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Abstract

We construct the set of theories which share the property that the tree-level threshold amplitudes nullify even if both initial
and final states contain the same type of particles. The origin of this phenomenon lies in the fact that reduced classical dynamics
describes the isochronic systems.

0 2003 Published by Elsevier B.V.

The problem of multiparticle production has at- only provided some relations between parameters are
tracted much attention in the past decade [1]. It ap- satisfied [11]. The origin of these relations (some
peared that quite a detailed knowledge concerning the hidden symmetry?) remains unclear and is obscured
amplitudes of such processes is possible for specialby the fact that nullification does not survive, in
kinematics, in particular those involving particles pro- general, beyond tree approximation.
duced at rest [2-7]. In the very interesting papers Libanov, Rubakov

An interesting phenomenon that appeared here and Troitsky [14,15] provided another example of
is the nullification of certain tree amplitudes at the threshold amplitudes nullification in the tree approx-

threshold. For example, for the process2:, with all imation. They considered*-theory with O (2) sym-
final particles at rest, all amplitudes vanish exoept metry, the symmetry being softly broken by the mass
2 andn = 4 in ®* unbroken theory and except= 2 if term. It appeared that the tree amplitudes describing

® — —&® symmetry is broken spontaneously [8-10]. the process of the production @$ particlesp, by n1
Other theories were also analysed from this point of particlesys, all at rest, vanishes i1 andny are co-
view and the nullification of tree 2> n amplitudes at prime numbers up to one common divisor 2. Libanov
the threshold has been discovered in the bosonic sectoret al. showed that the ultimate reason for nullification
of electroweak model [11] and in the linearmodel is that the O (2)-symmetry survives, in some sense,
[12]. These results in general do not extend to the when the symmetry breaking mass term is introduced.
one-loop level [13]. One should also mention that in Let us sketch briefly their argument. The starting point
more complicated theories the nullification takes place is the well-known fact that all Green functions in tree
approximation are generated by the solution of classi-
: , L cal field equations with additional coupling to external
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Green function in the presence of external sources. solving (4) perturbatively, we are faced with the reso-
The consecutive derivatives at vanishing sources pro- nances. Then the solution diverges and this very diver-
vide the relevant Green functions in tree approxima- gence is cancelled when the external line is amputated.
tion. However, we can do even better [4] (see also  Divergent resonant solution means that we are
[16]). One considers the generating functional for the looking for solution with diverging initial conditions.
matrix elements of the field between the states contain- If, instead, we insist on keeping initial conditions finite
ing arbitrary numbers of in- and out-on-shell particles. while approaching resonance, the preexponential fac-
This functional can be obtained as follows [4,16]. Let tor linear (in general, polynomial) in time is produced.
the relevant Lagrangian be So, nonvanishing amplitudes are possible only if the
expansion ofp; (¢|®g), Eq. (3a), in terms of coupling
L(®,0,®) = Lo(®, 0, P) + L;(P), @) constant(s) contains terms which are polynomial in
where® = (@;) is the collection of fieldsLg contains time [16]. Libanov et al. have shown that, in th&?2)

all quadratic terms and.; describes interactions. case, where the corresponding mechanical system in

Consider the system of integral equations integrable, the symmetry related to the additional inte-
. IL (D) gral of motion prevents the resonances to appear. Con-
@i (x|Po) = Poi(x) + / d”y Ap;(x =) 5D (v sequently, the corresponding tree amplitudes vanish.
i Eventually, this nulliication is a result of subtle
(2) 1y, — _

5 cancellations of contributions coming from separate
here Af,; is the operator inverse t%%%/ with graphs. They can be shown to result from Ward
Feynman boundary conditions imposed ahgl(x) is identities related to the above symmetry [17].
the combination, with arbitrary coefficients, of free- Libanov et al. argued that the nullification de-

particle wave functions with positive (for incoming scribed above should be valid in more general situa-
particles) and negative (for outgoing particles) en- tion. Namely, the reduced classical system, which de-
ergies. Successive derivatives with respect to thesescribes tree amplitudes at the threshold, should exhibit
arbitrary coefficients give relevant matrix elements. a non-trivial symmetry with the property that the in-
Graphically, these matrix elements are given by sums finitesimal transformation for at least one of the fields
of tree graphs with all external lines but one ampu- contains a term linear in this field or its derivative.
tated and replaced by relevant wave functions. In or- This conclusion can be supported by more detailed
der to obtain the correspondigmatrix element one  still simple arguments [18].

