Chapter 12

FPGA Based Serial and Single-Clock Cycle Pipelined Fast

Fourier Transforms in a Radio Detection of Cosmic Rays

Zbigniew Szadkowski
Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/52946

1. Introduction

Results from various cosmic rays experiments located on the ground level, point to the need
for very large aperture detection systems for ultra-high energy cosmic rays. With its nearly
100% duty cycle, its high angular resolution, and its sensitivity to the longitudinal air-shower
evolution, the radio technique is particularly well-suited for detection of Ultra High-Energy
Cosmic Rays (UHECRs) in large-scale arrays. The present challenges are to understand
the emission mechanisms and the features of the radio signal, and to develop an adequate
measuring instrument. Electron-positron pairs generated in the shower development are
separated and deflected by the Earth’s magnetic field [1], [2], hence they introduce an
electromagnetic emission. During shower development, charged particles are concentrated
in a shower disk of a few meters thickness. This results in a coherent radio emission up
to about 100 MHz. Short but coherent radio pulses of 10 ns up to a few 100 ns duration
are generated with an electric field strength increasing approximately linearly with the
energy of the primary cosmic particle inducing the extended air showers (EAS), ie. a
quadratic dependence of the radio pulse energy vs. primary particle energy. In contrast
to the fluorescence technique (e.g. used in the Pierre Auger Observatory [3]) with a duty
cycle of about 12% (fluorescence detectors can work only during moonless nights), the radio
technique allows nearly full-time measurements and long range observations due to the high
transparency of the air to radio signals in the investigated frequency range.

The radio detection technique will be complementary to the water Cherenkov detectors and
allows a more precise study of the electromagnetic part of air showers in the atmosphere.
In addition to a strong physics motivation, many technical aspects relating to the efficiency,
saturation effects and dynamic range, the precision for timing, the stability of the hardware
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developed, deployed and used, as well as the data collecting and system-health monitoring
processes will be studied and optimized.

EAS are investigated in several experiments utilizing different detection techniques
(scintilators, water Cherenkov and fluorescence detectors). Signals in the detectors depend
on several parameters such as the energy, the type of the primary particle, a distance from the
core, the angle of registered shower, etc. Usually the triggering conditions are chosen such
as to detect as wide as possible classes of events. However, sometimes the standard trigger
conditions are not optimized for the specific class of events, which are either not registered at
all or for which the registration efficiency is poor. In experiments utilizing water Cherenkov
detectors, signals from photo-multipliers (PMTs) are usually digitized in ADCs and next
processed by often-sophisticated electronics. In order to increase the signal/noise ratio
coincidence techniques are widely used. Typically signals from PMTs are analyzed on-line
in both amplitude and time domains. Strong signals in all PMT channels, corresponding to
energetic showers detected near the core, are registered because of many-fold coincidence
single bin trigger with a fixed thresholds. Showers detected far from the core give much
lower signals usually spread in time. Such events are detected by the other type of trigger
investigating the structure of signal in some period (in a sliding time window).

The structure of signals detected in water Cherenkov tanks and generated by horizontal
showers depend strongly on the point of the EAS initialization. "Old" showers generated
by hadrons early in the atmosphere give flat muonic front; showers generated by deeply
interacting neutrinos are characterized by a curved front (radius of curvature of a few km), a
large electromagnetic component and with particles spread over a few microseconds interval
[4]. In both cases muonic front produces a bump, which can be a starting signature of
horizontal showers. The bump for the "old" showers is shorter and sharper than for the
"young" ones and results in a larger contribution in higher Fourier coefficients. For "young"
showers, with relatively smooth shape of a signal profile, the lower Fourier components
should dominate. The on-line analysis of the Fourier components may trigger specific events.

The existing software procedures, available as commercial IP routines, can calculate Fourier
coefficients effectively utilizing a FFT algorithm. However the software implementation is too
slow to be able to trigger events in the real time. On-line triggering requires the hardware
implementation calculating multi-point DFT with a sufficient speed. Modern powerful
FPGAs can do this job, however, the resource requirement increases dramatically with the
number of points. The analysis time interval should be a reasonable compromise between
the time resolution and the resources occupancy in the FPGA.

