
Physics Letters B 732 (2014) 182–185

brought to you by COREView metadata, citation and similar papers at core.ac.uk
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Perturbative quantum damping of cosmological expansion

Bogusław Broda

Department of Theoretical Physics, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153, 90-236 Łódź, Poland
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Perturbative quantum gravity in the framework of the Schwinger–Keldysh formalism is applied to
compute lowest-order corrections to expansion of the Universe described in terms of the spatially flat
Friedman–Lemaître–Robertson–Walker solution. The classical metric is approximated by a third degree
polynomial perturbation around the Minkowski metric. It is shown that quantum contribution to the
classical expansion, though extremely small, damps, i.e. slows down, the expansion (phenomenon of
quantum friction).
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1. Introduction

The aim of our work is to explicitly show the appearance of
quantum generated damping, i.e. slowing down, of the present (ac-
celerating) expansion of the Universe (phenomenon of quantum
friction). In principle, quantum corrections to classical gravitational
field can be perturbatively calculated in a number of ways. First
of all, it is possible to directly derive quantum (one-loop) cor-
rections to classical gravitational field from the graviton vacuum
polarization (self-energy), in analogy to the case of the Coulomb
potential in QED (see, for example, Berestetskii et al. [1]), the
so-called Uehling potential. Such a type of calculations has been
already performed for the Schwarzschild solution (Duff [7]), as
well as for the spatially flat Friedman–Lemaître–Robertson–Walker
(FLRW) metric (Broda [5]). Another approach refers to the energy–
momentum tensor, and it has been applied to the Newton po-
tential (see, for example, Bjerrum-Bohr et al. [3], and references
therein), to the Reissner–Nordström and the Kerr–Newman solu-
tions (see Donoghue et al. [6]), as well as to the Schwarzschild and
the Kerr metrics (see Bjerrum-Bohr et al. [2]). Yet another approach
uses the Schwinger–Keldysh (SK) formalism to the case of the
Newton potential (see, for example, Park and Woodard [9]). It is
argued that only the SK formalism is adequate for time-dependent
potentials, hence in particular, in the context of cosmology (see, for
example, Weinberg [10], and references therein). Because we aim
to perturbatively calculate corrections to the spatially flat FLRW
metric, we should use the SK formalism, as that is exactly the case
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(time-dependence of gravitational field) the SK approach has been
devised for.

The corrections we calculate are a quantum response to the
spatially flat FLRW solution which is described by a small pertur-
bation around the Minkowski metric. For definiteness, we confine
ourselves to the classical perturbation given by a third degree poly-
nomial. The final result is expressed in terms of the present time
quantum correction qQ

0 to the classical deceleration parameter qC
0.

On the premises assumed, it appears that qQ
0 is positive, though

obviously, it is extremely small.

2. Quantum damping

Our starting point is a general spatially flat FLRW metric

ds2 ≡ gμν dxμ dxν = −dt2 + a2(t)dx2, μ,ν = 0,1,2,3, (1)

with the cosmological scale factor a(t). To satisfy the condition of
weakness of the perturbative gravitational field hμν near our ref-
erence time t = t0 (where t0 could be the age of the Universe—the
present moment) in the expansion

gμν(x) = ημν + hμν(x), (2)

the metric should be normalized in such a way that it is exactly
Minkowskian for t = t0, i.e.

a2(t) = 1 + h(t), h(t0) = 0. (3)

(Let us note the analogy to the Newton potential (∼ 1/r), where
the “reference radius” is in spatial infinity, i.e. r0 = +∞.) Then, in
the block diagonal form,
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hμν(t, x) =
(

0 0
0 δi jh(t)

)
, i, j = 1,2,3. (4)

To obtain quantum corrections to the classical gravitational field
hC
μν(x), we shall use the one-loop effective field equation derived

by Park and Woodard [9],

Dμν�σ hQ
�σ (t, x) = κ2

10 240π3
Dμν�σ ∂4

t∫
0

dt′
∫

d3x′ θ(�t − �r)