has only to amputate the remaining propagatorand go  One can understand the result of Ref. [15] from
to mass shell with the corresponding four-momentum. slightly different perspective [16]. Assume that the
Eqg. (2) implies reduced dynamical system (4) is integrable (and con-
fining—this last requirement is, however, not crucial).

oL
(0sij + mizj)cbj (x|Dg) — 8<1§J~ =0, (33) Then one can introduce action—angle variallgss;)
P1®i— &, (x|Po) and expandp; (t|®o) in multiple Fourier series
@i (x|Po)|, _o= Poi (x). (3b)
e OB = Y Aiyn, (L2)

Things simplify considerably if all particles are atrest. 7 &~ 7o
All matrix elements become space-independent and .
only the time dependence remains to be determined. % exp{i anwk(J,k)t}; (5)
Eq. (13) is transformed to -

k=1
aL;(®) i
(8351‘; +m,~2j)¢’j(1|¢’0) _ -0 here 1 stands for the set of coupling constants. As
0Pi |, —a; (1|00) we have explained above, the resonances are related

to the polynomial preexponential time dependence of
We arrive at the set of nonlinear coupled oscillators. separate terms in perturbative expansion. If one ex-
Tree expansion arises when we solve (4) perturba- pands the right-hand side of (5) insuch terms result
tively in L;(®). Libanov et al. have shown that non- from A-dependence of frequencies(J; A). In gen-
vanishing amplitudes are produced if, in the course of eral, wy(J, A) do depend on.. However, withJ = 0
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(under appropriate normalization #fs), wx (0; 1) be-
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Now, due to the fact that both initial and final states

come the frequencies of harmonic part (i.e., the massescontain the same particleg must be the combi-

of particles) and do not depend anNow, the crucial
point is that we are considering the amplitudes with
different kinds of particles in incoming and outcom-
ing states. Therefore, in the boundary condition (3b)
we can put

igimit
)

& = +1. (6)

Then the nontrivial solutions witlh = 0 are possible
(cf. the explicit solutions given in Ref. [14]), i.e.,
the coefficientsA;.,,,. ., are nonvanishing also for
|n1| + - - -+ |n.| #£ 0. EQ. (5) takes the form

Do = zje

ni,...,nr

,
x exp{i anmkt}. (7)

k=1

No terms polynomial in time appear i expansion
and the corresponding amplitudes do vanish.

In the above reasoning it is crucial that the bound-
ary conditions take the form given by Eq. (6). Such
conditions admit the exact solutions corresponding
to vanishing action variables. On the contrary, if the
boundary conditions contain the frequencies of both
signs (which is unavoidable if both initial and final

nation of both frequenciesm. The cross term pro-
duces nonzero contribution to the energy;Ba% 0
andw(E, 1) generalically depends on The only ex-
ception is the case when(E, 1) does not depend on
E,w(E,)) = w(0,A) =m. The general construction

of systems with the prescribed energy dependence of
the frequency has been described in [20]. Recently, it
has been applied [21,22] to the construction of certain
superintegrable systems. The results of [21] and [22]
imply the following form of the Lagrangians describ-

ing trajectories with energy-independent frequency.

Letp:R O™ R be one-to-one and such that p = id.

