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 Sarcopenia is an age-associated disorder that causes loss of skeletal muscle mass, 

particularly in type II (fast-twitch) muscle fibers.  This loss in muscle mass can cause disability, 

reductions in the quality of life, and can contribute to the development of other more life-

threatening morbidities and even death. Researchers have utilized muscle overloading and 

ergogenic aids, such as whey protein and essential amino acids (specifically leucine), in rats and 

humans in attempts to reduce or attenuate these losses as part of a primary prevention strategy.  

Unfortunately, there is also a loss of overload-induced growth capacity in aged fast-twitch 

skeletal muscle.  However, no studies have explored the potential synergistic effect of leucine 

supplementation on overload-induced skeletal muscle growth in aged animals.  To that end, the 

purpose of this study was to examine the effects of dietary leucine supplementation on protein 

translational signaling and hypertrophy in the overloaded fast-twitch skeletal muscles of aged 

animals.  It was hypothesized that supplementing a standard chow diet with 5% leucine would 

enhance muscle hypertrophy in overloaded fast-twitch plantaris muscles of aged (33-month old) 

rats to levels observed in young adult (8-month old) rats.  It was also hypothesized that 5% 

dietary leucine supplementation would enhance protein translational [70 kDa ribosomal protein 

S6 kinase (p70s6k), ribosomal protein S6 (rpS6), eukaryotic elongation factor 2 kinase (eEF2k), 
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and eEF2] signaling in the overloaded fast-twitch plantaris muscles of aged rats to levels 

observed in young adult rats.    Young adult and old male Fisher344 x Brown Norway F1 Hybrid 

(FBN) rats underwent a 1-week unilateral plantaris muscle overload via tenotomy of the 

synergistic gastrocnemius muscle.  Within each age group, animals were matched for body 

weight and separated into either a dietary leucine supplementation group (additional 5% leucine 

content in place of 5% of the carbohydrate content in normal rat chow starting 2 days prior to, 

and throughout, the overload intervention; n = 7/age group) or placebo group (normal rat chow; n 

= 6/age group).  No differences in daily calorie consumption were observed between the placebo 

vs. leucine groups within each age group.  Plantaris muscles were harvested at the end of the 

overload period.  Dietary leucine enrichment significantly (p ≤ 0.05) enhanced overload-induced 

fast-twitch plantaris muscle hypertrophy in old, but not in young adult, animals.  Additionally, 

western blotting analyses revealed that phospho-p70S6k (Thr389) and phospho-rpS6 

(Ser235/Ser236) were significantly lower in old vs. young overloaded muscles under placebo 

conditions, but leucine partially restored both phospho-p70S6k and phospho-rpS6 in old 

overloaded muscles to that of young adult overloaded muscles.  Overload significantly increased 

eEF2k phosphorylation in young, but not in old animals, and leucine supplementation had no 

affect on eEF2k phosphorylation in either age group.   Overload significantly increased total 

eEF2 content and decreased inhibitory eEF2 phosphorylation (Thr56; normalized to total eEF2) 

in young adult muscles regardless of leucine supplementation.  Total eEF2 content was 

unaffected by overload in old placebo muscles, but leucine supplementation in old animals non-

significantly (p = 0.09) restored the overload-induced increase in total eEF2 content.   These 

novel findings indicate that a leucine-enriched diet may potentially enhance overload-induced 



   

growth of aged fast-twitch muscle, in part by enhancing pathways known to stimulate protein 

synthesis. 
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Chapter I:  Introduction 

Sarcopenia 

 As humans age, one of the many physiological processes that leads to disease 

development and disability is the loss of skeletal muscle.  This age-associated decline in skeletal 

muscle is sarcopenia (Evans, 1995).   Sarcopenia has been linked to a reduction in muscle fiber 

size and number (Welle, 2002), particularly in type II, fast-twitch fibers (reviewed in Lexell, 

1995). Muscle fiber degeneration takes place primarily in type II muscle fiber size, with very 

little, if any, reduction in type I fiber size (reviewed in Lexell, 1995, Thomson and Gordon, 

2006).  Animal models have demonstrated reductions in total muscle mass and cross sectional 

area, as well as, declines in individual muscle fiber cross sectional area (Blough, 2000). 

A decrease in muscle mass has a positive correlation with decreases in strength (Frontera, 

2000) and contractile quality (Blough, 2000).  This loss in muscle quality generates functional 

limitations (Hairi, 2010) and physical disability (Dorrens, 2003), specifically in normal activities 

of daily living among elderly individuals (Dorrens, 2003; Hairi, 2010).  An increased risk of 

falling among elderly individuals has also been correlated with excessive losses in muscle 

strength (Wickham, 1989).  An estimated ~1.5% of the total national healthcare expenditure in 

the US has been directly attributed to sarcopenia. This seemingly minuscule percentage equates 

to an approximate monetary value of 18.5 billion US dollars (Janssen, 2004).  Although this 

chronic process has been defined, it is difficult to diagnose sarcopenia because no absolute 

values have been established for losses of fat free mass, cell mass, or total muscle mass 

(Roubenoff, 2000).  

Muscle fiber degeneration can be seen in both genders, although it can affect males and 

females at different rates and times throughout their middle and late adult lives.  Males lose an 
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estimated 1.9 kg/decade, while females are slightly less affected with losses of 1.1 kg/decade 

(Janssen, 2000).  Over the span of a human life, losses in muscle area up to 40% have been 

documented in participants between 20 and 80 years of age (reviewed in Lexell, 1995).   

Lean body mass can play a role in the survival rate for individuals suffering from life-

threatening illnesses (Tellado, 1988).   There is a strong correlation between muscle mass and 

strength.  As stated previously, this loss in strength can become debilitating even for carrying out 

normal activities of daily living.   However, a loss of muscle mass is not always accompanied by 

a reduction in strength (Roubenoff, 2000).  In order to determine what causes the loss of muscle 

fibers with age, a closer examination must be performed on muscle protein synthesis and 

degradation pathways at the molecular level.    

Protein Synthesis 

Growth within, and maintenance of, existing muscle fibers is a complex process 

incorporating several different pathways.  The muscle protein synthesis translational pathway 

consists of three separate stages (initiation, elongation, and termination) that work together to 

form specific proteins corresponding to the blueprint laid out by DNA in the cell (Nadar, 2002; 

Wang, 2006).  The main areas of focus for this investigation were protein translation initiation 

and elongation.   

One pathway that has been recognized for stimulating protein synthesis is the mammalian 

target of rapamycin (mTOR) pathway (Figure 2.1).  Cell size regulation has been attributed 

partly to this pathway (Bodine, 2001).   Activation and deactivation of the specific signaling 

proteins depends on phosphorylation or dephosphorylation status.  The protein mTOR controls 

two important downstream signaling proteins involved in the initiation process.  Eukaryotic 

initiation factor 4E binding protein (4E-BP1) acts to inhibit protein translational signaling by 
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binding with eIF4E.  When phosphorylated by mTOR, 4E-BP1 loses its affinity for eIF4E, 

allowing eIF4E to participate in the formation of the ribosomal complex eIF4F.  The second 

signaling protein controlled by mTOR is p70 ribosomal protein S6 kinase, or p70s6k.  P70s6k 

acts to phosphorylate the S6 subunit of the 40S ribosome involved in the translation initiation 

(Nadar, 2002).    

 The second step in this translational pathway involves elongation of the protein chain.  

Eukaryotic elongation factor 2 (eEF2) is one of two important factors required for this process to 

successfully occur (Wang, 2006).  EEF2 can only participate in the elongation process when it 

has been dephosphorylated.  Activation of eEF2 is controlled by its respective kinase, eEF2k.  

Phosphorylation of eEF2k allows for eEF2 to become active.  Researchers have postulated that 

p70s6k has the ability to phosphorylate eEF2k on one of its inhibitory sites.  This could be 

indicative of a relationship between signaling proteins found in translation initiation and 

elongation pathways (Fick, 2007). 

Aging and Protein Synthesis 

Aging may inhibit certain mechanisms within the pathways described above and create a 

decline in protein synthesis (Welle, 1993; Welle, 1994; Parkington 2004; Bagalopal, 1997; 

Paturi, 2010).  This lower protein synthesis, particularly in type II muscle fibers, is believed to be 

one of the main contributors for the development of sarcopenia in the elderly (Parkington, 2004; 

Thomson and Gordon, 2005; Thomson and Gordon, 2006; Paturi, 2010).  Moreover, normal 

stimulation of muscle protein synthesis with muscle overloading declines with age making it 

difficult for individuals to counteract the effects of sarcopenia (Blough, 2000; Thomson and 

Gordon, 2005; Thomson and Gordon, 2006).  Our investigation will analyze signaling proteins 

(located downstream from mTOR) involved in the Akt-mTOR pathway (p70s6k, rpS6, eEF2K 



   

 

4 

and eEF2).  An assessment of phosphorylation and abundance status of these signaling proteins, 

and changes in hypertrophy, will be performed to evaluate the effectiveness of possible 

intervention strategies (chronic muscle overload and leucine supplementation) used to attenuate 

sarcopenia. 

Muscle Overloading and Protein Synthesis 

Overloading skeletal muscle with an external force has been shown to activate skeletal 

muscle protein synthesis and enhance the development of mixed muscle and myofibrillar 

proteins (Yarasheski, 1999; Hasten, 2000).  Translational proteins demonstrate increased 

phosphorylation/activation in the initiation stage, particularly with mTOR, 4E-BP1, p70s6k, and 

rpS6, and dephosphorylation/activation of eEF2k and eEF2 in the elongation stage (Cuthbertson, 

2005; Parkington, 2004; Thomson and Gordon, 2006; Kumar, 2009).  Increases in muscle cross 

sectional area, lean muscle mass, and strength are also positive outcomes of chronic muscle 

overload (Parkington, 2004).  

Suppression of hypertrophic responses to chronic resistance training has been 

demonstrated in aging rats (Blough, 2000; Thomson and Gordon, 2005; Thomson and Gordon, 

2006) and humans (Kumar, 2009).  Also, measurably smaller activations of mTOR, 4E-BP1, and 

p70s6k1 have been observed in older muscle when compared to muscles in younger 

counterparts.  Yet these increases do still occur in response to resistance training (Kumar, 2009; 

Cuthbertson, 2005).  It has been suggested that increasing the amount of mechanical overload in 

skeletal muscle could be used as an intervention to delay, attenuate, or perhaps even reserve the 

effects of sarcopenia (Kosek, 2006).  The effects of muscle overloading on muscle hypertrophy 

and protein translational signaling in aging muscle will be evaluated in the current study.  The 

effects on aged muscle will be compared to the responses found in adult rats.   
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Supplementation and Protein Synthesis 

Researchers believe that amino acid availability is an important factor for protein 

synthesis (Hara, 1998; Fujita, 2007).  Various ergogenic aids, such as whey protein, essential 

amino acids, and leucine, have been supplemented to determine if enhancements in muscle 

protein synthesis can be made above that of normal homeostatic responses to overload.  The 

addition of essential amino acids (EAA) to a normal diet has generated improvements in skeletal 

muscle protein synthesis (Katsanos, 2008; Paddon-Jones, 2006).  Signaling within the synthesis 

pathway causes mTOR and certain downstream components of translation initiation and 

elongation (mentioned previously) to become activated (Hara, 1998; Crozier, 2005; Du, 2007).  

Chronic supplementation of EAA also enhances lean body mass and basal protein synthesis.  

Specifically, leucine, one key essential amino acid, has proven to alter phosphorylation and 

activation status of mTOR (Suryawan, 2008).  Whole body protein degradation also becomes 

suppressed with the supplementation of leucine (Koopman, 2006 #2).  

Leucine supplementation has exhibited an enhanced effect on muscle protein signaling, 

specifically in the Akt-mTOR pathway, and fractional protein synthesis rates in the muscles of 

elderly individuals.  Increases in the amount of leucine administered to aged participants have 

generated positive gains in protein signaling and muscle protein synthesis reaching similar values 

observed in young participants (Katsanos, 2006).  Using this information, we postulate that the 

addition of leucine to a normal diet will increase the stimulation of muscle protein synthesis in 

the overloaded muscles of rats.   

Aims 

To the best of our knowledge, there have been no studies observing the combined effects 

of leucine supplementation and muscle overloading on translational signaling and protein 
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synthesis in elderly rodents or human beings.  Therefore, the purpose of this study was to 

examine the effects of dietary leucine supplementation on protein translational signaling and 

hypertrophy in the overloaded fast-twitch skeletal muscles of aged animals. 

Hypothesis 

It is hypothesized that supplementing a standard chow diet with 5% leucine will enhance 

muscle hypertrophy in overloaded fast-twitch plantaris muscles of aged (33-month old) rats to 

levels observed in young adult (8-month old) rats.  It is also hypothesized that 5% dietary leucine 

supplementation will enhance p70s6k, rpS6, eEF2k, and eEF2 signaling in the overloaded fast-

twitch plantaris muscles of aged rats to levels observed in young adult rats.    If this intervention 

proves to be successful, it will support the possibility of supplementing leucine during chronic 

resistance training to enhance gains in muscle mass and strength in elderly humans.  This could 

lead to an improvement in quality of life with age and a decline in progressive ailments 

associated with age.  
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Chapter II:  Review of Literature 

 Sarcopenia is a debilitating disorder caused by an age-associated loss of skeletal muscle 

(Evans, 1995), primarily in type II muscle fibers (reviewed in Lexell, 1995).  Losses in skeletal 

muscle area reach values as high as 40% for individuals ranging between 20 to 80 years of age 

(reviewed in Lexell, 1995).  Reductions in muscle strength (Frontera, 2000) and contraction 

quality (Blough, 2000) accompany this disorder and can lead to a reduced ability to function 

(Dorrens, 2003; Hairi, 2010).  Furthermore, a decline in skeletal muscle can lead to a reduced 

survival rate among individuals suffering from life-threatening illness (Tellado, 1988) 

 Skeletal muscle fiber atrophy has been attributed to an imbalance in the ratio of muscle 

protein synthesis to protein degradation (Kimball, 2010).  Recognized methods of stimulating 

hypertrophy, such as muscle overloading, have demonstrated a limited ability to increase protein 

translational signaling and muscle mass with age (Blough, 2000; Thomson and Gordon, 2005; 

Chale-Rush, 2009). The signaling protein mTOR and downstream signaling markers (p70s6k, 

rps6, eEF2k, and eEF2), which are involved in muscle protein translation, have been correlated 

with the reduced ability to stimulate muscle hypertrophy with age (Thomson and Gordon, 2005; 

Chale-Rush, 2009). 

