
Northern Illinois University

Client/Server: What Exactly is the Problem?

A Thesis submitted to the

University Honors Program

In Partial Fulfillment of the

Requirements of the Baccalaureate Degree

With Upper Division Honors

Department of OMIS

by

Allan W. Furman Jr.

Dekalb, Illinois

May 1996

Student name: AllanW.FunnanJr. ~.~

Approved by: Dr. Richard Born ~ vt2 ~
Department of: Operations Management & Information Systems

Date: December 8, 1995

Author: Allan W. Furman If.

Thesis Title: Client/Server: What Exactly is the Problem?

Advisor: Dr. Richard Born Dept: OMIS

Discipline: Information Systems Year: 1995

Page Length: 14 Bibliography: YES Illustrated: YES

Published: Pending

ABSTRACT:

Various organizations have made a commitment to migrate their systems to a new

client/server architecture. Due to it's diverse nature, many problems have arisen inherent

to the way the system works. For instance, the use of different tools and platforms to

accomplish various tasks is required. Getting these tools to work well together in

disparate situations is a key issue. How can a company determine which tools, platforms,

and systems changes are desired? One way to do this is to communicate; share the

information concerning the problems one encounters with others who find themselves in

the same boat.

Therefore, a survey was distributed focusing within six facets of client/server

application development: performance, capacity, scalability, portability, connectivity, and

functionality. The objective: to discover various common links and/or connections that

contribute to successful client/server application development The result: information was

gathered from the people who are out there right now producing it.

The four page survey was disseminated to over 500 information systems

professionals throughout the domestic United States. Participants were selected by the

respondent's title(manager or director of MIS or Systems & Programming), the

corporation's listed systems, and were obtained from the Spring 1995 Computing IS

Managers Guide. The design of the survey was critical in obtaining specific, relevant

information. Utilizing the inverted funnel sequencing style, the task of getting a given

respondent to open up was accomplished. The respondent contributed the answers as

opposed to the survey suggesting them.

15% of the surveys(74 of 500) were returned; 40 of which the respondent

indicated no background in client/server and 34 of which were completed in full. Through

analysis of these surveys, I have gained a greater appreciation for exactly how diverse

client/server really is. I was able to discover some common threads in each area. This

paper is an excellent starting point to further analyze client/server problem areas.

CONNECTIVITY PORTABILITY

PERFORMANCE FUNCTIONALITY

CAPACITY SCALABILITY

For the past few years business computing has been evolving from megacomputer

centers to what is known today as client/server. This means that multiple computers on a

given network share in the processing responsibility. The computer that a user is sitting

at(the client) does some of the work, and another computer which sits somewhere else on

the network(the server) also does some of the work. This method of computing is a more

open (diversifiable) and efficient way to process data.

Various entities have made a commitment to this environment even though

problems have arisen inherent to the way the system works. Because it is very open,

people use many different tools to accomplish their various tasks. Therefore, getting these

different tools to work well together in different situations is a key issue. The only way to

do this is to communicate, or simply share information concerning the problems one

encounters with others finding themselves in the same boat.

This paper presents the results of a survey disseminated to over 500 information

systems professionals throughout the domestic United States. These participants were

selected at random, the only prerequisites being the respondents title (i.e. manager or

director of MIS or Systems & Programming) and the corporation's listed systems. They

were obtained from the Spring 1995 Computing IS Managers Guide. The average

respondent had 2.48 years programming experience in client/server and 15.32 years

programming experience total, lending credibility to the responses received.

Six facets of client/server application development were investigated. These six

are:

• Performance the overall speed and efficiency that a developed application
displays

• Capacity reflects the amount of hardware resources such as disk space,
memory, and bandwidth that an application needs

• Scalability the ability of an application to work with an increasing number of
users or across various network setups

• Portability reflects the ability of an application to be transported from one
system and platform to another

• Connectivity the ability of various levels of tools used for development to
communicate with each other

• Functionality the ability of a given tool to do what a programmer wants or needs
it to do

Each respondent was first asked to rank the categories as they applied to their

specific experiences. The ranking ranged from 1 to 6, a '1' meant the respondent felt the

given area had the most problems, whereas a '6' meant it had the least. As can be seen

from figure 1, performance was the

ranking it as number one. Connectivity

hands down winner(or loser, depending

on how one looks at it) with 32%

Figure 1 - Ranking of Categories

followed closely behind. Capacity,

functionality, scalability, and portability were deemed less of an issue. Although it appears

functionality and scalability should be ranked above capacity, with ~/o ranking them each

as number one, the average ranking shows that capacity was overall more problematic.