× [
ln

(−μ2�x2) − 1
]
hC
�σ

(
t′, x′), (5)

where �t ≡ t − t′ , �r ≡ |x − x′|, �x2 ≡ −(�t)2 + (�r)2, and the
mass scale μ is coming from the UV renormalization procedure
(see Ford and Woodard [8]). Here κ2 = 16πG N , where G N is the
Newton gravitational constant. The operator D (the Lichnerowicz
operator in the flat background) is of the form

Dμν�σ = 1

2

(
ημνη�σ ∂2 − ∂μ∂νη�σ − ημν∂�∂σ

− ημ(�ησ)ν∂2 + 2∂(μην)(�∂σ )
)
,

and for the minimally coupled massless scalar field

Dμν�σ = ΠμνΠ�σ + 1

3
Πμ(�Πσ)ν (6)

with

Πμν ≡ ημν∂2 − ∂μ∂ν.

For conformally coupled fields we have D̃ instead of D, where

D̃μν�σ ≡ −1

9
ΠμνΠ�σ + 1

3
Πμ(�Πσ)ν.

Since the metric depends only on time, we can explicitly perform
the spatial integration with respect to x′ in (5), obtaining the inte-
gral kernel (time propagator)

K(�t) ≡ 4π

�t∫
0

dr r2{ln
[
μ2((�t)2 − r2)] − 1

}

= 4π

3
(�t)3

[
ln

(
4μ2�t2) − 11

3

]
. (7)

For the time-dependent metric of the form(
f (t)

δi jh(t)

)
,

the action of the operators D, D and D̃ is given by

D
(

f (t)
δi jh(t)

)
=

(
0

−δi j
d2

dt2 h(t)

)
, (8)

D

(
f (t) 0
0 δi jh(t)

)
=

(
0 0

0 10
3 δi j

d4

dt4 h(t)

)
, (9)

and

D̃

(
f (t) 0
0 δi jh(t)

)
= 0, (10)

respectively. There are no mixing of diagonal and non-diagonal
terms, and the empty blocks mean expressions which can be non-
zero, but they are inessential in our further analysis. Thus, (5) as-
sumes the simple form

d2

2
hQ(t) = − κ2

3

d8

8

(
K  hC)

(t), (11)

dt 3072π dt
where the integral kernel K is given by (7), and the convolution “”
is standardly defined by

(K  F)(t) ≡
t∫

0

K
(
t − t′)F

(
t′)dt′ =

t∫
0

K
(
t′)F

(
t − t′)dt′. (12)

One should note that due to the diagonal form of (4) and (8)–(10),
no non-diagonal terms of the metric enter (11).

Since the upper limit of integration in (12) depends on t , the
derivative of the convolution with respect to t is expressed by

dn

dtn
(K  F)(t) =

(
dn

dtn
K  F

)
(t)

+
n∑

k=1

d(n−k)

dt(n−k)
K(0)

d(k−1)

dt(k−1)
F(t). (13)

Using symmetry between K and F, Eq. (12), it is possible to dis-
tribute differentiation in (13) in several different ways. For prac-
tical purposes, further analysis, the most convenient form of the
eighth derivative is the “symmetric” one, i.e.

d8

dt8

(
K  hC)

(t) =
(

d4

dt4
K 

d4

dt4
hC

)
(t)

+
4∑

k=1

[
d(4−k)

dt(4−k)
K(0)

d(k+3)

dt(k+3)
hC(t)

+ d(4−k)

dt(4−k)
hC(0)

d(k+3)

dt(k+3)
K(t)

]
. (14)

To prevent the appearance of the mass scale μ, as well as “clas-
sical” divergences in the convolution, which could possibly come
from singularities in the kernel (time propagator) K, we assume
the following third degree polynomial form of the classical met-
ric

hC(τ ) = h0 + h1τ + h2τ
2 + h3τ

3. (15)

Henceforth, for simplicity, instead of t we use the dimensionless
unit of time, τ ≡ t/t0.