The relevant Lagrangian reads & 0 being an arbi-
trary parameter)

L= %qu — (P — p(@))z; (10)

moreover, to get a nontrivial theory we must assume
that p is decreasing. Also, without loss of generality
we can takep (0) = 0. The corresponding field theory
reads

1 2
Lzéaﬂqﬁ‘a“qﬁ—a(qﬁ — p(@))". (12)

In order to find the relevant Feynman rules we first

states contain the same particles) the solutions with €xpand potential in power seriesdn Differentiating
J = 0 are excluded. This makes the problem whether the relation

the threshold amplitudes nullify more complicated.
We show below how one can construct field theo-
ries with vanishing threshold amplitudes (in the tree-
graph approximation) with the same kind of parti-
cles both in initial and final states. The resulting the-

; ) . 2
ories are not renormalizable, yet they can be viewed 3(0”(0))* + 20" (0) =0.
as low-energy effective theories in the sense of Wein-

berg [19]; moreover, we are considering tree ampli-
tudes only.
Assume that we have just one scalar field,

1
L=30,03"® ~ V(). (8)

so that the relevant amplitudes are> n with a single
kind of particles in both states.

p(p(@)) = (12)
three times and putting = 0 we get
(13b)
Assume thap” (0) = po # 0. We have then
1 m?2 A
L=20,00"® — —d>— —°
5 u®? 2 3!
1_ 22
-5 _@%+..., 14
41" 3m?2 + (14)

wherem? = 8a, A = —12up, and dots denote higher-
order terms. Due ta # 0 the lowest a priori nontrivial

The reduced system has one degree of freedomamplitude is 2> 2. The relevant graphs are shown on

so energy is the only time-independent integral of
motion. The counterpart of (7) reads

D(t|P0) = ) Au(E, Le"ED,

n

9

Fig. 1.

Using Feynman rules implied by (14) we immedi-
ately check that the contributions from these graphs
sum to zero.
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The results fom — n,n > 2, processes are am- . ;
biguous for the same reasons as in Ref. [15]. If we con- 2p <. - 2p
sider the amplitudes as calculated frabrir|Po) by ) ;
amputating the last external propagator, we obviously
obtain zero: there are no resonant pieces in the “ex- Fig. 2.
ternal force” coming from lower order terms. On the
other hand, the corresponding Feynman graphs give
ambiguous contributiorg. One should therefore con- 11. Loy
sider the limit of vanishing three-momenta in general :
amplitudes; however, this limit is also in general am-
biguous. 1=0, .., 2p
Consider now the general case when the first
nontrivial amplitude is: — n with somen > 2. This
corresponds tgy = 0. We shall consider the most
general case when first few derivatives @fvanish.
Detailed analysis, based again on Eq. (12) and given _
in Appendix A, can be summarized as follows. Except Fig. 3.
0’ (0) = —1, the first nonvanishing derivative must be
of even orderp@P)(0) # 0. Moreover, we arrive atthe ~ which are irrelevant for this process and using the last

9 — 14 Y

following conclusion: relation (15) we get
p?(0) are arbitrary fok = p, p+1,...,2p — 1, L= }%q)au(p _Leg2_ 2 2p+1
2 2 2 1)!
p# () =0k=p,p+1,....2p -2, il @ +D
1 250,
4p-1 2 2 4p-1 — P
(% ") o szro=o  as) @piznep+D 40

The graphs contributing to thep2— 2p process are
shown on Figs. 2 and 3.

The total contribution coming from these graphs is
readily found to be

2p—1 2k . 2
—a<2¢'— Z pzkd)' —ir? ZP 2p 2p 1
(2k)! 2m2 1) \ep—1) @p—2p2_1

k=p =0

2
Pap—1  4p-1 1 4P+1>
__pm phr o), 16 - )
(4p — 1! * ) (16) +(2p+1)( 2p }

where, as usual, dots denote higher-order terms. Tak-However, as it is shown in Appendix A, the expression
ing the square on RHS of (16) and inspecting all terms in square brackets vanishes.

carefully we conclude that the lowest nontrivial am- The explicit construction of arbitrary function
plitude isn — n with n = 2p. Skipping all vertices is given in Refs. [21,22]. Using the results contained

Denotep, = p™ (0); our Lagrangian reads now

1 w
L=58,09"®
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there we can define infinity of models sharing the
property of having vanishing tree-level threshold am-
plitudes.

