
NORTHERN ILLINOIS UNNERSITY

PD, PI, AND PID CONTROLLER DESIGNING
SOFfW ARE USING MATLAB

A Thesis Submitted to the
University Honors Program
In Partial Fulfillment of the

Requirements of the Baccalaureate Degree
With Upper Division Honors

Department of Electrical Engineering

by Bradley S. Mathis

DeKalb, Illinois

14 May, 1994

Student Narne: Bradley S. Mathis

Approved By:

Department of: ~~_

HONORS THESIS ABSTRACT
THESIS SUBMISSION FORM

AUTHOR: Bradley S. Mathis

THESIS TITLE: PD, PI, and PID Controller Designing Software Using
MATLAB

ADVISOR: Dr. James Bobis ADVISOR'S DEPT: ELE

DISCIPLINE: Control Systems YEAR: 1994

PAGE LENGTH: 66 BffiLIOGRAPHY: Yes ILLUSTRATED: Yes

PUBLISHED: No

COPIES AVAILABLE: Hard Copy

ABSTRACT:
The main purpose of this project is the design and programming of

software which will design PD, PI and PID controllers for a plant transfer
function, given a user specified desired output phase margin and error
constant as design parameters. The controllers to be designed are
restricted to controllers in series with the controlled process, with unity
feedback. Frequency domain analysis techniques are used as the basis for
the controller design algorithm, the methods of which are derived from the
reference texts listed, and outlined in this document. The project software
is written in MATLAB, to take advantage of many of its existing controls-
based frequency domain analysis functions, and to provide a medium for
full exploitation and analysis of the software's design results.

Acknowledgements

I would like to thank Dr. James P. Bobis, for invaluable assistance
and support while working on this project, and for introducing me to the
wonderful world of analog and digital control systems. I thank Dr.
Benjamin C. Kuo, author of two very clearly written texts from which a
majority of my ideas and design procedures are adopted. Thanks to The
MathWorks, creators of MATLAB, and especially John N. Little and Alan
J. Laub, authors of the Control Systems Toolbox User's Guide, for
providing ample information and examples to clearly illustrate software
functions used in this project. Finally, I would like to thank all those not
mentioned who provided any source of information, ideas, or moral
support.

This project is dedicated to my wife Michelle, the largest source of
support. Without her endless patience and tolerance, this project would not
have been possible.

Table of Contents

Abstract 1

Introduction

1. Controllers 2

2. Frequency Domain Analysis and Design 3

3. Introduction to MATLAB 7

Applications 8

Objectives 9

Procedure

1. Algorithm Design 10

2. Software Design 12

3. PD function - designpd.m 12

4. PI function - designpi.m 13

5. PID function - pid.m 14

Modifications 16

Results.. 20

Conclusion 33

References 34

Appendices

1. designpd.m - PD designing software 35

2. designpi.m - PI designing software 38

3. pid.m - PID designing software '43

4. Software Reference Manual . 49

Table of Illustrations

Figures:

1. PD Controller Frequency Response 5

2. PI Controller Frequency Response . 6

3. MATLAB Function Call 8

4. MATLAB Function Example 8

5. PD Testing Results Using Gpl(s) 21

6. PI Testing Results Using Gpl(s) 22
7. PID Testing Results Using Gpjts) 23

8. Actual Plot of pid.m Results with GPt (s) 24

9. Actual Plot of pid.m Results with GP2(s) 26

10. Actual Plot of pid.m Results with Gp2(S) (no PID) 27

11. Actual Plot of pid.m Results with Gp3(S) 29

12. Bode Plots of Systems with Gp4(S) 31

Tables

1. Software Test Results Using Gpl(s) 20

2. Software Test Results Using Gp2(s) 28

3. Software Test Results Using Gp3(s) 30

4. Software Test Results Using Gp4(s) 32

Abstract

The main purpose of this project is the design and programming of
software which designs PD, PI and PID controllers for a plant transfer
function, given a user specified desired output phase margin and error
constant as design parameters. The controllers to be designed are
restricted to controllers in series with the controlled process, with unity
feedback. Frequency domain analysis techniques are used as the basis for
the controller design algorithm, the methods of which are derived from the
reference texts listed, and outlined in this document. The project software
is written in MA TLAB, to take advantage of many of its existing controls-
based frequency domain analysis functions, and to provide a medium for
full exploitation and analysis of the software Is design results.

1

Introduction

1. Controllers
Controllers and control systems exist in a virtually infinite variety,

both in type of application and level of sophistication, however, any control
system can be described by its inputs, components, and objectives. For
example, the temperature control system in a house is a system that uses
the current temperature as its input, a thermostat and heat source as its
components, and constant temperature regulation as its objective. This
type of control is referred to as a process control or regulator system, and
its main objective is to hold a controlled variable at or near a constant
value. Another type of control system is a servomechanism, which is
designed so that the output variable follows the input variable as closely as
possible as the input changes. Examples of a servomechanism include the
power steering control in an automobile, and the rotor mechanism in an
antenna rotor.

Three types of controllers that are popular in industry, and often
used in controls classes as a basis for learning control systems, are the PD,
PI, and PID controllers, which can be used as servomechanisms or process
controllers. Manufacturers of process controllers use the PID almost to the
exclusion of other controllers, because of its flexibility (Van de Vegte).
Any of the controller coefficients can be zeroed, so that the PID controller
can function as a PD, PI, or P controller. In order to use any of these
types of controllers, the coefficients of the controllers must be found, a
process commonly referred to as tuning. There is a certain level of
difficulty to tuning a PD, PI, or PID controller analytically, and many
users tune the controllers by a trial-and-error method. This requires time,
and a lot of experience. With the widespread availability of personal
computers, control systems can now be modeled by the computer, and
many of the classical analytical control methods can now be quickly
simulated without regard to the numerous amount of calculations required,
which were previously done by hand. The software proposed in this report
is designed to calculate the coefficients of the PD, PI, and PID controllers
using the algorithms and design methodologies of these classical methods.

2

There are two basic design methodologies for designing controllers:
designing in the time domain, and in the frequency domain. To design in
the time domain given the plant transfer function, root loci and/or root
contour plots are used to find optimum placement of controlled system
roots, as a variable or variables are are changing. Due to the subjective
nature of choosing root locations using root loci or root contours, this
seems inefficient and difficult to translate into a workable software
algorithm. To design in the frequency domain, the only requirements are
magnitude and phase Bode plots of the plant transfer function, an
understanding of phase margin specifications, and how the desired
controller affects the plant transfer function response in the frequency
domain. Although this design method is somewhat subjective (as is any
design process), it seems better suited for a computer algorithm. Since the
desired output phase margin would be specified by the user in the software
proposed, most of the subjective process is left to the user. Therefore, the
algorithm need only calculate the original phase margin of the system, and
the controller coefficients that would result in the desired phase margin and
error constant. It is for this reason that the frequency domain design
methodology is chosen over the time domain design approach.

2. Frequency Domain Analysis and Design
In order to devise a design algorithm that is suitable for

programming, the analysis and design methodology must be understood.
One of the fundamental means by which to increase stability in the output
response of a plant transfer function is to increase the amount of phase at
the phase margin, that is, the frequency where the magnitude response of
the function is of unity gain. However, increasing phase has an effect of
damping system response as well, therefore increasing rise time, so too
much added phase may be undesired. Too little phase margin may result in
excessive overshoot or oscillation in the output response, and may lead to
an unstable response with small changes in the plant transfer function (due
to system aging, wear, or inaccuracies in plant modeling). Therefore, care
and understanding must be exercised when choosing a desired phase
margin. Since most plant systems can be modeled by a second order
transfer function, and since second order prototypes are used as a basis for
understanding higher-order systems, a design rule-of-thumb for second

3

order systems is used for finding a suitable phase margin. This rule is to
design the controller to provide 45 degrees of phase margin, which (for a
second order system) would result in less than 5% overshoot. For higher
order systems, systems with time delay or other non-linear systems, the
overshoot would probably be greater, however, designing for 45 degrees of
phase margin is a sensible starting point.

In the frequency domain, the PD controller has the effect of adding
90 degrees of phase to the overall response above a critical frequency
(Kp/Kd), as well as adding 20dB per decade of gain to the magnitude
response above this frequency (figure 1). This has the effect of increasing
the bandwidth of the overall system, which translates into a decrease in rise
time, as well as providing phase margin for stability. The negative effect
of the PD is to increase system overshoot and oscillation for some values
of Kp/Kd, and to increase settling time if Kp/Kd is too near to the origin.

The PI controller degrades the phase of the system by 90 degrees
below a critical frequency (Ki/Kp), as well as attenuates the magnitude by
20Iog(Ki) dB above the critical frequency (figure 2). The magnitude
attenuation results in increased system stability, less overshoot and
oscillation, but also increases rise time due to the damping nature of
integration. The PI controller also, more importantly, increases the type of
the system by one, therefore improving steady-state error. For example, if
the system is a type one (one pole at the origin), a PI controller will
increase the ramp-error constant to infinity, decreasing the steady-state
error to zero. Since the PI degrades the phase response of the system near
and below the critical frequency, Kp and Ki must be chosen such that the
frequency Ki/Kp is as far to the left as bandwidth allows so the existing
phase margin is not degraded, and rise time is not severely affected.

The PID controller combines the advantages of the PD and PI
controllers, by increasing bandwidth and phase margin, resulting in a
decrease in rise time, overshoot, and oscillation, and overall stability, if the
coefficients Kp, Ki, and Kd are chosen carefully.

4

Figure 1:

20
18
16
14

II) 12
"0

~.•.....- 10~
00
C\I

8 8
6
4
2

lb-l

PD Controller Frequency Response (Kp = 1)

I I I I I

101

Kp/Kd

90

80

70

60

II) 50
"-'C\I,..!:l
0.. 40

30

20

10

1fb-l 10° 101

Kp/Kd

Figure 2:

20

18

16

14 -

0 12
'"d
~.•....

10.-!=:
00ro
S 8

6

4

2

1~-1

PI Controller Frequency Response (Ki = 1)

101

0

-10

-20

-30

0 -40
V)ro..s:::
0.. -50

-60

-70

-80

-1flJ-l 100 101

KilKp

100

KilKp

3. Introduction to MATLAB
Before any software can be designed or programmed, at least a basic

understanding of the syntax and formats of the language must be learned.
MATLAB, which stands for matrix laboratory, is a matrix oriented
computing environment designed for high-performance numeric
computation. It is an interactive system, as well as a programming
language, designed to solve many numeric problems in a fraction of the
time required to program in a language such as C, Fortran, or Pascal.
MATLAB features a variety of matrix-manipulating functions, as well as
families of application-specific functions contained in toolboxes.. The
controller designing software designed and programmed for this project
utilizes many of the functions in the Control Systems Toolbox.