 Leucine, a branched-chain amino acid, has shown promising effects on protein anabolism 

and translational signaling marker phosphorylation enhancement among young adult rats and 

humans when combined with EAA (essential amino acids) and other nutrients (Anthony, 2000; 

Fujita, 2007) or administered independently (Anthony, 2000 #2; Anthony, 2002 #2; Crozier, 

2005 Suryawan, 2008).  Enhancements in muscle protein synthesis and translational signaling 

have also been observed in old rats and humans when dosages of amino acids are increased 

(Dardevet, 2002; Paddon-Jones, 2006).  In the current study, we chose to analyze the combined 
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effects of dietary leucine-enrichment and muscle overloading in an attempt to discover a possible 

intervention for reversing the age-associated reduction in muscle hypertrophy and muscle 

translational signaling.  To our knowledge, the combined effects of a leucine-enriched diet and 

chronic muscle overload on muscle hypertrophy and muscle protein translation in old rats have 

yet to be measured.        

Muscle Protein Translation Initiation and Elongation Signaling  

 One particular protein that plays a significant role in translational signaling is mammalian 

target of rapamycin (mTOR). In addition to its involvement in protein translation, mTOR has a 

multitude of functional roles including participation in cell proliferation, apoptosis, and 

autophagy, (reviewed in Miyazaki, 2009).  mTOR is comprised of two distinct isoforms:  

mTORC1 and mTORC2.  A specific binding partner has been identified for each isoform: raptor 

and rictor, respectively (Wang, 2006).   Rapamycin is a specific pharmaceutical inhibitor of 

raptor binding mTORC1 and, when administered, almost completely prevents any in vivo muscle 

hypertrophic response to  overload (Bodine, 2001).  Rapamycin has been utilized to determine 

whether certain stimuli could control mTOR signaling (Bodine, 2001; Ionki, 2003; Ionki, 2003 

#2) and which downstream signaling proteins from mTOR were affected (Redpath, 1996; Wang, 

2001; Fingar, 2002; Browne, 2004). 
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     Figure 2.1:  mTOR and signaling proteins.  
 
 One specific pathway that leads to the activation of mTOR and its downstream signaling 

proteins is the insulin growth factor-1 (IGF-1) pathway (Figure 2.1).   Hormones or growth 

factors, such as insulin or IGF-1, have been shown to stimulate this pathway.  Once activated, 

phosphoinositide-3-kinase (PI(3)k) phosphorylates and activates Akt (also known as protein 

kinase B (PKB)) (Rommel, 2001).  Akt controls a direct mTOR-inhibiting complex known as 

tuberous sclerosis protein 1 and 2 (TSC1/TSC2) (Ionki, 2003).  From there, TSC1/TSC2 

facilitates the hydrolysis of GTP to GDP on Rheb and allows for activation of mTOR (Ionki, 

2003 #2).  The increased availability of nutrients, such as amino acids, has also been associated 

with increased phosphorylation of signaling proteins (4E-BP1 and p70s6k) controlled by mTOR 

(Anthony, 2000; Anthony, 2000 #2; Anthony, 2002 #2; Fujita, 2007; Atherton, 2010).  However, 

nutrient signaling is believed to occur through separate pathways than those controlled by 
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hormones or growth factors (Hara, 1998; Drummond, 2010).  Specific upstream complexes 

known as Rag A/B and Rag C/D GTPases are believed to contribute to the altered 

phosphorylation status of 70 kDa ribosomal protein S6 kinase (p70s6k) after amino acids are 

administered (Kim, 2008).  Cellular amino acid transporters LAT1/CD98 (L-type amino acid 

transporter with and a glycoprotein) and SNAT2 (sodium-coupled neutral amino acid 

transporter) have also demonstrated an involvement in mRNA expression and mTOR activity 

(Drummond, 2010).  Additionally, human vacuolar protein sorting 34 (hVps34) increased 

phosphorylation of proteins downstream from mTOR (rpS6 and p70s6k1), without having any 

effect on proteins immediately upstream (TSC2, PKB/Akt), after amino acids were administered 

(Nobukuni, 2005).  

 As mentioned previously, mTOR controls the activity of two signaling proteins involved 

in the translational initiation and elongation stages of protein synthesis (Figure 2.1).  The first of 

which is eukaryotic initiation factor 4E binding protein 1 (4E-BP1).  This protein plays a pivotal 

role in the formation of the eIF4F complex  (composed of eIF4E, eIF4G, and eIF4A) by either 

preventing or allowing eIF4E to interact with the other two components.  mTOR phosphorylates 

4E-BP1 and releases the inhibitory bond between 4E-BP1 and eIF4E (reviewed in Kimball, 

2010).  Although this protein and the processes involved in protein translation initiation are 

important in synthesizing new proteins, we have chosen to focus our attention on the other 

protein that is regulated by mTOR; ribosomal protein S6 kinase p70 (p70s6k) (Nadar, 2002).  

mTOR’s control of p70s6k has been observed in vivo (Sprague-Dawley rats) and in vitro (C2C12 

myoblasts).  Following a treatment of rapamycin, in vivo increases in the phosphorylation of 

p70s6k in response to exercise (Bodine, 2001), as well as in vitro in C2C12 myoblasts (Rommel, 

2001) were attenuated. 
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 P70s6k is phosphorylated and activated by mTOR on residue Thr389 (Nadar, 2002).  

Although p70s6k controls many aspects of cellular activity (reviewed in Magnuson, 2012), our 

focus is specifically on the two components p70s6k regulates for cellular growth: ribosomal 

protein S6, rpS6 (Ruvinsky, 2005), and eukaryotic elongation factor 2 kinase, eEF2k (Browne, 

2002).  Similar to mTOR, increases in phosphorylation of p70s6k occur in vivo (Parkington, 

2004; Thomson and Gordon, 2005) in the overloaded muscles of rats.  Increases in p70s6k 

phosphorylation were also observed following an acute bout(s) of resistance training in humans 

(Eliasson, 2006; Dreyer, 2006; Dreyer, 2010; Terzis, 2010) and increases in response to 

resistance training stimuli were dose-dependent  (Terzis, 2010).  mTOR has facilitated the 

phosphorylation of a downstream signaling protein, 40S ribosomal protein S6 through p70s6k 

(Nadar, 2002; Wang, 2006).  The exact roles of ribosomal protein S6 are still unclear.    One 

function that is still up for debate is the possibility that rpS6 assists in upregulating 5’-terminal 

oligopyrimidine (5’-TOP) sequences, which participate in coding for translational machinery 

(Jefferies, 1997; Magnuson, 2005).  However, it has been postulated that p70s6k-rpS6 pathway 

is not the only means of upregulating 5’ TOP mRNA (Jefferies, 1997; Ruvinsky, 2005).  

Regardless, it is clear that rpS6 does participate in the regulation of cell size (Ruvinsky, 2005), 

which is why rpS6 was chosen as one of the signaling markers of protein translation to analyze 

in this study.   

 The intermediate stage of muscle protein translation is elongation.  This process involves 

two eukaryotic elongation factors:  eEF1 and eEF2 (reviewed in Wang, 2006).  The elongation 

process actually generates the bulk of the protein chain.  eEF2 is a monomer and will be the 

focus of this study.  eEF2 is active when bound to GTP, and in the absence of phosphorylation, 

catalyzes the translocation process necessary for protein elongation (Jorgensen, 2006).   
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Hydrolyzation of the inorganic phosphate on GTP yields GDP and provides the energy necessary 

for this process to occur (Proud, 2007).  eEF2 kinase is a calcium/calmodulin-dependent, 

regulatory kinase that controls eEF2 activity by phosphorylating eEF2 at Thr56 and thus 

inhibiting eEF2 (Browne, 2002).  With regard to translational elongation, mTOR controls the 

phosphorylation and activity of eEF2 kinase at three separate residues (Ser78, Ser359, Ser366) 

(Proud, 2007).  Phosphorylation of eEF2k on Ser78 is directly attributed to the hormone 

stimulated mTOR pathway, but independent of p70s6k (Browne, 2004). eEF2 kinase is 

phosphorylated (in vitro) by p70s6k on residue Ser366.  This phosphorylation results in the 

inactivation of eEF2 kinase (Wang, 2001; Browne, 2002).  General inhibition of elongation 

occurs when eEF2 kinase phosphorylates eEF2 at Thr56 (Redpath, 1993).  The addition of 

insulin has caused a decrease in eEF2k activity, decline in eEF2 phosphorylation to very low 

values immediately, and increased the transient time of elongation in vitro in Chinese hamster 

ovary cells.  These resulting effects were suppressed following rapamycin treatment signifying a 

controlling effect over eEF2k from the mTOR pathway (Redpath, 1996).  Acute resistance bouts 

in human participants also led to a decline in eEF2 phosphorylation 1-2 hours post-exercise 

(Dreyer, 2010).  Chronic overload in rats also results in a decline in signaling status 

(phosphorylation-to-total concentration) for eEF2 as well (Thomson and Gordon, 2005).  These 

data indicate that muscle overload likely affects elongation, in part by eEF2 activation.     

  The following sections will analyze how translational signaling proteins previously 

discussed are affected by muscle overloading and/or amino acid supplementation.  Furthermore, 

the effects of aging on signaling responses to these stimuli will also be assessed.   
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Muscle Overloading and Resistance Exercise 

 Skeletal muscle metabolism can be affected in a variety of ways when an external force 

(i.e. muscle overloading models and resistance exercise) is applied to the body.  In order to 

quantify homeostatic responses in muscle protein synthesis and translational initiation and 

elongation signaling to these external forces, one must assess variables such as frequency (acute 

vs. chronic), duration (time), intensity (percentage of 1RM, VO2max, etc.), type and percentage 

of contraction (isometric vs. concentric vs. eccentric; maximal vs. submaximal, respectively), 

etc.  This section will focus on differing modes of muscle overloading and resistance exercise in 

rodent and human subjects of various ages.  The primary foci will be:  1) muscle protein 

synthesis rates, and 2) quantification of the phosphorylation status/total abundance of signaling 

markers associated with the Akt/mTOR pathway.   

 Translational signaling markers found along the Akt/mTOR pathway have shown 

dramatic changes in response to acute resistance exercise.  During 1- and 2- hours post-exercise, 

young adult participants increased in phosphorylation of Akt/PKBSer473, mTORSer2448, 

p70s6kThr389, and decreased in phosphorylation for eEF2Thr56  (Dreyer, 2006). The 

pharmaceutical inhibitor rapamycin has been utilized to verify mTOR’s association with muscle 

protein synthesis in response to an acute bout of resistance exercise in young humans 

(Drummond, 2009).  Increases in p70s6kThr421/Ser424 and decreases in eEF2Thr56 phosphorylation 

attributed to resistance exercise were attenuated following rapamycin administration and 

corresponded with a ~40% reduction in muscle protein synthesis (Drummond, 2009).  These data 

validated the correlation between skeletal muscle protein synthesis and mTOR signaling.  An 

important factor to consider was the possibility of gender differences in response to resistance 

exercise.  Among male and female participants performing acute resistance exercise (10 sets of 
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10 reps at 70% 1RM), no variability was observed in mixed muscle protein synthesis (males, 

52%; females, 47% increase at 2-hr post-exercise above baseline values).  Furthermore, increases 

in phosphorylation of mTORSer2448, p70s6kThr389 and decreases in phosphorylation for eEF2Thr56 

were not different at 1- and 2-hrs post-exercise between males and females, indicating that there 

were no acute gender differences among young humans (Dreyer, 2010).   

 The incorporation of progressively increasing load volumes during acute resistance 

exercise has demonstrated variable effects on signaling protein phosphorylation and potential 

activation (Terzis, 2010).  Additional sets of repetitions of leg presses revealed increased 

phosphorylation of p70s6kThr389 and rpS6 Ser235/236 at  30 minutes post-exercise for 3 and 5 sets of 

6 maximum repetitions (3-fold, 5-fold; 30-fold, 55-fold, respectively)(Terzis, 2010).  

Interestingly, no alterations occurred to the phosphorylation status of mTORSer2448, possibly 

signifying that increasing load volume may not alter p70s6k and rps6 phosphorylation 

specifically through mTOR activation.   Acute resistance exercise also presented inconsistencies 

in the degree of phosphorylation for translational signaling markers between muscle fibers.  

Koopman et al (2006) demonstrated that type I and II muscle fibers responded to a bout of upper 

and lower body resistance exercise, with a larger increase in type II fibers for the 

phosphorylation of p70s6kThr421/Ser424 within the first 30 minutes post-exercise (Koopman, 2006).  

During that time frame, rpS6 showed no significant increases correlating with those of p70s6k; 

however, the phosphorylation of rpS6 via mTOR is controlled on by p70s6kThr389 (Ruvinsky, 

2005).  Important to note were the effects that various types of muscle contractions had on 

protein synthesis and translational signaling.  Maximal eccentric contractions demonstrated the 

most promising effects, with the greatest increases in phosphorylation of p70s6kThr389, 

p70s6kThr421/Ser424, and rpS6Ser235/236 between 1- and 2-hr post-exercise.  Maximal concentric and 



   

 

15 

submaximal eccentric contractions had very little, if any, effect on acute signaling markers 

mentioned previously (Eliasson, 2006).  These data suggested the additional possible 

involvement of a signaling pathway that bypass mTOR when resisted contractions are presented 

as a stimulus.   Muscle protein synthesis and translational signaling can also respond differently 

to different intensities and modes of exercise.  Anaerobic cycling for 120 seconds at 110% of 

young male participant’s VO2max resulted in an increased ratio of phosphorylated-to-total eEF2 

(2.3-fold) above rest.  This response was accompanied by a shift in eEF2.  At rest, 

phosphorylation of eEF2 was 55% greater in type I muscle fibers.  Following exhaustive 

exercise, type II fibers exhibited 55% higher phosphorylation of eEF2 (Rose, 2008).  Recall that 

eEF2 participates in the elongation stage of translation when dephosphorylated (Proud, 2007).  

With high intensities, type II fiber eEF2 phosphorylation was suppressed immediately post-

exercise.  However, acute low intensity, aerobic cycling (35%, 60%, and 85% of VO2max) did 

not show significant differences in elongation signaling (Rose, 2008).   

 Previous research has been performed to analyze age- (Paturi, 2010) and gender-related 

(Smith, 2008) differences in phosphorylation and abundance of signaling markers at rest.  Paturi 

et al (2010) measured resting phosphorylation and abundance status in extensor digitorum longus 

(EDL) muscles of adult, aged, and very aged male and female (6, 30, 36 month; 6, 26, 30 month, 

respectively) Fischer344 x Brown Norway rats (Paturi, 2010).  Values for Akt, mTOR, and eEF2 

total abundance were higher (38%, 182%, 34%) and rpS6 was lower (14%) in very aged rats 

when compared to adult rats.  However, phosphorylation was significantly lower among 

signaling proteins downstream from mTOR (p-p70s6kThr389, 14%; p-rpS6Ser235/236, 21%; p-4E-

BP1Thr37/46, 24/25%; p-eEF2Thr56, 75%) in very aged rats compared to adult rats (Paturi, 2010).  A 

comparison between very aged males and females revealed a significantly higher 
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phosphorylation status in all signaling markers previously mentioned for females at rest (Paturi, 

2010).  In a similar study among aged humans (65-80 yr), resting values for muscle protein 

synthesis and the phosphorylation status of specific signaling markers (p70s6kThr389 and 

eEF2Thr56) favored fasted females (MPS, 30% greater, eEF2Thr56, ~40% less) (Smith, 2008).  

