (permA[0] & permA[1]))

The second specification translates that in “all global states” of the model, permA[2]

equal to true implies that permA[0] and permA[1] must also be true. Thus if the user was

assigned the Delete permission, permA[2], they must also have been assigned the Play,

permA[0], and Copy, permA[1], permissions as well. As a counterexample, the editor role will

only be assigned the Delete and Play permissions to the movie resource.

-- specification AG (permA[2] -> (permA[0] & permA[1])) IN role1.userEditor is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 movie.state = Wait

 movieReview.state = Wait

 editorPermA[0] = TRUE

73

 editorPermA[1] = FALSE

 editorPermA[2] = TRUE

 writerPermA[0] = FALSE

 writerPermA[1] = FALSE

 writerPermA[2] = FALSE

 role1.userEditor.myCommandA = Wait

 role1.userEditor.myCommandB = Wait

 role1.internPermA[0] = TRUE

 role1.internPermA[1] = FALSE

 role1.internPermA[2] = FALSE

 -- specification AG (permA[2] -> (permA[0] & permA[1])) IN role1.role3.userIntern is true

-- specification AG (permA[2] -> (permA[0] & permA[1])) IN role2.userWriter is true

The output of the model checker tells us that the writer and intern roles passed the

specification since intern only had the Play permission and the writer user did not have any

permissions at all for the movie resource. The reason for editor user specification failure is

displayed in state 1.1 with editorPermA[1] equal to false in violation of the specification since

the other elements of editorPermA are true.

SPEC AG ((permB[1]) -> (permB[0]))

74

The last specification is verifying that the permissions to the movieReview variable

follow the role hierarchy property as well. The variables of type textFileResource receive the

user commands of Read and Write. For the model to adhere to role hierarchy, if the user has the

Write permission, then the user must also have the Read permission. The shown CTL statement

wishes the model checker to verify that in “all global states”, if permB[1] is true implies that

permB[0] is also true. Thus if the user has the Write permission, permB[1], then the user must

also have been assigned the Read permission, permB[0]. As a counterexample, the writer user‟s

permB[0] is set to false in the main module.

-- specification AG (permB[1] -> permB[0]) IN role1.userEditor is true

-- specification AG (permB[1] -> permB[0]) IN role1.role3.userIntern is true

-- specification AG (permB[1] -> permB[0]) IN role2.userWriter is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 movie.state = Wait

 movieReview.state = Wait

 editorPermB[0] = FALSE

 editorPermB[1] = FALSE

75

 writerPermB[0] = FALSE

 writerPermB[1] = TRUE

 role1.internPermB[0] = FALSE

 role1.internPermB[1] = FALSE

In state 1.1, roles editor and intern are shown with having false in both elements of their permB

arrays while writer has true in the higher element and false in the lower element of its permB

array. This is in violation of the specification

 For role hierarchy to be maintained within the account, users given a permission must

also be assigned the lower permissions as well. Looking back at the switch statements of the

myCommand variables in the User module, some of the cases used are in obvious violation of

this property and should be removed. Should a user‟s permission arrangements equate to one of

these faulty cases, they will then be redirected to the default case. This can lead to a new

problem since the user was meant to have some permissions assigned to them from their role and

are supposed to have some form of interaction with the objects. To prevent any complications,

each role module is given a set of specification for a specific set of permissions their role must be

assigned.

5.3 Minimum Duties

For a user to accomplish their tasks within a system, they must be assigned the needed

permissions in order to do so. A CTL statement is added to each role module that verifies that

the model has assigned the proper permission arrangements for the user roles.

76

SPEC AG((internPermA[0] & !internPermA[1] & !internPermA[2]) &(!internPermB[0]

&!internPermB[1]))

The intern users in the example model are only supposed to be able to execute Play upon

the movie resource and nothing more. The above specification, which is included in the

internRole module, has the model checker verify that in “all global states” the element in

internPermA[0] is true while internPermA[1], internPermA[2], and all of internPermB is false.

As a counterexample, the intern role will be assigned the Read permission to the movieReview

resource, internPermB[0], in the editorRole module.

-- specification AG (((internPermA[0] & !internPermA[1]) & !internPermA[2]) &

(!internPermB[0] & !internPermB[1])) IN role1.role3 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 role1.internPermA[0] = TRUE

 role1.internPermA[1] = FALSE

 role1.internPermA[2] = FALSE

 role1.internPermB[0] = TRUE

 role1.internPermB[1] = FALSE

77

The provided model checker printout shows that the minimum duties specification failed

for the intern role module. State 1.1 shows that the intern incorrectly has the Read permission

for the movieReview article.

SPEC AG((editorPermA[2]) & (!editorPermB[0] & !editorPermB[1]))

The minimum duties specification of the editor requires the permission of all the

elements of permA and all the elements of permB to be false. The above CTL statement

translates that in “all global states” of the model, the elements of editorPermA[2] is true and that

element zero and one of editorPermB are false. The reason that only the second element of

permA is required in the CTL statement is because permission hierarchy is also followed within

the model and thus stating the lower two elements is rendered redundant. To test the

specification, the editor role is only assigned Play and Copy in the main module.

-- specification AG (editorPermA[2] & (!editorPermB[0] & !editorPermB[1])) IN role1 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 movie.state = Wait

 movieReview.state = Wait

 editorPermA[0] = TRUE

78

 editorPermA[1] = TRUE

 editorPermA[2] = FALSE

 editorPermB[0] = FALSE

 editorPermB[1] = FALSE

The printed statement, following the failure notification for the specification, shows that the

editor role has only been assigned the lowest two permissions of the movie resource and thus

users with an editor role cannot execute the needed commands to accomplish their required

tasks.

SPEC AG((!writerPermA[0] & !writerPermA[1] & !writerPermA[2]) & (writerPermB[1]))

The writer role in the model is required for the permission of Read and Write to the

movieReview resource. Thus the above specification is used to ensure that in “all global states”

of the model, false is the value of all elements in writerPermA and true in writerPermB[1]. Since

permission hierarchy must be followed in the model, only writerPermB[1] is needed in the CTL

statement. As counterexample, the writer role is also assigned the Play permission,

writerPermA[0].

-- specification AG (((!writerPermA[0] & !writerPermA[1]) & !writerPermA[2]) &

writerPermB[1]) IN role2 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

79

-> State: 1.1 <-

 writerPermA[0] = TRUE

 writerPermA[1] = FALSE

 writerPermA[2] = FALSE

 writerPermB[0] = TRUE

 writerPermB[1] = TRUE

The trace provided by the model checker show that the specification failure is caused by

the writer role from having its first writerPermA element equal to true and must be to false for

the model to uphold the minimum duties property of writer.

5.4 Static Separation of Duties (SSOD)

SSOD requires that the roles implemented within this system should only have

permissions to one resource and not the other. The example model has the editor and intern only

having permissions to the movie resource while the writer is only able to interact with the

movieReview resource.

SPEC AG((internPermA[0] -> AG !internPermB[0]) | (internPermB[0] -> AG !internPermB[0])

)

The SSOD specification included in the internRole module has the model checker verify

that in “all global states” internPermA[0] implies “all global states” of internPermB[0] are false

or that internPermB[0] implies that “all global states” of internPermB[0] is false. This CTL

statement equates to meaning that should the intern user‟s lowest element in either permission

80

array be true then the lowest element in the other array must be false. Since permission

hierarchy is followed in the model, only the lowest elements need to be tested. For a

counterexample, the intern‟s lowest elements to both permission arrays are set to true in the

editorRole module.

- specification AG ((internPermA[0] -> AG !internPermB[0]) | (internPermB[0] -> AG

!internPermA[0])) IN role1.role3 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 role1.internPermA[0] = TRUE

 role1.internPermA[1] = FALSE

 role1.internPermA[2] = FALSE

 role1.internPermB[0] = TRUE

 role1.internPermB[1] = FALSE

The trace shows that a true value exists in both arrays in violation of the specification and

requires that one must be set false in order for the model to pass.

SPEC AG((editorPermA[0] -> AG !editorPermB[0]) | (editorPermB[0] -> AG !editorPermB[0])

)

81

SPEC AG((writerPermA[0] -> AG !writerPermB[0]) & (writerPermB[0] -> AG

!writerPermB[0]))

 The editor and writer roles have a near identical formula for their SSOD specification for

their modules. The only difference is the variables to be used, the permission arrays to the roles,

in the CTL statement. As a counterexample, both roles are given the lowest permission for an

opposing resource, which is editor‟s editorPermB[0] and writer‟s writerPermA[0].

- specification AG ((editorPermA[0] -> AG !editorPermB[0]) | (editorPermB[0] -> AG

!editorPermB[0])) IN role1 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 editorPermA[0] = TRUE

 editorPermA[1] = TRUE

 editorPermA[2] = TRUE

 editorPermB[0] = TRUE

 editorPermB[1] = FALSE

-- specification AG ((writerPermA[0] -> AG !writerPermB[0]) | (writerPermB[0] -> AG

!writerPermB[0])) IN role2 is false

82

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

 writerPermA[0] = TRUE

 writerPermA[1] = FALSE

 writerPermA[2] = FALSE

 writerPermB[0] = TRUE

 writerPermB[1] = TRUE

As expected, the roles‟ SSOD specification fails due to the role being given a permission

to both resources. Thus for the model to adhere to SSOD, the roles must have a permission

arrangement exclusive to only one of the resources.

5.5 Role Hierarchy

In order for the model to uphold the role hierarchy property, a superior role must have

more permissions than its subordinate role. In this system, the only the editor has a subordinate

role, the intern. Since permission hierarchy is implemented within the system as well, the editor

must have a higher level permission than the intern for the model to pass. For example, if editor

83

was assigned the Copy permission, the intern must not have an equal, Copy, or higher

permission, Delete.

SPEC AG((editorPermA[0] & !editorPermA[1]) -> AG !(internPermA[0]))

 The first role hierarchy specification in the editorRole module requires that in “all global

states”, editorPermA[0] being true and editorPermA[1] being false implies that in “all global

states” it should not be possible for internPermA[0] to be true. The first half of the CTL

statement is used to determine what the editor role‟s permission level is. If the editorPermA[0]

is true and the higher elements are not, then taking into account permission hierarchy editor must

only have the Play permission. The second half of the specification is checking that the intern

does not have the equivalent permission to editor. The reason that the higher permissions to

intern‟s arrays are not tested in the specification is due to permission hierarchy implemented

within the system. The internPermA[0] can be true either because that permission was assigned

to the intern role or because a higher permission was assigned. Either way will violate the

specification. As a counterexample, the editor is given only the Play permission in main while

the intern receives Play and Copy.

-- specification AG ((editorPermA[0] & !editorPermA[1]) -> AG !(internPermA[0])) IN role1 is

false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

84

 movie.state = Wait

 movieReview.state = Wait

 editorPermA[0] = TRUE

 editorPermA[1] = FALSE

 editorPermA[2] = FALSE

 role1.internPermA[0] = TRUE

 role1.internPermA[1] = TRUE

 role1.internPermA[2] = FALSE

 The trace shows that the specification fails and the cause is due to a higher element of the

intern role‟s permission array than the editor role‟s.

SPEC AG((editorPermA[1] & !editorPermA[2]) -> AG !(internPermA[1]))

 The second SSOD specification translates that in “all global states” of the model,

editorPermA[1] is true and editorPermA[2] is false implies that in “all global states”

internPermA[1] should be true. As a counter example, the intern and editor roles will both be

assigned the Play and Copy permissions.

-- specification AG ((editorPermA[1] & !editorPermA[2]) -> AG !(internPermA[1])) IN role1 is

false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

85

Trace Type: Counterexample

-> State: 1.1 <-

 editorPermA[0] = TRUE

 editorPermA[1] = TRUE

 editorPermA[2] = FALSE

 role1.internPermA[0] = TRUE

 role1.internPermA[1] = TRUE

 role1.internPermA[2] = FALSE

 The trace shows that the roles‟ permission arrays are equal and thus violate the role

hierarchy specification requiring that editor role must have a higher permission setting than the

intern role.

SPEC AG((editorPermA[2]) -> AG !(internPermA[2]))

 The last specification for the editor role permission to the movie resource checks that in

“all global states” where editorPermA[2] is true implies that in “all global states” it should not be

possible for internPermA[2] to be true. As a counterexample, both editor and intern‟s permA[2]

is set to true.

-- specification AG (editorPermA[2] -> AG !internPermA[2]) IN role1 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

86

Trace Type: Counterexample

-> State: 1.1 <-

 editorPermA[0] = TRUE

 editorPermA[1] = TRUE

 editorPermA[2] = TRUE

 role1.internPermA[0] = TRUE

 role1.internPermA[1] = TRUE

 role1.internPermA[2] = TRUE

The trace shows the equality of both the roles‟ permission arrays and thus violates the

specification. The permission level of the subordinate role must be lowered in order for the

model checker to approve of the model.

SPEC AG((editorPermB[0] & !editorPermB[1]) -> AG !(internPermB[0]))

 The above specification requires the in “all global states” of the model, editorPermB[0]

being true while editorPermB[1] is false implies that in “all global states” it should not be

possible for internPermB[0] to be true. As a counterexample, editorPermB[0] and

internPermB[0] are set to true.

-- specification AG ((editorPermB[0] & !editorPermB[1]) -> AG !internPermB[0]) IN role1 is

false

-- as demonstrated by the following execution sequence

87

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 editorPermB[0] = TRUE

 editorPermB[1] = FALSE

 role1.internPermB[0] = TRUE

 role1.internPermB[1] = FALSE

 The trace shows that the roles‟ permission arrays to the movie review resource are equal and

violates the specification.

SPEC AG((editorPermB[1]) -> AG !(internPermB[1]))

 The specification translates that in “all global states” of the model, editorPermB[1] being

true implies that in “all global states”, internPermB[1] should not be true. As a counterexample,

the editor and intern role are once again assigned true to element one of their permB arrays.

-- specification AG (editorPermB[1] -> AG !internPermB[1]) IN role1 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

88

 editorPermB[0] = TRUE

 editorPermB[1] = TRUE

 role1.internPermB[0] = TRUE

 role1.internPermB[1] = TRUE

 As expected, assigning both roles the same permission to their permB arrays caused the

specification to fail and requires that the subordinate role must have their permission array set to

a lower level.

 All of the role hierarchy specifications so far have checked that whatever the highest

permission element to editor role‟s arrays is equal to true requires the intern role‟s highest

element must be lower in order for the model to pass. However there is one case that must also

be tested in the model. If the editor role does not have any elements equal to true in a permission

array, the intern role must not have any true elements in that array as well. Thus if the editor role

does not have Read, editorPermB[0], or Write, editorPermB[1], to the movieReview resource

then intern role must not be assigned any permissions either.

SPEC AG((!editorPermA[0]) -> AG !(internPermA[0]))

 The specification above translates that in “all global states” of the model, editorPermA[0]

equal to false implies that in “all global states” internPermA[0] must false as well. Thus if the

editor role does not have the Play permission, editorPermA[0], then the intern role must not have

the Play permission, internPermA[0], as well. As a counterexample, editorPermA[0] is set to

false while internPermA[0] is true.

-- specification AG (!editorPermA[0] -> AG !internPermA[0]) IN role1 is false

89

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 editorPermA[0] = FALSE

 editorPermA[1] = FALSE

 editorPermA[2] = FALSE

 role1.internPermA[0] = TRUE

 role1.internPermA[1] = FALSE

 role1.internPermA[2] = FALSE

 The model checker reports that the specification has failed with the trace showing that the

cause is because the intern role has the permission to Play for the movie resource, while the

editor role does not have permission to perform any commands upon the same resource. In order

for the model to pass the specification, either the editor role‟s must have a permission higher

than the intern role or the intern role must not have any permission to the movie resource.

SPEC AG((!editorPermB[0]) -> AG !(internPermB[0]))

 Along with testing when the editor role does not have any permissions to the movie

resource, a specification must also be included to test when the editor role does not have any

permissions to the movieReview resource. The above specification translates that in “all global

90

states” of the model, editorPermB[0] equal to false implies that in “all global states”

internPermB[0] must also be false. Thus if the editor does not have the Read permission to

movieReview, the intern does not have the permission either. As a counterexample, the

internRole is assigned the Read permission to movieReview while the editor role has not been

given the permission.

-- specification AG (!editorPermB[0] -> AG !internPermB[0]) IN role1 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 editorPermB[0] = FALSE

 editorPermB[1] = FALSE

 role1.internPermB[0] = TRUE

 role1.internPermB[1] = FALSE

 The model checker reports that the specification has failed and the trace shows that

reason is because the editor role does not have any permission to the movieReview resource

while its subordinate role, intern, has the Read permission. In order for the model to pass the

specification, the editor role must have a higher permission than the intern role to movieReview

or the intern role must not have any permissions just like the editor role.

91

5.6 Dynamic Separation of Duties (DSOD)

The SSOD‟s second property concentrates on a user receiving conflicting permissions

from their roles during a session. DSOD, however, deliberates upon a user being assigned a pair

or pairs of conflicting roles. This is because even though a user‟s current session role may not

give that user any conflicting permissions, a user may later login with another role and possibly

giving the user access to permissions that conflict with the last role. In order to have the model

checker verify that the model does follow DSOD, a set of specifications must be added for each

role that conflicts with another role. In the example model, only the editor and writer roles are in

conflict with each other.

SPEC AG (givenRoles[1] -> AG !(givenRoles[2]))

 The first DSOD specification, which is imbedded in the userRoles module, request that

the model checker verify that in “all global states”, givenRoles[1] being true implies that in “all

global states” givenRoles[2] should not be true. The variable givenRoles is used to represent

what roles the user has been assigned within the system. The element one is true when the user

is granted the editor role, and element two is true when the user is granted the writer role. For

the model to uphold the specification, the user must not be assigned the writer role while having

the editor role. As a counterexample, userJames‟s roles have been altered to allow him all three

roles of the system.

-- specification AG (givenRoles[1] -> AG !givenRoles[2]) IN userJames is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

92

Trace Type: Counterexample

-> State: 1.1 <-

 jamesRoles[0] = TRUE

 jamesRoles[1] = TRUE

 jamesRoles[2] = TRUE

 brianRoles[0] = FALSE

 brianRoles[1] = FALSE

 brianRoles[2] = TRUE

 jacobRoles[0] = TRUE

 jacobRoles[1] = FALSE

 jacobRoles[2] = FALSE

 willyRoles[0] = TRUE

 willyRoles[1] = FALSE

 willyRoles[2] = FALSE

-- specification AG (givenRoles[1] -> AG !givenRoles[2]) IN userBrian is true

-- specification AG (givenRoles[1] -> AG !givenRoles[2]) IN userJacob is true

-- specification AG (givenRoles[1] -> AG !givenRoles[2]) IN userWilly is true

93

The model checker reports that all users, except userJames, passed the specification by not

having the pair of conflicting roles of writer and editor assigned to them. In order for the model

to pass, userJames must have one of the roles removed from his assigned set.

SPEC AG (givenRoles[2] -> AG !(givenRoles[1]))

The second specification included in the userRoles module has the model checker verify

that when a user is granted the writer role, that they should not have the editor role. While this

second CTL statement may seem unnecessary since the first specification would catch the same

violation, it is included anyway to follow a best practice policy for systems with a larger set of

user roles. If the system had a set of ten conflicting roles and a specification for each assists in

determining the source of the model failure. If a user is assigned three out of the ten conflicting

roles, the model checker will report that those three specifications have failed and reveal which

roles must be removed from the user for the model to pass.

 As a counterexample, userBrian is assigned the editor role while still having the writer

role.