While the basic data element of MATLAB is the matrix, the way in
which the matrix is interpreted is where the power of MATLAB lies. If
given the vector matrix: [1 2 3], it can be interpreted as: 1) a vector
matrix; 2) a matrix of polynomial coefficients in descending powers of x;
3) a matrix containing control characters to pass to another function; etc.
The user can create any function accepting matrices as input, and interpret
and manipulate those matrices however they may see fit.

Most MATLAB functions, especially those that manipulate matrices
as data, must fit a particular format. The function call requires three parts:
the function name, the function's input parameters, and the function's
output parameters, and requires the syntax format in figure 3. If so
desired, the function can be programmed so that it need not have output
parameters, however, it must have at least one input parameter to be a
function. The function itself has two parts: the function declaration, and
the function body (processing routine using arithmetic operators and/or
other MATLAB functions), is saved as a file with a .m extension
commonly referred to as an .m file, and requires the format in the function
example in figure 4. This figure gives an overall example of how a
MATLAB function, and how MATLAB itself is structured (note that
comments are denoted by %).

7

[x, y, z, ...] = funct (a, b, c, ...)
~

output
parameters

~ '-~~-v-~~../
function input

name parameters

Figure 3: MATLAB Function Call

function r = rank(x,to I)
%RANK Rank. K = RANK(X) is the number of singular values of X
% that are larger than MAX(SIZE(X)) * NORM{X) * EPS.
% K = RANK{X,tol) is the number of singular values of X that
% are larger than tol .
s = svd(x);
if (nargin = = 1)

tol = max(size(x)) * s(1) * eps;
end
r = sum(s > tol);

Figure 4: MATLAB Function Example

Applications

The PD, PI, and PID designing software is designed with the intent
to be used as a teaching/learning aid, especially for the ELE380, ELE480,
and ELE481 controls classes. The intent arises from the project advisor's
need and desire for such software, and from a lack of understandable and
easy to use design software (or any PD, PI, and PID design software, for
that matter). However, the software designed is not limited to this use. It
is fully functional, and may be used as a tool in real design applications.

8

Objectives

The objectives of this project are:
1) To design and program software that reliably and accurately design

PD, PI, and PID controllers, given a desired phase margin to be
met, and an optional error constant;

2) To design the software such that it designs the controllers in
frequency domain;

3) To design the software using MATLAB commands, or a
combination of MATLAB commands and C code if necessary, to
take full advantage of MATLAB' s frequency analysis functions,
and subsequently to provide a medium for full exploitation of the
software's design results;

4) To design the software such that it is consistent with the format of
most MATLAB functions requiring a minimal amount of user
interface, yet so they remain easy to use and understand;

5) To thoroughly document the software consistent with other
MATLAB reference manuals, and to provide the user with enough
information and examples to become comfortable with its use;

6) To program the PID designing software such that it makes use of
the PD and PI designing software as subroutines.

Appended objectives:
7) To design the software such that it retains accuracy, yet

accomplishes its task in a minimum amount of time;
8) To program the PID designing software such that a unit..step

response graph of the uncontrolled system (if stable) and of the
controlled system are plotted.

9

Procedure

1. Algorithm design
In order to design a PD controller in the frequency domain, Kuo

proposes procedures as follows:
1) Since the proportional-control gain constant Kp can be combined

with the series gain of the system, the zero-frequency gain of the PD
controller, or Kp, can be regarded as unity. This means that Kp is
effectively divided out of the controller equation, and incorporated into the
transfer function gain constant, leaving the controller equation Gc(s) = (1
+ (KdlKp)s). For this software, Kp can be chosen given error constant
information, or can be chosen to be 1, and the user alerted.

2) Place the corner frequency of the controller (Kp/Kd) such that an
effective improvement of the phase is realized at the new gain-crossover
frequency. Or, choose KplKd such that the desired phase margin, or best
possible phase margin, is met.

The trick to designing the PD controller using these procedures is
knowing which values of KplKd to try. Since most of the negative changes
in the magnitude and phase responses of the Bode plots of a plant transfer
function occur within the boundaries of the largest and smallest pole
frequencies, it seems reasonable to vary the frequency KplKd within this
range to find the optimum value. This observation gives a starting value of
Kp/Kd for a suitable algorithm. Since Kp = 1 for this procedure, only Kd
need be evaluated.

Since Bode plots are logarithmic, it also seems reasonable that the
frequency KplKd must be varied in an exponential manner to produce
linear results on a Bode plot. This observation gives a method to
incrementing the frequency KplKd to find the optimum value. Since
greater accuracy requires smaller increments, and faster process time
requires larger increments, the incrementation amount will be determined
through a trial and error experimentation process, to find reasonable
accuracy for a short process duration.

To design the PI controller, Kuo proposes:
1) Determine the phase margin and gam msrgm of the

uncompensated system using Bode plots.

10

2) For a certain specified phase margin, find a new gain-crossover
frequency we' corresponding to this desired phase margin. That is, find
the point on the phase plot where the phase is the desired phase margin,
and locate the frequency where that occurs.

3) Lower the magnitude of curve of the uncompensated system down
to OdBat the new gain-crossover frequency by:
Kp = 1(X -I Gp(KC')1 dB 120). This equation determines Kp.

4) Select Ki such that the the corner frequency KiIKp is far below
the new gain-crossover frequency. Ki = (we' / 10) Kp. This locates the
frequency Ki/Kp a decade away from the new gain-crossover frequency, so
the PI controller does not significantly degrade the new phase margin at,
Wc·

5) If Ki is selected based on an error constant, determine Kp by
using a range of values. Or, if an error constant must be met, choose Ki
based on the error constant, and choose Kp such that the desired phase
margin, or best possible phase margin, is met.

If there is no error constant to be met, the algorithm for finding the
coefficients Kp and Ki are the equations given above. If an error constant
must be met, Ki is chosen by the conditions necessary to satisfy the error
constant, and Kp is varied through a range of values to find an optimum
value. This algorithm parallels the PD design algorithm, where Kp
replaces Kd and Ki replaces Kp in the PD algorithm. Also, in order to
design the PI using the PD algorithm, the plant transfer function
denominator must be multiplied by 1/s, so the PI equation is of the form
Gc(s) * s = (Ki + Kp s).

Finally, to design the PID controller, Kuo's proposal is:
1) Design the PD controller withKp = 1.
2) Incorporate the PD controller into the plant transfer tunction,

and design the PI controller.
3) The coefficients for the PID controller are given by:

KPPID= Kp + Kd * Ki
KipID = Ki
KdpID = Kd * Kp

where Kd is found from the PD controller design, and Kp and Ki are found
from the PI controller design.

11

2. Software Design
In order to maintain consistency with other MATLAB functions, the

function bode.m was examined. This function was chosen as a
programming model because a) it is a typical example of a frequency-based
controls function, and b) its input and output requirements are similiar to
those desired in the controller designing software being programmed. (The
function bode.m will be referred to in this report; it or any other
MATLAB function can be referenced by loading the .m file into any word
processor.)

When analyzing bode.m, the large function header was noted. This
header gives a brief summary of the functionIs use, how it must be called,
and what parameters it requires. This header also doubles as the
function Is help information, when the line help bode is entered at the
MATLAB command line prompt. Therefore, to stay consistent with
general function formats, and to provide as much documentation as
possible for the functions, the function headers must fit this format, and
provide as much information as possible. However, the function
description is limited to one screen (any more text would be lost at the top
of the screen when calling the help function), so it also must be as compact
and concise as possible.

A second observation made concerning the function bode.m was that
it limited the number and type of input and output arguments, in an effort
to require the user to input the required data to be processed and output the
resultant data. These input and output parameter checks were modified to
fit the format of the functions being designed. Aside from the parameter
checks that were directly adapted from the function, bode.m was otherwise
used as a general function format reference, and no other direct software
adaptations were made.

3. PD function: designpi.m
The PD function was designed and programmed first, since the PI

controller could utilize the same algorithm. In following the PD algorithm
noted above, a number of existing functions were used to achieve the
design goal, and the software algorithm is as follows:

1) Determine Kp for a given error constant. If no error constant is
given, set Kp = 1.

12

2) Determine the magnitude of the smallest non-zero root of the
denominator, and initislize loop parameters. This provides the starting
point for a choice of Kd.

3) Increment the magnitude of Kd. This provides a new value for
Kd, based on its previous value. The magnitude of Kd was tentatively
incremented by 0.02, to provide 50 values of Kd per decade of change,
however, this figure may change based on the accuracy of the phase
margin found, and the time required for the function to run.

4) Calculate the phase margin of the controlled system with the new
Kd. This is implemented by the functions conv.m, which multiplies the
numerator ploynomial by the controller polynomial; bode.m, which
determines the frequency response of the controlled system; and
margin.m, which determines the phase margin of the system from the
frequency response.

5) Repeat steps 3 and 4 until the desired, or maximum attainable
phase margin is found. Since there may be two possible values of Kd to
satisfy the desired phase margin, both must be kept. Therefore, after
finding the first value of Kd, the steps 3 and 4 must be repeated to find the
second value of Kd. If the desired phase margin is not met, the value of
Kd which gives the largest possible phase margin is saved.

6) Return the values of Kp, Kd, and the controlled system phase
margin. If there are two values of Kd, then two element matrices of Kp,
Kd, and phase margin are returned, where corresponding values have
identical indices.

4. PI function: designpi.m
The PI function differs from the PO function in that it must design

the PI controller one of two different ways, depending on whether or not an
error constant is given. If no error constant is given, the algorithm is:

1) Determine the frequency of the desired phase margin (or of the
maximum possible phase margin if the desired does not exist) from the
frequency response of the uncontrolled system. This is done using the
function bode.m and a loop to check for the existence of the desired phase
margm.

2) Determine the magnitude M of the function at the new frequency.
This is found using the data from the previous use of bode.m.

13

3) Kp = 1(X-l1ogIO(M)IJ.

