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Abstract Dikerogammarus villosus is a freshwater

amphipod of the Ponto-Caspian origin recognized as one of

the 100 worst alien species in Europe, having negative

impact on biodiversity and functioning of the invaded

aquatic ecosystems. The species has a wide ecophysio-

logical tolerance and during the last 20 years it has rapidly

spread throughout European inland waters. In consequence,

it presents a major conservation management problem. We

describe eight polymorphic microsatellite loci developed

for D. villosus by combining a biotin-enrichment protocol

and new generation 454GS-FLX Titanium pyrosequencing

technology. When genotyped in 64 individuals from two

locations, the loci exhibited a mean diversity of 4.87 alleles

per locus (2–13). The mean observed and expected het-

erozygosities were, respectively, 0.439 (0.091–0.844) and

0.468 (0.089–0.843). Gametic disequilibrium was not

detected for any pair of loci. The microsatellite markers

will be a valuable tool in assessing the demographic pro-

cesses associated with invasion of the killer shrimp from a

genetic point of view.

Keywords Invasive species � Population genetics �
Dikerogammarus villosus � Biological invasions �
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Introduction

The Ponto-Caspian amphipod Dikerogammarus villosus

(Sowinsky, 1894), also known as the killer shrimp, is

recognized as one of the 100 worst alien species in Europe

[1]. This invader has colonized most of the European main

inland water bodies in less than 20 years [2–4]. The threat

it poses to ecosystems and species diversity is significant

[5]. The killer shrimp is an efficient, high trophic level

predator [6], feeding on other amphipods and on almost all

other available benthic invertebrates [7, 8]. In addition, this

species is characterised by wide ecophysiological tolerance

to a number of environmental factors including water

temperature, salinity and oxygen concentrations [9–12] as

well as by very high fecundity [13–15]. Both features are

highly advantageous in colonizing new areas. Initial

expansion of D. villosus in continental Europe followed the

two so-called invasion corridors for Ponto-Caspian fauna,

associated with major rivers (i.e. the Southern Corridor via

Danube/Rhine and the Central Corridor via Dnieper/Vis-

tula) often referred to as ’’invasion highways’’ [2]. The

populations migrating via the two invasion corridors orig-

inating in different Ponto-Caspian watersheds are about to

come into contact in Poland [4] and possibly hybridize.

Further expansion of the killer shrimp is currently in pro-

gress. It has recently colonized many lakes in the Alpine

region [16] and was even accidentally introduced overseas

to the UK [17]. Finally, the risk of its future introduction to

the North American Great Lakes is not negligible.

The microsatellite markers will be a valuable tool in

assessing the demographic processes associated with

invasion of the killer shrimp from a genetic point of view.

For example, they will help to identify the origin of pop-

ulations in the UK and in Alpine lakes as well as to assess

the dynamics of the invasion process (e.g. via the
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associated bottleneck or founder effect). Such marker will

also help to estimate the differentiation between invasion

corridors and chances for putative hybridization in case the

two populations originating in different areas of the native

range (Danube vs. Dnieper) meet in Poland. The three

already known loci [18] proved to be useful [19] but

additional loci are needed to answer more detailed

questions.

Materials and methods

The total genomic DNA from eight D. villosus individuals

was extracted with standard phenol–chloroform method.

Enrichment for eight microsatellite motifs [i.e. (AG)10,

(AC)10, (AAC)8, (AGG)8, (ACG)8, (AAG)8, (ACAT)6,

(ATCT)6] was based on a biotin protocol adapted from

Kijas et al. [20]. The sequences were produced by py-

rosequencing on a 454 GS-FLX Titanium� apparatus

(Roche Diagnostics). Both, the enrichment and the py-

rosequencing were as described by Malausa et al. [21].

Using the open access QDD program, the resulting 32,084

sequences were first screened for microsatellite (minimum

of five repeats) and flanking sequences presence and then

PCR primers were designed for selected sequences [22].

From a total of 4,206 candidate sequences including

microsatellites, the primer design was effective for 102

putative loci. All the steps from enrichment down to primer

design were performed at GENOSCREEN
� (Lille, France).

Thirty-three primer pairs were selected for amplification.

