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Increasingly, reactive oxygen species (ROS) are implicated in the development of insulin 

resistance. To test the hypothesis that modulators of insulin sensitivity (i.e., metformin, ovarian 

sex steroids and exercise training) affect the fate of oxygen in skeletal muscle, mitochondrial 

H2O2 emission (mEH2O2) and respiratory O2 flux (JO2) were measured in saponin-permeabilized 

myofibers from rodents and women. Concommitant with improved glucose tolerance, complex I-

linked mEH2O2, but not JO2, was reduced in metformin-treated obese rats to rates near or below 

those in the lean animals.  Ex vivo dose-response experiments revealed that metformin inhibits 

complex I-linked mEH2O2 at a concentration ~2 orders of magnitude lower than that required to 

inhibit JO2.  To determine if estradiol or progesterone directly affect mitochondrial function, 

saponin-permeabilized vastus lateralis myofibers biopsied from women in the menstrual cycle 

follicular phase were incubated breifly in luteal phase serum concentrations of estradiol, 

progesterone, or both. While progesterone alone inhibited respiration, the effect was absent in the 

presence of estradiol. Progesterone, alone or in combination with estradiol increased complex I-

linked mEH2O2. Complex I-linked mEH2O2 measured in permeabilized myofibers from insulin 

sensitive and resistant women correlated significantly with serum progesterone in these subjects. 

Moreover, mEH2O2 was more than 80% greater in the insulin resistant women. Regular exercise 
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is known to improve insulin sensitivity. To determine the effects of exercise training on 

mitochondrial function, mEH2O2 and JO2 were measured in saponin-permeabilized vastus lateralis 

myofibers from lean (BMI < 30) and obese (BMI > 30) women before (Pre) and after (Post) 8 

weeks of exercise training (8WT = stationary cycling, 1 h/d, 5 d/w at heart rate corresponding to 

70-75% VO2peak). Interestingly, while Pre-Post there were no changes in JO2 supported by 

multiple substrates or calculated ratios of respiratory control, there was a reduction in the 

potential for complex I-linked mEH2O2 following training in the lean women. Altogether, the 

results of this project support the notion that modulators of insulin sensitivity may do so through 

their ability to affect complex I-linked mEH2O2, but not necessarily JO2 in skeletal muscle.  
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SOD    superoxide dismutase 
 
SR    sarcoplasmic reticulum 
 
State 1    respiration supported by mitochondria alone 
 
State 2    respiration supported by ADP alone 
 
State 3 respiration supported by substrates and ADP, actively 

phosphorylating respiration 
 
State 4    non-phosphorylating respiration 
 
State 5    anoxia 
 
Stigmatellin   inhibitor of quinol oxidation site on complex III 
 
SUIT    substrate-uncoupler-inhibitor-titration protocol 
 
TBARS   thiobarbituric acid reactive substances 
 
Teflon    polytetrafluoroethylene 
 
TMPD N,N,N′,N′-tetramethyl-p-phenylenediamine, an artificial substrate 

for complex IV 
 
Triton X-100   a nonionic surfactant 
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Tyr    tyrosine 
 
UCR  uncoupling control ratio, the quotient of FCCP-uncoupled 

respiration to oligomycin-inhibited, state 4 respiration  
 
VDAC-1 voltage dependent anion channel, a component of the 

mitochondrial permeability transition pore 
 
Vitamin C   ascorbate 
 
Vitamin E    tocopherols and tocotrienols 
 
Vmax    the maximum velocity of an enzyme or enzymes 
 
VO2peak the peak velocity of minute-average oxygen uptake (mL O2·min-

1·kg body mass-1) 
 
VO2max the maximal velocity of oxygen uptake (mL O2·min-1·kg body 

mass-1) 
 
wt    weight 
 
Zucker fa/fa rat  a genetically obese rat model, hyperphagic due to hypothalamic 

leptin receptor deficiency 
 

 



CHAPTER 1: REVIEW OF LITERATURE 

 

INSULIN-STIMULATED GLUCOSE UPTAKE 

Insulin is a peptide hormone produced by the pancreatic beta cells which is capable of 

affecting many known acute metabolic and anabolic processes. One of the most important 

metabolic effects of insulin is the stimulation of glucose uptake into peripheral tissues. The 

actions of insulin on its target tissues begins with its binding to its cell surface transmembrane 

receptor, a tetramer composed of two extracellular insulin-binding α-subunits and two 

transmembrane β-subunits (177). When insulin binds to the α-subunits, activation and 

autophosphorylation of the intracellular β-subunits occurs. Autophosphorylation signals the 

recruitment of additional intracellular signaling proteins, beginning with the insulin receptor 

substrate (IRS) proteins, which contain Src-homology 2 (SH2) domains that serve as docking 

sites for even more signaling proteins (177). The signaling pathway thereafter increases in 

complexity as it diverges to bring about the myriad effects of insulin within the cell (177). With 

regard to insulin-stimulate glucose uptake, the signaling continues with recruitment of the 

heteromeric enzyme phosphatidyl 3-kinase (PI3-K) to the IRS/Insulin-receptor complex, 

resulting in activation of PI3-K. PI3-K catalyzes the phosphorylation of phosphoinositides at the 

3-position of the inositol ring, resulting primarily in phosphatidyl 3,4,5-triphosphate (177). The 

events downstream of PI3-K are thought to involve activation of protein kinase B (Akt) via 

interaction with phosphatidyl 3,4,5-triphosphate and phosphorylation by phosphinositide-

dependent protein kinases. Additionally, the atypical protein kinase C λ ζ isoforms, which may 

also be activated by phosphoinositides, are also likely also involved downstream of PI3-K in 

events leading to insulin-stimulated glucose uptake (177). Under basal conditions, glucose entry 
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into the cell is mediated by the ubiquitously expressed GLUT1 protein, one in a family of 

homologous glucose transporter (GLUT) proteins responsible for facilitated diffusion of glucose 

into mammalian cells. Upon stimulation by insulin, however, there is a rapid and massive 

increase in glucose entry into the cell. Although GLUT1 levels at the plamsa membrane are 

increased in response to insulin, the effect pales in comparison to GLUT4-mediated glucose 

transport in response to insulin (184). GLUT4 is expressed predominantly in peripheral insulin-

target tissues: i.e., adipose and skeletal muscle (184). In response to acute insulin stimulation, 

GLUT4 is translocated rapidly from intracellular storage compartments to the plasma membrane, 

coincident with the rapid increase in glucose entry into the cell.  

 

SKELETAL MUSCLE INSULIN RESISTANCE 

Insulin resistance describes a situation in which there is a subnormal response by a tissue 

to a given level of insulin, and is typically referred to with regard to the ability - or inability, of 

target tissues like skeletal muscle to respond to insulin by taking up glucose from the circulation. 

The insulin resistance that precedes and occurs during overt type 2 diabetes is therefore often 

accompanied by fasting hyperglycemia (247). After an overnight fast, hepatic sources provide a 

steady input of glucose, even in healthy individuals (286). This is essential to offset the glucose 

cleared by target tissues like skeletal muscle and is vital for the central nervous system, which 

relies almost exclusively on glucose (226). Excessive hepatic glucose production contributes to 

the fasting hyperglycemia associated with type 2 diabetes (276). However, this defect is 

principally noticeable only when individuals transition from impaired glucose tolerance to overt 

diabetes mellitus (71, 193). The reason for this may be due to the ability of elevated basal insulin 

in the pre-diabetic condition to limit hepatic glucose production to near normal rates (193). 
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Indeed, insulin inhibits gluconeogenesis by suppressing the expression of phosphoenolpyruvate 

carboxykinase (unidirectional, rate-limiting enzyme of gluconeogenesis, which converts 

oxaloacetate to phosphoenolpyruvate) and glucose-6-phosphatase (unidirectional enzyme which 

dephosphorylates glucose-6-phosphate in the final steps of gluconeogenesis) (226). Therefore, 

maintenance of the fasting blood glucose concentration is due to a combination of glucose 

production (liver) and glucose clearance (primarily the peripheral tissues). However, evidence 

indicates that impaired peripheral insulin-stimulated glucose uptake accounts for the fasting 

hyperglycemia associated with pre-diabetic insulin resistance (71, 193). Moreover, by virtue of 

its high percentage of total body mass and high metabolic activity, skeletal muscle may 

contribute more quantitatively to whole-body glucose homeostasis that any other tissue (201). 

Therefore, modulators of insulin sensitivity in skeletal muscle are likely to affect whole-body 

glucose homeostasis and may represent important factors when studying insulin resistance, a 

hallmark of type 2 diabetes. Indeed, the initial events of insulin resistance involve a decrease in 

the rates of glucose uptake from the periphery including adipose, but predominately skeletal 

muscle (293).  

The sensitivity of target tissues like skeletal muscle to insulin-stimulated glucose uptake 

are typically investigated through glucose clamping techniques (73). Often referred to as the 

“gold standard” for evaluating insulin sensitivity, the hyperinsulinemic-euglycemic clamp 

method involves a steady intravenous infusion of insulin in one arm. Serum glucose is then 

“clamped” at normal fasting levels by administering a variable intravenous glucose infusion into 

the other arm. Blood samples are drawn at regular intervals to monitor blood glucose in order to 

maintain the steady fasting level of glucose. Because the infused insulin suppresses hepatic 

glucose output, this technique measures the sensitivity of peripheral insulin-target tissues (mainly 
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skeletal muscle) to insulin-stimulated glucose uptake, with the rate of glucose uptake during the 

clamp being proportional to the inverse of the degree to which the periphery is insulin resistant 

(179). Because the hyperinsulinemic-euglycemic clamp is quite labor intensive, other minimalist 

approaches have been employed, two of which are the oral glucose tolerance test (OGTT) and 

the intravenous glucose tolerance test (IVGTT). The OGTT has been a mainstay in the diagnosis 

of impaired glucose tolerance and type 2 diabetes in humans and animal models. It involves 

patient ingestion of a body-mass-determined glucose dose, followed by the subsequent sampling 

of blood at regular time intervals over a 2-4 hour period following glucose ingestion. Insulin 

sensitivity is then estimated by calculating the area under the curve (AUC) for glucose and 

insulin values measured in the blood samples (179). The IVGTT technique is similar to the 

OGTT, with the primary difference being that the glucose is administered intravenously. A 

particular drawback to the OGTT method is that it does not specifically assess insulin resistance 

of the peripheral tissues, as hepatic glucose production is not suppressed (179). While less labor 

intensive than the clamp method, the IVGTT still requires as many as 25 blood samples to be 

collected over the 2-4 hour period, with subsequent computer-assisted mathematical analyses 

often performed. Alternatively, one can estimate insulin resistance from fasting blood glucose 

and insulin by homeostatic model assessment (HOMA). HOMA estimates for insulin resistance 

(HOMA-IR) and beta cell function were developed using data from physiological studies to 

develop mathematical equations describing glucose regulation as a feedback loop (296). In 

practical terms, the HOMA estimation can be calculated from fasting plasma or serum glucose 

(mg/dL) and insulin (μU/mL) by the equation: HOMA-IR = (glucose • insulin) • 405-1 (191). The 

use of HOMA has since been validated against a variety of physiological methods, and correlates 

with euglycemic clamp method  (Pearson r-value range from six published reports: 0.58-0.88,  
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reviewed in (296)). Ideally, a normal-weight person aged < 35 years has a HOMA value of 1.0. 

(191). Clear HOMA cutoff values for insulin resistance in larger population studies have been 

employed, and typically fall anywhere from 2.5 (159), to 4.65 (265). In the present study used 

the decision criteria outlined by Stern et al (265): an individual tests positive for insulin 

resistance if HOMA-IR > 4.65 or if HOMA-IR > 3.60 and BMI > 27.5 kg/m2.   

 

SKELETAL MUSCLE INSULIN RESISTANCE AND MITOCHONDRIA 

It has been argued that the recent increase in type 2 diabetes world-wide constitutes our 

greatest current health problem (136). Skeletal muscle is generally considered the primary site of 

insulin-stimulated glucose disposal in healthy humans (72, 88), and skeletal muscle is the 

primary site of insulin resistance associated with type 2 diabetes (72, 212).  It therefore follows 

that skeletal muscle insulin resistance, the primary cause of type 2 diabetes, has received intense 

investigation. Beginning in 2001, the team of Kelley and co-workers (125, 157) reported that the 

skeletal muscle of individuals with type 2 diabetes contained fewer mitochondria than age-

matched subjects who were insulin sensitive. These findings were used to explain a hypothetical 

model in which reduced mitochondrial content in skeletal muscle results in reduced capacity for 

fatty acid oxidation, and subsequent lipid accumulation within the skeletal muscle. They went on 

to hypothesize that intramuscular lipid accumulation leads to insulin resistance (125, 157), which 

was later supported by additional research from multiple laboratories (32, 203, 221), and has 

since garnered apparent general acceptance (186, 275). However, the notion that reduced 

mitochondrial content plays a causal role in the development of insulin resistance in skeletal 

muscle has not gone unchallenged (reviewed in (136)), and is underscored in a recent report from 
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the group of Holloszy of increased, rather than reduced skeletal muscle mitochondrial contents in 

animals fed a high fat diet, concomitant with reduced insulin sensitivity (120).  

Increasingly, the role of oxidative stress has been implicated in the etiology of insulin 

resistance in multiple tissues, including skeletal muscle (reviewed in (16, 219)).  Oxidative stress 

has been defined as an imbalance between production of oxidants and the antioxidant defense 

(21). While many oxidants exist in nature, it is generally accepted that reactive chemical species 

derived primarily from nitric oxide (i.e., reactive nitrogen species, or RNS) and perhaps more 

importantly reactive oxygen species (ROS) contribute, seemingly paradoxically, to both normal 

insulin signaling and insulin resistance in target tissues (reviewed in (16, 219)). Reactive oxygen 

species, or “ROS,” is an umbrella term used to describe chemicals formed through the 

incomplete electrochemical reduction of diatomic oxygen, O2. These include the superoxide 

anion (O2
-), hydrogen peroxide (H2O2) and the hydroxyl radical (HO•). Due to their relative 

instability and small size, ROS are generally quite difficult to study, a fact highlighted by the 

historical lack of widely available tools to measure ROS (267).  In fact, the only way to directly 

detect or measure free radicals is through the use of electron spin resonance/electron 

paramagnetic resonance (ESR or EPR) spectroscopy (241), a technique for studying chemical 

species with one or more unpaired electrons (e.g., free radicals). Over 20 years ago, ESR 

spectroscopy was used to show that free radical production increased after exhaustive exercise in 

rat skeletal muscle homogenates (67). However, this, and other studies conducted using ESR 

spectroscopy are now thought to have detected primarily the ubisemiquinone involved in normal 

mitochondrial electron transport (241). In addition to the lack of specificity associated with ESR 

spectroscopy in the study of free radical production, lack of sensitivity to the levels of free 
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radicals typically associated with biological systems represent another limitation to the technique 

(241).  

  Because high levels of ROS often leave detectable traces of oxidatively modified 

molecules, studies examining the effects of ROS and RNS typically assess an array of 

“damaged” biological molecules. These can include oxidized proteins, lipids, low-density 

lipoproteins, carbohydrates (i.e., glycated products) or nucleic acids/bases (219). The vast 

majority of studies have assessed levels of the molecular by-products associated with lipid 

peroxidation (241), which can include alkanes measured in expired air, but more often tissue or 

fluid levels of malonyldialdehyde (MDA) via reactivity with thiobarbituric acid to assess so-

called thiobarbituric acid reactive substances (TBARS) (241). However, an increasing number of 

reports show that ROS are involved in signal transduction that may not involve oxidative stress, 

per se, and that perhaps they are in fact required for normal cell function and signal transduction 

(38, 100). Considerable challenges exist to studying ROS, especially with regard to the 

limitations of tools available with which to study the role of ROS in cellular signaling. 

Fluorescent detection of the oxidation of the widely used 2′,7′-dichlorodihydrofluorescein (DCF) 

can gives a sense of ROS burst, for example (195). However, DCF is notorious for its relative 

lack of specificity toward ROS and is subject to auto-oxidation and photo-oxidation (195).  

The non-radical ROS, H2O2, a relatively mild oxidant, is increasingly being recognized 

for its role as a biological second messenger (reviewed in: (23, 80, 90, 98, 116, 233, 234, 267)). 

An accumulating body of literature suggests that ROS produced by the mitochondria in skeletal 

muscle lead to the development of insulin resistance in this tissue (29). Indeed, aided by the 

availability of better tools with which to detect specific and biologically relevant levels of ROS, 

H2O2 produced by the mitochondria has recently been implicated by our group in the etiology of 
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dietary fat-induced insulin resistance in skeletal muscle (5). Specifically, these observations were 

made using the redox-sensitive dye, N-acetyl-3,7-dihydroxyphenoxazine (Amplex red). First 

described by Mohanty et al (200), Amplex red has since been the mainstay in the detection of 

physiological levels of  H2O2 for the past ten years. Unlike its predecessor scopoletin, Amplex 

red is a colorless and nonfluorescent derivative of dihydroresorufin, which is oxidized by H2O2 

via horseradish peroxidase (1:1 reaction stoichiometry) to the highly fluorescent resorufin, with 

an excitation/emission maxima of 563 and 587 nm, respectively (314). The specificity of 

Amplex red for detection of H2O2 is evidenced by inhibition of the reaction when catalase is 

present (292). The more recent design of new and highly selective H2O2 sensors operate by a 

mechanism in which H2O2-mediated removal of a boronated protecting group on the probe 

confers fluorescence (195), and can be visualized by confocal microscopy in real-time to answer 

questions about the spatio-temporal nature of cellular H2O2 production. Additionally, recently 

developed H2O2-sensing probes, such as HyPer, can be genetically targeted to specific cellular 

compartments (e.g., cytosol, mitochondria, nulecei), permitting additional control over the 

cellular localization in which H2O2 is measured (19). The commercial availability of these new 

tools is expected to lead to exciting advancements in our knowledge regarding cellular H2O2 

signaling.  

 

H2O2 AS A SIGNALING MOLECULE 

H2O2 has several unique qualities that make it a suitable signaling molecule, not the least 

of which is its relatively long half life (1 ms for H2O2 vs. 1 μs for O2
- in lymphocytes) (233). 

Superoxide, on the other hand, is both less stable than H2O2, and is also unable to diffuse through 

membranes due to its negative charge. While the highly reactive HO• reacts indiscriminately and 
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in the vicinity of its production, diffusion of H2O2 may be regulated by membrane permeability 

and is even thought to travel through specific aquaporins (22, 23). H2O2 is believed to directly 

affect the cellular redox environment via alterations in, for example, the NAD(P)H:NAD(P)+, 

protein-SH:protein-SS-R and GSSG:GSH ratios, thereby regulating and influencing the function 

of myriad proteins (23). Furthermore, it has been determined that the specificity with which 

H2O2 reacts with key cysteine (Cys) residues on target proteins is far greater than other ROS 

molecules (63), and the effects of H2O2 on disulfide bond formation in vitro has been shown to 

be both concentration dependent and differentially targeted to proteins involved in translation 

and energy production, at least in the cytosol of neuronal cell cultures (62).  Indeed, redox 

regulation of Cys residues by H2O2 can achieve such selectivity and specificity by virtue of the 

fact that not all cysteines are equally reactive; the reactivity of a given Cys residue being 

determined by a) its solvent-exposed localization, and b) its ionization state (i.e., thiol vs. 

thiolate) (63). The ionization state, and in turn the reactivity of a given Cys residue is determined 

by the intracellular pH and the pKa of the Cys thiol moiety, with the thiolate typically being more 

susceptible to oxidation by H2O2 than the protonated form (304). However, certain Cys thiols 

may gain stability as the thiolate anion via electrostatic interactions with positively charged 

residues nearby (63). Simply put: in general, the lower the pKa, the greater the Cys thiol is likely 

to react (63). Another quality that makes Cys ideal for redox signaling is that it is, in many cases, 

reversible. This allows for additional temporal control of redox signaling by H2O2 (63). As a 

particularly poignant example of redox regulation of proteins that may be involved in 

mammalian insulin signaling/insulin resistance, consider the protein tyrosine phosphatases 

(PTPs). PTPs are thiol-dependent enzymes that dephosphorylate key Tyr residues involved in 

myriad cell functions (267). Thiol moieties at the active sites of PTPs react with H2O2 more 
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readily than the average protein Cys thiol moiety, due in part to their low pKas (e.g., pKa 5.4 for 

PTP1B) (74, 304). Examples of PTPs that are implicated in insulin resistance include protein 

tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homologue (PTEN). Oxidative 

modification of active site Cys residue thiols in both PTP1B and PTEN has been demonstrated to 

decrease their activity (111, 181). Oxidative inactivation of PTP1B and PTEN should, in theory, 

improve the insulin signaling cascade by releasing the inhibitory effects of the PTPs on the PI3-

kinase pathway. The empirical discrepancies noted in the literature between oxidative 

modification of PTPs and insulin action may speak more to the complexity of redox regulation 

than positivist conclusions about oxidative stress. Indeed, evidence suggests a role for low levels 

of endogenously-generated ROS in the normal activity of the PI-3 kinase signaling, but it is clear 

that chronic oxidative stress has a deleterious effect on the pathway (181).  Furthermore, obesity-

associated nitrosylation of components of the PI3-kinase – Akt pathway constitute one of the 

best-supported mechanisms of oxidative suppression of insulin signaling in skeletal muscle (44, 

154, 310). To complicate matters further, the literature is replete with contradictory conclusions 

about the very nature of mitochondrial ROS ascertained from studies in intact cells versus 

isolated mitochondria (addressed in (10)). While efforts are being made to reconcile these 

observations (10),  it is clear that more research is warranted in the area of redox regulation as it 

applies to the regulation of complex pathways like insulin-stimulated glucose uptake.  

 

REDOX-SENSITIVE MITOCHONDRIAL PROTEIN MODIFICATIONS 

The high mitochondrial matrix pH (~8) and proximity of mitochondrial proteins to the 

major ROS production sites predicts that mitochondrial protein thiols should be particularly 

susceptible to oxidation by ROS and RNS (144, 182). Mitochondrial electron transport chain 
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proteins are rich with thiols (142, 143); however, it is within complex I that the 

reactive/regulatory protein thiols believed to confer physiological function are primarily located 

(18, 66, 152, 247, 307). Many of these thiols are associated with non-heme iron centers, while 

others on the surface of the complex I are prime targets for redox modification. As an example, 

S-nitrosylation of complex I thiols has been shown to correlate with a significantly reduced 

activity of the enzyme, an effect that was readily reversible with thiol reductants (66). Moreover, 

this S-nitrosylation was also associated with an increased complex I superoxide (O2
-) formation 

(66). Evidence also suggests that complex I is susceptible to glutathionylation by GSSG in the 

presence of the mitochondrial thiol transferase glutaredoxin 2 (Grx2) (18). Manipulating the 

redox milieu with an oxidized GSH:GSSG ratio lead to a dramatic loss of complex I activity 

(18). Indeed, complex I activity is inhibited by S-glutathionylation occurring in both 75-kDa 

(NDUFS1) and 51-kDa (FMN-binding subunit/ NDUFV1) subunits of isolated complex I upon 

addition of excess GSSG (18, 152, 182, 307), which can result in rapid production of O2
- (18). 

Oxidative modification of complex I can result in self-inactivation and decreased electron 

transfer activity, resulting in greater O2
- generation in a phenomenon often referred to in the 

literature as a “vicious cycle” of ROS-induced ROS production (203) . Experimental treatments 

with both exogenous and endogenous H2O2 challenges in isolated bovine heart mitochondria 

resulted in glutathionylated 75-kDa subunit Cys-531 and Cys-704 in isolated complex I, which 

also correlated with loss of complex I NADH oxidation activity (146). It was subsequently 

determined that O2
-induces mixed intra-molecular disulfide bond formation in three cysteine 

pairs (i.e., Cys125/Cys142, Cys187/Cys206, and Cys142/Cys206) of the 51-kDa subunit of 

isolated bovine heart mitochondrial complex I (247). The formation of these disulfide bonds was 

inhibited by superoxide dismutase (SOD), indicating that O2
- removal can prevent oxidative 
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redox modification of complex I (247). In addition, the ND3 subunit Cys39 becomes accessible 

to chemical modification in the de-active form of the complex I but is not available in the active 

form of the enzyme (95). This site was hypothesized to be modified by S-nitrosylation (95). In 

addition to mitochondrial respiratory chain proteins, important ROS antioxidant enzymes, such 

as peroxiredoxin III (154) and NADP+-dependent isocitrate dehydrogenase (160, 314) also 

undergo redox-dependent thiol modification. Additional oxidative stress-sensitive thiols were 

identified by differential redox electrophoresis of isolated rat heart mitochondrial protein after 

treating with either low levels of exogenous H2O2 or RNS (145). Importantly, this was not a bulk 

thiol response, but rather a response effecting only specific protein thiols (145). The functional 

grouping of these redox-modified proteins were found to belong to those involved in β-oxidation 

and in the regulation of pyruvate dehydrogenase complex; they include mitochondrial creatine 

kinase, carnitine acetyltransferase, voltage dependent anion channel 1 (VDAC-1), acyl-CoA 

dehydrogenase (very long chain), mitochondrial acyl-CoA thioesterase 2, enoyl-CoA hydratase 

(short chain 1, mitochondria), propionyl-CoA carboxylase (α chain) (PCC), pyruvate 

dehydrogenase kinases 2 (PDK2) and pyruvate dehydrogenase E3 binding protein (145). 

Importantly, experimentally induced low endogenous ROS was sufficient to induce thiol 

modifications of PCC and PDK2, and these thiol modifications corresponded to reduced enzyme 

activity (145). Additionally, the regulation of mitochondria protein assembling (163), fission and 

fusion (149, 224) have also been shown to be redox sensitive. To summarize, it appears that ROS 

production at the level of the mitochondrial electron transport system (ETS) can affect its own 

enzymatic functions, conferring redox-level regulation of substrate metabolism. Importantly, 

ROS-induced ROS production via oxidative modification of ROS producing components of the 

mitochondrial ETS may lead to a vicious cycle of oxidant emission.  
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THEORY AND PRACTICE OF STUDYING MITOCHONDRIAL RESPIRATION 

In 1961, Peter Mitchell published a unique hypothesis regarding cellular bioenergetic 

conservation (197), for which he was later awarded the Nobel Prize for chemistry in 1978. 

Termed the “chemiosmotic theory of oxidative phosphorylation,” at its core is the notion of 

coupling hydrogen and electron transfer through an energy-conserving membrane to the 

phosphorylation of ADP to ATP. In mitochondria, there is an ETS consisting of several multi-

polypeptide protein complexes embedded in the inner mitochondrial membrane that receive 

electrons from mitochondrial dehydrogenases. These electrons are then transferred through a 

series of electron carriers in the ETS, ordered in such a way that their redox potentials (tendency 

to give up electrons) progressively drop from NADH (high redox potential) or FADH2 to O2 

(low redox potential, high tendency to accept electrons), ultimately reducing 1/2O2 to H2O. In 

three of these complexes (I, III and IV), the fall in redox potential across the oxidation-reduction 

reactions within the complex is sufficient to drive the translocation of protons from the matrix to 

the intermembrane space. This creates a proton gradient across the inner membrane (∆µ ~H+) that 

is, by convention, converted to units of electrical potential (i.e., millivolts) and referred to as “the 

membrane potential,” ∆Ψ. The essence of the chemiosmotic theory is that the electrical-chemical 

potential created by the accumulation of ∆Ψ is sufficient to drive the synthesis of ATP as protons 

flow back through the ATP synthase (a.k.a., Complex V) into the matrix. Proton leak reactions 

constitute an alternative means of re-entry for protons and account for the majority of respiration 

under basal conditions (239). In fact, in non-phosphorylating mitochondria, the rate of proton 

leak is directly proportional to the respiratory rate (166). Because respiration accounting for 

basal proton leak is not coupled to ATP synthesis, it contributes to a lower yield of ATP (P) 
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generated at complex V per oxygen (O) consumed at complex IV. The ratio of P generated to O 

consumed (P:O ratio) describes, by definition, the relative degree of coupling in a given 

mitochondrion or mitochondrial population.  

The thermodynamic disequilibrium that exists between the redox potential spans across 

the proton-translocating regions of the ETS and ΔΨ constitutes the fundamental factor in 

respiratory control (209). Measuring the rate of mitochondrial respiratory oxygen consumption is 

accomplished by a number of methods, including oxygen-dependent quenching of porphyrin-

based phosphors (303) and amperometic oxygen sensors (105). While phosphorescent probes are 

growing in use for in vitro/in situ respiratory measurements (e.g., the Seahorse biosciences XF 

analyzer) and are particularly useful for in vivo measurements of oxygen pressures (302), the 

amperometric approach represents the most popular with respect to in vitro investigations of 

mitochondrial respiration, with the Clark electrode having been used to investigate respiratory 

control for over 50 years. Named for inventor Leland Clark, the Clark electrode contains a gold 

or platinum cathode and a Ag/AgCl anode separated by a concentrated aqueous solution of KCl. 

A voltage is applied to these two half-cells, which are separated from the experimental solution 

by a membrane of oxygen-permeant material (e.g., PVDF). Oxygen diffuses through the 

membrane from the experimental solution and is reduced to water by electrons at the cathode, 

yielding H2O2. The H2O2 then oxidizes the Ag of the Ag/AgCl anode, which generates an 

electrical current. The resultant electrical current is then converted mathematically to an 

electrical potential that is proportional to the partial pressure, and in turn concentration, of O2 in 

the experimental solution (105). Changes in the concentration of O2 in the experimental solution 

therefore correspond to the inverse of the respiratory rate of a biological sample (e.g., 

mitochondria), and allow for quantifiable determination of respiratory O2 flux (JO2) under 
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various experimental conditions.  

 

RESPIRATORY CONTROL AND THE STEADY-STATE CONVENTIONS 

In 1956, Chance and Williams (49) published their definitions of respiratory steady-states 

they observed in experiments conducted on isolated mitochondria with a Clark electrode (50). 

Some of these steady-state conventions (e.g., states 3 and 4) remain in use today, forming the 

basis of communicating information regarding respiratory control in mitochondrial experiments. 

To illustrate how the steady-states were determined, consider a suspension of isolated 

mitochondria in which the partial pressure of oxygen is continuously monitored in a sealed 

chamber by a Clark-type electrode. The term “state 1 respiration” describes the rate of oxygen 

consumption when de-energized mitochondria are in the sealed chamber alone, and typically 

corresponds to artifacts of instrumental background (105). In the presence of ADP only, a 

steady-state rate of oxygen consumption will commence, which is substrate-limited and thus 

very low. This basal rate of respiratory oxygen flux (JO2) was termed state 2 respiration. This 

state 2 described by Chance and Williams (49) is thus not equivalent to the “state 2” found in the 

more recent Bioenergetics3 textbook reference (209), in which state 2 is described as the 

respiratory steady-state achieved when substrate alone has been added (103, 209). This 

referential mismatch may owe to the fact that many mitochondrial experiments employ subtrate-

uncoupler-inhibitor-titration (SUIT) protocol regimes that favor the sequential steady-state 

terminology defined by Nicholls and Ferguson in Bioenergetics3 (209) (i.e., substrate is added to 

a mitochondrial preparation, followed by ADP). Returning to the Chance and Williams (49, 50) 

steady-state derivations: if substrate is then added to the chamber, respiration increases to match 

the drop in ΔΨ that occurs as a consequence of rapid proton re-entry via ATP synthesis at 
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complex V. The JO2 that is achieved upon addition of substrate was termed state 3 respiration. 

However, the terminology applied in numerous published reports illustrates the current 

convention of using “state 3” to describe any situation in which both ADP and substrates are 

present (e.g., (5, 52, 89)), and is therefore synonymous with a state in which mitochondria are 

engaged in appreciable oxidative phosphorylation. Eventually, the added ADP will become 

exhausted (i.e., phosphorylated to ATP), and a new basal JO2 will be achieved: state 4 

respiration. This state 4 respiration is empirically equivalent to the state 2 defined by Nicholls 

and Ferguson (209).  During state 4, the rate of respiration (electron flow through the ETS) is 

matched to the proton leak that occurs as H+ re-enter the matrix. It is important to note that states 

2 and 4 respiration are often used synonymously to refer to basal (i.e., non-phosphorylating) 

respiration, but that “state 4” predominates as the current convention with which to describe a 

state in which mitochondria are not engaged in oxidative phosphorylation (e.g., (5, 52, 89)), and 

may also include respiratory steady-states achieved with inhibitors of mitochondrial oxidative 

phosphorylation, such as carboxyatractyloside/atractyloside/bongkrekic acid/M-21 (inhibitors of 

the mitochondrial adenine nucleotide transporter, ANT), rotenone/piericidin A (inhibitor of 

mitochondrial complex I) during respiration supported by complex I substrates, oligomycin 

(inhibitor of the mitochondrial ATP synthase/complex V), malonate (inhibitor of complex II) 

during respiration supported by succinate alone, or antimycin A/stigmatellin/myxothiazol 

(inhibitor of the mitochondrial complex III), to name a few. Finally, state 5 describes the 

situation reached when most or all of the oxygen has been depleted from the experimental 

chamber by the mitochondria and/or the electrode, which should, by definition be no rate at all 

(i.e., zero JO2). Therefore, in a true state 5 condition, observed rates of JO2 are artifactual by 

nature, and most likely the result of back-diffusion of oxygen from an incompletely sealed 
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chamber or by the use of inappropriate materials (e.g., Teflon or plastic) (105). Conventionally, 

the respiratory control ratio (RCR), defined as the quotient of state 3 respiration to that of state 4, 

is used as an index of mitochondrial coupling. Indeed, a positive linear relationship between the 

inverse respiratory control ratio (1/RCR) and P:O ratios has been demonstrated in isolated 

mitochondria (101). Publications have also used RCR as an index of mitochondrial bioenergetic 

functional integrity for isolated mitochondrial preparations (e.g., (168, 231)), and a relationship 

between RCR and cytochrome c conservation (indicator of outer mitochondrial membrane 

intactness) has been demonstrated in mitochondria isolated from skeletal muscle (231). 