-- specification AG (givenRoles[2] -> AG !givenRoles[1]) IN userJames is true

-- specification AG (givenRoles[2] -> AG !givenRoles[1]) IN userBrian is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

94

 jamesRoles[0] = TRUE

 jamesRoles[1] = TRUE

 jamesRoles[2] = FALSE

 brianRoles[0] = FALSE

 brianRoles[1] = TRUE

 brianRoles[2] = TRUE

 jacobRoles[0] = TRUE

 jacobRoles[1] = FALSE

 jacobRoles[2] = FALSE

 willyRoles[0] = TRUE

 willyRoles[1] = FALSE

 willyRoles[2] = FALSE

-- specification AG (givenRoles[2] -> AG !givenRoles[1]) IN userJacob is true

-- specification AG (givenRoles[2] -> AG !givenRoles[1]) IN userWilly is true

All the other users have passed the specification since they either only has the intern or editor

roles and not the writer role. User Brian however causes the model to fail the specification since

he has been granted both of the conflicting roles. In order for the model to pass the specification,

user Brian must only be granted one of the conflicting roles.

95

 While the above specification requires that no user is ever assigned a pair of conflicting

roles, the example model also requires that multiple users must not be allowed to use role that

should only be exclusively given to one person.

SPEC AG (((userJames.activeRole = editor) -> AG !((userBrian.activeRole = editor) |

(userJacob.activeRole = editor) | (userWilly.activeRole = editor))))

 The above specification asks to model checker to verify that in “all global states” of the

model, userJames‟s activeRole equal to editor implies that in “all global states” it should not be

possible for userBrian, userJacob, or userWilly‟s activeRole to be equal to editor. As a counter

example userWilly will be assigned the same roles as userJames, both the intern and editor roles.

-- specification AG (userJames.activeRole = editor -> AG !((userBrian.activeRole = editor |

userJacob.activeRole = editor) | userWilly.activeRole = editor)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 jamesRoles[0] = TRUE

 jamesRoles[1] = TRUE

 jamesRoles[2] = FALSE

 brianRoles[0] = FALSE

96

 brianRoles[1] = TRUE

 brianRoles[2] = TRUE

 jacobRoles[0] = TRUE

 jacobRoles[1] = FALSE

 jacobRoles[2] = FALSE

 willyRoles[0] = TRUE

 willyRoles[1] = TRUE

 willyRoles[2] = FALSE

 userJames.activeRole = loggedOut

 userBrian.activeRole = loggedOut

 userJacob.activeRole = loggedOut

 userWilly.activeRole = loggedOut

-> Input: 1.2 <-

 _process_selector_ = userJames

 running = FALSE

 userWilly.running = FALSE

 userJacob.running = FALSE

97

 userBrian.running = FALSE

 userJames.running = TRUE

-> State: 1.2 <-

 userJames.activeRole = editor

-> Input: 1.3 <-

 _process_selector_ = userWilly

 userWilly.running = TRUE

 userJames.running = FALSE

-> State: 1.3 <-

 userWilly.activeRole = editor

The users Brian and Jacob upheld the specification as expected while users James and Willy

cause the model to fail. State 1.1 shows that both roles are given the editor role by the variable

givenRoles[1] being set to true. The process selector then chooses each conflicting user in order

to show that user James has logged in as the editor in State1.2 and user Willy was also able to

log in as the editor in State 1.3. User Willy must have not been assigned the editor role in order

for the model checker to approve the model.

 The specification for the exclusive role is only used to check when userJames is given the

editor role and verify that no others have as well. However, if userWilly and userJacob were

given the editor role and userJames was not, then the model checker will not catch the

98

discrepancy. Thus each user must the same type of specification that checks to see if multiple

users are able to log in with the exclusive role.

SPEC AG (((userBrian.activeRole = editor) -> AG !((userJames.activeRole = editor) |

(userJacob.activeRole = editor) | (userWilly.activeRole = editor))))

SPEC AG (((userJacob.activeRole = editor) -> AG !((userJames.activeRole = editor) |

(userBrian.activeRole = editor) | (userWilly.activeRole = editor))))

SPEC AG (((userWilly.activeRole = editor) -> AG !((userJames.activeRole = editor) |

(userBrian.activeRole = editor) | (userJacob.activeRole = editor))))

 As before, each specification asks the model to verify that in “all global states” where a

user logs in with the editor role, no other user is also able to log in as editor. When all of these

specifications are used in conjunction, we receive the same effect with the previous DSOD

property showing exactly which users are in violation of the specification. To demonstrate,

James and Jacob are both assigned the editor roles as a counter example.

-- specification AG (userJames.activeRole = editor -> AG !((userBrian.activeRole = editor |

userJacob.activeRole = editor) | userWilly.activeRole = editor)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 semEditor.sema = FALSE

99

 semEditor.userName = None

 semWriter.sema = FALSE

 semWriter.userName = None

 jamesRoles[0] = TRUE

 jamesRoles[1] = TRUE

 jamesRoles[2] = FALSE

 brianRoles[0] = FALSE

 brianRoles[1] = FALSE

 brianRoles[2] = TRUE

 jacobRoles[0] = TRUE

 jacobRoles[1] = TRUE

 jacobRoles[2] = FALSE

 willyRoles[0] = TRUE

 willyRoles[1] = FALSE

 willyRoles[2] = FALSE

 userJames.activeRole = loggedOut

 userBrian.activeRole = loggedOut

100

 userJacob.activeRole = loggedOut

 userWilly.activeRole = loggedOut

-> Input: 1.2 <-

 _process_selector_ = userJames

 running = FALSE

 userWilly.running = FALSE

 userJacob.running = FALSE

 userBrian.running = FALSE

 userJames.running = TRUE

-> State: 1.2 <-

 userJames.activeRole = editor

-> Input: 1.3 <-

 _process_selector_ = userJacob

 userJacob.running = TRUE

 userJames.running = FALSE

-> State: 1.3 <-

 userJacob.activeRole = editor

101

-- specification AG (userBrian.activeRole = editor -> AG !((userJames.activeRole = editor |

userJacob.activeRole = editor) | userWilly.activeRole = editor)) is true

-- specification AG (userJacob.activeRole = editor -> AG !((userJames.activeRole = editor |

userBrian.activeRole = editor) | userWilly.activeRole = editor)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

 semEditor.sema = FALSE

 semEditor.userName = None

 semWriter.sema = FALSE

 semWriter.userName = None

 jamesRoles[0] = TRUE

 jamesRoles[1] = TRUE

 jamesRoles[2] = FALSE

 brianRoles[0] = FALSE

 brianRoles[1] = FALSE

 brianRoles[2] = TRUE

102

 jacobRoles[0] = TRUE

 jacobRoles[1] = TRUE

 jacobRoles[2] = FALSE

 willyRoles[0] = TRUE

 willyRoles[1] = FALSE

 willyRoles[2] = FALSE

 userJames.activeRole = loggedOut

 userBrian.activeRole = loggedOut

 userJacob.activeRole = loggedOut

 userWilly.activeRole = loggedOut

-> Input: 2.2 <-

 _process_selector_ = userJacob

 running = FALSE

 userWilly.running = FALSE

 userJacob.running = TRUE

 userBrian.running = FALSE

 userJames.running = FALSE

103

-> State: 2.2 <-

 userJacob.activeRole = editor

-> Input: 2.3 <-

 _process_selector_ = userJames

 userJacob.running = FALSE

 userJames.running = TRUE

-> State: 2.3 <-

 userJames.activeRole = editor

-- specification AG (userWilly.activeRole = editor -> AG !((userJames.activeRole = editor |

userBrian.activeRole = editor) | userJacob.activeRole = editor)) is true

Only two of the four specifications failed within the model. The two that pass, Brian and Willy,

shows that those two users have nothing to do with the exclusive role and can be ruled out during

the debugging process. Only users James and Jacob need to be examined, which the trace shows

both being able to log in as the editor and violate the specification.

Chapter 6: Case Study

A private social network is incorporated into a company‟s project development process.

The social network account will store all project related materials into its system. The roles

within the network are given permissions that allow access and interact with those resources.

The permissions in each role are determined by what permissions are given to them by a superior

role. The organizational hierarchy of the project team has the supervisor setting the permissions

to each of the section leaders, and the section leaders determine what permissions to each of their

individual workers.

The permissions each role should have are based upon what tasks a person with that role

must complete. A worker on a project must be able to at least read and write to their section‟s

project resource, but never to any other. Section leaders not only have the same resource

permissions of their workers, but are also the only ones who are able to create documentation for

their project resource. Just like their workers, section leaders should never be able to interact

with any other project but the one they are assigned to. Unlike all the other roles, the supervisor

is the only one with all of the permissions to all of the projects stored inside of the account,

meaning that he/she is able to execute section leader type commands on any project stored in the

social network account. The supervisor is also the role that determines which project resource

each section leader is allowed to work on and is the only role that can set the schedule to those

projects. Since the supervisor role has so much influence upon the account, there should only be

one user given the supervisor role.

Rules in the policy which applies to this system include:

105

1. There are four permissions for the four possible commands a user can execute upon the

resources of the social network account. This includes Read, Write, Document, and

Schedule.

2. A user of the supervisor role must have all of the root permissions to all of the project

resources.

3. The supervisor determines which project resource each section leader and workers are

able to have permissions to.

4. A user of a section leader role must have the permissions to Read, Write, and Document

for their assigned project resource and should only be able to assign workers permissions

to the same project.

5. A section leader should never be able to execute commands to any other resource but the

one assigned to them by the supervisor role.

6. A user of the worker role must be able to Read and Write to a project resource. Which

project resource is determined by which section leader is their superior.

7. Workers should never be able to execute commands to any other project that was not

assigned to them. In essence, workers can only have permissions to the same project as

their section leader.

8. If a role has a superior role assigning it permissions and resources, these two roles must

not have the same set of permissions as this makes one of the roles redundant.

9. When assigning roles to a user, that user must never be assigned roles that will grant

them access to more than one resource. The only exception to this rule is if the user is

also given the supervisor role.

10. There should only be one user my log in with the supervisor role.

106

Figure 8: Model Representation of the Case Study.

6.1 Building the Model

 Previously in the model checking chapter, it was mentioned that a common difficultly in

constructing the model is the sheer size of the model itself. For a social network account, the

factor that may cause a model to reach an encumbering size is the number of roles and

permissions within the account and the assigning of those permissions to each role. Though this

case study has only nine roles and four permissions to four different resources, it is possible for a

social network to have any number of roles, permissions and resources. Creating a model by

hand can become a lengthy process with human error contributing to the total time to finish the

model. In order to shorten the amount of time needed to build the model in the case study and

lower the opportunity for human error to occur, a Java code generator program was used.

107

 As in the example model, the case study has a separate module to represent each role in

the social network account. These role modules all follow the same outline. First, they are given

permissions from a superior role. Second, they declare a user variable to receive these

permissions and interact with the resources. If the role modules have subordinate roles, they

create permission arrays for each role, in the VAR section, and set the values to the arrays in the

ASSIGN section. The arrays are then sent to the subordinate role type variables. Finally after

the ASSIGN section, the SPEC section contains any property specification that is needed in the

role module.

 The process just described is repeated for each role module that exists within the model

and its uniformity can be used to easily build the model by the code generator program that was

developed. The program begins by asking how many resources there will be and what

permissions users will have to those resources. Next the program asks how many root roles there

will be and what are they called. In this case study there is only one root, the supervisor role, but

other models may require more. For each root role that exists, the program will ask which

permissions to each resource the role will be assigned. An opportunity is then presented where

the user is allowed to add any number of specifications to the SPEC section of the module.

Afterwards, the program asks how many subordinate roles each role has and repeats the above

process until the roles no longer have subordinate roles.

 Once all of the model questions of the code generator have been answer, the program will

then build the described model into a .smv file. This file will contain all of the modules needed

to represent the social network account with all of the variables set to the needed values. Using

the program as part of the development process allows for the ability to generate a model to

108

represent any size social network account while minimizing the need to tediously manually write

all of the modules and the variables contained within them.

6.2 Overview of the SMV Program

MODULE main

VAR

projectA : Resource();

projectB : Resource();

projectC : Resource();

projectD : Resource();

Starting in the main module once again, the variables of the resources are declared with

the name of the project they will represent, A to D, and with a type specifier of Resource.

Resource is another module that represents the resources, and the commands that can be

executed upon the resource, that exist within the model. ProjectA through projectD are thus

instances of the Resource module.

supervisorPermA : array 0..3 of boolean;

supervisorPermB : array 0..3 of boolean;

supervisorPermC : array 0..3 of boolean;

supervisorPermD : array 0..3 of boolean;

109

In our case study, the main module begins by passing the four resources to the supervisor

role and a set of permission arrays for each resource. Therefore four Boolean arrays are declared

whose elements will be used to determine what permissions the supervisor role will have for

each of the Resources. Thus supervisorPermA contains what permissions the supervisor role has

for projectA, supervisorPermB for projectB, supervisorPermC for projectC, and

supervisorPermD for projectD. The arrays‟ sizes are set in correlation to the possible

commands the user can send to the resources with zero for Read, one for Write, two for

Document, and three for Schedule. So if supervisorPermC[2] is equal to true, then the supervisor

role is allowed to execute the Document command upon projectC.

ASSIGN

supervisorPermA[0] := TRUE;

supervisorPermA[1] := TRUE;

supervisorPermA[2] := TRUE;

supervisorPermA[3] := TRUE;

supervisorPermB[0] := TRUE;

supervisorPermB[1] := TRUE;

supervisorPermB[2] := TRUE;

supervisorPermB[3] := TRUE;

supervisorPermC[0] := TRUE;

110

supervisorPermC[1] := TRUE;

supervisorPermC[2] := TRUE;

supervisorPermC[3] := TRUE;

supervisorPermD[0] := TRUE;

supervisorPermD[1] := TRUE;

supervisorPermD[2] := TRUE;

supervisorPermD[3] := TRUE;

 In our case study, the supervisor role is to have all of the permission to every project

resource within the network account. Therefore, all the elements in the permission arrays are set

to true.

role1 : Supervisor(projectA, projectB, projectC, projectD, supervisorPermA, supervisorPermB,

supervisorPermC, supervisorPermD);

 The resources and the now set permission arrays are then used as parameters by the variable

role1, which is declared as type Supervisor.

6.3 Modeling the Social Network Account Resources

MODULE Resource()

VAR

state : {Wait, Read, Write, Document, Schedule};

111

ASSIGN

init(state) := {Wait};

The resource module follows the same outline as the model in the example. The enumerated

variable state is declared with the values of Wait, Read, Write, Document, and Schedule for the

possible commands users may send to the resource. The variable state is then initialized to the

value of Wait.

6.4 Modeling the Social Network Account Roles

MODULE Supervisor(projectA, projectB, projectC, projectD, supervisorPermA,

supervisorPermB,supervisorPermC, supervisorPermD)

VAR

user1 : process User(projectA, projectB, projectC, projectD, supervisorPermA, supervisorPermB,

supervisorPermC, supervisorPermD);

 The only role module that is initialized in the main module is that of Supervisor, which

takes as parameters the instances of the network resources paired with permission arrays that

determine what commands the user with this role will be allowed to execute. All of these

variables are then given to the user1 variable which models a user, with a supervisor role,

interacting with the system resources. User1 is declared with its type specifier as the User

module and uses the same parameters given to the role by main as arguments. In the case study,

the supervisor dictates the permissions assigned to the four section leaders. Thus the supervisor

module will need a set of Boolean permission arrays for each subordinate role to the supervisor.

112

sectApermA : array 0..3 of boolean;

sectApermB : array 0..3 of boolean;

sectApermC : array 0..3 of boolean;

sectApermD : array 0..3 of boolean;

sectBpermA : array 0..3 of boolean;

sectBpermB : array 0..3 of boolean;

sectBpermC : array 0..3 of boolean;

sectBpermD : array 0..3 of boolean;

sectCpermA : array 0..3 of boolean;

sectCpermB : array 0..3 of boolean;

sectCpermC : array 0..3 of boolean;

sectCpermD : array 0..3 of boolean;

sectDpermA : array 0..3 of boolean;

sectDpermB : array 0..3 of boolean;

113

sectDpermC : array 0..3 of boolean;

sectDpermD : array 0..3 of boolean;

In the Var section, four by four sets of permission arrays are declared. The sixteen arrays equate

to the need of four separate roles needing permission arrays to the four individual resources. To

help differentiate which arrays go to which roles, the variable names are based upon the section

they will be sent to and the resource it is for. For example, sectDpermA refers to it belonging to

the section leader D and that it is the permission array to project resource A. The elements to

each array must then be set based on the permissions each section leader requires in the case

study.

ASSIGN

sectApermA[0] := TRUE;

sectApermA[1] := TRUE;

sectApermA[2] := TRUE;

sectApermA[3] := FALSE;

sectApermB[0] := FALSE;

114

sectApermB[1] := FALSE;

sectApermB[2] := FALSE;

sectApermB[3] := FALSE;

sectApermC[0] := FALSE;

sectApermC[1] := FALSE;

sectApermC[2] := FALSE;

sectApermC[3] := FALSE;

sectApermD[0] := FALSE;

sectApermD[1] := FALSE;

sectApermD[2] := FALSE;

sectApermD[3] := FALSE;

The leader of section A must be able use the commands of Read, Write, and Document to only

project resource A. Thus the first three elements of array sectApermA are set to true and all the

other resource permission arrays are set to false. The Schedule command is only available to the

role of Supervisor and thus element four of the sectApermA is false. The permission arrays for

the other sections follow the same pattern. Each section will only have the values of the first

three elements if their required project resource set to true and all others will be false. Thus

115

section leader B will have the permissions for project B, leader C for project C, and leader D for

project D.

sectBpermA[0] := FALSE;

sectBpermA[1] := FALSE;

sectBpermA[2] := FALSE;

sectBpermA[3] := FALSE;

sectBpermB[0] := TRUE;

sectBpermB[1] := TRUE;

sectBpermB[2] := TRUE;

sectBpermB[3] := FALSE;

sectBpermC[0] := FALSE;

sectBpermC[1] := FALSE;

sectBpermC[2] := FALSE;

sectBpermC[3] := FALSE;

sectBpermD[0] := FALSE;

116

sectBpermD[1] := FALSE;

sectBpermD[2] := FALSE;

sectBpermD[3] := FALSE;

The leader of section B must be able use the commands of Read, Write, and Document to only

project resource B. Thus the first three elements of array sectBpermB are set to true and all the

other resource permission arrays are set to false. The Schedule command is only available to the

role of Supervisor and thus element four of the sectBpermB is false.

sectCpermA[0] := FALSE;

sectCpermA[1] := FALSE;

sectCpermA[2] := FALSE;

sectCpermA[3] := FALSE;

sectCpermB[0] := FALSE;

sectCpermB[1] := FALSE;

sectCpermB[2] := FALSE;

sectCpermB[3] := FALSE;

sectCpermC[0] := TRUE;

117

sectCpermC[1] := TRUE;

sectCpermC[2] := TRUE;

sectCpermC[3] := FALSE;

sectCpermD[0] := FALSE;

sectCpermD[1] := FALSE;

sectCpermD[2] := FALSE;

sectCpermD[3] := FALSE;

The leader of section C must be able use the commands of Read, Write, and Document to only

project resource C. Thus the first three elements of array sectCpermC are set to true and all the

other resource permission arrays are set to false. The Schedule command is only available to the

role of Supervisor and thus element four of the sectCpermC is false.

sectDpermA[0] := FALSE;

sectDpermA[1] := FALSE;

sectDpermA[2] := FALSE;

sectDpermA[3] := FALSE;

118

sectDpermB[0] := FALSE;

sectDpermB[1] := FALSE;

sectDpermB[2] := FALSE;

sectDpermB[3] := FALSE;

sectDpermC[0] := FALSE;

sectDpermC[1] := FALSE;

sectDpermC[2] := FALSE;

sectDpermC[3] := FALSE;

sectDpermD[0] := TRUE;

sectDpermD[1] := TRUE;

sectDpermD[2] := TRUE;

sectDpermD[3] := FALSE;

The leader of section D must be able use the commands of Read, Write, and Document to only

project resource D. Thus the first three elements of array sectDpermD are set to true and all the

other resource permission arrays are set to false. The Schedule command is only available to the

role of Supervisor and thus element four of the sectDpermD is false.