Each forward primer was 50 tailed with a M13 sequence

(50-AGGGTTTTCCCAGTCACGACGTT-30). The PCRs

were carried out in a 10 ll volume including 20 ng DNA

template, 200 nM each primer (Table 1), 0.025 lM of 50

labeled M13 primer (either 700 or 800 dye), 5 ll

DreamTaq Master Mix (2x) DNA Polymerase (Thermo

Scientific). The reactions were run in a BioRad thermo-

cycler with an initial denaturation step at 95 �C for 3 min,

followed by 35 cycles consisting of 20 s at 95 �C, 45 s at

50 �C and 1 min at 72 �C, and a final extension step at

72 �C for 2 min. Product size variations was visualized

with the LICOR 4200L automated sequencer. The poly-

morphism was tested on seven individuals from five loca-

tions in Europe: Liman Duru Golu, Turkey (41.316N;

28.621E); Danube delta, Ukraine (45.337N; 28.955E);

Dnieper mouth, Ukraine (47.792N; 35.126E); Grafham

water, UK (52.292N; -0.324W); Constance Lake, Ger-

many (47.748N; 9.137E). From the 33 microsatellite loci

chosen for amplification, ten failed to produce readable

patterns, fifteen loci were monomorphic and eight primer

pairs revealed polymorphism Further, the allelic diversity

of the eight candidate loci was tested on 64 individuals,

from the Danube delta in Ukraine (DAN; n = 32) and from

the Dnieper mouth in Ukraine (DNI; n = 32). These two

populations may be considered as representatives of the

two distinct watersheds areas in the Ponto-Caspian region

providing starting points for the killer shrimp invasion. The

allelic diversity, observed (Ho) and expected (He) hetero-

zygosities, deviations from Hardy–Weinberg proportions

as well as gametic disequilibrium and differentiation

between DAN and DNI (Fst as estimated by Weir and

Cockerham Theta) were estimated using the software FSTAT

version 2.9.3.2 [23]. When appropriate, the comparisons

included Bonferroni correction for multiple tests. Presence

and possible source of genotyping errors (null allele, stut-

tering, short allele dominance, [24] were checked with

MICRO-CHECKER version 2.2.3. [25].

Results and discussion

Out of the 33 microsatellite loci chosen for testing, ten did

not amplify at all, 15 were monomorphic and eight

amplified successfully and revealed polymorphism.

Based on the 64 genotyped individuals from the Dan-

ube (DAN) and the Dnieper (DNI) populations, we

obtained a mean diversity of 4.87 alleles per locus,

ranging from 2 to 13 (Table 1). The mean observed and

expected heterozygosities were, respectively, 0.439

(0.091–0.844) and 0.468 (0.089–0.843). The FSTAT soft-

ware detected neither the gametic disequilibrium for any

pair of loci, nor a deviation from the Hardy–Weinberg

proportions in any locus in any of the two populations.

However, MICRO-CHECKER detected sign of a null allele at

Dv1 in both DAN and DNI and at Dv6 for DNI only.

DAN and DNI populations were differentiated with a

significant Fst value of 0.17. Although the invasion

dynamics of the killer shrimp along the Danube and in

French rivers was assessed by Wattier et al. [19] based on

the three microsatellite loci available at that time [18],

additional loci are needed for further assessment of its

expansion all over Europe. The eight new loci will be

highly valuable in identifying sources of introduction for

the Alpine lakes and for the UK, that are not directly

connected to any of the invasion highways (Fig. 1). The

differentiation between DAN and DNI populations illus-

trates that such source populations could be relatively

easily identified with a higher number of loci. Moreover,

these markers could help to detect possible hybridization

and/or introgression between the two populations of D.

villosus which may become in contact in Poland [26].

Finally, it is known that microsatellite markers charac-

terized for one species may often reveal polymorphism in

other closely related taxa [27]. Thus we suggest that the

loci described here have potential to be amplified in species

closely related to the ‘‘killer shrimp’’ such as
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Dikerogammarus haemobaphes (Eichwald, 1841) and Di-

kerogammarus bispinosus Martynov, 1925 which are also

invasive in European inland waters [28] and, in case of the

latter, also in the UK. [29].
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Fig. 1 Allele frequency distribution for each locus for the DAN (black) and DNI (grey) populations. Axis x allele size in bp, axis y frequency of

alleles
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