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1.0 Scanning Electron Microscope Design
The primary function of the scanning electron 

microscope is the analysis of the surface topography of 

biological specimens. By combining a high resolution with a 

great depth of focus, a three-dimensional image can be 

observed. The SEM consists of five systems:

1) . The Illuminating/Imaging System,

2) . The Information System,

3) . The Detection System,

4) . The Vacuum System.

Each of these systems will be discussed separately.

1.1 The Illuminating/Imaging System
The illuminating/imaging system and its two integral 

parts, the electron gun and the condenser lens assembly, 

produce the electron beam and focus it onto the sample. The 

electron gun consists of three components. The first is the 

V-shaped tungsten filament. By applying current through the 

filament, an intense beam of electrons is produced and 

attracted down the microscope column. The second part of 

the electron gun is the shield enclosing the filament, with 

a 1-3 mm aperture that must be centered over the filament 

tip. The third component, positioned beneath the filament 

and shield, is the anode. When the electrons are emitted



from the filament, they are accelerated by the positive 

potential field produced by the shield and anode. After 

leaving the gun, the electrons pass down the "field-free" 

region of the column at constant velocity (Bozzolla, 1992).

The second integral part of the illuminating/imaging 

system is the condenser lens assembly, or the demagnifying 

lens assembly. It consists of a condenser lens, a final 

lens, and scanning coils. It serves the dual function of 

demagnifying the electron beam, and magnifying the image. 

Both lenses, acting together, demagnify the beam from

25,000 to 50,000 A to about 100 A. In addition, by changing 

the focal length, the condenser lens can control the 

brightness of the image that is seen on the CRT (discussed 

later). The final lens is also equipped with a movable 

aperture which intercepts excess electrons and prevents 

background scattering (Bozzolla, 1992). The scanning coils, 

located between the two lenses, move the electron beam in 

horizontal lines over the sample, and control the scan 

rate. The CRT on the SEM is similar to a television set, 

however, the scan rate is different. While a television 

screen has a fast scan rate (525 horizontal lines), a SEM 

has a slow scan rate (up to 100,000 lines), which is 

essential for better resolution. Resolution is defined as

the smallest distance that two points can be separated but



still appear distinct. Most scanning electron microscopes 

have a resolution within range of 7 to 25 nanometers.

1.2 The Information System
The information system consists of the sample and its 

interaction with the electron beam to produce a variety of 

information signals. However/ a typical SEM can only detect 

secondary electron signals and some backscattered signals 

(Bozzolla, 1992). The sample must be coated with a thin 

layer of metal to enhance the surface density for better 

interaction with the beam. When the electron beam strikes 

the coated surface of the sample, secondary electrons, and 

some backscattered electrons are emitted and directed to 

the electron detectors.

1.3 The Detection System
The detection system is responsible for collecting and 

amplifying the information signals generated by the 

sample/beam interactions (Bozzolla, 1992). The secondary 

electrons are directed to and collected by an electron 

detector (also termed collector), then accelerated into a 

scintillator, where they are translated into light. The 

light is transmitted through a photomultiplier and video 

amplifier, and eventually, to the display tube.

1.4 The Display System



The display system of the SEM consists of two cathode- 

ray tubes (CRT). The images that are displayed on the 

CRT's, have been reproduced exactly as they were originally 

scanned: line by line. The scanning electron microscope 

used in this class had one CRT for observation and focusing 

and one CRT with a Polaroid camera attached. This was used 

to record the image.

1.5 The Vacuum System

In any electron microscope, a vacuum is necessary to 

remove all gases from the microscope column. Stray gases 

will interact with the electrons and scatter them randomly, 

giving rise to glare, noise, reduced contrast, electrical 

discharges, beam fluctuations, or sample contamination 

(Bozzolla, 1992). Most microscopes must operate at a 

minimum pressure of 10"4 Torr. A typical vacuum system is 

comprised of two separate pumps. The rotary pump creates a 

low vacuum of 10-2 Torr, and the diffusion pump takes the 

system from low vacuum to high vacuum, near the range of 

1CT5 Torr. The rotary pump generates a lot of vibration, 

which is detrimental to the function of the SEM. It is 

usually situated in another room in order to eliminate the 

problem. The combined action of these two pumps keeps the 

column free of residual gases and their associated

problems.



2.0 Design Comparison

NOTE:

The design and function of a scanning electron 

microscope differs significantly from that of a 

transmission electron microscope and light microscope. 

Many differences are shown in the following diagrams.