However, RCR is only useful when substrates for oxidative phosphorylation are not limiting, as 

this will underestimate state 3 respiration (103).  

The overall flux of oxygen consumption by the mitochondria can be divided into many 

individual pathways that exert different flux control coefficients upon the overall respiratory 

metabolism. The flux control coefficient is defined as the fractional change in flux, divided by 

the fractional change in the amount of enzyme as the change tends towards zero (209). An 

example would involve altering the activity of an enzyme (e.g., ANT), in a metabolic pathway 

(e.g., respiration) and measuring the fractional change in respiration that occurs as a function of 

the fractional alteration in ANT activity. If a 50% change in ANT activity, for example, resulted 

in a 50% change in respiration, then the flux control coefficient for the ANT over respiration 

would be 1. On the other hand, if altering the activity of the ANT by 50% resulted in only a 10% 

change in respiration, then the flux control coefficient would be 0.2 (10%/50%) (209). During 

uncoupled respiration, the ATP turnover reactions and proton leak exert essentially zero 

respiratory flux control (209). Therefore, conclusions can be made regarding limitations of the 

phosphorylation system and respiratory enzyme content when the uncoupled respiratory rate is 
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compared to the maximal state 3 rate. Put another way, if uncoupled JO2 is higher than maximal 

state 3 JO2 (coupled), then a limitation to flux is exerted by the phoshorylation system and there 

is thus an excess capacity of electron transport (102).  

 

MITOCHONDRIAL PRODUCTION OF REACTIVE OXYGEN SPECIES 

As mentioned previously, discrepancies exist in the literature as to the how mitochondrial 

ROS leads to oxidative/redox stress. This is due primarily to inferences made from studies using 

either in vitro mitochondrial preparations as opposed to cell or in vivo work (10). With regard to 

the former, O2
- production is favored when the components of the mitochondrial electron 

transport system are reduced; i.e., when the rate of electron flow through the chain is at its 

slowest and, by definition, ∆Ψ is at its highest (i.e., resting respiration) (166, 209). The use of 

specific respiratory chain inhibitors exploits this concept as blocking electron flow increases the 

redox state of ETS components upstream of the inhibitory site while components downstream 

become more oxidized. When rotenone, a complex I inhibitor, is added to mitochondria respiring 

exclusively on the complex II substrate succinate, H2O2 formation decreases (15, 183), providing 

evidence that complex I is a site of O2
- formation when electrons enter the ETS beyond complex 

I (i.e., via FADH2-linked respiratory complexes such as complex II) due to reverse electron flow 

from complex II back into complex I. FADH2 is oxidized downstream of complex I by 

mitochondrial glycerol 3-phosphate dehydrogenase (mGpDH), succinate dehydrogenase 

(complex II), and during β-oxidation of fatty acids - in the case of the latter, donating electrons to 

the electron transferring flavoprotein (ETF) (209).  

In contrast to the paradigm offered by the results of in vitro mitochondrial experiments 

mentioned above, studies conducted using intact cells observe high rates of mitochondrial ROS 
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during high rates of respiration, when ∆Ψ is at its lowest, and in theory, the ETS should least 

likely to produce ROS. These seemingly contradictory notions of mitochondrial ROS governance 

were recently reconciled in experiments by Aon et al (10) using both cardiomyocytes and 

isolated mitochondria from guinea pig hearts, upon which the authors propose a model in which 

an optimized ROS balance is maintained by the redox couple of the cell/mitochondria. The 

model predicts that high levels of mitochondrial ROS will be observed on either extreme of the 

overall cellular energy charge, and that high rates of mitochondrial ROS production are observed 

in isolated mitochondria due to the fact that, even though the redox couple that supplies the 

energy for the antioxidant defense (e.g., NADPH/NADP+) will be at its maximum during state 4 

conditions, the ROS production will be so great as to overwhelm these defenses. Conversely, in 

intact cells treated with low doses of mitochondrial uncouplers, rates of mitochondrial ROS 

production at the level of the ETS will be relatively low; however, the antioxidant redox couples 

will be at their lowest as well, permitting oxidative/redox stress via the small amounts of ROS 

that are produced (10). Therefore, under conditions of redox homeostasis, the two opposing 

forces (i.e., ROS and the antioxidant defense) are poised to balance one another. Physiological 

ROS signaling is therefore thought to occur in a narrow range of net oxidant emission from the 

mitochondria, further supporting the notion of physiological, and in turn, acute 

pathophysiological redox signaling in biological systems, and not necessarily oxidative stress per 

se.  

 

MEASUREMENTS OF MITOCHONDRIAL FUNCTION IN SITU: THE PERMEABILIZED 

MYOFIBER APPROACH 
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To measure the function of the mitochondrial respiratory complexes working together, 

intact mitochondria must be studied (174). To this end, oxygen consumption and the net release 

of H2O2 can and has been measured in mitochondria isolated from tissues including skeletal 

muscle (e.g., (243, 279, 288)).  Isolation of mitochondria is typically achieved by differential 

centrifugation of tissue and/or cell homogenates and allows valid characterization of 

mitochondrial function (93, 174). However, the disadvantages of the isolated mitochondria 

approach (described in (174)) include: 1) artifacts of damage conferred to the mitochondrial 

function by the isolation process (174, 223); 2) biased selection of certain mitochondrial 

populations in a given sample (e.g., less dense mitochondrial populations excluded from the 

differential centrifugation step) (174, 223); 3) relatively large sample sizes (>200•106 cells, or 

>500 mg wet wt of tissue) are necessary for optimal isolated mitochondrial yields (93, 174); and 

4) The mitochondrial interactions known to be occur in vivo (i.e., microcompartmentalization, 

metabolic channeling and intracellular energy transfer) are disrupted in isolated mitochondria 

(156, 174, 196, 246), thus altering the functional properties of isolated mitochondria relative to 

those in vivo (172, 174, 196, 246). Of course, in vivo approaches are the most physiologically 

relevant means by which to study mitochondrial function. Indeed, near-infrared spectroscopy and 

fluorescent imaging methodologies have been used to study mitochondrial redox states (121), 

membrane potential (311) and calcium handling (199) in vivo (174). However, the scope within 

which mitochondrial functions can be analyzed in vivo are limited due to the fact that many 

exogenously added treatments (e.g., effectors such ADP) do not readily penetrate cell 

membranes (174). Efforts to both circumvent the limitations associated with isolated 

mitochondrial preparations, and at the same time maintain the experimental freedoms conferred 

by the methodology have lead to established protocols involving chemically permeabilized cells 
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(289) and muscle fibers (174, 287). Selective permeabilization of cell membranes can be 

achieved with various chemical agents, such as digitonin, filipin, α-solanine, α-tomatine and β-

escin (174). However, with regard to skeletal and cardiac muscle, the most widely used 

permeabilizing agent is quillaia saponin, a relatively mild detergent (e.g., compared to digitonin 

(306)) derived from the Soap bark tree (Quillaja saponaria) and referred to in the literature as 

simply “saponin”. The chemical permeabilization of skeletal and cardiac muscle fibers with 

saponin to study mitochondrial function was first reported in 1987 (287), and has since been used 

in numerous studies (e.g., (5-7, 32, 172-174, 244-246, 278, 287)).  Saponins owe their detergent 

properties to hydrophilic glycoside moieties attached to lipophilic triterpene derivatives (139), 

which gives saponin its high affinity for cholesterol (174). Because plasma membranes contain 

more than 7 times as much cholesterol (~0.5 mol cholesterol per mol phospholipid) as do 

mitochondria (0.07 and 0.01 mol cholesterol per mol phospholipid for the mitochondrial outer 

and inner membranes, respectively) (55, 165), very small concentrations of saponin (e.g., 50 

μg•mL-1) will selectively complex with the sarcolemmal cholesterol of skeletal muscle fibers, 

forming pores on the order of 8 nm in diameter (14, 176), whilst leaving the mitochondrial 

membranes intact (174). Additional intracellular structures containing little or no cholesterol, 

such as the sarcoplasmic reticulum (SR) and the contractile apparatus will also remain intact 

upon saponin treatment (246). Furthermore, saponin concentrations as low as 50 μg•mL-1 have 

been shown to increase Ca+2 loss from the SR of mammalian cardiac and skeletal muscle (127, 

175), and to also reduce the ability of the SR to load Ca+2 (176). Because mitochondria are 

known to readily take up Ca+2 (39), the loss of Ca+2 from the SR during permeabilization is 

beneficial to studies involving mitochondrial function. The selective permeabilization also 

permits “cytosolic washout” involving the removal of cytosol and all solutes therein, including 
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soluble cytosolic enzymes like lactate dehydrogenase (174), followed by rapid equilibration of 

the intracellular space with the external medium. This equilibration between the medium and the 

intracellular space allows for the use of experimental additions much as are routinely used in 

functional analyses involving isolated mitochondria (174). Importantly, the normal 

mitochondrial morphology, including intact inner and outer mitochondrial membranes have been 

verified by electron microscopy in saponin permeabilized cardiac fibers (287), and the saponin-

permeabilization preparation has been shown to liberate not more than 4% of total muscle citrate 

synthase as determined by citrate synthase activity assay of saponin permeabilization and 

washing solutions (278), indicating that the majority of mitochondria in the sample are intact and 

remain in the fiber bundles during the mitochondrial function measurements. When compared 

with isolated mitochondria, the advantages of the permeabilized fiber approach to study muscle 

mitochondria (described in (174)) include: 1) The permeabilized myofiber approach more 

closely retains the morphological design that exists in vivo than does isolated mitochondria. By 

preserving the native mitochondrial architecture, the intracellular interactions between the 

mitochondrial reticulum and, for example, the contractile apparatus are retained; 2) in contrast to 

the large amounts of tissue sample required for isolated mitochondria studies (typically no less 

than 50 mg, e.g., (279, 301)), only a relatively small sample (<35 mg wet weight) is required for 

mitochondrial function measurements involving the permeabilized fiber approach. Thus, the 

permeabilized fiber approach is more suitable than isolated mitochondria for human clinical 

studies. Moreover, research involving skeletal muscle biopsies on humans can afford to 

relinquish small portions of the total biopsy for mitochondrial function measurements in 

permeabilized fibers, and still keep enough of the remainder for biochemical analyses, satellite 

cell isolation for culture of myocytes, etc. In spite of the virtues associated with measuring 
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mitochondrial function in permeabilized fibers, the literature has recorded notable differences in 

the apparent Km for ADP (i.e., the concentration of ADP eliciting a half-maximal rate of oxygen 

consumption) between fibers and isolated mitochondria (174). In fact, at least four publications 

show that the apparent Km for ADP exceeds that of isolated mitochondria for the same tissue by 

over one order of magnitude (173, 174, 244-246). However, this disparity may owe solely to the 

preparation itself. Maximal aerobic capacity is limited by oxygen supply in vivo (75, 235). 

Similarly, the respiratory capacity of mitochondria is limited by oxygen kinetics, such that 

saturating concentrations of oxygen in vitro are requisite for determining respiratory capacity 

(102). An appropriate analogy is that of oxidative phosphorylation in studies using isolated 

mitochondria, where saturating concentrations of ADP are necessary for assessment of maximal 

state 3 respiration. While partial pressures of oxygen, and therefore concentrations of oxygen in 

experimental aqueous media well below that of sea-level air saturation (e.g., 20 μM) are not 

limiting to respiration in isolated mitochondria and small cells (reviewed in (102, 248)), even at 

air saturation (i.e., ~200 μM O2), oxygen is limiting to respiration in permeabilized muscle fibers 

(104). This is illustrated by a 100-fold increase in the sensitivity to oxygen concentration in 

permeabilized rat soleus and heart fibers (104). This sensitivity to changes in already relatively 

high oxygen concentrations is thought to be due, at least in part, to diffusion limitations resulting 

from the fiber bundle (104). At low oxygen concentrations, an “anoxic core” of the fiber is 

thought to occur. Limitations of respiration due to insufficient oxygen levels in the experimental 

setup involving permeabilized muscle fibers has been reduced or prevented by maintaining 

oxygen concentrations above air saturation in the range of 200-500 μM (11, 32). It has been 

suggested that the experimental oxygen limitations may account, at least in part, for the disparate 
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low and high maximal state 3 respiratory rates reported for experiments involving permeabilized 

fibers (102).  

 

REVERSE ELCTRON FLOW AND MITOCHONDRIAL REACTIVE OXYGEN SPECIES 

Aside from questions surrounding mitochondrial versus extramitochondrial sources of 

ROS production, the exact location and topology of ROS production at the level of the 

mitochondrial electron transport system remain to be conclusively determined. It is generally 

accepted, however, that the respiratory chain complex I and III account for the majority of 

superoxide generated by the mitochondria (33, 169). As mentioned previously, the production of 

ROS at these complexes has been revealed experimentally using the inhibitors rotenone 

(complex I) and antimycin (complex III) (reviewed in (283)). While the ROS production at these 

sites has been associated with metabolic perturbations (5, 7), their physiological roles remain 

poorly understood. Reverse electron flow/flux (REF) through complex I was first reported nearly 

50 years ago by Chance and Hollunger (46, 47). REF involves the transfer of electrons through 

complex I in a manner opposite to the conventional notion of 1) oxidation of NADH to 2) 

reduction of quinone. The experimental conditions necessary to observe appreciable REF have 

most often involved high concentrations of succinate added to isolated mitochondrial 

preparations (is in (46)). Indeed, under these experimental conditions, reduction of NAD+ to 

NADH at complex I has been observed using spectrophotometry, concurrent with succinate 

oxidation at complex II (succinate dehydrogenase) and a paradoxical increase in the 

mitochondrial ΔΨ (17, 46). REF has also been observed using glycerophosphate (Gp) as 

substrate, which is oxidized at the outer surface of the mitochondrial inner membrane (206). 

Production of ROS linked to REF has been shown (166, 171, 291). However, the physiological 
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relevance of REF-associated ROS production has been questioned due to the experimental 

conditions necessary to demonstrate the phenomenon (i.e., high ΔΨ and reduced natural 

antioxidant capacity (126, 166, 251)). Moreover, induction of REF using succinate (S) alone as 

mitochondrial substrate does not reflect the physiological situation in which multiple substrates 

feed into at least both complexes I and II simultaneously (126). Regardless, complex I has been 

increasingly implicated in mitochondrial ROS production, and this is thought to involve both 

forward and reverse electron flows through complex I (169, 290). Rotenone blocks the transfer 

of electrons from the iron-sulfur center N2 to quinone (216), which inhibits the flow of electrons 

into the quinone-cytochrome bc1 of complex III. However, reduction of molecular oxygen to 

superoxide anion can still occur at the FMN site of complex I. Indeed, the use of the complex I 

inhibitor rotenone has been shown to both inhibit REF-mediated ROS production, and to 

increase ROS production when electron flow from complex I substrate (i.e., those generating 

NADH) (reviewed in (36)).  

Additional evidence against the physiological relevancy of succinate alone as substrate 

comes from studies examining the regulation of succinate dehydrogenase, (SDH, complex II) (2, 

45, 85, 284). When S is added to a mitochondrial preparation without rotenone, complex I is free 

to generate NAD+ in the mitochondrial matrix. NAD+ is a cofactor involved in three of the 

reactions of the Krebs cycle, one of which is the oxidation of malate to oxaloacetate (OAA) by 

malate dehydrogenase. Because OAA cannot permeate the mitochondrial inner membrane, it 

accumulates in an isolated mitochondrial preparation in the absence of a source of acetyl CoA 

with which to condense to citrate (103). Even at low concentrations, OAA is a more potent 

competitive inhibitor of SDH than malonate, the commercially available tool used to 

experimentally inhibit SDH (17). This concept is supported by the experimental observation of 
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increased respiratory O2 consumption upon addition of rotenone to a mitochondrial suspension in 

which S, or S + malate are substrates (78). The concept of feedback inhibition of SDH by OAA 

may therefore illustrate an elegant system of respiratory control, whereby efforts to maintain 

mitochondrial ΔΨ by the proton translocating function of complex I is favored under states of 

high demand (e.g., high ADP, lowered ΔΨ). Conversely, the model dictates that under situations 

of low demand (e.g., low ADP), complex I activity will be less-favored; which will result in 

reduced NAD+ turnover, malate dehydrogenase activity, and in turn, malate oxidation. The net 

effect would then be a decreased formation of OAA and consequently increased SDH activity. In 

a recent study exploring the effect of multi-substrate (i.e., substrates for both complex I and II) 

combinations in mitochondria isolated from mouse skeletal muscle, it was suggested that OAA 

inhibition of SDH activity may actually constitute a deliberate adaptation to minimize REF-

mediated O2
- production (204). The concept of complex I-activity - associated OAA inhibition of 

SDH illustrates yet another reason to interpret the results of in vitro mitochondrial experiments 

within the context of what are essentially unique metabolic situations that may in fact never 

present themselves physiologically.  

 

METFORMIN: A PHARMACOLOGICAL STRATEGY TO TREAT INSULIN RESISTANCE 

Dimethylbiguanide, popularly known as metformin, is among the most widely prescribed 

drugs for the treatment of type 2 diabetes.  Improved glycemic control with metformin is 

generally attributed to both increased muscle glucose clearance and decreased hepatic glucose 

production.  However, despite the routine prescription of metformin, its exact mode of action 

remains unclear. Two potential cellular targets of metformin have been identified: adenosine 

monophosphate-activated protein kinase (AMPK) (314), a major regulator of cellular glucose 
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and lipid metabolism, and complex I of the mitochondrial respiratory chain (17, 215).  AMPK 

activity is increased in skeletal muscle and liver in response to either in vitro or in vivo exposure 

to metformin (25, 207, 314).  However, cell free assays indicate that metformin does not activate 

AMPK directly nor alter the phosphorylation state of AMPK by upstream kinases (124).  

Metformin does bind to and inhibit complex I of the mitochondrial ETS (40, 43, 44, 215), but the 

degree of inhibition is mild and does not appear to affect overall cellular energy charge (124).  

Thus, although there is considerable circumstantial evidence, a direct link between AMPK and 

the insulin sensitizing action of metformin has not been established (123).         

Metformin treatment has also been reported to reduce oxidative stress in target tissues 

(17, 30, 140, 214), raising the alternative possibility that its mechanism of action may be related 

to ROS generation and/or neutralization.  Batandier et al (17) recently reported that metformin 

decreases complex I-linked H2O2 production during succinate-supported respiration in 

mitochondria isolated from rat liver.  As mentioned previously, S induces high rates of ROS 

production by REF through complex I which dramatically accelerates electron leak and O2
- 

formation (6, 183).  While respiration supported exclusively by succinate is clearly non-

physiological, the findings imply that substrate/respiration conditions in vivo that result in a 

greater proportion of reducing equivalents feeding into the electron transport system beyond 

complex I may lead to elevated ROS production; e.g., during basal (resting) respiration 

supported by fatty acids (7, 262).  In support of this contention, elevated mitochondrial-derived 

H2O2 emission has recently been shown by our group to be a primary factor in the etiology of 

dietary fat-induced skeletal muscle insulin resistance (5).  These findings raise the intriguing 

hypothesis that the insulin sensitizing actions of metformin in vivo may be mediated by its ability 

to attenuate complex I-mediated H2O2 emission induced by REF.  
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MITOCHONDRIAL FUNCTION AND THE RACIAL METABOLIC DISPARITY IN THE 

UNITED STATES 

In the United States, African-American women (AW) are more likely to be overweight or 

obese, and are more than twice as likely to develop types 2 diabetes as Caucasian women (CW) 

(69). This not only suggests that AW may be genetically predisposed to metabolic disease in this 

country, but also suggests that studying AW may lead to a greater understanding of the etiology 

of insulin resistance and type 2 diabetes. The metabolic factors that precede and/or contribute to 

this racial disparity may involve a reduction in basal energy expenditure. Supporting this notion 

are reports that AW have a significantly lower resting metabolic rate (RMR) than CW (91, 147); 

findings that have also been observed in prepubertal African American girls compared to age and 

weight-matched Caucasian girls (155, 309).  Skeletal muscle represents ~45% of total body mass 

(13) and accounts for ~25% of the body’s RMR (238). In fact, at rest, approximately 25% of 

basal metabolic rate is due to respiration required to support proton leak (i.e., non-

phosphorylating, or “idling” respiration) in skeletal muscle mitochondria (269). This implies that 

even subtle differences in the rate of proton leak in skeletal muscle mitochondria can profoundly 

influence overall metabolic control and energy balance. Furthermore, this proton leak is linked to 

ROS. As mentioned, mitochondrial ROS emission is evident under state 4 (resting) conditions, 

and increases exponentially as proton conductance decreases (i.e., ΔΨ increases) (166). This is 

germane as ROS have been linked causally to the development of insulin resistance (140), the 

hallmark of type 2 diabetes.  

 

THE FEMALE MENSTRUAL CYCLE 
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The menstrual cycle describes a periodic pattern of physiological changes that normally 

occur over the course of about 28 days in fertile females. The cycle is necessary for reproduction 

and is governed by the endocrine system. The menstrual cycle is divided into three phases: 1) the 

follicular phase, 2) ovulation, and 3) the luteal phase. In humans, Menstrual cycles are counted 

from the first day of overt menstruation, which involves blood flow from the uterus through the 

vagina and typically occurs once during each menstrual cycle (268). During the follicular phase, 

estradiol (E2) secretion by the ovaries progressively increases and circulating estrogen levels rise 

gradually. Overt menstruation ceases, follicles in the ovaries develop and the lining of the uterus 

thickens. On or about day 14, a surge in luteinizing hormone results in ovulation. Unless 

fertilized within the next 24 hours, the dominant follicle in the ovary becomes the corpus luteum, 

which produces large amount of progesterone (P4). The rising levels of P4 begin the luteal 

phase, and the endometrium changes in preparation for implantation of an embryo. In the 

absence of implantation, involution of the corpus luteum commences, resulting in sharp declines 

in levels of P4 and E2, and shedding of the uterine lining once again. A teleological explanation 

for menstruation in humans proposed by Strassmann (268) posits that the uterine endometrium is 

shed whenever implantation fails over the course of an ovulatory cycle because this cyclical 

renewal of the endometrium is less energetically costly than maintaining it in the state required 

for implantation. Indeed, the O2 consumption by the human endometrium declines by seven-fold 

during endometrial regression (268). The cyclicity in metabolic rate matches the cyclicity of the 

ovarian hormones (e.g., E2 and P4), which govern the menstrual cycle (268). The effects of the 

ovarian hormones on metabolic rate during the normal menstrual cycle are evident in 

nonendometrial tissues as well (e.g., skeletal muscle) (268). The net result is that metabolic rate 

is more than 7% lower during the follicular phase compared to the luteal phase of the menstrual 
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cycle (268). The estimated energy savings during four cycles are therefore equivalent to the 

caloric content in roughly six days worth of food, or about 53 megajoules (268). In the context of 

the results of studies comparing the basal metabolic rate between AW and CW, it would seem 

prudent to consider ovarian hormone status. Moreover, studies examining the metabolic 

consequences of various effectors in women would do well to consider, control, or test ovarian 

hormones, of which E2 and P4 appear to exert particular influence. In the context of the current 

study, the role of E2 and P4 on skeletal muscle mitochondrial function was addressed. 

 

THE EFFECTS OF PROGESTERONE AND ESTRADIOL ON PERFORMANCE AND THE 

METABOLIC RESPONSE TO EXERCISE   

Nearly forty years ago, Reinke et al (232) observed a significant increase in free fatty 

acids in normal women specifically during the luteal phase, when the P4 levels in the blood were 

greatest. Since then, many studies have examined the effects of menstrual cycle on metabolism. 

Lipid oxidation has also been shown to be greatest during exercise performed in the luteal phase 

(313). There is no consensus in the literature as to the effect(s) of menstrual cycle on exercise 

performance or the metabolic response to exercise. While many published reports conclude that 

menstrual cycle has either no or only subtle effects on the metabolic response to exercise (96, 

138, 153) or exercise performance (70, 79), others report differently (27, 64, 210). During low to 

moderate intensity (35-60%) exercise, women in the mid-luteal phase have been shown to 

oxidize lipid more, and carbohydrate less when compared to the respective exercise response 

during the mid-follicular phase (117). It has also been shown that the core body temperature is 

elevated during submaximal exercise performed during the luteal compared to the follicular 

phase (264). Interestingly, the effects of menstrual cycle on exercise performance may only 
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present themselves in nonathletes, as one study found the luteal phase of the menstrual cycle 

induced increases in ventilatory drives and exercise ventilation in both athletes and controls, but 

the athletes, in contrast to controls, demonstrated no significant decrease in exercise performance 

in the luteal phase (250). Further confounding the aims of the original research goals in the 

current study was the use of synthetic steroidal contraceptives by some of the subjects.  Indeed, 

the metabolic response to exercise has been shown to be affected by synthetic steroidal 

contraceptives, with those taking oral contraceptives exhibiting a blunted rise in E2, P4, and 

cortisol during exercise compared to controls (28). In a study involving stable isotope dilution 

and indirect calorimetry, d’Eon et al (64) were able to measure glucose uptake and estimate 

skeletal muscle glucose oxidation during exercise while manipulating the blood levels of E2 and 

P4 in healthy women. They discovered opposing actions of E2 and P4, the former reducing 

estimated muscle glycogen utilization and the rate glucose disappearance from the blood. On the 

other hand, increasing blood levels of P4 in addition to E2 increased the estimated muscle 

glycogen utilization, but not the rate of glucose disappearance from the blood. Such a description 

of the complementary effects of E2 and P4 in skeletal muscle substrate utilization frame the logic 

of testing both hormones in the current study.  

 

ESTRADIOL, PROGESTERONE AND INSULIN SENSITIVITY  

The volume of published data demonstrating that sex steroids affect the sensitivity of 

tissues to insulin in animal models are substantial (reviewed in (184)). More relevant to the 

current project are reports that show women with high serum levels of sex steroids are at a 

greater risk of developing type 2 diabetes (e.g., (180)). Premature adrenarche has also been 

shown to reduce insulin sensitivity in girls, and may also be at a greater risk of developing 
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polycystic ovarian syndrome in later adulthood (294). Normal pregnancy is associated both with 

high circulating levels of both estrogens and P4 and also reduced insulin sensitivity (134). 

Similarly, a fall in insulin sensitivity has been reported in normal women during the luteal phase 

of the menstrual cycle, when serum P4 and E2 levels are both at their greatest (184). When 

ethinyl estradiol was administered to male transsexuals, a reduced peripheral glucose uptake was 

observed without any change in endogenous glucose production, indicating that estrogens may 

have a peripheral site of action (225). Because skeletal muscle is responsible for the majority of 

peripheral glucose disposal, it would appear that sex steroids have a direct effect on skeletal 

muscle insulin sensitivity. However, despite evidence relating sex steroids and insulin resistance 

(184), the exact nature of the link is unclear.  

 

NON-GENOMIC EFFECTS OF ESTROGEN AND PROGESTERONE ON 

MITOCHONDRIAL FUNCTION 

As early as 1963, Chance and co-workers (51) reported that high concentrations (i.e., 

mM) of P4 exhibited a “rotenone-like” effect on respiration and pyridine nucleotide reduction in 

mitochondria isolated from pigeon heart. A review (263) of the this, and subsequent publications 

regarding posttranslational effects of supraphysiological experimental steroid hormone 

concentrations on the function of isolated mitochondria casted doubt upon the physiological 

relevance of these studies.  More recently, studies examining the effects of E2 and P4 on 

mitochondrial function have employed treatment designs that increase the physiological 

relevancy of their results. In a study of the effects of in vivo-administered P4 and E2 on 

mitochondria isolated from mouse liver, it was found that state 3 respiration supported by 

complex II substrate (succinate) was reduced after three hours of treatment with either P4 alone, 
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or in combination with E2 (114). When the mitochondria were supplied exclusively with 

complex I substrates (glutamate + malate), both state 3 and state 4 respiration were significantly 

lowered by treatment with either P4 alone, or in combination with E2 compared to controls 

(114). Interestingly, while the RCR calculated with succinate as substrate in mice treated with E2 

or E2 + P4 was reduced from controls, neither the RCR or P:O ratio could be determined for 

mice treated with either P4 or E2, such was the inhibition of state 3 respiration (114). These 

effects of the female sex steroid hormones on mitochondrial respiration were not observed 

during TMPD + ascorbate respiration, which supplies electrons exclusively to complex IV (114). 

This suggests complex I as one of the sites of action by P4, and possibly the P4 + E2 

combination as well on mitochondrial respiration. When mitochondria isolated from male rat 

livers were incubated briefly (1 min) with 30 μM E2, both state 3, and FCCP-uncoupled 

respiration supported by the complex I substrates glutamate + malate were significantly reduced 

from controls (202). The effect of E2 was also manifest in a lower RCR (glutamate + malate). 

However, E2 treatment had no effect on the mitochondrial ΔΨ (202). Furthermore, no effect of 

E2 on mitochondrial H2O2 production was observed, with or without rotenone present (202). 

This is in contrast to findings of increased mitochondrial ROS in cultured cells treated for 15 

minutes with very high (i.e. > 360 nM) E2 (86). Even more recently, it was shown that adding P4 

to preparations of isolated rat liver mitochondria during the experimental measurements 

decreased the ΔΨ, calcium retention capacity and the capacity for complex I-linked state 3 

respiration (84). However, as with most of the investigations into the non-genomic effects of 

female sex steroids on mitochondrial function, the P4 concentrations used were 

supraphysiological - in this case, anywhere from 80-150 μM, or over 1000 times greater than the 

luteal phase serum P4 concentration in women (237).  In the current study, luteal phase serum 
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concentrations of E2 and P4 were used to test the acute effects of E2 and P4 on mitochondrial 

function.  

 

EXERCISE, SKELETAL MUSCLE INSULIN SENSITIVITY AND MITOCHONDRIAL 

FUNCTION  

During exercise, insulin-independent and -dependent glucose uptake by human skeletal 

muscle is enhanced (124). Furthermore, exercise training improves insulin sensitivity in the 

Zucker rat model of obesity-associated peripheral insulin resistance (53). After a single bout of 

exercise, insulin sensitivity increases primarily in the muscles involved in the physical activity, 

an effect which may last for up to two days (124, 305). This acute effect of exercise on skeletal 

muscle insulin sensitivity corresponds to glycogen replenishment in the exercised muscles (305). 

Though improved insulin sensitivity with acute exercise may be short-lived and likely involves 

improvements in GLUT4 content and/or trafficking rather than improved insulin receptor 

signaling (77, 124),  evidence exists for metabolic adaptations which sustain whole-body muscle 

insulin sensitivity with exercise training via enhanced insulin signaling involving the PI3-K 

pathway and AMPK (reviewed in (124)).  

 First reported by John Holloszy in 1967 (135), the notion of increased mitochondrial 

oxygen consumption and respiratory activity in skeletal muscle with exercise training has since 

become dogma, with the generally accepted explanation being an increase in the 

transcriptional/posttranscriptional activities involved in mitochondrial biogenesis following 

skeletal muscle contractions associated with exercise (reviewed in (137, 185)). As mentioned 

previously, the observation of reduced mitochondrial content in the skeletal muscle of 

individuals with type 2 diabetes (125, 157) lead to the hypothesis that such a reduction in 
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mitochondrial content was responsible for skeletal muscle insulin resistance due to the 

accumulation of lipid within the tissue (32, 203, 221). This hypothesis was subsequently 

extended to the effects of exercise on skeletal muscle insulin sensitivity (167). However, the 

notion that exercise exerts its insulin-sensitizing effect via removal of intramuscular lipid was 

confounded by the fact that highly trained, insulin-sensitive individuals similarly exhibit high 

intramuscular lipid content, a phenomenon termed the “athlete paradox” (113). Moreover, 

Tuominen et al (281) describe an acute phenomenon of insulin resistance following prolonged 

exercise, they called the “postmarathon paradox” of insulin resistance in otherwise healthy 

subjects the day following a marathon run. Additionally, the postmarathon paradox also involves 

impaired glycogen resynthesis that is not related to any decrease in muscle GLUT4 content (12). 