The well-defined form of Eq. (16) proofs that (15) has been
properly selected. In fact, our choice is unique. First of all, let
us observe that the UV renormalized equation of motion (11) is
well-defined, at least by classical standards. This means that it
may happen for some hC(τ ) that Eq. (11) is not integrable for
the kernel (7), but non-integrabilities may appear also in standard
classical field theory, e.g. self-energy of a point particle in classi-
cal electrodynamics. Hence, in our calculations, possible infinities
are considered as “classical”. Their presence depends on the form
of hC, and it could be interpreted, as usually in classical field the-
ory, as inapplicability of the approach in such a type of problem.
Therefore, following that point of view, we should avoid contribu-
tions from

dk

dtk
K(t)

∣∣∣∣
t=0

, for k > 2,

because they generate singularities in Eq. (14), due to the singular
form of the kernel.

Another issue concerns the mass scale μ present in (7), which
results from renormalization procedure. There are the two pos-
sibilities. One can choose some “natural” mass scale μ, or one
can confine oneself to μ-independent cases. The second possibil-
ity, if available, is preferable because it gives unambiguous results.
For example, let us consider quantum corrections to black-hole
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solutions. The Schwarzschild solution gives a μ-independent re-
sult (see Bjerrum-Bohr et al. [2]), whereas the Kerr solution yields
a μ-dependent result (see Bjerrum-Bohr et al. [4]). In the latter
case, the authors suggest to apply a coordinate transformation to
remove the μ-dependence, but no explicit construction has been
presented. Because of these difficulties, we are trying to avoid con-
tributions from

dk

dtk
K(t), for k < 4,

which are μ-dependent.
Then, the only possibility to get rid of the above mentioned

troublesome terms admits exactly the products in the second part
of the sum in (14). In turn, to nullify the unwanted first part of
the sum in (14), hC(τ ) should be exactly of the form (15). The
term before the summation sign in (14) vanishes.

Actually, the classical metric (15) does not belong to any fa-
vorite family of cosmological solutions, perhaps except for the lin-
ear case (h0 = −1, h1 = 1, h2 = h3 = 0), corresponding to pure
radiation. In fact, no “observationally” realistic metric is given pre-
cisely, for example, by the matter-dominated cosmological scale
factor a(τ ) = τ 2/3, because firstly, the character of cosmological
evolution depends on the epoch (time τ ), and secondly, it is “con-
taminated” by other “matter” components, e.g. radiation and dark
energy. Therefore, we should consider (15) as a phenomenological
approximation of the actual cosmological evolution on the finite
time interval τ ∈ [τ0,1], 0 � τ0 < 1.

Inserting (7) and (15) to (14), we derive from (11) the second
order differential equation

ḧQ(τ ) = λ

(
h0τ

−2 − h1

3
τ−1 + h2

3
− h3τ

)
, (16)

which can be easily integrated out with respect to τ , yielding

ḣQ(τ ) = λ

(
−h0τ

−1 − h1

3
log |τ | + h2

3
τ − h3

2
τ 2

)
(17)

and

hQ = λ

(
−h0 log |τ | − h1

3

(
τ log |τ | − τ

) + h2

6
τ 2 − h3

6
τ 3

)
, (18)

where λ ≡ κ2/32π2t2
0 ≈ 1

2 · 10−46. As a physical observable we are
interested in, we take the deceleration parameter

q(τ ) ≡ −a(τ )ä(τ )

ȧ2(τ )
= 1 − 2

[
1 + h(τ )

] ḧ(τ )

ḣ2(τ )
. (19)