However, following the consumption of a standard meal (15% protein, 55% carbohydrate, 30% 

fat), aged males solely demonstrated an increase in muscle protein synthesis (and previously 

mentioned signaling markers) equivalent to the values observed in their female counterparts 

(Smith, 2008).  These data suggested that a decline in phosphorylation, not expression, of 

signaling markers of the Akt/mTOR pathway existed during resting condition in aged rats, 

specifically in males (Paturi, 2010), and that feeding can restore protein synthesis in males to the 

level observed in aged-matched females (Smith, 2008).  This lower level of resting muscle 

protein synthesis may account for the swifter progression of sarcopenia among males when 

compared to females (Janssen, 2000). 

  Researchers have developed and implemented various overload models in rodents that 

mimic acute and chronic resistance training in humans. These methods have been utilized to 

study abundance and phosphorylation of translational signaling markers and muscle protein 

synthesis, as well as, to identify differences in responses to these stimuli between young and old 

rodents.  High frequency electrical stimulation (HLES) is a common model of muscle overload 

performed in vitro.  Adult (6 mo) and old (30 mo) Fischer344 x Brown Norway rats were 

subjected to a single session of 10 sets of 10 repetitions of HLES to determine the impact that 

acute in vitro muscle stimulation (via neuromuscular innervation) had on translational signaling 

markers mTOR and p70s6k (Parkington, 2004).  Of the muscles analyzed (tibialis anterior, TA; 

plantaris, PLT), neither showed age-related differences in mTOR or p70s6k total abundance.  
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However, a muscle-specific (TA only) increase in mTOR phosphorylation was reported with age 

(Parkington, 2004).   Furthermore, an observed decline of 50% in post-HFES maximal 

phosphorylation of mTOR and p70s6k occurred during the 6 hours following the end of 

stimulation in aged rats.  It appeared that an acute post-stimulation diminishment exists in the 

ability to phosphorylate signaling markers (Parkington, 2004).  

 Ablation of the synergist muscle(s) of the hind limbs of rats (i.e. gastrocnemious) is 

another commonly used model for chronic overload (Thomson and Gordon, 2005; Thomson and 

Gordon, 2006; Chale-Rush, 2009).  Chale-Rush et al incorporated a bilateral synergist ablation or 

sham surgery on young (6 mo) and old (33 mo) Fischer344 x Brown Norway rats for 28 days.  

Following normalization for body weight, the overloaded plantaris muscles of young and old rats 

that underwent synergist ablation were 35% and 20% heavier than the plantaris muscles of 

control rats.  Despite increases in muscle weight, a 15% greater amount of hypertrophy was 

achieved in the young rats when compared to the old.  At the end of the study (28 days), 

expression of mTOR, p70s6k, rpS6 and 4E-BP1 was unaffected by age or overload.  However, 

mTOR and rpS6 phosphorylation was greater (44%, 35%; 114%, 24%) in overloaded young and 

old plantaris muscles over the controls, respectively (Chale-Rush, 2009).  Interestingly, age-

related differences in signaling protein phosphorylation within the overloaded group were no 

longer significant after 28 days (significant differences were present after 7 days) (Chale-Rush, 

2009).    

 In a similar study, young adult (8 mo) and old (30 mo) Fischer344 x Brown Norway rats 

underwent 1-week unilateral synergist ablation of the gastrocnemious muscle to determine the 

effects of aging on muscle hypertrophy (Thomson and Gordon, 2005).  Again, increased muscle 

wet weight for both young adult and old rats were above that of the intra-specimen sham 
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(control) muscles.  Nevertheless, old rat plantaris muscles still exhibited hypertrophy to a lesser 

extent when compared to control muscles than did their younger counterparts (Thomson and 

Gordon, 2005).  After only 7 days of overload, mTOR phosphorylation was substantially higher 

in young vs. old adults (292% vs, 88%, respectively) (Thomson and Gordon, 2005).  Thomson 

and Gordon utilized the same experimental protocol previously discussed (Thomson and Gordon, 

2005) to quantify the phosphorylation-to-total concentrations (labeled signaling status) of 

signaling proteins Akt, mTOR, p70s6k, rpS6, eEF2, and 4E-BP1 in young and old rats (Thomson 

and Gordon, 2006).  Signaling statuses for mTOR, p70s6k, rps6 and 4E-BP1 showed increases in 

both young adult and old overloaded rats when compared to their age matched controls.  Also, 

Akt (old rats only) and eEF2 statuses showed marked decreases. Important to note is that these 

increased and decreased phosphorylation statuses were significantly greater in young adult rats, 

indicating that there was a signaling deficit in with age in response to muscle overload.  

Additionally, a correlation between absolute p70s6k phosphorylation and muscle hypertrophy 

was established from this study (Thomson and Gordon, 2006).  When the duration of muscle 

overloading was increased, Blough et al observed greater gains in contractility, whole muscle 

fiber (plantaris) and muscle fiber cross sectional area (CSA) over an 8-week time period in adult 

(8.5 month) rats over the age matched controls (Blough, 2000).  On the other hand, overload 

alone was not able to rescue the hypertrophic response of whole plantaris muscle or individual 

muscle fiber cross-sectional areas in old (38 month) rats, and actually showed declines in the 

CSA of type I, IIA, and IIX/IIB (31, 35, 39%) muscle fibers, respectively (Blough, 2000).  There 

is an apparent inability to stimulate muscle protein synthesis and the phosphorylation of specific 

translational signaling markers in old rats to the extent produced in young/adult rats (Parkington, 

2004; Thomson and Gordon, 2005, Thomson and Gordon, 2006; Chale-Rush, 2009).  Whether 
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the deficiencies observed in these elements solely contribute to the inability to stimulate an 

anabolic response, or whether they work in conjunction with other mechanisms, has yet to be 

determined.   

 In terms of exercise intensity, different acute dosages can cause variance in signaling 

marker phosphorylation in humans, especially when age is a variable.  Twenty-five young and 25 

old fasted men performed an acute bout of leg extension and flexion exercise at intensities 

ranging from 20% to 90% of the participant’s 1RM with corresponding sets and repetitions (i.e. 

20% 1RM, 3 sets x 27 reps; 75% 1RM, 3 sets x 8 reps; etc.) (Kumar, 2009). A relationship was 

established between the intensity of resistance training and myofibrillar muscle protein synthesis 

(MPS), where gradual increases were generated from 20% to 60%, followed by a plateau at 

≥75%.  Gains in MPS were 30% greater among young subjects than in old (Kumar, 2009).  

Maximal phosphorylation of 4E-BP1 and p70s6k was observed during 1-hr post-exercise and 

these increases were correlated with the increase in MPS, although only among young 

participants.  eEF2 phosphorylation was unaffected by any variability in age or intensity (Kumar, 

2009).  It was apparent that acute in vivo stimulation of MPS and the correlating phosphorylation 

of muscle protein translation initiation proteins were depressed or blunted in aged humans.  

 Chronic resistance training has demonstrated variability in its stimulatory effects on 

muscle hypertrophy amongst young and old humans.  Kosek et al (2006) examined the effects of 

a chronic 16-weeks resistance-training regimen performed 3 days per week using 3 knee 

extensor exercises at 3 sets for 8-12 reps per set (Kosek, 2006).  The chronic cycle of resistance 

training generated increases in type I (18%) and II (32%) fiber cross-sectional area (CSA) among 

young males and females (20-35 yrs).  Type I fibers showed no increases in CSA, while type II 

fibers exhibited limited increases (23%) in CSA among older subjects (60-75 yrs) (Kosek, 2006).  
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Furthermore, a transition from type IIx fibers to type IIa fibers was observed in all groups 

(females 47.4+/-1/7 to 60+/-2.3%; and males 49.8 +/-2.3 to 65.3 +/- 2.5%).  One positive result is 

that older individuals were able to stimulate growth in type II fiber CSA after 16-weeks of 

exercise to the baseline level of younger subjects indicating that there is the potential for muscle 

growth.  However, the hypertrophic response was still not as dramatic as that observed in 

younger humans at the end of the training period (Kosek, 2006).  These data contradict those of 

Blough, 2000 stating that declines were actually observed in muscle fiber CSA follow 8-weeks 

of muscle overloading in aged rats (Blough, 2000).  Longer duration of resistance training and 

variability in the mode used to cause physical stress on the muscles may account for these 

differences.   From the data discussed, it is clear that aging produces a desensitization to muscle 

overloading as a stimulus for skeletal muscle hypertrophy and translational signaling.  

Researchers have examined nutritional supplementation as a possible intervention for sarcopenia.  

The findings will be discussed at length in the following section.   

Supplementation of Whey Protein and Amino Acids  

 Nutritional supplementation has been shown to act as a catalyst by enhancing muscle 

protein synthesis above the stimulatory effects observed in the fasted state (Burd, 2010).  Recent 

focus has been centered around the addition of dietary whey protein (Paddon-Jones, 2006; Rieu, 

2006; Burd, 2010,) and the amino acids that comprise this ergogenic aid (essential and non-

essential amino acids)(Dardevet, 2000; Dardevet, 2002; Guillet, 2003, Paddon-Jones, 2004; 

Katsanos, 2006; Paddon-Jones, 2006; Fujita, 2007; Atherton, 2010; Katsanos, 2008; Dickinson, 

2011) in an attempt to determine which specific component(s) contributed to the stimulatory 

effect on muscle protein synthesis.  



   

 

21 

 An instrumental experiment performed by Volpi et al quantified protein synthesis and 

degradation kinetics among differing age groups (Volpi, 2001). Kinetic markers for protein 

synthesis and breakdown were examined in the vastus lateralis of fasted young (28+/-2yr) and 

elderly (70+/-1yr) male humans without dietary manipulation.  Among participants, net muscle 

protein balance was equal.  Remarkably, muscle protein synthesis was higher in elderly males.  

Researchers speculated that equal values in net protein balance, rather than values favoring the 

elderly group, were a product of the equally high degradation levels among elderly participants 

(Volpi, 2001).  In a separate study, gender differences where quantified in the fasted- and fed-

states among aged humans (Smith, 2008).  Aged females in the postabsorptive state exhibit a 

greater percentage of basal (fasted) muscle protein synthesis (~30%) than those values observed 

in aged males (Smith, 2008).  These differences are not observed in p70s6kThr389 phosphorylation 

at basal levels.  Following the consumption of 15 small liquid meals (15% protein, 55% 

carbohydrate, 30% fat) over 150 minutes, increases in p70s6k phosphorylation occurred to the 

same extent in both gender groups.  However, increases in MPS were only found to exist in 

males (Smith, 2008).  From these data, it was evident that the consumption of a meal acted to 

increase muscle protein synthesis and exhibited greater values for muscle protein synthesis 

measured in the fasting state.  It is important determine whether one, or a combination of 

components, found in a standard meal generated these observed increases in muscle protein 

synthesis and translational signaling.   

 Proteins are comprised of amino acids, which are classified as either essential (EAA) or 

non-essential amino acids (NEAA), and can be supplemented together (i.e. in whey protein) or 

separately (Katsanos, 2008).  Amino acids administered via intravenous infusion to young 

human participants in the postabsorptive state have demonstrated an initial delay or latency 
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period of ~30 minutes, followed by a dramatic increase (2.8-fold; 0.08+/- 0.01 (basal) to 0.21+/-

0.07  (30-60min) to 0.24+/-0.04%/hr (60-120 min)) in mixed muscle protein synthesis between 

30 and 120 min (Bohe, 2001).   These data suggested that amino acids administered in vivo 

could facilitate increases in muscle protein synthesis, although there was a delay in the initiation 

of protein synthesis.  To further discern which specific component(s) possess anabolic properties, 

amino acids were separated into their respective EAA and NEAA groups and measured in vitro 

and in vivo in order to determine their anabolic properties on protein synthesis and accrual 

(Atherton, 2010; Katsanos, 2008).  Thirty minutes of in vitro incubation of specific amino acids 

to C2C12 myocytes revealed that neither a combination of nonessential amino acids (NEAA), 

nor the branched-chain amino acids (BCAA) valine or isoleucine, acted as stimuli for 

phosphorylating initiation signaling markers and muscle protein synthesis (Atherton, 2010).  On 

the contrary, in vitro incubation with essential amino acids (EAA) and leucine independently 

caused dramatic increases in the phosphorylation of mTORSer2448, 4E-BP1Thr37/46, rpS6Thr235/236 and 

especially p70s6kThr389 (p-p70s6k:  EAA, 1.6-2.0 fold increase; leucine, 5.9+/-0.5 fold increase) 

(Atherton, 2010).  Administration of NEAA (7.57g) in vivo has shown no affect on protein 

accumulation at 3.5 hr post-ingestion among elderly humans (Katsanos, 2008).   Although EAA 

(6.72 g) demonstrated an increase in protein accrual, these values could not compare to the 

increases observed when whey protein was supplemented (15 g) (Katsanos, 2008).  

 The exact signaling pathway(s) by which EAA elicits such effects remains unclear, but 

stimulation of either mTOR pathway signaling marker phosphorylation or muscle protein 

synthesis has been observed following the administration of EAA (Atherton, 2010).  Cellular 

transport allows for essential components of protein synthesis, such as amino acids, to cross the 

cell membrane and become incorporated in the production of proteins.  Skeletal muscle amino 
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acid transporters LAT1/CD98 and SNAT2 have been associated with acute mTOR pathway 

stimulation (via phosphorylation of rpS6Ser240/244) at 1-hr post-administration of 10 g of a mixture 

of essential amino acids (Drummond, 2010).  Acute resistance exercise has caused equivalent 

expression and upregulation of the fore-mentioned transporters along with others 

(LAT1/SLC7A5, SNAT2/SLC38A2, CD98/SLC3A2, PAT1/SLC36A1, and CAT1/SLC7A1), in 

young (28+/-2yr) and old (68+/-2 yr) humans (Drummond, 2011).  Although neither expression 

nor upregulation of these amino acid transporters was significantly different between age group, 

mTOR associated stimulation previously observed (Drummond, 2010) in the form of 

phosphorylation of rpS6Ser240/244 was substantially lower in older humans (Drummond, 2011).   