Therefore, perturbances to the insulin signaling pathway in skeletal muscle are likely to blame 

for the postmarathon paradox, and may involve secondary inflammation associated with 

exercise-induced muscle damage (54), or possibly even reactive oxygen species (194).   

 It is generally accepted that during exercise, high rates of oxygen flux in skeletal muscle 

increase the rates of ROS production, the source of which is been attributed primarily to the 

mitochondria (reviewed in (189)). However, this is based upon the misconception that 

mitochondrial ROS accounts for ~2% of total O2 consumed. The early work of Britton Chance 

and co-workers demonstrated that this high percentage of mitochondrial ROS is only evident 

under resting (i.e., state 4) conditions (48). Indeed, with regard to the effects of exercise on REF-

mediated mitochondrial H2O2 production, Sahlin et al (243) very recently published a study that   

examined the effects. In mitochondria isolated from the vastus lateralis muscles of males athletes 

participating in ultra-endurance exercise, the rate of state 4, succinate-supported (i.e., due to 

REF) H2O2 emission detected by Amplex red was increased 73% immediately post-exercise 
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from pre-exercise rates (243). As expected, the rates of  H2O2 emission from mitochondria 

isolated from a biopsy performed 28 hours after the exercise returned to pre-exercise rates (243). 

As mentioned previously, during state 3 respiration, mitochondrial ROS production drops 

precipitously. Because studies have shown that intense or exhaustive exercise is associated with 

markers of oxidative stress (189, 241), it has since been proposed that extramitochondrial or 

extracellular sources of ROS are involved , possibly due to ROS generated by xanthine oxidase 

(112). Regardless of the oxidant source, an accumulating body of evidence employing both 

direct (i.e., ESR spectroscopy) and indirect methodologies (e.g., assay of oxidatively modified 

macromolecules) strongly suggests that free radicals generated during mild to moderate 

endurance exercise actually constitute a stimulus mechanism for adaptations to exercise, 

including mitochondrial biogenesis in skeletal muscle (reviewed in (241)). An example 

illustrating this view comes from a very recent study in which severely overtrained athletes 

exhibited elevated levels of lipid peroxidation products and protein carbonylation compared to 

control athletes, both at rest and after exhaustive exercise (274).  While exercise-associated 

redox stress has been shown to affect signaling pathways that include the PI3-kinase/Akt, p53 

and heat shock proteins, the mitogen-activated protein kinase (MAPK) and nuclear factor (NF) 

κB pathways are thought to be major players in the cellular reaction to ROS (150).  The NFκB 

protein complex was first suggested to be redox-responsive when Sen et al (255) demonstrated 

that NFκB activation in L6 muscle cells was responsive to H2O2 treatment and controlled by 

intracellular GSH:GSSG status. Upon direct reaction with H2O2 or other ROS, NFκB is 

translocated to the nucleus, where it binds to a number of target gene promoters, initiating 

activation of various target genes, one of which is the manganese-containing superoxide 

dismutase (MnSOD), a mitochondrial enzyme which converts superoxide to H2O2. Indeed, it was 
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shown that the expression of MnSOD increased significantly after a single, 1 –hour bout of 

exhaustive exercise in rat skeletal muscle (133), and further confirmed that acute exercise 

increases the NFκB signaling pathway in rat skeletal muscle (151). Observations made by these 

and others regarding the adaptive response to exercise-association redox perturbations (227, 241) 

may therefore account, at least in part, for the often unimpressive results from studies examining 

the effects antioxidant supplementation on adaptation to exercise (reviewed in (38)) and 

improvements to diabetes (reviewed in (256)). In fact, a very recent study found that 

supplementation with the antioxidant vitamins C and E actually prevented the exercise-

associated benefits on insulin sensitivity in humans (236). As expected, the RNA transcripts for 

the endogenous antioxidant enzymes superoxide dismutase and glutathione peroxidase were 

increased in the control subjects after 4  weeks of exercise training in the control group; 

however, no change was observed in the group taking antioxidant supplements (236). Taken as a 

whole, the literature suggests that the improvements in whole-body insulin sensitivity with 

exercise training may owe to adaptations associated with attenuating mitochondrial ROS. 

Whether this involves an increase in the antioxidant defense, a decrease in the production of 

ROS, or both, remains to be clarified. 

 

CONCLUSIONS 

Characterized by skeletal muscle insulin resistance, type 2 diabetes constitutes a rising 

health concern in the modern industrialized world. An accumulating body of literature suggests 

that ROS produced by mitochondria in skeletal muscle leads to the development of insulin 

resistance in the tissue. Indeed, ROS has been linked causally to the development of insulin 

resistance; more specifically, we recently demonstrated the potential importance of complex I-
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linked H2O2 to the etiology of dietary fat-induced skeletal muscle insulin resistance (5). In light 

of this recent work, and because many of the drugs used to treat hyperglycemia (e.g., berberine, 

thiazolidinediones, metformin) also bind to and/or inhibit complex I of the mitochondrial 

respiratory chain (40, 282), it was reasoned that a common mechanism may exist by which 

mitochondria effect insulin sensitivity involving complex I – or more specifically, complex I-

linked H2O2. In the current study, it was hypothesized that three known modulators of peripheral 

insulin sensitivity (i.e., progesterone/estradiol, metformin and exercise training) would affect 

complex I-linked respiration and H2O2 emission in concert with their effects on insulin 

sensitivity, without necessarily affecting the capacity for respiratory O2 flux in skeletal muscle.   

 

CENTRAL HYPOTHESIS 

Taken together, the evidence described above supports the notion that modulators of 

insulin sensitivity may do so through their ability to affect the mitochondrial complex I-linked 

fate of O2 in skeletal muscle. Furthermore, preliminary data suggest that insulin sensitivity 

modulators may be more specific for complex I-linked H2O2 induced by reverse electron flow 

than for complex I-linked respiration. Therefore, the central hypothesis of this project is that 

known modulators of insulin sensitivity (i.e., metformin, estradiol & progesterone and exercise 

training) alter the potential for complex I-linked mitochondrial H2O2 emission while having little 

to no effect on respiration in skeletal muscle. 

 

SPECIFIC AIM #1. Determine the effects of metformin treatment on skeletal muscle 

mitochondrial complex I-linked respiration, H2O2 emission and insulin sensitivity.  

The insulin-sensitizing drug metformin has been shown to bind to and inhibit complex I of 
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the mitochondrial ETS (40, 44, 215). More specifically, Batandier et al (17) recently 

demonstrated that ROS production induced by reverse electron flow at complex I in isolated liver 

mitochondria is inhibited by metformin, while respiration was not significantly affected. To test 

the hypothesis that the mechanism of metformin action at therapeutic concentrations (i.e., 

micromolar) may be related to the attenuation of complex I-linked ROS generation, the 

following questions were addressed: 

a) In addition to improved glycemic control (OGTT), how does oral metformin treatment 

affect complex I-linked respiration and H2O2 emission in the skeletal muscle of an animal 

model of obesity-associated peripheral insulin resistance? 

b) What is the in vitro dose-response relationship between metformin concentration and 

complex I-linked respiration and how does it compare to the dose-response relationship 

between metformin and complex I-linked H2O2 emission in skeletal muscle? 

 

SPECIFIC AIM #2. Determine the influence of progesterone and estradiol on skeletal muscle 

mitochondrial JO2, H2O2 emission and insulin sensitivity.  

Preliminary data suggested that serum progesterone (P4) concentration correlates positively 

with the potential for complex I-linked H2O2 emission in skeletal muscle from lean and obese 

women at various stages of their normal menstrual cycle; that acute, ex vivo P4 treatment inhibits 

complex I-linked respiration in human skeletal muscle; and that acute, ex vivo incubation with 

progesterone increases the potential for complex I-linked mitochondrial H2O2 emission in human 

skeletal muscle. Given that insulin sensitivity decreases during the luteal phase of the normal 

menstrual cycle (83, 230, 285) when sex steroid levels are at their highest (190), it is 

hypothesized that a connection exists between P4 and/or estradiol (E2) and peripheral insulin 
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sensitivity. To test the hypothesis that P4 and/or E2 are related to insulin sensitivity and that this 

effect is similarly manifest in skeletal muscle mitochondrial function, the following questions 

were addressed: 

a) What is the relationship between serum progesterone, estradiol and insulin sensitivity of 

lean and obese premenopausal women?  

b) What is the relationship between serum P4, E2 and mitochondrial complex I-linked 

respiration and H2O2 emission in the skeletal muscle of premenopausal women?  

c) What is the in vitro effect of upper luteal phase serum concentrations of progesterone (60 

nM (237)) and estradiol (1.4 nM (237)) on complex I-linked respiration and H2O2 

emission in skeletal muscle during a multi-substrate titration protocol? 

 

SPECIFIC AIM #3. To determine the effects of exercise training on skeletal muscle 

mitochondrial complex I-linked respiration, H2O2 emission and insulin sensitivity in lean and 

obese women.   

Regular exercise has long been recognized as an effective therapeutic modality to improve 

insulin sensitivity. The membrane potential-dependent ROS generated by reverse electron flow 

at complex I is reduced exponentially as proton leak across the mitochondrial inner membrane 

(i.e., mild uncoupling) increases (166, 198). Exercise training has been shown to increase the 

mitochondrial content of known contributors to basal proton leak (e.g., uncoupling proteins), 

which would, in theory, decrease membrane potential-dependent ROS generation at complex I 

(198). To test the hypothesis that exercise training improves insulin sensitivity concurrent with 

increased mitochondrial respiration and reduced complex I-linked H2O2 emission in skeletal 

muscle, the following questions were addressed: 
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a) How does 8 weeks of exercise training affect insulin sensitivity (HOMA-IR) in lean and 

obese premenopausal women? 

b) How does 8 weeks of exercise training affect complex I-linked respiration vs. complex I-

linked H2O2 emission in lean and obese premenopausal women? 

c) What is the relationship between improved insulin sensitivity and changes in both 

mitochondrial respiration and complex I-linked H2O2 emission following 8 weeks of 

exercise training in lean and obese premenopausal women? 

 

METHODOLOGICAL CONSIDERATIONS 

Preliminary data indicated that in lean AW, the maximal rate of respiration induced by 

fully uncoupling the mitochondria with the lipophilic iononophore carbonylcyanide-p-

trifluoromethoxyphenylhydrazone (FCCP) exceeded the maximal rate achieved during ADP-

stimulated respiration (state 3). This suggested that in AW there is a limitation to respiration by 

the phosphorylation system, of which the adenine nucleotide translocase (ANT) is a major 

component. The ANT catalyzes the exchange of ADP for ATP across the mitochondrial inner 

membrane, is the most abundant mitochondrial protein, and was recently found to be responsible 

for 1/2 to 2/3 of the basal respiratory proton conductance in skeletal muscle by the research group 

of Martin Brand (37). Moreover, the skeletal muscle/cardiac-specific isoform of ANT (ANT1) 

protein content increases with regular exercise training (87), suggesting a potential mechanism 

by which an increase in physical activity ameliorates obesity-associated insulin resistance. 

Preliminary data indicated that a difference in the content of ANT1 in rectus abdominus was 

greater in CW vs. AW (Appendix A, Figure 13). Preliminary data further demonstrated that ten 

days of exercise training could increase ADP-stimulated respiration in skeletal muscle 
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mitochondria from AW. Thus, the central hypothesis of the project was initially that AW possess 

skeletal muscle mitochondria with lower ANT1 content, which limits state 3 respiration, 

decreases basal respiration and predisposes them to conditions favoring mitochondrial ROS 

emission, and that ten days of exercise training ameliorates these racial mitochondrial disparities. 

However, during the course of data collection, it was discovered that the female subjects in the 

current study were not controlled for menstrual cycle status – i.e., the relative phase of the 

female menstrual cycle did not dictate the day upon which any given subject was sampled. 

Moreover, the current study also failed to exclude subjects that were taking synthetic steroidal 

(i.e., exogenous progestin or progestin + estrogen) contraceptives at the time of their enrollment 

in the study.  

In addition to being predisposed towards obesity and type 2 diabetes, AW are also more 

likely than CW to suffer breast cancer mortality (208), which may be related to the way in which 

they metabolize estrogen (99, 272). There is an overwhelming body of literature describing the 

primarily genomic effects of estrogens on skeletal muscle function (reviewed in (82)) and the 

effects of sex steroids on insulin sensitivity/resistance (reviewed above). Therefore, an aim of the 

current project shifted away from the effects of race to investigate what was a confounding 

variable in the original proposal: the effects of menstrual cycle ovarian steroid hormones, 

estradiol (E2) and progesterone (P4), on skeletal muscle mitochondrial function as it relates to 

insulin resistance. Initial plans to perform western blots for the skeletal/cardiac muscle specific 

isoform of ANT (ANT1) were decided against, based in part upon the results of Too et al (280). 

They found that a single dose injection of E2 in female rats resulted in a more than 3-fold 

increase in RNA transcripts for ANT1 in cardiac muscle, beginning as early as 1 hour to as long 

as 24 hours after treatment (280). While the increase was certainly impressive in these female 
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rats, the effects of E2 on the expression of ANT1 was interestingly absent in male rats (280). In 

light of the well established variations in E2 known to occur over the course of the female 

menstrual cycle (described above), conclusions made about the effect of race or obesity on the 

expression/content of ANT1 in skeletal muscle in a group of subjects for whom the menstrual 

cycle was not controlled would be a priori dubious at best. Moreover, failure to exclude subjects 

taking oral contraceptives has the potential to confound any study examining insulin sensitivity 

(107, 109, 164), carbohydrate (108, 298) and/or lipid metabolism (106, 295) in women, even 

when the contraceptives are taken in low doses (220, 259). In fact, it was due in part to studies of 

women taking oral contraceptives containing synthetic estrogens and progestins (107, 109, 220), 

the most common ingredient in such forms of birth control, that lead to the speculation that P4 

and/or E2 are responsible for the decrease in insulin sensitivity reported in the literature to 

accompany the luteal phase of the menstrual cycle (184).  

An additional methodological hurdle involved tailoring the permeabilized myofiber 

approach to female subjects. Pilot data collected with permeabilzed myofibers from female 

subjects using standard protocols (174) exhibited abnormally low rates of JO2. This was 

accompanied by a more than 40% increase in complex I-linked JO2 (i.e., glutamate + malate 

substrates) after addition of 10 μM cytochrome c (Appendix A, Figure 14), indicating disruption 

of the outer mitochondrial membranes. Because the permeabilization process involves saponin 

complexes with cholesterol, we therefore suspected that the saponin concentration used in all 

publications employing the saponin permeabilzed myofiber approach (i.e., 50 μg/mL) was too 

high for these female subjects. Indeed, it has been shown in rat hepatocytes and human 

chondrocytes for example, that the membrane fluidity differs between males and females (20, 

252). Because the cholesterol content dictates membrane fluidity, for example in human 
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erythrocytes (56), perhaps the sarcolemmal and/or mitochondrial cholesterol contents differ 

between men and women. Preliminary testing confirmed that reducing the saponin concentration 

was beneficial to the mitochondrial preparations from female skeletal muscle. Moreover, it was 

demonstrated that 30 μg/mL saponin resulted in optimal permeabilzed myofiber preparations for 

mitochondrial function analysis (Appendix B, Figure 15). Indeed, it was determined that the 

percent coefficient of variation (%CV) for repeated measurements of respirometric O2 flux  

(JO2) during state 3 respiration in 4 myofibers from one woman permeabilized with 30 μg/mL 

saponin was less than half the %CV of the JO2 measured under the same conditions, but 

permeabilzed with the standard 50 μg/mL. This novel finding may therefore explain the 

anecdotal accounts of increased variability of JO2 determinations in saponin-permeabilized 

myofibers from women and the concomitant propensity for cytochrome c responses (personal 

correspondence).  
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CHAPTER 2: METFORMIN SELECTIVELY ATTENUATES MITOCHONDRIAL H2O2 

EMISSION WITHOUT AFFECTING RESPIRATORY CAPACITY IN SKELETAL MUSCLE 

OF OBESE RATS 
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1The East Carolina Diabetes and Obesity Institute, 2Department of Exercise and Sport Science, 

3Departments of Pharmacology & Toxicology, 4Department of Cardiovascular Sciences, 

5Department of Biology, and 6Department of Physiology,  

East Carolina University, Greenville, North Carolina 

. 

Abstract: Metformin is a widely prescribed drug for treatment of type 2 diabetes, although no 

cellular mechanism of action has been established. In isolated mitochondria from liver, 

metformin has been shown to partially inhibit respiration as well as attenuate H2O2 production 

associated with reverse electron flux at complex I. To determine whether in vivo metformin 

treatment alters mitochondrial function in skeletal muscle of an obese rodent model of insulin 

resistance, respiratory O2 flux and H2O2 emission were measured in saponin-permeabilized 

myofibers from lean and obese (fa/fa) Zucker rats treated for 4 wks with metformin. Succinate 

supported respiration generated >2-fold higher rate of reverse electron flux, complex I- mediated 

H2O2 emission in myofibers from untreated obese versus lean rats, providing evidence of an 

obesity-associated increased mitochondrial oxidant emitting potential. In conjunction with 

improved glycemic control, metformin treatment significantly (P < 0.05) reduced H2O2 emission 
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in muscle from obese rats to rates near or below those observed in lean rats during both 

succinate- and palmitoyl-carnitine- supported respiration. Surprisingly, metformin treatment did 

not affect basal or maximal rates of O2 consumption under a variety of substrate conditions in 

muscle from obese or lean rats. Ex vivo dose-response experiments on control myofibers 

revealed that metformin inhibits complex I-linked H2O2 emission at a concentration ~2 orders of 

magnitude lower than that required to inhibit respiratory O2 flux. These findings suggest that 

therapeutic concentrations of metformin normalize mitochondrial H2O2 emission by blocking 

reverse electron flow without affecting forward electron flow or respiratory O2 flux in skeletal 

muscle. 
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INTRODUCTION 

Dimethylbiguanide, popularly known as metformin, is among the most widely prescribed 

drugs for the treatment of type 2 diabetes. However, despite the routine prescription of 

metformin, its exact mode of action remains unclear. Two potential cellular targets of metformin 

have been identified: adenosine monophosphate-activated protein kinase (AMPK) (314), a major 

regulator of cellular glucose and lipid metabolism, and complex I of the mitochondrial 

respiratory chain (17, 215).  AMPK activity is increased in skeletal muscle and liver in response 

to either in vitro or in vivo exposure to metformin (25, 207, 314).  However, cell free assays 

indicate that metformin does not activate AMPK directly nor alter the phosphorylation state of 

AMPK by upstream kinases (124).  Metformin does bind to and inhibit complex I of the 

mitochondrial electron transport chain (40, 43, 44, 215), but the degree of inhibition is mild and 

does not appear to affect overall cellular energy charge (124).  Thus, although there is 

considerable circumstantial evidence, a direct link between AMPK and the insulin sensitizing 

action of metformin has not been established (123).         

In addition to increasing insulin-stimulated glucose uptake in skeletal muscle (97), 

metformin treatment has also been reported to reduce oxidative stress in target tissues (17, 30, 

140, 214), raising the alternative possibility that its mechanism of action may be related to 

reactive oxygen species (ROS) generation and/or neutralization.  Batandier et al. (17) have 

recently reported that metformin decreases complex I-linked H2O2 production during succinate-

supported respiration in mitochondria isolated from rat liver.  Succinate, a complex II substrate, 

induces high rates of ROS production by generating a backflow of electrons through complex I 

which dramatically accelerates electron leak and superoxide formation (6, 183).  While 

respiration supported exclusively by succinate is unphysiological, the findings suggest that 
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substrate/respiration conditions  in vivo that result in a greater proportion of reducing equivalents 

feeding into the electron transport system beyond complex I may lead to elevated ROS 

production (132); e.g., during basal (resting) respiration supported by fatty acids (7, 262).  In 

support of this contention, elevated mitochondrial-derived H2O2 emission has recently been 

shown to be a primary factor in the etiology of dietary fat-induced skeletal muscle insulin 

resistance (5).  In the present study, we examined whether treatment of obese Zucker (fa/fa) rats 

with metformin daily for 4 weeks alters mitochondrial H2O2 emission and/or O2 respiration in the 

skeletal muscle of this animal model of obesity-associated peripheral insulin resistance (61, 158). 

Our findings reveal that, in addition to improved whole-body glycemic control, oral metformin 

treatment dramatically reduces the potential for complex I-linked mitochondrial H2O2 emission 

without affecting O2 respiratory capacity in skeletal muscle.  Moreover, dose-response 

experiments conducted ex vivo on control myofibers demonstrate that complex I-linked 

mitochondrial H2O2 emission is far more sensitive than complex I-linked respiration to inhibition 

by metformin.   

 

METHODS 

 

ANIMALS 

All animal studies were approved by the East Carolina University Institutional Animal 

Care and Use Committee.  Thirty-two age-matched male Zucker rats (16 lean, 16 fa/fa obese 

rats; Harlan Laboratories, Inc.) were housed in single cages in a temperature (22°C) and light-

controlled (12:12 hour light-dark cycle) room with ad libitum access to standard chow and water 
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for the duration of the study.  Sprague-Dawley rats (Charles River Laboratories, Inc.) were used 

in control dose-response experiments and were housed as described above. 

 

METFORMIN TREATMENT AND ORAL GLUCOSE TOLERANCE TESTING 

At 9-10 weeks of age, obese and lean Zucker rats were randomly assigned to receive 

either control (water) or metformin (320 mg/kg/day) by gavage for four weeks (n = 8/group).  At 

the end of the fourth week, rats were fasted 10 h and an oral glucose tolerance test (OGTT; 2 

g/kg BW by oral gavage of dextrose) was performed 17 h after the last dose of metformin.  

Blood glucose (glucose oxidase method, One Touch Ultra glucose analyzer; Lifescan, Milpitas, 

CA) and insulin levels (ELISA, Linco Research, St. Charles, MO) were determined in the fasting 

condition and at time 30, 60, and 120 min after dextrose administration.  After an additional 

three days of treatment, rats were anesthetized (ketamine:xylazine, 10 mg/0.1 kg of 9:1 mixture, 

i.p.) ~4 h after metformin treatment, the gastrocnemius muscle was removed and red portions of 

the muscle dissected and separated for preparation of fiber bundles (mitochondrial function 

studies) or quick-frozen in liquid N2.  All rats were fasted 10 h prior to sacrifice.   

 

PREPARATION OF PERMEABILIZED MYOFIBERS  

This technique is partially adapted from previous methods (173, 277) and has been 

thoroughly described (5-7).  Briefly, after dissection, connective tissue was removed and fiber 

bundles were separated with fine forceps under binocular dissecting microscope in ice cold 

buffer X, containing (in mM): 60 K-MES, 35 KCl, 7.23 K2EGTA, 2.77 CaK2EGTA, 20 

Imidazole, 0.5 DTT, 20 Taurine, 5.7 ATP, 15 PCr, 6.56 MgCl2-6H2O (pH 7.4, 295 mOsm). After 

separation, myofiber bundles were placed in buffer X containing 50 μg/mL saponin for 30 
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minutes and then were washed in ice-cold buffer Z containing (in mM) 110 K-MES, 35 KCl, 1 

EGTA, 10 K2HPO4, 3 MgCl2-6H2O, 5 mg/ml BSA, 0.1 glutamate and 0.05 malate (pH 7.4, 295 

mOsm) until analysis (<1 hour).  Fibers used in the H2O2 emission experiments were briefly 

washed in cold buffer Z containing 10 mM pyrophosphate prior to analysis to prevent Ca+2-

independent contraction.  

 

MITOCHONDRIAL RESPIRATION AND H2O2 EMISSION MEASUREMENTS IN 

PERMEABILIZED MYOFIBERS FROM LEAN AND OBESE ZUCKER RATS  

O2 consumption rate was measured by high resolution respirometry (Oroboros O2K 

Oxygraph, Innsbruck, Austria) at 30°C in Buffer Z + 20 mM creatine hydrate and 50 μM N-

Benzyl-p-toluene sulphonamide (BTS, an inhibitor of myosin II) under the following two 

protocols: Respirometric protocol A - 2 mM glutamate + 1 mM malate (complex I substrates) 

followed by sequential additions of 2 mM ADP, 3 mM succinate (complex II substrate), 10 

μg/mL oligomycin (inhibitor of mitochondrial ATP synthase), and finally 2 μM 

carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP, a protonophoric uncoupler); 

Respirometric protocol B -  25 μM palmitoyl-carnitine + 1 mM malate followed by sequential 

additions of 2 mM glutamate and 3 mM succinate.  H2O2 emission was measured at 30°C in 

Buffer Z during state 4 respiration (1 mM atractyloside to inhibit adenine nucleotide translocase) 

by continuously monitoring oxidation of Amplex Red using a Spex Fluoromax 3 (Jobin Yvon, 

Ltd.) spectrofluorometer under the following two protocols: Fluorometric protocol A - 25 μM 

palmitoyl-carnitine + 1 mM malate followed by sequential additions of 2 mM glutamate and 3 

mM succinate; Fluorometric protocol B - succinate titration (in mM), 0.1, 0.25, 0.5, 0.75, 1.5 and 

3.0. At the conclusion of each experiment, permeabilized fiber bundles were washed in distilled 
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H2O to remove salts and freeze-dried in a lyophilizer (LabConco).  Mitochondrial respiration 

rates are expressed as pmol·s-1·mg-1 dry weight and H2O2 emission rates as pmol·min-1·mg-1 dry 

weight.   

 

WHOLE MUSCLE PROTEIN EXTRACTION AND MEASUREMENTS OF CITRATE 

SYNTHASE ACTIVITY  

Frozen red gastrocnemius muscle samples (50-80 mg) were homogenized in ice-cold 

lysis buffer [50 mM HEPES, 50 mM Na+ pyrophosphate, 100 mM Na+ fluoride, 10 mM EDTA, 

10 mM Na+ orthovanadate, 1% Triton X-100, and protease and phosphatase (1 and 2) inhibitor 

cocktails (Sigma, St. Louis, MO)].  Homogenates were sonicated for 10 sec then rotated for 2 h 

at 4°C.  After centrifugation for 25 min at 15,000 x g, supernatants were extracted and protein 

concentration was determined (BCA protein assay, Pierce, Rockford, IL) and individual 

homogenate volumes were separated into 50 μg of protein aliquots, frozen in liquid nitrogen and 

stored at -80°C. Citrate synthase activity was determined using the methods of Srere (261).  

 

ACUTE METFORMIN INCUBATIONS 

Skeletal muscle samples were obtained from adult male Sprague-Dawley rats and 

processed as described above with the exception that fiber bundles were washed (Buffer Z) 

without or with metformin (0.1, 1, 5 or 10 mM) for 20 min.  Maximal respiration rate was 

determined in the presence of 5 mM glutamate, 2 mM malate, 5 mM pyruvate and 8 mM ADP.  

Maximal H2O2 emission was determined under state 4 respiration (10 μM oligomycin) supported 

by 3 mM succinate.  
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STATISTICAL ANALAYSES 

Data are presented as mean ± SEM.  Statistical analyses were performed with GraphPad 

Prism (GraphPad Software, Inc.) using a two-way ANOVA with Bonferroni post-hoc analysis of 

significance in experiments involving Zucker rats; one-way ANOVA with Tukey’s post-hoc 

analysis for experiments involving Sprague-Dawley rats; and a curve-fitting model for kinetic 

analyses of the succinate titrations.  The alpha level for significance was established a priori at P 

≤ 0.05. 

 

RESULTS 

 

GLUCOSE TOLERANCE 

Oral glucose tolerance tests were performed to determine whole body glycemic control in 

lean and obese Zucker rats after four weeks of daily oral metformin treatment.  As expected, 

obese Zucker rats were characterized by greater (main effect, P < 0.0001) area under the curve 

(AUC) for blood glucose (Figure 1A) and insulin (Figure 1B) compared with lean Zucker rats, 

consistent with peripheral insulin resistance in the obese rats.  Also as expected, metformin 

treatment in the obese rats significantly (P < 0.05) reduced both glucose and insulin AUC, 

demonstrating improved glycemic control with the drug.  No difference in glucose or insulin 

AUC was observed in lean rats treated with metformin.  Metformin treatment did not affect body 

weight (Figure 2) suggesting that improvements in glucose tolerance occurred independent of 

body mass.    

 

MITOCHONDRIAL RESPIRATION IN PERMEABILIZED MYOFIBERS  
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Previous reports indicate that metformin causes a mild to moderate decrease in oxygen 

consumption in isolated mitochondria or intact cells (17, 40, 215), although the effect appears to 

require high concentrations (millimolar) and/or long exposure time.  To determine if four weeks 

of oral metformin treatment inhibits mitochondrial respiration in skeletal muscle of lean and 

obese Zucker rats, we measured respiratory O2 flux in permeabilized fibers from the red 

gastrocnemius muscle.   Metformin treatment did not affect complex I-linked (glutamate/malate) 

basal (state 4) or ADP-stimulated (state 3) respiration, either alone or in combination with the 

complex II substrate succinate, nor maximal uncoupled, FCCP-stimulated respiration in either 

lean or obese animals (Figure 4A).  Metformin also had no effect on palmitoyl-carnitine 

supported respiration under any of the conditions tested (Figure 4B). Taken together, these 

results indicate that oral metformin treatment does not inhibit complex I-linked respiration (i.e., 

forward electron flux) in skeletal muscle of lean or obese Zucker rats under the conditions 

employed in the current study.  

Maximal O2 consumption was significantly greater in skeletal muscle of obese verses 

lean rats under nearly all respiratory conditions (Figure 4).  Citrate synthase activity, a marker of 

mitochondrial content, tended to be higher (P = 0.061) in the muscle from obese rats, consistent 

with reports of increased mitochondrial content in muscle of rats under elevated lipid load (120, 

131).  However, citrate synthase activity was not different between metformin treated and 

control Zucker rats (Figure 3), indicating the effects of metformin treatment were not due to a 

change in mitochondrial content. 

 

MITOCHONDRIAL H2O2 EMISSION IN PERMEABILIZED MYOFIBERS 
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Metformin has been shown to reduce ROS production at complex I in isolated 

mitochondria obtained from rat liver pre-perfused with 10 mM metformin (17).  To determine if 

metformin attenuates reverse electron flux-mediated ROS production at complex I in skeletal 

muscle, mitochondrial H2O2 emission was measured in permeabilized fibers from red 

gastrocnemius muscle of lean and obese Zucker rats treated for four weeks with metformin.   

Titration of succinate to induce reverse electron flux revealed a more than 2-fold greater (P < 

0.05) potential for  complex I-linked H2O2 emission in skeletal muscle from untreated obese 

verses lean rats (53.2 ± 2.3 vs. 22.8 ± 2.3 pmol H2O2⋅min-1⋅mg-1dry wt, respectively, Figure 5A).  

Metformin treatment significantly (P < 0.05) reduced maximal succinate-induced H2O2 emission 

in the obese Zucker rats (30.9 ± 2.5 pmol H2O2⋅min-1⋅mg-1dry wt) to levels near that of untreated 

leans.  In parallel experiments, when respiration was supported by palmitoyl-carnitine, reduced 

mitochondrial H2O2 emission was also evident in muscle from obese Zucker rats treated with 

metformin, particularly upon addition of succinate (Figure 5B).  These findings clearly indicate 

that: 1) obesity in the Zucker rat model is associated with a marked increase in the potential for 

skeletal muscle mitochondrial H2O2 emission and 2) oral metformin treatment significantly 

attenuates mitochondrial H2O2 emission associated with reverse electron flux at complex I.   

 

ACUTE EX VIVO EFFECTS OF METFORMIN ON MITOCHONDRIAL FUNCTION IN 

PERMEABILIZED MYOFIBERS 

To examine the direct effects of metformin on forward (respiration) and reverse (H2O2 

emission) electron flux at mitochondrial complex I in skeletal muscle, fiber bundles from the red 

portion of the gastrocnemius muscle of Sprague-Dawley rats, after permeabilization, were pre-

incubated (~20 min) in increasing concentrations of metformin (0-10 mM).  Maximal succinate-
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generated H2O2 emission was reduced (P < 0.01) by ~50% at the lowest concentration of 

metformin tested (100 μM) and was further inhibited (P < 0.001) to <25% of the maximal rate at 

10 mM metformin (Figure 6).  In stark contrast, maximal ADP-stimulated O2 consumption was 

maintained at the lower concentrations of metformin (0.1 and 1.0 mM) and inhibited (P < 0.001) 

only at a metformin concentration of 10 mM (Figure 6).  These findings demonstrate that 

metformin inhibits reverse electron flux-mediated H2O2 emission at complex I of the 

mitochondrial electron transport chain in skeletal muscle at concentrations approximately two 

orders of magnitude lower than that required to inhibit electron flux in the forward direction. 