4) Ki = Kp * (we' / 10). Locates Ki one decade away.
5) Return the values of Kp, Ki, and the controlled system phase

msrgtn.
If an error constant is specified, Kp and Ki are found using the PD

algorithm with the following modifications:
1) The PD controller variables Kp and Kd are replaced with the PI

variables Ki and Kp. That is, KpPIreplaces KdpDand KipI replaces KpPD'
2) The plant transfer function must be multiplied by l/s. Or, the

plant transfer function denominator must be multiplied by s.

5. PID function: pid.m
In order to satisfy one of the given objectives, the PID controller

must make use of the PD and PI functions. Fortunately, Kuo's PID design
procedure designs the PD and PI separately, so this is easily incorporated
into the following algorithm:

1) Design the PD controller with Kp = 1. This is done by
specifying no error constant when calling the function designpd.m. If the
PD controller meets the desired phase margin indicated, the user is
prompted to continue with the PI design, or stop.

2) Incorporate the PD controller into the plant transfer function.
3) Design the PI controller. The PI controller is not designed if the

PD controller meets the desired phase margin, and the user answers "no"
to the continue prompt.

4) Plot step response ifuser specifies. If the user answers "yes" to
the plot prompt, a step response of the controlled system is plotted, along
with a plot of the uncontrolled system (if stable), and the PD response (if
stable and if it meets phase margin specifications). To plot these functions,
the plot range needs to be calculated. This is done by examining the
individual plot ranges. If the individual ranges differ by a large margin, a
compromise range must be found, so as not to lose the integrity of either
plots. If this is not possible, then the integrity of the controlled system plot
outweighs the uncompensated system plot, and that range is used.

14

5) Return the values Kp, Ki, Kd, and the controlled system phase
margin. The coefficients for the PID controller are given by:

KpPID= Kp + Kd * Ki
KipID = Ki
KdpID = Kd * Kp

where Kd is found from the PD controller design, and Kp and Ki are found
from the PI controller design. Since the functions designpd.m and
designpi.m can return multiple values of the controller coefficients, the
largest of these values is chosen (which generally give a wider bandwidth).
Similiarly, for step 1 above, the largest value of Kd is incorporated into the
PD function to design the PI controller.

15

Modifications

The functions were first tested for all possible combinations of
incorrect input and output parameters, and the error responses checked and
modified. When the responses were found to be satisfactory, the functions
were next tested with a plant transfer function Kuo uses in several of his
textbook examples:

GP1(S) = 100
s (1 + 0.1 s)(1 + 0.2s)

When testing the PO design function with a desired phase margin of 45
degrees, is was immediately noted that the function required a considerable
amount of time to calculate its values, approximately 3 minutes (the
function was run on a 386-based computer with math co-processor; actual
computational times may vary). Upon examination of the results of the
computation, the returned values were accurate compared to Kuo' s
solutions. Kuo's value of Kd was 0.20, which gave a phase margin of
17.98 degrees; the software results gave a value of Kd as 0.2048, and a
phase margin of 18.02 degrees. The magnitude increment value was then
changed to 0.05, and tested. This change resulted in a faster computation
time (approximately one minute), but unacceptable phase margin results,
where the phase margin was accurate only to within approximately plus or
minus 7 degrees. The magnitude increment was tested with values of 0.04,
0.03, and 0.025. The value 0.03 was finally chosen as the magnitude
increment value, providing a suitable compromise between accuracy
(approximately plus or minus 2 degrees) and speed (approximately 2
minutes - comparable to the MATLAB function rIocus.m). The magnitude
increment of the PI design function was also adjusted to this value.

The PO, PI, and PIO controllers were next tested with the plant
transfer function:

2500
GP2(S) = s (s + 25)

which Kuo uses as in an example to design a phase-lead controller. This
function was chosen to test the error constant function of the PO controller.

16

Upon testing with the error constant equal to 10, the results yielded a phase
margin within 1 degree of the desired, and coefficients yielding the desired
error constant.

Next, the PID controller was tested with the plant transfer function:

G (s) - 100
P3 - s2+ 10s + 100

which Kuo uses as a design problem. The design requirements specified
are: less than 2% overshoot, less than 0.02 second rise time, and ramp-
error constant of 100. Upon testing, the function returned coefficients for
the PID controller which resulted in overshoot and rise time less than the
required amounts, however, the returned phase margin was infinite. Upon
analysis of the frequency response plots of the controlled system, and
observance of the phase margin for each iteration of the function, the
problem was traced to the results of the bode.m function call. When the
values of Ki reached a certain point during the iteration process, the
bode.m function generated a magnitude plot which had no 0dB crossing,
and therefore no phase margin value. When the margin.m function was
then called, it interpreted no phase margin as infinite phase margin. This
problem was corrected by increasing the frequency range over which the
bode.m function operated. This correction was made to the designpd.m
and designpi.m functions, and also resulted in a decrease in function
computation time.

The [mal plant transfer function used for testing was:
22.104

a transfer function derived from an adaptation of Loberg's ball and beam
senior design project. Although it is not expected the PID controller would
stabilize this system since the PID controller only adds 90 degrees of
phase, this function was used to test whether or not the function could
handle a high-order system, particularly one that has several poles at the
origin. The function could not handle this system, and produced spurious
results. The problem was again traced to the operation of the bode.m

17

function, where the phase plot returned was shifted so that it was plottable
within the range of -180 degrees to +180 degrees. Therefore, any function
of type two or greater would be shifted at by at least 360 degrees. This
problem was corrected by calculating the input function type, and then
subtracting 360 degrees for every time the plot was shifted.

After testing the functions for operation, some final issues needed to
be resolved. The problem of the inclusion of an error constant in the PD
designing function was an ongoing concern, since one of the objectives of
the function design was to include the error constant as a design parameter.
However, the function as written could only handle ramp-error constants,
or greater. Since the steady-state error equation for a ramp-error constant,
or any greater error constant is ess = RlKx (the error constant equation
used by the function), and the steady-state error equation for a step-error
constant is ess = R/(1 + Kp), the function could not handle a step error
constant. This issue was resolved by removing the provisions for handling
any error constant, setting Kp = 1, and including information for the user
on how to design for a desired steady-state error. This solution was chosen
so the function would remain easy to use, follow Kuo' s design principle,
and so the function would not require more calculations to slow the process
time down further. The function could still design for a desired error
constant, but the user must incorporate this error-constant into the plant
transfer function. This modification was made only to the PD design
function, since the PI controller adds a pole to the origin of the plant
transfer function. The smallest error constant that could be used in the PI
design is a ramp-error constant, and therefore the step-error equation
would not apply.

Another concern is the inclusion of a feature that tests the input
transfer function to determine if the control system to be designed is useful.
This concern is raised by Bateson's design process, where he includes
equations to test the usefulness of PD and PI controllers, given the plant
transfer function. After careful consideration, these features were not
included in the software design. Since the software is designed to optimize

18

the input transfer function, any controller that would degrade the input
function would not be returned as output (the coefficients returned would
be zero, or essentially zero). Also, it is assumed that the software user
knows what he is doing, so the user would not attempt to design a
controller where it would not be useful.

The last ongoing concern was the generation of the step response
plots. As written originally, once the PID controller finished its coefficient
calculations, the user was then prompted as to whether or not a step
response plot was desired. Since the design objectives require minimal
user interface, and consistency with other MATLAB functions, the function
was modified such that no plot prompt is given. If no left-hand output
arguments are specified, the function calculates the controller coefficients
and plots the step responses with the coefficient and phase margin
information. If the output parameters are specified, the coefficients and
phase margin are returned through the parameters, and no plot is
generated. This modification reduces user interaction with the function,
and is consistent with bode.m and other MATLAB functions.

19

Results

The PD, PI, and PID controllers were finally tested using the four
aforementioned plant transfer functions, and the results are presented in
tables 1 through 4, and in figures 5 - 12. The results are compared to
Kuo's results or design requirements wherever possible.

Testing the functions using:

G (s) - 100
P1 - S (1 + 0.1 s)(1 + O.2s)

design a controller to stabilize the system represented by Gpl(s). The
input (desired) phase margin was given to be 55 degrees, and no error
constant was specified.

Results:
Example Computed

Controller Kp Ki Kd Phase Kp Ki Kd
Phase Run

Margin Margin Time

uncomp. 0 0 -40.31 0 0 -40.24 0

PO 0 0.20 17.98 0 0.209 18.67 38.79sec

PI 0.0178 0.0036 0 55 0.0181 0.0030 0 55.825 2.41 sec

PIO 0.0735 0.007 0.035 56 0.0685 0.0339 0.0129 56.51 40.93sec

Table 1: Software Test Results Using Gpl(S)

As shown in table 1, the software design results parallel Kuo's
example results, for all controllers. As would be expected for any design
software, certain amounts of variation will exist, since designing any
controller is a subjective process, however, the end results of the design
process meet the requirements, and compare to those given by Kuo. The
computation times given in table 1 are used only as a basis of comparison
and analysis, and will vary depending on processor setup used.

By examining the magnitude and phase responses in figure 5, the PD
controller increases the bandwidth of the system, as well as increases the
phase of the system for high frequencies by 90 degress, as expected and

20

Figure 5: PD Testing Results Using Gpl (s)

Magnitude Response: Kp = 1, Kd = 0.2094
100

OJ
50"0

;::l•....-1=1co
t'\l 0a

-5PO-1 100

--- --- .•.. --•..-~-

101 102

w (rad)

Phase Response: Kp = 1, Kd = 0.2094O~--~,--.-.~~~~-----~!~--~~~~-----,--,--,-,.-~~

-100 F=~~~=-;;~=~~==:=-~~==-=c=:·····with,RD ..controller ..~ --________ ______u______
~ L ! !!.,.!! ~1~?9~peJ1S~'~-=~,~--~--1--J-~J~>~_,~c_-~~=[=r~r-·---W0.. -200 ~ .---- · .

._--------- -----------. :
--T'-------·--~.-- __u

i , ,-3<Ib-l , . ,

100 101 102

w (rad)

Step Response: Kp = 1, Kd = 0.2094
1.8

1.6

1.4

1.2

1=1 10.....•....-<'-I
0 0.80..

0.6

0.4

0.2

, , ,

(~

-

....-

j \I- ~ -

I \ I \/~ -

/ \ / -,-

I \i)
..... -

..-

I -

/
......