The quantum contribution to the deceleration parameter, namely,
the lowest order contribution to (19) from (16)–(18), where q(τ ) =
qC(τ ) + qQ(τ ) +O(λ2), reads

qQ = − 2

(ḣC)2

[
ḧChQ + (

1 + hC)(
ḧQ − 2ḧCḣQ

ḣC

)]
. (20)

According to our previous discussion, the general set of classical
fields that can be integrated out, and which provides unambigu-
ous results is given by a third degree polynomial in τ . Thus, the
decrease or increase of the expansion depends, in principle, on the
set of 4 parameters. A full analysis of that issue is complex because
the dependence is non-linear (see Eq. (20)) and multiparametric.
Therefore it is impossible to give a general answer in a lucid and
useful form. Instead, we will test, as a simple exercise, the follow-
ing 3 examples related to individual powers of τ : h(τ ) = τ k − 1,
for k = 1,2,3 (“−1” has been fixed for normalization purposes, i.e.
h(1) = 0). According to Eq. (20), after few elementary calculations
we obtain the present time quantum contribution to the decelera-
tion parameter qQ(1) = akλ, where a1 = 8/3, a2 = 3/2, a3 = 10/9.
Since all these coefficients are positive, we deal with decrease of
expansion for any power k.

To approximate the cosmological evolution by the (four-param-
eter) phenomenological metric (15), we impose the following two
obvious boundary conditions

hC(0) = −1 and hC(1) = 0,

corresponding to

a2(0) = 0 and a2(1) = 1,

and implying

h0 = −1 and h1 + h2 + h3 = −h0 = 1. (21)

In this place various different further directions of proceeding
could be assumed, depending on the question we pose.

Let us study the quantum contribution to the actual cosmo-
logical evolution. By virtue of (7) and (11), the “effective” time
propagator determined by the sixth order derivative of the ker-
nel K, behaves as (�t)−3, which follows from, e.g., dimensional
analysis. Thus, the largest contribution to the convolution is com-
ing from integration in the vicinity of τ ≈ 1 (because of large value
of (τ − 1)−3). Therefore, we impose the next two additional condi-
tions near the dominating point τ = 1. Namely, hC is supposed to
yield the observed value of the Hubble constant

H0 ≡ ȧ(1)

a(1)
= 1

2
ḣC(1), (22)

and the observed deceleration parameter q0 = qC(1). Solving (19),
(21) and (22) for hk (k = 1,2,3), we obtain

h1 = 3 − (3 + q0)H0,

h2 = −3 + (4 + 2q0)H0,

h3 = 1 − (1 + q0)H0. (23)

To estimate only qualitative behavior of the present time quantum
contribution to the accelerating expansion of the Universe, it is suf-
ficient to insert to (23) the following crude approximation: H0 = 1
and q0 = − 1

2 . Now

h1 = 1

2
, h2 = 0, h3 = 1

2
,

yielding

ḣC(1) = 2, ḧC(1) = 3.

By virtue of (16)–(18)

hQ(1) = λ

12
, ḣQ(1) = 3λ

4
, ḧQ(1) = −5λ

3
,

and hence (see (20))

qQ
0 ≡ qQ(1) = 11λ

6
= 11κ2

192π2t2
0

∼ 10−46. (24)

It is worth noting that a numerical analysis could be applied
for fitting parameters hk in (15) to observational values. It could,
in principle, provide more realistic form of hC(τ ), but sill there
would be a freedom in selecting fitting criteria.

3. Summary

In the framework of the SK (one-loop) perturbative quantum
gravity, we have derived the value (24) expressing the order of
the present time quantum contribution qQ to the classical de-
0
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celeration parameter qC
0. The present time quantum contribution

qQ
0 ∼ +10−46. It is positive but it is negligibly small in compari-

son to the observed (negative) value of the deceleration parame-
ter, q0 ≈ − 1

2 . Therefore, we deal with an extremely small damp-
ing (slowing down) of the accelerating expansion of the Universe,
which is of quantum origin (quantum friction).