 

DISCUSSION 

 

 The results of the present study demonstrate a marked reduction in the potential for 

mitochondrial H2O2 emission with metformin treatment in skeletal muscle in the obese Zucker 

fa/fa rat, concurrent with improved whole-body glycemic control.  Although previous reports 

have provided evidence that metformin mildly inhibits complex I-supported respiration (17, 40, 

44, 215) and increases AMPK activity in muscle (207, 314), we found no difference in ADP-

stimulated submaximal or maximal O2 consumption or AMPK activation (in press, (24)) in red 

gastrocnemius myofibers from the same lean and obese Zucker rats treated with metformin in the 

current study.  Interestingly however, ex vivo experiments using control myofibers incubated 

with increasing concentrations of metformin revealed that metformin is indeed capable of 

inhibiting ADP-stimulated respiration, but at concentrations two orders of magnitude greater 

than that required to inhibit complex I-linked H2O2 emission.  Thus, in view of recent data 

linking mitochondrial H2O2 emission in skeletal muscle to the development of high fat diet-
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induced insulin resistance (5), the findings of the present study raise the possibility that  the 

insulin-sensitizing actions of metformin in muscle may be mediated by the drug’s ability to 

inhibit complex I-linked H2O2 emission while minimally affecting complex I-linked respiration.       

 Mild to moderate inhibition of the respiratory system by metformin was first reported 

nearly a decade ago and thus raised the prospect that the anti-diabetic actions of metformin may 

be somehow related to inhibition of mitochondrial respiration (17, 215).  However, the effect 

requires very high concentrations (>10 mM) of metformin in isolated mitochondria (17, 40, 44) 

or extended exposure time in intact cells (215).  This time-dependency of metformin action is 

attributed to the slow membrane potential-driven rate at which metformin accumulates in the 

mitochondrial matrix (81).  Complex I has been identified as a potential site of metformin action 

based on the finding that respiration is inhibited by metformin only when supported by complex 

I but not complex II substrates (17, 40, 44).  However, even at high concentrations, the degree of 

inhibition of respiration by metformin is only a fraction of that observed with the classical 

complex I inhibitor rotenone (17).  Nevertheless, it has been proposed in liver that even mild 

inhibition of mitochondrial respiration, which has a high flux-control coefficient over 

gluconeogenesis, may represent a mechanism by which metformin reduces hepatic glucose 

output (215).   

 As might be predicted by a partial inhibition of respiratory function, metformin has also 

been shown to activate AMPK in multiple cell types (130, 170, 314, 316), including skeletal 

muscle (207, 314). As a target for metformin, AMPK is an attractive candidate given that it is 

activated by decreases in cellular energy charge and, once phosphorylated, coordinates the 

simultaneous activation of catabolic and inactivation of anabolic pathways by phosphorylating 

key metabolic enzymes and transcription factors (122).  In liver, AMPK and its upstream kinase, 
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LKB1, appear to be required for both the glucose- and lipid- lowering effects of metformin (25, 

312).  However, the mechanism by which metformin may activate AMPK is less clear as cellular 

energy charge (i.e., ATP:ADP ratio) does not appear to be affected by metformin treatment in 

hepatocytes, and metformin does not activate AMPK in cell-free systems indicating that there is 

no direct interaction between metformin and AMPK (124).  In skeletal muscle, decreased 

cellular energy charge and increased AMPK activity have been reported with metformin 

treatment (207, 314), but a definitive link has not been established.  Moreover, treatment with 

oral metformin in rats requires at least 5 hours before an increase in AMPK phosphorylation in 

skeletal muscle is observed (271), and metformin appears to increase phospho-AMPK 

specifically in fast twitch, glycolytic fiber-type muscle groups (24).  Thus, the mechanism by 

which metformin activates AMPK, and whether AMPK-induced signaling constitutes the 

mechanism responsible for the insulin-sensitizing actions of metformin in skeletal muscle, 

remain unknown.     

 An alternative mechanism of action for metformin recently emerged from studies of the 

mitochondrial permeability transition pore (PTP).  The PTP is a large conductance channel 

within the inner mitochondrial membrane that opens in response to a number of physiological 

factors and various forms of cellular stress (e.g., large increases in intracellular [Ca+2]), 

triggering collapse of the protonmotive force and release of pro-apoptotic factors (118). 

Although the molecular composition of the PTP is unknown, complex I is thought to comprise at 

least part of the pore complex (17).  Leverve and co-workers (17) recently found that metformin 

inhibits PTP opening in permeabilized cells in response to Ca2+ overload and in intact cells in 

response to high glucose concentrations or the oxidizing agent t-butyl hydroperoxide.  In fact, 

metformin was found to be nearly as effective as cyclosporin A in preventing PTP opening in 



    

 58

intact and permeabilized cells (17).  Inclusion of the antioxidant N-acetyl-L-cysteine prevents 

hyperglycemia-induced opening of the PTP (17), suggesting that oxidative stress may represent 

the underlying link between high glucose, PTP opening and the therapeutic effects of metformin.  

Indeed, metformin has been reported to reduce oxidative stress in many (17, 30, 140, 214) 

though not all (9, 44) studies.  Notably, Batandier et al. (17) found that ROS production induced 

by succinate-supported reverse electron flux at complex I in isolated liver mitochondria is 

inhibited by metformin in a manner similar to rotenone, implying that complex I is the source of 

free radical production associated with hyperglycemia.  While respiration supported exclusively 

by succinate is clearly unphysiological, the findings suggest that substrate/respiration conditions  

in vivo that result in a greater proportion of reducing equivalents feeding into the electron 

transport system beyond complex I may lead to elevated ROS production (132); e.g., during 

basal (resting) respiration supported by fatty acids (7, 262).  In support of this contention, 

elevated mitochondrial-derived H2O2 emission has recently been shown to be a primary factor in 

the etiology of dietary fat-induced skeletal muscle insulin resistance (5). However, it should also 

be noted that a very recent report by Schonfeld et al (251) demonstrated no complex I reverse 

electron flow acitivity in mitochondria respiring on activiated fatty acids (e.g., palmitoyl-

carnitine). Thus, the effects of metformin on complex I may not necessarily be due to succinate-

driven, or even fatty acid-driven reverse electron flow alone. In vivo, multiple substrates enter 

the mitochondrial ETS simultaneously. This multifactorial substrate combination may therefore 

be effected by the inhibitory effects of metformin on complex I reverse electron flow in ways 

that are not fully replicated in mitochondrial experiments involving singular substrate conditions. 

Nevertheless, the results of the current study clearly demonstrate the effects of metformin on 

inhibiting the flow of electrons in the reverse direction (mEH2O2) vs. the forward direction (JO2).  
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 The present study also demonstrates that the maximal rate of mitochondrial H2O2 

emission induced by succinate-driven reverse electron flux at complex I is more than 2-fold 

greater in skeletal muscle from obese vs. lean Zucker rats (Figure 5).  This difference is nearly 

identical to the increase in H2O2 emitting potential previously observed in skeletal muscle of 

both rats and mice fed a high fat diet or humans after consuming a high fat meal (5).  Moreover, 

in rats injected with a mitochondrial-targeted antioxidant, or in mice genetically-engineered to 

express catalase in their muscle mitochondria, mitochondrial H2O2 emitting potential was 

restored to normal and rodents were protected against high fat diet-induced insulin resistance (5).  

In the present study, metformin had nearly an identical effect, decreasing complex I-derived 

H2O2 emitting potential in the muscle of obese rats to a rate nearly equal to that observed in lean 

rats in conjunction with improving glucose tolerance.   

Metformin did not affect the rate of O2 consumption during basal (state 4) respiration 

supported by either glutamate/malate or palmitoyl-carnitine/malate, indicating that the decrease 

in H2O2 emission induced by metformin was not due to an uncoupling effect.  Surprisingly, in 

contrast to the fairly well-established mild inhibitory action of metformin on ADP-stimulated 

respiration (17, 40, 44, 215), we found no evidence of impaired ADP-stimulated, complex I-

supported respiration in muscles from metformin treated lean or obese rats (Figure 4). To further 

explore this discrepancy, we tested in vitro the concentration-dependent effects of metformin on 

mitochondrial H2O2 emission and O2 consumption in parallel.  Interestingly, we found metformin 

is capable of suppressing mitochondrial H2O2 emission at concentrations two orders of 

magnitude lower than concentrations needed to inhibit respiration (Figure 6).  In the context of 

metformin’s action in vivo, these findings are significant as they suggest that at therapeutic doses 
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(i.e., micromolar range) (97), metformin is capable of suppressing muscle mitochondrial H2O2 

emission with little to no affect on mitochondrial respiration.  

 It is proposed that the unique ability of metformin to limit reverse electron flux-

associated superoxide production at complex I, while minimally affecting forward electron flux 

(i.e., respiration), supports this model as the potential insulin-sensitizing mechanism of action of 

the drug in skeletal muscle (Figure 7). Although impaired insulin action specific to skeletal 

muscle has been demonstrated in the obese Zucker fa/fa rat (61, 158); and 100 μM metformin 

has been shown increase insulin-stimulated glucose uptake in human skeletal muscle (97), 

further research will be necessary to determine the exact nature of the effect of metformin on 

muscle-specific insulin sensitivity as it relates to mitochondrial oxidant emission in vivo, as well 

as the subsequent intermediary steps that may link reduced mitochondrial oxidant emission to 

restored insulin sensitivity.    

 

ACKNOWLEDGEMENTS 

This study was supported by U.S. National Institute of Health grants R01 [DK074825] & 

[DK073488] (PDN) and [DK061314] (RNC). 

 

 

 

 

 

 

 



    

 61

FIGURE 1. EFFECTS OF METFORMIN TREATMENT ON ORAL GLUCOSE TOLERANCE 

IN LEAN AND OBESE ZUCKER RATS.  

 

Area under the curve (AUC) from an oral glucose tolerance test performed on obese and lean 

male Zucker controls following four weeks of metformin treatment. Results reveal significant 

main effects for obesity (***P < 0.0001) on AUC for both glucose (A) and insulin (B).  

Metformin treatment (black bars) in the obese rats improved glucose tolerance compared with 

control (white bars), reducing blood glucose (A) and plasma insulin (B) concentrations (*P < 

0.05).   The data represent the means ± SEM (n = 8/group).    
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FIGURE 2. BODY MASS CHANGES IN LEAN AND OBESE ZUCKER RATS OVER THE 

COURSE OF FOUR WEEKS OF METFORMIN TREATMENT.  

 
Body mass of lean (circles) and obese (squares) Zucker rats measured over four weeks in 

metformin treated (open symbols) and control groups (black symbols). A significant difference 

in the body mass of the obese vs. lean rats was observed (***P < 0.001) However, there were no 

differences in either the obese or lean groups with metformin treatment. The improved insulin 

sensitivity with metformin treatment was therefore independent of body mass. The data represent 

the means ± SEM (n = 8/group).  

 

 

 

 

 

 

 

 

 

 

 

 



    

 64

0 10 20 30

260

335

410

485

560
Lean Control
Lean Metformin
Obese Control
Obese Metformin

***

Metformin Treatment (Days)

B
od

y 
M

as
s 

(g
)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 65

FIGURE 3. EFFECTS OF METFORMIN TREATEMENT ON CITRATE SYNTHASE 

ACTIVITY IN SKELETAL MUSCLE FROM LEAN AND OBESE ZUCKER RATS.  

 
Citrate synthase activity, a marker of mitochondrial content, tended to be higher (P = 

0.061) in the muscle from obese rats. However, citrate synthase activity was not different 

between metformin treated (black bars) and control (white bars) Zucker rats, indicating the 

effects of metformin treatment were not due to a change in mitochondrial content. The data 

represent the means ± SEM (n = 4/group). 
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FIGURE 4. EFFECTS OF ORAL METFORMIN TREATMENT ON SKELETAL MUSCLE 

RESPIRATORY O2 FLUX MEASURED IN PERMEABILIZED MYOFIBERS FROM LEAN 

AND OBESE ZUCKER RATS.  

 
A: Respiratory O2 flux supported by the complex I-linked substrates glutamate/malate 

(G/M, 2/1 mM) was greater in obese rats in the presence of maximal ADP (2 mM), upon 

addition of the complex II succinate (+S, 3 mM), and during maximally uncoupled respiration 

(+FCCP, 2 μM + 10 μg/ml oligomycin to block ATP synthase). The data represent means ± SEM 

(n = 4/group).  ** Main effect for obesity, P < 0.01. B: Respiratory O2 flux supported by the 

activated fatty acid palmitoyl-carnitine and malate (P-C/M, 25 μM/1 mM) alone or in the 

presence of ADP (+ADP) was greater in the obese rats, as was the ADP-stimulated O2 flux after 

adding the complex I substrate glutamate (+G, 2 mM) and the complex II substrate succinate 

(+S, 3 mM) (*main effect for obesity, P < 0.05; **P < 0.01). No effect of metformin treatment 

on respiratory O2 flux was observed in A or B. The data represent the means ± SEM (n = 

4/group).   
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FIGURE 5. EFFECTS OF ORAL METFORMIN TREATMENT ON SKELETAL MUSCLE 

MITOCHONDIRAL H2O2 EMSSION IN PERMEABILIZED MYOFIBERS FROM LEAN 

AND OBESE ZUCKER RATS. 

  
A: H2O2 emission rates during atractyloside-inhibited (1 mM) basal (i.e., state 4) 

respiration during titration of the complex II substrate succinate revealed no differences in the 

sensitivity (i.e., K50app) for reverse electron flow-mediated superoxide generation at complex I. 

However, the Vmax for succinate-supported mitochondrial H2O2 emission was significantly 

greater in the obese control (**P < 0.01) and metformin treated (*P < 0.05) Zucker groups yet 

significantly reduced by metformin treatment in both the lean (†P < 0.05) and obese (††P < 0.01) 

animals. B: H2O2 emission rates during atractyloside-inhibited (1 mM) basal (i.e., state 4) 

respiration supported by the activated fatty acid palmitoyl-carnitine and malate (P-C/M, 25 μM/1 

mM) were significantly reduced by metformin treatment, as were the rates of H2O2 emission 

supported by the complex I-linked substrate glutamate (+G, 2 mM) and the complex II substrate 

succinate (+S, 3 mM) (†Main effect for metformin treatment, P < .05, ††P < 0.01; **within group 

effects of metformin treatment, P < 0.01, ***P < 0.001). Moreover, the rate of H2O2 emission +S 

was significantly affected by obesity (‡‡‡main effect for obesity, P < 0.001). The data represent 

the means ± SEM (n = 4/group).   
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FIGURE 6. ACUTE, DOSE-DEPENDENT METFORMIN EFFECTS ON RESPIRATORY O2 

FLUX AND MITOCHONDRIAL H2O2 EMISSION IN PERMEABILIZED MYOFIBERS. 

 
Acute (~20 min), dose-dependent (0-10 mM) metformin effects on respiratory O2 flux 

and mitochondrial H2O2 emission in permeabilized red gastrocnemius myofibers from Sprague-

Dawley rats. Respiratory O2 flux (white bars) supported by complex I-linked substrates 

glutamate/pyruvate/ malate (5/5/2 mM) in the presence of ADP (8 mM) was not significantly 

affected by treatment with 0.1 or 1 mM metformin compared control myofibers (no metformin). 

Only in 10 mM metformin were the respiratory O2 fluxes significantly reduced to less than 11% 

of control (†††P < 0.001). Interestingly, metformin treatment significantly reduced state 4 (i.e., 

oligomycin-inhibited), succinate-supported (3 mM) mitochondrial H2O2 emission (black bars) at 

the lowest concentration of the drug tested (i.e., 0.1 mM, **P < 0.01); and further inhibited H2O2 

emission at metformin concentrations 1 and 10 mM to less than 50 and 80% of control, 

respectively (***P < 0.001). Taken together, it appears that the inhibitory effects of metformin 

on complex I of the respiratory chain are more specific for reverse (H2O2) than forward (O2) 

electron flows. The data represent the means ± SEM (n = 3-4/group). 
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FIGURE 7. DIAGRAMMATIC REPRESENTATION OF THE MITOCHONDRIAL 

ELECTRON TRANSPORT SYSTEM AND THE PROPOSED MODE OF ACTION FOR 

METFORMIN IN SKELETAL MUSCLE MITOCHONDRIA. 

 
Figure 4. Diagrammatic representation of the mitochondrial electron transport system and 

the proposed mode of action for metformin in skeletal muscle mitochondria. During forward 

electron flow, NADH is oxidized at complex I, succinate at complex II, and FADH2 from β-

oxidation at the electron transferring flavoprotein dehydrogenase (ETFDH).  Oxidized quinone 

(Q) accepts electrons from complex I, complex II, and ETFDH, converting to the reduced form 

(QH2). QH2 then shuttles electrons to complex III where they subsequently pass to complex IV 

via cytochrome c and finally to oxygen, reducing it to water.  The model proposes that during 

periods of low energy demand (i.e., state 4 respiration), reducing equivalents feeding into the 

electron transport system at complex II (experimentally induced by succinate) or via ETFDH 

(during fatty-acid supported respiration) reduces more of the quinone pool, generating the 

potential for reverse electron flow into complex I and accelerating complex I-linked superoxide 

(O2¯•) production leading to elevated mitochondrial H2O2 emission and subsequently insulin 

resistance.  The results of the current study suggest that metformin inhibits reverse electron flow-

associated mitochondrial H2O2 emission at complex I, potentially accounting for the insulin-

sensitizing effects of the drug. 



    

 74

 

NADH + H+

NAD+

V

Succinate

Fumarate

ADP + Pi

ATP

nH+nH+

4H+ + O2

H2O

ETF
DH

β-oxidation

Q

nH+ nH+

QH2

Metformin

II

QH2

III IV

cyt c

I
QH2

Q

Q Q
O2¯•

H2O2

QH2

Insulin Resistance

QH2



    

 75

CHAPTER 3: MITOCHONDRIAL H2O2 LINKS OVARIAN SEX STEROIDS TO INSULIN 

RESISTANCE IN WOMEN 

 

Daniel A. Kane1,2, Chien-Te Lin1,2, Hyo-Bum Kwak1,2, Julie H. Cox1,2, Constance L. Tweedie,1,2, 

Patricia M. Brophy1,2,  Ethan J. Anderson1,3, Robert C. Hickner1,2,4, P. Darrell Neufer1,2,4 and 

Ronald N. Cortright1,2,4 

 

1The East Carolina Diabetes and Obesity Institute, 2Department of Exercise and Sport Science, 

3Departments of Pharmacology & Toxicology, and 4Department of Physiology, East Carolina 

University, Greenville, North Carolina 

 

Abstract: The luteal phase of the female menstrual cycle and pregnancy are associated with both 

1) elevated levels of serum progesterone (P4) and estradiol (E2), and 2) insulin resistance. 

Recently, we demonstrated elevated rates of mitochondrial H2O2 emission (mEH2O2) in skeletal 

muscle following a high-fat diet, concomitant with insulin resistance. To determine if either P4 

or E2 exert a direct effect on mitochondrial function, saponin-permeabilized vastus lateralis 

myofibers biopsied from women in the menstrual cycle follicular phase were incubated (1-2 h) in 

luteal phase serum concentrations of P4 (60 nM), E2 (1.4 nM), or both E2+P4. P4 alone 

inhibited state 3 JO2 supported by multisubstrate combination (P < 0.01). E2 alone however, or 

in combination with P4 had no effect on JO2. In contrast, during state 4 respiration supported by 

substrates known to generate reactive oxygen species via reverse electron flow at complex I (i.e., 

succinate and glycerophosphate), mEH2O2 was increased with P4 alone or in combination with E2 

compared to either E2 alone or control (P < 0.01). To test the hypothesis that serum levels of P4 
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and/or E2 are related to mitochondrial function, mEH2O2 and JO2 were measured in 

permeabilized myofibers from both insulin sensitive (IS, n = 24) and resistant (IR, n = 7) women 

(IR = HOMA-IR > 3.6). Serum P4 (log-transformed) correlated strongly with succinate-

supported mEH2O2 (r = 0. 53; P < 0.01), demonstrating an extension of the acute ex vivo P4 

incubation results. Surprisingly, after adjusting for % body fat, succinate-supported mEH2O2 was 

more than 80% greater in the IR vs. IS women (P < 0.01). However, no differences were 

observed in JO2 or ratios of respiratory control between IS and IR women (P < 0.05). 

Additionally, we compared the JO2 and mEH2O2 from one subject who learned she was pregnant 

in the days following biopsy to the IS and IR subjects. Interestingly, the succinate-supported 

mEH2O2 from this pregnant subject was outside of the 99% confidence interval of the mean for 

the IS, but not the IR women (P < 0.01), suggesting that the insulin resistance associated with 

pregnancy may be linked to elevated mEH2O2, and perhaps in turn, elevated E2 and/or P4. 

Altogether, the results of this study suggest that at physiologically relevant concentrations, 1) P4 

alone inhibits JO2 and increases mEH2O2; 2) E2 counteracts the effects of P4 on JO2, but may 

even increase mEH2O2 in combination with P4; 3) E2 alone has no effect on JO2 or mEH2O2; and 

4) P4 is related to the mEH2O2 linked to skeletal muscle insulin resistance. A causative connection 

between elevated ovarian sex steroids, mEH2O2 and insulin resistance during the luteal phase and 

pregnancy is proposed, but will require further research to verify. 
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INTRODUCTION 

The current and increasing epidemic of type 2 diabetes constitutes one of the greatest 

health concerns in the industrialized world. In skeletal muscle, reduced mitochondrial content 

and intramuscular accumulation of lipid is associated with insulin resistance in this tissue (186). 

Increasingly, the role of oxidative stress has been implicated in the etiology of insulin resistance 

in multiple tissues, including skeletal muscle (reviewed in (16, 219)); and a recent study by our 

group demonstrated a link between high dietary fat intake and insulin resistance involving 

elevated mitochondrial H2O2 emission (mEH2O2) in skeletal muscle (5). 

The volume of published data demonstrating that ovarian sex steroids affect the 

sensitivity of tissues to insulin in animal models are substantial (reviewed in (184)). While fewer 

data exist regarding the effects of the ovarian sex hormones in women, most suggest a negative 

relationship with insulin sensitivity (184). Normal pregnancy is associated with high circulating 

levels of both estrogens and progesterone and also reduced insulin sensitivity (134). Similarly, a 

fall in insulin sensitivity has been reported in normal women during the luteal phase of the 

menstrual cycle when serum progesterone and estrogen levels are both at their greatest (184). 

Because skeletal muscle is responsible for the majority of peripheral glucose disposal, it would 

appear that sex steroids have a direct effect on skeletal muscle insulin sensitivity. However, 

despite evidence relating sex steroids and insulin resistance (184), the exact nature of the link is 

unclear.  

Nearly 50 years ago, very high concentrations of progesterone were shown to inhibit 

complex I-linked respiration in the mitochondria isolated from pigeon hearts in vitro (51). More 

recently, studies examining the effects of estradiol (E2) and progesterone (P4) on mitochondrial 

function have employed treatment designs that increase the physiological relevancy of data 
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supporting the inhibitory effects of sex steroids on mitochondrial respiration (114). Nevertheless, 

most studies continue to employ supraphysiological concentrations of sex steroids to investigate 

the non-genomic effects of female sex steroids on mitochondrial function (84, 263). In a very 

recent study, for example, it was shown that adding P4 to preparations of isolated rat liver 

mitochondria during the experimental measurements decreased the mitochondrial membrane 

potential, calcium retention capacity and the capacity for complex I-linked state 3 respiration 

(84). However, the P4 concentrations used were supraphysiological with respect to women; in 

this case, anywhere from 80-150 μM, or over 1000 times greater than the luteal phase serum P4 

concentrations in women (237).   

In the current study, it was hypothesized that a link between skeletal muscle mEH2O2, 

insulin sensitivity and/or the menstrual cycle hormones E2 and P4 would exist in women. To this 

end, premenopausal female subjects donated small muscle samples in the follicular phase for ex 

vivo incubation experiments in luteal phase concentrations of E2, P4, or both. Additionally, 

serum E2 and P4 was measured in a larger group of insulin resistant and insulin sensitive 

subjects on the same day they were biopsied for skeletal muscle mitochondrial function analyses. 

Our findings reveal that serum levels of P4 influence the mEH2O2 linked to insulin resistance. 

This effect may be an acute, posttranslational phenomenon whereby an E2+P4 combination, as 

occurs in vivo, promotes an increase in mEH2O2, but has little or no effect on JO2.   

 

METHODS 

 

SUBJECTS 
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In the United States, the incidence of obesity and type 2 diabetes is greater among 

African American women (AW) compared to Caucasian women (CW) (258). The initial purpose 

of the this study was to explore a potential link between mitochondrial respiration, mitochondrial 

reactive oxygen species and insulin resistance with regard to race (i.e., African American vs. 

Caucasian) and obesity (BMI > 30) in women. However, it was quickly determined that race 

played no role in any of the variables measured. Surprisingly, obesity also had no effect on the 

main outcome variables when adjusted for body composition (i.e., % body fat). Therefore, the 

AW and CW were pooled and divided by insulin resistance.  

All subjects were premenopausal female U.S. citizens of mixed ancestry, between the 

ages of 22 and 45 (subject characteristics presented in Tables 1 and 2). All participants were 

nonsmokers with no history of metabolic disease. The first set of female subjects (Group A, N = 

5; Table 1) were lean, healthy, with no history of metabolic disease (e.g., HOMA-IR < 3.0) and 

not taking medications known to alter carbohydrate or lipid metabolism. All subjects in Group A 

were scheduled for biopsy such that the procedure would occur during the early follicular phase 

of their menstrual cycle (days 1-10), when estradiol and progesterone levels are lowest (190). 

Biopsies from subjects in the group A were used in hormone incubation experiments.  

The second set of subjects (Group B, N = 33; Table 2) consisted of self-described African 

American (AW) and Caucasian women (CW) of varying body compositions and menstrual cycle 

status. After confirming that neither race, nor % body fat-adjusted obesity (i.e., BMI > 30) 

exerted an effect on any of the major outcome variables measured in the current study, AW, CW, 

obese and lean women were pooled and divided by estimated insulin resistance (see below).   

On a day preceding the biopsy, the percent body fat (% BF) was determined for each 

subject by dual energy X-ray absorptiometry (DEXA). These protocols were approved by the 
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East Carolina University Policy and Review Committee on Human Research in accordance with 

the Declaration of Helsinki principles. Informed consent was obtained from each subject after 

both written and oral information was presented about the procedure. One lean (BMI = 20.7; 22 

yrs old), healthy individual learned she was pregnant in the days following skeletal muscle 

biopsy. The pregnant individual mistook the idiopathic vaginal bleeding commonly associated 

with pregnancy (119, 308) for overt menstruation, as it occurred on or about her predicted period 

of menstruation. Upon learning of the subject’s pregnancy, she was disenrolled from the study, 

and no additional data were obtained from the subject (i.e., IVGTT). Because the biopsy was 

performed and mitochondrial function data collected before learning of her pregnancy, the data 

were compared to group B subjects.  

 

PROCEDURE 

On the day of the skeletal muscle biopsy, subjects reported to the obesity research clinic 

at East Carolina University between the hours of 0630-0900 following overnight fast 

(approximately 12 hours). Body mass and height were recorded for body mass index 

determination (BMI), and a fasting venous blood sample was obtained prior to the skeletal 

muscle biopsy for subsequent analysis.  With regard to the subjects in group B, plasma and 

serum were separated from the blood for subsequent analysis of glucose (YSI 2300 STAT Plus 

Glucose and Lactate Analyzer, YSI Inc; Yellow Springs, OH), serum insulin, 17β-estradiol and 

progesterone (Access Immunoassay System, Beckman-Coulter; Fullerton, CA). A homeostasis 

model assessment value for insulin resistance (HOMA-IR) was calculated (HOMA-IR = 

(glucose, mg•dL-1 • insulin, μU •mL-1) • 405-1; (191)). Subjects from group B were divided by 

presence of insulin resistance as defined by Stern et al (265). Group B subjects were therefore 
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described as insulin sensitive (IS, HOMA-IR < 3.60) or insulin resistant (IR, HOMA-IR > 3.60; 

Table 2). 

Skeletal muscle biopsies were obtained from the lateral aspect of the vastus lateralis by 

the percutaneous needle biopsy technique with constant suction under local subcutaneous 

anesthesia (1% lidocaine). A portion of each biopsy sample was flash frozen in liquid N2 for 

subsequent protein analysis as part of another study.  The remaining portion of the biopsy (~50 

mg wet wt) was transferred to ice-cold physiological relaxing buffer (buffer X) for transport, on 

ice, to the laboratory (< 5 min) for dissection, permeabilization, and mitochondrial function 

assays.  

 

PREPARATION OF PERMEABILIZED HUMAN MYOFIBERS 

This technique is partially adapted from previous methods (173, 277) and has been 

thoroughly described elsewhere (5-7).  Briefly, after dissection, connective tissue was removed 

and fiber bundles were separated with fine forceps under binocular dissecting microscope in ice 

cold buffer X, containing (in mM): 60 K-MES, 35 KCl, 7.23 K2EGTA, 2.77 CaK2EGTA, 20 

Imidazole, 0.5 DTT, 20 Taurine, 5.7 ATP, 15 PCr, 6.56 MgCl2-6H2O (pH 7.4, 295 mOsm). After 

separation, myofiber bundles were placed in 4° C buffer X containing 30 μg/mL saponin for 30 

minutes and then were washed individually in ice-cold Buffer Z containing (in mM) 110 K-

MES, 35 KCl, 1 EGTA, 10 K2HPO4, 3 MgCl2-6H2O, 5 mg/ml BSA (pH 7.4, 295 mOsm) until 

analysis (< 1 hour).  To determine the acute effects of 17β-estradiol (E2) and progesterone (P4) 

on mitochondrial function, washes for the permeabilized myofibers obtained from subjects in 

group A contained hormone treatments: two of the Z washes contained 60 nM P4, 2 contained 

1.4 nM E2, 2 contained 60 + 1.4 nM P4 + E2. Because P4 and E2 stocks were dissolved in 
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dimethyl sulfoxide (DMSO), 2 Z washes contained similar amounts of DMSO (< 1.5%) and 

served as controls. Fibers from both groups A and B used in the H2O2 emission experiments 

were briefly washed in cold buffer Z containing 10 mM pyrophosphate prior to analysis to 

prevent Ca+2-independent contraction.  

 

MITOCHONDRIAL RESPIRATION AND H2O2 EMISSION MEASUREMENTS IN 

PERMEABILIZED HUMAN MYOFIBERS  

O2 consumption rate was measured by polarographic high-resolution respirometry 

(Oroboros O2K Oxygraph, Innsbruck, Austria) at 30°C in air-saturated (~220–150 μM O2) 

Buffer Z + 20 mM creatine hydrate and 50 μM N-Benzyl-p-toluene sulphonamide (BTS, an 

inhibitor of myosin II) under the following protocol: 25 μM palmitoyl-carnitine + 1 mM malate 

followed by sequential additions of 2 mM ADP, 10 μM cytochrome c, 2 mM glutamate, 3 mM 

succinate, 10 μg/mL oligomycin (inhibitor of mitochondrial ATP synthase), and finally 2 μM 

carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP, a protonophoric uncoupler). With 

regard to the acute E2 and P4 incubation experiments, neither oligomycin nor FCCP were added 

due to time constraints associated with multiple testing.  

H2O2 emission was measured at 30° C in Buffer Z during state 4 respiration (10 μg/mL 

oligomycin) by continuously monitoring oxidation of Amplex red (excitation/emission λ = 

563/587 nm) using a Fluorolog-3 (Horiba Jobin Yvon, Ltd; Edison, NJ) spectrofluorometer 

under the following protocol: 25 μM palmitoyl-carnitine + 1 mM malate followed by sequential 

additions of 2 mM glutamate, 3 mM succinate, and 10 mM glycerophosphate. At the conclusion 

of each experiment, permeabilized fiber bundles were washed in distilled H2O to remove salts 

and freeze-dried in a lyophilizer (LabConco).  Mitochondrial respiration rates (JO2) are 
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expressed as pmol·s-1·mg-1 dry weight and H2O2 emission rates (mEH2O2) as pmol·min-1·mg-1 dry 

weight.   

As with the buffer Z washes, respective treatments of P4 and/or E2 conditions were also 

created by adding the hormones (dissolved in DMSO) to the respective experimental 

chamber/cuvette (final DMSO concentration < 2.0%). A parallel volume of DMSO alone was 

added to the control chamber/cuvette (i.e., final DMSO concentration < 2.0%). Neither O2 

consumption nor Amplex red fluorescence (standard curve) were differentially affected by any of 

the treatment conditions in the absence of biological sample.  

 

STATISTICS  

Data are presented as mean ± SEM. Statistical analyses were performed with GraphPad 

Prism (GraphPad Software, Inc.) using 2-way ANOVA (as appropriate) with Bonferroni post hoc 

method for analysis of significance among groups. Pearson bivariate correlations and variable 

adjustments for % BF were performed using ANCOVA with SPSS 17 software (SPSS, Inc.). The 

α-level of statistical significance was set a priori at p < 0.05. 