Desensitivity to amino acid stimulation with age (Paddon-Jones, 2004) could be associated with 

cellular transporters lacking the ability excite activity associated with translational signaling and 

muscle protein synthesis.   For that reason, we chose to also evaluate the effectiveness of 

nutrients (specifically, the amino acid leucine) on stimulating increases in phosphorylation and 

abundance of downstream mTOR signaling markers, as well as muscle hypertrophy.  Lack of 

excitation by nutrients, combined with a reduced ability of muscle overload/resistance exercise 

to generate anabolic responses in translational signaling and muscle protein synthesis in old rats 

and humans, equivalent to that of young, could indeed be the major cause for the decrements in 

muscle mass and quality with age.  

 A key study by Dickinson et al also helped to provide clarity on this issue. The specificity 

of EAA on mTOR signaling was demonstrated in fasted young human participants following an 

acute administration of an essential amino acid solution (Dickinson, 2011).  As expected, muscle 

protein synthesis and phosphorylation of mTORSer2448, 4E-BP1Thr37/46, and p70s6kThr389 increased 

dramatically at 1-hr post-administration.  These effects on muscle protein synthesis and the 
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phosphorylation of mTORSer2448 and p70s6kThr389 were completely attenuated following 

consumption of 16 mg of rapamycin.  Elongation signaling marker eEF2 was unaffected by 

either EAA or rapamycin treatment (Dickinson, 2011).  EAA have been combined with other 

nutrients such as carbohydrates (CHO) to determine whether any additional benefits could be 

produced.  Fujita et al combined a CHO mixture (0.5g/kg⋅fat free mass) with a mixture of 

leucine-enriched EAA (0.35 g/kg⋅FFM; 35% leucine) and measured the metabolic changes in 

young fasted males consuming the mixture over the control (did not consume any nutrients) 

(Fujita, 2007).   Translational signaling markers upstream from mTOR (Akt/PKBSer473, 

TSC2Thr1462) showed no differentiation between groups.  Phosphorylation of mTORSer2448, 4E-

BP1Thr37/46, and p70s6kThr389 demonstrated a remarkable increase, while eEF2Thr56 decreased in 

phosphorylation from the control group.  The combination of carbohydrates and leucine-enriched 

amino acids proved to have a positive impact on stimulating translation initiation signaling 

(Fujita, 2007).  The lack of stimulation of signaling markers upstream from mTOR may signify 

that amino acids utilize an alternate pathway to phosphorylate mTOR other than the Akt/mTOR 

pathway.  

 The amino acid leucine has proven to act as a catalyst for protein anabolism and 

translational signaling marker phosphorylation enhancement among young adult rats and humans 

when combined with EAA and other nutrients (Anthony, 2000; Fujita, 2007) or administered 

independently (Anthony, 2000 #2; Anthony, 2002; Crozier, 2005 Suryawan, 2008).  An acute 

study by Anthony et al demonstrated the anabolic effects of leucine (both alone and in 

combination with other nutrients)(Anthony, 2000). Food-deprived Sprague-Dawley rats were 

given 24 hr access to either saline, 100% CHO (235.5 g/L glucose and 235.5 g/L sucrose), 100% 

leucine (54.0 g/L), or a combination of CHO and leucine (Anthony, 2000). Leucine alone 
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generated a 16-fold increase in serum leucine concentration compared to the 5.5-fold increase 

gained by combining CHO and leucine.  Furthermore, increased phosphorylation of 4E-BP1 and 

p70s6k occurred in both the leucine and CHO + leucine groups above the control group, while 

increased association of eIF4E with eIF4G was only attributed to leucine supplementation.  

Interestingly, neither the consumption of leucine alone nor CHO + leucine diet further enhanced 

protein synthesis above values measured in control rats (leucine, 1.62+/-0.11 mg/hr; 

CHO+leucine, 1.64+/-0.11 mg/hr; control rats, 1.83+/-0.11 mg/hr) (Anthony, 2000).  In an 

attempt to solidify the theory that leucine has the most profound effect on muscle protein 

synthesis and translational signaling, all three BCAA were evaluated for their effects on mTOR 

signaling.  Four groups of male Sprague-Dawley rats were given either 1) saline (control), 2) 

valine (1.35 g/kg⋅bw), 3) isoleucine (1.35 g/kg⋅bw), or 4) leucine (1.35 g/kg⋅bw) after 18 hours 

of food deprivation (Anthony 2000).  Researchers concluded the leucine alone promoted 

translational initiation by enhancing 4E-BP1 phosphorylation (5-fold increase), 4E-BP1-eIF4E 

complex dissociation (17%), eIF4G-eIF4E interaction (4-fold increase), and p70s6kThr389 

phosphorylation.  Clearly, the addition of leucine stimulated translational initiation signaling in 

vivo in rat specimens beyond any other BCAA.  Variations in supplementation dosage had a 

similar effect to variations in training volume, as discussed previously.  Crozier et al examined 

the efficacy of dosages ranging from 5% (0.068 g L-leucine/L H2O) to 100% (1.35g L-leucine/L 

H2O) leucine in young male Sprague-Dawley rats and compared them to control rats consuming 

0.155 mol/L NaCl at 2.5 mL/100g⋅bw (Crozier, 2005).  Increases in total mixed muscle protein 

synthesis rate correlated with rising dosages 30 min post-administration in the gastrocnemius and 

plantaris muscles (10, 25, 50, 100%; 31, 30, 37, 43, respectively).  Amplification of 

phosphorylation for some signaling proteins was observed with concentrations as low as 5% (4E-
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BP1), 10% (eIF4E-eIF4G association), while p70s6k phosphorylation occurred at all dosages 

(Crozier, 2005). 

 To insure that these effects on mTOR signaling are a true product of leucine, rapamycin 

was given in addition to the amino acid in vivo to rats (Anthony, 2000 #2) and neonatal pigs 

(Suryawan, 2008).  The infusion of rapamycin with leucine did not affect signaling proteins 

upstream from mTOR.  However, rapamycin did cause destabilization of the raptor-mTOR 

complex and inhibition of mTORSer2448, 4E-BP1Thr37/46, and p70s6kThr389 phosphorylation that was 

originally enhanced by leucine.  Also worth mentioning is that total abundance of each of these 

signaling marker was not affected by rapamycin (Suryawan, 2008). Among rats, rapamycin plus 

leucine caused muscle protein synthesis stimulation to be suppressed when compared to leucine 

alone.  Additionally, leucine-dependent signaling activity was greatly diminished with the 

inclusion of rapamycin (Anthony, 2000 #2). Once again, these data demonstrated the 

involvement of mTOR in EAA stimulation of muscle protein synthesis.   

  It was evident that leucine had the largest effect on mTOR signaling among amino acids.  

However, the question arose as to whether increases in leucine coincided with increases in 

hormone levels, such as insulin, which could play a part in the increased activation of signaling 

marker, which lie upstream from mTOR along the IGF-1/PI3/Akt/mTOR pathway, and muscle 

protein synthesis.  To determine if leucine indeed acts alone in the stimulation of muscle protein 

synthesis apart from increases in serum insulin, Anthony et al administered either 1) saline, 2) 

leucine, or 3) leucine and somatostatin (an insulin inhibitor) to young male Sprague-Dawley rats 

(Anthony 2002).  Leucine did generate increases in muscle protein synthesis (at 30 and 60 min 

post-administration) along with increased translation initiation signaling marker phosphorylation 

(4E-BP1, p70s6kThr389, rpS6) above baseline values.  However, the affects of leucine were 
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partially (4E-BP1) or fully (p70s6kThr389, rpS6) attenuated in the presence of somatostatin 

(Anthony, 2002).  These reduced in vivo responses revealed that insulin may be required to work 

in conjunction with amino acids, particularly leucine to generate increases in muscle protein 

synthesis.  Other studies have produced conflicting results.  One study showed that insulin 

increases proportionally to the dosages of leucine being administered (Crozier, 2005), while 

others have demonstrated that increases in leucine dosages (in addition to EAA) were 

independent of increases in serum insulin (Katsanos, 2006).  Insulin may have been required to 

stimulate translational signaling and muscle protein synthesis, although proportional increases 

that correlate with increased amino acids administered may not be necessary.  

 Desensitization to nutrient supplementation has been observed with increasing age in 

regards to translational signaling (Dardevet, 2000), muscle (Dardevet, 2000; Dardevet, 2002; 

Paddon-Jones, 2004) and myofibrillar protein synthesis rates (Guillet, 2003), muscle fiber 

composition (CSA), and whole muscle strength (1RM) (Verhoeven, 2009).  Age-ranged 

comparative analyses were conducted on rats and humans supplementing nutrients in vitro and in 

vivo in an effort to determine the cause(s) and possible interventions for these decrements.  A 

study performed by Dardevet et al examined age differences in response to in vitro leucine 

administration.  The epitrochlearis muscles of young (4-5 weeks), adult (6-8 mo) and old (20 

mo) Wistar rats were incubated in a medium representing 1) arterial postasbsorptive amino acid 

status, or 2) postprandial amino acid status for 2 hr.  Stimulatory effects of these two mediums 

on muscle protein synthesis were compared to epitrochlearis muscle incubated in dose-dependent 

leucine medium (Dardevet, 2000).  In young and adult rats, leucine (200µmol/L) maximally 

stimulated in vitro protein synthesis to the same extent as the medium containing postprandial 

quantities of all amino acids.  Older rats required twice the concentration of leucine (~400 
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µmol/L) for maximal in vitro protein synthesis stimulation and p70s6k phosphorylation 

(Dardevet, 2000).  The addition of inhibitors LY294002 and rapamycin were utilized to measure 

the pathways involved in amino acid signaling.  LY294002 (inhibitor of PI(3)K) significantly 

decreased basal protein synthesis and attenuated amino acid-induced muscle protein synthesis.  

Rapamycin (inhibitor of mTOR) had no affected on basal protein synthesis, but attenuated both 

in vitro amino acid- and leucine-induced muscle protein synthesis indicating the involvement of 

an alternate stimulatory pathway for mTOR other than through IGF-1/PI(3)K/Akt (Dardevet, 

2000).  When these data are compared with that of studies previously discussed, it is apparent 

that leucine controls the stimulation of muscle protein synthesis through either direct or indirect 

association with mTOR regardless of age (Anthony, 2000 #2; Dardevet; Suryawan, 2008) 

although a larger quantity of leucine must be supplemented (at least in vitro) with advanced 

aging (Dardevet, 2000).   

 In an attempt to rectify possible in vivo age-related deficits that exist in muscle protein 

synthesis, two studies incorporated amino acid-enriched diets of variable dosages in rats and 

evaluated the effects (Dardevet, 2002; Guillet, 2003).  Adult (8 mo) and old (22) Wistar rats 

were given 1-hr access to either an alanine- or leucine-enriched diet (twice the normal 

postprandial concentration) administered in meal form and compared to rats in the postabsorptive 

state. Although leucine concentrations in the plasma increased in the leucine-enriched diet over 

that of the postprandial alanine-enriched diet, no further increases were observed in muscle 

fractional synthesis rate (FSR) or total synthesis rate (ASR) in adult rats.  Comparing the effects 

of the postprandial alanine- and leucine-enriched diets, old rats exhibited substantial increases in 

both FSR and ASR (FSR values:  gastrocnemius post-absorption (PA) 4.15+/-0.11 %/day vs. 

postprandial (PP)+Leu 4.94+/-0.22%/day; and soleus PA 7.75+/-0.23%/day vs PP+Leu 8.89 +/-
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0.21%/day) from only the leucine-rich diet above that of the control diet between 90-120 min 

post-feeding (Dardevet, 2002).  In a similar experiment (Guillet, 2003), adult (8 mo) and old (22 

mo) Wistar rats consumed either an alanine-enriched (44.5 g/kg DM of alanine) or a leucine-

enriched (44.5 g/kg DM of leucine) diet for 1 hr, and the effects were compared to those found in 

rats in the postabsorptive state (following a 17 hr fast) (Guillet, 2003).  Measurements of 

mitochondrial, sarcoplasmic, and myosin heavy chain FSR revealed no variability between age 

groups in the postabsorptive state.  However, between 90-120 min post-feeding, the old rats in 

the leucine diet group showed a lesser ability to synthesize MHC proteins compared to adult rats 

in the same group.  Researchers attributed the lack of stimulation in producing these contractile 

elements to the declines in muscle function and ultimately muscle atrophy (Guillet, 2003). 

 Increased dosages of EAA (~15 g) have demonstrated enhanced muscle protein synthesis 

among elderly males and females (Paddon-Jones, 2006), above the values produced from 

supplementing 6.72 g of EAA normally found in 15 g of whey protein (Paddon-Jones, 2006; 

Katsanos, 2008).  To simulate the acute in vivo effects of a single meal, healthy young and 

elderly male and female human participants consumed a single 15 g bolus of EAAs following a 

12 hr fast.  Although both groups demonstrated an increase in mixed muscle FSR, postprandial 

increases for elderly participants were much more gradual as determined by a positive net 

phenylalanine balance in comparison to values observed in young (Paddon-Jones, 2004).  Net 

phenylalanine uptake peaked at 30 min in young (102.0 +/-6.0 mg Phe/leg) with a dramatic 

decline thereafter.  This peak did not occur until 60 min post-EAA for elderly (155.3+/-19.4 mg 

Phe/leg), but declined at a muscle slower rate and remained higher than their young counterparts 

(Paddon-Jones, 2004).  However, when analyzing the quantities of phenylalanine in the 

intracellular pool, elderly also are incorporating much less for protein anabolism than young 
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(150.2+/-19.4 nmol/mL vs. 115 +/- 5.4 nmol/ml, intracellular, respectively).  From these data, 

researchers believed that a time frame of 60 to 120 min existed post-EAA administration in 

which elevated plasma levels can stimulate protein synthesis.  Clear evidence indicated that 

higher dosages of leucine were required to stimulate muscle protein synthesis and translation 

signaling marker phosphorylation (Dardevet, 2000).  Along with this, the greatest effects on 

muscle protein fractional synthesis rates are observed in the postprandial stage (Guillet, 2003).  

Finally, in addition to larger requirements for amino acid dosages, aging causes a slower 

response to peak muscle protein synthesis, followed by a much more gradual decline (Paddon-

Jones 2004).  

Nutritional Supplementation Paired with Muscle Overload and Resistance Exercise 

  In an effort to maximally reduce, or attenuate the loss of muscle mass and quality 

associated with age, researchers have studied the combined effects of muscle 

overloading/resistance exercise regimens with various forms of supplementation to assess 

whether additional benefits and possible advanced interventions existed.   Recall that the ability 

to stimulate muscle protein translational signaling (Parkington, 2004; Thomson and Gordon, 

2006; Kumar, 2009; Chale-Rush, 2009) and muscle protein synthesis (Kumar, 2009), as well as 

improve muscle contraction quality (Blough, 2000; Frontera, 2000) and increase muscle fiber 

and overall hypertrophy (Kosek, 2006) in response to muscle overloading or resistance exercise 

is reduced with age in rats and humans.  Furthermore, variability in the anabolic properties 

associated with supplemental amino acids make it difficult to discern which combination of 

nutrients may generate the most effective intervention when paired with muscle overloading or 

resistance exercise.  A review of the combined effects of amino acid, protein, and carbohydrate 
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supplementation, with muscle overloading and resistance training in animals and humans can be 

found in the following section.   