I
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3.0 Biological Specimen Preparation For The SEM
Fixation of biological samples for the scanning 

electron microscope involves a number of steps that would 

not be necessary if we were looking at something like a 

piece of metal. Biological samples are soft, wet, and 

living. We must try to kill the material as quickly as 

possible and yet introduce an absolute minimal amount of 

disruption or damage when we do this. In addition, we need 

to add some structural stability to the cells. Finally, all 

of the water must be removed from the sample.

Hundreds of different procedures exist for preparation 

of biological tissues for the SEM. Many are simply 

variations of several basic schemes. Most bulk biological 

samples, such as insects, leaves, pieces of tissue, can be 

fixed by immersion. The tissue is placed in a solution with 

a fixative, usually 4% glutaraldehyde. We used 4% Millonig 

buffered glutaraldehyde. The glutaraldehyde does an 

excellent job of killing the cells and adding structural 

stability by forming molecular cross-links. The fixative is 

used in a buffer solution that maintains a constant pH. A 

good value to use for both plant and animal tissue is pH of 

7.2. Fixation in the buffered glutaraldehyde is allowed to 

take place for an hour or two and may be done at room 

temperature, or at 4°C. Some people feel that room
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Figure 3-1 Schematic showing sequence o f events for processing biological specimens for SEM. (Courtesy o f Judy Murphy.)
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temperature fixation is better and some feel that cooler 

fixation is better.

Size of the samples is very important. Most stubs (the 

metal mounts used in the SEM) are no larger than 3/8 to 1/2 

inches across. Normally, samples should be considerably 

smaller than this. If at all possible, sample should be 

about 1/8 of an inch or less in at least one dimension. The 

difficulty with large samples is that fluids such as 

fixatives and dehydration solvents do not penetrate well. 

For instance, it is very difficult to impossible to fix 

many large insects whole. However, the insect can be cut 

into pieces and the individual parts fixed. Sometimes 

larger samples can be successfully used. This involves 

lengthening the times in all steps. At the critical point 

drying stage, it involves using many more rinses and 

flushes of a longer duration.

Usually, the samples are rinsed in the buffer alone 

once or twice to wash out the fixative. Next, the samples 

were post-fixed in 1% Millonig buffered Osmium tetroxide 

solution for 1 hour and again rinsed in buffer. Dehydration 

followed in ethyl alcohol, with acetone being the second 

choice. Usually fairly large gradations are sufficient such 

as 25%,50%,75%,95%, and 100% with about 15 minutes in each 

step. Some believe that for very delicate samples 10% steps



are better. We used 10% steps. There is some evidence that 

the transition to 100% is critical. Thus the 95% step has 

been included. There should be several changes in the 100% 

step to ensure that there has been adequate time for 

diffusion of the solvent into the sample and that it really 

is saturated in 100%. It is extremely important to ensure 

that the 100% solvent is pure 100% and that it has not been 

allowed to absorb moisture. It should be stored tightly 

closed. If there is doubt, a few grams of sodium sulfate 

added to the bottom of the bottle will absorb any moisture 

present.

Finally, the last step will be critical point drying. 

The ideal situation is to take the sample from fixation to 

critical point drying with no holding periods in-between.

In actual practice, this may not be possible. Usually it is 

best to store the sample in 100%. Samples that have been 

stored for even several months in 100% will often show no 

deleterious effects. Critical point drying is now 

considered to be the standard method for preparation of 

most biological samples. It is basically a method for 

drying a sample whereby there are no surface tension 

forces. If a sample is allowed to air dry, the surface 

tension forces of the tissue water will cause severe 

shriveling and distortion. Some experimentation has been



done with drying samples saturated in alcohol (the surface 

tension forces of alcohol are less than those of water) or 

freeze-drying samples. The results are usually far inferior 

to critical point drying.

Critical point drying is an easy concept to understand 

in theory. A fixed sample is gradually taken through a 

solvent (usually alcohol, sometimes acetone) called the 

dehydration solvent. It is then placed in the chamber of a 

critical point dryer. The chamber is constructed of thick 

steel with an inlet valve, an outlet valve, a pressure 

gauge and a cover that can be sealed very tightly.

Attached to the inlet is a tank of carbon dioxide. The 

sample should be of the siphon type, i.e., an internal pipe 

draws from the bottom of the tank so that liquid CO2 is 

withdrawn. The chamber is cooled before the sample is 

inserted to help keep the carbon dioxide in liquid state.