....... -

~ ,

0.1 0.2 0.3 0.4

time (sec.)
21

0.5 0.6 0.8 0.9 10.7

100

IU 50
"0
;::l•...- 0s:::::
00
aj

E -50

-1~00_2

Figure 6: PI Testing Results Using Gpj (s)

Magnitude Response: Kp = 0.0181,Ki = 0.0030

o

-100IU
CoIl
aj...c::
0. -200

-3CPO-2

10-1 100 101

w (rad)

Phase Response: Kp = 0.0181,Ki = 0.0030

10-1 100

w (rad)

: , , , , , ,

,£

••_ ... ·

----~
•

. . ~ ,
~ -.......

.••,it Dl
•

•

,,~

•

•
• ----
,

~ -r
i . :

101

Step Response: Kp = 0.0181,Ki = 0.0030
1.2~--~----~----~----~--~~--~----~----~----~--~

0.81--1······.····························;·············..................•..........................•..•.....................•..................................; t

s:::::
.9
.~ 0.61-/ ..··....... •...........................c....................... •............ • .

8.

0041--1···············.·······························•.· , .

0.2
•

01) ,

0 2 4 6 8 10 12 14 16 18 20

time (sec.)
22

............... -

100

IU
50'"0

::l.•.....-
~ro 0S

-5PO-2

-]00IU
'"
~
0.. -200

-3£P0-2

0.8

s:::::
0.- 0.6.•.....-'"00..

0.4

Figure 7: PID Testing Results Using Gpl(s)

Magnitude Response: Kp = 0.0685, Ki = 0.0339, Kd = 0.0129

o

10-1 100 101

w (rad)

Phase Response: Kp = 0.0685, Ki = 0.0339, Kd = 0.0129
, , " , , ! ! ! ! ! ! !!

..
,

•

.
•-

" ,---
•-'-- -'---,. - --------- "'"--- !"- '---
·"""

•
-'.r,--,.

Wjl U..L ~LJ

,

•
""'-',

..,---,- -'--
, i , ;

10-1 102100

w (rad)
101

Step Response: Kp = 0.0685, Ki = 0.0339, Kd = 0.0129
1.2

(~
I

I

-

i-"

/ , , ,

1

0.2

0.5 4.5 51.5 2.5 3.5 41 2 3

time (sec.)

23

Figure
8:

A
ctual

Plot
of

pid.m
R

esults
w

ith
G

pl(s)

I-
~

-
~

In
0

\DInII

E
0

~
~-

..
Gl

I-
~

r-
(\1

(.I)
CD

-
$:

..s::
N

0
~

~
CJ

~
01"1

G:)
Gl

(.I)
3

0
(I)

Gl
G:)

•••••
~

E
II

e
~

Gl
~

~
::r:::

E
Gl

(.I)
01"'1

~
~

..
~

Cf.I
I-

(.I)
N

-N
0"1(\1
(\1
G:)

Gl
0

$:
G:)

01"1
II

-
01"1

::r:::
~01"1

..
-

-
In

0
In

Cf.I
CD\DG:)

G:)II~::r:::

I
I

I
I

I

-
G:)

N
~

CD
\D

~
N

G:)
0

0
0

0
0

~
G:)

G:)
G:)

G:)

apnl-!ld"-l';'

I
I

I
I

24

outlined earlier, thus stabilizing the unstable system. The step response in
figure 5 shows that although there is a considerable amount of overshoot
and oscillation in the system, the system has been stabilized.

The magnitude and phase responses in figure 6 show the reduction in
gain the PI controller produces, and the degradation of phase for lower
frequencies by 90 degress, as expected and denoted earlier. The step
response shows a marked improvement in stability over the PO controlled
system, but a much larger rise time.

The step response in figure 7 shows the benefit of using the PIO
controller over the individual PO and PI controllers for this system. The
improved stability given by the PI controller is also accompanied by the
smaller rise time of the PO controller; the PIO controller combines the
advantages of both, as predicted and outlined earlier. By examining the
PIO magnitude and phase responses, the frequency domain effects of the
PIO on the system can be seen.

Finally, the output plot generated by the invocation of the pid.m
function without lefthand output arguments in figure 8, gives identical
results as the step response created using the results of the pid.m function
with output arguments. Also note that since the input function was not
stable, and since the PO controller did not meet the input specifications (to
design a controller fo 55 degrees of phase margin), these plots were not
generated. Thus, the functions designpd.m, designpi.m, and pid.m
performed as expected using input function Gpl(S), and meet the design
requirements.

The next function used for testing was:

G (s) - 2500
P2 - s (s + 25)

and was used to test the plot generation option when the pid.m function is
called, and a PO design satisfies the input requirements. The desired input
phase used was 45 degrees.

25

Figure
9:

A
ctualPlotof

pid.m
R

esults
w

ith
G

p2(S)

en
~----~----~~----~----~------r-----II-----'------'

.~r-·~

rJ:I
r-

'"
·

·
r-

~
E

'IIIIt4

Gl
II

~ell
E

~
·

ell
jQ

j
~

Ln
jQ

j-
Gl

"'d
~

~
..

~
ell

Gl
•••••

-
$:

f
~

~
~

('Y')

0
ttl

~
~

•••••
CJ

~
\

ell
••••

••••
N

Gl
ell

l
$:

3
3

~
'IIIIt4

ell
e

Gl
~

·
...,

=
:1

~
E

E
·

~
E

Gl
Gl

~
Gl

~
I

0
~

~
II

E
Gl

{:
CJ

ell
ell

"'d
••••

~
$:

~
~

~
~

r
=

ell
ell

c;)
..

('Y')

\
('Y')

~
:)

'IIIIt4
Gl

e
en

.:)
$:

$:
Gl

en
••••

••••
$:

--
••••

CS)

-
II

N
"'d

"'d
••••

·
Gl

Gl
"'d

~
~

<
,

~
~

••••
•...

ell
~-

..
.-:----.....

ttl
0

0
'IIIIt4

"'-
jQ

j
jQ

j
c;)

r-
>

Ln
...

.-'~
•••••

.._'-
('Y')

-:,.-=--'"

CS)
CS)II~~

CS)
rJ:I

'IIIIt4
N

•••••
en

rJ:I
'IIIIt4

N
CS)

.
.

.
.

.
.

.
•••••

•••••
•••••

CS)
CS)

CS)
CS)

apnllId
•.••'vf

26

Figure
10:

A
ctualPlotof

pid.m
R

esults
w

ith
G

p2(S)
(no

PID
),.,.

~----~-----T----~'-----~-----'----~------r-----'0IS)

l..n(T)

r
IS)

II\
(T)0

E
IS)

~
Q)

\
~(f.I

I
::n

l..n
I

(f.I
N

~
Q)

I
~

~
(S)

(f.I
Q)

-
$:

~
..=:

0
IU

~
c

~
(f.I

01"4
Q)

(f.I
$:

:3
t"-

N
(f.I

Q)
Q)

,.,.
0-

~
~

E
0

(S)
E

Q)
l..n

Q)
~

0
~

,.,.
E

Q)
(.)

(f.I
II

01"4

~
$:

::n
~

Cil
......

::I
(f.I

E
l..n

"-
""'"

"
~

'\
Q)

(S)
,

..
$:

Q)
,.,.

I
01"4

$:
l..n

//
-

01"4
IS)

.//
-

'"
""'"

~
(S)

_
/

Q)
~

(S)
(S)

--
..=:

01"4
./

././
(f.I-

(S)
,,/"

IU
0

II
(

~
Cil

~
"-

X
l..n

,,,-
IS)

--
..

0

--
""'"

(S)

-~-------
II

~

-""""""--
..•....

x
-- --

..••.....•...•...••..•..---
(S)

'"
,.,.

N
""'"

(XI
'"

,.,.
N

(S)
0

0
0

0
.

.
.

""'"
""'"

""'"
(S)

(S)
(S)

(S)

apn1-!ld
.....f;J

27

Results:
Computed

Controller Kp Ki Kd
Phase
Margin

uncomp. 1 0 0 28.22

PO 0.0061 0 45.47

PIO 0.3574 0.8843 0.0021 47.76

Table 2: Software Test Results Using Gp2(S)

Figure 9 shows that all plots have been generated by responding
"yes" to the "continue with PI design" prompt, as expected and as
programmed. Note that the PD step response has decreased rise time and
increased oscillation as compared to the PID step response, with equivalent
overshoots, so the desired response is left up to the user. This is the
purpose of generating both plots. Figure lOis the resultant plot when the
"continue" prompt is answered "no". Note that the PID response was not
generated, the uncompensated and PD responses are identical to those in
figure 9, and only the coefficients for a PD controller are returned. These
results are in accordance to the software design and expectations.

The input transfer function:

100
GP3(S) = S2+ 10s + 100

was used to test the error constant feature. In Kuo's problem, the
controller is to be designed such that a ramp-error constant is 100, the
maximum overshoot is less than 2%, and the rise time is less and 0.02
seconds. To meet the ramp error requirement, a PI or PID controller must
be designed. For this example, the PID was designed, and the desired
phase margin was specified as 180 degrees, since no phase requirements
were given.

28

Figure
11:

A
ctualPlotof

pid.m
R

esults
w

ith
G

pjts)

~------~------~--------~-------r--------r-------,~
I

I
I

I
I

~

.

I-

j
L-

~==~===C======~========6_
~I

~~

N
~

.~
N.""""

en.~

29

IJ)

~.-cII.).en-II.)E

Results:
Computed

Controller Kp Ki Kd Phase
Margin

uncomp. 0 0 90.59

PIO 578.3 100 16.22 89.06

Table 3: Software Test Results Using Gp3(s)

After generating the plot as in figure 11, analysis was performed on
the plotted function to determine if the design met the requirements. This
analysis could be done using the ginput function, which returns x-y
coordinates of points picked off the graphics screen with a pointing device
(such as a mouse), or more accurately, by using the actual plot data.
Analysis performed on the plot data result in a rise time of less than 0.0027
seconds, and a maximum overshoot of 1.34%, both well below the design
requirements. The error constant Kv = liIlls>o sGc(s) = 100 with Ki
= 100, therefore all input requirements are met, and the error constant
feature performs as designed.

The [mal analysis performed used the transfer function:
22.104

Gp4(S) = s3 (s + 0.9216)

to determine if the functions could handle an input function with several
poles at the origin. Although the PO, PI, or PIO functions cannot stabilize
the system, the effects of the controllers on the frequency response of the
uncompensated system should meet the expectations outlined. The desired
phase input into the functions was the maximum 180 degrees.