 Acute (Hulmi, 2009) and chronic (Hulmi, 2009; Coburn, 2006) supplementation of whey 

protein and resistance exercise have generated positive translational signaling stimulation 

(Hulmi, 2009) and increased maximal muscle strength in young untrained human participants 

(Coburn, 2006).  Whey protein (15 g) supplemented before and immediately after an acute bout 

of resistance exercise has demonstrated increased phosphorylation of mTOR at 1-hr and 48-hr 

post-exercise (Hulmi, 2009).  Gains in muscle cross sectional area (CSA) have been observed in 

young humans chronically (8 week) supplementing leucine-enriched (8 g) whey protein (20g) 

along with unilateral leg extension exercise to a greater extent than those supplementing a 

placebo (7.31%, 4.58%, respectively).  Interestingly, gains in CSA and 1RM were also observed 

in the untrained limb of the supplementation group (Coburn, 2006).  In a similar study, 

untrained, young participants supplementing leucine+whey protein in conjunction an acute bout 

of resistance exercise could not further enhance positive net muscle protein synthesis that was 

produced by participants consuming whey protein only, despite blood leucine concentrations 

remaining elevated for 215 minutes post-administration (Tipton, 2007).  

 The acute addition of leucine and/or protein to CHO has produced remarkable increases 

in the metabolic responses to resistance exercise.  An intra-participant study was conducted over 

three separate 1-day sessions to determine whether post-exercise co-ingesting leucine and protein 

with carbohydrates (CHO) enhanced muscle anabolism over CHO+PRO or CHO alone 

(Koopman, 2005).  Untrained, young (22.3+/-0.9 yr) male participants were given the initial 

bolus (3 mL/kg) immediately post-exercise, followed by repeated boluses every 30 minutes until 

330 minutes post-exercise to ensure a continuous supply of nutrients.  CHO+PRO+LEU 
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significantly increased whole body net protein balance and muscle protein synthesis rates to a 

greater extent over CHO alone in young males.  Whole body protein breakdown was 

significantly suppressed in CHO+PRO and CHO+PRO+LEU (reduced by 50+/-2 and 62 +/-2).  

Additionally, whole body protein synthesis was increased in CHO+PRO and CHO+PRO+LEU 

(54+/-5 and 45+/-5%, respectively).  Mixed muscle FSR was also significantly greater with 

CHO+PRO+LEU than CHO alone.  Plasma insulin response was ~250% greater in individuals 

consuming CHO+PRO+LEU than those consuming CHO alone. Mixed muscle FSR did not 

positively correlate with plasma insulin response, but did correlate with the amount of leucine 

that was ingested (Koopman, 2005) 

 The specific timing of certain supplements in relation to an exercise bout has been shown 

to have a profound effect on muscle metabolism.  In two separate studies, young humans 

consumed either no nutrients (control) or leucine-enriched (35%) EAA+CHO 0.35 g/kg·LM of 

EAA + 0.5 g/kg·LM of CHO (experimental) at: 1) 1-hr pre-exercise (Fujita, 2009), or 2) 1-hr 

post-exercise  (Dreyer, 2008) (10 sets of 10 repetitions of bilateral leg extensions) (Dreyer, 2008; 

Fujita, 2009). In the pre-exercise supplementation study, the experimental group showed 

increased intracellular leucine concentrations above baseline values.  Contrary to participants 

supplementing EAA+CHO, intracellular leucine in the exercise only group declined during 

recovery.  Remarkably, EAA+CHO caused mixed muscle FSR to increase above basal values 

observed in the fasting group during the pre-exercise period.  Mixed muscle FSR returned to 

baseline during exercise, remained unchanged during 1-hr post-exercise, then increased 

significantly at 2 hr post-exercise in the EAA+CHO group.  mTORSer2448 phosphorylation 

increased prior to exercise and maintained basal levels during exercise in the supplement group.  

No differences were observed in FSR between groups during 1-hr and 2-hr post-exercise (Fujita, 
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2009).  P70s6kThr389 phosphorylation also showed an increase prior to exercise, and remained 

elevated during 1-hr and 2-hr post-exercise in the EAA+CHO group.  Elevated phosphorylation 

of p70s6kThr389 in the fasting group was seen at 2-hr post-exercise, although not to as great of an 

extent as in the supplementation group (Fujita, 2009).  Phosphorylation of eEF2 was 

significantly reduced prior to exercise, followed by a return to baseline during exercise, and an 

additional reduction at 1-hr and 2-hr post-exercise in the supplementation group.  A pre-exercise 

reduction in eEF2 phosphorylation was not observed in the fasting group (Fujita, 2009).  In 

participants consuming EAA+CHO supplementation post-exercise, serum insulin levels rose 

equally with the control group until 1 hr post-exercise, where a dramatic increase occurred 

(Dreyer, 2008).  Arterial and intramuscular leucine concentrations at 2 hrs post-exercise were 

significantly higher in EAA+CHO group than the control (564+/-31 vs 142+/-16µM, 

respectively).   For both groups, mixed muscle FSR decreased immediately following exercise, 

then increased at 1 hr and 2 hr post-exercise, with substantially higher values seen in the 

EAA+CHO group (145% vs 41%, respectively) (Dreyer, 2008).  Most notable were the increases 

in phosphorylation of signaling markers found in the Akt/mTOR translation initiation pathway.  

mTORSer2448 and p70s6kThr389 increased immediately post-exercise and remained elevated in both 

groups through 2 hr, with greater increases in participants consuming EAA+CHO.  4E-

BP1Thr37/46 significantly increased only at 2 hr post-exercise in the EAA+CHO group.  eEF2Thr56 

phosphorylation reduced from baseline at 1 hr and 2 hr post-exercise with no significant 

differences between groups (Dreyer, 2008).   

 Apparent benefits were exhibited from supplementing amino acid mixtures with other 

nutrients before (Fujita, 2009) and after (Koopman, 2005; Dreyer, 2008) resistance exercise.  In 

an attempt to evaluate the combined effect of acute pre- and post-exercise supplementation, 
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Karlsson et al administered 150 mL of BCAA (45% leucine, 30% valine, 25% isoleucine) to 

young human participants before warming up, immediately before resistance exercise, and 

during recovery (at 15, 30, 60, 90, and 120 min post-exercise). Significantly greater increases in 

the phosphorylation of signaling markers located downstream of mTOR (p70s6k and rpS6) were 

noted (Karlsson, 2004).  P70s6kSer421/Thr424 phosphorylation increased immediately following 

exercise in both the BCAA and control groups, but only continued to remain elevated for the 

entirety of recovery (2 hr) in the BCAA group.  Contrary to residue Ser421/Thr424, 

phosphorylation of p70s6k at residue Thr389 only showed marked increases in participants 

supplementing BCAA during the recovery period.  Chronic supplementation of amino acids, in 

addition to aerobic and anaerobic training regimens, has also assisted in improving exercise 

tolerance and markers of performance.  Pre- and post-, long-term (6 weeks) leucine 

supplementation (45 mg/kg·d) was performed on young outrigger canoeists during the 

competitive season (Crowe, 2006).  At the end of the 6-week period, post-supplement upper 

body peak power had increased from baseline in both the placebo and leucine groups, although 

increases were substantially higher in the leucine group.  Similarly, an overall increase was 

observed in exhaustive row time (72.2+/-4.4 min to 76.3+/-5.8 min).  Finally, pre-supplemental 

RPE values did not differ between groups.  However, a significant decline in RPE occurred in 

the leucine group during post-supplementation (12.9+/-1.4 vs. 15.0+/-1.4) (Crowe, 2006)  

 Two intra-participant studies were conducted to determine whether adding protein or 

protein and leucine to a nutrient regimen could enhance markers of protein metabolism. On two 

separate days, young (20+/-1 yr) and elderly (75+/-1 yr) consumed repeated boluses every 30 

minutes (for 330 min) of either 1) a placebo CHO beverage (1.33 mL/kg/hr volume; 0.49 g/kg/hr 

CHO) or, 2) a CHO+PRO+LEU (1.33mL/kg volume; 0.49 CHO, 0.16 g/kg whey protein, 0.03 



   

 

35 

g/kg leucine) in a double blind manner immediately following a resistance exercise bout 

resembling activities of daily living (~650 kJ/30 min) (Koopman, 2006 #2).  Following a 7-day 

period, each participant repeated the protocol and consumed the alternate combination of 

nutrients.  Regardless of age, whole body protein breakdown was suppressed and synthesis was 

amplified when adding whey protein and leucine to CHO supplements resulting in an overall net 

increase of 47+/-3% and 44+/-4% for young and elderly participants.  Although both age groups 

showed significant increases in muscle fractional synthesis rates when consuming 

CHO+PRO+LEU over CHO alone, the overall synthesis values were ~30% lower among elderly 

participants (Koopman, 2006 #2).  Among elderly participants, additional leucine facilitated 

higher phenylalanine uptake into the cell (measured by rate of disappearance) and greater net 

protein balance above that of CHO+PRO (Koopman, 2007).  However, no significant differences 

were found in whole body protein breakdown synthesis, mixed muscle protein fractional 

synthesis rates (FSR) per hour between CHO+PRO+LEU and CHO+PRO groups (Koopman, 

2007).  Pennington et al (2011) utilized the same resistance exercise protocol discussed 

previously (Koopman, 2007) to evaluate effects of supplemental protein and resistance exercise 

between age groups (Pennings, 2011). Immediately post-exercise, young (21+/-1 yr) and elderly 

(74+/-1 yr) consumed a 250 mL bolus of casein protein (20g) containing labeled phenylalanine.  

Interestingly, postprandial muscle protein synthesis rates were increased above baseline in both 

age groups (Pennings, 2011). Although both groups showed similar increases in postprandial 

plasma amino acid concentrations and plasma insulin responses, rises in both variables were to a 

greater extent in elderly participants (Pennings, 2011) 

 Most essential to the current study was the data produced by Drummond et al, which 

demonstrated the delayed and suppressed responses to the combination of acute resistance 
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exercise and nutritional supplementation (Drummond, 2008 #2).  Elderly (70.0+/-1.7 yr) and 

young (29.7+/-2.1 yr) male participants performed an acute resistance exercise bout (8 sets of 10 

repetitions) of bilateral leg extensions and consumed leucine-enriched (35% leucine, 20 g total 

EAA) EAA post-exercise.  An equivalent increase in muscle intracellular leucine concentration 

at 3-hr post-exercise was observed in young participants only, which remained elevated in both 

young and elderly through 6-hr post-exercise (Drummond, 2008 #2).  Interestingly, mixed 

muscle protein fractional synthesis rate was only elevated in the young group between 1-3 hr 

post-exercise.  Similar increases of FSR were not achieved between groups until reaching 3-6 hrs 

post-exercise.   Delivery of amino acids accounts for this delay.  With regards to mTOR and 

p70s6k phosphorylation, increases were apparent at all time points following the exercise bout.  

However, young participants exhibited an increase phosphorylation of p70s6k before EAA 

administration and at 6-hrs post-exercise.  Phosphorylation of elongation protein, eEF2, 

progressively decreased from 1-hr to 3- and 6-hrs post-exercise.  This delay in muscle protein 

synthesis cannot be attributed to amino acid delivery nor lack of phosphorylation, and presumed 

activation of mTOR and mTOR regulated signaling markers (Drummond, 2008 #2).   

 Pharmaceutical inhibitors of specific translational signaling proteins that have been 

incorporated into recent studies in an effort to verify the relationship between 1) muscle 

overloading/resistance exercise and mTOR pathway signaling, and 2) amino acid 

supplementation and mTOR pathway signaling.  These inhibitors also helped to pinpoint were 

along the pathway each stimulant affected signaling and ruled out the involvement of other 

pathways/stimuli in muscle protein signaling and/or synthesis.  Although pharmaceutical 

inhibitors were not incorporated into the current study, previous research was analyzed and 

helped to further solidify the direct effect that leucine had on mTOR signaling.  Administration 
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of rapamycin, a known inhibitor of mTOR, blunted increases in muscle protein synthesis that 

were observed in the control group following by an acute bout of resistance exercise in humans.  

Also, p70s6kThr421/Ser424 and eEF2Thr56 remained unchanged from baseline following treatment 

with rapamycin (Drummond, 2009).  The partially diminished increase in MPS (~40%) and 

blunted phosphorylation of signaling proteins located downstream from mTOR indicated that 

signaling through the mTOR pathway is involved in exercise-stimulated MPS (Drummond, 

2009). Additionally, leucine-dependent signaling activity was greatly diminished with the 

inclusion of rapamycin, especially at residue Thr389 on p70s6k (Anthony, 2000 #2).  Other 

inhibitors, such as LY294002 (inhibitor of PI(3)K; a signaling protein found upstream from 

mTOR), have been used in conjunction with rapamycin to solidify the theory that amino acid 

stimulation occurs directly through mTOR and does not occur through upstream signaling 

proteins.  LY294002 did significantly decrease basal protein synthesis and attenuated amino 

acid-induced muscle protein synthesis.  On the other hand, rapamycin had no affected on basal 

protein synthesis, but attenuated both in vitro amino acid- and leucine-induced muscle protein 

synthesis indicating the involvement of an alternate stimulatory pathway for mTOR other than 

through IGF-1/PI(3)K/Akt upstream signaling (Dardevet, 2000). 

 Recall that muscle overloading is an affective stimulus for skeletal muscle hypertrophy 

and protein translational signaling in young rats (Thomson and Gordon, 2005; Thomson and 

Gordon, 2006) and humans (Eliasson, 2006; Dreyer, 2008).  A desensitization to muscle 

overloading develops with age (Chale-Rush, 2009; Thomson and Gordon, 2005; Thomson and 

Gordon, 2006; Kosek, 2006).  Nutritional supplementation has been shown to act as a catalyst by 

enhancing muscle protein synthesis above the stimulatory effects observed in the fasted state 

(Burd, 2010).  The amino acid leucine has proven to act as a catalyst for protein anabolism and 
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translational signaling marker phosphorylation enhancement among young adult rats and humans 

when combined with EAA and other nutrients (Anthony, 2000; Fujita, 2007) or administered 

independently (Anthony, 2000 #2; Anthony, 2002; Crozier, 2005 Suryawan, 2008).  