The cover is removed, and the sample inserted. The 

sample should be completely saturated with 100% alcohol 

before it is inserted. The cover is replaced. The CO2 tank 

valve is opened. The chamber will now fill with liquid 

carbon dioxide. The pressure gauge should read about 700- 

900 pounds/inch2. Then, purge at 0°C for 10-15 minutes. This 

washes out all the 100% ethanol and replaces it with CO2. It



is extremely important that all alcohol is flushed out of 

the tissue and out of the system before proceeding.

At this point, the inlet valve and outlet valve should 

be tightly closed so that we have a closed system. The 

entire chamber is now heated. As the chamber is heated, the 

liquid phase will become less dense and the vapor phase 

will become denser in accordance with the laws of chemistry 

and physics. The heating is allowed to continue. The 

pressure in the chamber will rise during this process. 

Eventually, we reach a point called the critical point at 

around 1072 pounds/in.2 and 32°C where the density of the 

liquid CO2 equals the density of the gas. At this point, the 

surface tension is reduced to zero so that the delicate 

biological structures do not collapse. When this occurs, 

the sample is now dry.

Usually, the system is taken somewhat above the 

critical point to around 45°C and 1300 pounds/inch2 and 

allowed to equilibrate for a few minutes. After this, the 

outlet valve is opened slightly and the pressure allowed to 

drop at a rate not to exceed 150 pounds/inch2 per minute. A 

faster rate may cause the sample to explode or be damaged. 

When the pressure is zero, the cover is removed and the 

sample is now ready for mounting.
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4.0 Mounting Samples For The SEM
All specimens observed in a SEM require some type of 

mounting. Mounting should firmly fasten the sample to 

prevent vibration and should maintain a conductive pathway 

to the metal stage. Some microscopes allow very large 

samples (up to 3 inches or more) to be examined. These 

samples are often taped down or held down with metal 

fasteners. Small vises can be purchased which mount inside 

the SEM to firmly hold large samples.

Most samples observed in the SEM are mounted on small 

metal cylinders called stubs. The stubs may be easily 

inserted in the SEM and then stored in a variety of 

containers for viewing at a later date. Some type of cement 

must be used to fasten the sample to the stub. One method . 

is to use double-stick tape. This will work with small 

samples. However, the tape has the tendency to contaminate 

the inside of the SEM because of the volatile nature of the 

adhesive. A better alternative is to use special adhesive 

tabs that deposit an adhesive film on top of the stub. This 

adhesive is designed for use in the SEM. The sample is then 

pressed onto the film.

Another method involves the use of the conductive 

cements such as graphite cement or silver glue. These give 

moderate strength and have the added advantage of being
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Figure 3-12 Specimen stubs used for mounting biological 
specimens for viewing in the SEM. The standard types arc 
shown in a and b, while others arc modifications to hold or 
pin down various types o f specimens. (Courtesy o f Judy 
Murphy and SEM, Inc. Redrawn with permission.)

F igu re  3-13 Adhesive transfer tabs are used to deposit a 
small amount o f adhesive onto SEM stubs. The adhesive is 
adequate to hold most small specimens on the stub.

Source: Bozzola, et al. (1992)



conductors that can be beneficial in preventing charging 

which effects the outcome of photographs. Silver cement is 

a much better conductor; however, it costs around ten times 

as much as carbon cement. With the low currents involved in 

the sample, there is some question as to whether it really 

gives better results.

Because the cements are conductive, they are 

preferred. However, caution must be used because many 

biological specimens may act as a sponge and draw the wet 

cement up and over itself, thus destroying the surface 

features.

One trick-of-the-trade that may be of use with 

biological samples mounted using adhesive tabs or double

stick tape is to draw a fine line of graphite cement from 

the sample over to the edge of the metal stub prior to 

coating. Use a sharpened applicator stick to do this. This 

often will minimize charging problems because it provides a 

solid conductive pathway from the specimen to the metal of 

the stub. It is especially useful with a sample that is 

very rounded at the bottom.

Larger heavier samples, such as teeth, bones, metals 

and minerals should be mounted using glue with greater 

strength, such as epoxy glue. The epoxy glue with a five- 

minute curing time is excellent for use with SEM samples.



5,0 Sputter Coating Procedure
The most common method of coating specimens with a 

thin layer of metal is the use of plasma sputtering or 

sputter coating. The most commonly used system is the 

direct current sputtering device that closely resembles the 

one diagramed in Figure 3-15. Details of the principle 

involved and of the sputtering chamber itself are shown in 

Figure 3-16.