30

Figure 12: Bode Plots of Systems with Gp4(S)

Magnitude Response: Gp4(s)
150 __

100

50

0
Q)

"0

~.•...
-50.-6hro

S
-100

-150

-200

-251fb-2

with PI controller

with PD controller

uncompensated

10-1 100 101

w (rad)

Phase Response: Gp4(s)

-240

with PD controller
with PID controller

uncompensated
-260

-280
Q)
<'lro..c:
0..

-300

-320

-340

-3~fb-2 10-1 100 101

w (rad)

Results:
Computed

Controller Kp Ki Kd
Phase
Margin

uncomp. 0 0 -156.4

PO 0 3.677 -81.52

PI 4.17E-8 4.17E-11 0 -96.38

PIO 4.18E-8 4.17E-11 1.5E-7 -94.26

Table 4: Software Results Using Gp4(S)

Table 4 clearly shows that although the PD controller is helpful in
reducing negative phase margin, the PI and PID controller coefficients are
impractical, and essentially zero, and therefore these controllers are
impractical as well. This is to be expected, since the input transfer
function is of order 4, and is a type 3, and any additional system poles
would be unwanted. The magnitude and phase Bode plots in figure 12
graphically illustrate the impracticality; the PI controller offers little change
over the uncompensated system, and the PID controller offers little change
over the PD controlled system.

More importantly, the results in the phase margin column show there
is no shift in phase by the function bode.m. If such a phase shift occurred,
the phase margins would be shifted by 360 degrees, and would be positive
values. Therefore, the phase correction in the software functions as
expected, and as designed.

The tests documented above demonstrate that the software performs
as designed, and meets the required design objectives.

32

Conclusion

By analyzing the results of the software designs, it is evident that
PD, PI, and PID controllers can be successfully designed using computer
simulation and evaluation techniques. The designs presented here use the
MATLAB programming environment, in an effort to take full advantage of
MATLAB' s frequency analysis functions, and subsequently to provide a
medium for full exploitation of the software's design results. Controller
design is certainly not limited to this type of environment; controller design
functions can be programmed using any language of any level, and any
controller type can be designed using methods similiar to those presented
here.

Other factors that can be included in controller design, and could
certainly be included in these controller design functions, are provisions for
time delay, sensitivity, multiple-input-multiple-output systems, systems
represented in state-variable form, and non-linear systems. The MATLAB
Control Systems Toolbox contains functions that convert systems in state-
variable form to polynomial form, so any SISO system in state-variable
form can be converted for use by the designed functions, and the designed
controller could be converted to state-variable form as well. The control
toolbox also includes functions that convert from digital domain to analog
domain, and vice-versa, so that digital PD, PI, and PID controllers could
be designed and analyzed using the software presented. Sections of non-
linear systems can be represented by linear systems, and time-delays can
be modeled in polynomial form, so the functions designed can manipulate
these systems as well.

The analysis of the results of the designed functions is certainly not
limited to the few examples mentioned. MATLAB includes a vast variety
of data analysis functions, so that any desired analysis may be done. If an
impulse response plot is more useful than a step response plot, it can be
generated. In fact, MATLAB can generate any user-defined input
response, and plot its output response. This makes MATLAB a very
powerful analysis tool, and learning aid. It is for this reason that the
controller design functions, specifically programmed to be designing tools
and learning aids, were programmed and presented in this environment.

33

References

Bateson, Robert N. Introduction to Control System Technology. 4th ed.
Toronto: MacMillan, 1993.

Ellis, George. Control System Design Guide. San Diego: Academic
Press, 1991.

Kuo, Benjamin C. Automatic Control Systems. 6th ed. Englewood
Cliffs, NJ: Prentice Hall, 1991.

Little, John N. and Alan J. Laub. Control System Toolbox (for use with
MATLAB). User's Guide. Natick, MA: MathWorks, Inc., 1990.

Loberg, David. "Ball and Beam Position Control System." Design
Project. DeKalb, IL: n.p., 1992.

Mathis, Bradley S. "Ball and Beam Position Control System." Honors
Project. DeKalb,IL: n.p., 1993.

MATLAB. User's Guide. Natick, MA: MathWorks, Inc., 1991.

Van de Vegte, John. Feedback Control Systems. Englewood Cliffs, NJ:
Prentice Hall, 1986.

34

Appendix 1: designpd.m - PD designing software

function [Kp,Kd,phaseoutl = designpd(num,den,phasein)
%DESIGNPD - PO controller design
% [KP,KD,PHASEOUT] = DESIGNPD(NUM,DEN,PHASEIN) calculates the coefficients
% Kd and Kp, and output phase margin of: Gc(s) = Kp + Kd*s, (see note).
% for a PO controller in series with a plant with unity feedback,
% yielding phase margin specified by PHASEIN. If the desired phase margin
% is not attainable, or if PHASEIN is specified as 180 degrees, the
% maximum phase margin attainable is returned. If the desired phase
% margin is attainable, one or two values of Kd and Kp are returned,
% depending on the nature of the transfer function. Vectors NUM and DEN
% must contain the numerator and denominator coefficients of the open loop
% plant transfer function in descending powers of s. Phasein must be a
% scalar value expressed in degrees.
%
% Note: It is assumed any error constant is incorporated into the plant
% transfer function gain constant, and Kp is set to equal 1, for an actual
% controller function of: Gc(s) = 1 + (Kd/Kp) s. See manual for details.
%
% Warning: Results may be inaccurate for transfer functions with orders
% greater than 5. This controller design function should be
% used only as a guide.
%
% See also: DESIGNPI and PID

% Brad Mathis 4/23/94

%---------------------------------------
% Input/output parameter check
%---------------------------------------

% Check number of input arguments
error(nargchk(3,3,nargin));

% Check number of output arguments
if (nargout -= 3)

error('Not enough output arguments')
return;

end

% Check validity of input arguments
Ik.Il = size(num); Im.nl = size(den);
if ((k -= 1) I (m -= 1)) % Check size of num, den

error('Numerator and denominator inputs must be vectors in descending powers of s')
return;

end
if (I > = n) % Check order of num to den

error('Order of numerator must be less than order of denominator')
return;

end

35

[m,n] = size(phasein); % Check if phasein is scalar
if ((m -= 1) I (n -= 1))

error('Phase input must be a scalar in degrees')
return;

end

% Maximum value of phasein allowed = 180 degrees
if (phasein > 180)

phasein = 180;
end

%------------------------------------
% Design PO controller
%------------------------------------

disp('Designing PO controller ... ')

%------------------
% Compute Kp
%------------------

% Kp = 1 for no given error constant
kp = 1;

% ------------------
% Compute Kd
% ------------------

% Find minimum nonzero open loop transfer function root
tfroots = sort(abs(roots(den)));
for i = 1: 1:Iength(tfroots)

% find system type
systype = i-l;

% find minimum non-zero root
if (tfroots(i) - = 0)

minroot = tfroots(i);
break;

end
end

% Initialize loop parameters
phasem = zeros(1,500);
magnitude = log 1O(kp/(minroot*l 0));
phasem(l) = -360;
phasem(2} = -359;
i = 2;

% set magnitude using min.
% root value and kp

36

% Loop to calculate Kd for optimum or desired phase margin
while « phasem(i) < phasein) & (phasem(i) > phasem(i - 1)) & fix(1 O*phasem(i)) -=
fix(l O*phasem(i-l)))

kd_old = kd_current; % Save old kd
magnitude = magnitude + 0.03; % Increase magnitude
kd_current = 10 A magnitude; % Set kd value
num2 = conv([kd_current kpJ,num); % Multiply plant by PD
w = freqint(num2,den,20); % Find freq. interval
w = 10gspace(logl O(w(l)), 10gl O(max(w)* 100), 20);
lmag,pha,w] = bode(num2,den,w); % Find freq. response
pha = pha - (360 * floor((systype + 2)/4 »; % Correct phase
[Gm,phasem(i + l),wcg,wcp] = margin(mag,pha,w); % Check phase margin
i = i + 1;

end

% Save Kd, Kp value if optimum phase margin is met
if (phasem(i) < phasem(i - 1))

phaseout(1) = phasem(i - 1);
Kd(1) = kd_old; Kp(1) = kp;

% Save Kd, Kp value if desired phase margin is met
else

phaseout(1) = phasem(i);
Kd(l) = kd_current; Kp(1) = kp;

% Loop to find second Kd for desired phase margin, if possible
while ((phasem(i) > phasein) & (fix(1 O*phasem(i)) -= fix(l O*phasem(i - 1»)))

kd _old = kd_current; % Save old kd
magnitude = magnitude + 0.03; % Increase magnitude
kd_current = 10 A magnitude; % Set kd value
num2 = conv([kd_current kpl.nurn): % Multiply plant by PD
w = freqint(num2,den,20); % Find freq. interval
w = logspace(log10(w(1», log10(max(w)*100), 20);
[mag,pha,w] = bode(num2,den,w); % Find freq. response
pha = pha - (360 * floor((systype + 2)/4) l: % Correct phase
[Gm,phasem(i + l),wcg,wcp] = margin(mag,pha,w); % Check phase margin
i = i + 1;

end

% Save second Kd, Kp value for desired phase margin if it exists
if ((phasem(i - 1) > phasein - 1) & (phasem(i - 1) < phasein + 1 »

phaseout(2) = phasem(i - 1);
Kd(2) = kd_old; Kp(2) = kp;

end
end

37

Appendix 2: designpi.m - PI designing software

function [Kp,Ki,phaseout] = designpi(num,den,phasein,K)
%DESIGNPI - PI controller design
% [KP,KI,PHASEOUT] = DESIGNPI(NUM,DEN,PHASEIN)calculates the coefficients
% Kp and Ki, and output phase margin of: Gc(s) = Kp + Ki/s,
% for a PI controller in series with a plant with unity feedback,
% yielding phase margin specified by PHASEIN. If the desired phase
% margin specified by PHASEIN is not attainable, or if PHASEIN is
% specified as 180 degrees, the maximum phase margin attainable is
% returned. An optional steady-state error constant K can be specified by
% [KP,KI,PHASEOUT] = DESIGNPI(NUM,DEN,PHASEIN,K). Vectors NUM and
% DEN must contain the numerator and denominator coefficients of the open
% loop plant transfer function in descending powers of s, Phasein must be
% a scalar value expressed in degrees. K is an optional scalar value, and
% it is assumed K is of type two greater than DEN (since PI adds a pole at
% the origin). See manual for details and examples.
%
% Warning: Results may be inaccurate for transfer functions with orders
% greater than 5. This controller design function should be
% used only as a guide.
%
% See also: DESIGNPDand PID