119

userLeaderA : sectionLeaderA(projectA, projectB, projectC, projectD, sectApermA,

sectApermB, sectApermC, sectApermD);

userLeaderB : sectionLeaderB(projectA, projectB, projectC, projectD, sectBpermA,

sectBpermB, sectBpermC, sectBpermD);

userLeaderC : sectionLeaderC(projectA, projectB, projectC, projectD, sectCpermA,

sectCpermB, sectCpermC, sectCpermD);

userLeaderD : sectionLeaderD(projectA, projectB, projectC, projectD, sectDpermA,

sectDpermB, sectDpermC, sectDpermD);

After all sixteen elements to the permission arrays have been assigned, they are passed

with the resources as parameters to the variables userLeaderA, userLeaderB, userLeaderC, and

userLeaderD. These variables are declared with a type specifier of a sectionLeader_ module.

Nominally, having a single type of module used for all four variables would be preferable for

this program. However, the permissions passed from a section leader to their subordinates will

be unique to their section and thus requires a separate role module for each section.

MODULE sectionLeaderA(projectA, projectB, projectC, projectD, sectApermA,

sectApermB,sectApermC, sectApermD)

VAR

userLeaderA : process User(projectA, projectB, projectC, projectD, sectApermA, sectApermB,

sectApermC, sectApermD);

workerpermA : array 0..3 of boolean;

120

workerpermB : array 0..3 of boolean;

workerpermC : array 0..3 of boolean;

workerpermD : array 0..3 of boolean;

 Module sectionLeaderA receives the project resources and permission array variables

from the supervisor role and passes them on to the userLeaderA variable that represents a user

with the leaderA role sending commands to the resources. In the case study, each section leader

also has a subordinate worker whose permissions they must arrange for their role. The VAR

section thus includes a set of permission arrays to be passed for the workerA role.

ASSIGN

workerpermA[0] := TRUE;

workerpermA[1] := TRUE;

workerpermA[2] := FALSE;

workerpermA[3] := FALSE;

The worker for section leader A is only to be allowed to Read and Write for projectA and

therefore, only the lowest two elements of workerpermA are set to true. Remaining elements to

this array and all other arrays must then contain false since this worker should not be allowed to

send any of those commands to the other network projects.

121

workerForA : workerA(projectA, projectB, projectC, projectD, workerpermA, workerpermB,

workerpermC, workerpermD);

The new permission arrays and resources will then be used as parameters for the workerForA

variable, which is an instance of the workerA module, in the VAR section.

The modules sectionLeaderB, sectionLeaderC, and sectionLeaderD all have a similar

layout to sectionLeaderA above. The differences are the permission array settings for their

workers. The workers for sectionLeaderB only have the first two elements to projectB set to

true, those of sectionLeaderC have the two elements to projectC and sectionLeaderD‟s workers

have the two elements for projectD.

MODULE workerA(projectA, projectB, projectC, projectD, workerpermA,

workerpermB,workerpermC, workerpermD)

VAR

userWorkerA : process User(projectA, projectB, projectC, projectD, workerpermA,

workerpermB, workerpermC, workerpermD);

 Since none of the workers have a subordinate role to set permissions for, the module will

just take the parameters sent to it by the sectionLeader modules and use them as parameters for

the userWorker variable that is an instance of the User module.

6.5 Modeling User Interaction with the Project Resources

MODULE User(projectA, projectB, projectC, projectD, permA, permB, permC, permD)

122

 In the case study, users will be interacting with four different project resources with the

commands they are allowed to send based upon the values within their given permission array

elements. Thus the User module will take as parameters the four account resources, and the

permission arrays that were sent from a role module.

VAR

myCommandA : { Wait, Read, Write, Document, Schedule};

myCommandB : { Wait, Read, Write, Document, Schedule};

myCommandC : { Wait, Read, Write, Document, Schedule};

myCommandD : { Wait, Read, Write, Document, Schedule};

ASSIGN

init(myCommandA) := Wait;

init(myCommandB) := Wait;

init(myCommandC) := Wait;

init(myCommandD) := Wait;

 Since there are four resources, there must be four myCommand variables declared in the

VAR section and have their initial state set to Wait in the ASSIGN section of the module.

next(myCommandA) := case

123

 (permA[0] = TRUE) & (permA[1] = FALSE) & (permA[2] = FALSE) &

(permA[3] = FALSE) : {Wait,Read};

 (permA[0] = TRUE) & (permA[1] = TRUE) & (permA[2] = FALSE) &

(permA[3] = FALSE) : {Wait,Read, Write};

 (permA[0] = TRUE) & (permA[1] = TRUE) & (permA[2] = TRUE) &

(permA[3] = FALSE) : {Wait,Read, Write,Document};

 (permA[0] = TRUE) & (permA[1] = TRUE) & (permA[2] = TRUE) &

(permA[3] = TRUE) : {Wait,Read, Write,Document, Schedule};

 TRUE : Wait;

 esac;

The next function for the commands will once again be determined by a case expression.

Unlike the previous example, the case study requires that whatever permission the user is given

must also receive the lower permissions as well. That is accomplished in our model by arranging

the cases so that each element has a case where it is true and only the lower elements are true

too. Thus if the user has the Document permission, permA[3]=TRUE, then all the elements less

than three must also be true in permA. The default statement is still the same and is used

whenever the user does not have any permission array elements with a true value.

 next(ResourceA.state) :=

124

 case

 myCommandA != Wait : myCommandA;

 TRUE : Wait;

 esac;

Once the myCommand variables are set, their values will be used to determine what the next

state of the related resources will become.

Modeling the User Session Roles

 In order to test the dynamic changes to a user‟s role in the account, four users are

modeled to each have a leader role, with one of the leaders also given the supervisor role, and its

subordinate worker role. The user with the supervisor role is will also be granted all roles

implemented by the social network account.

 simonRoles : array 0..8 of boolean;

 milesRoles : array 0..8 of boolean;

 sarahRoles : array 0..8 of boolean;

 buddyRoles : array 0..8 of boolean;

 In VAR of the main module, the four named userRoles variables shown above are

Boolean arrays of ten elements. If an element is true in the array, then the named user is allowed

to login as that role. Elements zero through three correspond to the workerA, workerB,

workerC, and workerD roles. Elements four through seven correspond to the leaderA, leaderB,

125

leaderC, and leaderD roles. Finally, if element nine‟s value is set to true, it represents that the

user is allowed to log in as the supervisor.

 simonRoles[0] := TRUE;

 simonRoles[1] := TRUE;

 simonRoles[2] := TRUE;

 simonRoles[3] := TRUE;

 simonRoles[4] := TRUE;

 simonRoles[5] := TRUE;

 simonRoles[6] := TRUE;

 simonRoles[7] := TRUE;

 simonRoles[8] := TRUE;

 milesRoles[0] := FALSE;

 milesRoles[1] := TRUE;

 milesRoles[2] := FALSE;

 milesRoles[3] := FALSE;

 milesRoles[4] := FALSE;

 milesRoles[5] := TRUE;

126

 milesRoles[6] := FALSE;

 milesRoles[7] := FALSE;

 milesRoles[8] := FALSE;

 sarahRoles[0] := FALSE;

 sarahRoles[1] := FALSE;

 sarahRoles[2] := TRUE;

 sarahRoles[3] := FALSE;

 sarahRoles[4] := FALSE;

 sarahRoles[5] := FALSE;

 sarahRoles[6] := TRUE;

 sarahRoles[7] := FALSE;

 sarahRoles[8] := FALSE;

 buddyRoles[0] := FALSE;

 buddyRoles[1] := FALSE;

 buddyRoles[2] := FALSE;

127

 buddyRoles[3] := TRUE;

 buddyRoles[4] := FALSE;

 buddyRoles[5] := FALSE;

 buddyRoles[6] := FALSE;

 buddyRoles[7] := TRUE;

 buddyRoles[8] := FALSE;

In the case study, Simon is selected to be the supervisor of the account while Miles,

Sarah, and Buddy are given the roles of LeaderB, LeaderC, and LeaderD. In the above ASSIGN

section, milesRoles second and fifth elements are set to true in order to assign Miles the worker

and LeaderB roles. Sarah‟s array has only the third and sixth elements set to true in order for her

to login as workerC or as LeaderC and all but the third and seventh elements are false for

Buddy‟s roles array so that he may login as workerD or as LeaderD. Simon roles array is true in

all elements since he is the supervisor of the account, and thus is allowed to login with any role

of his choosing.

In the case study, the leader and supervisor roles are to only be used by one user at a time

in the social network. Thus a semaphore is needed for each role.

 semLA : semaphore();

 semLB : semaphore();

 semLC : semaphore();

128

 semLD : semaphore();

 semS : semaphore();

The above five variables are semaphores for each of the leader roles and one for the supervisor

role. These variables are declared with a type specifier of the semaphore module that takes no

parameters.

MODULE semaphore()

VAR

 sema : boolean;

 userName : { None, Simon, Miles, Sarah, Buddy};

ASSIGN

 init(sema) := FALSE;

 init(userName) := None;

The semaphore module is nearly identical to the one in the example model. The only difference

is that the enumeration of userName was changed to the users represented in this system.

 name1 : { None, Simon, Miles, Sarah, Buddy};

 name2 : { None, Simon, Miles, Sarah, Buddy};

 name3 : { None, Simon, Miles, Sarah, Buddy};

 name4 : { None, Simon, Miles, Sarah, Buddy};

129

As in the example model, the name of each user must be stored into a variable in the

VAR section of main. The value of that variable will be used by the semaphores to track which

user activated the semaphore.

 name1 := Simon;

 name2 := Miles;

 name3 := Sarah;

 name4 := Buddy;

The ASSIGN section will then set each variable to a value that is not used by any of the other

name variables.

 userSimon : process userSessionss(semLA, semLB, semLC, semLD, semS, simonRoles,

name1);

 userMiles : process userSessionss(semLA, semLB, semLC, semLD, semS, milesRoles,

name2);

 userSarah : process userSessionss(semLA, semLB, semLC, semLD, semS, sarahRoles,

name3);

 userBuddy : process userSessionss(semLA, semLB, semLC, semLD, semS, buddyRoles,

name4);

 The main module will finally take all the semaphores, the pairs of the named roles arrays,

the name variables, and uses them as parameters for a named user variable with a type specifier

of the userSessions module.

130

MODULE userSessions(semLA, semLB, semLC, semLD, semS, givenRoles, myName)

VAR

 activeRole : {loggedOut, workerA, workerB, workerC, workerD, leaderA, leaderB, leaderC,

leaderD, supervisor};

ASSIGN

 init(activeRole) := {loggedOut};

The case study‟s userRoles module is shown above with a near same layout of parameters

as the example model. It receives as parameters the semaphore, the userRoles variable, and the

name variables from main. The enumerated variable activeRole, whose possible values are the

roles of the social network account, represents the user‟s current role during a session.

ActiveRole may also have the value loggedOut to represent the user leaving a session. The

initial value of activeRole is set to loggedOut until the user‟s roles array can be examined.

 next(activeRole) := case

 (givenRoles[8] & !semS.sema) : {supervisor};

 (givenRoles[7] & !semLD.sema) : {leaderD};

 (givenRoles[6] & !semLC.sema) : {leaderC};

 (givenRoles[5] & !semLB.sema) : {leaderB};

 (givenRoles[4] & !semLA.sema) : {leaderA};

 (givenRoles[3]) : {workerD};

131

 (givenRoles[2]) : {workerC};

 (givenRoles[1]) : {workerB};

 (givenRoles[0]) : {workerA};

 TRUE : loggedOut;

 esac;

 Similar to the example model‟s next functions of the userRoles module, the case study‟s

next value of activeRole is based upon the values of the user‟s givenRoles array elements and the

semaphore of the exclusive roles.

 next(semS.sema) := case

 activeRole = supervisor : TRUE;

 activeRole != supervisor & semS.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 next(semS.userName) := case

 activeRole = supervisor : myName;

 TRUE : None;

 esac;

132

 Following the example model‟s procedure, if the user log in with an exclusive role the

semaphore‟s sema variable is set to True and the userName variable is equal to the value stored

in myName. When the user changes roles, sema is changed back into false and the value of

userName reverts to None.

6.6 Case Study Access Control Specifications

 The access control properties for the case study will follow the same temporal logic

formula of the example model from before. The main differences will be the fact that the

number of permissions, the type of permissions, and number of resources whose access control

must be verified.

SPEC AG ! (permA[0] = FALSE & myCommandA = Read)

SPEC AG ! (permA[1] = FALSE & myCommandA = Write)

SPEC AG ! (permA[2] = FALSE & myCommandA = Document)

SPEC AG ! (permA[3] = FALSE & myCommandA = Schedule)

SPEC AG ! (permB[0] = FALSE & myCommandB = Read)

SPEC AG ! (permB[1] = FALSE & myCommandB = Write)

SPEC AG ! (permB[2] = FALSE & myCommandB = Document)

SPEC AG ! (permB[3] = FALSE & myCommandB = Schedule)

133

SPEC AG ! (permC[0] = FALSE & myCommandC = Read)

SPEC AG ! (permC[1] = FALSE & myCommandC = Write)

SPEC AG ! (permC[2] = FALSE & myCommandC = Document)

SPEC AG ! (permC[3] = FALSE & myCommandC = Schedule)

SPEC AG ! (permD[0] = FALSE & myCommandD = Read)

SPEC AG ! (permD[1] = FALSE & myCommandD = Write)

SPEC AG ! (permD[2] = FALSE & myCommandD = Document)

SPEC AG ! (permD[3] = FALSE & myCommandD = Schedule)

Unlike the example model, all four project resources take the same type of commands

from the users and thus the specifications for each permission array will be identical. Taking the

specifications to the permission arrays element zero as an example, the specifications work by

having the model checker verify that in “all global states”, if the user does not have the Read

permission to the project resource, then the user‟s myCommand cannot be set to Read.

134

 TRUE : {Wait, Read};

 As a counterexample, the default case of next(myCommandD) is changed to allow the

next value to be either Wait or Read. Originally, the only users‟ able to have their

myCommandD equal to Read were those with a True value in their permission array. These

users were the ones assigned the roles of supervisor, workerD, and leaderD and this alteration

will now allow any user to use the command upon projectD.

-- specification AG !(permD[0] = FALSE & myCommandD = Read) IN

role1.userLeaderA.workerForA.userWorkerA is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 role1.userLeaderA.workerpermA[0] = TRUE

 role1.userLeaderA.workerpermA[1] = TRUE

 role1.userLeaderA.workerpermA[2] = FALSE

 role1.userLeaderA.workerpermA[3] = FALSE

 role1.userLeaderA.workerpermB[0] = FALSE

 role1.userLeaderA.workerpermB[1] = FALSE

 role1.userLeaderA.workerpermB[2] = FALSE

135

 role1.userLeaderA.workerpermB[3] = FALSE

 role1.userLeaderA.workerpermC[0] = FALSE

 role1.userLeaderA.workerpermC[1] = FALSE

 role1.userLeaderA.workerpermC[2] = FALSE

 role1.userLeaderA.workerpermC[3] = FALSE

 role1.userLeaderA.workerpermD[0] = FALSE

 role1.userLeaderA.workerpermD[1] = FALSE

 role1.userLeaderA.workerpermD[2] = FALSE

 role1.userLeaderA.workerpermD[3] = FALSE

 role1.userLeaderA.workerForA.userWorkerA.myCommandA = Wait

 role1.userLeaderA.workerForA.userWorkerA.myCommandB = Wait

 role1.userLeaderA.workerForA.userWorkerA.myCommandC = Wait

 role1.userLeaderA.workerForA.userWorkerA.myCommandD = Wait

 -> Input: 1.2 <-

 _process_selector_ = role1.userLeaderA.workerForA.userWorkerA

 running = FALSE

 role1.userSupervisor.running = FALSE

136

-> State: 1.2 <-

 role1.userLeaderA.workerForA.userWorkerA.myCommandD = Read

 As expected the Read specifications for all myCommands, except myCommandD,

was followed within the model. The supervisor, workerD, and LeaderD roles were the only ones

who followed the specification since they originally were given the permission and would not

have used the default case of next(myCommandD). The workerA, workerB, workerC, leaderA,

leaderB, and leaderC roles failed the specification since the users of those roles were able to still

send the Read command while not having the permission. As shown above, the user with the

workerA role failed the specification since they were not given the Read permission from their

superior, as shown in role1.userLeaderA.workerpermD[0] = FALSE from State1.1, but was still

able to have myCommandD set to Read, as shown in the

role1.userLeaderA.workerForA.userWorkerA.myCommandD = Read from state 1.2. In order

for the model to pass these access control specifications, the user‟s ability to execute commands

must be based upon the permissions given to them by their superiors.

6.7 Case Study Permission Hierarchy Specifications

 In order for the case study model to follow permission hierarchy, when a user is given a

permission to a resource they must also be given all the lower permissions as well. The users

have four permissions that will grant them access to the four project resources in the social

network account which are as follows in ascending order: Read, Write, Document, and

Schedule. As an example of the permission hierarchy, if a user is granted the Document

permission they must also be assigned Read and Write.

SPEC AG ((permA[1]) -> (permA[0]))

137

SPEC AG ((permA[2]) -> (permA[0] & permA[1]))

SPEC AG ((permA[3]) -> (permA[0] & permA[1] & permA[2]))

SPEC AG ((permB[1]) -> (permB[0]))

SPEC AG ((permB[2]) -> (permB[0] & permB[1]))

SPEC AG ((permB[3]) -> (permB[0] & permB[1] & permB[2]))

SPEC AG ((permC[1]) -> (permC[0]))

SPEC AG ((permC[2]) -> (permC[0] & permC[1]))

SPEC AG ((permC[3]) -> (permC[0] & permC[1] & permC[2]))

SPEC AG ((permD[1]) -> (permD[0]))

SPEC AG ((permD[2]) -> (permD[0] & permD[1]))

SPEC AG ((permD[3]) -> (permD[0] & permD[1] & permD[2]))

The above specifications are included in the User module to verify that permission

hierarchy is followed in the model. Each set of specifications focuses on one resource

permission array. As in the example model, each specification has the model checker verify that

138

an element of a permission array being true implies that all lower elements of that array are true

as well.

As a counterexample, LeaderB will assign workerB only the Write permission to

projectB, permB[1], but without the Read permission, permB[0].

-- specification AG (permB[1] -> permB[0]) IN role1.userLeaderB.workerForB.userWorkerB is

false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 role1.userLeaderB.workerpermB[0] = FALSE

 role1.userLeaderB.workerpermB[1] = TRUE

 role1.userLeaderB.workerpermB[2] = FALSE

 role1.userLeaderB.workerpermB[3] = FALSE

The model checker reports that only workerB did not pass the permission hierarchy of its permB

arrays. The trace shows that leader has set only workerB‟s Write permission but not its Read

permission, and thus violates the specification.

139

6.8 Case Study Minimum Duties Specification

 All the roles of the case study are to be assigned the smallest set of permissions needed

by the users of those roles to accomplish their required tasks. The case study requires that the

supervisor role must be assigned all resource permissions, section leaders are only assigned the

Read, Write, and Document permissions to one of the project resources and the workers must

only have the Read and Write to the same project resources as their section leaders.