The sputtering process, after the metal stub with the 

attached specimen is placed in the specimen chamber; the 

chamber is pumped down to vacuum of 0.1 Pa using a rotary 

vacuum pump. The purpose of the evacuation is to remove 

water and oxygen molecules that might damage the surface of 

the specimen. This vacuuming process may take as long as 

15-20 minutes.

After the desired vacuum level is achieved, an inert 

gas such as argon is slowly introduced into the chamber.

The flow of argon is adjusted such that the vacuum is 

maintained at 6-7 Pa. A negatively charged, high voltage 

field is applied to the argon gas molecules, which ionize 

into Ar+ and electrons. The negatively charged target, 

composed of a heavy metal such as gold or gold/palladium, 

will be struck with such force by the Ar+ molecules that 

some of the metal ions of the target will be ejected. These
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atoms are bounced about by the various ions present in the 

chamber and eventually strike the specimen surface to 

gradually build up a metallic coating. The fact that the 

metal particles are knocked about in random paths is very 

important, since they will strike the specimen at various 

angles and thereby more uniformly coat the irregularly 

shaped specimen surfaces. The sputtering process is 

continued until a proper thickness of metal coating has 

accumulated on the specimen surface. The thickness of the 

required coating depends upon the topographies of the 

specimen. Low topographies require less coating than do 

high topographies.



6.0 Preparation of Supporting Films for EM grids
(for use in viewing shadowed and negative stained samples)
A. Preparation of Formvar Stock Solution

1. For a (0.2-0.1%) dilution, dissolve (0.2-0.1 gm) 

thoroughly dried Formvar 15/95 E into 15-25 ml of 

dichloroethane (ethylene dichloride) in a small 

dry 100 ml flask.

2. Shake, in a rotary motion, until dissolved, then 

add dichloroethane to 100 ml mark.

3. Store in the refrigerator, making certain the 

flask is tightly sealed. Allow it to come to room 

temperature before use.

B. Pre-clean Grids to be Coated

1. The grids should be cleaned by placing them into 

a tri-pour beaker and adding glacial acetic acid. 

Allow them to remain in the acid for 5 minutes, 

with gentle swirling. Rinse in distilled water 

(4-5 rinses) and then rinse in acetone (2 

rinses).

2. Allow them to dry by spreading them out on filter 

paper.

C. To Coat Grids

1. Place Formvar stock solution (0.2%) into a 

copelin jar.

2 . Clean a pre-cleaned light microscope slide with



lens paper. A very thorough cleaning will prevent 

coat from attaching to slide in the next step.

3. Coat the slide with the Formvar by dipping slowly 

into and out of the copelin jar. Remove the slide 

and allow it to air-dry in a vertical position.

4. Fill a large finger bowl nearly full with 

distilled water. Be sure the surface is free from 

dust by sweeping it with lens paper.

5. Score around the edges of the glass slide with a 

razor.

6. Hold the slide close to the mouth and breathe on 

it gently. Immediately dip the slide into the 

water at about a 30° angle, to the surface of the 

water and gently lower the slide into the water. 

The formvar film will float off onto the surface.

7. Pick up a pre-cleaned grid and bend it slightly 

in the center by applying a little pressure at 

the center. Place the grid, dull side down, onto 

the floating film. Tap each grid lightly to 

assure good contact with the film.

8. Lower a clean glass slide almost horizontally 

over the film. Push down through the water 

surface, invert under the water, lift out and

drain.



9. After the grids and film dries, the film can be

strengthened and stabilized by evaporating a thin 

film of carbon over it in a high vacuum 

evaporator.

10. The grids can then be carefully taken off the

slide with fine forceps and examined under phase 

contrast microscopy to ascertain their quality. 

The grids should be stored in a dessicator.



7.0 Preparation of Bacterial Suspension
'W Preparing the bacterial suspension requires five steps.

1. Pipette 10 ml of the isolated environmental sample 

growing in broth into a 15 ml centrifuge tube.

2. Centrifuge the bacteria until a pellet is formed. Care 

must be taken that undue force is not used during the 

centrifuge process that could cause damage or detachment 

of the flagella.

3. Using a Pasteur pipette, draw off the supernatant and

re-suspend the cells in 5 ml of distilled water. Vortex 

and wait five minutes.

4. Centrifuge the bacteria again, until a pellet is formed;

K j draw off the supernatant with a Pasteur pipette and add

2 ml of the 2% formalin. Vortex the cells and allow to 

fix for 5 minutes.