% Brad Mathis 4/23/94

%--------------------------------------
% Input/output parameter check
%--------------------------------------
% Check number of input arguments
error(nargchk(3 ,4,nargin»;

% Check number of output arguments
if (nargout -= 3)

error('Not enough output arguments')
return;

end

% Check validity of input arguments
Ik.ll = size(num); Im.nl = size(den); % Check size of num, den
if « k -= 1) I (m -= 1))

error('Numerator and denominator inputs must be vectors in descending powers of s')
return;

end
if (I > = n) % Check order of num to den

error('Order of numerator must be less than order of denominator')
return;

end

38

lrn.nl = size(phasein); % Check if phasein is a scalar
if ((m - = 1) I (n - = 1))

error('Phase margin input must be a scalar in degrees')
return;

end
if (nargin = = 4)

[m,n] = size(K); % Check if K is a scalar
if ((m - = 1) I (n - = 1))

error('Error constant input must be a scalar')
return;

end
end

% Maximum phasein allowed = 180 degrees
if (phasein > 180)

phasein = 180;
end

%-------------------------------
% Oesign PI controller
%-------------------------------

disp('Oesigning PI controller ... ')

%--
% Compute Kp, Ki if error constant K is not given
%--

if (nargin = = 3)

% Find system type
tfroots = sort(abs(roots(den)));
for i = 1: 1:Iength(tfroots)

% Find system type
systype = i - 1;

if (tfroots(i) - = 0)
break;

end
end

% Compute frequency of desired phase margin
[mag,phase,w] = bode(num,den);
phase = phase - (360 • floor((systype+2)/4»; % Correct phase
for i= 1:1 :Iength(phase)

if ((phase(i) + 180) < (phasein + 10» % Add 10 deg. for compen.
wc = wei); magl = mag(i);
break;

end
end

39

% Compute frequency of optimum phase margin if desired does not exist
if (wc = = [])

[Y, I] = max(phase);
wc = w(l);

end

%-------------------
% Compute Kp
%-------------------

Kp = 10 ~ (-abs(log10(magl))); % wc becomes new crossover

%-------------------
% Compute Ki
%-------------------

Ki = Kp * (wc 110); % Locate Ki 1 decade away

%--------------------------
% Compute phaseout
%--------------------------

num = conv(num,[Kp KiJ);
den=conv(den,[l 0]);
[mag, phase, w] = bode(num,den);
phase = phase - (360 * floor((systype+3)/4));
[gm,phaseout,wcg,wcp] = margin(mag,phase,w);

% Find new num with PI
% Find new den with PI

% Correct phase

%---
% Compute Kp, Ki if error constant K is given
%---
else

%-------------------
% Compute Ki
% -------------------

% Multiply plant function by lIs (PI = (Ki + Kp*s) 1 s)
den = conv(den,[1 0]);

% Find lowest order non-zero term in denominator
for (i = length(den):-1: 1)

if (den(i) -= 0)
break;

end
end

% Find Ki
ki = K * (den(i)) 1 (num(length(num)));

%-------------------
% Compute Kp
%-------------------

40

% Find minimum nonzero open loop transfer function root
tfroots = sort(abs(roots(den)));
for i = 1: 1:Iength(tfroots)

% Find system type
systype = i - 1;

% Find minimum nonzero root
if (tfrootslil - = 0)

minroot = tfroots(i);
break;

end
end

% Initialize loop parameters
phasem = zeros(1,500);
magnitude = log 10(ki/(minroot*1 0));
phasem(1) = -360; %
phasem(2) = -359;
i = 2;

% set magnitude using min.
root value and ki

% Loop to calculate Kp for optimum or desired phase margin
while ((phasem(i) < phasein) & (phasem(i) > phasem(i - 1)) & (fix(10* phasem(i)) - =

fix(10* phasem(i - 1))))
kp_old ::: kp_current; % Save old kp
magnitude = magnitude + 0.03; % Increase magnitude
kp_current = 10 A magnitude; % Set kp value
num2 = conv([kp_current kiJ,num); % Multiply plant by PI*s
w = freqint(num2,den,20); % Find freq. interval
w = logspace(log10(w(1)), log10(max(w)*100), 20);
[mag,pha,w] = bode(num2,den,w); % Find freq. response
pha = pha - (360 * floor((systype + 2)/4)); % Correct phase
[Gm,phasem(i + 1),wcg,wcp] = margin(mag,pha,w); % Check phase margin
i = i + 1;

end

% Save Ki, Kp value if optimum phase margin is met
if (phasem(i) < phasem(i - 1))

phaseout(1) = phasem(i - 1);
Kp(1) = kp_old; Ki(l) = ki;

% Save Ki, Kp value if desired phase margin is met
else

phaseout(1) = phasem(i);
Kp(1) = kp_current; Ki(1) = ki;

41

% Loop to find second Kp for desired phase margin, if possible
while « phasem(i) > phasein) & (fix(10* phasem(i)) - = fix(10* phasem(i - 1))))

kp_old = kp_current; % Save old kp
magnitude = magnitude + 0.03 ; % Increase magnitude
kp_current = 10 A magnitude; % Set kp value
num2 = conv([kp_current ki],num); % Multiply plant by PI*s
w = freqint(num2,den,20); % Find freq. interval
w = logspace(log1 0(w(1)), log1 0(max(w)*1 00), 20);
[mag,pha,w] = bode(num2,den,w); % Find freq. response
pha = pha - (360 * floor((systype +2)/4)); % Correct phase
[Gm,phasem(i + 1),wcg,wcp] = margin(mag,pha,w); % Check phase mar.
i = i + 1;

end
if « phasem(i - 1) > phasein - 1) & (phasem(i - 1) < phasein + 1))

phaseout(2) = phasem(i - 1);
Kp(2) = kp_old; Ki(2) = ki;

end
end

end

42

Appendix 3: pid.m - PID designing software

function [Kp,Ki,Kd,phaseoutl = pid{num,den,phasein,K)
%PIO - PIO controller design
% [KP,KI,KO,PHAsEOUTl = PIO{NUM,OEN,PHAsEIN) calculates the coefficients
% Kp, Ki, and Kd, and output phase margin of: Gc(s) = Kp + Kd*s + Kils,
% for a PIO controller in series with a plant with unity feedback,
% yielding phase margin specified by PHAsEIN. If the desired phase margin
% is not attainable, or if PHAsEIN is specified as 180 degrees, the
% maximum phase margin attainable is returned. If a PO controller meets
% the input requirements, the user is prompted to continue with the PI.
% An optional steady-state error constant K can also be specified by:
% [KP,KI,KO,PHAsEOUT]= PIO{NUM,OEN,PHAsEIN,K). If the function is called
% without output parameters, no values are returned and a step response
% plot is generated. Vectors NUM and DEN must contain the numerator and
% denominator coefficients of the open loop plant transfer function in
% descending powers of s. Phasein must be a scalar value expressed in
% degrees. K is an optional scalar value, and it is assumed K is of type
% two greater than DEN (since PIO adds a pole at the origin). For more
% control over design process, use DESIGNPO and OESIGNPI to design PO and
% PI independently. See manual for details and examples.
%
% Warning: Results may be inaccurate for transfer functions with orders
% greater than 5. This controller design function should be
% used only as a guide.
%
% See also: DESIGNPI and DESIGNPO

% Brad Mathis 4/23/94

%---------------------------------------
% Input/output parameter check
%---------------------------------------

% Check number of input arguments
error{nargchk{3,4,nargin));

% Check number of output arguments
if (nargout - = 4 & nargout - = 0)

error("lncorrect number of output arguments')
return;

end

% Check validity of input arguments
Ik.ll = size(num); lm.nl = siie(den);
if {(k -= 1) I (m -= 1)) % Check size of num, den

error{'Numerator and denominator inputs must be vectors in descending powers of Sf)
return;

end

43

if (I > = n) % Check order of num to den
error('Order of numerator must be less than order of denominator')
return;

end
[m,n] = size(phasein); % Check if phasein is scalar
if ((m - = 1) I (n - = 1))

error('Phase input must be a scalar in degrees')
return;

end
if (nargin = = 5)

Irn.nl = size(K); % Check if K is scalar
if ((m -= 1) I (n -= 1))

error('Error constant input must be a scalar')
return;

end
end

% Maximum phasein allowed = 180 degrees
if (phasein > 180)

phasein = 180;
end

%------------------------------------
% Design PO controller
% ----------- -------------------------

% Design PO
(Kpl ,Kdl .phaseoutl = designpd(num,den,phasein);

% If 2 values of Kp, Kd, phaseout, choose second
if (length(Kd 1) = = 2)

temp = Kp1(2);
Kpl = temp;
temp = Kd1(2);
Kdl = temp;
temp = phaseout(2);
phaseout = temp;

end

% Incorporate PO controller into plant transfer function
numpd = conv(num,[Kdl Kpl]);
denpd = den;

% Check to see if PO controller meets phase requirements given no K.
if ((phaseout > phasein) & (nargin = = 3))

disp('PD controller meets input specifications (given no error constant). ')
proceed = input('Do you wish to continue with PI design (YIN)? [YJ ','s');
PO = 1;

% Else conditions are not met; proceed = 'y'
else

PO = 0;
proceed = 'y';

end

44

% Proceed with PI if proceed = 'v'
if (isempty(proceed) I proceed = = 'V' I proceed = = 'V')

% ------ ---------------- ------
% Design PI controller
%------------ ---- ------------

% Design PI with no K specification given
if (nargin = = 3)

[Kp2,Ki2,phaseoutl = designpi(numpd,den,phasein);

% Design PI if K is given
else

[Kp2,Ki2,phaseoutl = designpi(numpd,den,phasein,K);
end

% If 2 values of Kp, Ki, choose second
if (length(Ki2) = = 2)

Ki2 = Ki2(2);
temp = Kp2(2);
Kp2 = temp;
temp = phaseout(2);
phaseout = temp;

end

% Else do not design PI; Ki = 0; Kp = 1
else

Ki2 = 0;
Kp2 = 1;
PO = 0; % PO controller does not exist (for plotting purp.)

end

%---------------------------------------
% Find Kp, Ki, Kd
%-------------------------------------
% Determine Kp, Ki, Kd
Kp = Kp2 + (Kd1 * Ki2);
Ki = Ki2;
Kd = Kd1 * Kp2;