 

RESULTS 

 

ACUTE EX VIVO EFFECTS OF PROGESTERONE AND ESTRADIOL ON MITOCHONDRIAL 

FUNCTION IN PERMEABILIZED MYOFIBERS 

To test the acute, ex vivo effects of E2 and P4 on mitochondrial function, skeletal muscle 

fibers were incubated in either 1.4 nM E2, 60 nM P4, or both for 1-2 hours after 

permeabilization, but before and during the experimental measurements. As Figure 8 illustrates, 
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a trend manifest in significant main effects for steroid hormones on JO2 was present in the 

respirometric experiments. Compared to controls (DMSO), the results indicate that P4 alone 

significantly inhibited JO2 during state 3 respiration supported by palmitoyl-carnitine/malate + 

glutamate (P-C/M+G; P < 0.05) and P-C/MG + succinate (P-C/MG+S; P < 0.01; Figure 8). This 

suggests that P4 exerts an inhibitory affect on complex I (+G) and possibly also complex II (+S). 

Interestingly, when combined with E2, P4 (i.e., E2+P4) did not significantly inhibit JO2 (Figure 

8). When combined with the results of E2 treatment alone (i.e., no effect on JO2), the 

respirometric data with E2+P4 suggest that E2 may prevent the inhibitory effects of P4 on JO2. 

When rates of mEH2O2 were measured in the group B muscle fibers treated with P4 and/or 

E2 acutely post-permeabilization, significant differences were observed after the addition of 

succinate and also glycerophosphate (Figure 9). Compared to control (DMSO), E2+P4 treatment 

resulted in significantly greater rates of mEH2O2 during state 4 respiration supported by either P-

C/MG + succinate (+S; P < 0.05) and P-C/MGS + glycerophosphate (+Gp; P < 0.01; Figure 9). 

Moreover, P4 alone significantly increased mEH2O2 compared to DMSO during P-C/MGS+Gp (P 

< 0.01; Figure 9). Interestingly however, E2 alone did not increase mEH2O2 (Figure 9). Because 

additions of succinate and glycerophosphate are known to elicit reverse electron flow – mediated 

superoxide production at complex I (206), these data suggest that P4 increases the potential for 

complex I-linked mitochondrial H2O2 production. Furthermore, the protection conferred by E2 

with regard to the inhibitory effects of P4 on JO2 (Figure 8) was not paralleled in the mEH2O2 

measurements (Figure 9). Taken together, these data support a model whereby E2 prevents P4 

inhibited complex I-linked, and possibly complex II-linked JO2; and conversely, a model 

whereby E2 does not attenuate a P4-mediated increase in complex I-linked mEH2O2.  

 



    

 85

MITOCHONDRIAL H2O2 EMISSION AND RESPIRATORY O2 FLUX IN PERMEABILZED 

MYOFIBERS FROM INSULIN SENSITIVE AND INSULIN RESISTANT SUBJECTS  

Because the rates of P-C/MG+S - supported mEH2O2 were affected by E2+P4 in the acute 

ex vivo incubation experiments (Figure 9), we hypothesized that serum levels of E2 and/or P4 

would exert an influence on mEH2O2 and/or HOMA-IR in the Group B subjects. Interestingly, 

only serum P4 concentration (nM, log-transformed) correlated with P-C/MG+S - supported 

mEH2O2 (r = 0.53; P < 0.01; Figure 10). This further supports P4 as the sex steroid responsible for 

increasing mEH2O2, and not E2.  

When adjusted for %BF (ANCOVA), the rates of P-C/MG+S - supported mEH2O2 in 

permeabilized myofibers from the IR women were more than 80% greater than that of the IS 

women (P < 0.01; Figure 11A). Not only does this further support a link between mEH2O2 and 

insulin resistance, but it also demonstrates a role for P4 in this link.  Furthermore, when 

expressed relative to JO2, the rate of mEH2O2 was still significantly greater in the IR compared to 

IS women (P < 0.01; Figure 11B), suggesting that the increase mEH2O2 with IR was independent 

of differences in JO2.  

To examine whether the link between mEH2O2 and insulin resistance might be mirrored in 

mitochondrial respiration and/or coupling, we measured JO2 in premeabilized fibers from IS and 

IR women, and subsequently calculated ratios of respiratory control (Table 3). While no 

differences in JO2 were detected with insulin resistance, only after adjusting for %BF and serum 

P4:E2 ratio was a difference in the uncoupling control ratio (UCR, ratio of uncoupled JO2 to 

oligomycin-inhibited JO2) detected (Table 3; P < 0.05). This suggests that mitochondrial 

coupling may be affected by or affecting insulin resistance.  
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PREGNANT SUBJECT  

Mitochondrial function data (i.e., JO2 and mEH2O2) for one lean (BMI = 20.7; 22 yrs old), 

healthy woman who later learned she was pregnant at the time of biopsy were compared to the IS 

and IR subjects from group B. As Figure 12A illustrates, this pregnant subject exhibited P-

C/MG+S - supported mEH2O2 that exceeded the 99% confidence interval of the mean for IS 

women under similar conditions by more than 50% (Figure 12A; P < 0.01). This suggests that 

pregnancy may be associated with an increased potential for mEH2O2 in skeletal muscle. Normal 

pregnancy is associated with reduced insulin sensitivity (134). During pregnancy, serum levels of 

P4 and E2 increase (190). Therefore, the effects of pregnancy on mEH2O2 may be related to the 

rise in ovarian sex steroids. However, no discernable difference in JO2 was observed between the 

pregnant subject and IS or IR women. It was therefore surprising to find that mEH2O2 from the 

pregnant subject, expressed as a percentage of JO2 (pmol·min-1·mg dry wt-1), was within the 95% 

confidence interval of the mean for the IS, but not the IR women (Figure 12B; P < 0.05). This 

suggests that pregnancy may be associated with increased mEH2O2, but that it is proportional to 

JO2 in skeletal muscle.  

 

DISCUSSION 

As mentioned previously, the initial purpose of the study in Chapter 3 was to explore a 

potential link between mitochondrial respiration, mitochondrial reactive oxygen species and 

insulin resistance with regard to race (i.e., African American vs. Caucasian women) and obesity 

in women. Surprisingly however, race did not affect any of the outcome variables measured in 

the current study. AW and CW were therefore pooled and divided by insulin resistance.  
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In this study, it was hypothesized that in women, the ovarian steroid hormones estradiol 

(E2) and progesterone (P4) influence insulin sensitivity via alterations in the production of 

mitochondrial H2O2 in skeletal muscle.  

The results presented here demonstrate that E2 and P4 can directly affect mitochondrial 

function. Furthermore, a clear relationship emerged between serum P4 and mEH2O2. Finally, 

these results provide further evidence for a link between skeletal muscle mEH2O2 and insulin 

resistance.  

As early as 1963, Chance and co-workers (51) reported that high concentrations of P4 

(i.e., mM) exhibited an inhibitory, “rotenone-like” effect on complex I-linked respiration and 

pyridine nucleotide reduction in mitochondria isolated from pigeon heart. A review (263) of the 

this, and subsequent publications regarding posttranslational effects of supraphysiological 

experimental steroid hormone concentrations on the function of isolated mitochondria questioned 

the physiological relevance of these studies. In the current study, we incubated permeabilized 

myofibers from women in the follicular phase with luteal phase serum concentrations of E2 (1.4 

nM) and P4 (60 nM) (237). In agreement with the results of reports demonstrating an inhibitory 

effect of P4 on mitochondrial respiration (51, 84, 114), we observed a significantly lower JO2 in 

fibers incubated with P4 alone, but not when combined with E2. In light of the results of our 

recent study linking mEH2O2 to skeletal muscle insulin resistance (5), the observed increase in 

mEH2O2 after acute ex vivo treatment with P4 and E2+P4 (but not E2) provides a potential link 

between the ovarian sex steroids and the reduced insulin sensitivity reported during the luteal 

phase of the menstrual cycle and pregnancy when P4 and E2 levels are naturally high (184). 

Furthermore, only when adjusting for serum E2 and P4 were we able to resolve clearly the 

differences in skeletal muscle mEH2O2 between IS and IR women. Additionally, when the 
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mitochondrial function data from one subject who later learned she was pregnant were compared 

to non-pregnant IS and IR women, mEH2O2 supported by P-C/MG+S elevated relative to the IS 

women. This provides further evidence that mEH2O2 is increased in skeletal muscle during 

conditions of elevated P4 and/or E2, both hormones being known to increase during pregnancy 

(190). However, when mEH2O2 was normalized to JO2 (no discernable difference in JO2, data not 

shown), the % H2O2 for the pregnant subject was outside of the 95% confidence interval of the 

mean for the IR, but not the IS women. Therefore, the disparity in mEH2O2 vs. %H2O2 in the 

pregnant subjects may constitute a fundamental difference between the insulin resistance 

associated with pregnancy, and the insulin resistance associated with positive energy balance 

(e.g., obesity).  

The results of the current study support the notion of an inhibitory effect of P4 alone on 

respiration, but not in combination with E2. In slight contrast, a study of the effects of P4 and E2 

administered in vivo on mitochondria isolated from mouse liver found that state 3 JO2 supported 

by succinate (complex II substrate) was reduced after three hours of treatment with either P4 

alone, or in combination with E2 (114). When the mitochondria were supplied exclusively with 

glutamate + malate (complex I substrate), both state 3 and state 4 JO2 were significantly lowered 

by treatment with either P4 alone, or in combination with E2 compared to controls (114). These 

effects of the P4 or E2+P4 on mitochondrial JO2 were not observed during TMPD + ascorbate 

respiration, which supplies electrons exclusively to complex IV (114), suggesting complex I as 

one of the sites of action by P4, and possibly the E2+P4 combination. In another study, when 

mitochondria isolated from male rat livers were incubated briefly (1 min) with 30 μM E2, both 

state 3 and FCCP-uncoupled JO2 supported by the complex I substrates glutamate + malate were 

significantly reduced from controls (202). However, E2 treatment had no effect on the 
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mitochondrial membrane potential (ΔΨ) (202). Furthermore, no effect of E2 on mitochondrial 

H2O2 production was observed with or without rotenone present (202). This is in contrast to 

findings of increased mitochondrial ROS in cultured cells treated for 15 minutes with very high 

(i.e. > 360 nM) E2 (86). Even more recently, it was shown that adding P4 to preparations of 

isolated rat liver mitochondria during experimental measurements decreased the ΔΨ, calcium 

retention capacity and the capacity for complex I-linked state 3 JO2 (84). However, as with most 

of the investigations into the non-genomic effects of female sex steroids on mitochondrial 

function, the P4 concentrations used were unphysiological; in this case, anywhere from 80-150 

μM, or over 1000 times greater than the luteal phase serum P4 concentration in women (237).   

In the current study, luteal phase serum concentrations of E2 and P4 were used to 

demonstrate an inhibitory effect of P4 alone on mitochondrial JO2. P4 is one of the female 

reproductive hormones most associated with pregnancy, as even its namesake implies - 

progestational steroidal ketone (4). While extending the findings of the current study to the 

increase in P4 during the luteal phase of the menstrual cycle and pregnancy (190) might predict a 

decrease in the basal metabolic rate accompanying the luteal phase or pregnancy, the results of 

the current study also demonstrate that E2 can prevent the inhibitory effects of P4 on 

mitochondrial JO2. Because E2 also increases during the luteal phase and during pregnancy 

(190), this may explain why basal metabolic rate does not decrease in the face of increasing P4 

during the luteal phase (25, 257, 299) or pregnancy (92), even when adjusting for maternal and 

fetal mass (129). The potential ability for E2 to counteract the inhibitory effects of P4 on 

respiration may also explain why, in the current study, we found no relationship between serum 

P4, E2 or the P4:E2 ratio and JO2 in the group B subjects (data not shown). 
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Many reports describe a reduction in insulin sensitivity by the ovarian sex steroids in both 

humans and animal models (184). In the current study, concentrations of serum P4 and E2 were 

measured in subjects for whom menstrual cycle did not dictate the day upon which skeletal 

muscle biopsies were performed and the subsequent mitochondrial function assays performed. A 

significant correlation between succinate-supported mEH2O2 and serum P4 was observed in the 

current study (Figure 10). Because both succinate and glycerophosphate are known to stimulate 

reverse electron flow-mediated superoxide production at complex I (206), these results 

demonstrate a relationship between P4 and complex I-mediated H2O2 in skeletal muscle 

mitochondria. While changes in the serum concentrations of E2 and P4 in women may be 

dictated by factors such as smoking (317), dietary fiber (240) and fat (110), they are primarily 

associated with the menstrual cycle (190). Moreover, insulin sensitivity is shown to decrease 

during both the luteal phase and during pregnancy, two conditions in which P4 and E2 levels are 

elevated. If in fact high levels of E2 and P4 link conditions such as pregnancy and the luteal 

phase of the menstrual cycle to skeletal muscle insulin resistance, the next relevant question is 

which are responsible: E2, P4, or both? In a study involving stable isotope dilution and indirect 

calorimetry, d’Eon et al (64) were able to measure glucose uptake and estimate skeletal muscle 

glucose oxidation during exercise while manipulating the blood levels of E2 and P4 in healthy 

women. They discovered opposing actions of E2 and P4, the former reducing estimated muscle 

glycogen utilization and the rate glucose disappearance from the blood. On the other hand, 

increasing blood levels of P4 in addition to E2 increased the estimated muscle glycogen 

utilization, but not the rate of glucose disappearance from the blood. Such a description of the 

complementary effects of E2 and P4 in skeletal muscle substrate parallels some of the findings in 

the current study. Indeed, the results of the current study show that, with regard to skeletal 
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muscle mitochondrial JO2, P4 alone significantly reduced respiration supported by the 

multisubstrate combination P-C/MGS (Figure 8). However, even when P4 was present, E2 

preserved JO2 (Figure 8). This is in agreement with literature reports that E2 preserves 

mitochondrial function in neuronal cells challenged with proapoptotic factors (192), inhibitors of 

succinate dehydrogenase (297), high calcium (211) and oxidative stress (192, 297). While further 

research will be necessary to reveal the exact mechanism by which E2 exerts its effects on 

mitochondrial maintenance of function, studies indicate that E2 exerts a direct antioxidant effect 

on isolated mitochondria (31), and there is even evidence from studies involving isolated 

mitochondria that E2 can directly enhance the activity of the manganese-containing superoxide 

dismutase (217). The results of the current study do not support the notion of E2 as a direct 

antioxidant when in combination with progesterone (Figure 9). Alone, however, E2 did not 

increase the rate of mEH2O2 (Figure 9). Therefore, the results of the current study suggest that P4 

may be related to the insulin resistance observed during conditions of elevated sex steroids. If 

mEH2O2 is linked to insulin resistance in skeletal muscle (5), the finding that acute exposure of 

permeabilized myofibers to P4 or P4+E2 increased mEH2O2 (Figure 9) permits speculation about 

potential mechanisms whereby P4 influences skeletal muscle insulin sensitivity via mEH2O2. 

Because the women in the present study were fasted, their serum P4 and E2 levels may actually 

reflect how their skeletal muscle will respond to metabolic challenges known to reduce insulin 

sensitivity, such as consuming a large meal (148), prolonged fasting (e.g., 1-2 days (76)), sleep 

restriction (260) or marathon running (281). During the protocols used in the current study, rates 

of mEH2O2 were in fact stimulated progressively through the addition of various substrates used 

in mitochondrial oxidative phosphorylation, and not in the absence, or progressive lowering of 

substrates. If the measurements of mEH2O2 in the current study are viewed not as a resting-level 
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enzymatic activity assay, but rather as how the mitochondria in skeletal muscle will respond to 

an influx of substrate, the implications may be more physiologically relevant. Perhaps the effects 

of P4/E2+P4 on skeletal muscle are pleiotropic, conditionally specific, and evident 

experimentally only under extreme conditions, such as a high rate of mitochondrial substrate 

flux. From an evolutionary perspective, P4/E2+P4 might serve as a regulator of substrate 

provision associated with pregnancy. Indeed, when a woman becomes pregnant, the rise in E2 

and P4 that accompanies the luteal phase continues and increases during gestation, as often does 

insulin resistance (134). Teleologically, the rise in P4 or E2+P4 during pregnancy and an 

increase in skeletal muscle mEH2O2, and perhaps in turn, muted insulin sensitivity, may have 

more to do with satisfying the energetic needs of the developing fetus than any pathological 

condition in carbohydrate metabolism. The rise in P4/E2+P4 may therefore set the stage for a 

means to divert substrate away from the mother’s skeletal muscle following a meal.  

To conclude, the results of the current study support a model in which physiologically 

relevant levels of P4 increase mEH2O2 and decrease JO2 in skeletal muscle, and in which E2 

removes the inhibitory effects of P4 on JO2, but not mEH2O2. Furthermore, the results of this 

study clearly demonstrate a link between mEH2O2 and insulin resistance in women. Whether the 

model can explain a causative role for ovarian sex steroids in the etiology of insulin resistance 

and type 2 diabetes will require further research.  
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TABLE 1. GROUP A SUBJECT CHARACTERISTICS. 
 
 

Age (y), weight (kg), body mass index (BMI = kg/m2) and percent body fat (% BF) 

determined for 5 lean women recruited for acute ex vivo estradiol and progesterone incubation 

experiments.  
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N Age (y) Weight (kg) BMI % Body Fat 
5 22.4  ± 1.4 67.2 ± 3.8 22.8 ± 1.2 32.6 ± 2.2 
Data are mean ± SEM 
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FIGURE 8. ACUTE EX VIVO EFFECTS OF PROGESTERONE AND/OR ESTRADIOL ON 

MITOCHONDRIAL RESPIRATORY O2 FLUX IN PERMEABILIZED HUMAN FEMALE 

MYOFIBERS. 

 
Rates of mitochondrial respiratory O2 flux (JO2, pmol·s-1·mg dry wt-1) and H2O2 emission 

(mEH2O2) measured in saponin-permeabilized myofibers from lean, healthy women in the 

menstrual cycle follicular phase (days 1-10). Permeabilized fibers were incubated in either 

DMSO (< 1.5%, vehicle), 1.4 nM estradiol (E2), 60 nM progesterone (P4) or both (E2+P4). 

Substrate conditions were: 25 μM palmitoyl-carnitine + 1 mM malate (P-C/M); P-C/M + 2 mM 

ADP (+ADP); P-C/M, state 3 + 10 μM cytochrome c (+cyt c);  P-C/M, State 3 + 2 mM 

glutamate (+G); P-C/M, G, State 3 +3 mM Succinate (+S). Results are mean ± SEM (n = 4). * = 

Less than control (DMSO), P < 0.05; ** = P < 0.01; † = less than E2, P < 0.05; ‡ = less than 

E2+P4, P < 0.05. 
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FIGURE 9. ACUTE EX VIVO EFFECTS OF PROGESTERONE AND/OR ESTRADIOL ON 

MITOCHONDRIAL H2O2 EMISSION IN PERMEABILIZED HUMAN FEMALE 

MYOFIBERS. 

 
Rates of mitochondrial H2O2 emission (mEH2O2) measured in saponin-permeabilized 

myofibers from lean, healthy women in the menstrual cycle follicular phase (days 1-10). 

Permeabilized fibers were incubated in either DMSO (< 1.5%, vehicle), 1.4 nM estradiol (E2), 

60 nM progesterone (P4) or both (E2+P4). Substrate conditions were, in the presence of 10 μM 

oligomycin: 25 μM palmitoyl-carnitine + 1 mM malate (P-C/M); P-C/M + 2 mM glutamate 

(+G); P-C/MG + 3 mM Succinate (+S); and P-C/MGS + 10 mM glycerophosphate (+Gp). 

Results are mean ± SEM (n = 5). * = Less than control (DMSO), P < 0.05; ** = P < 0.01; *** = 

P < 0.001; † = less than E2, P < 0.05. 
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TABLE 2. GROUP B SUBJECT CHARACTERISTICS.  
 
 

Age (y), body mass index (BMI = kg·(m2)-1), percent body fat (% BF), homeostatic 

model assessment for insulin resistance (HOMA-IR), serum estradiol (E2, pM), serum 

progesterone (P4, nM), and ratio of P4, pM to E2, pM (P4:E2) determined for 32 women of 

varying insulin sensitivity. Thus, they are categorized as insulin sensitive (IS, HOMA-IR < 3.6; n 

= 24) or insulin resistant (IR, HOMA-IR > 3.6; n = 8). Results are mean ± SEM. *P < 0.05 vs. 

IS; ***P < 0.0001 vs. IS.  
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 Insulin Sensitive Insulin Resistant 

Age (y) 31.6 ± 1.4  35.1 ± 2.4  

BMI (kg/m2) 30.2 ± 1.4  36.5 ± 2.4*  

Body fat (%) 44.5 ± 1.5 47.3 ± 2.6  

HOMA-IR 1.7 ± 0.2 4.6 ± 0.3*** 

E2 (pM) 407.2 ± 61.1 313.1 ± 113.1 

P4 (nM) 8.8 ± 2.8 15.2 ± 5.2 

P4:E2 29.3 ± 6.8 42.4 ± 12.6 
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FIGURE 10. RELATIONSHIP BETWEEN SERUM PROGESTERONE AND 

MITOCHONDRIAL H2O2 EMISSION IN WOMEN.  

 
Rates of mitochondrial H2O2 emission (mEH2O2) plotted against the log-transformed 

serum concentrations of P4 (nM) from 32 women in group A. A significant correlation was 

present with respect to the substrate conditions: 10 μM oligomycin + 25 μM palmitoyl-carnitine 

+ 1 mM malate + 2 mM glutamate + 3 mM Succinate (P-C/MGS; r = 0.53, P < 0.01).  
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FIGURE 11. MITOCHONDRIAL H2O2 EMISSION AND INSULIN RESISTANCE IN 

WOMEN.  

 
Mitochondrial H2O2 emission (mEH2O2) measured in permeabilzed myofibers and 

fractional mEH2O2 (mEH2O2 · JO2
-1, %) adjusted for % body fat  in insulin sensitive (IS, n = 22) 

and insulin resistant (IR, n = 7) women. A. Substrate conditions were, in the presence of 10 μM 

oligomycin: 25 μM palmitoyl-carnitine + 1 mM malate (P-C/M); P-C/M + 2 mM glutamate 

(+G); and P-C/MG + 3 mM Succinate (+S). B. Fractional mEH2O2 is expressed as a percentage of 

the JO2 (pmol · min-1 · mg dry wt-1) measured in parallel substrate conditions (i.e., P-C/MGS + 

10 μM oligomycin). ** P < 0.01 vs. IS.  
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TABLE 3. RESPIRATORY O2 FLUX AND CONTROL IN INSULIN SENSITIVE AND 

INSULIN RESISTANT WOMEN. 

 
Rates of mitochondrial respiratory O2 flux (JO2) measured in saponin-permeabilzed 

myofibers and calculated ratios of respiratory control adjusted for % body fat (ANCOVA) and 

ratio of serum P4:E2 measured in insulin sensitive (IS, n = 23) and insulin resistant (IR, n = 8) 

women. Substrate conditions in the JO2 measurements were: 25 μM palmitoyl-carnitine + 1 mM 

malate (P-C/M4); P-C/M + 2 mM ADP (P-C/M3); P-C/M, State 3 + 2 mM glutamate (P-C/MG); 

P-C/M, G, State 3 +3 mM Succinate (P-C/MGS); P-C/MGS + 10 μM oligomycin (P-C/MGSO); 

P-C/MGSO + 2 μM FCCP (P-C/MGSOU). Ratios of respiratory control were calculated as 

follows: RCR, respiratory control ratio  = (JO2, P-C/M3)·(JO2, P-C/M4)-1; ACR, adenylate 

control ratio = (JO2, P-C/MGSOU)·(JO2, P-C/MG+S)-1; UCR, uncoupling control ratio = (JO2, 

P-C/MGSOU)·(JO2, P-C/MGSO)-1.  *P < 0.05 vs. Insulin sensitive.  
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 Insulin Sensitive  Insulin Resistant  
JO2  
(P-C/M4) 

8.8 ± 1.2 8.4 ± 2.2 

JO2  
(P-C/M3) 

49.7 ± 2.7 42.2 ± 4.9 

JO2  
(P-C/MG3) 

145.5 ± 7.8 147.8 ± 14.1 

JO2  
(P-C/MGS3) 

207.8 ± 9.7 198.0 ± 17.7  

JO2  
(P-C/MGSO) 

49.7 ± 2.8  40.3 ± 5.0  

JO2  
(P-C/MGSU) 

253.6 ± 12.0  245.9 ± 21.8 

RCR  
(P-C/M) 

7.2 ± 0.8 6.3 ± 1.5 

ACR 1.2 ± 0.0 1.3 ± 0.1  

UCR 5.2 ± 0.2 6.4 ± 0.4* 
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FIGURE 12. MITOCHONDRIAL H2O2 EMISSION AND FRACTIONAL H2O2 IN ONE 

PREGNANT WOMAN.  

 
Mitochondrial H2O2 emission (mEH2O2) and fractional mEH2O2 (%H2O2) for one 

individual who learned post hoc that she was pregnant at the time of biopsy were compared to 

values for insulin sensitive (IS, n = 22) and insulin resistant (IR, n = 6) women (group B 

subjects). A. Substrate conditions for mEH2O2 measurements were, in the presence of 10 μM 

oligomycin: 25 μM palmitoyl-carnitine + 1 mM malate + 2 mM glutamate + 3 mM Succinate (P-

C/MGS). B. mEH2O2 expressed as a percentage of JO2 (pmol·min-1·mg dry wt-1) under similar 

conditions (i.e., P-C/MGS + 10 μM oligomycin). ***value was outside of the 99.9% confidence 

interval of the mean for IS women. †value was outside of the 95% confidence interval of the 

mean for IR women.   
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CHAPTER 4: REDUCED CAPACITY FOR MITOCHONDRIAL H2O2 EMISSION 

FOLLOWING 8 WEEKS OF EXERCISE TRAINING IN WOMEN 

 

Daniel A. Kane1,2, Chien-Te Lin1,2, Ethan J. Anderson1,3, Hyo-Bum Kwak,1,2, Julie H. Cox1,2, 

Robert C. Hickner1,2,  Ronald N. Cortright1,2,4 and P. Darrell Neufer1,2,4 

 

1The East Carolina Diabetes and Obesity Institute, 2Department of Exercise and Sport Science, 

3Departments of Pharmacology & Toxicology, and 4Department of Physiology, East Carolina 

University, Greenville, North Carolina 

 

Abstract: Regular exercise has long been recognized as an effective therapeutic modality to 

improve overall health, including insulin sensitivity. Recently, we demonstrated that skeletal 

muscle mitochondrial H2O2 emission (mEH2O2) links high-fat diet to insulin resistance. To test 

the hypothesis that exercise training is associated with reduced potential for mitochondrial H2O2 

production, we measured mEH2O2 in and respiratory O2 flux (JO2) in saponin-permeabilized 

vastus lateralis myofibers from lean (BMI < 30) and obese (BMI > 30) women before (Pre) and 

after (Post) 8 weeks of exercise training (8WT = stationary cycle ergometer, 1 h/d, 5d/w at heart 

rate corresponding to 70-75% VO2peak). Compared to Pre, Post VO2peak was significantly greater 

(P < 0.05), and respiratory exchange ratio (RER) at exercise intensity equivalent to 75% Pre 

VO2peak was significantly lower (P < 0.001). However, no changes in body composition (BMI or 

% body fat), estimated insulin resistance (HOMA-IR) or serum levels of estradiol or 

progesterone were observed Pre-Post. Interestingly, while Pre-Post there were no changes in JO2 

supported by multiple substrates or calculated ratios of respiratory control, there was a 
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significant reduction in succinate-supported rates of mEH2O2 (P < 0.05) following training, even 

when expressed as a percentage of JO2 (P < 0.05). Absent changes in both body composition and 

insulin sensitivity at rest, the results of this study suggest that reduced capacity for mEH2O2 in 

skeletal muscle after 8WT in lean and obese women may constitute adaptations to exercise 

training that parallel improvements in cardiorespiratory fitness and reliance on energy derived 

from fat during exercise.  
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INTRODUCTION 

During exercise, insulin-independent and -dependent glucose uptake by human skeletal 

muscle is enhanced After a single bout of exercise, insulin sensitivity increases primarily in the 

muscles involved in the physical activity, an effect which may last for up to two days (124, 305). 

Though improved insulin sensitivity with acute exercise may be short-lived and likely involves 

improvements in GLUT4 content and/or trafficking rather than improved insulin receptor 

signaling (77, 124),  evidence exists for metabolic adaptations which sustain whole-body muscle 

insulin sensitivity with exercise training via enhanced insulin signaling (reviewed in (124)).  

 First reported by John Holloszy in 1967 (135), the notion of increased mitochondrial 

oxygen consumption and respiratory activity in skeletal muscle with exercise training has since 

become dogma, with the generally accepted explanation being an increase in the 

transcriptional/posttranscriptional activities involved in mitochondrial biogenesis following 

skeletal muscle contractions associated with exercise (reviewed in (137, 185)).  

It is generally accepted that during exercise, high rates of oxygen flux in skeletal muscle 

increase the rates of ROS production, the source of which has been attributed primarily to the 

mitochondria (reviewed in (189)). In vitro however, high rates of mitochondrial ROS production 

are only evident under resting (i.e., state 4) conditions (48). This mitochondrial membrane 

potential (ΔΨ) - dependent ROS is reduced exponentially as proton flux back into the 

mitochondrial matrix increases due to leak (i.e., mild uncoupling) increases (198) or during the 

transition to state 3 respiration, mitochondrial ROS production drops precipitously (198). 

Exercise training has been shown to increase the mitochondrial content of known contributors to 

basal proton leak (e.g., uncoupling proteins) (37, 87), which should in theory, decrease ΔΨ -

dependent ROS, favoring the benign consumption of O2 at the terminus of the respiratory chain. 
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Because studies have shown that intense or exhaustive exercise is associated with markers of 

oxidative stress (189, 241), it has since been proposed that extramitochondrial or extracellular 

sources of ROS are involved, possibly due to ROS generated by xanthine oxidase (112). 

Regardless of the oxidant source, an accumulating body of evidence employing both direct (i.e., 

ESR spectroscopy) and indirect methodologies (e.g., assay of oxidatively modified 

macromolecules) strongly suggests that free radicals generated during mild to moderate 

endurance exercise actually constitute a stimulus mechanism for adaptations to exercise, 

including mitochondrial biogenesis in skeletal muscle (reviewed in (241)). Observations made 

regarding the adaptive response to exercise-associated redox perturbations (227, 241) may 

therefore account, at least in part, for the often unimpressive results from studies examining the 

effects antioxidant supplementation on adaptation to exercise (reviewed in (38)) and 

improvements to diabetes (reviewed in (256)). Taken as a whole, the literature suggests that the 

improvements in whole-body insulin sensitivity with exercise training may owe to adaptations 

associated with attenuating mitochondrial ROS. Whether this involves an increase in the 

antioxidant defense, a decrease in the production of ROS, or both, remains to be clarified.  

Here, we report a reduction in the rate of mEH2O2 in saponin-permeabilized myofibers 

from lean and obese women biopsied before and after 8 weeks of exercise training that was not 

accompanied by a change in mitochondrial respiration. It does not appear that the training 

adaptations related to reduced mEH2O2 involve improved insulin sensitivity, absent changes in 

body mass or composition.  

 

METHODS  
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SUBJECTS 

In the United States, the incidence of obesity and type 2 diabetes is greater among 

African American women (AW) compared to Caucasian women (CW) (258). To explore 

exercise training as a viable therapy, the initial purpose of the current study was to examine the 

effects of 8 weeks of exercise training on mitochondrial respiration, mitochondrial reactive 

oxygen species and insulin resistance with regard to race (i.e., African American vs. Caucasian) 

and obesity (BMI) in women. However, it was determined that race played no role in any of the 

outcome variables measured. Therefore, the AW and CW were pooled into lean (BMI < 30) and 

obese (BMI > 30) groups.  

Additionally, these subjects were sampled at random with regard to their respective 

menstrual cycle phase. The volume of published data demonstrating that ovarian sex steroids 

affect the sensitivity of tissues to insulin in both animal and humans are substantial (reviewed in 

(184)). A fall in insulin sensitivity has been reported in normal women during the luteal phase of 

the menstrual cycle, when serum progesterone and estrogen levels are both at their greatest 

(184). Because skeletal muscle is responsible for the majority of peripheral glucose disposal, it 

would appear that sex steroids have a direct effect on skeletal muscle insulin sensitivity. In light 

of the evidence relating sex steroids and insulin resistance (184), we measured serum 

concentrations of estradiol and progesterone in the event that they represented a factor in 

potential adaptations to exercise training.  

All subjects were premenopausal female U.S. citizens of mixed ancestry, between the 

ages of 22 and 45 (subject characteristic presented in Table 4). All participants were nonsmokers 

with no history of metabolic disease. Subjects consisted of self-described African American 

(AW) and Caucasian women (CW). After confirming that race did not exert an effect on any of 
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the major outcome variables measured in the current study, AW and CW were pooled into lean 

(BMI < 30, n = 5) and obese (BMI > 30, n = 7) groups. On a day preceding each biopsy, the 

percent body fat (%BF) was determined for each subject by dual energy X-ray absorptiometry 

(DEXA). The protocol was approved by the East Carolina University Policy and Review 

Committee on Human Research in accordance with the Declaration of Helsinki principles. 