5. Centrifuge to form a pellet and draw off the formalin 

until just a small amount of liquid is left around the 

pellet.

6. A concentrated amount of bacteria can now be used.
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SOURCE: EM Lab Manual



8.0 Negative Staining of Bacteria
Preparing negative stained bacteria requires five steps.

1. Place two separated drops of formalin-fixed suspensions 

of cells on a wax-surfaced Petri dish.

2. Add a drop of 2% aqueous uranyl acetate stain to each 

drop of formalin-fixed suspension of cells (Figure 9.5). 

Do not draw up the stain from the bottom of the bottle.

3. Place a Formvar-carbon coated grid film side down on the 

combined drop (Figure 9.5).

4. Allow the grid to float on the drop for 10-15 minutes.

5. Remove the grid from the drop. Blot the grid carefully

(on the bottom side) on clean filter paper. Store grids 

in Gel capsules for later viewing using the transmission 

electron microscope.



F igure 5-14 One method o f negative staining involves 
deposition o f the specimen onto a coated grid chat has been 
locked into a forceps (shown). After allowing the specimen 
to adsorb to the substrate, a drop o f negative stain is applied 
to the grid.

F igure 5-15 Negative staining can also be accomplished 
by mixing equal volumes of specimen and negative stain and 
depositing the mixture on a grid using either a loop (as 
shown) or a pipette.

Source: Bozzola, et al. (1992)



9.0 Metal Shadow Casting For The TEM
\^/ Metal shadow casting is often used in conjunction with

negative staining techniques in the study of small

particles such as viruses, bacteria, flagella, etc. This

technique is used to create differential contrast in

specimens that usually lack apparent detail due to a

uniformly electron transparent nature. Evaporated metal is

applied at an angle and collects on features that extend

above the background of the film. The "back" side or

"shadow" of these features remain free from metal.

The selection of an angle for deposition and the

evaporant metal are both dependent upon the particle sizes,

magnification range to be employed, and required 
W

resolution. In general, large particles are shadowed at 

higher (30° to 50°) angles than very small particles (5° to 

30° range) and metals of high melting points such as 

platinum are used in higher magnification/resolution 

situations.

10.0 Procedures For Metal Shadow Casting 
A. Preparation Of Specimen Grids

1. Place a drop of bacterial suspension on each 

Formvar-carbon coated grid that is held with 

forceps. The suspension is kept on the surface of

the grid for 10 minutes, after which the excess



suspension is removed using filter paper. The grids 

will dry immediately. You may also use an aspirator 

to spray a virus suspension on the grids. Blot off 

excess after 1 min. with a piece of filter paper.

2. Place the grids (can be done as group) 

on a glass slide prepared by placing a 

thin strip of double-stick tape. When dry, place 

grids edgewise along tape.

B. Evaporation Of Metal
1. Set up the vacuum evaporator with a tungsten wire 

as per instructions for evaporator type.

2. Select a small piece of gold-palladium wire and

W' measure it. Record the length in millimeters.

Ordinarily, 5 to 10 mm is sufficient. Place the 

bent piece of metal across the V-shaped tungsten 

wire taking care not to contaminate the metal by 

excess handling.

3. Make sure that all tape from the slide/grid holder 

is removed except that holding the grid in place. 

You may also detach the grids and place them on 

clean slide.

W

4. Place the grids into the evaporator according to 

predetermined geometry to obtain a 30° to 45°



(1
carbon or ocher metals wrapped around the carbon clci 
erodes.

F igure 5-22 Carbon rods can be sharpened into various 
shapes to form the electrodes that will be used to vaporize

Figure 5-17 Platinum can be melted and evaporated from 
a heated electrode as shown.

F igure 5-18 Principle o f shadowing technique. Heavy 
metal particles travel in straight lines from the evaporating 
source (cs) and accumulate along areas o f the specimen that 
face the source. Other areas (sh) will receive less coating and 
appear lighter (less dense) in the TEM .

Evaporant
source

Evaporated
coating

Substrate 
(glass slide)

Length of shadow

Figure 5-27 Principle o f metal shadowing procedure 
showing deposition o f metal along side facing filament 
source. The specimen physically prevents the vaporized

metal from reaching certain areas o f the substrate. These 
“shaded” areas will show up as electron dense, a white 
shadow will be generated.

Source: Bozzola et al. (1992)



angle. To achieve this angle, we measured 2 cm up 

and 6 cm over from the evaporation site.