%---------------------------------------
% Plot option
%---------------------------------------
% Plot step responses if number of output arguments = 0
if (nargout = = 0)

% Determine stability of original function
tfroots = sort(abs(roots(den)));
for i = 1: 1:Iength(tfroots)

45

% find system type
systype = i-l;

if (tfroots(i) - = 0)
break;

end
end
[mag,phase,w] = bode(num,den);
phase = phase - (360 • floor((systype+2)/4)); %phase correction
[gm,pm,wg,wp] = margin(mag,phase,w);

% Determine stability of PO function
[mag,phase,w] = bode(numpd,den);
phase = phase - (360 • floor((systype + 2)/4)); %phase correction
[gm,pmpd,wg,wp] = margin(mag,phase,w);

% Determine transfer function with PIO controller
if (Ki - = 0) % New transfer function with PIO

numcon = conv(num,[Kd Kp Kill:
dencon = conv(den,[l 0));
ctype = 'PIO';
pid = 1;

else % New transfer function with PO
numcon = numpd;
dencon = den;
ctype = 'PO';
pid = 0;

end

% Close loop transfer functions
[numc,denc] = cloop(num,den);
[numpd,denpdJ = cloop(numpd,denpd);
[numcon,dencon] = cloop(numcon,dencon);

% Find plot window
if (pm > 0)

lv.x.tl = step(numc, denc);
[y,x,t2] = step(numcon,dencon);
tmax = max(t);
t2max = max(t2);
if ((t2max > tmax) & (t2max < (32 • tmax)))

x = tmax + (t2max - tmax)/2;
t = O:x/1 OO:x; % X axis coordinates; 100 point plot

elseif ((t2max < = tmax) & (tmax < (32 • t2max)))
x = t2max + (tmax - t2max)/2;
t = 0:x/l00:x; % X axis coordinates; 100 point plot

elseif (t2max > = (32 • tmax))
t = 0:tmax/l00:tmax;

else
t = 0:t2max/l00:t2max;

end

46

elseif ((pm < 0) & (pmpd > 0) & (PO = = 1))
[y,x,t] = step(numpd,denpd);
[y,x,t2] = step(numcon,dencon);
tmax = maxlt):
t2max = max(t2);
if ((t2max > tmax) & (t2max < (32 * tmax)))

x = tmax + (t2max - tmax)/2;
t = 0:x/100:x; % X axis coordinates; 100 point plot

elseif ((t2max < = tmax) & (tmax < (32 • t2max)))
x = t2max + (trnax - t2max)/2;
t = 0:x/100:x; % X axis coordinates; 100 point plot

elseif (t2max > = (32 • tmax))
t = 0:tmax/1 OO:tmax;

else
t = 0:t2max/100:t2max;

end
else

[y,x,tJ = step(numcon,dencon);
tmax = maxlt):
t = 0:tmax/100:tmax; % X axis coordinates; 100 point plot

end

%--------------------------
% Plot step responses
%--------------------------
clg
axis(' normal')

% If uncontrolled system is stable, plot
if (pm > 0)

[yunc,x,tJ = step(numc,denc,t);
else

yunc = [J;
end

% If PO controlled system exists and is stable, plot
if ((pmpd > 0) & (PO = = 1))

[ypd,x,tJ = step(numpd,denpd,t);
else

ypd = [];
end

% Plot PIO
lvpid.x.tl = step(numcon,dencon,t);

% Plot functions
y = [ypid'; yunc'; ypd');
plottt.v, 'w');

47

% Title and key
title('Step Response');
xlabel('time (sec.)');
ylabel ('Amplitude');
if (pid = = 0)

str = ['Kp=',num2str(Kp),', Kd=',num2str(Kd},', P.M.='];
str = [str,num2str(phaseout)];

else
str = ['Kp= ',num2str(Kp), " Ki=' ,num2str(Ki}, " Kd=' ,num2str(Kd)];
str = [str,', P.M. =' ,num2str(phaseout)];

end
text(0.15,0.15,str, 'sc');
text(0.25,0.2,['Solid line: system with' ,ctype], 'sc');
loc = 0.25;
if ((pm > 0) & (PO = = 1))

text(0.25,loc, 'Dotted line: system with PO', 'sc');
loe = loe + 0.05;

end
if ((pm < 0) & (PO = = 1))

text(0.25,loc, 'Dashed line: system with PO', 'sc');
end
if (pm > 0)

text(0.25,loc, 'Dashed line: uncompensated system', 'sc');
end

end

48

A
ppendix

4:
Softw

are
R

eference
M

anual

"~.c
C

~co
C

)
~

--
"C

In
e

CD
m

0-0•••••••C0Om0:3
-I-
a..~ft.c
-~a.."iCD

fttn
O

:lr...
a...e

49

cC
)

.-f/)CD
ce••••cooca::

EQ
)

s:t::oZo-

N
II)

co.
.

.

th- CCI)

- C00'0
'C

'Q
.

Q
.

CI)
C

C

::c
0

1
C

I
'en

'en
"CI

ca
CD

CD
'Q

.
~

't:I
't:I

E(I)

~I/)

oCf)
en..:.c::oas.0"0(I)

~~c::Jas•....E•...~eE8oQ
..

asc:O
J

G
)'ii)

U)(I)
0

0
e-::::J
0..

- ca;enca.cQ
,

CCU'tJe:::Jc- 'tJQ
,

C0
)

'iiiCU'tJII

(I)
.s::.

-cC:
._

0
cu·-
en 'O
caC:
.co2
Q

,
••.•

-(I)
c_CUI/)

"Cc:
eg:::J

••.•
CCU
iie
Q

,
-

c
c
:

.2'8
enG)
CU.s::.
'tJ_oII

"C~
!;''g
:::J

as
O

Q
,

!-:
.c-
Q

,~

~~-G)
~8

I/)

~+Q
.

~II"(i)'
......•.
t)

G

s~a.E:JE
N

.8c:G)
.s::.
-c:
'Ii).2
:J'(U
Ee~~c:_
o
c:

'Oi*
C:c:
028
~

•...
E~eG)
_.s::.

-- ~E==e:J
-

I/)'C
ec:
I/):J
cu.s!
..2

1
/)

as'-
~:§

.s::..s::.

-:="0
~

~~

IIgoG

"'C0
.

CO
J

'iiiCD
"'C

e:oae:
.2...~e:e-'Ecoc..a.o..!2e:8.o0)
s:- ••e:CD
0)

-
>0.

0
-

eC>
ca><W

.•...
o

.
o

'"
'

.•...
VJ.•... '"'VJ
C'!o+o+.•...........
VJ

E0)

~0)
s:-o~:isco1i)o- •....!e2c:8cD

-coe:oQ)
:g"C

m>.
0_-_

'0
e:0)
coa.
1i)VJ
8~s...=
0

.
0

•••co
~1i)
>

'E
e:::s
coE
ar~E

E
::s~

...
co,E
.~

e:
:!:.~

-0)
ii"C
.

~
0

a
t-

.~

- C0a;:I.cc;
;..::;
;::;-a
.•..-
N E.

j
Oc-- ..:0".•••0

.
.•..c
'a

e.--
_

en
>CD
c
"

8
II

-.....
-- OJ

._
.•.•0

o
._

-
CD

G)0
'>

"
en

11 0
c

J!
c~Oo.
0_

u_
CD

II
II

"
:lEc~
.cjCDo.
o.c"Q

II

- joCD:I.c
o.

o.E
"co)
e:1i)
co>._VJ
~

"O
m

O
)

o
-

N
-·2

o
-

Il
e:

-a 8-'CO)
_.s::.

.•...-.....II
0

0.0)
-'CVJ
VJe:
:28..
O)VJ
.-

0)
>.

•.•
VJa.
:CO)
t-1i)

;..::
c

••
CD

--a
~

-
-'CE
"jQ,s.

0
.

EOj
0

--
cu

'c
>

"II~
c

_
_

oCE
U

CD
j

II't!.c
EE'Q:
jjs
coSen

ae:

~e.8.S:e:coVJ~::::I

"0CoCC
)

'iCD
"0

..0c:as.s:::.
•..•...0)
ase

.
0

0
)

~
:2

0)
::s

'EO
o

asII)
.s:::.

as
:!:

>.
~-II)c:c:

0
0

'0
.-

0)
o

II)
c:

::s
::::J

0)
':.0
~

:2
II)

::s
c:

0
e!.s:::.
-

II)
•...

c:
.e

.2
0

)
0

-
c:

e!,a
::::J8

~
as

.-
c:

II)
._

0)
0)'0
.0

L
..

:>.0)
as

0
e.:::

tn
II)

c:
c

•..
0

0
:;

o
__

(I)
.~

-O).s:::.
J!o::t--
'e::J

0)
.s:::.
-c:o0)
'0C

o

e0)

~as
tn.~
U

O
)

.-
•...

U;~
0

-
c~C

)
caC

0)C
l

as~0)Eoc:
'E~0)
.s:::.
-II).~:3.....

0)
.s:::.
-co'iii'ueC

-
O

)
c:i:...o~S:;:;0

)
c'iii,!!)(

:sas:E

'C'ji

'jic
0'2'
tn

fII
_CD
«'CCDCD
tJ)

'0ojoc:
W

os.CC
)

0Ci)CD

"

ECD

~oCJ)
en..loI::
oco.Qi~~c:::lco•....E•...~e"E8a::coc:C

)
CD

'iii
thCD
0

0
e-::sD..

~
_

a

C
C

';
';

:I:I
.c.c
Q.Q.
eeQ

JQ
J

'tI'tI
EE:::.

:::.
c

c
--'a'aC

C
Q

Q
'iii'iii
Q

J
Q

J
'tI'tI
"

II
='g'
:::.:::.
0

0
CD

CD
:I:I
.c.c
Q.Q.

th~~
0Ci)

r:ir:i
g.~~'
c~en

CD
s:-

(/)

-S2+a.
~II
'U)'
trC>

'acO
J

'iiiG)
"C

c:oisc:
.2•....!I/)
c:e-cco0..Q

.
o.2c:Q

)
Q

.
oQ

)
s:- ••c:G)Q)

-
>a.

0

-

eOcu><w

- o_o
-

-
I/)

- ci+ -~ci+-

c:0e»coEQ
)

fds:Q.
'0~e~'"CIt)

•Q
)

~o~Q
.

o- •.....!!!
ec8a::coc:0

)

gj'"C

..- C.;;:I.cQ
.