SPEC AG((workerpermA[1] & !workerpermA[2]) | (workerpermB[1] &!workerpermB[2]) |

(workerpermC[1] & !workerpermC[2]) | (workerpermD[1] & !workerpermD[2]))

 The above specification is added to the workerA, workerB, workerC, and workerD

modules. The CTL logic has the model checker verify that in “all global states” one of the

following conditions must be true: The Write permission of projectA resource, permA[1], is true

while the Document permission of projectA resource,permA[2], is false; The Write permission

of projectB resource, permB[1], is true while the Document permission of projectB resource,

permB[2], is false; The Write permission of projectC resource, permC[1], is true while the

Document permission of projectC resource,permC[2], is false; The Write permission of projectD

resource, permD[1], is true while the Document permission of projectD resource, permD[2], is

false.

Though the case study requires that both Read and Write are always given to the worker

roles, the specification only needs the one element to verify the permission assignment.

Permission hierarchy is also enforced by the model and thus if the user is given the Write

permission, element one of the permission array, they must also have received the Read

permission as well, element zero of the permission array.

140

 As a counterexample, the workerC will be assigned the Read, Write, and Document

permissions of the projectC resource.

-- specification AG ((((workerpermA[1] & !workerpermA[2]) | (workerpermB[1] &

!workerpermB[2])) | (workerpermC[1] & !workerpermC[2])) | (workerpermD[1] &

!workerpermD[2])) IN role1.userLeaderC.workerForC is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 role1.userLeaderC.workerpermC[0] = TRUE

 role1.userLeaderC.workerpermC[1] = TRUE

 role1.userLeaderC.workerpermC[2] = TRUE

 role1.userLeaderC.workerpermC[3] = FALSE

 The output from the model checker states that the workerC role did not pass the

minimum duties requirement. The trace shows that the LeaderC role has not only assigned Read,

workerpermC[0], and Write, workerpermC[1], of projectC resource to the subordinate workerC

role, but as also unnecessarily given the Document permission, workerpermC[2], as well. For

the model to adhere to the minimum duties specification, the workers must only be assigned the

required permissions, Read and Write.

141

 SPEC AG((sectApermA[2] & !sectApermA[3]) | (sectApermB[2] &!sectApermB[3]) |

(sectApermC[2] & !sectApermC[3]) | (sectApermD[2] & !sectApermD[3]))

 The section leaders‟ minimum duties specification is the same formula as the workers,

except that the elements are incremented by one to represent the lowest permission needed,

element two for Document. Above is the specification implemented in the section leaderA

module. As a counterexample, the supervisor will only be assigned the permissions of Read to

the projectA resource to section leader A.

-- specification AG ((((sectApermA[2] & !sectApermA[3]) | (sectApermB[2] &

!sectApermB[3])) | (sectApermC[2] & !sectApermC[3])) | (sectApermD[2] & !sectApermD[3]))

IN role1.userLeaderA is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 role1.sectApermA[0] = TRUE

 role1.sectApermA[1] = FALSE

 role1.sectApermA[2] = FALSE

 role1.sectApermA[3] = FALSE

142

 The printout of the model checker reports that role module of leaderA has failed the

specification. The reason show the reason being that the supervisor has only given leaderA the

Read permission, role1.sectApermA[0], while the minimum requirement for leaderA include the

elements one and two. The supervisor‟s permission assignment must be corrected in order for

the model pass the minimum duties specification.

 SPEC AG((supervisorPermA[3]) & (supervisorPermB[3]) & (supervisorPermC[3]) &

(supervisorPermD[3]))

 The supervisor role‟s minimum duties specification is the simplest of all the roles. It

requires all of the permissions to every project resource. Remembering that permission

hierarchy is implemented by the model, all that is require of the specification is the highest

permission, Schedule, of each resource permission array. If the role has the Schedule

permission, then they must have also been assigned all the lower permissions as well. Thus the

above specification requires that in “all global states” the value of true must be in the permission

arrays for Schedule, element three, for every permission array.

 As a counterexample, the supervisor role is not assigned the Schedule permission for

projectC in the main module.

-- specification AG (((supervisorPermA[3] &supervisorPermB[3]) &supervisorPermC[3])

&supervisorPermD[3]) IN role1 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

143

-> State: 1.1 <-

supervisorPermA[0] = TRUE

supervisorPermA[1] = TRUE

supervisorPermA[2] = TRUE

supervisorPermA[3] = TRUE

supervisorPermB[0] = TRUE

supervisorPermB[1] = TRUE

supervisorPermB[2] = TRUE

supervisorPermB[3] = TRUE

supervisorPermC[0] = TRUE

supervisorPermC[1] = TRUE

supervisorPermC[2] = TRUE

supervisorPermC[3] = FALSE

supervisorPermD[0] = TRUE

supervisorPermD[1] = TRUE

supervisorPermD[2] = TRUE

supervisorPermD[3] = TRUE

144

 The model checker printout reports that the supervisor‟s minimum duties specification

was not upheld by the model. The following trace shows that the cause of the failure was due to

supervisor‟s Schedule permission for projectC, supervisorPermC[3], was not set to true in main.

In order for the model checker to pass the model, the supervisor role module must be granted the

highest level permission to all project resources.

6.9 Case Study SSOD Specifications

 SSOD requires that certain permissions must be exclusively assigned in order to prevent

a user from having a pair of conflicting permissions. In this case study, the section leaders and

their workers must only have permissions for one project resource in order to avoid a conflict.

The only exception is that of the supervisor role who is allowed to have all of the permissions to

every resource.

SPEC AG(((workerpermA[1]) -> AG (!workerpermB[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermB[1]) -> AG (!workerpermA[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermC[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermD[1])) & ((workerpermD[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermC[1])))

 The above specification is the SSOD specification included in all of the worker role

modules. The CTL statement has the model checker verify that in “all global states” of the

worker role modules, one of the following is true. The first statement implies that should the

element of workerpermA[1] being true, that in “all global states” it should not be possible for

workerpermB[1] or workerpermC[1] or workerpermD[1] to be true. The reason why only the

Write permission is used in the logic is because the minimum duties property requires that the

145

highest permission workers should receive is Write. The second, third and fourth statements

have the same formula but with a different resource permission array as the subject. This

effectively ensures that should a worker role receive the Write permission of a project resource,

they must only have permissions to that one project resource. To demonstrate, leaderB will

assign the workerB role the Read and Write permissions to both projectB and projectC.

-- specification AG ((((workerpermA[1] -> AG ((!workerpermB[1] & !workerpermC[1]) &

!workerpermD[1])) & (workerpermB[1] -> AG ((!workerpermA[1] & !workerpermC[1]) &

!workerpermD[1]))) & (workerpermC[1] -> AG ((!workerpermA[1] & !workerpermB[1]) &

!workerpermD[1]))) & (workerpermD[1] -> AG ((!workerpermA[1] & !workerpermB[1]) &

!workerpermC[1]))) IN role1.userLeaderB.workerForB is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 role1.userLeaderB.workerpermB[0] = TRUE

 role1.userLeaderB.workerpermB[1] = TRUE

 role1.userLeaderB.workerpermC[0] = TRUE

 role1.userLeaderB.workerpermC[1] = TRUE

 The model checker prints out that workerB has failed the SSOD specification and the

trace provided shows that worker has the Read and Write permissions to both projectB and

146

projectC resources. In order for the model to pass the specification, the worker must only be

assigned the minimum duties permissions to one resource.

SPEC AG(((sectApermA[2]) -> AG (!sectApermB[2] & !sectApermC[2] & !sectApermD[2]))

& ((sectApermB[2]) -> AG (!sectApermA[2] & !sectApermC[2] & !sectApermD[2])) &

((sectApermC[2]) -> AG (!sectApermA[2] & !sectApermB[2] & !sectApermD[2])) &

((sectApermD[2]) -> AG (!sectApermA[2] & !sectApermB[2] & !sectApermC[2])))

 The section leaders‟ SSOD specification follows the same layout as their worker roles.

Above is the specification included in the section leaderA module. All the other section leader

modules‟ CTL statement will be identical except for the name of the permission array. However,

the leaders‟ minimum duties requirements has element two of the permission arrays, Document,

analyzed in the CTL statement. As a counterexample, leaderA will be assigned the Read, Write,

and Document permissions to both projectA and projectD resources.

-- specification AG ((((sectApermA[2] -> AG ((!sectApermB[2] & !sectApermC[2]) &

!sectApermD[2])) & (sectApermB[2] -> AG ((!sectApermA[2] & !sectApermC[2]) &

!sectApermD[2]))) & (sectApermC[2] -> AG ((!sectApermA[2] & !sectApermB[2]) &

!sectApermD[2]))) & (sectApermD[2] -> AG ((!sectApermA[2] & !sectApermB[2]) &

!sectApermC[2]))) IN role1.userLeaderA is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

147

 role1.sectApermA[0] = TRUE

 role1.sectApermA[1] = TRUE

 role1.sectApermA[2] = TRUE

 role1.sectApermD[0] = TRUE

 role1.sectApermD[1] = TRUE

 role1.sectApermD[2] = TRUE

 The model checker reports that leaderA has failed the SSOD specification implemented

within its module. The trace displays that leaderA has been assigned the minimum duties

permissions to not only projectA but also projectD as well. In order for the model to pass the

specification, each leader role must only have permissions to one resource.

 In the model checking chapter, it was possible for a faulty model to pass its specifications

when analyzed through the model checker. This is due to specifications that were not designed

to properly discover the flaws of the model and have the model checker report it. This scenario

is possible in the currently discussed SSOD specifications, which requires that users of certain

roles are granted exclusive access to a single resource and that no others have the same access,

except the user with the supervisor role. So far, the leader roles and worker roles have a SSOD

specification in which the model will only pass if the roles are only assigned permissions to one

resource. These specifications have worked to discover any arrangements that allow users of

these roles access to multiple resources. The one flaw of the specification is that it only operates

within the scope of the modules and does not know if different roles are given access to the same

single resource. For example, if roles leaderB and leaderD were both given the section leader

148

minimum duties permissions to only projectD resource the model would still pass. Even though

the SSOD has obviously failed, since two different user roles have access to the same resource,

the model checker would not discover the flaw with the current specification. This is because

the scope of the specifications is only within the role modules they were implemented in and do

not analyze the permissions to the other roles.

SPEC AG(((sectApermA[2]) -> AG (!sectBpermA[2] & !sectCpermA[2] & !sectDpermA[2]))

& ((sectBpermA[2]) -> AG (!sectApermA[2] & !sectCpermA[2] & !sectDpermA[2]))

&((sectCpermA[2]) -> AG (!sectApermA[2] & !sectBpermA[2] & !sectDpermA[2])) &

((sectDpermA[2]) -> AG (!sectApermA[2] & !sectBpermA[2] & !sectCpermA[2])))

 In order for the model checker to discover this breach in SSOD, the above of

specification is implemented in the supervisor role module. Similar to the SSOD inside of each

leader role module, this specification analyze the all of the section leaders‟ Document permission

to the projectA resource. The CTL statement has the model checker verify that in “all global

states” of the model only one of the following may be true:

 leaderA‟s being assigned the Document permission to projectA, sectApermA[2],

implies that in “all global states” leaderB, leaderC, and leaderD have not been

assigned the Document permission to projectA, sectBpermA[2], sectCpermA[2],

sectDpermA[2].

 leaderB‟s being assigned the Document permission to projectA, sectBpermA[2],

implies that in “all global states” leaderA, leaderC, and leaderD have not been

assigned the Document permission to projectA, sectApermA[2], sectCpermA[2],

sectDpermA[2].

149

 leaderC‟s being assigned the Document permission to projectA, sectCpermA[2],

implies that in “all global states” leaderA, leaderB, and leaderD have not been

assigned the Document permission to projectA, sectApermA[2], sectBpermA[2],

sectDpermA[2].

 leaderD‟s being assigned the Document permission to projectA, sectDpermA[2],

implies that in “all global states” leaderA, leaderB, and leaderC have not been

assigned the Document permission to projectA, sectApermA[2], sectBpermA[2],

sectDpermA[2].

The specification will thus ensure that each of the section leaders may have their minimum

duties assigned to only one project resource with assurances that no other leader has been given

access to the same project.

SPEC AG(((sectApermB[2]) -> AG (!sectBpermB[2] & !sectCpermB[2] & !sectDpermB[2]))

& ((sectBpermB[2]) -> AG (!sectApermB[2] & !sectCpermB[2] & !sectDpermB[2])) &

((sectCpermB[2]) -> AG (!sectApermB[2] & !sectBpermB[2] & !sectDpermB[2])) &

((sectDpermB[2]) -> AG (!sectApermB[2] & !sectBpermB[2] & !sectCpermB[2])))

SPEC AG(((sectApermC[2]) -> AG (!sectBpermC[2] & !sectCpermC[2] & !sectDpermC[2]))

& ((sectBpermC[2]) -> AG (!sectApermC[2] & !sectCpermC[2] & !sectDpermC[2])) &

((sectCpermC[2]) -> AG (!sectApermC[2] & !sectBpermC[2] & !sectDpermC[2])) &

((sectDpermC[2]) -> AG (!sectApermC[2] & !sectBpermC[2] & !sectCpermC[2])))

SPEC AG(((sectApermD[2]) -> AG (!sectBpermD[2] & !sectCpermD[2] & !sectDpermD[2]))

& ((sectBpermD[2]) -> AG (!sectApermD[2] & !sectCpermD[2] & !sectDpermD[2]))

150

&((sectCpermD[2]) -> AG (!sectApermD[2] & !sectBpermD[2] & !sectDpermD[2])) &

((sectDpermD[2]) -> AG (!sectApermD[2] & !sectBpermD[2] & !sectCpermD[2])))

 The other SSOD specifications following the first follow the same format, but focus on a

different permission array. The first one above is ensuring that projectB is not accessed by

multiple leaders, while the second and last are specifications to projectC and projectD.

 As a counterexample, roles leaderC and leaderD will be granted the Read, Write, and

Document permissions to only the resource projectD.

-- specification AG ((((sectApermD[2] -> AG ((!sectBpermD[2] & !sectCpermD[2]) &

!sectDpermD[2])) & (sectBpermD[2] -> AG ((!sectApermD[2] & !sectCpermD[2]) &

!sectDpermD[2]))) & (sectCpermD[2] -> AG ((!sectApermD[2] & !sectBpermD[2]) &

!sectDpermD[2]))) & (sectDpermD[2] -> AG ((!sectApermD[2] & !sectBpermD[2]) &

!sectCpermD[2]))) IN role1 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 role1.sectCpermD[0] = TRUE

 role1.sectCpermD[1] = TRUE

 role1.sectCpermD[2] = TRUE

151

 role1.sectDpermD[0] = TRUE

 role1.sectDpermD[1] = TRUE

 role1.sectDpermD[2] = TRUE

The model checker reports that the specification involving the section leaders‟ access to projectD

resource has failed. The trace shows the reason being that section leaderC and leaderD both

have leader role access to projectD. In order for the model to pass the specifications, the

supervisor must assign each leader roles access to only one leader role.

 Though needed for the section leader roles, a similar set of specifications is not needed to

verify that the worker roles have access to only one resource. This is due to the leader roles‟ role

hierarchy specification, which ensures that whatever single resource the leaders have access to

their subordinate roles may only have access to the same resource.

6.10 Case Study Role Hierarchy Specifications

 In the case study, there are two sets of permission assignments in which role hierarchy

must be established. When the supervisor assigns permissions to each of the section leader roles

and when each section leader role assigns permissions to their subordinate worker roles. In order

for the model to adhere to role hierarchy, the superior roles of the interaction must always have a

higher level of permission than those of the lower roles.

SPEC AG(!(sectApermA[0]) -> AG !(workerpermA[0]))

SPEC AG((sectApermA[0] & !sectApermA[1]) -> AG !(workerpermA[0]))

152

SPEC AG((sectApermA[1] & !sectApermA[2]) -> AG !(workerpermA[1]))

SPEC AG((sectApermA[2] & !sectApermA[3]) -> AG !(workerpermA[2]))

SPEC AG((sectApermA[3]) -> AG !(workerpermA[3]))

In order for the model checker to discover a breach in the role hierarchy of the account

roles between the section leader roles and their worker roles, the above of specifications are

implemented in section leaderA role module. These specifications have the model checker verify

that in “all global states” of the model, one of the following cases must be true:

 The leaderA role not being assigned the Read permission to projectA,

!sectApermA[0], implies that in “all global states” its worker must not have the

Read permission to projectA, !(workerpermA[0]).

 The leaderA role being assigned the Read permission to projectA,

sectApermA[0], but not the Write permission, sectApermA[1], implies that in

“all global states” its worker must not have the Read permission to projectA,

!(workerpermA[0]).

 The leaderA role being assigned the Write permission to projectA,

sectApermA[1], but not the Document permission, sectApermA[2], implies that

in “all global states” its worker must not have the Write permission to projectA,

!(workerpermA[1]).

 The leaderA role being assigned the Document permission to projectA,

sectApermA[2], but not the Schedule permission, sectApermA[3], implies that in

“all global states” its worker must not have the Document permission to projectA,

!(workerpermA[2]).

153

 The leaderA role being assigned the Schedule permission to projectA,

sectApermA[3], implies that in “all global states” its worker must not have the

Schedule permission to projectA, !(workerpermA[3]).

The structure of the specification set assists in determining what the permission hierarchy

level of the leader roles is. Which specification used is entirely based upon the permissions

assigned to the section leaders from the supervisor. In this case study, the CTL statement where

the section leaders receive the Document permission and not the Schedule permission is the

specification that will be used. However, the rest are added anyway since the permissions of the

roles may be changed during a project development and thus having all possible combinations of

the role hierarchy included already will remove the needed to redevelop the role hierarchy

specifications.

SPEC AG(!(sectApermB[0]) -> AG !(workerpermB[0]))

SPEC AG((sectApermB[0] & !sectApermB[1]) -> AG !(workerpermB[0]))

SPEC AG((sectApermB[1] & !sectApermB[2]) -> AG !(workerpermB[1]))

SPEC AG((sectApermB[2] & !sectApermB[3]) -> AG !(workerpermB[2]))

SPEC AG((sectApermB[3]) -> AG !(workerpermB[3]))

SPEC AG(!(sectApermC[0]) -> AG !(workerpermC[0]))

SPEC AG((sectApermC[0] & !sectApermC[1]) -> AG !(workerpermC[0]))

SPEC AG((sectApermC[1] & !sectApermC[2]) -> AG !(workerpermC[1]))

154

SPEC AG((sectApermC[2] & !sectApermC[3]) -> AG !(workerpermC[2]))

SPEC AG((sectApermC[3]) -> AG !(workerpermC[3]))

SPEC AG(!(sectApermD[0]) -> AG !(workerpermD[0]))

SPEC AG((sectApermD[0] & !sectApermD[1]) -> AG !(workerpermD[0]))

SPEC AG((sectApermD[1] & !sectApermD[2]) -> AG !(workerpermD[1]))

SPEC AG((sectApermD[2] & !sectApermD[3]) -> AG !(workerpermD[2]))

SPEC AG((sectApermD[3]) -> AG !(workerpermD[3]))

 The specification sets following the first follow the same CTL logic as before, except that

each set analyzes a different permission array. The first is for the section leaderA‟s permissions

to projectB, the second is to projectC, and the last is to projectD. The other section leader

modules have a near identical set of specifications of their own. The only difference is the first

half of the permission array name used to represent what section the array was sent to.

As a counterexample, the workerA role will be assigned the Read permission to the

projectC resource by leaderA.