Informed consent was obtained from each subject after both written and oral information was 

presented about the procedure.  

 

DESIGN 

Vastus lateralis skeletal muscle biopsies were performed before (2 d), and after 8 weeks of 

exercise training (24-48 h after the last exercise bout). Peak aerobic capacities (VO2peak) were 

determined from expired air analysis during an incremental exercise protocol on an 

electronically-braked cycle ergometer (Lode, Diversified, CA). Rates of oxygen consumption 

were measured using open circuit spirometry with a metabolic cart (ParvoMedics, OH); and 

heart rate (HR) was simultaneously recorded via 12-lead electrocardiogram (ECG). VO2peak was 

determined before (Pre) and after (Post) training as the greatest average oxygen consumption rate 

during the incremental exercise test. The exercise regimen lasted 8 weeks and consisted of 5 days 

of exercise per week, for one hour per day at a heart rate corresponding to 70-75% VO2peak. 

VO2peak was measured every two weeks to readjust training workloads as the subjects improved 

their cardiorespiratory and muscle oxidative capacities. During the training protocol, each 

subject was intermittently monitored for oxygen consumption to assure the workload was 

maintained at the predetermined intensity. During the 7th week of training, subjects performed an 

exercise bout at the intensity equivalent to 75% of their pretraining VO2 peak during which 
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respiratory exchange ratio (RER, minute VCO2/VO2) was determined. 

 

PROCEDURE 

On the day of the skeletal muscle biopsy, subjects reported to the obesity research clinic at East 

Carolina University between the hours of 0630-0900 following an overnight fast (approximately 

12 hours). Body mass and height were recorded, and a fasting venous blood sample was obtained 

the day prior to the skeletal muscle biopsy for subsequent analysis.  From this blood sample, 

plasma and serum were separated from the blood for subsequent analysis of glucose (YSI 2300 

STAT Plus Glucose and Lactate Analyzer, YSI Inc; Yellow Springs, OH) and serum insulin. 

Additionally, 17β-estradiol and progesterone were measured (Access Immunoassay System, 

Beckman-Coulter; Fullerton, CA) to account for potential menstrual cycle effects. A homeostasis 

model assessment value for insulin resistance (HOMA-IR) was calculated (HOMA-IR = 

(glucose, mg•dL-1 • insulin,μU •mL-1) • 405-1; (191)).  

Skeletal muscle biopsies were obtained from the lateral aspect of the vastus lateralis by 

the percutaneous needle biopsy technique with constant suction under local subcutaneous 

anesthesia (1% lidocaine). A portion of each biopsy sample was flash frozen in liquid N2 for 

subsequent protein analysis as part of another study.  The remaining portion of the biopsy (~50 

mg wet wt) were transferred to ice-cold physiological relaxing buffer (buffer X) for transport, on 

ice, to the laboratory (< 5 min) for dissection, permeabilization, and mitochondrial function 

assays.  

 

PREPARATION OF PERMEABILIZED HUMAN MYOFIBERS 



    

 116

This technique is partially adapted from previous methods (173, 277) and has been 

thoroughly described (5-7).  Briefly, after dissection, connective tissue was removed and fiber 

bundles were separated with fine forceps under binocular dissecting microscope in ice cold 

buffer X, containing (in mM): 60 K-MES, 35 KCl, 7.23 K2EGTA, 2.77 CaK2EGTA, 20 

Imidazole, 0.5 DTT, 20 Taurine, 5.7 ATP, 15 PCr, 6.56 MgCl2-6H2O (pH 7.4, 295 mOsm). After 

separation, myofiber bundles were placed in 4° C buffer X containing 30 μg/mL saponin for 30 

minutes and then were washed individually in ice-cold Buffer Z containing (in mM) 110 K-

MES, 35 KCl, 1 EGTA, 10 K2HPO4, 3 MgCl2-6H2O, 5 mg/ml BSA (pH 7.4, 295 mOsm) until 

analysis (< 1 hour). Fibers used in the H2O2 emission experiments were briefly washed in cold 

buffer Z containing 10 mM pyrophosphate prior to analysis to prevent Ca+2-independent 

contraction.  

 

MITOCHONDRIAL RESPIRATION AND H2O2 EMISSION MEASUREMENTS IN 

PERMEABILIZED HUMAN MYOFIBERS  

O2 consumption rate was measured by polarographic high-resolution respirometry 

(Oroboros O2K Oxygraph, Innsbruck, Austria) at 30°C in air-saturated (~220–150 μM O2) 

Buffer Z + 20 mM creatine hydrate and 50 μM N-Benzyl-p-toluene sulphonamide (BTS, an 

inhibitor of myosin II) under the following protocol: 25 μM palmitoyl-carnitine + 1 mM malate 

(P-C/M, State 4) followed by sequential additions of 2 mM ADP (P-C/M, State 3), 10 μM 

cytochrome c (indicator of outer mitochondrial membrane intactness), 2 mM glutamate (P-

C/MG), 3 mM succinate (P-C/MGS), 10 μg/mL oligomycin (inhibitor of mitochondrial ATP 

synthase) (P-C/MGSO), and finally 2 μM carbonylcyanide-p-trifluoromethoxyphenylhydrazone 

(FCCP, a protonophoric uncoupler) (P-C/MGSOFCCP).  Subsequently, ratios of respiratory 
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control were calculated as follows: RCRP-C/M, respiratory control ratio  = (JO2, P-C/M, State 

3)·(JO2, P-C/M, State 4)-1; UCRP-C/MGS, uncoupling control ratio = (JO2, P-C/MGSOFCCP)·(JO2, 

P-C/MGSO)-1; ACRP-C/MGS, adenylate control ratio = (JO2, P-C/MGSOFCCP)·(JO2, P-C/MGS)-1.  

H2O2 emission was measured at 30° C in Buffer Z during state 4 respiration (10 μg/mL 

oligomycin) by continuously monitoring oxidation of Amplex red (excitation/emission λ = 

563/587 nm) using a Fluorolog-3 (Horiba Jobin Yvon, Ltd; Edison, NJ) spectrofluorometer 

under the following protocol: 25 μM palmitoyl-carnitine + 1 mM malate (P-C/M) followed by 

sequential additions of 2 mM glutamate (P-C/MG) and 3 mM succinate (P-C/MGS). At the 

conclusion of each experiment, permeabilized fiber bundles were washed in distilled H2O to 

remove salts and freeze-dried in a lyophilizer (LabConco).  Mitochondrial respiration rates are 

expressed as pmol·s-1·mg-1 dry weight and H2O2 emission rates as pmol·min-1·mg-1 dry weight.   

 

STATISTICS  

Data are presented as mean ± SEM. Statistical analyses were performed with SPSS 17 

(SPSS, Inc.) using 2-way ANOVA with repeated measures and covariates as indicated 

(ANCOVA). Bonferroni post hoc tests were used to determine significance among groups. The 

α-level of significance was set a priori at p < 0.05. 

 

RESULTS 

 

EFFECTS OF 8 WEEKS EXERCISE TRAINING ON BODY COMPOSITION, INSULIN 

SENSITIVITY AND OVARIAN STEROID HORMONES 
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To asses the responses to 8 weeks of exercise training in vivo, BMI, % body fat (% BF), 

serum estradiol (E2), progesterone (P4) and HOMA were determined both before (pre) and after 

(post) training (Table 4). Peak oxygen consumption (VO2peak) and the respiratory exchange ratio 

(RER) at 75% VO2peak during exercise were also determined (Table 4). Not surprisingly, BMI 

and % BF differed between the lean and obese groups as this is how the subjects were grouped 

(i.e., lean vs. obese, BMI < 30 vs. BMI > 30, respectively). Interestingly, the only variables 

affected by 8 weeks of exercise training were those determined during exercise. As expected, 

VO2peak increased with training in the lean group indicative of improved cardiorespiratory fitness, 

whereas RER at the exercise intensity equivalent to 75% of the Pre VO2peak decreased in the lean 

and obese groups. The decrease in exercise RER represents an improved reliance on fat as 

substrate for a given absolute exercise intensity with training, and was expected. However, there 

was no improvement in insulin sensitivity (HOMA) with training (Table 4). Therefore, these data 

demonstrate an improvement in cardiorespiratory fitness and ability to oxidize fat during 

exercise, but not improved insulin sensitivity at rest.   

 

EFFECTS OF 8 WEEKS EXERCISE TRAINING ON MITOCHONDRIAL RESPIRATION AND 

H2O2 EMISSION IN PERMEABILIZED MYOFIBERS.  

To assess the response to 8WT in skeletal muscle mitochondria, mitochondrial 

respiratory O2 flux (JO2) and H2O2 emission (mEH2O2) were measured in saponin-permeabilized 

myofibers from lean and obese women before (Pre) and after (Post) 8WT. Because differences 

were not observed when covarying for any of the ovarian sex steroids or their ratios, neither E2, 

P4 or P4:E2 ratio was included as a covariate. As Table 5 indicates, no training-induced changes 

in JO2 during a multisubstrate titration were observed in either lean or obese subjects, even when 
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adjusted for the difference in Pre-Post BMI, %BF, or HOMA-IR (ANCOVA). Similarly, no 

changes in respiratory (RCR), uncoupling (UCR) or adenylate (ACR) control ratios were 

observed Pre-Post (Table 5), suggesting that 8WT had no effect on coupling (RCR and UCR) or 

limitations to JO2 exerted by the phosphorylation system (ACR). In contrast, 8WT resulted in a 

significantly lower succinate-supported mEH2O2 when the effect of Pre-Post HOMA-IR 

difference was removed (Table 6; P < 0.01). Surprisingly however, the rates of mEH2O2 were 

greater in the lean compared to the obese subjects (P < 0.05). When the rates of mEH2O2 were 

expressed as a percentage of the JO2 (pmol·min-1·mg dry wt-1) supported by identical substrates 

(% mEH2O2), a training-induced effect remained (Table 6; P < 0.05). This suggests that 8WT 

affected the proportion of mEH2O2 relative to JO2, and that the change in mEH2O2 did not simply 

parallel a change in JO2.  Interestingly, when adjusted for the difference in Pre-Post mEH2O2, no 

difference in HOMA-IR with 8WT was observed, though statistical significant was approached 

(P = 0.61; data not shown).  This suggests that mEH2O2 affects insulin sensitivity and not the 

other way around. 

 

DISCUSSION 

Initially, the current study sought to explore the effects of exercise training on the 

mitochondrial fate of O2 in the context of the racial metabolic disparity between AW and CW in 

the United States. Thus, mitochondrial JO2, mEH2O2 and insulin resistance were studied in lean 

and obese AW and CW, Pre and Post 8WT. However, contrary to the previously published 

decrement in fat oxidation in AW during exercise relative to CW (128),  it was determined that 

race played no role in any of the outcome variables measured in Chapter 4, including RER at 
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75% VO2peak. Therefore, the AW and CW were pooled into lean (BMI < 30) and obese (BMI > 

30) groups.  

In the current study, we hypothesized that 8 weeks of exercise training would result in 

improved insulin sensitivity, concomitant with a reduction in the potential for mitochondrial 

reactive oxygen species production, an increase in mitochondrial respiration, and a reduction in 

ratios of respiratory control. The results presented here do not support the notion of improved 

insulin sensitivity absent any potential for acute effects during or following a bout of exercise or 

changes in body composition (% BF or BMI). However, the results demonstrate an improvement 

in cardiorespiratory fitness (VO2peak), fat oxidation during exercise (RER at 75% VO2peak), and a 

reduced potential for succinate-supported mEH2O2 (> 30 % in both groups). Furthermore, the 

respirometric experiments conducted on permeabilized fibers do not support that the reduction in 

mEH2O2 with exercise training is necessarily the result of increased (or decreased) state 4 JO2. 

Indeed, when expressed relative to JO2 (% mEH2O2), mEH2O2 was still significantly lower after 

training (Table 6).   

It is generally accepted that during exercise, high rates of JO2 in skeletal muscle increase 

the rates of ROS production (reviewed in (189)), and the source of this exercise-associated ROS 

has been attributed primarily to the mitochondria (189). However, the early work of Britton 

Chance and co-workers demonstrated that this high percentage of mitochondrial ROS is only 

evident during basal, state 4 respiration supported by succinate (48) for example, which induces 

a high rate of mEH2O2 via reverse electron flow (REF) at complex I of the mitochondrial 

respiratory chain (206). With regard to the acute effects of exercise on REF-mediated mEH2O2, 

Sahlin et al (243) very recently published a study that examined these effects. In mitochondria 

isolated from the vastus lateralis muscles of male athletes participating in ultra-endurance 
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exercise, the rate of state 4, succinate-supported (i.e., due to REF) mEH2O2 detected by Amplex 

red was increased 73% immediately post-exercise from pre-exercise rates (243). As expected, the 

rates of  H2O2 emission from mitochondria isolated from a biopsy performed 28 hours after the 

exercise returned to pre-exercise rates (243). In vitro, during state 3 respiration, mitochondrial 

ROS production drops precipitously (198). Because studies have shown that intense or 

exhaustive exercise is associated with markers of oxidative stress (189, 241), it has since been 

proposed that extramitochondrial or extracellular sources of ROS are involved, possibly due to 

ROS generated by xanthine oxidase (112). However, a very recent report by the group of 

O’Rourke have synthesized an elegant hypothesis from experimental observations in isolated 

cardiac mitochondria and cardiomyocytes that may explain how mitochondria can produce 

significant rates of ROS during exercise (10).  Termed “Redox-Optimized ROS balance,” the 

idea holds that during conditions of either greatly reduced or oxidized redox environments, the 

net ROS emitted from the mitochondria will be elevated (10). During mild uncoupling in vivo, 

rates of ROS released from the mitochondria may therefore actually increase due to a decrease in 

the redox couple (e.g., NADH/NAD+) that supplies electrons for the ROS scavenging system 

(10). Under this paradigm of redox-optimized ROS balance, the rates of mEH2O2 generated in the 

in vitro experiments conducted in the current study would occur at the more reduced end of the 

redox spectrum, when the superoxide generated at the level of the respiratory chain by 

exogenous substrates overwhelms the antioxidant defense. Viewed in this context, our data 

therefore suggest an improvement in the antioxidant defense after 8WT.  

Conventionally, the respiratory control ratio (RCR), defined as the quotient of state 3 

respiration to that of state 4, is used as an index of mitochondrial coupling. Indeed, a positive 

linear relationship between the inverse respiratory control ratio (1/RCR) and P:O ratios has been 
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demonstrated in isolated mitochondria (101). In the current study, there was also no effect of the 

exercise training on any of the calculated respiratory control ratios (Table 5). Mitochondrial 

production of ROS increases exponentially as respiration slows to resting state 4 conditions, and 

by definition, the mitochondrial membrane potential (ΔΨ) is at its highest (166). Because this 

ΔΨ – dependent mitochondrial ROS is very sensitive to even mild uncoupling (198), logic 

follows that an increase in metabolic rate and or uncoupling agents (e.g., uncoupling proteins) in 

the mitochondria with exercise should reduce the potential for mitochondrial ROS production. 

Indeed, exercise has been shown to increase the expression of known contributors to the basal 

proton leak across the mitochondrial inner membrane (87), such as the cardiac/skeletal muscle-

specific isoform of the adenine nucleotide translocase, ANT1 (37). However, in light of the 

absence of a change in the RCR or UCR (Table 5), it is deduced that the decrease in the potential 

for mEH2O2 with 8 weeks of exercise training in the current study are not due to uncoupling per 

se. The possibility that these changes in mEH2O2 are instead mediated by an increase in the ROS 

scavenging systems are supported in the literature (243). Indeed, an accumulating body of 

evidence employing both direct (i.e., ESR spectroscopy) and indirect methodologies (e.g., assay 

of oxidatively modified macromolecules) strongly suggests that free radicals generated during 

mild to moderate endurance exercise actually constitute a stimulus mechanism for adaptations to 

exercise, including mitochondrial biogenesis in skeletal muscle (reviewed in (241)). However, in 

accordance with Hans Selye’s classic theorem of general adaptation to a given stressor (254), 

even exercise training will result in deleterious effects if the body is not allowed to adapt. An 

example illustrating this concept with regard to exercise-associated oxidative stress in the 

extreme comes from a very recent study in which severely overtrained athletes exhibited 
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elevated levels of lipid peroxidation products and protein carbonylation compared to control 

athletes, both at rest and after exhaustive exercise (274).  

Another possible explanation for the reduction in mEH2O2 with exercise training may owe 

to redox modifications at the level of the mitochondrial electron transport chain. Indeed, it 

appears that ROS production at the level of the mitochondrial electron transport system (ETS) 

can affect its own enzymatic functions, conferring redox-level regulation of both substrate 

metabolism and superoxide (O2
-) generation. The high mitochondrial matrix pH (~8) and 

proximity of mitochondrial proteins to the major ROS production sites makes mitochondrial 

protein thiols particularly susceptible to oxidation by ROS (144, 182). Mitochondrial electron 

transport chain proteins are rich with thiols (142, 143);  but it is within complex I that the 

reactive/regulatory protein thiols believed to confer physiological function are primarily located 

(18, 66, 152, 247, 307). Many of these thiols are associated with non-heme iron centers, while 

others on the surface of the complex I are prime targets for redox modification. As an example, 

S-nitrosylation of complex I thiols has been shown to correlate with a significantly reduced 

activity of the enzyme, an effect that was readily reversible with thiol reductants (66). Moreover, 

this S-nitrosylation was also associated with an increased complex I O2
- formation (66). Evidence 

also suggests that complex I is susceptible to glutathionylation by GSSG in the presence of the 

mitochondrial thiol transferase glutaredoxin 2 (Grx2) (18). Manipulating the redox milieu with 

an oxidized GSH:GSSG ratio leads to a dramatic loss of complex I activity (18). Moreover, 

complex I activity is inhibited by S-glutathionylation occurring in both 75-kDa (NDUFS1) and 

51-kDa (FMN-binding subunit/ NDUFV1) subunits of isolated complex I upon addition of 

excess GSSG (18, 152, 182, 307), which can result in rapid production of O2
- (18). Similarly, 

oxidative modification of complex I results in self-inactivation, decreased electron transfer 
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activity, and in turn resulting in more O2
- generation, a phenomenon often referred to in the 

literature as a “vicious cycle” of ROS-induced ROS production (203) . In the current study, 

mEH2O2 induced by addition of succinate differed Pre-Post 8 weeks of exercise training (Table 6). 

Because succinate stimulates superoxide generation via reverse electron flow at complex I (206), 

the results of the current study therefore suggest that exercise training may also attenuate 

complex I-linked mEH2O2, and that perhaps exercise/exercise training interrupts a vicious cycle of 

ROS-induced ROS production associated with oxidative modification of the O2
- - generating 

components of the mitochondrial ETS.  

At the mechanistic level,  exercise-associated redox stress has been shown to affect 

signaling pathways that include the PI3-kinase/Akt, p53, heat shock proteins, the mitogen-

activated protein kinase (MAPK) and nuclear factor (NF) κB (150).  Upon direct reaction with 

H2O2 or other ROS, NFκB is translocated to the nucleus, where it binds to a number of target 

gene promoters, initiating activation of various target genes, one of which is the mitochondrial 

manganese-containing superoxide dismutase (MnSOD), an enzyme which converts superoxide to 

H2O2. Indeed, it was shown that the expression of MnSOD increased significantly after a single, 

1 –hour bout of exhaustive exercise in rat skeletal muscle (133), and further confirmed that acute 

exercise increases the NFκB signaling pathway in rat skeletal muscle (151). Observations made 

by these and others regarding the adaptive response to exercise-association redox perturbations 

(227, 241) may therefore account, at least in part, for the often unimpressive results from studies 

examining the effects of antioxidant supplementation on adaptation to exercise (reviewed in 

(38)) and improvements to diabetes (reviewed in (256)). In fact, a very recent study found that 

supplementation with the antioxidant vitamins C and E actually prevented the exercise-

associated benefits on insulin sensitivity in humans (236). Taken as a whole, the literature 
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suggests that the improvements in exercise performance and whole-body insulin sensitivity with 

exercise training may owe to adaptations associated with attenuating mitochondrial ROS. 

Whether this involves an increase in the antioxidant defense, a decrease in the production of 

ROS, or both, will require further research. The results of the current study do not support that 

increased proton flux (i.e., lowered ΔΨ) during basal respiration accounts for the observed 

decrease in mEH2O2. Moreover, the results of the current study do not even support the long-held 

notion of improved insulin sensitivity with exercise training, absent any changes in body mass or 

composition. In a study investigating the effect of 12 weeks of exercise training (cycle ergometer 

4 h/wk at 70% VO2max) on insulin sensitivity (euglycemic-hyperinsulinemic clamp) and glucose 

metabolism (indirect calorimetry) in lean, obese and diabetic men, Segal et al (253) made 

conclusions corroborating the results of the current study with regard to the effects of exercise 

training on insulin sensitivity. Indeed, while the subjects improved their cardiorespiratory fitness, 

no improvements in insulin sensitivity were observed after the exercise training (253). Because 

they  also controlled for energy balance by refeeding the energy expended in each training 

session, they concluded that exercise does not improve insulin sensitivity independent of changes 

in body mass or composition (253). In the current study, exercise training did not result in a 

significant change in body mass or % body fat (Table 4). In fact, the only variables observed in 

vivo to change over the course of the 8 weeks of exercise training in the present study were 

VO2peak and the RER at 75% VO2peak. The decrease in RER with training suggests that during 

exercise, the subjects relied more on fat for energy during exercise after the 8 weeks of training.  

With regard to the permeabilized fiber experiments in the current study, mEH2O2 was 

reduced following training, but there was no change in JO2. Because insulin sensitivity did not 

similarly improve with 8 weeks of exercise training, the changes in mEH2O2 observed here may 
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therefore relate more to adaptations conferred as a specific response to the exercise stressor, 

paralleling the typical improvements in cardiorespiratory fitness (60) and fat oxidation (222) 

associated with exercise training in general, and also observed in the current study. In support of 

this contention, when first first-degree relatives of type 2 diabetic patients were tested pre- and 

post- 10 weeks of exercise training, the improvements in VO2max did not correlate with 

improvements in insulin sensitivity (213). The authors therefore concluded that improvements in 

insulin sensitivity may be dissociated from the adaptations to exercise training in skeletal muscle 

in first degree relatives of type 2 diabetic patients (213).  Since then, additional reports support 

the notion that exercise training does not improve insulin sensitivity independent of changes in 

body mass or composition (300), which by definition represents a negative energy balance 

situation.  

The fact that all the subjects in the current study were women may help explain some of 

the results. In contrast to men (8), women who regularly exercise are reported to remain weight-

stable, even if the exercise incurs significant energy deficits (205). It has therefore been 

suggested that women are better able to adapt to changes in energy balance associated with 

endurance exercise training (26). While the ovarian hormones have been suggested to play a role 

in the metabolic response to exercise in women (64)  the results of the current study do not 

support that a change in either E2 or P4 can account for any of the results after 8 weeks of 

exercise training (Table 4). When the effects of voluntary wheel running on energy balance, 

linear growth and body composition were compared between male and female rats over a nine-

week period, it was determined that both the male and female rats were in negative energy 

balance versus control (57).  However, despite running greater distances (50-80%) than the male 
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rats, the female rats did not lose weight (57). These data agree with the results of the current 

study, which found no change in body mass or % body fat after 8 weeks of exercise training.  

In the current study, post hoc analysis revealed that mEH2O2 expressed relative to JO2 

(i.e., % mEH2O2) was significantly reduced Pre-Post in the lean group following training (Table 

6). Moreover, it was noted that the mean pre- and post-training mEH2O2 tended to be greater in 

the lean group compared to the obese group, albeit not significantly so. One potential explanation 

for these observations has to do with the lifestyles characteristics for which these subjects were 

recruited; namely, they were selected because they were self-described sedentary women. 

Because these women were certainly not bedridden individuals, having arrived to the research 

center under their own power, it follows that the work associated with average daily tasks would 

be greater in the obese subjects, who by definition have greater body mass to move. Literature 

further supports the contention that energy expenditure is greater in obese compared to lean 

women (228). In the current study, the skeletal muscle biopsies were performed in the subjects’ 

vastus lateralis, a component of the quadriceps muscle group. A recent study confirmed that in 

adolescents, obesity has no effect on quadriceps muscle function (188). If quadriceps function 

(e.g., force production, fatigueability) are presumed to be similar between the lean and obese 

subjects in the current study, and the energy expenditures greater in the obese subjects (228), the 

possibility may therefore exist that the obese subjects actually had better-trained vastus laterali 

before the current study commenced. If, similar to exercise training, reduced mEH2O2 in the 

musculature constitutes an adaptation to the activities of daily living (e.g., walking), then this 

might explain why the lean subjects did not have a lower mEH2O2 either pre- or post-training 

compared to the obese subjects.  
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During exercise, insulin-independent and -dependent glucose uptake by human skeletal 

muscle is enhanced. After a single bout of exercise, insulin sensitivity increases primarily in the 

muscles involved in the physical activity, an effect which may last for up to two days (124, 305). 

Many studies measure indices of insulin sensitivity after exercise training within 1-2 days 

following the final exercise bout (e.g., (59)). Three of the 12 subjects in the current study were 

biopsied 48 h after the last exercise bout, with the remaining 9 biopsied 24 h after the last bout. 

Thus, if improved insulin sensitivity with exercise training owes substantially to the acute (and 

diminishing) affects conferred within the 1-2 days following a bout of exercise (124, 305), then 

the fact that the subjects in the current study were in some cases tested ~2 days following the last 

bout of exercise may account for the lack of improved insulin sensitivity observed after 8 weeks 

of exercise training in the current study. Indeed, it was only after covarying for the Pre-Post 

difference in HOMA-IR that significant training effects were observed with regard to mEH2O2 

(Table 6). This fact highlights the potential underlying training adaptations to 8WT, which 

clearly involve a reduced propensity for mEH2O2 in skeletal muscle. A relevant corollary question 

was what happens to estimated insulin resistance when mEH2O2 is controlled in the statistical 

model. Surprisingly, there HOMA-IR did not differ significantly Pre-Post, even when controlling 

for mEH2O2. This suggests that the underlying mitochondrial adaptation to 8WT was therefore 

only revealed in our in vitro assay in which mitochondria are subjected to increasing amounts of 

substrates, at least one of which (succinate) is known to induce very high rates of complex I-

mediated H2O2. The body mass/composition data indicate that the subjects in the current study 

were likely in a zero, or more probably positive energy balance following the 8WT. Under basal 

in vivo conditions in a positive energy balance situation, the mitochondrial metabolite flux 

pattern are expected to exhibit state 4 - like conditions vs. state 3, in turn masking the potential 
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training effects on, for example, HOMA-IR. If true, this would explain why statistically 

controlling for Pre-Post HOMA-IR revealed such marked differences in the capacity for 

substrate-stimulated mEH2O2 in vitro. 

In conclusion, the results of this study demonstrate a significant reduction in the potential 

for mEH2O2 in skeletal muscle from women following 8 weeks of exercise training, with no 

change in mitochondrial JO2. Absent acutely improved insulin sensitivity or changes in body 

mass or composition, these data suggest that the reduction in mEH2O2 may constitute an 

adaptation to exercise training which parallels improved cardiorespiratory fitness and improved 

reliance on fat during exercise, and not necessarily improved estimated resting glucose 

homeostasis.  
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TABLE 4. EFFECTS OF 8 WEEKS OF EXERCISE TRAINING ON BODY MASS & 

COMPOSITION, SERUM OVARIAN SEX STEROIDS, INSULIN SENSITIVITY, AND 

EXERCISE PEAK OXYGEN CONSUMPTION AND FUEL METABOLISM. 

 
Body mass index (BMI = kg·(m2)-1), percent body fat (% BF), serum estradiol (E2, pM), 

serum progesterone (P4, nM), ratio of P4, pM to E2, pM (P4:E2), homeostatic model assessment 

(HOMA), VO2peak (mL·kg-1·min-1) and respiratory exchange ratio (RER = VCO2/VO2) at 75% 

VO2peak determined for 5 lean and 7 obese women before (Pre) and after (Post) 8 weeks of 

exercise training. P < 0.05 represents significant main effects; * = significantly different from 

pre-training value, P < 0.05; ** = P < 0.01. 
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 Lean, n = 5 Obese, n = 7 
Main effects, 

P-value 

Variable Pre Post Pre Post Training Obesity 

Age (y) 33.6 ± 4.3 30 ± 2.4 - 0.45 

BMI 25.3 ± 0.8 25.6 ± 0.7 37.2 ± 1.8 37.9 ± 1.9 0.09 < 0.001 

% BF 38.3 ± 1.5 37.6 ± 1.2 48.2 ± 1.8 49.0 ± 1.8 0.80 < 0.01 

E2 (pM) 398.7 ± 140.6 517.6 ± 252.0 378.9 ± 94.3 353.0 ± 128.6 0.68 0.63 

P4 (nM) 14.3 ± 5.4 12.7 ± 6.5 11.1 ± 5.9 9.1 ± 4.6 0.53 0.66 

P4:E2 36.9 ± 14.1 33.1 ± 15.3 32.7 ± 12.0 34.6 ± 24.1 0.55 0.34 

HOMA 2.7 ± 0.44 2.0 ± 0.3 5.2 ± 1.4 5.4 ± 1.4 0.56 0.10 

VO2Peak  
(mL•kg-1•min-1) 21.3  ± 1.9 24.5 ± 1.3 16.4 ± 1.0 17.0 ± 0.4 < 0.05 < 0.01 

RER 
(75%VO2Peak) 

0.92 ± 0.02 0.88 ± 0.01** 0.91 ± 0.01 0.89 ± 0.01* < 0.001 0.66 
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TABLE 5. EFFECTS 8 WEEKS OF EXERCISE TRAINING ON MITOCHONDRIAL 

RESPIRATION AND RATIOS OF RESPIRATORY CONTROL. 

 
 

Rates of mitochondrial respiratory O2 flux (JO2, pmol·s-1·mg dry wt-1) measured in 

saponin-permeabilzed myofibers from vastus lateralis skeletal muscle biopsies from 5 lean and 7 

obese women before (Pre) and after (Post) 8 weeks of exercise training. Substrate conditions 

were: 25 μM palmitoyl-carnitine + 1 mM malate (P-C/M, State 4); P-C/M + 2 mM ADP (P-C/M, 

State 3); P-C/M, State 3 + 2 mM glutamate (P-C/M+G); P-C/M, G, State 3 +3 mM Succinate (P-

C/MG+S); P-C/MGS + 10 μM oligomycin (P-C/MGS+O); P-C/MGSO + 2 μM FCCP (P-

C/MGSO+FCCP). Ratios of respiratory control were calculated as follows: RCRP-C/M, respiratory 

control ratio  = (JO2, P-C/M, State 3)·(JO2, P-C/M, State 4)-1; UCRP-C/MGS, uncoupling control 

ratio = (JO2, P-C/MGSO+FCCP)·(JO2, P-C/MGS+O)-1; ACRP-C/MGS, adenylate control ratio = 

(JO2, P-C/MGSO+FCCP)·(JO2, P-C/MG+S)-1.  
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 Lean, n = 5  Obese, n = 7  
Main effects,  

P-value 
JO2  

(pmol · s-1 · mg-1) Pre Post  Pre Post  Training Obesity 

P-C/M (State 4) 8.9 ± 1.7 8.2 ± 2.0  6.6 ± 1.8 9.4 ± 2.6  0.66 0.77 

P-C/M (State 3) 52.5 ± 4.4 53.1 ± 4.4  38.9 ± 4.2 51.1 ± 6.5  0.17 0.23 

P-C/M+G 155.2 ± 15.1 163.7 ± 16.6  122.8 ± 14.8 163.0 ± 20.6  0.17 0.41 

P-C/MG+S 219.1 ± 19.0 211.4 ± 18.0  178.7 ± 21.5 216.2 ± 31.1  0.55 0.51 

P-C/MGS+O 47.13 ± 2.3 53.0 ± 7.5  44.3 ± 5.2 58.3 ± 9.2  0.20 0.87 

P-C/MGSO+FCCP 269.8 ± 27.4 277.9 ± 23.8  220.9 ± 20.1 265.5 ± 37.3  0.36 0.35 

RCRP-C/M 7.2  ± 1.8 7.5 ± 1.3  8.8 ± 2.3 7.7 ± 1.8  0.84 0.64 

UCRP-C/MGS 5.7  ± 0.5 5.5 ± 0.6  5.3 ± 0.6 4.7 ± 0.2  0.31 0.32 

ACRP-C/MGS 1.2 ± 0.1 1.3 ± 0.1  1.3 ± 0.1 1.2 ± 0.0  0.74 0.63 
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TABLE 6. EFFECTS OF 8 WEEKS OF EXERCISE TRAINING ON MITOCHONDRIAL 

H2O2 EMISSION AND FRACTIONAL H2O2. 