One should stress, that in the course of our analysis we have
confined ourselves to a particular case of a FLRW third de-
gree polynomial perturbation around the Minkowski metric, and
to minimally coupled massless scalar field (conformally coupled
scalar field yields null contribution).

Finally, it would be desirable to compare our present result
to our earlier computation (see Broda [5]), where we have ob-
tained an opposite result, i.e. repulsion instead of damping. First
of all, one should note that non-SK approaches are, in general,
acausal for finite time intervals, because they take into account
contributions coming from the future state of the Universe. This
follows from the fact that the Feynman propagator has an “ad-
vanced tail”, which is not contradictory in the context of (infinite
time interval) S-matrix elements. Moreover, the present work con-
cerns scalar field contributions to the metric, whereas the results
of Broda [5] are determined by graviton contributions. In the both
approaches, quantum contributions are trivial for conformal fields,
which well corresponds to conformal flatness of the FLRW met-
ric.
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References

[1] V.B. Berestetskii, L.P. Pitaevskii, E.M. Lifshitz, Quantum Electrodynamics, vol. 4,
second ed., Butterworth–Heinemann, 1982.

[2] N.E.J. Bjerrum-Bohr, J. Donoghue, B.R. Holstein, Quantum corrections to the
Schwarzschild and Kerr metrics, Phys. Rev. D 68 (8) (2003) 084005.

[3] N.E.J. Bjerrum-Bohr, J. Donoghue, B.R. Holstein, Quantum gravitational correc-
tions to the nonrelativistic scattering potential of two masses, Phys. Rev. D
67 (8) (2003) 084033.

[4] N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, Erratum: Quantum corrections
to the Schwarzschild and Kerr metrics [Phys. Rev. D 68, 084005 (2003)], Phys.
Rev. D 71 (March 2005) 069904.

[5] B. Broda, One-loop quantum gravity repulsion in the early Universe, Phys. Rev.
Lett. 106 (10) (2011) 101303.

[6] J. Donoghue, B.R. Holstein, B. Garbrecht, T. Konstandin, Quantum corrections to
the Reissner–Nordström and Kerr–Newman metrics, Phys. Lett. B 529 (2002)
132–142.

[7] M. Duff, Quantum corrections to the Schwarzschild solution, Phys. Rev. D 9
(1974) 1837–1839.

[8] L. Ford, R. Woodard, Stress tensor correlators in the Schwinger–Keldysh formal-
ism, Class. Quantum Gravity 22 (9) (2005) 1637.

[9] S. Park, R. Woodard, Solving the effective field equations for the Newtonian
potential, Class. Quantum Gravity 27 (24) (2010) 245008.

[10] S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D
72 (4) (2005) 043514.

http://refhub.elsevier.com/S0370-2693(14)00204-4/bib5175616E74756D456C656374726F64796E616D696373s1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib5175616E74756D456C656374726F64796E616D696373s1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib6A616E6E696B323030327175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib6A616E6E696B323030327175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib626A657272756D323030337175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib626A657272756D323030337175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib626A657272756D323030337175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib6572726174756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib6572726174756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib6572726174756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib62726F6461323031316F6E65s1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib62726F6461323031316F6E65s1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib646F6E6F67687565323030327175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib646F6E6F67687565323030327175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib646F6E6F67687565323030327175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib64756666313937347175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib64756666313937347175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib666F726432303035737472657373s1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib666F726432303035737472657373s1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib7061726B32303130736F6C76696E67s1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib7061726B32303130736F6C76696E67s1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib7765696E62657267323030357175616E74756Ds1
http://refhub.elsevier.com/S0370-2693(14)00204-4/bib7765696E62657267323030357175616E74756Ds1

	Perturbative quantum damping of cosmological expansion
	1 Introduction
	2 Quantum damping
	3 Summary
	Acknowledgements
	References