-- specification AG (!permC[0] -> AG !workerpermC[0]) IN role1.userLeaderA is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

155

-> State: 1.1 <-

 role1.sectApermA[0] = TRUE

 role1.sectApermA[1] = TRUE

 role1.sectApermA[2] = TRUE

 role1.sectApermA[3] = FALSE

 role1.sectApermB[0] = FALSE

 role1.sectApermB[1] = FALSE

 role1.sectApermB[2] = FALSE

 role1.sectApermB[3] = FALSE

 role1.sectApermC[0] = FALSE

 role1.sectApermC[1] = FALSE

 role1.sectApermC[2] = FALSE

 role1.sectApermC[3] = FALSE

 role1.sectApermD[0] = FALSE

 role1.sectApermD[1] = FALSE

 role1.sectApermD[2] = FALSE

 role1.sectApermD[3] = FALSE

156

 role1.sectBpermA[0] = FALSE

 role1.sectBpermA[1] = FALSE

 role1.sectBpermA[2] = FALSE

 role1.sectBpermA[3] = FALSE

 role1.userLeaderA.workerpermA[0] = TRUE

 role1.userLeaderA.workerpermA[1] = TRUE

 role1.userLeaderA.workerpermA[2] = FALSE

 role1.userLeaderA.workerpermA[3] = FALSE

 role1.userLeaderA.workerpermB[0] = FALSE

 role1.userLeaderA.workerpermB[1] = FALSE

 role1.userLeaderA.workerpermB[2] = FALSE

 role1.userLeaderA.workerpermB[3] = FALSE

 role1.userLeaderA.workerpermC[0] = TRUE

 role1.userLeaderA.workerpermC[1] = FALSE

 role1.userLeaderA.workerpermC[2] = FALSE

 role1.userLeaderA.workerpermC[3] = FALSE

 role1.userLeaderA.workerpermD[0] = FALSE

157

 role1.userLeaderA.workerpermD[1] = FALSE

 role1.userLeaderA.workerpermD[2] = FALSE

 role1.userLeaderA.workerpermD[3] = FALSE

 The model checker printout reports that the projectD role hierarchy specifications have

failed in the leaderA module. More specifically, the specification that failed was the CTL

statement requiring that a false value in the element zero of permC implying that

workerpermC[0] must also be false. The trace shows that the State 1.1 is contrary to this as

leaderA‟s permC[0] is false, shown by role1.sectApermC[0] = FALSE, while the workerA‟s

permC[0] is true, shown by role1.userLeaderA.workerpermC[0] = TRUE. Either the leaderA‟s

permission level to projectC resource must be increased or workerA‟s permission level must be

decreased in order for the model to pass the specification.

SPEC AG((!supervisorPermA[0]) -> AG !((sectApermA[0]) | (sectBpermA[0]) |

(sectCpermA[0]) | (sectDpermA[0])))

SPEC AG((supervisorPermA[0] & !supervisorPermA[1]) -> AG !((sectApermA[0]) |

(sectBpermA[0]) | (sectCpermA[0]) | (sectDpermA[0])))

SPEC AG((supervisorPermA[1] & !supervisorPermA[2]) -> AG !((sectApermA[1]) |

(sectBpermA[1]) | (sectCpermA[1]) | (sectDpermA[1])))

SPEC AG((supervisorPermA[2] & !supervisorPermA[3]) -> AG !((sectApermA[2]) |

(sectBpermA[2]) | (sectCpermA[2]) | (sectDpermA[2])))

SPEC AG((supervisorPermA[3]) -> AG !((sectApermA[3]) | (sectBpermA[3]) |

(sectCpermA[3]) | (sectDpermA[3])))

158

SPEC AG((!supervisorPermB[0]) -> AG !((sectApermB[0]) | (sectBpermB[0]) |

(sectCpermB[0]) | (sectDpermB[0])))

SPEC AG((supervisorPermB[0] & !supervisorPermB[1]) -> AG !((sectApermB[0]) |

(sectBpermB[0]) | (sectCpermB[0]) | (sectDpermB[0])))

SPEC AG((supervisorPermB[1] & !supervisorPermB[2]) -> AG !((sectApermB[1]) |

(sectBpermB[1]) | (sectCpermB[1]) | (sectDpermB[1])))

SPEC AG((supervisorPermB[2] & !supervisorPermB[3]) -> AG !((sectApermB[2]) |

(sectBpermB[2]) | (sectCpermB[2]) | (sectDpermB[2])))

SPEC AG((supervisorPermB[3]) -> AG !((sectApermB[3]) | (sectBpermB[3]) |

(sectCpermB[3]) | (sectDpermB[3])))

SPEC AG((!supervisorPermC[0]) -> AG !((sectApermC[0]) | (sectBpermC[0]) |

(sectCpermC[0]) | (sectDpermC[0])))

SPEC AG((supervisorPermC[0] & !supervisorPermC[1]) -> AG !((sectApermC[0]) |

(sectBpermC[0]) | (sectCpermC[0]) | (sectDpermC[0])))

SPEC AG((supervisorPermC[1] & !supervisorPermC[2]) -> AG !((sectApermC[1]) |

(sectBpermC[1]) | (sectCpermC[1]) | (sectDpermC[1])))

SPEC AG((supervisorPermC[2] & !supervisorPermC[3]) -> AG !((sectApermC[2]) |

(sectBpermC[2]) | (sectCpermC[2]) | (sectDpermC[2])))

159

SPEC AG((supervisorPermC[3]) -> AG !((sectApermC[3]) | (sectBpermC[3]) |

(sectCpermC[3]) | (sectDpermC[3])))

SPEC AG((!supervisorPermD[0]) -> AG !((sectApermD[0]) | (sectBpermD[0]) |

(sectCpermD[0]) | (sectDpermD[0])))

SPEC AG((supervisorPermD[0] & !supervisorPermD[1]) -> AG !((sectApermD[0]) |

(sectBpermD[0]) | (sectCpermD[0]) | (sectDpermD[0])))

SPEC AG((supervisorPermD[1] & !supervisorPermD[2]) -> AG !((sectApermD[1]) |

(sectBpermD[1]) | (sectCpermD[1]) | (sectDpermD[1])))

SPEC AG((supervisorPermD[2] & !supervisorPermD[3]) -> AG !((sectApermD[2]) |

(sectBpermD[2]) | (sectCpermD[2]) | (sectDpermD[2])))

SPEC AG((supervisorPermD[3]) -> AG !((sectApermD[3]) | (sectBpermD[3]) |

(sectCpermD[3]) | (sectDpermD[3])))

 The supervisor role‟s role hierarchy specification follows the same layout as that of the

section leaders except that there are four sets of the five role hierarchy specification. Each is

needed to verify that the supervisor role has a higher permission level than all of the section

leader roles for each project resource. Examining the last specification, the CTL statement

requires that the model checker verify that a true value in the supervisor‟s permD[3] implies that

in “all global states” it should not be possible for section leaderA‟s permD[3], section leaderB‟s

permD[3], section leaderC‟s permD[3], or section leaderD‟s permD[3] to be true. The section

leaders‟ role hierarchy set only had a single worker permD inside of its formula since leader role

160

had one subordinate role that it assigns permissions to. The supervisor role however has four

subordinate roles, all of the leader roles, and thus its role hierarchy formula contains all four

subordinate roles‟ permission arrays. This will instruct the model checker to compare the

permission levels of all the supervisor‟s subordinates and verify that all are lower.

 As a counter example, the supervisor role will only receive the Read permission to

projectA from the main module.

-- specification AG ((supervisorPermA[0] & !supervisorPermA[1]) -> AG !(((sectApermA[0] |

sectBpermA[0]) | sectCpermA[0]) | sectDpermA[0])) IN role1 is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

supervisorPermA[0] = TRUE

supervisorPermA[1] = FALSE

supervisorPermA[2] = FALSE

supervisorPermA[3] = FALSE

 role1.sectApermA[0] = TRUE

 role1.sectApermA[1] = TRUE

 role1.sectApermA[2] = TRUE

161

 role1.sectApermA[3] = FALSE

The model checker prints that the supervisor‟s role hierarchy involving the permission array to

projectA resource has failed. Specifically, the specification requiring that should the

supervisor‟s highest permission equal Read, supervisorPermA[0] = TRUE, then the permission

levels of the subordinate roles must be lower. This is contrary to displayed trace which shows

that the section leaderA‟s highest permission level, sectApermA[2] = TRUE, is that of

Document. In order for the model to pass the specification, either the supervisor‟s permission

level to projectA resource must be set higher or section leaderA‟s permission level must be

lowered.

6.11 Case Study DSOD Specifications

 The DSOD property requires that users are not assigned roles in which they will have

access to conflicting sets of permissions. In the case study, those roles are each section of the

leader and worker roles to each other. The reason that each leader, and their subordinate

workers, is separated from each other leaders and workers is because they must only to be given

access to one resource. Thus when assigning users roles, they should only be granted roles that

involve the same resource. For example, if a user is assigned the leaderA role then they must not

be assigned any worker roles that are not for section A or any other leader roles. The only

exception of this rule is that of supervisor, whose control of the account grants the user access to

not only all permissions to all resources, but also all of the roles as well.

SPEC AG (givenRoles[0] -> AG !(givenRoles[1] | givenRoles[2]| givenRoles[3] | givenRoles[5]

| givenRoles[6] | givenRoles[7]) | (givenRoles[8]))

162

 Similar to the example model‟s DSOD specification, each specification has the model

verify that if the user was assigned that role, they should also not be assigned any role that

conflicts with that role unless they are also assigned the supervisor role. The specification above

requires that the model checker verify that in “all global” states, the user being assigned the

workerA role, from the variable givenRoles[0], implies that in “all global” states one of

following assignments must be true. First, the user is not assigned the roles of workerB, from

variable givenRoles[1], workerC, from variable givenRoles[2], workerD, from variable

givenRoles[3], leaderB, from variable givenRoles[5], leaderC, from variable givenRoles[6], or

leaderD, from variable givenRoles[7]. Second, the user is assigned the supervisor role, from

variable givenRoles[8]. The first case ensures that the user is not assigned any set of conflicting

roles that will allow them access to different section resources and the second will tell the model

checker to ignore the first case if the user has been assigned the supervisor role and thus may be

granted any combination of roles in the account.

SPEC AG (givenRoles[1] -> AG !(givenRoles[0] | givenRoles[2]| givenRoles[3] | givenRoles[4]

| givenRoles[6] | givenRoles[7]) | (givenRoles[8]))

SPEC AG (givenRoles[2] -> AG !(givenRoles[0] | givenRoles[1]| givenRoles[3] | givenRoles[4]

| givenRoles[5] | givenRoles[7]) | (givenRoles[8]))

SPEC AG (givenRoles[3] -> AG !(givenRoles[0] | givenRoles[1]| givenRoles[2] | givenRoles[4]

| givenRoles[6] | givenRoles[6]) | (givenRoles[8]))

SPEC AG (givenRoles[4] -> AG !(givenRoles[1] | givenRoles[2] | givenRoles[3] |

givenRoles[5] | givenRoles[6] | givenRoles[7]) | (givenRoles[8]))

163

SPEC AG (givenRoles[5] -> AG !(givenRoles[0] | givenRoles[2] | givenRoles[7] |

givenRoles[4] | givenRoles[6] | givenRoles[7]) | (givenRoles[8]))

SPEC AG (givenRoles[6] -> AG !(givenRoles[0] | givenRoles[1] | givenRoles[3] |

givenRoles[4] | givenRoles[5] | givenRoles[7]) | (givenRoles[8]))

SPEC AG (givenRoles[7] -> AG !(givenRoles[0] | givenRoles[1] | givenRoles[2] |

givenRoles[4] | givenRoles[5] | givenRoles[6]) | (givenRoles[8]))

 Just like in the example model, there is a specification for each set of conflicting roles

that exists in the model. The specifications after the first follow the same template for its CTL

statement.

 If the user assigned the workerB role, givenRoles[1], they should not be assigned any

other worker roles or any leader roles, except leaderB, unless they have also been

assigned the supervisor roles.

 If the user assigned the workerC role, givenRoles[2], they should not be assigned any

other worker roles or any leader roles, except leaderC, unless they have also been

assigned the supervisor roles.

 If the user assigned the workerD role, givenRoles[3], they should not be assigned any

other worker roles or any leader roles, except leaderD, unless they have also been

assigned the supervisor roles.

 If the user assigned the leaderA role, givenRoles[4], they should not be assigned any

other leader roles or any worker role, except workerA, unless they have also been

assigned the supervisor roles.

164

 If the user assigned the leaderB role, givenRoles[5], they should not be assigned any

other leader roles or any worker role, except workerB, unless they have also been

assigned the supervisor roles.

 If the user assigned the leaderC role, givenRoles[6], they should not be assigned any

other leader roles or any worker role, except workerC, unless they have also been

assigned the supervisor roles.

 If the user assigned the leaderD role, givenRoles[7], they should not be assigned any

other leader roles or any worker role, except workerD, unless they have also been

assigned the supervisor roles.

 As a counter example user Miles will be given the workerC role along with his already

assigned roles of workerB and leaderB.

-- specification AG (givenRoles[1] -> (AG !(((((givenRoles[0] | givenRoles[2]) | givenRoles[3]) |

givenRoles[4]) | givenRoles[6]) | givenRoles[7]) | givenRoles[8])) IN userMiles is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

 milesRoles[0] = FALSE

 milesRoles[1] = TRUE

165

 milesRoles[2] = TRUE

 milesRoles[3] = FALSE

 milesRoles[4] = FALSE

 milesRoles[5] = TRUE

 milesRoles[6] = FALSE

 milesRoles[7] = FALSE

 milesRoles[8] = FALSE

 milesRoles[9] = FALSE

-- specification AG (givenRoles[2] -> (AG !(((((givenRoles[0] | givenRoles[1]) | givenRoles[3]) |

givenRoles[4]) | givenRoles[5]) | givenRoles[7]) | givenRoles[8])) IN userMiles is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

 milesRoles[0] = FALSE

 milesRoles[1] = TRUE

 milesRoles[2] = TRUE

 milesRoles[3] = FALSE

166

 milesRoles[4] = FALSE

 milesRoles[5] = TRUE

 milesRoles[6] = FALSE

 milesRoles[7] = FALSE

 milesRoles[8] = FALSE

 milesRoles[9] = FALSE

- specification AG (givenRoles[5] -> (AG !(((((givenRoles[0] | givenRoles[2]) | givenRoles[7]) |

givenRoles[4]) | givenRoles[6]) | givenRoles[7]) | givenRoles[8])) IN userMiles is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 3.1 <-

 milesRoles[0] = FALSE

 milesRoles[1] = TRUE

 milesRoles[2] = TRUE

 milesRoles[3] = FALSE

 milesRoles[4] = FALSE

 milesRoles[5] = TRUE

167

 milesRoles[6] = FALSE

 milesRoles[7] = FALSE

 milesRoles[8] = FALSE

 milesRoles[9] = FALSE

 The model checker reports in the printout that three of the DSOD specifications,

workerB; workerC; and leaderB; failed within the model. As mentioned before, the specification

failures helps with the determining why the user‟s assigned roles did not allow the model to pass.

According to the traces, Miles was assigned the roles of workerB, as shown in variable

milesRoles[1], workerC, as shown in variable milesRoles[2], and leader, as shown in variable

milesRoles[5]. Since workerB and leaderB are not in conflict with each other, then the role

workerC is the malefactor. In order for the model to pass the specification, any conflicting roles

assigned to the user must be addressed.

SPEC AG (((userSimon.activeRole = supervisor) -> AG !((userMiles.activeRole =

supervisor) | (userSarah.activeRole = supervisor) | (userBuddy.activeRole = supervisor))))

 Along with the specifications asking the model checker to verify users‟ have not been

assigned conflicting pairs of roles, another set of specifications must be included in the main

module verifying that only one user is allowed to login as the supervisor. In the case study, the

supervisor role must be exclusively assigned to only one user. The above specification has the

model checker verify that if the user Simon is able to log in as the supervisor, then no other user

can as well. The CTL statement translates that in “all global” states, user Simon‟s activeRole

168

equal to supervisor implies that in “all global” states user Miles, Sarah, or Buddy can never log

in as supervisor as well.

SPEC AG (((userMiles.activeRole = supervisor) -> AG !((userSimon.activeRole =

supervisor) | (userSarah.activeRole = supervisor) | (userBuddy.activeRole = supervisor))))

SPEC AG (((userSarah.activeRole = supervisor) -> AG !((userSimon.activeRole =

supervisor) | (userMiles.activeRole = supervisor) | (userBuddy.activeRole = supervisor))))

SPEC AG (((userBuddy.activeRole = supervisor) -> AG !((userSimon.activeRole =

supervisor) | (userMiles.activeRole = supervisor) | (userSarah.activeRole = supervisor))))

Following user Simon‟s supervisor DSOD specification is a similar specification for each user

that exists in the model. Just like Simon‟s, their specifications has the model checker verify that

if a user is able to log in as the supervisor, no one else can.

 As a counterexample, user Buddy will be assigned the supervisor role while user Simon

is also still assigned as the supervisor.

-- specification AG (userSimon.activeRole = supervisor -> AG !((userMiles.activeRole =

supervisor | userSarah.activeRole = supervisor) | userBuddy.activeRole = supervisor)) is false

-- as demonstrated by the following execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

169

 userSimon.activeRole = loggedOut

 userBuddy.activeRole = loggedOut

-> Input: 1.2 <-

 _process_selector_ = userSimon

 running = FALSE

 userBuddy.running = FALSE

 userSimon.running = TRUE

-> State: 1.2 <-

 userSimon.activeRole = supervisor

-> Input: 1.3 <-

 _process_selector_ = userBuddy

 userBuddy.running = TRUE

 userSimon.running = FALSE

-> State: 1.3 <-

 userBuddy.activeRole = supervisor

-- specification AG (userBuddy.activeRole = supervisor -> AG !((userSimon.activeRole =

supervisor | userMiles.activeRole = supervisor) | userSarah.activeRole = supervisor)) is false

-- as demonstrated by the following execution sequence

170

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

 userSimon.activeRole = loggedOut

 userBuddy.activeRole = loggedOut

-> Input: 2.2 <-

 _process_selector_ = userBuddy

 running = FALSE

 userBuddy.running = TRUE

 userSimon.running = FALSE

-> State: 2.2 <-

 userBuddy.activeRole = supervisor

-> Input: 2.3 <-

 _process_selector_ = userSimon

 userBuddy.running = FALSE

 userSimon.running = TRUE

-> State: 2.3 <-

171

 userSimon.activeRole = supervisor

The model checker printout reports that users Simon and Buddy both failed the DSOD

specification requiring that only one user be allowed to login as the supervisor. The first trace

shows that from state 1.1 to state 1.3, user Simon‟s activeRole is equal to supervisor followed by

user Buddy. The second trace reveals in state 2.1 to 2.3 that user Buddy‟s activeRole becomes

supervisor followed by user Simon. In order for the model checker to pass the supervisor

DSOD, only one user can ever be allowed to login as the supervisor.

Chapter 7: Conclusion

In this thesis, formal modeling and model checking are used to verify the security

properties of social networks. These systems have become a major facilitator of communication

for people around the world. A person, from any location, can interact with others in as personal

a manner as they desire. Whether with an old acquaintance, or attempting to make a new one,

social networks allow users to associate with people of any interest, taste, past or background.

To allow users to express themselves to the fullest, many social networks allow their

clients to upload various contents onto their accounts. Any form of digital media, which is

usually pictures, videos, and text documents, can be displayed by users to share with others

inside of the network. Though all of the data is meant to be shared, not all users may wish for

the general public to be able to access their account‟s stored contents. In order to support this

desire, many social networks allow their users to not only dictate who can access their account

resources, but also regulate the types of actions that the other users can perform upon those

resources.

However, being that resource materials may consist of items of a sensitive nature,

unauthorized access must be prevented at all costs. Thus social networks have implemented

various security measures in order to ensure their users‟ resources are protected. The security

measure covered in this paper is that of RBAC. This security policy requires that all users must

receive a pre-defined role when operating inside of the system. This role is assigned a set of

permissions that will influence what actions a user can perform upon system objects. Whenever

a user attempts to interact with any object, their granted permissions are always analyzed to

determine what commands they can execute. A social network‟s RBAC implementation allows

173

for the creation of contact lists inside of the accounts that determines the assigning of roles to

other users. Whenever anyone accesses any of the account materials, their name is compared to

the entries of the contact list and returns a role prescribed for that user. The administrators of a

social network account determine which permissions each of these roles should have.