Pump the instrument down to vacuum according to the 

instructions provided. When sufficient vacuum is 

reached (10“s torr at least), evaporate the metal 

onto the specimen. The grids can now be examined 

directly in the electron microscope.



11. OVIEWING GRIDS WITH THE TRANSMISSION ELECTRON MICROSCOPE
The grids were placed in the specimen holder of the 

TEM (Hitachi HS-9) and then inserted into the TEM column 

after the vacuum was maintained. The high voltage was 

turned on, the filament was saturated, and the specimen was 

scanned without using apertures. An area being viewed can 

have the contrast increased by using apertures.

12.0 TEM PHOTOGRAPHY
After pictures were taken on the TEM microscope, the 

negatives produced were enlarged by the Durst Laboratory S- 

45EM enlarger. Quick prints were developed on Kodak Polymax 

RC paper using the Insta-print processor (model D-12). The 

best quick prints were chosen for the final printing. Final 

prints were made using Agfa Brovira fibre paper, grade 4 or

5. After the tray processing, the prints were washed in the 

Arkey Loadmaster print washer and dried in the Johnke print 

dryer. The prints were then mounted on smooth surface 

bristol weight paper.



FIG. 1. TONGUE Mus musculus x74
: 1

The micrograph in Fig. 1. Shows the dorsal surface of 
the mouse tongue. The dorsal surface is divided into 
symmetrical halves by a furrow called the median sulcus 
(MS). The epithelial layer of the tongue is specialized 
into surface projections called papillae. (Kessel and 
Kardon,1979). The different types of papillae can be seen 
clearly. The more numerous, conical projections are 
filiform papillae (FiP), and the less numerous, scattered, 
and flat-looking projections are fungiform papillae (FuP). 
FIG. 2. TONGUE Mus musculus x310

This is an enlargement of three fungiform papillae 
(FuP) in a line down the center. These three are surrounded 
by several filiform papillae (FiP). This micrograph clearly 
shows that the fungiform papillae are larger. The flattened 
surfaces of the fungiform papillae are often layered with 
squamous cells (Kessel and Kardon,1979).
FIG. 2. TONGUE Mus musculus xl,210

Only one filiform papillae (FiP) and one fungiform 
papillae (FuP) are seen in this micrograph. The tip of the 
filiform papilla is covered in cornified squamous 
epithelium (*), which most likely helps the animal when 
feeding. The filiform papillae is richly supplied with 
sensory nerves and also serve as sensory organs for tactile 
sensation (Kessel and Kardon,1979). Each papilla is 
"shingled" with layers of flattened cells that form a 
stratified epithelium. Dead cells on the top layer are shed 
and replaced with new cells (Kessel and Kardon,1979). It 
appears that the fungiform papillae in this micrograph have 
shed its top layer of cells (arrow).



\



TONGUE Mus musculus x310
This micrograph shows a cross sectional view., of the 

tongue. The uppermost portion of the micrograph displays 
the surface structures called filiform papillae (FiP). 
Immediately below the surface is a layer of intrinsic 
muscles (I) that have fibers running in various directions 
to modify the shape of the tongue by folding and curling 
it. Extrinsic muscle tissue (M) lies below the intrinsic 
muscle layer along with connective tissue and nerve fibers.
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FIG. 1. STRIATED MUSCLE TISSUE Mus musculus x210

Fig. 1. shows striated muscle tissue that has been cut 
in a cross-sectional manner. This muscle is surrounded by a 
connective tissue sheath called epimysium; inward 
extensions of this sheath, called perimysium, subdivide the 
muscle into bundles called fascicles (FA) (Kessel and 
Kardon,1979).
FIG. 2. STRIATED MUSCLE TISSUE Mus musculus x200

Fig. 2. shows a longitudinal view of the striated 
muscle tissue bundles (FA) . The white connective tissue, 
elements of endomysium (En), are present around individual 
muscle fibers (Kessel and Kardon,1979).

W
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FIG. 1. TRACHEA Mus musculus x930

This micrograph shows a longitudinally cut trachea.
The bottom of the micrograph depicts the inside of the 
trachea or the epithelial surface (EP). The top shows the 
outside of the trachea, which is mainly connective tissue. 
The trachea is surrounded by rings of hyaline cartilage 
(HC). Chondrocytes (C) can be seen within the rings (Kessel 
and Kardon,1979).
FIG. 2. TRACHEA Mus musculus xl,800

This is an enlargement of the epithelial surface of 
the mouse trachea. The ciliated cells (Ci) are very 
apparent with more than 200 cilia per cell. Goblet cells 
(G) appear as flat non-ciliated regions. However, goblet 
cells are covered with short microvilli.
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FIG. 1. CONNECTIVE TISSUE Mus musculus x!39
FIG. 2. CONNECTIVE TISSUE Mus musculus xl86

Fig. 1. and Fig. 2. Both represent bundles of collagen 
fibers (CF). These bundles are the foundation of the mouse 
tendons shown.