Appendix A

Let o and o be smooth functions of one real
variable and

f=0o0p.

We wish to find nth derivative of f. Its general

structure reads

fP@) =3 0P (@) () (@),..), (Al
k=1

where F}! are polynomial functions op’ and higher

derivatives ofp up the ordem — k + 1 (see below).

Taking derivative of (A.1) one arrives at the following
reccurrence relations:

R =p By + (). 2<k<n,

iy =p'F}.
Ft=(rp. (A.2)
The solution to (A.2) can be written as
1 d*(p")
W= 0 don . (A.3)
. p=0

The notation here is as follows: we takth derivative

of p* and neglect all terms containing at least one
factor p with no derivatives. To prove (A.3) let us note
the following identity:

d" (") _ d"(p")
dor — dor

d"(p*h
+hko———=| 4+
0 do" |,
(A.4)

where the dots denote terms containjrfgand higher
powers ofp. Differentiating again (A.4) and neglect-
ing terms containing we obtain (A.2).

Let us apply this in the case= p with p as in the
main body of the Letter and = 0. We know already
thato’(0) = —1. Moreover,

p=

(o)™ =2 pPOF (r0),...).
k=1

(A.5)
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Assume thap® (0) =0 for2< k <1, p¢tD(0) £0.
We show thal =2p — 1; indeed, assume=2p — 2;
then, due tap o p)™ = 8,1, (A.5) implies

p@0©)(p' @) + (0% D0
2p—2
+ ) PPOF
k=2
Now, p’(0) = —1 and the last term on LHS vanishes;
consequentlyy?7~1(0) = 0, contrary to the assump-
tion. Sop®(0)=0,2 <k <2p—1, p@P(0) 0. Let
us take now 2 <n <4p — 2; then

(A.6)

n—1
PP O)((-1" =1+ p® O F =0.
k=2
Consider the last term on LHS. Due to the assumption
made above the sum starts effectively fram= 2p.
But F' =0 fork > 2p, n < 4p — 2; indeed, (A.3)
implies that the maximal order of derivatives pf
entering /' is n — k + 1 < 2p — 1; moreover, for
k <n — 1 each term entering;’ contains higher than
first derivative ofp.
Finally, taken = 4p — 1; we get
4p—2
—20“ PO+ Y pPOF =0,
k=2
The only term in the sum on the LHS which is
nonvanishing correspondsko= 2p. Let us calculate
ap-1_ 1 d¥ )
2p T (2p)! do4r-1 p:O.
The only terms contributing to the RHS are those
proportional to(p')27~1. p@r) = —p@P) It is easy
to see that the total coefficient in front of this term
is (4’5;1) which, together with (A.8), proves the last
identity (15).
Finally, we shall prove the identity

2 2p 2p 1
> (7)) e

0

(A7)

(A.8)

(A.9)

1 4p+1
b =0. A.10
(2p+1)( 2p ) (4.10)
We have
2Zp 2p 2p 1
=\ 1 )\2p-1) @2p-21>—1
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)
2120 I J\2p—1
1 1
X J—
2p—2—1 2p—2+1
2p
2 2 1
=_Z<”>< P >7 (A.11)
2\t J\2p-1)2p—2+1

where the last equality results from the change of
summation variablé— 2p — I in the first term of the
A+0? A+ =)

expression in the middle.
2 2
(7))
k,1=0

Consider the identity
integrating with respect te from O tox, puttingy = x
and comparing the coefficients in front ef7+1 we
obtain

2 2p 2p 1
I J\2p—-1)2p—1+1

1 4p+1
20+ 1( 2p )
On the other hand,
2p

2

=0

2p

(A.12)

2p

2p 1 1

1 J\2p—=1J\2p—1+1 2p-21+1
_ 2Zp 2p 2p 1
B = [—1/\2p—1)2p—-21+1

r (N)=-
k+i=2p—1 ! kJk—1

Eq. (A.10) follows now easily from Eqgs. (A.11)-
(A.13).

= (03 (A.13)
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