Depending upon which privileges were granted determines whether or not a user can write a

comment, view the contents of the account, or even know that these objects even exist.

 This thesis demonstrates how formal modeling and analysis of these security properties

can assist in evaluating the effectiveness of the protection offered. Once a model of the social

network and its RBAC protocols is created in the NuSMV input language, the NuSMV model

checker can determine whether or not the RBAC properties hold within the model. This is

accomplished by having each RBAC property translated into temporal logic specifications inside

of the model. The model checker then explores every possible state of the social network model

to determine if it is possible for the model to reach a state that violates any of the RBAC

specifications. Should any breaches of the needed security protocol exists, the model will then

output a trace showing which model components and specifications are the source of the conflict.

 The case study provided involves a model of a private social network with multiple

degrees of administrating both the project resources and the permissions to them. Which

permissions are dictated to each role is based upon a superior role‟s prerogatives and the

minimum duties that must be accomplished by each role. Though more than one project

resource exists in the social network, each role is usually only allowed to be able to have access

to one project resource and no other. The only exception to this case is the user with the

supervisor role that created the account and thus should have all root permissions to every

project that is uploaded.

174

 The counter examples, in which each RBAC policy is circumvented, show that the

model checker‟s CTL specifications can determine whether or not the desired access control

protocols of the account were upheld. In each example, the model checker reports which

specification failed and then prints a history trace showing how the model reached such an

unacceptable state. The shown specification tells us which access control policy the user was

able to ignore, and the trace tells the values and states of the modules that allowed the failure.

When examined together, weaknesses that allowed the user unauthorized access can be quickly

found. This can be seen in the first counter example, where users are allowed to execute

commands while not having the permissions to do so. After the model checker examined the

flawed model, the RBAC specifications reported that the model failed to uphold the necessary

RBAC properties. The model checker then outputs traces to show how the user was able to

bypass their given privileges. These pieces of evidence would lead one to the defective user

module that allowed users to execute commands while not analyzing their permissions. During

the development of a complex system, such as a social network, these counter examples can

assist in creating test cases for the implementation. The inclusion of formal modeling and model

checking can aid in fashioning an effective security policy that can be counted on to prevent

unwarranted access.

REFERENCES

Hogben, G., (2007, October).Security Issues and Recommendations for Online Social Networks.

European Network and Security Agency.

Bacon, J., Evans, D., Eyers, D., Migliavacc, M., Pietzuch, P., &Shand, B. (2010, July).Enforcing

End-to-end Application Security in the Cloud. www.cl.cam.ac.uk/~de239/mw10-

cloud_security.pdf

Migliavacca, M., Papagiannis, I., Eyers, D., Shand, B., Bacon, J., &Pietzuch, P. (2010,

November) Distributed Middleware Enforcement of Event Flow Security Policy.

ACM/IFIP/USENIX 11th International Middleware Conference Paper.

Carminati, B., & Ferrari, E. (2008, July). Privacy-Aware Collaborative Access Control in Web-

Based Social Networks. IFIP International Federation for Information Processing.

Clarke, E., Grumberg, O., Long, D., (1992, January). Model Checking and abstraction. In

Proceeding of the Nineteenth Annual ACM Symposium on Principles of Programming

Languages.

Clarke, E., Grumberg, O., Peled, D. (1999) Model Checking. MIT Press.

Huth, M., Ryan, M. (2004) Logic in Computer Science: Modeling and Reasoning about Systems.

Cambridge University Press.

Baier, C.,Katoen, J. (2008) Principles of Model Checking. MIT Press.

http://www.cl.cam.ac.uk/~de239/mw10-cloud_security.pdf
http://www.cl.cam.ac.uk/~de239/mw10-cloud_security.pdf

176

Wasserman, S., &Faust, K.(1994)Social Network Analysis : Methods and

Applications.Cambridge University Press.

Hogben, G.(1994) Security Issues of Social Networks.ENISA Position Paper, W3C Workshop

on the future of Social Networking.

Sandu, R. (2001) Future Directions in Role-Based Access Control Models. MMM-ACNS '01

Proceedings of the International Workshop on Information Assurance in Computer Networks:

Methods, Models, and Architectures for Network Security, pp. 22 -26

Sandu, R., Coyne, E., Feinstein, H., &Youman, C.(1994) Role-Based Access Control Models.

Annual Computer Security Application Conference.

Department of Defense.(1985, Dec) Department of Defense Trusted Computer System

Evaluation Criteria DOD 5200-28-STD, The Orange Book. Department of Defense.

Osborn, S., Sandu, R., &Munawer, Q. (2000, May) Configuring Role-Based Access Control to

Enforce Mandatory and Discretionary Access Control Policies. ACM Transactions on

Information and System Security, Vol 3, No. 2, pp. 85-106.

Thion, R., &Coulonde, S. (2006) Modeling and Inferring on Role-Based Access Control Polices

Using Data Dependencies. Database and Expert Systems Applications, pp. 914-923.

Castano, S., Fugini, M., Martella, G., &Samarati, P. (1995) Database Security. Addison-Wesly

Barker, S., &Stuckey, P. (2003) Flexible Access Control Policy Specification with Constraint

Logic Programming. ACM Transactions on Information System Security, Vol 6, Issue 4, 2003

Bertino, E., Catania, B., Ferrari, E., & Perlasca, P. (2003) A Logical Framework for reasoning

about access control models. ACM Transactions on Information System Security, Vol 6, Issue 1,

2003, pp. 71- 127

177

Cavada, R., Cimatti, A., Jochim, C., Keighren, G., Olivetti, E., Pistore, M., Roveri,

M.,&Tchaltsev, A. (2010) NuSMV 2.5 User Manual.

http://www.cs.cmu.edu/˜modelcheck/smv/smvmanual.r2.2.ps.

APPENDIX A: Example Model Coding

MODULE main

VAR

 movie : videoResource();

 movieReview : textFileResource();

 editorPermA : array 0..2 of boolean;

 editorPermB : array 0..1 of boolean;

 writerPermA : array 0..2 of boolean;

 writerPermB : array 0..1 of boolean;

 role1 : editorRole(movie, movieReview, editorPermA, editorPermB);

 role2 : writerRole(movie, movieReview, writerPermA, writerPermB);

 semEditor : semaphore();

 semWriter : semaphore();

 jamesRoles : array 0..2 of boolean;

 brianRoles : array 0..2 of boolean;

 jacobRoles : array 0..2 of boolean;

 willyRoles : array 0..2 of boolean;

179

 name1 : { None, James, Brian, Jacob, Willy};

 name2 : { None, James, Brian, Jacob, Willy};

 name3 : { None, James, Brian, Jacob, Willy};

 name4 : { None, James, Brian, Jacob, Willy};

 userJames : process userSessions(semEditor, semWriter, jamesRoles, name1);

 userBrian : process userSessions(semEditor, semWriter, brianRoles, name2);

 userJacob : process userSessions(semEditor, semWriter, jacobRoles, name3);

 userWilly : process userSessions(semEditor, semWriter, willyRoles, name4);

ASSIGN

 editorPermA[0] := TRUE;

 editorPermA[1] := TRUE;

 editorPermA[2] := TRUE;

 editorPermB[0] := FALSE;

 editorPermB[1] := FALSE;

 writerPermA[0] := FALSE;

 writerPermA[1] := FALSE;

 writerPermA[2] := FALSE;

180

 writerPermB[0] := TRUE;

 writerPermB[1] := TRUE;

 jamesRoles[0] := TRUE;

 jamesRoles[1] := TRUE;

 jamesRoles[2] := FALSE;

 brianRoles[0] := FALSE;

 brianRoles[1] := FALSE;

 brianRoles[2] := TRUE;

 jacobRoles[0] := TRUE;

 jacobRoles[1] := FALSE;

 jacobRoles[2] := FALSE;

 willyRoles[0] := TRUE;

 willyRoles[1] := FALSE;

 willyRoles[2] := FALSE;

 name1 := James;

 name2 := Brian;

 name3 := Jacob;

181

 name4 := Willy;

-- DSOD Specification

SPEC AG (((userJames.activeRole = editor) -> AG !((userBrian.activeRole = editor) |

(userJacob.activeRole = editor) | (userWilly.activeRole = editor))))

SPEC AG (((userBrian.activeRole = editor) -> AG !((userJames.activeRole = editor) |

(userJacob.activeRole = editor) | (userWilly.activeRole = editor))))

SPEC AG (((userJacob.activeRole = editor) -> AG !((userJames.activeRole = editor) |

(userBrian.activeRole = editor) | (userWilly.activeRole = editor))))

SPEC AG (((userWilly.activeRole = editor) -> AG !((userJames.activeRole = editor) |

(userBrian.activeRole = editor) | (userJacob.activeRole = editor))))

MODULE writerRole(movie, movieReview, writerPermA, writerPermB)

VAR

 userWriter : process User(movie, movieReview, writerPermA, writerPermB);

-- Minimum Duties Specification

SPEC AG((!writerPermA[0] & !writerPermA[1] & !writerPermA[2]) & (writerPermB[1]))

-- SSOD Specification

SPEC AG((writerPermA[0] -> AG !writerPermB[0]) & (writerPermB[0] -> AG

!writerPermB[0]))

182

MODULE editorRole(movie, movieReview, editorPermA, editorPermB)

VAR

 userEditor : process User(movie, movieReview, editorPermA, editorPermB);

 internPermA : array 0..2 of boolean;

 internPermB : array 0..1 of boolean;

 role3 : internRole(movie, movieReview, internPermA, internPermB);

ASSIGN

 internPermA[0] := TRUE;

 internPermA[1] := FALSE;

 internPermA[2] := FALSE;

 internPermB[0] := FALSE;

 internPermB[1] := FALSE;

-- Minimum Duties Specification

SPEC AG((editorPermA[2]) & (!editorPermB[0] & !editorPermB[1]))

183

--Role Hierarchy Specification

SPEC AG((!editorPermA[0]) -> AG !(internPermA[0]))

SPEC AG((editorPermA[0] & !editorPermA[1]) -> AG !(internPermA[0]))

SPEC AG((editorPermA[1] & !editorPermA[2]) -> AG !(internPermA[1]))

SPEC AG((editorPermA[2]) -> AG !(internPermA[2]))

--Role Hierarchy Specification

SPEC AG((!editorPermB[0]) -> AG !(internPermB[0]))

SPEC AG((editorPermB[0] & !editorPermB[1]) -> AG !(internPermB[0]))

SPEC AG((editorPermB[1]) -> AG !(internPermB[1]))

-- SSOD Specification

SPEC AG((editorPermA[0] -> AG !editorPermB[0]) & (editorPermB[0] -> AG

!editorPermB[0]))

MODULE internRole(movie, movieReview, internPermA, internPermB)

VAR

 userIntern : process User(movie, movieReview, internPermA, internPermB);

-- Minimum Duties Specification

SPEC AG((internPermA[0] & !internPermA[1] & !internPermA[2]) & (!internPermB[0] &

!internPermB[1]))

-- SSOD Specification

184

SPEC AG((internPermA[0] -> AG !internPermB[0]) | (internPermB[0] -> AG

!internPermA[0]))

MODULE videoResource()

VAR

 state : {Wait, Play, Copy, Delete};

ASSIGN

 init(state) := Wait;

MODULE textFileResource()

VAR

 state : {Wait, Read, Write};

ASSIGN

 init(state) := Wait;

MODULE User(movie, movieReview, permA, permB)

VAR

 myCommandA : {Wait, Play, Copy, Delete};

 myCommandB : {Wait, Read, Write};

185

ASSIGN

 init(myCommandA) := Wait;

 init(myCommandB) := Wait;

 next(myCommandA) := case

 (permA[0] & !permA[1] & !permA[2]) : {Wait, Play};

 (!permA[0] & permA[1] & !permA[2]) : {Wait, Copy};

 (permA[0] & permA[1] & !permA[2]) : {Wait, Play, Copy};

 (!permA[0] & !permA[1] & permA[2]) : {Wait, Delete};

 (permA[0] & !permA[1] & permA[2]) : {Wait, Play, Delete};

 (!permA[0] & permA[1] & permA[2]) : {Wait, Copy, Delete};

 (permA[0] & permA[1] & permA[2]) : {Wait, Play, Copy, Delete};

 TRUE : Wait;

 esac;

 next(movie.state) := case

 myCommandA != Wait : myCommandA;

 TRUE : Wait;

 esac;

 next(myCommandB) := case

186

 (permB[0] & !permB[1]) : {Wait, Read};

 --(!permB[0] & permB[1]) : {Wait, Write};

 (permB[0] & permB[1]) : {Wait, Read, Write};

 TRUE : Wait;

 esac;

 next(movieReview.state) := case

 myCommandB != Wait : myCommandB;

 TRUE : Wait;

 esac;

-- Access Control Specification

SPEC AG ! (permA[0] = FALSE & myCommandA = Play)

SPEC AG ! (permA[1] = FALSE & myCommandA = Copy)

SPEC AG ! (permA[2] = FALSE & myCommandA = Delete)

SPEC AG ! (permB[0] = FALSE & myCommandB = Read)

SPEC AG ! (permB[1] = FALSE & myCommandB = Write)

-- Permission Hierarchy Specification

SPEC AG ((permA[1]) -> (permA[0]))

SPEC AG ((permA[2]) -> (permA[0] & permA[1]))

SPEC AG ((permB[1]) -> (permB[0]))

187

MODULE userSessions(semEditor, semWriter, givenRoles, myName)

VAR

 activeRole : {loggedOut, intern, editor, writer};

ASSIGN

 init(activeRole) := {loggedOut};

 next(activeRole) := case

 (givenRoles[2] & !semWriter.sema) : {writer};

 (givenRoles[1] & !semEditor.sema) : {editor};

 (givenRoles[0]) : {intern};

 TRUE : loggedOut;

 esac;

 next(semEditor.sema) := case

 activeRole = editor : TRUE;

 activeRole != editor & semEditor.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 next(semEditor.userName) := case

 activeRole = editor : myName;

188

 TRUE : None;

 esac;

 next(semWriter.sema) := case

 activeRole = writer : TRUE;

 activeRole != writer & semEditor.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 next(semWriter.userName) := case

 activeRole = writer : myName;

 TRUE : None;

 esac;

-- DSOD Specification

SPEC AG (givenRoles[1] -> AG !(givenRoles[2]))

SPEC AG (givenRoles[2] -> AG !(givenRoles[1]))

MODULE semaphore()

VAR

 sema : boolean;

189

 userName : { None, James, Brian, Jacob, Willy};

ASSIGN

 init(sema) := FALSE;

 init(userName) := None;

APPENDIX B: Case Study SMV Coding

MODULE main

VAR

 projectA : Resource();

 projectB : Resource();

 projectC : Resource();

 projectD : Resource();

 supervisorPermA : array 0..3 of boolean;

 supervisorPermB : array 0..3 of boolean;

 supervisorPermC : array 0..3 of boolean;

 supervisorPermD : array 0..3 of boolean;

 role1 : Supervisor(projectA, projectB, projectC, projectD, supervisorPermA, supervisorPermB,

supervisorPermC, supervisorPermD);

 semLA : semaphore();

 semLB : semaphore();

 semLC : semaphore();

 semLD : semaphore();

 semS : semaphore();

191

 simonRoles : array 0..8 of boolean;

 milesRoles : array 0..8 of boolean;

 sarahRoles : array 0..8 of boolean;

 buddyRoles : array 0..8 of boolean;

 name1 : { None, Simon, Miles, Sarah, Buddy};

 name2 : { None, Simon, Miles, Sarah, Buddy};

 name3 : { None, Simon, Miles, Sarah, Buddy};

 name4 : { None, Simon, Miles, Sarah, Buddy};

 userSimon : process userSession(semLA, semLB, semLC, semLD, semS, simonRoles,

name1);

 userMiles : process userSession(semLA, semLB, semLC, semLD, semS, milesRoles, name2);

 userSarah : process userSession(semLA, semLB, semLC, semLD, semS, sarahRoles, name3);

 userBuddy : process userSession(semLA, semLB, semLC, semLD, semS, buddyRoles,

name4);

ASSIGN

 supervisorPermA[0] := TRUE;

 supervisorPermA[1] := TRUE;

 supervisorPermA[2] := TRUE;

 supervisorPermA[3] := TRUE;

 supervisorPermB[0] := TRUE;

192

 supervisorPermB[1] := TRUE;

 supervisorPermB[2] := TRUE;

 supervisorPermB[3] := TRUE;

 supervisorPermC[0] := TRUE;

 supervisorPermC[1] := TRUE;

 supervisorPermC[2] := TRUE;

 supervisorPermC[3] := TRUE;

 supervisorPermD[0] := TRUE;

 supervisorPermD[1] := TRUE;

 supervisorPermD[2] := TRUE;

 supervisorPermD[3] := TRUE;

 name1 := Simon;

 name2 := Miles;

 name3 := Sarah;

 name4 := Buddy;

 simonRoles[0] := TRUE;

 simonRoles[1] := TRUE;

 simonRoles[2] := TRUE;

 simonRoles[3] := TRUE;

193

 simonRoles[4] := TRUE;

 simonRoles[5] := TRUE;

 simonRoles[6] := TRUE;

 simonRoles[7] := TRUE;

 simonRoles[8] := TRUE;

 milesRoles[0] := FALSE;

 milesRoles[1] := TRUE;

 milesRoles[2] := FALSE;

 milesRoles[3] := FALSE;

 milesRoles[4] := FALSE;

 milesRoles[5] := TRUE;

 milesRoles[6] := FALSE;

 milesRoles[7] := FALSE;

 milesRoles[8] := FALSE;

 sarahRoles[0] := FALSE;

 sarahRoles[1] := FALSE;

 sarahRoles[2] := TRUE;

 sarahRoles[3] := FALSE;

 sarahRoles[4] := FALSE;

 sarahRoles[5] := FALSE;

 sarahRoles[6] := TRUE;

194

 sarahRoles[7] := FALSE;

 sarahRoles[8] := FALSE;

 buddyRoles[0] := FALSE;

 buddyRoles[1] := FALSE;

 buddyRoles[2] := FALSE;

 buddyRoles[3] := TRUE;

 buddyRoles[4] := FALSE;

 buddyRoles[5] := FALSE;

 buddyRoles[6] := FALSE;

 buddyRoles[7] := TRUE;

 buddyRoles[8] := FALSE;

-- DSOD specification

SPEC AG (((userSimon.activeRole = supervisor) -> AG !((userMiles.activeRole =

supervisor) | (userSarah.activeRole = supervisor) | (userBuddy.activeRole = supervisor))))

SPEC AG (((userMiles.activeRole = supervisor) -> AG !((userSimon.activeRole =

supervisor) | (userSarah.activeRole = supervisor) | (userBuddy.activeRole = supervisor))))

SPEC AG (((userSarah.activeRole = supervisor) -> AG !((userSimon.activeRole =

supervisor) | (userMiles.activeRole = supervisor) | (userBuddy.activeRole = supervisor))))

SPEC AG (((userBuddy.activeRole = supervisor) -> AG !((userSimon.activeRole =

supervisor) | (userMiles.activeRole = supervisor) | (userSarah.activeRole = supervisor))))

MODULE semaphore()

195

VAR

 -- If sema is False, a user is not using the exclusive role and may login with the role. If sema is

True, a user is using the exclusive role and may not login with the role.

 sema : boolean;

 -- Variable used to store the name of the user that activated the semaphore.

 userName : { None, Simon, Miles, Sarah, Buddy};

ASSIGN

 init(sema) := FALSE;

 init(userName) := None;

MODULE Resource()

VAR

 state : {Wait, Read, Write, Document, Schedule};

ASSIGN

 init(state) := {Wait};