W  FIG. 1.CONNECTIVE TISSUE Mus musculus xl87,500
Fig. 1. shows a negatively stained collagen fiber 

(CF). The banding that is visible is explained in Figure 6- 
4.
FIG. 2. CONNECTIVE TISSUE Mus musculus x60,000

This micrograph shows a shadowed collagen fiber (CF). 
The major bands are still visible. However, the banding of 
collagen is more clearly seen through the use of negative 
staining techniques, such as those used in Fig. 1.

: 6

G L YC IN E P R O L IN E X_
CHz

H1 HiC C H j R

NHjj—CH—COOH 

E AMINO ACIDS

H N -C H -C O O H N H j-C H —COOH

b  -  X-GLY-PRO-HYPRO-GLY-X-
MOLECULAR CHAIN

SINGLE-CHAIN MOLECULAR HELIX

SINGLE-CHAIN COILED HELIX 28.6 A -

Figure 6 - 4  Diagram depicting the formation o f col
lagen, which can be visualized as caking place in 
seven steps. The starting materials (a ) are amino 
acids, o f which only two are shown; the side chain o f 
any o f the others is indicated by R  in amino acid X . 
(£) The amino acids are linked together to form a 
molecular chain, (r) This then coils into a left handed 
helix (4  and *)• Three such chains then intertwine in a 
triple stranded helix, which constitutes the tropo- 
collagen molecule ( /) . Many tropocollagen molecules 
become aligned in staggered fashion, overlapping 
by a quarter o f their length to form a cross striated 
collagen fibril (g). (Redrawn and slightly modified 
from Collagen by J. Gross. Copyright ©  May 1961 
by Scientific American, Inc. A il rights reserved.)

THREE-CHAIN COILED HELIX

f  - * ♦ ---  •  •  —  -  •  1
TROPOCOLLAGEN MOLECULE

j--2,800a—

— r H * --------------- ►

■IM
COLLAGEN FIB R IL GAOA

SOURCE: BLOOM. (1975)
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CONNECTIVE ̂ TISSUE Mus musculus x60,000

This micrograph shows shadowed collagen fibers (CF) 
that are intertwined to form "Blair Witch" collagen.

W







W' FIG. 1. Negative Stained Enterobacter aerogenes x75,000
This micrograph shows a bacterium with its many pili 

or fimbriae (f) (Prescott, et al. 1999).
FIG. 2. Negative Stained Enterobacter aerogenes x200,000

This is simply an enlargement of the fimbriae (f) in 
Fig. 1.

: 8
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FIG. 1. Negative Stained Enterobacter aerogenes x90,000
The cell membrane (cm) can be seen clearly in.this 

micrograph. This also allows for the distinction between 
flagella (F) and fimbriae (f) to be made. The flagellum is 
much larger than the fimbriae that surround it.
FIG. 2. Negative Stained Enterobacter aerogenes x425,000 

This is an enlargement of the fimbriae (f) and 
flagellum (F) in Fig. 1.

: 9





Negative Stained Enterobacter aerogenes x55,000
: 10

This micrograph shows many fimbriae (f). It is also 
apparent that the bacterium is dividing by fission (between 
the arrows).





Ill
Negative Stained Enterobacter aerogenes 
FIG. 1. X27/500 
FIG. 2. X55,000 
FIG. 3. X55,000

These micrographs all demonstrate that a bacterium can 
appear without any fimbriae. The flagella (F) are all 
labeled.

W
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Negative Stained & Shadowed Enterobacter aerogenes 
FIG. 1. X37,500 
FIG. 2. X20,000

The shadowing gives these micrographs a three 
dimensional appearance. The flagella (F) appear more 
rounded using this technique.

i
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Negative Stained & Shadowed Enterobacter aerogenes x20,000

The shadowing allows the three dimensional nature of 
fimbriae (f) to be more thoroughly examined.
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FIG. 1. KNOTWEED X330

This is the stamen of the flower parts. It is made up 
of the filament (fi) and the anther (A) . The pollen grains 
reside on the anther. One pollen grain (P) can be seen. 
FIG. 2. KNOTWEED X37

This micrograph shows the pistil of the flower parts. 
The ovary (O), style (Sy), and stigma (Sg) can be seen.

w
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FIG. 1. KNOTWEED X127

This is an enlargement of the ovary (O), style (Sy), 
and stigma (Sg).
FIG. 2. KNOTWEED X750

This enlargement of the stigma (Sg) shows how pollen 
grains (P) attach to germinate -the pistil.