It is necessary to remember, however, that problems in the other five categories

can be construed as performance related. Therefore, more in depth discussion of these

categories will help lend reason to the performance problem itself

Performance ..~-...JI~
This survey did not attempt to

simply asked, in the form of an open

limit the types of problems that could

possibly occur related to

performance. Respondents were

ended question, to discuss specific

5:2
.~v.[l8ffj../i::j.··.·
~

Typical responses such as

PERFO~ANCE~~
~.~ •.••••~w~tw

problems they had encountered.

slow processors, insufficient memory, CAPACITY SCALABILITY

and high volume of transactions were plentiful. There were, however, several other

specific responses which connect performance to the other five categories.

The overwhelming consensus was that processing speeds(i.e. response times or

throughput) were entirely too slow. Large data requests from OLTP systems against SQL

databases were good examples of this. The efficiency of queries, due to inefficient keys

and indexes on files, was unacceptable to the end user.

Extremely large quantities of data, coupled with WAN vs. LAN transmission

speeds, was an instigator of many problems. In particular, file capacities on mainframe

and mid-range systems tended to be more than PC's could handle. As a result, many

programmers were forced to set up intermediate logical files to handle the excess.

Capacity

As previously defined,

capacity deals with a given system's

hardware capabilities. This area is

perhaps the most important one to

properly plan and implement.

Thorough capacity planning can help

prevent bottlenecks and breakdowns

before they happen.

In the days of the mainframe,

I~c!l-~~IIC= 2\1 Cb
AS1

CONNECTIVITY l'ORTARlLITV

SCALABILITY

capacity planning had become the norm. With a mainframe, it isn't much of a problem

since it's operating system controls and knows everything that is going on within the

network. With client/server, however, it isn't such a pretty picture.

Various operating systems and network topologies make it difficult to produce

any one tool that can capture all the relative measurements. Added to the determination

of future computing needs, this can become laborious at best. Although presently treated

as optional, many companies will soon see that it will become a requirement.

Respondents were asked to relate specific capacity problems occurring in three

areas; the client, the server, and the network itself In general, there was a fairly even

distribution of respondents indicating problems in each category. Approximately 65%

indicated the client, 56% the network, and 42% the server. Currently there really are no

'one size fits all' tools to test all of these areas. Ifwe can better understand where the

problems are occurring, however, we can build better tools to fix them.

On the client side, insufficient CPU speed and insufficient memory were the major

instigators, each receiving 45% of the vote from respondents. This, of course, makes

sense. It does not matter how fast a computer's processing unit is if it has insufficient

memory to support the current task. The remaining 10% indicated I/O speed to be a

problem on the client. This also makes sense since most experienced programmers

develop applications with the intention of accessing the disk as little as possible.

Other specific problems, mentioned on the client, dealt mainly with hardware

considerations. Some said their hardware was too old, while others said they didn't have

enough(memory, disk space, etc.). There was an overwhelming agreement that, at the

absolute minimum, 8 meg of RAM is needed at the client. However, most suggested as

much as 16 to 32 meg.

Similarly, along the lines of processors, 486 was deemed the minimum but a

Pentium was stressed as the optimum. The overall link is that with each new version of

the operating system or database, the new features are nice but to use them you really

need the power.

On the server side, approximately 50010 of the respondents indicated insufficient

CPU speed as the major problem with 25% each for I/O speed and insufficient memory.

With most of the processing still going on at the server, this was not surprising.

Many respondents suggested that a Pentium processor was the minimum for an

efficient server, along with 64 to 128 Meg of RAM. Some suggested using the mainframe

as the server.

On the network itself, both insufficient LANIW AN bandwidth and bottlenecks at

routers, bridges, and gateways drew 42% of the respondents. The reasons dealt mainly

with high volume OL TP traffic, data problems due to large graphics files, and large files

from mainframes. With real-time applications, besides the congestion causing

sluggishness, another problem to deal with is the loss of messages over the network. It

seems everyone these days is screaming for more bandwidth, a testimony to the merit of

capacity planning.

The remaining 16% were votes for an incorrect network topology. With

client/server demands ranging from SQL database queries to video teleconferencing on the

rise, this author expects this category to be a major future concern. A reason for the

response in this area being so low may be the software-oriented rather than hardware

oriented nature of the respondents.

Most interesting, over all, was the number of respondents who said they had

performed some formal capacity modeling before implementing their current systems.

Approximately 77% did not utilize modeling. Of the 23% who said they did, only one

named a specific tool used to do the modeling. Those who did perform the modeling still

experienced many of the same bandwidth and memory problems as those who didn't. The

concept of capacity modeling is not understood or utilized as extensively as need be.