Desensitization to nutrient supplementation has been observed with increasing age in regards to 

translational signaling (Dardevet, 2000), muscle (Dardevet, 2000; Dardevet, 2002; Paddon-

Jones, 2004) and myofibrillar protein synthesis rates (Guillet, 2003), muscle fiber composition 

(CSA), and whole muscle strength (1RM) (Verhoeven, 2009).  Clear evidence indicated that 

higher dosages of leucine were required to stimulate muscle protein synthesis and translation 

signaling marker phosphorylation in old rats (Dardevet, 2000).  Along with this, the greatest 

effects on muscle protein fractional synthesis rates are observed in the postprandial stage 

(Guillet, 2003).  Finally, in addition to larger requirements for amino acid dosages, aging causes 

a slower response to peak muscle protein synthesis, followed by a much more gradual decline 

(Paddon-Jones 2004).   It is best to consume pre- and post-exercise in order to maximize the 

benefits of supplementation (Dreyer, 2008; Fujita, 2009).   Limited data was available for 

analysis on the paired effects of chronic muscle overloading with continuous leucine 

supplementation in aged animals and humans. For that reason, the purpose of this study was to 

examine the effects of dietary leucine supplementation on protein translational signaling and 

muscle hypertrophy in the overloaded fast-twitch skeletal muscles of aged animals.  It is 

hypothesized that supplementing a standard chow diet with 5% leucine will enhance muscle 

hypertrophy in overloaded fast-twitch plantaris muscles of aged (33-month old) rats to levels 

observed in young adult (8-month old) rats.  It is also hypothesized that 5% dietary leucine 

supplementation will enhance p70s6k, rpS6, eEF2k, and eEF2 signaling in the overloaded fast-

twitch plantaris muscles of aged rats to levels observed in young adult rats.  If the application of 
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this intervention method proves to be beneficial for stimulating protein translation in aged rats, 

additional chronic supplementation studies with human subjects could be warranted.  This 

combination could be a pivotal intervention strategy to delay, or perhaps even cease, muscle 

fiber degeneration and reduce the affects of aging on normal functioning and disease 

progression.  
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Chapter III:  Methods 

Experimental Animals 

Specimens chosen for the present study were young adult (YA; 8 mo; n = 13) and old (O; 

33 mo; n = 13) Fischer344 X Brown Norway F1 hybrid (FBN) male rats.  FBN rats were housed 

at the East Carolina University Brody School of Medicine animal care facility.   The specimens 

were acclimated to a 12 hr light/dark cycle with continuous ad libitum access to water and 

normal rodent chow prior to initiation of dietary intervention.  Experimental groups were formed 

from each age category.  Specimens were divided into a placebo group (n=6) or a leucine 

supplementation group (n=7).  A 1-week comparison of overloaded vs. non-overloaded muscle 

was achieved in the plantaris muscle of each rat following a unilateral tenotomy of the left hind 

limb.  All procedures performed in this study were approved by the East Carolina University 

Animal Care and Use Committee prior to the initiation of the experiment (see appendix A). 

Rationale for Experimental Animals 

Fischer344 x Brown Norway (FBN) rats were the primary choice for this investigation due 

to the similarities they share with humans with regards to aging.  In previous research, FBN rats 

have demonstrated reductions in muscle mass, CSA and contractile properties of the plantaris 

muscles as age increases.  The greatest losses in these areas have been observed during the latest 

stages of life (38 mo) (Blough, 2000).  Similar losses of muscle strength (Vandervoort, 2002) are 

apparent in human participants in their seventh and eighth decades.  Overloading has been shown 

to improve overall muscle functioning and mass for humans even into their tenth decade 

(Fiatarone, 1994).  Although the responses to overloading stimuli are to a lesser degree in elderly 

rats than with young, there is evidence that improvement in strength and hypertrophy can be 

made, and these improvement are analogous those seen in humans (Blough, 2000; Fiatarone, 
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1994).   In aged FBN rats, proteins that inhibit synthesis initiation (AMPK) increase and have 

demonstrated a negative correlation with hypertrophy generated through overloading, 

particularly in muscles that are predominately composed of fast-twitch fibers (Thomson and 

Gordon, 2005). FBN rats have been shown to express the same progressive aging trends as both 

male and female humans (Thomson and Gordon, 2005; Thomson and Gordon, 2006; Thomson, 

2009).   Because there are few gender differences in muscle atrophy and diminished hypertrophy 

with age, and male FBN rats are a good model to represent both genders, we chose to use only 

male FBN rats. 

Dietary Intervention 

Upon arrival to the East Carolina University Brody School of Medicine animal care 

facility, animal specimens participated in a 2 day acclimation period where they consumed an ad 

libitum diet of standard rodent chow (placebo diet found in Table 3.1) and water.  Following the 

acclimation period, the specimens were separated into different age categories.  Animals between 

age groups were paired for their body weight and fed either a standard rodent chow diet 

(placebo) or a 5% supplemental leucine-enriched chow (provided by Research Diets, Inc., New 

Brunswick, NJ) during the 2 days before surgery.   Composition of the placebo and leucine diets 

can be found below in Table 3.1. The addition of 5% leucine to the standard rat chow was chosen 

for this study due to its previous success in decreasing postprandial protein degradation over a 

10-day period in aged skeletal muscle (Combaret, 2005).  Composition of the placebo diet was 

20% protein, 65% carbohydrate, and 15% fat.   The leucine diet was composed of 20% protein, 

5% free leucine, 59% cabohydrate, and 15% fat. 

Following the initial tenotomy surgery (described below), the control group continued to 

receive standard rat while the supplementation group continued to consume the 5% leucine diet.  



   

 

42 

Chow consumption was monitored daily to assess caloric and leucine intake.  The experimental 

supplementation lasted 9 days (2 days pre-surgery plus 7 days post-surgery) and rats continued 

on with their assigned diets ad libitum until the time of sacrifice. 

Table 3.1:  Dietary Compositions 

Diet Placebo Leucine 
Product # D09051102 D11020301 
  gm% kcal% gm% kcal% 
Protein  19 20 24 25 
Carbohydrate 63 65 58 59 
Fat  7 15 7 15 
Total    100   100 
kcal/g 3.8   3.8   
          
Ingredient Gm kcal gm kcal 
Casein 200 800 200 800 
L-Leucine 0 0 54 216 
L-Cystine 3 12 3 12 
          
Corn Starch 346 1384 292 1168 
Maltodextrin 10 45 180 45 180 
Dextrose 250 1000 250 1000 
          
Cellulose, BW200 75 0 75 0 
Inulin 25 25 25 25 
          
Soybean Oil 70 630 70 630 
          
Mineral Mix S10026 10 0 10 0 
Dicalcim Phosphate 13 0 13 0 
Calcium Carbonate 5.5 0 5.5 0 
Potassium Citrate, 1 H2O 16.5 0 16.5 0 
          
Vitamin Mix V10001 10 40 10 40 
Choline Bitartrate 2 0 2 0 
          
Yellow Dye #5 FD&C 0.025 0 0.025 0 
Red Dye #40, FD&C 0 0 0.25 0 
Blue Dye #1, FD&C 0.025 0 0 0 
          
Total 1071.05 4071 1071.5 4071 
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Synergist Tenotomy Procedure 

The 1-week overloading model that all animals were subjected to was achieved through 

surgical tenotomy of the Achilles tendon.  Unilateral tenotomy was selected for this study to 

allow for a more accurate comparison of muscle hypertrophy and pathways controlling protein 

synthesis within animals and to eliminate the risk of bias between animals.  

The Achilles tendon acts as the connective tissue for the major synergist muscle (the 

gastrocnemious) of the lower leg.  Tenotomy of this synergist muscle allowed for the plantaris 

muscle of each hind limb to become overloaded.  The procedure began by weighing each animal.  

A general anesthetic (2-3% isoflurane and supplemental oxygen) was administered prior to 

surgery.  It was ensured that aseptic conditions were achieved before beginning any invasive 

procedures.  The distal portion of the Achilles tendon of the left hind limb was located and cut 

using a surgical scalpel.  Once the gastrocnemious was completely free, the exposed tissue was 

closed using surgical staples.  The right hind limb was used for the sham or control limb.  The 

gastrocnemious was exposed and the Achilles tendon was isolated in the sham limb.  However, 

no surgical tenotomy was performed on the control limb, which left the plantaris and soleus 

under normal muscular strain during the overload period.  Again, the exposed tissues were closed 

using surgical staples.  A subcutaneous injection of an analgesic (Buprenex, 0.03 mg/kg·bw) was 

administered following the procedure.  

Tissue Harvesting and Euthanasia 

  On the day of muscle extraction and sacrifice (7 days post-surgery), animals were 

allowed free access to their designated chow until terminal anesthesia.  This decision was based 

on previous research, which indicated that the postprandial state was the period in which the 

effects of leucine are most prevalent (Katsanos, 2006; Fujita, 2007).  Animal sacrifice order was 
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randomized and counterbalanced, but kept to within ~2 hrs of the end of the dark cycle (during 

which the animals are feeding more than during the light cycle).      

 Animals were weighed and anesthetized with an intraperitoneal injection of ketamine and 

xylazine (90 and 10 mg/kg body weight, respectively), and the plantaris muscle of each hind 

limb was extracted.  Following extraction, excess connective tissue and fat were removed and 

each muscle was weighed using an analytical balance.  Samples were then flash frozen in liquid 

nitrogen and stored in a freezer at -80˚C.  Animals were sacrificed by cardiectomy while still 

anesthetized. 

Western Blot Analysis 

 Plantaris muscle protein content and phosphorylation states of p70S6k, rpS6, eEF2k and 

eEF2 were measured using western blotting analysis methods.  Muscle samples were placed in a 

test tube and homogenized in a buffer (composition consisted of 50 mM HEPES (pH 7.4), 0.1% 

Triton X-100, 4 mM EGTA, 10 mM EDTA, 15 mM Na4P2O7•10H2O, 100 mM ß-

glycerophosphate, 25 mM NaF, 50 µg/ml leupeptin, 50 µg/ml pepstatin, and 33 µg/ml aprotinin) 

using a ground glass homogenizer.  To prevent excess heat build up and protein denaturation, all 

homogenations were performed with the test tube placed in a beaker of ice.    

 The total protein concentration of each homogenate was determined in triplicate using a 

modified Lowry procedure (DC Protein Assay, Bio-Rad, Hercules, CA, USA).  Protein 

homogenates were then mixed in a loading buffer (50 mM Tris-HCl, pH 6.8, 10% glycerol, 2% 

SDS, 2% ß-mercaptoethanol, 0.1% bromophenol blue) with a dilution ratio of 1 mg protein per 

mL.  The homogenate mixture was then heated to a boil for 5 minutes.  Protein separation was 

achieved using 4-15% gradient sodium doecyl sulfate-polyacrylamide gel electrophoesis (SDS-

PAGE).  The blotting transfer spanned 1.5 hrs at a temperature of 4˚C onto a PVDF membrane at 



   

 

45 

100V in a transfer buffer (25 mM Tris-base pH~8.3, 192 mM glycine, and 20% methanol).   All 

groups were equally represented on all gels/membranes, and the membranes were stained using 

Ponceau S to assess protein loading of the lanes.  Once the staining was complete, membranes 

were allowed to dry.  Membranes were scanned to form digital images.  These images were later 

analyzed by software (NIH Image, National Institute of Health, Bethesda, MD), which uses gray 

scale optical density to determine relative total protein loaded into each lane over the full length 

of the individual lanes.  Membranes were placed into a blocking buffer composed of 5% nonfat 

dry milk in TBS-T (20 nM Tri-base, 150 mM NaCl, 0.1 % Tween-20) pH 7.5 for 1 hr at room 

temperature.  Once the blocking procedure was completed, the membranes were incubated in the 

primary antibody diluted in 1% bovine serum albumin in TBS-T at 4˚C over night.  All primary 

antibodies were commercially available from Cell Signaling Technology, Inc. (Danvers, MA); 

all were rabbit polyclonal antibodies except for Phospho-p70s6k, which was a mouse 

monoclonal antibody.  Four separate washes in TSB-T were performed for 5 minutes on each 

membrane, followed by incubation in horseradish peroxidase (HRP)-linked anti-rabbit or anti-

mouse secondary antibodies solution (GE Healthcare, Piscataway, NJ) in a blocking buffer for 1 

hr at room temperature.  Four additional 5-minute washes were then performed in TBS-T.   

 After the last wash, HRP activity was quantified by exposure to an enhanced 

chemiluminescence solution (GE Healthcare) and exposure to autoradiographic film (Classic 

Blue Sensitive; Midwest Scientific, St. Louis, MO, USA).  The densitometry method via Gel Pro 

Analyser software (Media Cybernetics, Silver Springs, MD, USA) was used to measure 

integrated optical densities (IODs) for each band.  IOD calculations performed were normalized 

to relative total muscle protein initially loaded on each gel (as quantified by ponceau staining).  
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Statistical Analysis 

Statistical analysis of each variable was performed using a 2x2x2 factorial ANOVA (age, 

dietary intervention, and overload) with repeated measures for overload. Percent changes with 

overload were quantified using a 2x2 ANOVA.   Fischer’s LSD Post-Hoc was used to determine 

significance.  The level of significance will be set at p≤0.05. 
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Chapter IV:  Results 
 

Body Weight 
  
 The main finding for this section was that animal body weight was significantly different 

between age groups regardless of time points or dietary conditions (Table 4.1).  A diet containing 

5% leucine proved to have no significant effect on body weight over that of the placebo chow for 

either age group.  Animal weight did not significantly change throughout the experiment. 

 

Body Weight (g) 

  
Placebo Diet 

Initiation 
Split 

Leucine/Placebo 
Surgery Sacrifice 

     
Young Placebo 374.4 (12.2) 378.4 (11.8) 377.9 (12.1) 365.4 (11.3) 
Young Leucine 374.4 (10.2) 378.1 (9.5) 379.8 (8.8) 363.6 (8.3) 
Old Placebo 549.7 (28.7)* 551.5 (27.9)* 559.0 (29.0)* 535.6 (22.6)* 
Old Leucine 544.9 (19.3)* 548.1. (17.4)* 557.2 (17.9)* 531.2 (14.6)* 

 
Table 4.1.  Mean ±SEM body weights (g) for young (8 mo.) vs. old (33 mo.) rats.  Animals were 
fed normal rodent chow (placebo) or chow with 5% leucine supplementation (leucine).  
*Significant (p ≤ 0.05) main effect of age regardless of time points or dietary conditions.          
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Food Intake 

 Table 4.2 indicates that there were no significant differences observed in food 

consumption between the diet initiation period and the surgical procedure within age groups.   

Food consumption did differ between age groups during the overloading period (days 5-11) 

indicating that older animal food intake was significantly lower than that of young animals.   