Rates of mitochondrial H2O2 emission (mEH2O2, pmol·min-1·mg dry wt-1) measured in 

saponin-permeabilzed myofibers from vastus lateralis skeletal muscle biopsies from 5 lean and 7 

obese women before (Pre) and after (Post) 8 weeks of exercise training. Substrate conditions 

were, in the presence of 10 μM oligomycin: 25 μM palmitoyl-carnitine + 1 mM malate (P-C/M); 

P-C/M + 2 mM glutamate (P-C/M+G); P-C/MG + 3 mM Succinate (P-C/MG+S). Additionally, 

mEH2O2 are expressed as a percentage of the respective rate of respiratory O2 flux (JO2) measured 

in parallel: P-C/M, State 4 (% mEH2O2 P-C/M); and P-C/MGS + 10 μM oligomycin (% mEH2O2 

P-C/MGS). P < 0.05 represents significant main effects; * = significantly different from pre-

training value. 
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 Lean, n = 5  Obese, n = 7  
Main effects, 

P-value 
mEH2O2  

(pmol·min-1·mg-1) Pre Post  Pre Post  Training Obesity 

P-C/M  4.0 ± 0.8 2.0 ± 1.1   2.2 ± 0.6 3.1 ± 0.9   0.12 0.66 

P-C/M+G 4.2 ± 1.0 2.6 ± 1.1   2.7 ± 0.9  3.1 ± 0.9  0.54 0.50 

P-C/MG+S 41.2 ± 8.1  14.0 ± 5.1*  10.3 ± 6.8  7.4 ± 4.3   < 0.01 < 0.05 

% H2O2 P-C/MGS 1.5 ± 0.3 0.4 ± 0.1*   0.4 ± 0.3  0.2 ± 0.1   < 0.05 0.07 
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CHAPTER 5: INTEGRATED DISCUSSION 

The current and rising epidemic in diabetes has lead to intense investigation into the 

mechanisms of skeletal muscle insulin resistance. In Chapter 1, review of the literature clearly 

implicates the mitochondrion and redox signaling in the etiology of insulin resistance. The 

studies described in Chapter 2-4 were all conducted with hypotheses governed by the same 

theme; each investigated the effect of a known modulator of insulin sensitivity on the potential 

for mEH2O2 in skeletal muscle. In Chapter 2, the effect of metformin, a well established 

pharmacological means of improving insulin sensitivity, was used to treat the Zucker rat model 

of obesity-associated peripheral insulin resistance. Confirming the overall hypothesis of the 

current work, metformin treatment both improved glycemic control, and at the same time 

reduced the potential for mEH2O2. Subsequently, acute ex vivo metformin incubation experiments 

revealed that complex I is dose-dependently inhibited by metformin. It was further determined 

that the specificity by which metformin inhibits reverse electron flow-mediated mEH2O2 

outweighed the effects of the drug on electron flow in the forward direction (i.e., JO2). Batandier 

et al (17) reported a similar phenomenon in mitochondria isolate from rat liver incubated in a 

suprapharmacological concentration of metformin. The main contribution of the metformin data 

presented in the current work owes to its physiological relevancy. Indeed, the Zucker rats in the 

present work were treated with oral metformin dosed to body mass; and the mitochondria were 

tested in permeabilzed skeletal muscle fibers from these rats without exogenous metformin. The 

dose response experiments represent another unique aspect of this study. It is the first study to 

show that quantitatively, complex I-linked mEH2O2 is more sensitive to metformin that complex 

I-linked JO2. Whether this phenomenon applies to humans or occurs in vivo will require further 

research.  
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As mentioned previously in Chapters 1, 3 and 4, the incidence of obesity and type 2 

diabetes is greater among African American women (AW) compared to Caucasian women (CW) 

in the United States (258). This phenomenon has fueled considerable research aimed at 

elucidating the potential mechanisms which may account for this racial disparity (e.g., (34, 35, 

41, 58, 68, 94, 128, 141, 162, 178, 187, 229, 249, 270, 273)). The initial purpose of the study in 

Chapter 3 was to explore a potential link between mitochondrial respiration, mitochondrial 

reactive oxygen species and insulin resistance with regard to race (i.e., AW vs. CW) and obesity 

(BMI > 30) in women. Surprisingly however, race did not affect any of the outcome variables 

measured in Chapter 3 or Chapter 4. In Chapter 3, the AW and CW were therefore pooled and 

divided by insulin resistance. It is important to note that in the current studies, only palmitoyl-

carnitine, the activated form of the fatty acid was used to test JO2 and mEH2O2.  Palmitoyl-

carnitine readily enters the mitochondrial matrix, bypassing carnitine palmitoyl transferase 

(CPT1), the purported rate-limiting step in the oxidation of long-chain fatty acids (161). Because 

it is expected that respiration supported exclusively by palmitoyl-carnitine in experimental 

mitochondrial preparations is therefore rate-limited by the β-oxidative machinery within the 

matrix, and not CPT1, the possibility remains that we were unable to detect potential differences 

in fatty-acid supported JO2 in skeletal muscle mitochondria between AW and CW because a/the 

biomolecular source(s) responsible for the racial disparity in fatty acid oxidation lies upstream of 

β-oxidation, i.e., the steps of activation and/or transport. Indeed, recent yet scarce research 

supports the notion that impaired activity/content of acyl coA synthetase, an important enzyme 

involved in the activation of fatty acids for oxidation and/or storage may represent a salient 

enzymatic deficiency in the skeletal muscle of AW (58, 229), which manifests in a reduced 

capacity for lipid oxidation and predisposition to obesity and type 2 diabetes.  
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A clear connection between insulin resistance and mEH2O2 in women was established in 

Chapter 3. Moreover, a significant relationship between P4 and mEH2O2 was demonstrated. 

Several studies have investigated the effects of E2 and/or P4 on mitochondrial physiology (3, 31, 

51, 84, 114, 192, 202, 211, 266, 297). The design of the current study was unique in that the 

effects of physiologically relevant concentrations of E2 and P4 on mEH2O2 and JO2 were 

demonstrated. First, saponin-permeabilized myofibers from women in the follicular phase of 

their menstrual cycle were incubated with luteal phase serum concentrations of either E2, P4, or 

both. Second, a strong relationship between serum levels of progesterone and mEH2O2 was 

established in women selected at random with regard to menstrual cycle status. These results 

from Chapter 3 demonstrate a model by which P4 promotes an increased potential for mEH2O2, 

with or without E2 present; and also in which P4 inhibits JO2, but not when E2 is present. Lastly, 

mEH2O2 in permeabilized myofibers from one woman who learned post hoc that she was 

pregnant at the time of the biopsy, revealed a markedly greater rate of mEH2O2 compared to 

insulin sensitive women. Altogether, the results from Chapter 3 implicate the rising OS during 

the luteal phase and pregnancy in a rise in mEH2O2, which may be due to elevated P4. When the 

results from both Chapters 2 and 3 are considered together, evidence for a potential unifying 

mechanism emerges whereby complex I-linked mEH2O2 represents a convergence of two known 

modulators of insulin sensitivity.  Metformin, a well established means of improving insulin 

sensitivity, reduces complex I-linked mEH2O2. P4 on the other hand, a female sex hormone 

implicated in peripheral insulin resistance, increases complex I-linked mEH2O2. It was therefore 

tempting to presume that exercise training would accomplish its generally accepted 

improvements in skeletal muscle insulin sensitivity through a similar mechanism involving 

complex I-linked mEH2O2.  
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In Chapter 4, the effects of exercise training on insulin sensitivity and mEH2O2 in women 

were explored. Initially, the study in Chapter 4 sought to explore the effects of exercise training 

on the mitochondrial fate of O2 in the context of the racial metabolic disparity between AW and 

CW in the United States. Thus, mitochondrial JO2, mEH2O2 and insulin resistance were studied in 

lean and obese AW and CW, Pre and Post 8WT. However, contrary to the previously published 

decrement in fat oxidation in AW during exercise relative to CW (128),  it was determined that 

race played no role in any of the outcome variables measured in Chapter 4, including RER at 

75% VO2peak. Therefore, the AW and CW were pooled into lean (BMI < 30) and obese (BMI > 

30) groups.  

A well established therapeutic modality in the treatment of diabetes, 8 weeks of exercise 

training (8WT) did not improve estimated insulin sensitivity in Chapter 4. 8WT did however 

reduce mEH2O2 in the lean subjects and improve the peak rates of oxygen consumption (VO2peak) 

and fat oxidation during exercise (RER at 75% VO2peak).  Unexpectedly, JO2 was not altered with 

training, nor were any of the ratios of respiratory control. Therefore, it appears likely that 

reductions in the potential for mEH2O2 associated with training may owe more to improvements 

in the antioxidant defense machinery or redox protein modifications at the level of the ETS, and 

not necessarily a reduction in mitochondrial ΔΨ at rest. Increasingly, the literature points to 

exercise associated mitochondrial ROS as stimulus for training-induced adaptations in skeletal 

muscle (227). The results presented in Chapter 4 support that reduced potential for mEH2O2 

constitutes an adaptation to exercise training, concurrent with improvements in cardiorespiratory 

fitness (increased VO2Peak) and increased reliance on fat (reduced RER) as substrate during 

exercise. Aside from potential acute exercise affects that were likely not present following 

exercise training in the current study, a role for mEH2O2 in training associated improvements in 
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insulin sensitivity are not supported by the results presented in Chapter 4. These findings agree 

with previous studies which conclude that exercise training does not improve insulin sensitivity 

in the absence of changes in body weight or composition (i.e., sustained negative energy 

balance) (213, 253, 300). Moreover, the data from Chapter 4 regarding the lower pre-training 

rates of mEH2O2 in obese subjects is in agreement with at least one study (1) which demonstrated 

a lower mEH2O2 in isolated mitochondria of obese vs. lean individuals. The mechanisms 

accounting for the disparate observations of mEH2O2 with obesity (1, 5) await further research.  

The results of Chapters 2-4 may better describe the acute effects of insulin sensitivity 

modulators on the potential for mEH2O2 in skeletal muscle. Indeed, when permeabilized 

myofibers were incubated briefly in metformin, mEH2O2 was reduced (Chapter 2). Conversely, 

when permeabilized myofibers were incubated briefly with P4, mEH2O2 increased (Chapter 3). 

Because the overall hypothesis of Chapter 4 did not involve the equivalent of an “acute 

incubation in exercise” with which to test the direct effects of exercise on mEH2O2 and JO2, it is 

important comment on what such an experiment would add to our understanding about how 

exercise might directly affect insulin sensitivity.  In Chapter 4, the subjects exercise trained on a 

cycle ergometer at 75 % of their respective VO2peak. During exercise performed at 75% VO2max 

on a cycle ergometer, Sahlin et al (242) observed that ADP and Pi concentrations (mmol/kg dry 

wt muscle) within the quadriceps increases significantly above those at rest by more than 5%.  

Therefore, the effects of exercise can be mimicked ex vivo in a permeabilized myofiber 

preparation by addition of exogenous ADP. As mentioned in Chapter 1, the physiological rate of 

mitochondrial ROS production is inversely proportional to the availability of ADP (42), with the 

mitochondrial ΔΨ-dependent ROS production being sensitive to even mild uncoupling (198). 

Therefore, it is not surprising that addition of exogenous ADP (100 μM) to isolated rat heart 
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mitochondria abolished the state 4 rate of mEH2O2 (166). Interestingly, even the mitochondrial-

associated hexokinase is thought to confer “antioxidant” properties by generating ADP via 

enzymatic phosphorylation of glucose (65). It was demonstrated in rat brain mitochondria that 

stimulating the mitochondrial bound hexokinase with glucose and ATP decreased the rate of 

mitochondrial H2O2 production, concurrent with a reduction in the mitochondrial ΔΨ (65). 

Conversely, additions of exogenous glucose 6-phosphate has the opposite effect, keeping ADP 

levels low and the ΔΨ high, which increased the mitochondrial production of H2O2 (65). Because 

mEH2O2 produced during state 4 respiration is thought to come predominantly from complex I 

(206), the fact that ADP abolishes state 4 mEH2O2 in vitro implies that any condition in which 

ADP levels are increased may attenuate complex I-linked ROS production.  By increasing 

cellular ADP, exercise is therefore expected to attenuate complex I-mediated mEH2O2. While 

during an exercise bout and shortly thereafter, complex I-linked ROS may be attenuated, there is 

no reason to believe that a long term training effect would reduce the rate of mEH2O2, absent a 

negative energy balance. The main-effect reduction in mEH2O2 following 8 weeks of exercise 

training described in Chapter 4 may therefore owe to residual effects remaining from the last 

exercise bout (124, 305), interrupted “vicious cycle” ROS-induced ROS release (203) during the 

regular exercise bouts, or improvements in the antioxidant defense (133). It should also be 

mentioned that mitochondria have been advocated as “ROS sinks,” consuming ROS as well as 

producing it (115, 218, 315). If the exercise-associated ROS in skeletal muscle is indeed due to 

extramitochondrial sources (e.g., xanthine oxidase), then mitochondrial scavengers of this ROS 

during exercise could potentially be depleted (e.g., GSH to GSSG) with intense or prolonged 

exercise. This would therefore account for the findings of increased potential for REF-associated 

mEH2O2 in isolated skeletal muscle mitochondria following prolonged exercise (243). Despite 
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uncertainties surrounding potential training-associated, long term improvements in insulin 

sensitivity and/or mEH2O2, the short term, acute improvements in insulin sensitivity with exercise 

and reduced mEH2O2 that occurs with ADP in vitro have been recognized for quite some time.  

An outstanding observation common to Chapters 2-4 was a lack of discernible 

differences in JO2 between groups, save for the acute, in vitro incubation experiments involving 

metformin and P4. Recall, no differences in JO2 or ratios of respiratory control were observed 

between oral metformin treated rats vs. control; nor between IS and IR women or following 

8WT. While these observations were overshadowed by the marked differences between these 

same groups with respect to mEH2O2, the results from the respiratory experiments in 

permeabilized myofibers may not necessarily represent a negligible difference or change in the 

capacity for JO2 between the in vivo groupings (i.e., oral metformin, IS vs. IR, and 8WT). As 

mentioned in Chapter 1, maximal aerobic capacity is limited by oxygen supply in vivo (75, 235). 

Similarly, the respiratory capacity of mitochondria is limited by oxygen kinetics, such that 

saturating concentrations of oxygen in vitro are requisite for determining respiratory capacity 

(102). An appropriate analogy is that of oxidative phosphorylation in studies using isolated 

mitochondria, where saturating concentrations of ADP are necessary for assessment of maximal 

state 3 respiration. While partial pressures of oxygen, and therefore concentrations of oxygen in 

experimental aqueous media well below that of sea-level air saturation (e.g., 20 μM) are not 

limiting to respiration in isolated mitochondria and small cells (reviewed in (102, 248)), even at 

air saturation (i.e., ~200 μM O2), oxygen is limiting to respiration in permeabilized muscle fibers 

(104). This is illustrated by a 100-fold increase in the sensitivity to oxygen concentration in 

permeabilized rat soleus and heart fibers (104). This sensitivity to changes in already relatively 

high oxygen concentrations is thought to be due, at least in part, to diffusion limitations resulting 
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from the fiber bundle (104). At low oxygen concentrations, an “anoxic core” of the fiber is 

therefore thought to occur. Limitations of respiration due to insufficient oxygen levels in the 

experimental setup involving permeabilized muscle fibers has been reduced or prevented by 

maintaining oxygen concentrations above air saturation in the range of 200-500 μM (11, 32). It 

has been suggested that the experimental oxygen limitations may account, at least in part, for the 

disparate low and high maximal state 3 respiratory rates reported for experiments involving 

permeabilized fibers (102). Nevertheless, the data promoting the use of high oxygen in 

measurements of JO2 capacity in permeabilized fibers continue to go largely ignored or 

unrecognized (e.g., (174)). In the studies described in Chapter 2-4 of the current project, all 

respiratory experiments were conducted in air saturated media (i.e., ~200 μM O2). The potential 

for the oxygen limitations reported to occur at air-saturated media in permeabilized myofiber 

preparations (104) to mask differences or changes in mitochondrial capacity warrant recognition 

with regard to the results of the current project. While these experimental limitations may have 

contributed to the lack of observable differences between groups, the fact that differences in JO2 

were observed in the in vitro incubation experiments may therefore mean that the observed 

differences were understated. Hence, one could argue that the possibility cannot be ruled out that 

metformin’s actions may indeed be mediated by an inhibition of complex I-linked respiration 

(i.e., forward electron flow), in addition to, or instead of inhibition solely of mEH2O2 linked to 

REF in complex I. However, counter to such an argument, when Batandier et al (17) incubated 

isolated rat liver mitochondria in 10 mM metformin, they observed a hampering of succinate-

stimulated mEH2O2, but no decrement whatsoever in JO2 supported by complex I-linked 

substrates. It is important to note that the JO2 data in our study (Chapter 2) were generated with 

an oxygraph identical to that used by Batandier et al (17). Because at air-saturated media, O2 is 
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certainly not limiting to respiration in isolated mitochondria (102, 248),  it would seem therefore 

likely that the preparation used in Chapter 2 to test the acute ex vivo effects of metfomin on JO2 

in permeabilized myofibers may actually have been more sensitive than that employed by 

Batandier et al (17), assuming that mitochondria from skeletal muscle and liver are affected by 

metformin similarly. Indeed, at a metformin concentration of 10 mM, complex I-linked JO2 was 

potently inhibited in our experimental conditions (Chapter 2).  

It should be noted however, that reducing limitations to respiration by maintaining 

oxygen concentrations above air saturation may not, relatively speaking, constitute the most 

important means of quality assurance in experiments involving permeabilized myofibers from 

women. Indeed, in experiments conducted in quadruplicate on myofibers from one obese women 

permeabilized with 30 μg/mL saponin, the calculated methodological variation, expressed as the 

%CV for JO2 in state 4 (10 mM glutamate + 2 mM malate), maximal ADP (4 mM) and 10 μM 

cytochrome c conditions were 14.8, 7.0 and 7.6 %, respectively (Appendix B; Figure 14). This is 

comparable to the methodological variation determined by Tonkonogi et al (278) for JO2 

measured in permeabilized myofibers from men. They calculated %CV for state 4 JO2 (5 mM 

pyruvate + 2 mM malate) and after stimulation with low (100 μM) and high ADP (1 mM) 

concentrations to be 18.0, 7.9 and 10.9 %, respectively, in only two fiber bundles from the same 

muscle biopsy (278).  The results of the saponin concentration optimization experiments 

(Appendix B; Figure 14) clearly demonstrate the methodological pitfalls avoided by using 30 

μg/mL vs. 50 μg/mL saponin to permeabilize myofibers from women. Future research involving 

permeabilized myofibers would do well to additionally rule out the potential confounding effects 

and methodological variation associated with assessing respiratory capacities under submaximal 

vs. maximal kinetic oxygen concentrations.  
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To summarize from the results of the current project and the literature, it appears that, 

with regard to complex I-linked, ΔΨ-dependent, state 4-associated ROS, 1) metformin decreases; 

2) progesterone increases; and 3) exercise decreases the potential for mEH2O2 in skeletal muscle. 

If, as the results of Chapters 2 & 3 and other studies suggest, there is a causative relationship 

between mEH2O2 and the regulation/inhibition of insulin signaling, then with regard to insulin-

stimulated glucose uptake, it would appear likely that 1) metformin improves; 2) progesterone 

reduces; and 3) exercise improves the sensitivity of skeletal muscle to insulin. Taken as a whole, 

the results presented here support that known modulators of insulin sensitivity have an effect on 

the potential for complex I - mediated mEH2O2 in skeletal muscle. Increasingly, the literature has 

demonstrated a diverse array of signaling and metabolic pathways that may be redox regulated. 

Absent observable changes in skeletal muscle insulin sensitivity (e.g., Chapter 4), a demonstrable 

link between mEH2O2 and known effectors of insulin signaling may also represent the 

involvement of these same effectors in mitochondrial redox signaling elsewhere. The 

physiological significance of these findings with regard to other potential consequent cellular 

responses to changes in mEH2O2 awaits further research.  

Despite the current and increasing awareness of the well-established means of improving 

skeletal muscle insulin sensitivity to treat type 2 diabetes and its associated co-morbidities (e.g., 

exercise, diet, and insulin-sensitizing drugs), the prevalence of metabolic disease continues to 

increase in the industrialized world. While targeting mEH2O2 in novel ways to treat types 2 

diabetes and the associated skeletal muscle insulin resistance may represent an attractive avenue 

for biomedical research, the line of reasoning governing this approach may not address the 

underlying issue at hand in the long-term. If insulin resistance represents a physiological 

response to a homeostatic perturbation (e.g., cellular redox imbalance), then confirming what is 
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already known about the relationship between metabolic imbalance and the physiological 

preservation of life in greater detail does not add anything in and of itself to slowing or even 

reversing the current and increasing epidemic in obesity and type 2 diabetes world-wide. It will 

be imperative to apply the knowledge gained from these and related studies to established 

therapeutic modalities used to treat insulin resistance so that they may be optimized to meet the 

needs of an ever-evolving culture.  
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APPENDIX A. PRELIMINARY SUPPORT FOR RACIAL DIFFERENCES IN ADENINE 

NUCLEOTIDE TRANSLOCASE 1 CONTENT IN WOMEN. 

 

FIGURE 13. WESTERN BLOT FOR ADENINE NUCLEOTIDE TRANSLOCASE 1 IN 

RECTUS ABDOMINUS FROM AFRICAN AMERICAN AND CAUCASIAN WOMEN. 

 
Western blot of rectus abdominus (abdominal) muscle protein extracts from pre-menopausal 

women using adenine nucleotide translocase isoform 1 (ANT1) - specific polyclonal antibody 

(arbitrary units, AU). ANT1 content in rectus abdominus of three lean Caucasian women (Ln 

CW) was greater than the ANT-1 content in rectus abdominus of three lean African American 

women (Ln AAW; P = 0.09 vs. Ln CW) and three obese CW (Ob CW; P = 0.03 vs. Ln CW). 

These results illustrate a potential decrement in ANT1 of obese skeletal muscle and suggest that 

ANT1 content may be lower in AAW compared to CW. 

 
 

 

 
 
 
 



    

 179

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

0

10000

20000

30000

40000

ANT-1

A
U

Ln AAW
Ln CW
Ob CW

  P = 0.03   P = 0.09 



    

 180

APPENDIX B: OPTIMIZATION OF THE SAPONIN-PERMEABILIZED MYOFIBER 

PREPARATION FOR HUMAN FEMALE SUBJECTS 

 

FIGURE 14. METHODOLOGICAL MODIFICATIONS MADE WITH RESPECT TO 

SAPONIN-PERMEABILIZED MYOFIBERS FROM WOMEN.  

 
Comparison between the standard saponin concentration (50 μg/mL) and the saponin 

concentration (30 μg/mL) used in the current studies to permeabilzed vastus lateralis myofibers 

obtained from women. A. Representative oxygraphic trace of O2 concentration (top) in the 

experimental chamber with vastus lateralis myofibers from an obese woman (i.e., BMI > 30) 

permeabilized with either 50 μg/mL (black trace) or 30 μg/mL (gray trace) and the 

corresponding respiratory O2 flux derivation (JO2; bottom) from the oxygraphic trace. Substrate 

conditions during JO2 measurements were: 10 mM glutamate + 2 mM malate (GM); GM + 4 

mM ADP (+ADP); GM+ADP + 10 μM cytochrome c (+cyt c). B. Data are mean ± SEM from 4 

separate myofibers obtained from one obese woman. Percent coefficient of variation (%CV) of 

the JO2 for the myofibers permeabilized with 50 μg/mL saponin were 32.7, 32.7 and 20.1% for 

GM, +ADP and +cyt c conditions, respectively. The % CV of the JO2 for the myofibers 

permeabilized with 30 μg/mL saponin were 14.8, 7.0 and 7.6 % for GM, +ADP and +cyt c 

conditions, respectively. *P < 0.05 vs. 50 μg/mL; ***P < 0.001 vs. 50 μg/mL. †P < 0.05 vs. 

+ADP, 50 μg/mL.  
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APPENDIX C 

 

INSTITUTIONAL ANIMAL CARE & USE COMMITTEE 
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APPENDIX D 

 

INSTITUTIONAL REVIEW BOARD  
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APPENDIX E 

 

INSTITUTIONAL REVIEW BOARD 

APPROVED CONSENT FORMS FOR RESEARCH INVOLVING HUMAN SUBJECTS 
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Informed Consent 
 

Title of Project: Impaired Acyl-CoA Synthetase-Muscle Lipid Oxidation in African-
American Women (UMCIRB # 07-0135) 
Subtitle:  Effects of 8 Weeks of Exercise Training on Adipoctye Lipolytic Rate and Muscle Lipid 
Metabolism 
  
Principal Investigator: Ronald N. Cortright, Ph.D. 
Co-Investigators:  Robert C. Hickner, Ph.D.; Joseph Houmard, Ph.D.; Hisham Barakat, Ph.D.; 
and James DeVente, M.D., PhD. 
 
Institution:  Human Performance Laboratory, East Carolina University 
Address:  371 Ward Sports Medicine Building, Greenville, NC 

Telephone:  (252) Office: 737-4678, lab: 252-744.2934, or home: 756-7735 
 

This consent document may contain words that you do not understand.  You should ask the 
study doctor or the study coordinator to explain any words or information in this consent form 
that you do not understand. 
 
Introduction: You have been asked to participate in a research study being conducted by Dr. 
Ronald N. Cortright, Dr. Robert C. Hickner, Dr. Joseph Houmard, Dr. Hisham Barakat, Dr. 
James deVente and fellow researchers at East Carolina University. 
 
The purposes of this study are 1) to determine why African-American women have a greater 
tendency to gain weight and develop diabetes and 2) whether exercise can improve the ability 
of both African-American and Caucasian women to use fat for fuel. 
 
Obesity has reached epidemic proportions in the United States and is threatening to become a 
global epidemic.  Obesity represents a serious health threat because of the increased risk of 
developing chronic diseases such as diabetes and cardiovascular disease. According to recent 
estimates, the prevalence of obesity is greater among African-American than Caucasian women 
in the United States. African-American women gain weight at an earlier age and remain heavier 
than Caucasian women at the same age.  This racial difference is important because obesity is 
strongly associated with skeletal muscle insulin resistance (inability of muscle to take in sugar 
from the blood) and supports the existing data demonstrating that African-American women 
have twice the incidence of type 2 diabetes compared with Caucasian women. Although 
environmental factors such as socioeconomic status, diet, and level of activity may influence the 
greater prevalence of obesity and diabetes, it is becoming increasingly evident that inherent 
physiological and biochemical differences underlie the increased incidence of these diseases in 
African-American women. We have demonstrated that obese African-American women have a 
reduced ability to release fat from sites of storage (the adipocyte) and to use fat by skeletal 
muscle to make energy when compared to Caucasian women of similar age and weight. This is 
fundamentally important because the reduced ability to release and “burn” fat can result in its 
increased accumulation within the fat and muscle cells, the latter which is strongly linked with 
insulin resistance in obese individuals.  Newer information suggests that African-American 
women who are not obese may be more likely to gain weight when compared to non-obese 
Caucasian women. For example, our lab has noticed that non-obese African-American women 
have a greater difficulty using fat to make energy when they are at rest and during exercise.  
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Despite the negative implications of these findings for health however, the cellular mechanisms 
to explain this race/ethnic metabolic difference in the propensity toward obesity and diabetes 
has scarcely been studied in African-American women.  
We hope to apply the knowledge gained from this research to better understand why obese 
women in general, and more so, African-American women, can not use fat as effectively for 
energy production as non-obese Caucasian women. These studies could lead to more specific 
(dietary, activity, or pharmacological) treatments for obesity and diabetes, especially for African-
American women. 
 
You should understand that you will be one of approximately 48 women (over 2 years) in the 
research study (ages 18 – 45 years). The study groups are comprised of 24 lean (BMI < 26 
kg/m2) African-American (AAW; N=12) and Caucasian Women (CW; N=12) and 24 obese (BMI 
> 30 kg/m2) AAW (N=12) and CW (N=12) who are premenopausal, non-diabetic (fasting plasma 
glucose < 7.0 mmol/l), sedentary (< 20 min of exercise/d, 1 day/week as determined by an 
activity questionnaire). 
 
The study will include 2 days of assessment and nutritional education and eight weeks of 
aerobic exercise training. Your first visit will take approximately 90 minutes during which time we 
will determine your body composition (in terms of fat and lean weight) and your aerobic exercise 
capacity. On the same day, the researchers will also teach you how to select, measure, and 
record the foods that you eat for two-three day periods during the study. On another day of your 
choice and prior to beginning the exercise training, you will be asked to report to the office of 
The Leo Jenkins Cancer Center for a CT scan to determine your body’s sites of trunk fat 
storage. A CT scan will also be performed at the end of the 8 week training study. The total 
hourly commitment for your participation in the study, is approximately 40 hours (assessments =  
~ 1.5 hours; CT scan  = ~ 2 hours; eight weeks/4 days per week for 1 hour each of aerobic 
exercise; 3 blood draws and 6 biopsies = ~ 4 hours).  
 
On the first, tenth, and last day of the exercise training protocol, you will be asked to report in 
the morning (after an overnight fast-no food after 10:00 PM the night before) to room 2377 of 
the East Carolina Heart Institute (ECHI) for the muscle biopsy and blood sampling procedures. 
The first biopsy will take place on day 1, before you exercise and the second biopsy will take 
place 4 hours after you exercise.   
 
You will be asked to exercise on a bicycle for eight weeks thereafter (total of 32 hours of 
exercise training). The training sessions will take place in the exercise facility known as the FITT 
building, adjacent to Minges Coliseum. Each exercise session will last 60 minutes.  A trained 
exercise physiologist will assist you and will monitor your heart rate, blood pressure, and ability 
to use fat and carbohydrates for energy production during each exercise session. 
 
Biopsies three and four will take place after 10 days of training and biopsies five and six will take 
place at the end of eight weeks. You will perform your first, 10th, and last exercise sessions in 
room 2377 of the East Carolina Heart Institute. Again, you will be asked to report to the ECHI 
Room 2377 and will be biopsied before and 4 hours after each exercise session, which will take 
place in the same room.  
 
From the small biopsy samples (~ 75 milligrams each; the size of a pencil eraser) the 
investigators will determine your muscle’s ability to burn fat before and after exercise training. 
We will also determine which muscle genetic factors change (gene expression) because of 
exercise and training. This information will help us to improve drug and physical activity 
strategies for individuals prone to obesity and diabetes. 
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In order to determine the effects of a single or repeated bouts of exercise on your ability to 
release fat so that the muscle can burn it, on days 1 & 10, and after 8 weeks, we will insert a 
small catheter into a vein in your arm and collect blood before, during, and after exercise. The 
total amount of blood collected each time will be small (about 40 milliliters = ~ 4 tablespoons). 
The total amount of blood collected across 8 weeks will be approximately 160 milliliters (~ 16 
tablespoons). 
 
Details of each procedure are described below. 
 
Plan and Procedures 
 
My participation will involve: 
 
The following are screening procedures and assessment of metabolism, fitness, and 
body composition: 
 

1. Preliminary Assessments: First Visit. 
 
• Health History and Other Forms (FITT building). You will be asked to complete a health 

history questionnaire to help determine if you are suitable for this study (e.g., types of 
medications used if any). In addition, you will be asked to record the history of your recent 
menstrual cycle and whether you are currently taking birth control pills.  

 
• Diet Recording and Study Eating Habits. Because different diets can affect the body’s 

use of fat and carbohydrates as fuel, you will be asked to record your diet three times during 
the 8-week study study.  Study personnel will explain how to measure the amount and 
select foods from a list provided to you based on what you normally eat.  We will ask that 
you eat foods from the list and record your portion sizes for three days prior to the first 
exercise session.  This procedure will allow us to determine each subject’s amount of 
calories and diet composition. This way, we can rule out the possible variability in diet on the 
metabolism of your body. You will then be asked to eat the same or similar meals over days 
7-10 and the last three days (end of eight weeks) of the study. These diets conform to 
nutritional health standards as suggested by the American Diabetic Association standards 
(60% carbohydrate, 25% fat, and 15% protein).   

 
• Body Composition (FITT Building):  DEXA. Your body composition (relative amounts of fat 

and lean tissue) will be determined by using an FDA-approved bone density instrument 
(Prodigy Advanced, GE Lunar Corp., Madison, WI).  The procedure is called Dual Energy X-
ray Absorptiometry (DEXA).  A person trained for the use of the DEXA will perform all 
testing, and you will need to report to the FITT building for the scan. One benefit of this 
testing is that it provides the most accurate assessment of body composition available. You 
will be asked to lie face up, on a padded table for 7 minutes while the scanner arm of the 
DEXA machine passes over your entire body.  The scanner will not enclose or touch you, 
and you can wear regular clothing (no metal allowed). The results of the DEXA Scan will be 
confirmed by skinfold determination of body composition.  Several sites on your body will be 
measured for skinfold thickness. This is a painless procedure that involves the use of a 
caliper that determines the thickness of the skin and fat located under the skin at the site. 
The information gained from both procedures will allow us to use equations to estimate your 
percent body fat and percent lean body weight. Subjects will be exempt from post training 
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DEXA scans (eight week training study only) if pregnancy is detected. The procedure will be 
repeated at the end of the eight week training period. 