The biggest problem of capacity planning may lie in a totally different area -- the

cost. The tools available today, that can do the job right, are considerably expensive. This

is due to the fact that it tends to be the large companies with complex systems which take

the time to do the capacity modeling. The time needed to develop a capacity modeling

application, and support it, is considerable.

Scalability

Building applications that are

truly scaleable in a client/server

architecture is quite a challenge. Trying

to cross differing platforms or utilizing

GUI, as well as character based,

interfaces can be troublesome. Finding

the right tool is critical. Many

programmers find it necessary to drop
SCALABILITY

down into a 3GL to solve more complex tasks.

This survey did not try to solve the scalability issue, it simply attempted to get a

feel for where programmers are having the most problems. The three main issues

discussed dealt with breakdown due to:

• complexity
• increased number of users
• crossing of platforms.

As noted earlier, scalability was, on average, ranked the second least common area

for problems. This is expected to change over time, however, as the number of enterprise-

wide applications increases. Therefore, it still merits discussion.

Of the respondents who did have problems, there seemed to be a split down the

middle. The breakdown of applications, due to an increasing number of users, received

42% of the vote as well as did an application's ability to work across different platforms.

The remaining 16% felt that the actual complexity of the application itself caused the

breakdown.

The main concerns seemed to involve accessing mainframe and mid-range data

from windows based tools. Some of the other specific problems, here, dealt with vast

amounts of data from a mainframe, large amounts of old legacy code mixed with new, and

the general inability of GID development tools to work well in a complex environment.

To solve scalability issues programmers can either, one, piece together their own

open systems solution or, two, buy a proprietary solution. This survey attempted to

discover which most programmers prefer and why. It turned out that 75% of the

respondents said 'no' to the proprietary solution; however, reasons for going either way

were very convincing. Figure 2 lists the advantages and disadvantages for going with the

proprietary solution.

Advantages Disadvantages

• Optimal if early in the project before
investing too much into the system.

• Reliability, standardization, warranty
• Inexperienced staff can't build own
• Relative Quickness to solution

• Cost too high
• Inflexibility
• Inability to perform adhoc queries
• Dedicated to open systems

Figure 2 - Adv. & Disadv. of Proprietary Solution

Portability

With an average ranking of

5.235, portability was considered the

smallest problem area. This may be

due to the uncommon nature of

actually porting an application and

may change as more large businesses

continue to perform systems

integration. The specifics mentioned

were as follows:

-~
}

PERFORMANCE

• necessity that all users use the CAPACITY SCALABIT.ITY

same versions of software
packages

• differences in UNIX versions cause design and tuning to be difficult
• going from UNIX to PCIDOS is difficult
• stored procedure reliability is uncertain

Connectivity

Concerning connectivity,

I'F.RFORMANLr.

separate areas: front end, back end, and

respondents were asked to discuss

problems as they might occur in three

middleware. Each area received several,

~~/. -----...

trs:~CONNECTIVITY ~~

specific responses worth mentioning.

The front end and middleware really had

the most complaints. In addition, there

was a general consensus concerning the

viability of programming in client/server at all due to connectivity struggles.

Front end problems really varied. Loading client tools on different PCs, in a

consistent manner, seemed difficult. Respondents complained that what worked on one

didn't work on another. Difficulty getting certain terminal emulators to work with certain

servers was also a problem. The scripting and mapping of keyboards to make use of

special keys seemed to be a hassle. And, last but not least, the issue oflarge volumes of

data causing applications to fail, again, appeared.

The complaint, in the back end area, was the incompatibility of SQL commands

from front ends with the back end itself Secondary, there was also mention of a problem

connecting the clients to the server database, which even the vendor in question couldn't

explain!

Middleware, by far, received the most notoriety. In particular, ODBC was a

popular topic. Certain ODBC drivers were considered weak and forced programmers to

write their own or use remote procedure calls. With the lack of standards, this proved to

be extremely time consuming.

Large volumes of data, again, was a consideration. Backlogs at routers, bridges,

and gateways were mentioned. Many who worked with mainframes complained of

connecting them in with other servers. Because of their proprietary nature, some found

they had to execute additional, special transactions to take care of the data on separate

systems.

According to a paper by Mitch Kramer, in the April '94 edition ofClientlServer

Computing. there are two ways to approach middleware programming. One is to provide

APIs on both the mainframe and the client applications; the other is to make the

mainframe data appear relational. ODBC drivers, for instance, fall into the second option.

As one can imagine, the overall lack of expertise in this area, coupled with the extremely

steep learning curve, feeds the inability to develop good middleware. Respondents felt

that the need for extensive application development, as well as extensive network

experience, was a minimum.