MODULE Supervisor(projectA, projectB, projectC, projectD, supervisorPermA,

supervisorPermB,supervisorPermC, supervisorPermD)

VAR

 sectApermA : array 0..3 of boolean;

 sectApermB : array 0..3 of boolean;

 sectApermC : array 0..3 of boolean;

196

 sectApermD : array 0..3 of boolean;

 sectBpermA : array 0..3 of boolean;

 sectBpermB : array 0..3 of boolean;

 sectBpermC : array 0..3 of boolean;

 sectBpermD : array 0..3 of boolean;

 sectCpermA : array 0..3 of boolean;

 sectCpermB : array 0..3 of boolean;

 sectCpermC : array 0..3 of boolean;

 sectCpermD : array 0..3 of boolean;

 sectDpermA : array 0..3 of boolean;

 sectDpermB : array 0..3 of boolean;

 sectDpermC : array 0..3 of boolean;

 sectDpermD : array 0..3 of boolean;

 userSupervisor : process User(projectA, projectB, projectC, projectD, supervisorPermA,

supervisorPermB, supervisorPermC, supervisorPermD);

 userLeaderA : sectionLeaderA(projectA, projectB, projectC, projectD, sectApermA,

sectApermB, sectApermC, sectApermD);

 userLeaderB : sectionLeaderB(projectA, projectB, projectC, projectD, sectBpermA,

sectBpermB, sectBpermC, sectBpermD);

197

 userLeaderC : sectionLeaderC(projectA, projectB, projectC, projectD, sectCpermA,

sectCpermB, sectCpermC, sectCpermD);

 userLeaderD : sectionLeaderD(projectA, projectB, projectC, projectD, sectDpermA,

sectDpermB, sectDpermC, sectDpermD);

ASSIGN

 sectApermA[0] := TRUE;

 sectApermA[1] := TRUE;

 sectApermA[2] := TRUE;

 sectApermA[3] := FALSE;

 sectApermB[0] := FALSE;

 sectApermB[1] := FALSE;

 sectApermB[2] := FALSE;

 sectApermB[3] := FALSE;

 sectApermC[0] := FALSE;

 sectApermC[1] := FALSE;

 sectApermC[2] := FALSE;

 sectApermC[3] := FALSE;

 sectApermD[0] := FALSE;

 sectApermD[1] := FALSE;

198

 sectApermD[2] := FALSE;

 sectApermD[3] := FALSE;

--

 sectBpermA[0] := FALSE;

 sectBpermA[1] := FALSE;

 sectBpermA[2] := FALSE;

 sectBpermA[3] := FALSE;

 sectBpermB[0] := TRUE;

 sectBpermB[1] := TRUE;

 sectBpermB[2] := TRUE;

 sectBpermB[3] := FALSE;

 sectBpermC[0] := FALSE;

 sectBpermC[1] := FALSE;

 sectBpermC[2] := FALSE;

 sectBpermC[3] := FALSE;

 sectBpermD[0] := FALSE;

 sectBpermD[1] := FALSE;

 sectBpermD[2] := FALSE;

 sectBpermD[3] := FALSE;

--

199

 sectCpermA[0] := FALSE;

 sectCpermA[1] := FALSE;

 sectCpermA[2] := FALSE;

 sectCpermA[3] := FALSE;

 sectCpermB[0] := FALSE;

 sectCpermB[1] := FALSE;

 sectCpermB[2] := FALSE;

 sectCpermB[3] := FALSE;

 sectCpermC[0] := TRUE;

 sectCpermC[1] := TRUE;

 sectCpermC[2] := TRUE;

 sectCpermC[3] := FALSE;

 sectCpermD[0] := FALSE;

 sectCpermD[1] := FALSE;

 sectCpermD[2] := FALSE;

 sectCpermD[3] := FALSE;

--

 sectDpermA[0] := FALSE;

 sectDpermA[1] := FALSE;

 sectDpermA[2] := FALSE;

200

 sectDpermA[3] := FALSE;

 sectDpermB[0] := FALSE;

 sectDpermB[1] := FALSE;

 sectDpermB[2] := FALSE;

 sectDpermB[3] := FALSE;

 sectDpermC[0] := FALSE;

 sectDpermC[1] := FALSE;

 sectDpermC[2] := FALSE;

 sectDpermC[3] := FALSE;

 sectDpermD[0] := TRUE;

 sectDpermD[1] := TRUE;

 sectDpermD[2] := TRUE;

 sectDpermD[3] := FALSE;

-- Minimum Duties

SPEC AG((supervisorPermA[3]) & (supervisorPermB[3]) & (supervisorPermC[3]) &

(supervisorPermD[3]))

--Role Hierarchy

SPEC AG((!supervisorPermA[0]) -> AG !((sectApermA[0]) | (sectBpermA[0]) |

(sectCpermA[0]) | (sectDpermA[0])))

201

SPEC AG((supervisorPermA[0] & !supervisorPermA[1]) -> AG !((sectApermA[0]) |

(sectBpermA[0]) | (sectCpermA[0]) | (sectDpermA[0])))

SPEC AG((supervisorPermA[1] & !supervisorPermA[2]) -> AG !((sectApermA[1]) |

(sectBpermA[1]) | (sectCpermA[1]) | (sectDpermA[1])))

SPEC AG((supervisorPermA[2] & !supervisorPermA[3]) -> AG !((sectApermA[2]) |

(sectBpermA[2]) | (sectCpermA[2]) | (sectDpermA[2])))

SPEC AG((supervisorPermA[3]) -> AG !((sectApermA[3]) | (sectBpermA[3]) |

(sectCpermA[3]) | (sectDpermA[3])))

SPEC AG((!supervisorPermB[0]) -> AG !((sectApermB[0]) | (sectBpermB[0]) |

(sectCpermB[0]) | (sectDpermB[0])))

SPEC AG((supervisorPermB[0] & !supervisorPermB[1]) -> AG !((sectApermB[0]) |

(sectBpermB[0]) | (sectCpermB[0]) | (sectDpermB[0])))

SPEC AG((supervisorPermB[1] & !supervisorPermB[2]) -> AG !((sectApermB[1]) |

(sectBpermB[1]) | (sectCpermB[1]) | (sectDpermB[1])))

SPEC AG((supervisorPermB[2] & !supervisorPermB[3]) -> AG !((sectApermB[2]) |

(sectBpermB[2]) | (sectCpermB[2]) | (sectDpermB[2])))

SPEC AG((supervisorPermB[3]) -> AG !((sectApermB[3]) | (sectBpermB[3]) |

(sectCpermB[3]) | (sectDpermB[3])))

SPEC AG((!supervisorPermC[0]) -> AG !((sectApermC[0]) | (sectBpermC[0]) |

(sectCpermC[0]) | (sectDpermC[0])))

SPEC AG((supervisorPermC[0] & !supervisorPermC[1]) -> AG !((sectApermC[0]) |

(sectBpermC[0]) | (sectCpermC[0]) | (sectDpermC[0])))

SPEC AG((supervisorPermC[1] & !supervisorPermC[2]) -> AG !((sectApermC[1]) |

(sectBpermC[1]) | (sectCpermC[1]) | (sectDpermC[1])))

SPEC AG((supervisorPermC[2] & !supervisorPermC[3]) -> AG !((sectApermC[2]) |

(sectBpermC[2]) | (sectCpermC[2]) | (sectDpermC[2])))

SPEC AG((supervisorPermC[3]) -> AG !((sectApermC[3]) | (sectBpermC[3]) |

(sectCpermC[3]) | (sectDpermC[3])))

202

SPEC AG((!supervisorPermD[0]) -> AG !((sectApermD[0]) | (sectBpermD[0]) |

(sectCpermD[0]) | (sectDpermD[0])))

SPEC AG((supervisorPermD[0] & !supervisorPermD[1]) -> AG !((sectApermD[0]) |

(sectBpermD[0]) | (sectCpermD[0]) | (sectDpermD[0])))

SPEC AG((supervisorPermD[1] & !supervisorPermD[2]) -> AG !((sectApermD[1]) |

(sectBpermD[1]) | (sectCpermD[1]) | (sectDpermD[1])))

SPEC AG((supervisorPermD[2] & !supervisorPermD[3]) -> AG !((sectApermD[2]) |

(sectBpermD[2]) | (sectCpermD[2]) | (sectDpermD[2])))

SPEC AG((supervisorPermD[3]) -> AG !((sectApermD[3]) | (sectBpermD[3]) |

(sectCpermD[3]) | (sectDpermD[3])))

-- Double SSOD 2

SPEC AG(((sectApermA[2]) -> AG (!sectBpermA[2] & !sectCpermA[2] & !sectDpermA[2]))

& ((sectBpermA[2]) -> AG (!sectApermA[2] & !sectCpermA[2] & !sectDpermA[2])) &

((sectCpermA[2]) -> AG (!sectApermA[2] & !sectBpermA[2] & !sectDpermA[2])) &

((sectDpermA[2]) -> AG (!sectApermA[2] & !sectBpermA[2] & !sectCpermA[2])))

SPEC AG(((sectApermB[2]) -> AG (!sectBpermB[2] & !sectCpermB[2] & !sectDpermB[2]))

& ((sectBpermB[2]) -> AG (!sectApermB[2] & !sectCpermB[2] & !sectDpermB[2])) &

((sectCpermB[2]) -> AG (!sectApermB[2] & !sectBpermB[2] & !sectDpermB[2])) &

((sectDpermB[2]) -> AG (!sectApermB[2] & !sectBpermB[2] & !sectCpermB[2])))

SPEC AG(((sectApermC[2]) -> AG (!sectBpermC[2] & !sectCpermC[2] & !sectDpermC[2]))

& ((sectBpermC[2]) -> AG (!sectApermC[2] & !sectCpermC[2] & !sectDpermC[2])) &

((sectCpermC[2]) -> AG (!sectApermC[2] & !sectBpermC[2] & !sectDpermC[2])) &

((sectDpermC[2]) -> AG (!sectApermC[2] & !sectBpermC[2] & !sectCpermC[2])))

SPEC AG(((sectApermD[2]) -> AG (!sectBpermD[2] & !sectCpermD[2] & !sectDpermD[2]))

& ((sectBpermD[2]) -> AG (!sectApermD[2] & !sectCpermD[2] & !sectDpermD[2])) &

((sectCpermD[2]) -> AG (!sectApermD[2] & !sectBpermD[2] & !sectDpermD[2])) &

((sectDpermD[2]) -> AG (!sectApermD[2] & !sectBpermD[2] & !sectCpermD[2])))

-- END OF SUPERVISOR

203

MODULE sectionLeaderA(projectA, projectB, projectC, projectD, sectApermA,

sectApermB,sectApermC, sectApermD)

VAR

 workerpermA : array 0..3 of boolean;

 workerpermB : array 0..3 of boolean;

 workerpermC : array 0..3 of boolean;

 workerpermD : array 0..3 of boolean;

 userLeaderA : process User(projectA, projectB, projectC, projectD, sectApermA, sectApermB,

sectApermC, sectApermD);

 workerForA : workerA(projectA, projectB, projectC, projectD, workerpermA, workerpermB,

workerpermC, workerpermD);

ASSIGN

 workerpermA[0] := TRUE;

 workerpermA[1] := TRUE;

 workerpermA[2] := FALSE;

 workerpermA[3] := FALSE;

 workerpermB[0] := FALSE;

 workerpermB[1] := FALSE;

 workerpermB[2] := FALSE;

204

 workerpermB[3] := FALSE;

 workerpermC[0] := FALSE;

 workerpermC[1] := FALSE;

 workerpermC[2] := FALSE;

 workerpermC[3] := FALSE;

 workerpermD[0] := FALSE;

 workerpermD[1] := FALSE;

 workerpermD[2] := FALSE;

 workerpermD[3] := FALSE;

-- Minimum Duties

SPEC AG((sectApermA[2] & !sectApermA[3]) | (sectApermB[2] &!sectApermB[3]) |

(sectApermC[2] & !sectApermC[3]) | (sectApermD[2] & !sectApermD[3]))

-- Static Separation of Duties

SPEC AG(((sectApermA[2]) -> AG (!sectApermB[2] & !sectApermC[2] & !sectApermD[2]))

& ((sectApermB[2]) -> AG (!sectApermA[2] & !sectApermC[2] & !sectApermD[2])) &

((sectApermC[2]) -> AG (!sectApermA[2] & !sectApermB[2] & !sectApermD[2])) &

((sectApermD[2]) -> AG (!sectApermA[2] & !sectApermB[2] & !sectApermC[2])))

--Role Hierarchy

SPEC AG(!(sectApermA[0]) -> AG !(workerpermA[0]))

SPEC AG((sectApermA[0] & !sectApermA[1]) -> AG !(workerpermA[0]))

205

SPEC AG((sectApermA[1] & !sectApermA[2]) -> AG !(workerpermA[1]))

SPEC AG((sectApermA[2] & !sectApermA[3]) -> AG !(workerpermA[2]))

SPEC AG((sectApermA[3]) -> AG !(workerpermA[3]))

SPEC AG(!(sectApermB[0]) -> AG !(workerpermB[0]))

SPEC AG((sectApermB[0] & !sectApermB[1]) -> AG !(workerpermB[0]))

SPEC AG((sectApermB[1] & !sectApermB[2]) -> AG !(workerpermB[1]))

SPEC AG((sectApermB[2] & !sectApermB[3]) -> AG !(workerpermB[2]))

SPEC AG((sectApermB[3]) -> AG !(workerpermB[3]))

SPEC AG(!(sectApermC[0]) -> AG !(workerpermC[0]))

SPEC AG((sectApermC[0] & !sectApermC[1]) -> AG !(workerpermC[0]))

SPEC AG((sectApermC[1] & !sectApermC[2]) -> AG !(workerpermC[1]))

SPEC AG((sectApermC[2] & !sectApermC[3]) -> AG !(workerpermC[2]))

SPEC AG((sectApermC[3]) -> AG !(workerpermC[3]))

SPEC AG(!(sectApermD[0]) -> AG !(workerpermD[0]))

SPEC AG((sectApermD[0] & !sectApermD[1]) -> AG !(workerpermD[0]))

SPEC AG((sectApermD[1] & !sectApermD[2]) -> AG !(workerpermD[1]))

SPEC AG((sectApermD[2] & !sectApermD[3]) -> AG !(workerpermD[2]))

SPEC AG((sectApermD[3]) -> AG !(workerpermD[3]))

----------------- End of sectionLeader A

206

MODULE sectionLeaderB(projectA, projectB, projectC, projectD, sectBpermA,

sectBpermB,sectBpermC, sectBpermD)

VAR

 workerpermA : array 0..3 of boolean;

 workerpermB : array 0..3 of boolean;

 workerpermC : array 0..3 of boolean;

 workerpermD : array 0..3 of boolean;

 userLeaderB : process User(projectA, projectB, projectC, projectD, sectBpermA, sectBpermB,

sectBpermC, sectBpermD);

 workerForB : workerB(projectA, projectB, projectC, projectD, workerpermA, workerpermB,

workerpermC, workerpermD);

ASSIGN

 workerpermA[0] := FALSE;

 workerpermA[1] := FALSE;

 workerpermA[2] := FALSE;

 workerpermA[3] := FALSE;

 workerpermB[0] := TRUE;

 workerpermB[1] := TRUE;

 workerpermB[2] := FALSE;

 workerpermB[3] := FALSE;

207

 workerpermC[0] := FALSE;

 workerpermC[1] := FALSE;

 workerpermC[2] := FALSE;

 workerpermC[3] := FALSE;

 workerpermD[0] := FALSE;

 workerpermD[1] := FALSE;

 workerpermD[2] := FALSE;

 workerpermD[3] := FALSE;

-- Minimum Duties

SPEC AG((sectBpermA[2] & !sectBpermA[3]) | (sectBpermB[2] &!sectBpermB[3]) |

(sectBpermC[2] & !sectBpermC[3]) | (sectBpermD[2] & !sectBpermD[3]))

-- Static Separation of Duties

SPEC AG(((sectBpermA[2]) -> AG (!sectBpermB[2] & !sectBpermC[2] & !sectBpermD[2])) &

((sectBpermB[2]) -> AG (!sectBpermA[2] & !sectBpermC[2] & !sectBpermD[2])) &

((sectBpermC[2]) -> AG (!sectBpermA[2] & !sectBpermB[2] & !sectBpermD[2])) &

((sectBpermD[2]) -> AG (!sectBpermA[2] & !sectBpermB[2] & !sectBpermC[2])))

--Role Hierarchy

SPEC AG(!(sectBpermA[0]) -> AG !(workerpermA[0]))

SPEC AG((sectBpermA[0] & !sectBpermA[1]) -> AG !(workerpermA[0]))

SPEC AG((sectBpermA[1] & !sectBpermA[2]) -> AG !(workerpermA[1]))

SPEC AG((sectBpermA[2] & !sectBpermA[3]) -> AG !(workerpermA[2]))

208

SPEC AG((sectBpermA[3]) -> AG !(workerpermA[3]))

SPEC AG(!(sectBpermB[0]) -> AG !(workerpermB[0]))

SPEC AG((sectBpermB[0] & !sectBpermB[1]) -> AG !(workerpermB[0]))

SPEC AG((sectBpermB[1] & !sectBpermB[2]) -> AG !(workerpermB[1]))

SPEC AG((sectBpermB[2] & !sectBpermB[3]) -> AG !(workerpermB[2]))

SPEC AG((sectBpermB[3]) -> AG !(workerpermB[3]))

SPEC AG(!(sectBpermC[0]) -> AG !(workerpermC[0]))

SPEC AG((sectBpermC[0] & !sectBpermC[1]) -> AG !(workerpermC[0]))

SPEC AG((sectBpermC[1] & !sectBpermC[2]) -> AG !(workerpermC[1]))

SPEC AG((sectBpermC[2] & !sectBpermC[3]) -> AG !(workerpermC[2]))

SPEC AG((sectBpermC[3]) -> AG !(workerpermC[3]))

SPEC AG(!(sectBpermD[0]) -> AG !(workerpermD[0]))

SPEC AG((sectBpermD[0] & !sectBpermD[1]) -> AG !(workerpermD[0]))

SPEC AG((sectBpermD[1] & !sectBpermD[2]) -> AG !(workerpermD[1]))

SPEC AG((sectBpermD[2] & !sectBpermD[3]) -> AG !(workerpermD[2]))

SPEC AG((sectBpermD[3]) -> AG !(workerpermD[3]))

----------------- End of sectionLeader B

209

MODULE sectionLeaderC(projectA, projectB, projectC, projectD, sectCpermA,

sectCpermB,sectCpermC, sectCpermD)

VAR

 workerpermA : array 0..3 of boolean;

 workerpermB : array 0..3 of boolean;

 workerpermC : array 0..3 of boolean;

 workerpermD : array 0..3 of boolean;

 userLeaderC : process User(projectA, projectB, projectC, projectD, sectCpermA, sectCpermB,

sectCpermC, sectCpermD);

 workerForC : workerC(projectA, projectB, projectC, projectD, workerpermA, workerpermB,

workerpermC, workerpermD);

ASSIGN

 workerpermA[0] := FALSE;

 workerpermA[1] := FALSE;

 workerpermA[2] := FALSE;

 workerpermA[3] := FALSE;

 workerpermB[0] := FALSE;

 workerpermB[1] := FALSE;

 workerpermB[2] := FALSE;

 workerpermB[3] := FALSE;

 workerpermC[0] := TRUE;

210

 workerpermC[1] := TRUE;

 workerpermC[2] := FALSE;

 workerpermC[3] := FALSE;

 workerpermD[0] := FALSE;

 workerpermD[1] := FALSE;

 workerpermD[2] := FALSE;

 workerpermD[3] := FALSE;

-- Minimum Duties

SPEC AG((sectCpermA[2] & !sectCpermA[3]) | (sectCpermB[2] &!sectCpermB[3]) |

(sectCpermC[2] & !sectCpermC[3]) | (sectCpermD[2] & !sectCpermD[3]))