 
• CT or CAT Scan. Computed (Axial) Tomography (CT) is a routine method that provides 

very clear pictures of structures inside the body.  The CT scan device uses sophisticated 
computers and a safe amount of X-rays. It will be used to assess the regional fat content in 
your trunk area. An appointment will be made for you at The Leo Jenkins Cancer Center. 
The visit will take approximately one hour.  The CT scan device looks like a giant donut. You 
will be asked to lay down on a table and an instrument will be used to scan your middle 
body area.  The test takes approximately 30 minutes. The procedure will be repeated at the 
end of the eight week training period. This information will help us to interpret the lipid 
metabolism data gained from your blood and muscle biopsies. The CT scans are safe 
procedures for assessing body composition. 

 
Females with ANY chance of being pregnant should not undergo DEXA or CT 
scanning.  If you become pregnant during the course of this study, you should 
immediately inform the staff. 

 
• Maximal Exercise Test. Fitness test (FITT Building - Human Performance Laboratory). 

The procedure will determine your maximal ability to use the oxygen (air) you breathe to 
make energy from the food you eat. It will also allow the study investigators to set your 
workload for the submaximal exercise test described above. You will perform cycling 
(cyclists) exercise for ∼10 minutes. You will begin cycling/running at light intensity (you will 
not breathe hard) for 2 minutes. The workload will be increased every 2 min. until you can no 
longer continue. This will allow us to determine your maximal exercise capacity. The 
procedure will be repeated at the end of the eight week training period. 

 
2. Exercise Training.  Exercise training will occur over 8 weeks. You will be asked to come to 

the FITT building near Minges Coliseum at a time that is convenient for you.  At least one of 
the study personnel will always be present.  Your weight will be measured and you will be 
fitted with a heart rate monitor. Exercise will consist of pedaling a stationary bicycle for 60 
minutes at approximately three-fourths of your maximal capacity as determined from your 
maximal aerobic capacity test taken at your first visit.  We would like for you to pedal 
continuously for the entire 60 minutes, but if that becomes difficult on any day, you may stop 
exercising and resume as soon as you feel ready. Water will be provided for you throughout 
the exercise session.  Occasionally, you will be fitted with a mouthpiece and nose clips so we 
can measure your consumption of oxygen and production of carbon dioxide.  This will allow 
us to determine your utilization of fat as fuel for your working muscles. We will also monitor 
your heart rate and blood pressure each session.  After the exercise session is finished, you 
will be encouraged to pedal at a very light workload to “cool down” and let your heart rate, 
blood pressure, and breathing return to near resting levels. 

 
3. The muscle biopsy procedure.  The biopsy procedures will take place at the East Carolina 

Heart Institute. The procedure will occur under sterile conditions and a physician will be 
available during the entire time of the procedure. You will report to room 2377 at 7:30 AM 
following an overnight fast (no food after 10:00 PM the night before). For this procedure, a 
small amount of anesthesia (3 cc of 1% Lidocaine) will be injected in a ½ inch area under the 
skin of your thigh.  A small (1/4 inch) incision will then be made through the skin, fat, and 
fibrous layer that lies over the muscle.  A biopsy needle (about ½ the width of a pencil) is 
then inserted through the incision ½ to 1 inch into the muscle.  A small piece of muscle (1/2 
the size of an erasure at the end of a pencil) is then clipped out with the biopsy needle. The 
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needle is withdrawn and the muscle sample is prepared for analysis.  You will undergo two 
muscle biopsies on day 0, two muscle biopsies on day 10, and two muscle biopsies after 8 
weeks of the study. A separate incision will be made for each of the six biopsies.  The first 
two biopsies will be taken from the left and right leg, the second two biopsies will be taken 
one from each leg and the last two biopsies will be taken, one from each leg.  The muscle 
biopsies will be taken by Robert Hickner, Ph.D., Joseph Houmard, Ph.D., or Ronald N. 
Cortright, Ph.D. The muscle samples will be assessed for the ability to metabolize fat and to 
control the metabolism of energy by assessing the levels of certain muscle factors (the 
expression of mitochondria and certain genes that regulate fat metabolism in skeletal muscle; 
e.g, PGC-1, PPARs, uncoupling proteins, etc.). In addition, a portion of the muscle biopsy 
may be used to culture cells to understand the portion of lipid metabolism that is inherited. 

 
4. Blood samples will be obtained on the day of each biopsy (days 0, 10, and after 8 weeks) 

and once midway (4th week) through the training period. Blood will be drawn immediately 
prior to, twice during exercise, and once after exercise for analysis of fat release from stored 
sites (adipocytes). Blood will be drawn from a small catheter placed in your arm vein. On 
each occasion, the total amount of blood will be approximately 40 ml (~ 4 tablespoons) and 
the total amount of blood obtained for the entire study will be approximately 160 ml (~ 16 
tablespoons). By determining blood born fat components known as glycerol and fatty acids, 
the investigators can determine the extent of lipolysis (fat release) that occurs before, during 
and after exercise. In addition, we will measure blood insulin and glucose as well as 
hormones known as catecholamines that are involved in the fat releasing process. Other fat 
metabolism related hormones such as Leptin, Adiponectin, Ghrelin (hormones released by 
the fat cells which are associated with the regulation of fat and blood sugar) will also be 
measured. Determining blood lipids will also help us to determine the relationship between 
these blood variables and factors indicating your muscle’s lipid metabolic capacity and 
diabetic status. The blood samples will be taken by Dr. Robert Hickner, Dr. Ronald Cortright, 
Dr. Joseph Houmard, or a trained research nurse either at the FITT building (Human 
Performance Lab) or the ECHI Room 2377. 

 
Potential Risk and Discomforts 
 

Certain risks and discomforts may be associated with this research.  They include: 
 

• The DEXA is a safe procedure for assessing body composition. The scanner will not 
enclose or touch you, and you can wear regular clothing (no metal allowed). You will be 
exposed to minimal radiation (DEXA: ~0.4 microSieverts per whole body scan) that is within an 
acceptable range as provided by “North Carolina Regulations for Protection Against Radiation”. 
(30 miliSieverts)  For example, one would receive radiation exposure of approximately 80 
microSieverts on a transatlantic airline flight of 8 hours, 50 microSieverts living in Denver, 
Colorado, at an elevation of 5,000 feet for approximately 4 weeks, or 30 to 40 microSieverts 
during a typical chest x-ray. However, even this minimal exposure to X-ray radiation my have 
negative effects on the unborn fetus.  Therefore, you will be screened for menstrual cycle status 
by questionnaire and queried to be sure they are not pregnant prior to commencing the study.    

• For each CT scan, the amount of radiation (~75 miliSieverts per abdominal CT scan) 
that 

you will be exposed to falls within the national acceptable range for CT scans. A normal CT 
scan consists of multiple slices yielding a total expose of 500 -650 mGY (500-650 mSV). 
Therefore, you will be exposed to 1/20th of the typical diagnostic CT scan.  However, even this 
minimal exposure to X-ray radiation my have negative effects on the unborn fetus.  Therefore, 
you will be screened for menstrual cycle status by questionnaire and queried to be sure you are 
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not pregnant prior to commencing the study. You will be exempt from post training CT scans 
(eight week training study only) if pregnancy is detected. The CT scan will be performed in a 
way that will minimize your exposure to radiation. 

•The total amount of blood drawn for lipid metabolism measurements (16 tablespoons) 
is very small compared to the total amount (about a gallon) of blood that you have.  There is an 
extremely small risk of local bruising or infection associated with insertion of intravenous 
catheters (we draw blood through these) into your arm. 

• Risks associated with the exercise protocols are dizziness, ventricular arrhythmia 
(odd heart 

beats), and in very rare instances death. These risks are very small, with an incidence of fewer 
than 1 in 10,000 deaths in patients who are known to, or suspected of, having heart disease. 
The risk is expectedly much smaller than this in a group of younger, healthy subjects. To 
minimize this risk, we will have a physician present or on call and a heart (ECG) monitoring 
device will be used during the exercise tests. The physician will be trained to recognize heart 
problems during exercise and trained to revive people in the event of serious heart problems 
during the exercise test. The exercise tests will be stopped if you feel dizzy, are having chest 
pain, are having serious shortness of breath, or ask that the test be ended. The test will also be 
stopped if the physician detects (from the ECG) heart function that is not normal. All of the 
necessary emergency equipment (including crash cart for heart problems) will be in the room. If 
you experience a cardiovascular event or pass out, then Pitt County Emergency Services will be 
contacted. 
 

• Dr. James deVente, M.D., PhD. or other attending physicians will be provided medical 
coverage for the maximal exercise test and the muscle biopsies performed at the East Carolina 
Heart Institute or the Human Performance Laboratory.  With respect to the muscle biopsy 
procedure, there is a small risk of hematoma (bruise) or infection around the biopsy site.  This 
risk will be minimized by using sterile procedures and applying pressure to the biopsy site for 10 
minutes, or until bleeding is stopped if longer than 10 minutes, following biopsy.  A steri-strip 
(thin bandage) will be applied over the incision and will remain in place for at least 4 days to 
close the incision during healing.  A pressure wrap will also be placed around the biopsied limb 
and will remain for 8 hours following biopsy.  There is an extremely remote risk of allergic 
reaction to the Lidocaine anesthesia.  This risk will be minimized by using subjects who have 
had prior exposure to Lidocaine or Novocaine anesthesia; this precaution should eliminate this 
risk.  Dr. James deVente, M.D., PhD (or other physicians associated with the study) will initiate 
any medical treatment necessary during or following any adverse event from the biopsy 
procedure.   
 
Exclusions 

To the best of your knowledge, you are not allergic to Novocaine.  For example, you 
have not had an allergic reaction to an injection at the dentist’s office.  To your knowledge, you 
do not possess any condition which would result in excessive bleeding. You do not have known 
kidney disease, and you do not have know heart disease (i.e., had a heart attack).  Other 
exclusion criteria include: individuals who are ill or taking medications. individuals who are 
known diabetics, individuals who currently smoke, African-Americans that are not of at least 
second generation African-American decent, individuals who are pregnant and, individuals who 
are exercise training or who have exercise trained regularly within the last 6 months. 
 
Potential Benefits 
 

1) You  will receive information concerning your health risk due to your level of obesity 
and insulin resistance. 
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2) You will benefit from gaining knowledge of your body composition and aerobic 
fitness level. 

3) You may receive muscle and cardiovascular-respiratory benefits from exercise 
training for 8 weeks. 

4) You will receive information about your skeletal muscle fiber type. 
5) Society and medical science may benefit from gaining the knowledge resulting form 

this investigation. 
 
Termination of Participation 
 
Your participation in this research study may be terminated without your consent if the 
investigators believe that these procedures will pose unnecessary risk to you.  You may also be 
terminated from participation if you do not adhere to the study protocol.   
 
Cost and Compensation 
 
The policy of East Carolina University does not provide for compensation or medical treatment 
for subjects because of physical or other injury resulting from this research activity.  However, 
every effort will be made to make the facilities of the School of Medicine/ECHI available for 
treatment in the event of such injury. 

You will receive $400.00 for your time and efforts for participating in the exercise and 
muscle biopsy procedures.  You will receive, free of charge, the body composition and maximal 
aerobic capacity analysis.  

 
The remuneration is prorated as follows: 
 
1. $50.00 per muscle biopsy (maximum 6 biopsies total) 
2. $100.00 for exercise training for 8 weeks 

 
You do not give up any legal rights as a research participant by signing this consent form. 
 
Confidentiality 
 
Only the investigators associated with this study will have access to the data obtained.  The 
data gathered from the study will be stored on a computer hard drive which will be accessible 
only by the investigators or technical staff. Numeric coding will protect the identity of the 
subjects.  No identifying information will be released. The information and insights gained from 
the study may be presented at scientific conferences and/or published. In both instances, you 
will not be identified by name.  
  
Voluntary Participation 
 
The nature and purpose of the procedures, the known risks involved, and the possibility of 
complications have been explained to you. No guarantee of assurance has been given by 
anyone as to the results that may be obtained. You know that being in this study is of your own 
free will.  You know that you can decide not to be in this study after you have already started. 
You may stop at any time without losing benefits that you would have received before being in 
the research study.   
 
Persons to Contact with Questions 
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The investigators will be available to answer any questions concerning this research, now and in 
the future.  You may contact the investigators, Ronald Cortright Ph.D. (work: 737-4678/office 
or home: 756-7735), Robert Hickner, Ph.D. (work: 737-4677 or home: 353-5556), or Joe 
Houmard, Ph.D. (work: 737.4688/328-4617). Drs. Cortright, Hickner and Houmard are found in 
the Human Performance Laboratory, Ward Sports Medicine Building, ECU. Also, if questions 
arise about your rights as a research subject, you may contact the Chairman of the University 
and Medical Center Institutional Review Board at phone number 252-744-2914 (days). 
 

Research Participant Authorization To Use And Disclose Information 
 
Federal laws require that researchers and health care providers protect your identifiable health 
information.  Federal laws also require that researchers get your permission to use collected 
health information for research.  The identifiable information we will collect from subjects in this 
research project will include:   
 
*General Medical History including: Family health history, medications, nutrition, physical activity 
levels, menstrual history, nutritional history, and body weight history. 
 
* Muscle biopsy information, body composition information, blood levels of insulin, glucose, and 
other compounds related to muscle and fat cell lipid metabolism.  
 
The members of our research team that will have access to your information will include the 
Principle Investigator, Co-investigators, as well as technical and nursing personnel involved in 
this project.  Information about you will be used and released in such a way that will protect your 
identity as much as possible; however, confidentiality cannot be absolutely guaranteed.  We will 
only share your information with those individuals listed above.  If we need to share information 
with other individuals other than those listed, we will request your permission a second time.   
 
You will be given a signed copy of your authorization to release medical information for your 
records.  You can limit the amount and type of information that is shared and you must make 
this request in writing; however, the researcher is able to use any and all information collected 
prior to the request not to disclose information.  Although you can limit the release of your 
medical information, withholding some information may cause you to become ineligible for this 
research project.  Because research information continues to be looked at after a study is 
finished, it is difficult to say when the use of your information will stop.  There is currently not an 
expiration date for the use and disclosure of your information for this study. 
 
If you have questions related to the sharing of information, please call Ronald N. Cortright, 
Ph.D. at  252-737-4678/office.  You may also telephone the University and Medical Center 
Institutional Review Board at 252-744-2914.  In addition, if you have concerns about 
confidentiality and privacy rights, you may phone the Privacy Officer at Pitt County Memorial 
Hospital at 252-847-6545 or at East Carolina University at 252-744-2030. 
 
 
FUTURE TESTING OF BLOOD/MUSCLE SAMPLES 
Upon termination of this study, the blood and muscle samples collected for this study will be 
stored for up to 7 years to research scientific questions specifically related to obesity, the 
effects of exercise, muscle/fat cell lipid metabolism and insulin resistance/diabetes in African-
American and Caucasian women. You will continue to be the owner of the samples and retain 
the right to have the sample material destroyed at any time during this study by contacting the 
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study principal investigator Ronald N. Cortright, at 252.737.4678/office.  During this study, the 
samples will be stored with number identifiers only; however, the number identifier will be linked 
to a specific name and will be kept on file in the possession of the principal investigator.  The 
linked file will be stored password protected on the Principal Investigator’s computer with CD 
backup.  No other individuals will have access to these identifying materials unless the principal 
investigator is required by law to provide such identifying information.  Data will not be publicly 
available and participants will not be identified or linked to the samples in publication.  If a 
commercial product is developed from this research project, you will not profit financially from 
such a product. Furthermore, there are no plans for the investigators to profit financially from 
such a product. 
 
CONSENT TO PARTICIPATE 

I have read all of the above information, asked questions and have received satisfactory 
answers in areas I did not understand.  I willingly give my consent for participation in this 
research study.  (A copy of this signed and dated consent form will be given to the person 
signing this form as the participant or as the participant authorized representative). 
 
 

 
Participant's Name  (PRINT)   Signature                                    Date               
Time 
 
 
 

 
Guardian's Name    (PRINT)   Signature                                    Date             Time 
 
 
WITNESS:  I confirm that the contents of this consent document were orally presented, the 
participant or guardian indicates all questions have been answered to his or her satisfaction, 
and the participant or guardian has signed the document.  
 

 
Witness’s Name      (PRINT)   Signature                                    Date   Time 
 
 
PERSON ADMINISTERING CONSENT:  I have conducted the consent process and orally 
reviewed the contents of the consent document. I believe the participant understands the 
research. 
 
 
 
Person Obtaining consent  (PRINT)  Signature                                    Date   Time 
 
 
 
Principal Investigator's  (PRINT)  Signature                                    Date   Time 
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East Carolina University 
 
 Consent to Participate in Research that is  
                     Greater than Minimal Risk 
Information to Consider Before Taking Part in This Research 

 
Title of Research Study: Linking Mitochondrial Bioenergetics to Muscle Insulin Sensitivity: Muscle 
Biopsy and IVGTT 
 
Principal Investigator: P. Darrell Neufer, Ph.D  
Institution/Department or Division: Human Performance Laboratory & Brody School of Medicine 
Address:363 Ward Sports Medicine Building, East Carolina University 
Telephone #: 252-744-2780 
 

Researchers at East Carolina University (ECU) study diseases, health problems, environmental 
problems, behavior problems and the human condition.  Our goal is to try to find better ways to 
improve the lives of you and others.  To do this, we need the help of people who are willing to 
take part in research. 
 
The person who is in charge of this research is called the Principal Investigator.  The Principal 
Investigator may have other research staff members who will perform some of the procedures.   
 
The person explaining the research to you may be someone other than the Principal Investigator. The 
Study Coordinator may be asking you to take part in this study.   
 
You may have questions that this form does not answer.  If you do have questions, feel free to ask the 
person explaining the study, as you go along.  You may have questions later and you should ask those 
questions, as you think of them.  There is no time limit for asking about this research. 
 
You do not have to take part in this research.  Take your time and think about the information that is 
provided.  If you want, have a friend or family member go over this form with you before you decide.  It 
is up to you.  If you choose to be in the study, then you should sign the form when you are comfortable 
that you understand the information provided below.  If you do not want to take part in the study, you 
should not sign this form.  That decision is yours and it is okay to decide not to volunteer. 
 
This form explains why this research is being done, what will happen during the research, and what you 
will need to do if you decide to volunteer to take part in this research.   
 
Why is this research being done? 
The purpose of this research study is to determine how high calorie intake and low levels of daily physical 
activity may influence how your muscle cells function.  In this experiment, you will first be asked to 
maintain your normal diet and weight for 3 consecutive days.  On the morning of the fourth day, you will 
report to the laboratory after an overnight fast (no exercise on those mornings), have a resting muscle 
biopsy, and complete a 3 h intravenous glucose tolerance test (IVGTT).  Depending on the study, you 
may be asked if you would like to participate in a follow up study requiring a second muscle biopsy 
and/or IVGTT.  
We are asking you to take part in this research.  However, the decision is yours to make.  By doing this 
research, we hope to learn how mitochondria (the engines of the cell) are affected by metabolic balance 
and, in turn, influence insulin action in human skeletal muscle.    
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Why am I being invited to take part in this research? 

You are being invited to take part in this research because you are a healthy, adult volunteer.  If 
you volunteer to take part in this study, you will be one of about 40 people to do so. 

Are there reasons I should not take part in this research?  
You will not be able to participate in this study if you are allergic to "cain-type" anesthetics; for example, 
if you have had an allergic reaction to an injection at the dentists’ office.  You will also not be able to 
participate if you possess any condition that would result in excessive bleeding or poor healing, if you 
have had any type of cardiac event (i.e. heart attack), if your fasting glucose, total cholesterol, LDL 
cholesterol, or blood pressure exceed standard values, or if you are pregnant (or decline to take a 
pregnancy test). 
 
What other choices do I have if I do not take part in this research? 
You have the choice of not taking part in this research study.   
 
Where is the research going to take place and how long will it last? 
The research procedures will be conducted at the Brody School of Medicine.  You will need to come to 
the 3rd floor of the Brody building to room 3S08 one or two times during the study.  Each of those visits 
will take about 4 hrs.  The total amount of time you will be asked to volunteer for this study is 4 to 8 hrs 
over the next 1-2 days 
 
What will I be asked to do? 
You are being asked to do the following: You will undergo the procedures listed below during this 
research project.  You can ask the investigators at any time for further clarification on why these 
measurements are being taken and specifics about the procedures. 
 
Initial Screening.  The purpose of this visit is to obtain measurements of your health status and to make 
sure you qualify for the study.  It will require an overnight fast. 
 
• Complete a written health history questionnaire. 
 
• Have your weight, height, and resting blood pressure measured. 
 
• Have a fasting blood sample obtained from a vein in your arm.  Blood lipids such as cholesterol, HDL, 
your blood sugar, and your insulin concentration will be measured. 
 
You will have your body composition determined by a method known as dual x-ray absorptiometry 
(DEXA).  DEXA is non-invasive and works somewhat like an X-ray.  You will need to remove metal 
clothing accessories, jewelry, and your shoes as these can affect the scan results; however, you will 
otherwise remain fully clothed.  You will be asked to lie on your back on the DEXA table.  When you are 
properly positioned a trained technician will initiate the scan.  The scanning arm of the machine will pass 
over your body taking measurements.  It is important that you stay as still as possible during the 
procedure to ensure a clear, useful image.  The scan takes about 10 minutes to complete.  No anesthesia is 
required.  The procedure is painless and radiation exposure is minimal.  There are no restrictions to your 
normal activity following this procedure. The test will determine the amount of fat and muscle that you 
have.  
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Diet.  Based on your diet history, you will consume a weight standardized diet consisting of ~50-55% 
carbohydrate and ~30-35% fat for 3 days prior to your first muscle biopsy.  You will write down the food 
you consume during these three days so that the researchers will be able to analyze your diet.  On the day 
before testing you will receive a standard meal which you will consume during the evening between 6:00-
7:00 pm. At 7:00 am (12 hr fast) you will report to the laboratory for your first muscle biopsy and an 
intravenous glucose tolerance test.  
 
Muscle Biopsy.  You will have a muscle biopsy obtained from your thigh (vastus lateralis) on the 
morning a after your 12 hr fast.  This biopsy will be obtained approximately 20 minutes after you come 
into the lab on your day of testing. You will have second muscle biopsy one week later after the first 
muscle biopsy and after following the same protocol as before. The second biopsy will be performed on 
the opposite leg. The muscle biopsy procedure consists of initially shaving a two by three inch square on 
your thigh and cleansing this area with iodine.  The iodine may temporarily leave your skin with a 
yellowish tinge.  A substance that becomes cold upon exposure to air (ethyl chloride) will then be sprayed 
on the biopsy site to numb the skin surface.  A local anesthetic, much like that used at the dentists’ office 
(lidocaine) will be injected just beneath the skin in an area the size of a nickel.  This injection may feel 
like a bee sting, but will numb the skin.  A small incision of approximately 1/2 inch will then be made in 
the numbed area.  A sterile needle about the diameter of a pencil (1/4 inch) will then be inserted into your 
thigh muscle.  A piece of muscle about half the size of an eraser at the end of a pencil (~100 mg) will be 
obtained.  The time to insert, cut, and remove the muscle sample will be 3 to 5 seconds.  You will then 
have pressure applied to the biopsy site for 15 minutes and a cold pack applied for 5 minutes.  The 
incision will be closed with a steri-strip and a bandaid; a temporary pressure wrap will also be applied to 
your leg.  The needle muscle biopsy technique is a research procedure designed to investigate 
characteristics in skeletal muscle; it has been performed on over 4000 occasions at ECU. 
 
Intravenous Glucose Tolerance Test (IVGTT).   This test measures your body’s ability to clear sugar 
from your blood, a measure of insulin sensitivity.  This test will be performed in the morning after an 
overnight fast at the ECU Diabetes/Obesity Center.  The IVGTT involves having catheters (small flexible 
plastic tubes) placed into a vein in each arm.  You will then have glucose (0.3 grams/kg body weight) 
injected into the catheter of one arm; blood samples (3 cc or about 1 teaspoon each) will then be taken 
every 1 to 2 minutes for 20 minutes.  After the initial 20 minutes, a small amount of insulin (0.025 u/kg 
body weight) will be injected into the catheter.  Blood samples (1 tsp) will be obtained at minutes 2, 3, 4, 
5, 6 , 8, 10, 12, 14, 16, 19, 22, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, and 180.    A small 
amount of sterile salt water (saline) will be injected into the catheter after each blood sample is obtained 
so that blood does not clot in the catheter and clog it.  The total amount of blood taken during this 3 hour 
test is about 100 cc or about 4 ounces.  This is about 25% of what is taken during a Red Cross blood 
donation.  The minimal model is a common research procedure for measuring insulin sensitivity and has 
been performed over 1000 times at ECU. 
 
 
What possible harms or discomforts might I experience if I take part in the research? 
DEXA - The duel energy x-ray absorptiometry (DEXA) procedure is painless and radiation exposure to 
me is minimal (about 100 times less radiation than you would receive in an airplane flying across the 
Unites States or if you had an X-ray of your chest).  You will simply lie still on the DEXA table while the 
scanning arm of the machine passes over me.  There are no restrictions to your normal activity following 
this procedure.  The effects of DEXA upon an unborn fetus is not known; if you are a women of child-
bearing age, you can request a pregnancy test at the lab before you undergo the procedure or perform such 
a test yourself.   
 
Blood Sampling - You may feel some pain during the insertion of the needle into your arm.  Possible 
risks associated with blood sampling are nausea, bruising, and a small chance of infection.  To minimize 
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risk, the procedure will be performed with sterile technique by qualified personnel in the Diabetes and 
Obesity Research Center, East Carolina University School of Medicine.   
 
Muscle Biopsy Procedure - Possible risks are a slight chance of fainting, a small risk of infection, the 
possibility of injuring a blood vessel or nerve, and muscle soreness with  
bruising.  You may have an allergic response to the injected anesthetic used in the current study if you do 
possess an allergy.  You will also feel a stinging sensation during the injection of the anesthetic and may 
feel a sensation of pressure when the biopsy needle is inserted into the muscle.  No stitches are required to 
heal the incision, but you will be left with a small scar at each site.  
 
Intravenous Glucose Tolerance Test - You may feel some pain during the insertion of the plastic 
catheter into your arm.  Possible risks associated with the test are nausea, bruising, and a small chance of 
infection.  To minimize risk, the procedure will be performed using sterile glucose and insulin solutions 
and will be performed using sterile techniques by qualified personnel in the Diabetes and Obesity 
Research Center, East Carolina University School of Medicine. 
 
Are there any reasons you might take me out of the research?   

During the study, information about this research may become available that would be important 
to you.  This includes information that, once learned, might cause you to change your mind 
about wanting to be in the study.  We will tell you as soon as we can.  This might include 
information about the side effects that are caused by taking part in this study.  If that happens, 
we can tell you about these new side effects and let you decide whether you want to continue to 
take part in the research.   

 

What are the possible benefits I may experience from taking part in this research? 
We do not know if you will get any benefits by taking part in this study. There may be no personal benefit 
from your participation but the information gained by doing this research may help others in the future. 
 
Will I be paid for taking part in this research? 
We will pay you for the time you volunteer while being in this study. As a result of your time 
commitment, travel expenses, and physical inconveniences, you will be reimbursed at the most $400, with 
a check from East Carolina University, which will be mailed to you 1 to 2 months after completion of the 
study.  If you elect to withdraw before this study is completed, you will be compensated $100 for each 
muscle biopsy and $100 for completing the intravenous glucose tolerance test.  These procedures will 
involve no costs to you. The social security number and address of those participants will be collected 
who receive $600.00 or more per year for participating in this research study and their names will also be 
reported to the Internal Revenue Service (IRS). 
  
What will it cost me to take part in this research?  

It will not cost you any money to be part of the research.  The sponsor of this research will pay 
the costs of: all procedures and analyses involved with this study.   
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Who will know that I took part in this research and learn personal information about me? 
To do this research, ECU and the people and organizations listed below may know that you took part in this 
research and may see information about you that is normally kept private.  With your permission, these 
people may use your private information to do this research: 
• The research team, including the Principal Investigator, study coordinator, research nurses, and all 
other research staff.   
• The sponsors of this study 
• Any agency of the federal, state, or local government that regulates this research.  This includes the 
Department of Health and Human Services (DHHS), the Food and Drug Administration (FDA), the North 
Carolina Department of Health, and the Office for Human Research Protections  
• All of the research sites’ staff.  This includes the research and medical staff at each site. 
• The ECU University & Medical Center Institutional Review Board (UMCIRB) and the staff who 
have responsibility for overseeing your welfare during this research, and other ECU office staff who oversee 
this research. 
• People designated by PCMH and University Health System; 
• Additionally, the following people and/or organizations may be given access to your personal health 
information and they are:None 
 
 
How will you keep the information you collect about me secure and how long will you keep it? 
The investigators will review all the data that is collected and all information about you will be 
maintained electronically, encrypted and password protected, and kept in strict confidence.  Your name 
will be assigned a randomly generated code that will be used in all documents related to the research.  The 
subject key document will also be encrypted and kept under the direct control of the Principle 
Investigator.  You will not be identified by name or any other distinguishable way in any part of this 
research if it is published by the doctors that are doing this study.   
 
 

What if I decide I do not want to continue in this research? 
Participating in this study is voluntary.  If you decide not to be in this research after it has already started, 
you may stop at any time.  You will not be penalized or criticized for stopping.  You will not lose any 
benefits that you should normally receive.  
 

What if I get sick or hurt while I am in this research? 
If you need emergency care:  

 If you need emergency care:  Call 911 or Moahad Dar, M.D. at phone numbers 744-2873 
(days) or 413-4456 (pager) (nights and weekends) for help.  It is important that you tell the 
doctors, the hospital or emergency room staff that you are taking part in a research study and 
the name of the Principal Investigator.  If possible, take a copy of this consent form with you 
when you go.   
 
Call the principal investigator as soon as you can.  He/she needs to know that you are hurt or ill.  Contact 
Darrell Neufer at 744-2780 (days) or 203-641-0589 (nights and weekends) or Moahad Dar, M.D. at phone 
numbers 744-2873 (days) or 413-4456 (pager) (nights and weekends).   
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If you do NOT need emergency care, but have been hurt or get sick: 
Contact Darrell Neufer at 744-2780 (days) or 203-641-0589 (nights and weekends) or Moahad Dar, M.D. 
at phone numbers 744-2873 (days) or 413-4456 (pager) (nights and weekends).   
 Call the principal investigator as soon as you can.  As necessary, go to your regular doctor.  It is 
important that you tell your regular doctor that you are participating in a research study.  If possible, take 
a copy of this consent form with you when you go. 
 
The ECU Medical Clinics may be able to give you the kind of help you need.  However, you may need to 
get help from a different type of medical facility and your Principal Investigator will know best what you 
should do. 
 
If you are harmed while taking part in this study:  
If you believe you have been hurt or if you get sick because of something that is done during the study, 
you should call Contact Darrell Neufer at 744-2780 (days) or 203-641-0589 (nights and weekends) or 
Moahad Dar, M.D. at phone numbers 744-2873 (days) or 413-4456 (pager) (nights and weekends) 
immediately.  There are procedures in place to help attend to your injuries or provide care for you.  Costs 
associated with this care will be billed in the ordinary manner, to you or your insurance company.  
However, some insurance companies will not pay bills that are related to research costs.  You should 
check with your insurance about this.  Medical costs that result from research-related harm may also not 
qualify for payments through Medicare, or Medicaid.  You should talk to the Principal Investigator about 
this, if you have concerns. 
 

Who should I contact if I have questions? 
The people conducting this study will be available to answer any questions concerning this research, now 
or in the future.  You may contact the Principal Investigator, Darrell Neufer at 744-2780 (days) or 203-
641- (nights and weekends).   
If you have questions about your rights as someone taking part in research, you may call the ECU 
Institutional Review Board Office at phone number 252-744-2914 (days).  If you would like to report a 
complaint or concern about this research study, you may call the Director of UMCIRB Office, at 252-
744-1971  
Is there anything else I should know? 
No 
 
I have decided I want to take part in this research.  What should I do now? 
The person obtaining informed consent will ask you to read the following and if you agree, you should 
sign this form:   
 
• I have read (or had read to me) all of the above information.   
• I have had an opportunity to ask questions about things in this research I did not understand and 
have received satisfactory answers.   
• I understand that I can stop taking part in this study at any time.   
• By signing this informed consent form, I am not giving up any of my rights.   
• I have been given a copy of this consent document, and it is mine to keep.  
 
 
          _____________ 
Participant's Name  (PRINT)                                 Signature                            Date   
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Person Obtaining Informed Consent:  I have conducted the initial informed consent process.  I have 
orally reviewed the contents of the consent document with the person who has signed above, and 
answered all of the person’s questions about the research. 
 
             
Person Obtaining Consent  (PRINT)                      Signature                                    Date   
 
 
             
Principal Investigator   (PRINT)                           Signature                                    Date   
(If other than person obtaining informed consent) 
 