 
Food Intake (g/kg bw/d) 

  Days 1-2 Days 3-4 Days 5-11 (overload) 
    
Young Placebo 47.03 (1.73) 40.44 (2.28) 35.00 (1.67) 
Young Leucine 43.93 (1.93) 41.43 (1.92) 34.48 (1.13) 
Old Placebo 44.29 (2.35) 39.73 (2.04) 25.55 (3.14)* 
Old Leucine 46.91 (2.29) 42.09 (2.31) 27.99 (2.32)* 

 
Table 4.2.  Mean ±SEM food intake (g/kg bw/d) for young (8 mo.) vs. old  (33 mo.) rats.  All 
animals were fed normal chow on days 1-2.  Animals were split into normal rodent chow 
(placebo) or chow with 5% leucine supplementation (leucine) for days 3-4 (prior to surgery), and 
these diets continued post-surgery during the overload period (days 5-11).  * Significantly (p ≤ 
0.05) different than young animals during overload period regardless of dietary condition. 
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Muscle Wet Weight 
 

Plantaris 
 

 The plantaris muscles of young rats showed several significant differences.  Figure 4.1 

showed that overloaded plantaris muscles for both the placebo and the leucine groups of young 

rats were significantly heavier than the opposing sham muscles of the opposite limb in the same 

animals.  In old rats however, only those consuming leucine demonstrated an increase in 

plantaris weight over that of the muscle in the sham limb.  Between age groups, old rats had 

significantly lighter muscles in the sham and overloaded limbs regardless of the diet consumed.   

 Analysis of data in Figure 4.2 indicated that, within age groups, young placebo and 

young leucine rats had no significant difference in the percentage of hypertrophy.  Old leucine 

rats did express a significantly higher percentage of hypertrophy than old placebo rats.  Between 

age groups, old rats consuming the placebo diet had significantly less hypertrophy than rats in 

the young placebo group. 
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Figure 4.1.  Mean ±SEM wet weights of sham-operated vs. 7-day overloaded plantaris muscles 
in young adult (8 mo.) vs. old (33 mo.) rats.  Animals were fed normal rodent chow (placebo) or 
chow with 5% leucine supplementation (leucine). 
* Significantly (p < 0.05) different than sham-operated muscle within specified age group and 
dietary condition.  # Significant main effect of age regardless of dietary or loading condition. 
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Figure 4.2.  Mean ±SEM percent change in wet weights of 7-day overloaded vs. sham-operated 
plantaris (PLT) muscles in young adult (8 mo.) vs. old (33 mo.) FBN rats. FBN rats.  Animals 
were fed normal rodent chow (placebo) or chow with 5% leucine supplementation (leucine).  # 
Significantly (p < 0.05) different than young placebo group.  † Significantly different than old 
placebo group.  

 
\ 
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Protein Content 
 

P70s6 kinase 
 

 In young rats, p70S6k phosphorylation at Thr389 was significantly greater in the 

overloaded muscle of the placebo and the leucine groups (Figure 4.3).  On the contrary, 

phosphorylated p70S6k at Thr389 was not significantly different between the sham and 

overloaded muscle in either the placebo or the leucine groups of old rats.  Phosphorylation of 

p70S6k at Thr389 did show significant differences between young and old overloaded muscle of 

the placebo groups.   However, there was no significant difference in p70S6k phosphorylation of 

the overloaded muscle in the leucine groups of young and old rats.  
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P-p70S6K (Thr389)        
             SH   OL       SH   OL     SH   OL     SH   OL 
       
   Y PLC         Y LEU       O PLC      O LEU 
 
Figure 4.3.  Mean ±SEM phospho-70 kDa ribosomal protein S6 kinase (p70S6k; Thr389) content 
and representative blots of sham-operated (sham) vs. 7-day overloaded (overload) plantaris 
muscle in young (8 mo.) vs old (33 mo.) rats fed either normal chow (placebo) or chow with 5% 
leucine supplement (leucine).  * Significant (p < 0.05) effect of overload within young age group 
regardless of dietary condition.   # Significantly lower than young overload group within placebo 
condition. 
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   Figure 4.4 shows that, in young rats, the total amount of p70s6k was significantly higher 

in the overloaded muscles of both the placebo and leucine chow groups than in sham muscles.  

There was no significant difference in total p70s6k content between sham and overloaded 

muscles in either group of old rats.  There was no significant difference between young and old 

groups for the total p70s6k protein content. 
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 Pan-p70S6K        
   SH   OL     SH   OL     SH   OL     SH  OL 
       
   Y PLC        Y LEU       O PLC      O LEU 
 
 
Figure 4.4.  Mean ±SEM total 70 kDa ribosomal protein S6 kinase (p70S6k) content and 
representative blots of sham-operated (sham) vs. 7-day overloaded (overload) plantaris muscle in 
young (8 mo.) vs old (33 mo.) rats fed either normal chow (placebo) or chow with 5% leucine 
supplement (leucine).  * Significant (p < 0.05) effect of overload within young age group 
regardless of dietary condition.   
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 The phosphorylated-to-total p70S6k ratio demonstrates the quantity of total protein 

available that was activated.  In young rats, a significantly higher activation ratio was observed 

in the overloaded muscle of the placebo and leucine groups (Figure 4.5).  In old rats, neither the 

placebo group nor the leucine group exhibited a significant difference between the sham and 

overloaded muscle for phosphorylated-to-total p70S6k ratio.  The old leucine sham group had a 

greater baseline for the phosphorylated-to-total p70S6k ratio.  This may have contributed to the 

lack of significance.   
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Figure 4.5. Mean ±SEM phospho (Thr389) – 70 kDa ribosomal protein S6 kinase (p70S6k) 
content / total p70S6 kinase content of sham-operated (sham) vs. 7-day overloaded (overload) 
plantaris muscle in young (8 mo.) vs old (33 mo.) rats fed either normal chow (placebo) or chow 
with 5%leucine supplement (leucine).  * Significant (p < 0.05) effect of overload within young 
age group regardless of dietary condition.   
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rpS6 
 

 Data expressed in figure 4.6 indicates that, in young rats, both the placebo and leucine 

groups showed significant difference in rpS6 phosphorylation at Ser235/236 between the sham 

and the overloaded muscles.  In old rats, there was no significant difference observed between 

the sham and the overloaded muscle in either the placebo or leucine groups.  When comparing 

the young and old groups, rpS6 in young overloaded muscle showed a much greater 

phosphorylation status than that of old overloaded muscle.  
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P-rpS6 (Ser 235/236)        
      SH   OL    SH   OL    SH   OL     SH  OL 
       
        Y PLC     Y LEU       O PLC      O LEU 

 
Figure 4.6.  Mean ±SEM phospho-ribosomal protein S6 (rpS6k; Ser235/236) and representative 
blots of sham-operated (sham) vs. 7-day overloaded (overload) plantaris muscle in young (8 mo.) 
vs old (33 mo.) rats fed either normal chow (placebo) or chow with 5% leucine supplement 
(leucine).  * Significant (p < 0.05) effect of overload within young age group regardless of 
dietary condition.   # Significantly lower than young overload group within placebo condition. 
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 The total amount of rpS6 protein available in the muscle of young rats was significantly 

different in the placebo group only between sham and overloaded muscle (Figure 4.7).  In old 

rats, total rpS6 showed significant difference in the leucine group only with greater quantities in 

the overloaded versus the sham muscle.  Leucine supplementation also had variable effects 

between age groups, exhibiting significantly greater quantities of total rpS6 in old overloaded 

muscle over that of young overloaded muscle. 
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 Pan-rpS6             
            SH   OL     SH   OL     SH   OL     SH  OL 
       
             Y PLC       Y LEU       O PLC      O LEU 
 
Figure 4.7.  Mean ±SEM total ribosomal protein S6 (rpS6k) content and representative blots of 
sham-operated (sham) vs. 7-day overloaded (overload) plantaris muscle in young (8 mo.) vs old 
(33 mo.) rats fed either normal chow (placebo) or chow with 5% leucine supplement (leucine).  * 
Significantly (p≤0.05) different than sham within specified age group and dietary condition of 
age or dietary conditions.  # Significantly different than young leucine overload group.   
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 The ratio of phosphorylated-to-total rpS6 (Figure 4.8) was significantly greater in the 

overloaded muscle of the placebo and leucine group in young rats.  In old rats, there was no 

significant difference in the ratio of phosphorylated-to-total rpS6 between sham and overloaded 

muscle for neither the placebo nor the leucine groups.   No significant difference was observed 

between young and old groups in the ratio of phosphorylated-to-total rpS6.    
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Figure 4.8.  Mean ±SEM phospho (Ser235/236) – ribosomal protein S6 (rpS6 / total rpS6 content 
of sham-operated (sham) vs. 7-day overloaded (overload) plantaris muscle in young (8 mo.) vs 
old (33 mo.) rats fed either normal chow (placebo) or chow with 5% leucine supplement 
(leucine).  * Significant (p < 0.05) effect of overload within young age group regardless of 
dietary condition. 
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eEF2 kinase 
 
 In young rats, there was a significant increase in phosphorylated eEF2k with overload in 

both the placebo and leucine groups (Figure 4.9).  No significant difference was observed 

between sham and overloaded muscle of old rats in either the placebo or leucine groups.  

Phosphorylated eEF2k did not differ significantly between young and old rats in either the 

placebo or leucine groups.  
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P-eEF2k (Ser366)         
           SH   OL     SH   OL     SH   OL     SH  OL 
       
             Y PLC     Y LEU       O PLC      O LEU 

 
Figure 4.9.  Mean ±SEM phospho-eukaryotic elongation factor 2 kinase (eEF2k; Ser366) content 
and representative blots of sham-operated (sham) vs. 7-day overloaded (overload) plantaris 
muscle in young (8 mo.) vs old (33 mo.) rats fed either normal chow (placebo) or chow with 5% 
leucine supplement (leucine).  * Significant (p < 0.05) effect of overload within young age group 
regardless of dietary condition. 
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 Total eEF2k available for phosphorylation (Figure 4.10) was not significantly different in 

young rats for sham and overloaded muscles in either the placebo or leucine supplemented 

groups.  Similar results were observed between sham and overloaded muscled of old rats for both 

the placebo and leucine groups.  There was a significantly higher quantity of eEF2 available in 

old leucine overloaded muscle when compared to the overloaded muscle of young rats 

supplementing leucine.   

   
 
 
 
 
 
 
 



   

 

67 

 
 

Pan-eEF2k                 
             SH   OL     SH   OL    SH   OL    SH   OL 
       
             Y PLC        Y LEU     O PLC     O LEU 
 
Figure 4.10.  Mean ±SEM total eukaryotic elongation factor 2 kinase (eEF2k) content and 
representative blots of sham-operated (sham) vs. 7-day overloaded (overload) plantaris muscle in 
young (8 mo.) vs old (33 mo.) rats fed either normal chow (placebo) or chow with 5% leucine 
supplement (leucine).  # Significantly different than young leucine overload group. 
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 Analysis of data expressed in Figure 4.11 indicated that, in young rats, the ratio of 

phosphorylated-to-total eEF2k showed significant increases in overloaded muscle when 

compared to sham muscle in both the placebo and leucine groups.  No significant differences 

were observed in either the placebo or the leucine supplemented groups.  There was no 

significant difference in the phosphorylated-to-total eEF2k ratio between young and old rats in 

either the placebo or leucine groups.   
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Figure 4.11.  Mean ±SEM phospho (Ser366) – eukaryotic elongation factor 2 kinase (eEF2k) / 
total eEF2k content of sham-operated (sham) vs. 7-day overloaded (overload) plantaris muscle in 
young (8 mo.) vs old (33 mo.) rats fed either normal chow (placebo) or chow with 5% leucine 
supplement (leucine).  * Significant (p < 0.05) effect of overload within young age group 
regardless of dietary condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 



   

 

70 

eEF2 
 

 No significant difference was observed in phosphorylated (Thr56) eEF2 between young 

and old rats, regardless of age differences (Figure 4.12).  There was also no significant difference 

in the phosphorylation status of eEF2 between rats consuming normal rat chow (placebo) and 

rats consuming chow with 5% leucine supplement (leucine).   
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    P-eEF2 (Thr56)        
            SH   OL     SH   OL    SH   OL   SH  OL 
        
            Y PLC      Y LEU      O PLC     O LEU 
 
Figure 4.12.  Mean ±SEM phospho-eukaryotic elongation factor 2  (eEF2; Thr56) content and 
representative blots of sham-operated (sham) vs. 7-day overloaded (overload) plantaris muscle in 
young (8 mo.) vs old (33 mo.) rats fed either normal chow (placebo) or chow with 5%leucine 
supplement (leucine).  No significant differences. 
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 Figure 4.13 shows that young rats in the placebo and leucine groups were significantly 

different in total eEF2 between sham and overloaded muscles.  No significant difference in total 

eEF2 was observed between sham and overloaded muscle of old rats in either the placebo or the 

leucine groups when the significance level was set at 0.05.  Old rats demonstrated a greater total 

eEF2 in the sham muscles of both the placebo and the leucine groups than the sham muscle of 

the young placebo or leucine groups.   
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    Pan-eEF2        
                      SH   OL     SH   OL    SH   OL    SH   OL 
       
              Y PLC      Y LEU      O PLC     O LEU 

 
 

Figure 4.13.  Mean ±SEM total eukaryotic elongation factor 2  (eEF2) content and representative 
blots of sham-operated (sham) vs. 7-day overloaded (overload) plantaris muscle in young (8 mo.) 
vs old (33 mo.) rats fed either normal chow (placebo) or chow with 5% leucine supplement 
(leucine). ).  * Significant (p < 0.05) effect of overload within young age group regardless of 
dietary condition.  # Significant effect of age within sham muscles regardless of dietary 
condition.  Overload resulted in a non-significant (p = 0.09) increase vs. sham in the old leucine 
group.   
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 Figure 4.14 indicates the ratio of phosphorylated-to-total eEF2. For both the young 

placebo and young leucine groups, there was a significant decrease in the ratio of 

phosphorylated-to-total eEF2 in overloaded muscle when compared to the sham muscle.  No 

significant differences were observed in this ratio between the sham and overloaded muscle of 

either the old placebo or old leucine groups.  In old rat sham muscle of both the placebo and the 

leucine groups, there was a significantly lower ratio for phosphorylated-to-total eEF2 when 

compared to the young rat sham muscle.   
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Figure 4.14.  Mean ±SEM phospho- (Ser366) eukaryotic elongation factor 2  (eEF2) / total eEF2 
content and representative blots of sham-operated (sham) vs. 7-day overloaded (overload) 
plantaris muscle in young (8 mo.) vs old (33 mo.) rats fed either normal chow (placebo) or chow 
with 5% leucine supplement (leucine).  * Significant (p < 0.05) effect of overload within young 
age group regardless of dietary condition.  # Significant effect of age within sham muscles 
regardless of dietary condition.   