;':'c
;:=iQ)
-1

:1
~Ee,:s·c
-- -.-_Co.

C
0
0
1

•....--(I)
>

Q
)

C
1
:I

oU
II

.-.=-
0
:s

••
-

0
10

••
-

Q
)

~6'>(I)
R

O
C

ca
C

.
•

.
•

o.c
._-U

Co
Q

)
II

II
~

:I
E

C
•

.c:SQ)Co
C

o
C

1
:JQ

0
)

c:

~oe8.s

'Q
.

c0
)

'iiiCI)
'1:::J

Q
)

s:-e:oQ
)

8.EQ
)

~as
(I)

,~
U

Q
)

,-
"'-

-
Q

)
(I).r:.
0

-
c!!::::
0

)
caC

Q
)
o~Eoe:'e~Q

)
.r:.- I/)'~3'-'

Q)
s:-

Co'iii'ueQ
.

C
)

C~~s"'-CIS'3C
)

C'iii,!!><~:!:

oe:
'C::J'0~'Cas~a;e:o'~ooI/)
a;~cUE

~
Q

)

Q
)

c
0

'-
asiS'
me:Q)Q)
Eg.
I/)

e
,--.r:.Q)I-.r:.- .•...,0
"'-:Je:
ggoas>-"5
as.2
EB

"C00.

ECI)

~o(J)
(J)

~~i~.?:-
"2::las•....E•...~e- c:8oa::asc:0>

G
)"iii

(l)CI)
0

0
e-~D..

!2"
-

~
c

c
';';
CI)CI)
as

as
.c.c
Q,Q,
CCCUCU
'C'C
ee==cc
-- 'C'C'Q

.Q
.

II
II

='=-
==00Q

)
CU

== .c.c
Q,Q,
.g.g
.¥

..-:

(I)~~
°USa:a:
g-~~
c~tJ)

CI)
.s:::.
-:fiQjc:
::l.2
"iU

o
>

c:
CI)::l
- _•...c~.-
CI)

CU
c:

CI)
as

as
•...

,c
-

Q,
•...

~CI)
c=
Q

)
e

,,--c:
E8=CI)

':'.s:::.
'C-
._-Q,O" II..-:"'C
~c:
=

as
0

'
-

cu.¥
CI)

-
asQ

,
,c"-:
Q,CI)
.gE
.¥

"~
...:

(.)
.¥E-CI)
~8

CI)

i!+CI)

-~+~II

c:oac:.2•....!I/)
c:e-- c:asa.a.o..Qc:Q

)
a.oQ

)
.c-••c:.
!

~
0
..-

e Gca><w

.•...
o

-
o

-
•••••

I/)
.•...ci+ -~ci+.•...-I/)

	Page 1
	Page 2
	Images
	Image 1
	Image 2

	Page 3
	Page 4
	Titles
	Acknowledgements

	Page 5
	Titles
	Table of Contents

	Page 6
	Titles
	Table of Illustrations

	Page 7
	Titles
	Abstract

	Page 8
	Titles
	Introduction

	Page 9
	Page 10
	Page 11
	Titles
	PD Controller Frequency Response (Kp = 1)
	Kp/Kd

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2

	Page 12
	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1
	Table 2

	Page 13
	Page 14
	Titles
	[x, y, z, ...] = funct (a, b, c, ...)
	Applications

	Page 15
	Titles
	Objectives

	Page 16
	Titles
	Procedure

	Page 17
	Titles
	,

	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Titles
	Modifications
	s (1 + 0.1 s)(1 + 0.2s)
	2500

	Page 23
	Titles
	G (s) - 100
	P3 - s2+ 10s + 100

	Images
	Image 1

	Page 24
	Page 25
	Page 26
	Titles
	Results
	G (s) - 100
	P1 - S (1 + 0.1 s)(1 + O.2s)

	Tables
	Table 1

	Page 27
	Titles
	Figure 5: PD Testing Results Using Gpl (s)

	. ,
	-3<Ib-l
	-1 00 F=~~~=-;;~=~~==:=-~~==-=c=:·····with,RD .. controller ..
	~ --________ ______u______
	~ L ! !!.,.!! ~1~?9~peJ1S~'~-=~,~--~--1--J-~J~>~_,~c _-~~=[=r~r-·---W

	Images
	Image 1
	Image 2

	Tables
	Table 1
	Table 2
	Table 3

	Page 28
	Titles
	Figure 6: PI Testing Results Using Gpj (s)
	o
	8.

	Images
	Image 1
	Image 2
	Image 3

	Tables
	Table 1
	Table 2
	Table 3

	Page 29
	Titles
	o
	'"
	1

	Images
	Image 1

	Tables
	Table 1
	Table 2
	Table 3
	Table 4

	Page 30
	Tables
	Table 1

	Page 31
	Titles
	G (s) - 2500

	Page 32
	Images
	Image 1

	Tables
	Table 1

	Page 33
	Titles
	,.,.

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Tables
	Table 1

	Page 34
	Tables
	Table 1

	Page 35
	Titles
	-
	-
	.
	.
	.

	Images
	Image 1
	Image 2
	Image 3

	Page 36
	Titles
	22.104
	Gp4(S) = s3 (s + 0.9216)

	Tables
	Table 1

	Page 37
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Tables
	Table 1
	Table 2

	Page 38
	Tables
	Table 1

	Page 39
	Titles
	Conclusion

	Page 40
	Titles
	References

	Page 41
	Titles
	Appendix 1: designpd.m - PD designing software
	%---------------------------------------
	35

	Page 42
	Titles
	%------------------------------------

	Page 43
	Titles
	37

	Page 44
	Titles
	Appendix 2: designpi.m - PI designing software
	%--------------------------------------
	%--------------------------------------
	38

	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Titles
	Appendix 3: pid.m - PID designing software
	%---------------------------------------
	43

	Page 50
	Titles
	%------------------------------------

	Page 51
	Titles
	%---------------------------------------
	%-------------------------------------
	%---------------------------------------

	Page 52
	Page 53
	Page 54
	Titles
	48

	Page 55
	Tables
	Table 1

	Page 56
	Titles
	.-
	e
	c
	-

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 57
	Tables
	Table 1
	Table 2

	Page 58
	Titles
	E
	o
	en
	c:
	as
	•...
	.E
	•...
	8
	o
	as
	e-
	::::J
	-
	c
	a;
	C
	CU
	e
	:::J
	-
	'tJ
	C
	'iii
	CU
	II
	-
	cC:
	._ 0
	cu·-
	eg
	:::J ••.•
	iie
	Q,-
	cc:
	. 2' 8
	o
	II "C
	!;''g
	:::J as
	!-:
	.c-
	Q,~
	-G)
	~8
•.
	G
	II
	g
	o
	s
	a.
	E
	E N
	.8
	c:
	G)
	.s::.
	-c:
	'Ii) .2
	Ee
	c:_
	'Oi*
	C:c:
	028
	~ •...
	E~
	eG)
	_.s::.
	--
	~E
	==e
	:J ­
	ec:
	as'-
	~:§
	-:=

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6
	Image 7

	Page 59
	Titles
	"'C
	'iii
	CD
	a
	.2
	...
	~
	e
	-
	'E
	co
	8.
	-
	eC>
	ca
	><
	'"'
	C'!
	+
	.•...
	o .
	.•...
	.•...
	E
	~
	-
	:is
	­
	..!e
	2
	8
	:g
	0_-
	8~
	ar~
	.~
	-
	:I
	.c
	c;
	;..::;
	.•.. -
	Oc
	--
	.•.. c
	'a
	e.--
	_ en
	-
	--
	:I
	.c o.
	·2
	-a8
	_.s::.
	.•... -

	:28..
	Q,s
	EO
	j 0 -­
	c __
	~
	8
	~

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 60
	Titles
	'i
	CD
	..0
	as
	e .
	00)
	~:2
	'EO
	~-
	c: 0
	':.0
	~:2
	- II)
	.e .2
	- c:
	e!,a
	::::J
	8 ~
	as .-
	0)'0
	tn II) c:
	0:; o
	-O).s:::.
	J!o::t--
	'e
	~
	E
	o
	'E
	~
	0)
	-
	.~
	:3

	-
	o
	e
	~
	as
	tn.~
	.- •...
	U;~
	ca
	C
	C-
	...
	o
	,!!
	:s
	as
	:E
	0)
	-
	'C
	'ji
	'ji
	c
	0'2'
	_CD
	«'C
	CD
	CD
	tJ)
	'0
	j
	o
	W

	Images
	Image 1
	Image 2

	Page 61
	Titles
	os.
	"
	E
	~
	en
	i
	~
	•...
	.E
	•...
	8
	e-
	::s
	~
	'; ';
	:I :I
	.c.c
	ee
	EE
	:::. :::.
	--
	'a 'a
	:I :I
	.c.c
	th~~
	g.~~'
	-
	S2
	+

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 62
	Titles
	'a
	'iii
	c:
	is
	.2
	•...
	.!
	e
	-
	c
	co
	c:
	-
	•• c:
	->
	a.0-
	eO
	><
	w
	-
	~
	ci
	-
	-
	ci
	+
	­
	c:
	E
	fd
	s:
	~
	~
	­
	..!!!
	e
	8
	gj
	..
	-
	.;;
	:I
	.c
	~E
	·c
	--
	-.-
	•.... -
	U II
	.-.=-
	Q) II II ~
	~
	o

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 63
	Titles
	'iii
	'e
	'-'
	-
	8.
	E
	,- "'-
	ca
	C
	"'­
	'3
	,!!
	:!:
	-
	~
	a;
	~cU
	Eg.
	,--
	­
	gg
	EB

	Images
	Image 1
	Image 2
	Image 3
	Image 4

	Page 64
	Titles
	"C
	E
	~
	::l
	•...
	.E
	•...
	~
	-
	c:
	8
	o
	e-
	~
	!2"
	- ~
	c c
	';';
	CC
	ee
	--
	'Q. Q.
	==
	.c.c
	.g.g
	CI)
	-
	:fi
	Qjc:
	"iUo
	­
	c~
	CI) as
	,,-
	-c:
	E8
	._-
	cu.¥
	,c"-:
	.¥E
	~8
	i!
	-
	~
	~

	Images
	Image 1
	Image 2
	Image 3

	Page 65
	Titles
	a
	e
	-
	-
	-

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