Functionality

The availability of 3GL, 4GL, I~=!T~_~I~~
(::: 2:-\, (-:c ;>:-·\1
CONNECfIVITV PORTABILITY

variety of choices within which to

and SGL languages or software

packages gives programmers a wide

build their client/server applications.
PERFORMANCE

This gives rise to confusion as to

which tools are the best for which
FUNCTIONALITY

CAPACITY

jobs. Therefore, this survey

attempted to get some feedback from SCALABILITY

the people choosing the tools right now.

An absolute myriad of software packages were mentioned by respondents, with

varying degrees of satisfaction and dissatisfaction. The object is not to label anyone tool

as of ill quality, but rather to see if certain kinds of software development tools showed up

numerous times with the same complaints.

The responses were so diverse that the best way to present them is simply to list

the most prominent. The following list contains the functionality comments which seemed

the most important:

• Steep learning curves especially coming from mainframe environment
• Lack of good tools for migration of applications, deployment, and data transfer
• Lack of standardization
• Report writing tools in their infancy
• Although environments are improving, they still don't meet vendor claims
• High costs after training seem to outweigh benefits
• Unavailability of batch work in some GUI development tools

Two excellent papers, one by Gregory C. Garry, in the August 1995 edition of

Client/Server Computing. and the other by Pat Koleini, in the March 1994 issue of the

same, discussed weighing the differences between the 3GLs and 4GLs. Some of the major

considerations were reliability and stability, availability of3rd party support, and the ability

to generate true enterprise-wide client/server applications.

In general, the 3GL are considered more functional and portable, generate less

overhead, and are less expensive to utilize because of the prevalence of knowledgeable

programmers. The 4GL, on the other hand, obviously offers the visual appeal along with

the ease of point and click. It seems that a combination of the two actually is often the

best solution, and that none of the language generations can be considered obsolete or on

their way out.

Respondents were asked in this survey to indicate their preferences for 3GL or

4GL. Only 13% of the respondents to this survey preferred the 3GLs. This author found

this extraordinary, considering that most other literature indicates a strong reliance on

3GLs. Although this mayor may not be indicative of actual industry distribution, it

certainly merits further investigation. It is notable that 55% of those who preferred the

4GL had used some type of3rd party support for that tool and that 50% for the 3GLs did

the same. By these figures, it appears that, the 4GL tools have gotten harder rather than

easier to use. Users require more training and outside support and they simply aren't as

functional as of yet.

Conclusion

This research was conducted as a first step in finding out where client/server

programming problems are most often occurring. With this baseline information, further

study into the most pressing or relevant areas can be accomplished.

In this author's opinion, the areas which stand out most are capacity, connectivity,

and functionality. Even though performance received the greatest mention from

respondents, it is the other areas which cause problems leading to poor performance.

Therefore, in order to propagate solution of client/server programming problems,

the next step is to take this information and apply it to further study. Capacity modeling,

connectivity standards, and 4GL weaknesses are just three of many good examples. One

must remember, however, that the nature of the responses received is extremely diverse.

Comparison of the data is difficult and time consuming, but must be done thoroughly if the

right answers are to be found.

References

Bort, Julie 'A Rapacity for Capacity Planning', Client/Server Computing, October 1994,
pg.88+.

Bort, Julie 'Modeling Helps End the Network Bottleneck Squeeze', Client/Server
Computing, June 1995, pg. 39+.

Garry, Gregory C. 'Weighing Trade-Offs Between 4GL, 3GL Alternatives',
Client/Server Computing, August 1995, pg. 76+.

Koleini, Pat 'Tried But True 3GLs Represent Versatile Alternatives for CIS Developers',
Client/Server Computing. March 1994, pg. 59+.

Kramer, Mitch 'IS Managers Take the Middle Road', Client/Server Computing, April
1994, pg. 60+.

Lawton, Stephen 'Catching the Right Network Transport Mode', Client/Server Today,
September 1994, pg.43+.

Radding, Alan '4GL Developers Finding Scalability Has Multiple Meanings',
Client/Server Computing, May 1995, pg. 63+.

Client/Server: What Exactly Is The Problem?

~

October 21, 1995

Dear IS Professional:

As the business world continues to migrate to the client/server
architecture, the need for successful application development
techniques becomes ever more pressing. This survey has been sent to
you with the hope that you might participate by relating some of the
various problems you may have encountered within the client/server
environment. Your contribution to this study is invaluable.