  76 

 

Chapter V:  Discussion 

 The age-associated loss of skeletal muscle mass continues to be both detrimental to an 

individual’s functionality (Wickham, 1989; Dorrens, 2003; Hairi, 2010) and overall health 

(Tellado, 1988), as well as a financial burden for both the individual affected and the healthcare 

system as a whole (Janssen, 2004).  Therefore, it is imperative to determine the causes of this 

condition and establish the most effective method for improving the diminished hypertrophic 

response associated with increasing age.  The purpose of the current study was to examine the 

effects of dietary leucine supplementation on specific markers of protein translational signaling 

and muscle hypertrophy in the overloaded fast-twitch plantaris muscles of young and aged 

Fischer344 x Brown Norway rats.  It was hypothesized that supplementing a standard chow diet 

with 5% leucine would enhance muscle hypertrophy in overloaded fast-twitch plantaris muscles 

of old (33 mo) rats to levels observed in young adult (8-month old) rats.  It was also 

hypothesized that 5% dietary leucine supplementation would enhance p70s6k, rpS6, eEF2k, and 

eEF2 signaling in the overloaded fast-twitch plantaris muscles of old rats to levels observed in 

young adult (8-month old) rats.  The most significant findings of the current study were that 

additional 5% dietary leucine during chronic muscle overload: 1) enhanced muscle hypertrophy 

in old rat plantaris muscles to levels observed in young control rats 2) increased phosphorylation 

of signaling proteins p70s6k and rpS6 in old overloaded rat plantaris muscle equivalent to that 

observed in young rat plantaris muscles.  Additionally, supplementing a diet with 5% leucine 

enhanced total abundance of rpS6 and eEF2k in old overloaded plantaris muscle over the sham 

muscles of the leucine group.   

 The current study demonstrated the effects of dietary 5% leucine and chronic muscle 

overloading on muscle hypertrophy with age.  As hypothesized, the addition of 5% leucine to 
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standard rat chow helped to rescue the hypertrophic response to muscle overloading in old rats.  

Other studies have documented a diminished hypertrophic response to muscle overloading with 

age in the absence of leucine supplementation.  When muscle overloading was used in an attempt 

to increase muscle mass in old rats and humans, hypertrophic gains were not to the same extent 

as in young rats (Blough, 2000; Chale-Rush, 2009; Paturi, 2010) and human participants (Kosek, 

2006).  Of the rats that consumed the placebo chow in the current investigation, older rats had a 

significantly lower percent hypertrophy in overloaded plantaris muscles.  As hypothesized, old 

rats consuming a leucine-enriched diet showed higher increases in muscle hypertrophy compared 

to old rats consuming the placebo chow.  These data indicate that the combination of a standard 

rat chow with 5% leucine and muscle overloading can be used to rescue the hypertrophic 

responses in old rats to the levels observed in their younger counterparts.   

 It is important to note that young rats did not show any additional increases in muscle 

hypertrophy from overload when supplemental leucine was administered in the current study.  

Previous studies have shown that young and adult rats (Thomson and Gordon, 2005; Thomson 

and Gordon, 2006; Chale-Rush, 2009) and humans (Kosek, 2006) performing muscle 

overloading were able to generate a much greater hypertrophic response than older rats and 

humans.  It is unclear why leacine supplementation did not enhance hypertrophy in the young 

animals in the current study.  However, the rat synergist tenotomy model is an extremely robust 

model of muscle growth, in this case resulting in over 15% hypertrophy in one week.  It may be 

possible that young rat plantaris muscles had reached a maximized hypertrophic response for the 

given time period of 7 days, and 5% leucine supplementation could not further elicit additional 

hypertrophy that was observed in old rats.       
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 In order to determine whether the enhancements in muscle hypertrophy were associated 

with increased translation initiation and elongation signaling, we further analyzed the 

phosphorylation and total abundance of signaling markers downstream from mTOR in old rat 

plantaris muscles.  We then compared our findings with the values observed in their younger 

counterparts.  In the current study, muscle overload alone could not stimulate an increase in the 

phosphorylation of p70s6k, rpS6, or eEF2k over that observed in the sham control muscles in old 

rats as with young rats.  Again, this may partly account for the age-associated reduction in 

responsiveness to muscle overloading and resistance exercise (Thomson and Gordon, 2005; 

Kosek, 2006; Thomson and Gordon, 2006; Chale-Rush, 2009).  As hypothesized, similar levels 

of phosphorylation for p70s6k and rpS6 were observed when comparing old overloaded plantaris 

muscles in the leucine group vs. young placebo animals.  Since all conditions of the study design 

were the same except for the additive 5% leucine in the experimental diet groups, one can 

attribute the enhanced phosphorylation of these signaling markers to leucine. These findings 

support previous findings showing a positive relationship between p70s6k phosphorylation and 

muscle hypertrophy (Thomson and Gordon, 2006).  Recall that changes in the phosphorylation 

status of p70s6k at residue Thr389 are attributed to changes in mTOR signaling (Nadar, 2002).  

Concurrent positive changes in rpS6 (Ser235/236) (and theoretical activation) and eEF2k 

(Ser366) phosphorylation (and theoretical deactivation) were expected in response to increased 

phosphorylation of p70s6kThr389 following stimulation by muscle overload (Brown, 2002; 

Ruvinsky, 2005).  Interestingly, phosphorylation of eEF2 did not differ between age groups.  

Furthermore, neither muscle overloading nor the addition of 5% leucine altered eEF2 

phosphorylation when compared to the phosphorylation observed in the old control rats.  Thus, 

eEF2k Ser366 phosphorylation by p70s6k in the young overloaded muscles apparently did not 
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affect eEF2Thr56 phosphorylation status, regardless of the fact that this kinase facilitates eEF2’s 

participation in the elongation process (Browne, 2002; Proud, 2007). 

 Previous research by Chale-Rush et al (2009) found that chronic (28 day) muscle 

overloading had no beneficial effects on increasing the total abundance of the signaling proteins 

mTOR and p70s6k in young (6 mo) or old (30 mo) FBN rat plantaris muscles (Chale-Rush, 

2009).  Contrary to these findings, the current study demonstrated that muscle overloading and 

dietary 5% leucine intervention had profound effects on total abundance for the signaling 

proteins analyzed between age groups.  Old overloaded rat plantaris muscles in the leucine group 

demonstrated increases in total rpS6 and eEF2k over that observed in the sham muscles.  Also, as 

mentioned previously, total eEF2 was substantially higher in the overloaded muscles of old 

leucine rats compared to sham muscles (albeit at a p=0.09 level).  The increase in availability of 

eEF2 could theoretically improve eEF2’s participation in translation elongation and potentially 

enhance muscle protein synthesis.  Most notably, the total abundance of rpS6 was significantly 

higher in overloaded muscles of old rats in the leucine group than the quantity found in their 

younger counterparts.  Regulation of cell size is one of the many roles that have been designated 

for rpS6 (Ruvinsky, 2005).  As previously discussed, rpS6 may assist in upregulating 5’-terminal 

oligopyrimidine (5’-TOP) sequences, which participates in coding for translational machinery as 

well as for eEF2 (Jefferies, 1997; Magnuson, 2005).  It is possible that an increased abundance 

of rpS6 could have contributed, either partially or fully, to the restoration of muscle hypertrophy 

in aged rats.  In order to determine whether changes in phosphorylated signaling proteins were 

a result of changes in total protein abundance, we chose to quantify the ratio of phosphorylated-

to-total protein for each translational initiation signaling marker analyzed.  In a similar study to 

the present, the Gordon laboratory determined the phosphorylation-to-total ratios of signaling 
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proteins Akt, mTOR, p70s6k, rpS6, eEF2, and 4E-BP1 generated by 1-week of unilateral 

synergist muscle overload (without any dietary intervention) in young adult (8 mo) and old (30 

mo) Fischer344 x Brown Norway rats (Thomson and Gordon, 2005).  Signaling statuses for 

mTOR, p70s6k, rps6 and 4E-BP1 showed marked increases in both young adult and old 

overloaded rats when compared to their age matched controls.  Also, Akt (old rats only) and 

eEF2 statuses showed marked decreases.  However, the enhancements in signaling statuses were 

significantly greater in young adult rats, indicating that there was a signaling deficit in with age 

in response to muscle overload.  Additionally, a correlation between absolute p70s6k 

phosphorylation and muscle hypertrophy was established in this study (Thomson and Gordon, 

2006).  Among young rats in the current study, ratios of phosphorylated-to-total for p70s6k, 

rpS6, and eEF2k were all greater in overloaded muscle when compared to ratios found in sham 

muscles regardless of the diet consumed indicating that leucine had no beneficial effects.  

Additionally, the ratio of phosphorylation-to-total eEF2 was reduced in response to overload in 

young rats consuming both the placebo and leucine below values observed in the sham muscles, 

as would be expected due to the inhibitory nature of eEF2 phosphorylation.  Contrary to young 

muscle, old rat muscles demonstrated no differences in phosphorylated-to-total ratios for p70s6k, 

rpS6, eEF2k or eEF2 between sham and overloaded muscle or between dietary conditions.    

 In the current study, profound improvements were observed in muscle hypertrophy in old 

rats with the addition of 5% leucine to the diet.  However, the variability in signaling marker 

phosphorylation, abundance, and the phosphorylation-to-total ratios indicate that another 

potential mechanism affected by leucine may also be aiding the enhanced hypertrophy in aged 

rats.  Recall that dietary leucine enrichment in quantities as low as 5% has been shown to 

stimulate downstream mTOR signaling phosphorylation (Crozier, 2005), and also inhibit 
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proteolysis (Combaret, 2005).  It is also apparent from previous research, which incorporated 

pharmaceutical inhibitors of specific translational signaling proteins, that there are relationships 

between 1) muscle overloading/resistance exercise and mTOR pathway signaling, and 2) amino 

acid supplementation and mTOR pathway signaling (Anthony, 2000 #2; Dardevet, 2000; 

Drummond, 2009).  Of the data reviewed from previous studies, and the data collected in the 

current study, we can deduce two possible mechanisms for the improvements in hypertrophy:  1) 

muscle overload and 5% leucine in aged rats had a potentially positive effect on improving 

protein synthesis via mTOR signaling and stimulation of its downstream signaling markers, 

p70s6k and rpS6, with a possible additional effect on total eEF2k and eEF2; and/or, 2) muscle 

overload and 5% leucine in aged rats had positive effects on reducing protein degradation 

pathway activation.  Both of these mechanisms combined could cause a positive shift in the 

synthesis-to-degradation ratio, which would ultimately lead to the enhanced muscle hypertrophy 

in aged rats with leucine supplementation.  

 In the current study, we chose Fischer344 x Brown Norway rats due to the distinct 

similarity that they shared with humans in regards to aging (Rice, 2008).   In order to validate 

that 5% dietary leucine does indeed improve the hypertrophic response, and possibly slow or 

attenuate the progression of sarcopenia, further testing in human participants is warranted.  The 

time frame for muscle overloading was selected based on data from previous studies, which 

indicated clear changes in protein translational signaling marker phosphorylation and abundance, 

as well as muscle hypertrophy after 7 days (Thomson and Gordon, 2005; Thomson and Gordon, 

2006; Chale-Rush, 2009).  Further improvements in signaling and hypertrophy may have been 

generated if the duration of the overload period had been extended.  In addition to the time 

frame, it is important to emphasize how substantially robust the stimulus was from the 
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overloading model itself.  Young rats may have had varying effects from overload and/or leucine 

supplementation if a different overloading model had been incorporated.   

 Along with the duration of overloading, dietary content and administration were also 

important in designing the experiment.  Recall that dietary leucine enrichment in quantities as 

low as 5% has been shown to stimulate downstream mTOR signaling phosphorylation (Crozier, 

2005), and inhibit proteolysis (Combaret, 2005).  Due to the age-associated desensitization to 

amino acids  (Paddon-Jones, 2004), larger quantities of leucine may be required to further 

enhance the effectiveness of the amino acid in older animals.  We provided the rats ad libitum 

access to chow rather than administering it at different time points throughout the experiment.  

Reasoning for this decision was because it was important to keep each animal’s amino acid 

availability as high as possible within the body.  Visual inspections of the animal cages were 

conducted each day to ensure that no food spillage had occurred (the chow was colored bright 

pink and bright green for the leucine-supplemented and placebo diets, respectively).  Any visible 

particles of chow were accounted for when remaining chow was weighed.   An analysis of chow 

consumption at different time points throughout the experiment revealed a significant difference 

between age groups in chow weight following the tenotomy.   This indicated that old rats 

consumed less chow (per body weight) than their younger counterparts after surgery.  This may 

be due to a greater general effect of anesthesia and surgery in older animals.  Nevertheless, the 

old rats demonstrated marked improvement in muscle hypertrophy responses and with select 

signaling responses. Thus, any decrease in food intake in older animals due to surgery apparently 

did not negate the positive effect of leucine supplementation on muscle growth.    
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Conclusion 

 To our knowledge, this is the first study to analyze the effects of supplemental leucine on 

muscle hypertrophy and muscle protein translational signaling proteins in aged muscle under 

conditions of chronic muscle overload.  The addition of muscle overload and 5% 

supplementation leucine in the current study showed a remarkable potential benefit in terms of 

enhancing the overload-induced fast-twitch muscle growth that is typically reduced with age.  

Plantaris wet weight hypertrophy among old overloaded muscles was less than young in rats 

consuming normal chow.  However, leucine supplementation was able to recover overload-

induced hypertrophy, presumably by restoring the balance between protein synthesis and 

degradation, in old rats.   The addition of leucine facilitated concomitant increases in 

phosphorylation of p70s6k and rpS6 in young and old overloaded plantaris muscles. Old rats 

consuming leucine also showed significantly enhanced total abundance of rpS6, and a non-

significant increase in total eEF2 (p=0.09), indicating that leucine may have some ability to 

reduce the loss of translation initiation signaling with age in overloaded muscles.  These novel 

findings indicate that a leucine-enriched diet may potentially enhance overload-induced growth 

of aged fast-twitch muscle, in part by enhancing pathways known to stimulate protein synthesis. 

Practical Applications 

 The administration of leucine in conjunction with muscle loading activities, particularly 

for elderly individuals, may help to rescue  the diminished hypertrophic response of fast-twitch 

muscles with age.  However, further research is required to determine whether interventions such 

as resistance training paired with increased dietary leucine intake can restore overload-induced 

hypertrophy in human participants.  In addition, further studies are also warranted to determine 
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whether therapeutic leucine supplementation may be implemented to delay or prevent the loss of 

basal muscle mass with age, or sarcopenia. 
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