-- Static Separation of Duties

SPEC AG(((sectCpermA[2]) -> AG (!sectCpermB[2] & !sectCpermC[2] & !sectCpermD[2])) &

((sectCpermB[2]) -> AG (!sectCpermA[2] & !sectCpermC[2] & !sectCpermD[2])) &

((sectCpermC[2]) -> AG (!sectCpermA[2] & !sectCpermB[2] & !sectCpermD[2])) &

((sectCpermD[2]) -> AG (!sectCpermA[2] & !sectCpermB[2] & !sectCpermC[2])))

--Role Hierarchy

SPEC AG(!(sectCpermA[0]) -> AG !(workerpermA[0]))

SPEC AG((sectCpermA[0] & !sectCpermA[1]) -> AG !(workerpermA[0]))

SPEC AG((sectCpermA[1] & !sectCpermA[2]) -> AG !(workerpermA[1]))

SPEC AG((sectCpermA[2] & !sectCpermA[3]) -> AG !(workerpermA[2]))

SPEC AG((sectCpermA[3]) -> AG !(workerpermA[3]))

211

SPEC AG(!(sectCpermB[0]) -> AG !(workerpermB[0]))

SPEC AG((sectCpermB[0] & !sectCpermB[1]) -> AG !(workerpermB[0]))

SPEC AG((sectCpermB[1] & !sectCpermB[2]) -> AG !(workerpermB[1]))

SPEC AG((sectCpermB[2] & !sectCpermB[3]) -> AG !(workerpermB[2]))

SPEC AG((sectCpermB[3]) -> AG !(workerpermB[3]))

SPEC AG(!(sectCpermC[0]) -> AG !(workerpermC[0]))

SPEC AG((sectCpermC[0] & !sectCpermC[1]) -> AG !(workerpermC[0]))

SPEC AG((sectCpermC[1] & !sectCpermC[2]) -> AG !(workerpermC[1]))

SPEC AG((sectCpermC[2] & !sectCpermC[3]) -> AG !(workerpermC[2]))

SPEC AG((sectCpermC[3]) -> AG !(workerpermC[3]))

SPEC AG(!(sectCpermD[0]) -> AG !(workerpermD[0]))

SPEC AG((sectCpermD[0] & !sectCpermD[1]) -> AG !(workerpermD[0]))

SPEC AG((sectCpermD[1] & !sectCpermD[2]) -> AG !(workerpermD[1]))

SPEC AG((sectCpermD[2] & !sectCpermD[3]) -> AG !(workerpermD[2]))

SPEC AG((sectCpermD[3]) -> AG !(workerpermD[3]))

----------------- End of sectionLeader C

MODULE sectionLeaderD(projectA, projectB, projectC, projectD, sectDpermA,

sectDpermB,sectDpermC, sectDpermD)

212

VAR

 workerpermA : array 0..3 of boolean;

 workerpermB : array 0..3 of boolean;

 workerpermC : array 0..3 of boolean;

 workerpermD : array 0..3 of boolean;

 userLeaderD : process User(projectA, projectB, projectC, projectD, sectDpermA, sectDpermB,

sectDpermC, sectDpermD);

 workerForD : workerD(projectA, projectB, projectC, projectD, workerpermA, workerpermB,

workerpermC, workerpermD);

ASSIGN

 workerpermA[0] := FALSE;

 workerpermA[1] := FALSE;

 workerpermA[2] := FALSE;

 workerpermA[3] := FALSE;

 workerpermB[0] := FALSE;

 workerpermB[1] := FALSE;

 workerpermB[2] := FALSE;

 workerpermB[3] := FALSE;

 workerpermC[0] := FALSE;

 workerpermC[1] := FALSE;

 workerpermC[2] := FALSE;

213

 workerpermC[3] := FALSE;

 workerpermD[0] := TRUE;

 workerpermD[1] := TRUE;

 workerpermD[2] := FALSE;

 workerpermD[3] := FALSE;

-- Minimum Duties

SPEC AG((sectDpermA[2] & !sectDpermA[3]) | (sectDpermB[2] &!sectDpermB[3]) |

(sectDpermC[2] & !sectDpermC[3]) | (sectDpermD[2] & !sectDpermD[3]))

-- Static Separation of Duties

SPEC AG(((sectDpermA[2]) -> AG (!sectDpermB[2] & !sectDpermC[2] & !sectDpermD[2]))

& ((sectDpermB[2]) -> AG (!sectDpermA[2] & !sectDpermC[2] & !sectDpermD[2])) &

((sectDpermC[2]) -> AG (!sectDpermA[2] & !sectDpermB[2] & !sectDpermD[2])) &

((sectDpermD[2]) -> AG (!sectDpermA[2] & !sectDpermB[2] & !sectDpermC[2])))

--Role Hierarchy

SPEC AG(!(sectDpermA[0]) -> AG !(workerpermA[0]))

SPEC AG((sectDpermA[0] & !sectDpermA[1]) -> AG !(workerpermA[0]))

SPEC AG((sectDpermA[1] & !sectDpermA[2]) -> AG !(workerpermA[1]))

SPEC AG((sectDpermA[2] & !sectDpermA[3]) -> AG !(workerpermA[2]))

SPEC AG((sectDpermA[3]) -> AG !(workerpermA[3]))

SPEC AG(!(sectDpermB[0]) -> AG !(workerpermB[0]))

214

SPEC AG((sectDpermB[0] & !sectDpermB[1]) -> AG !(workerpermB[0]))

SPEC AG((sectDpermB[1] & !sectDpermB[2]) -> AG !(workerpermB[1]))

SPEC AG((sectDpermB[2] & !sectDpermB[3]) -> AG !(workerpermB[2]))

SPEC AG((sectDpermB[3]) -> AG !(workerpermB[3]))

SPEC AG(!(sectDpermC[0]) -> AG !(workerpermC[0]))

SPEC AG((sectDpermC[0] & !sectDpermC[1]) -> AG !(workerpermC[0]))

SPEC AG((sectDpermC[1] & !sectDpermC[2]) -> AG !(workerpermC[1]))

SPEC AG((sectDpermC[2] & !sectDpermC[3]) -> AG !(workerpermC[2]))

SPEC AG((sectDpermC[3]) -> AG !(workerpermC[3]))

SPEC AG(!(sectDpermD[0]) -> AG !(workerpermD[0]))

SPEC AG((sectDpermD[0] & !sectDpermD[1]) -> AG !(workerpermD[0]))

SPEC AG((sectDpermD[1] & !sectDpermD[2]) -> AG !(workerpermD[1]))

SPEC AG((sectDpermD[2] & !sectDpermD[3]) -> AG !(workerpermD[2]))

SPEC AG((sectDpermD[3]) -> AG !(workerpermD[3]))

----------------- End of sectionLeader D

MODULE workerA(projectA, projectB, projectC, projectD, workerpermA,

workerpermB,workerpermC, workerpermD)

VAR

 userWorkerA : process User(projectA, projectB, projectC, projectD, workerpermA,

workerpermB, workerpermC, workerpermD);

215

-- Minimum Duties

SPEC AG((workerpermA[1] & !workerpermA[2]) | (workerpermB[1] &!workerpermB[2]) |

(workerpermC[1] & !workerpermC[2]) | (workerpermD[1] & !workerpermD[2]))

-- Static Separation of Duties

SPEC AG(((workerpermA[1]) -> AG (!workerpermB[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermB[1]) -> AG (!workerpermA[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermC[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermD[1])) & ((workerpermD[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermC[1])))

MODULE workerB(projectA, projectB, projectC, projectD, workerpermA,

workerpermB,workerpermC, workerpermD)

VAR

 userWorkerB : process User(projectA, projectB, projectC, projectD, workerpermA,

workerpermB, workerpermC, workerpermD);

-- Minimum Duties

SPEC AG((workerpermA[1] & !workerpermA[2]) | (workerpermB[1] &!workerpermB[2]) |

(workerpermC[1] & !workerpermC[2]) | (workerpermD[1] & !workerpermD[2]))

-- Static Separation of Duties

SPEC AG(((workerpermA[1]) -> AG (!workerpermB[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermB[1]) -> AG (!workerpermA[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermC[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermD[1])) & ((workerpermD[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermC[1])))

216

MODULE workerC(projectA, projectB, projectC, projectD, workerpermA,

workerpermB,workerpermC, workerpermD)

VAR

 userWorkerC : process User(projectA, projectB, projectC, projectD, workerpermA,

workerpermB, workerpermC, workerpermD);

-- Minimum Duties

SPEC AG((workerpermA[1] & !workerpermA[2]) | (workerpermB[1] &!workerpermB[2]) |

(workerpermC[1] & !workerpermC[2]) | (workerpermD[1] & !workerpermD[2]))

-- Static Separation of Duties

SPEC AG(((workerpermA[1]) -> AG (!workerpermB[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermB[1]) -> AG (!workerpermA[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermC[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermD[1])) & ((workerpermD[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermC[1])))

MODULE workerD(projectA, projectB, projectC, projectD, workerpermA,

workerpermB,workerpermC, workerpermD)

VAR

 userWorker : process User(projectA, projectB, projectC, projectD, workerpermA,

workerpermB, workerpermC, workerpermD);

-- Minimum Duties

SPEC AG((workerpermA[1] & !workerpermA[2]) | (workerpermB[1] &!workerpermB[2]) |

(workerpermC[1] & !workerpermC[2]) | (workerpermD[1] & !workerpermD[2]))

-- Static Separation of Duties

217

SPEC AG(((workerpermA[1]) -> AG (!workerpermB[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermB[1]) -> AG (!workerpermA[1] & !workerpermC[1] &

!workerpermD[1])) & ((workerpermC[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermD[1])) & ((workerpermD[1]) -> AG (!workerpermA[1] & !workerpermB[1] &

!workerpermC[1])))

MODULE User(projectA, projectB, projectC, projectD, permA, permB, permC, permD)

VAR

 myCommandA : { Wait, Read, Write, Document, Schedule};

 myCommandB : { Wait, Read, Write, Document, Schedule};

 myCommandC : { Wait, Read, Write, Document, Schedule};

 myCommandD : { Wait, Read, Write, Document, Schedule};

ASSIGN

 init(myCommandA) := Wait;

 init(myCommandB) := Wait;

 init(myCommandC) := Wait;

 init(myCommandD) := Wait;

 next(myCommandA) := case

 (permA[0] = TRUE) & (permA[1] = FALSE) & (permA[2] = FALSE) &

(permA[3] = FALSE) : {Wait,Read};

218

 (permA[0] = TRUE) & (permA[1] = TRUE) & (permA[2] = FALSE) &

(permA[3] = FALSE) : {Wait,Read, Write};

 (permA[0] = TRUE) & (permA[1] = TRUE) & (permA[2] = TRUE) &

(permA[3] = FALSE) : {Wait,Read, Write,Document};

 (permA[0] = TRUE) & (permA[1] = TRUE) & (permA[2] = TRUE) &

(permA[3] = TRUE) : {Wait,Read, Write,Document, Schedule};

 TRUE : Wait;

 esac;

 next(projectA.state) :=

 case

 myCommandA != Wait : myCommandA;

 TRUE : Wait;

 esac;

 next(myCommandB) := case

 (permB[0] = TRUE) & (permB[1] = FALSE) & (permB[2] = FALSE) &

(permB[3] = FALSE) : {Wait,Read};

 (permB[0] = TRUE) & (permB[1] = TRUE) & (permB[2] = FALSE) &

(permB[3] = FALSE) : {Wait,Read, Write};

 (permB[0] = TRUE) & (permB[1] = TRUE) & (permB[2] = TRUE) &

(permB[3] = FALSE) : {Wait,Read, Write, Document};

 (permB[0] = TRUE) & (permB[1] = TRUE) & (permB[2] = TRUE) &

(permB[3] = TRUE) : {Wait,Read, Write, Document, Schedule};

219

 TRUE : Wait;

 esac;

 next(projectB.state) :=

 case

 myCommandB != Wait : myCommandB;

 TRUE : Wait;

 esac;

 next(myCommandC) := case

 (permC[0] = TRUE) & (permC[1] = FALSE) & (permC[2] = FALSE) &

(permC[3] = FALSE) : {Wait,Read};

 (permC[0] = TRUE) & (permC[1] = TRUE) & (permC[2] = FALSE) &

(permC[3] = FALSE) : {Wait,Read, Write};

 (permC[0] = TRUE) & (permC[1] = TRUE) & (permC[2] = TRUE) &

(permC[3] = FALSE) : {Wait,Read, Write, Document};

 (permC[0] = TRUE) & (permC[1] = TRUE) & (permC[2] = TRUE) &

(permC[3] = TRUE) : {Wait,Read, Write, Document, Schedule};

 TRUE : Wait;

 esac;

 next(projectC.state) :=

220

 case

 myCommandC != Wait : myCommandC;

 TRUE : Wait;

 esac;

 next(myCommandD) := case

 (permD[0] = TRUE) & (permD[1] = FALSE) & (permD[2] = FALSE) &

(permD[3] = FALSE) : {Wait,Read};

 (permD[0] = TRUE) & (permD[1] = TRUE) & (permD[2] = FALSE) &

(permD[3] = FALSE) : {Wait,Read, Write};

 (permD[0] = TRUE) & (permD[1] = TRUE) & (permD[2] = TRUE) &

(permD[3] = FALSE) : {Wait,Read, Write, Document};

 (permD[0] = TRUE) & (permD[1] = TRUE) & (permD[2] = TRUE) &

(permD[3] = TRUE) : {Wait,Read, Write, Document, Schedule};

 TRUE : Wait;

 esac;

 next(projectD.state) :=

 case

 myCommandD != Wait : myCommandD;

 TRUE : Wait;

 esac;

221

-- Standard Access Control Checks. If you don't have the permission, you can't do the command.

SPEC AG ! (permA[0] = FALSE & myCommandA = Read)

SPEC AG ! (permA[1] = FALSE & myCommandA = Write)

SPEC AG ! (permA[2] = FALSE & myCommandA = Document)

SPEC AG ! (permA[3] = FALSE & myCommandA = Schedule)

SPEC AG ! (permB[0] = FALSE & myCommandB = Read)

SPEC AG ! (permB[1] = FALSE & myCommandB = Write)

SPEC AG ! (permB[2] = FALSE & myCommandB = Document)

SPEC AG ! (permB[3] = FALSE & myCommandB = Schedule)

SPEC AG ! (permC[0] = FALSE & myCommandC = Read)

SPEC AG ! (permC[1] = FALSE & myCommandC = Write)

SPEC AG ! (permC[2] = FALSE & myCommandC = Document)

SPEC AG ! (permC[3] = FALSE & myCommandC = Schedule)

SPEC AG ! (permD[0] = FALSE & myCommandD = Read)

SPEC AG ! (permD[1] = FALSE & myCommandD = Write)

SPEC AG ! (permD[2] = FALSE & myCommandD = Document)

SPEC AG ! (permD[3] = FALSE & myCommandD = Schedule)

222

-- Sets hierachy of the permissions. If you have a higher permission, you should have the lower

too.

SPEC AG ((permA[1]) -> (permA[0]))

SPEC AG ((permA[2]) -> (permA[0] & permA[1]))

SPEC AG ((permA[3]) -> (permA[0] & permA[1] & permA[2]))

SPEC AG ((permB[1]) -> (permB[0]))

SPEC AG ((permB[2]) -> (permB[0] & permB[1]))

SPEC AG ((permB[3]) -> (permB[0] & permB[1] & permB[2]))

SPEC AG ((permC[1]) -> (permC[0]))

SPEC AG ((permC[2]) -> (permC[0] & permC[1]))

SPEC AG ((permC[3]) -> (permC[0] & permC[1] & permC[2]))

SPEC AG ((permD[1]) -> (permD[0]))

SPEC AG ((permD[2]) -> (permD[0] & permD[1]))

SPEC AG ((permD[3]) -> (permD[0] & permD[1] & permD[2]))

MODULE userSession(semLA, semLB, semLC, semLD, semS, givenRoles, myName)

VAR

223

 activeRole : {loggedOut, workerA, workerB, workerC, workerD, leaderA, leaderB, leaderC,

leaderD, supervisor};

ASSIGN

 init(activeRole) := {loggedOut};

 next(activeRole) := case

 (givenRoles[8] & !semS.sema) : {supervisor};

 (givenRoles[7] & !semLD.sema) : {leaderD};

 (givenRoles[6] & !semLC.sema) : {leaderC};

 (givenRoles[5] & !semLB.sema) : {leaderB};

 (givenRoles[4] & !semLA.sema) : {leaderA};

 (givenRoles[3]) : {workerD};

 (givenRoles[2]) : {workerC};

 (givenRoles[1]) : {workerB};

 (givenRoles[0]) : {workerA};

 TRUE : loggedOut;

 esac;

 next(semS.sema) := case

 activeRole = supervisor : TRUE;

224

 activeRole != supervisor & semS.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 next(semS.userName) := case

 activeRole = supervisor : myName;

 TRUE : None;

 esac;

 next(semLD.sema) := case

 activeRole = leaderD : TRUE;

 activeRole != leaderD & semLD.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 next(semLD.userName) := case

 activeRole = leaderD : myName;

 TRUE : None;

 esac;

225

 next(semLC.sema) := case

 activeRole = leaderC : TRUE;

 activeRole != leaderC & semLC.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 next(semLC.userName) := case

 activeRole = leaderC : myName;

 TRUE : None;

 esac;

 next(semLB.sema) := case

 activeRole = leaderB : TRUE;

 activeRole != leaderB & semLB.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 next(semLB.userName) := case

 activeRole = leaderB : myName;

 TRUE : None;

 esac;

226

 next(semLA.sema) := case

 activeRole = leaderA : TRUE;

 activeRole != leaderA & semLA.userName = myName : FALSE;

 TRUE : FALSE;

 esac;

 next(semLA.userName) := case

 activeRole = leaderA : myName;

 TRUE : None;

 esac;

-- DSOD for Worker Roles

SPEC AG (givenRoles[0] -> AG !(givenRoles[1] | givenRoles[2]| givenRoles[3] | givenRoles[5]

| givenRoles[6] | givenRoles[7]) | (givenRoles[8]))

SPEC AG (givenRoles[1] -> AG !(givenRoles[0] | givenRoles[2]| givenRoles[3] | givenRoles[4]

| givenRoles[6] | givenRoles[7]) | (givenRoles[8]))

SPEC AG (givenRoles[2] -> AG !(givenRoles[0] | givenRoles[1]| givenRoles[3] | givenRoles[4]

| givenRoles[5] | givenRoles[7]) | (givenRoles[8]))

SPEC AG (givenRoles[3] -> AG !(givenRoles[0] | givenRoles[1]| givenRoles[2] | givenRoles[4]

| givenRoles[6] | givenRoles[6]) | (givenRoles[8]))

-- DSOD for Leader Roles

SPEC AG (givenRoles[4] -> AG !(givenRoles[1] | givenRoles[2] | givenRoles[3] |

givenRoles[5] | givenRoles[6] | givenRoles[7]) | (givenRoles[8]))

SPEC AG (givenRoles[5] -> AG !(givenRoles[0] | givenRoles[2] | givenRoles[7] |

givenRoles[4] | givenRoles[6] | givenRoles[7]) | (givenRoles[8]))

227

SPEC AG (givenRoles[6] -> AG !(givenRoles[0] | givenRoles[1] | givenRoles[3] |

givenRoles[4] | givenRoles[5] | givenRoles[7]) | (givenRoles[8]))

SPEC AG (givenRoles[7] -> AG !(givenRoles[0] | givenRoles[1] | givenRoles[2] |

givenRoles[4] | givenRoles[5] | givenRoles[6]) | (givenRoles[8]))

228