My name is Allan Furman and I am a student at Northern Illinois
University. I am presently working on my senior year honors thesis. I
am sending this survey to over 500 IS professionals around the United
States. My plan is to investigate and uncover any common links
between various problems and solutions being encountered while
developing client/server applications.

This project is being sponsored by the Operations Management
& Information Systems Department at Northern Illinois University.
Dr. Richard Born, a professor in MIS, is advising on the
research/analysis process. All information you provide is confidential.

If you could return this survey by November 15th it would be
greatly appreciated. If you would like a copy of the results please
include your business card with your completed survey. Thank you
very much for your participation!

Sincerely, Allan Furman

1.) Are you currently developing or have you developed applications
within a client/server architecture?

D Yes . Please continue to question # 2.

D No If possible, please pass this on to someone who has.
Otherwise, just return the survey as is.

2.) Please list the client/server platfonns(the hardware and software) that
you have worked with.

3.) Please rank the following possible problem areas from 1 to 6, with I
having the most problems and 6 the least. If one of the areas does not
apply to your situation, simply leave it out of the ranking.
Performance Capacity
Scalability Portability
Connectivity Functionality

For the remaining questions, answer only the ones which correspond to the
areas you have included in your above ranking.

Performance

4.) Please briefly describe what performance issues/problems you
encountered, how you went about solving them, and what the final
resolution was.

Capacity

5.) My capacity problems were encountered on the :
Network: Insufficient LAN or WAN bandwidth

Bottlenecks at routers, bridges, gateways

Inappropriate topology
Other ()

Please briefly explain those you have checked:

Client: Insufficient CPU speed
I/O speed
Insufficient memory available
Other ()

Please briefly explain those you have checked:

Server: Insufficient CPU speed
I/O speed
Insufficient memory available
Other ()

Please briefly explain those you have checked:

6.) Did you perform any capacity modeling beforehand? Yes / No
If so, was any particular capacity planning tool used? Yes / No

Name of tool: ------------------------
Scalability

7.) Did your application breakdown because of:
Complexity of the application itself
Increasing number of users
Inability to work across different platforms
Other ()

Please briefly explain those you have checked:

8.) Would you consider an expensive proprietary solution as opposed to
piecing together your own open system solution? Yes / No

Please provide any specific reasons why:

Portablility

9.) Please briefly describe the portability issues you encountered.

Connectivity

10.) Did you use any particular middleware product? Yes / No
Name of product: _

11.) Please rank 1 to 3 where you feel the most problems occurred. (1
having the most problems and 3 the least)

Front end software (client side)
Middleware
Back end software (server side)

12.) Please briefly describe any specific connectivity problems you
experienced within those areas you have checked.

Functionality

13.) Please list the programming tools that you have been using for
client/server work.

14.) What percent of the time do you feel you came to a point in which you
just simply couldn't do what you wanted with the tool you were using?
(Check one for each tool listed)
Name of tool: Name of tool:------
0-5 0/0

5 -15 %
15 - 25 %
25 % ormore

15.) At the present time, I would prefer to develop client/server
applications in a 3GL / 4GL . (please circle one)

16.) Have you found and taken advantage of any 3rd party support for your
programming tools? Yes / No (please circle one)

17.) Please describe any other functionality issues you have encountered,
know of, or feel are pertinent.

Demographics Section:

Any information supplied in these sections is confidential and will not be
released in any manner. It is simply for the researchers use in analysis.
18.) Please list any degrees and/or certifications you presently hold.

19.) Number of years programming experience in client/server? __
20.) Number of years programming experience total?

Thank you very much for participating! Again, if you would like a copy
of the results, simply include your business card.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5

	Page 6
	Page 7
	Images
	Image 1

	Page 8
	Titles
	5:2
	.. ~-...JI~
	PERFO~ANCE~~
	Performance

	Images
	Image 1
	Image 2
	Image 3
	Image 4
	Image 5
	Image 6

	Page 9
	Titles
	Capacity
	I~c!l-~~II

	Images
	Image 1

	Page 10
	Page 11
	Page 12
	Titles
	Scalability
	SCALABILITY

	Images
	Image 1

	Page 13
	Page 14
	Titles
	-~
	Portability

	Images
	Image 1
	Image 2

	Page 15
	Titles
	Connectivity
	trs:~CONNECTIVITY ~~

	Images
	Image 1
	Image 2

	Page 16
	Page 17
	Titles
	FUNCTIONALITY
	I~=!T~_~I~~
	Functionality

	Images
	Image 1
	Image 2

	Page 18
	Page 19
	Titles
	Conclusion

	Page 20
	Titles
	References

	Page 21
	Images
	Image 1

	Page 22
	Page 23
	Page 24
	Page 25