<
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KNOTWEED X238

This micrograph shows the ventral surface of the leaf. 
There are many multicellular glandular trichomes (GT) and 
stoma visible.
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FIG. 1. KNOTWEED XI,380 
FIG. 2. KNOTWEED XI,840

These both show multicellular glandular trichomes (GT). 
Fig. 1. also shows a higher magnification of stomata (S).

W





W  QUEEN ANNE'S LACE x56
This micrograph shows the flower parts. The anther (A) 

and ovary (O) are seen clearly.

: 18
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W 1 QUEEN ANNE’S LACE xl37

In this enlargement, the style (Sy), Stigma (Sg), and 
ovary (O) are clear. The ovary seems to have tiny openings 
in its surface (arrows).





W  QUEEN ANNE'S LACE xl,300
This micrograph shows the tiny openings in the surface 

of the ovary in more detail (arrows).
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FIG. 1. BLACK-EYED SUSAN x!16

This micrograph shows the flower parts. Some pollen 
(P) is seen near the bottom.
FIG- 2. BLACK-EYED SUSAN xl,405

This micrograph shows the pollen (P) of black-eyed 
Susan at a higher magnification.





: 22
FIG. 1. BLACK-EYED SUSAN xl94

Along the dorsal surface of the leaf there is a layer 
of cells called the palisade parenchyma (PP) that allows a 
large surface area for the dissolution of carbon dioxide 
(Mauseth, 1998). The tissue which extends to the ventral 
surface of the leaf is termed mesophyll (m). Tricornes can 
be seen protruding from the ventral surface.
FIG. 2. BLACK-EYED SUSAN x270

This shows an enlargement of the ventral surface area. 
The ventral surface is covered in trichomes (T), Glandular 
tricornes (GT), and stomata (S).
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FIG. 1. HOLLY HOCK x72

This is a holly hock leaf that has trichomes (T) and 
glandular trichomes (GT) projecting from its surface.
FIG. 2. HOLLY HOCK x2,190

This is an enlargement of a glandular trichome (GT).

W





HOLLY HOCK x4,300
This is an enlargement of a stoma (S) on the surface 

of the holly hock leaf.





HOLLY HOCK x76
This shows many trichomes (T) protruding from the bud 

of holly hock.





HOLLY HOCK x560
This is an enlargement of holly hock pollen (P).
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INCHWORM x32

This micrograph shows the head and front legs of an 
inchworm. These legs are capable of manipulating food 
(Borror,1976).
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FIG. 1. INCHWORM x89

This is an enlargement of the front legs. Little 
grasping claws can be seen which might be used to grasp 
food as well as surfaces the inchworm traverses.
FIG. 1. INCHWORM x69

This is an enlargement of the rear "legs" that only 
grasp the surface the inchworm traverses these are not 
capable of manipulating items.
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W  FIG. 1. GARDEN SPIDER (Argiope aurantia) xl9

This micrograph shows the pedipalps (Z) and the 
chelicerae (*) as well as the fangs (arrows) and many eyes 
(E) .
FIG. 2. GARDEN SPIDER (Argiope aurantia) xl9

This is simply a different view of the features noted 
in Fig. 1.

W
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FIG. 1. GARDEN SPIDER (Argiope aurantia) xl,460

This micrograph shows that many spinnerets (N) are 
used to form the silky strands that make up a spider’s 
webbing.





FIG. 1. SPIDER #2 x55
This micrograph shows the pedipalps (Z) 

chelicerae (>fc) as well as the 8 eyes (E) .
FIG.2. SPIDER #2 xl22

Four sets of spinnerets (N) can be seen

and the

in Fig.2.
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SPIDER #3 x!47

The eyes (E) are the only identifiable structures on 
the "face" of this spider.
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FIG. 1. SPIDER #3 x510

The spinnerets (N) are visible on the rear of this 
spider and many fine white, feathery hairs.
FIG. 2. SPIDER #3 xl,275

An enlargement of Fig. 1. reveals the "wrinkled" 
texture of the tissue on the spider's body.

W
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