2. DFT

The discrete Fourier transform (DFT), of length N, calculates the sampled Fourier transform

of a discrete-time sequence at N evenly distributed points wk = 2—17\1," the unit circle. The
following equation shows the length-N forward DFT of a sequence x(n):
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The following equation shows the length-N inverse DFT:
= ), Xue'N k=0,1,.N—-1 ()

The complexity of the DFT direct computation can be significantly reduced by using fast
algorithms that use a nested decomposition of the summation in equations one and two-in
addition to exploiting various symmetries inherent in the complex multiplications. Such
algorithms are the Radix-r Decimation-in-Time (DiT) or Radix-r Decimation-in-Frequency
(DiF) Fast Fourier Transforms (FFT), which recursively divides the input/output sequence
into N/r sequences of length r and requires log,N stages of computation.

The commercially offered FFT processors for FPGA applications require several clock cycles
to accomplish calculation of all complex DFT coefficients. Each stage of the decomposition
typically shares the same hardware, with the data being read from memory, passed through
the FFT processor and written back to memory. Each pass through the FFT processor is
required to be performed log,N times. Popular choices of the Radix are r = 2, 4, and 16.
Increasing the Radix of the decomposition leads to a reduction in the number of passes
required through the FFT processor at the expense of device resources. Such an approach
is very widely useful for many applications, where timing is not crucial. However, there
are areas, where the FFT coefficients (based on a new set of samples) have to be known in
each clock cycle. Commercial FFT processors, unfortunately, cannot be used. This approach
requires special algorithms optimized for a particular solution.

2.1. Radix-2 : Decimation-in-Time and Decimation-in-Frequency

The Radix-2 algorithm is the simplest FFT one. The decimation-in-time (DIT) Radix-2 FFT
recursively partitions a DFT into two half-length DFTs of the even-indexed and odd-indexed
time samples. For the Radix-2 DiT, we get :
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For the Radix-2 DiF, we get :
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(a) The 8-point Radix-2 Decimation-in-Time algorithm (b) The 8-point Radix-2 Decimation-in-Frequency
(left). For real samples x; the Fourier coefficients G algorithm. For real samples x; supporting variables
and Hj for N/2-point DFT are complex. Calculations g(k) and h(k) require only real additions and
of final N-point Fourier coefficients require complex subtractions.

multiplications by factors W¥; for k > 0.

Figure 1. Splitting of N-point DFT on two N/2-point parallel procedures for Decimation-in-Time (left) and
Decimation-in-Frequency (right), respectively, on the basis of the 8-point Radix-2 algorithms.

The N-point DFT can be easily split on two N/2-point transforms. The outputs from DFT
procedures are complex. So, a calculation of final DFT coefficients by using DiT algorithm
requires complex multiplication for final merging data from parallel DFT procedures with
lower order (i.e. multiplication of twiddle factors WII%) :

WK = e % (5)

by G[k] and HIk] in Figure 1. For the DiF algorithm the 15 stage requires additions and
subtractions only. Odd indexes require additional multiplications, however, even indexes
remain without modifications for the next N/2-point DFT procedure (compare Figures la
and 1b).

2.2. Radix-4 algorithm

The Radix-4 algorithm consists of four inputs and four outputs. The FFT length is 47, where
p is the number of stages. A stage is half of Radix-2. The Radix-4 DIF FFT divides an N-point
DFT into four N/4 -point DFTs, then into 16 N/16 -point DFTs, and so on.

For Radix-4 DiF, we get :

N-1 N/4-1 N/2-1 3N/4-1 N-1 .
Xk _ Z xne—z;z]'(kn Z xne—kaM 2 xne—z;\ilrkrz Z xne—Z;\ilﬂﬂz Z xne—ZK]Tkn _
n=0 n=N/4 n=N/2 n=3N/4
N/4- Z!Tkn Nk k Nk
Z [ + (=) Xpnya + (1) Xpny2 + (0) xn+3N/4] (6)

This algorithm is widely used, however, as it is shown in a next section, the simple
application of the DiT or DiF algorithms in all sequential steps remains still an area for
further optimization.
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2.3. Architectures of the Altera®s FFT MegaCore® functions.

2.3.1. Streaming architecture

The Radix-4 decomposition, which divides the input sequence recursively to form four-point
sequences, has the advantage that it requires only trivial multiplications in the 4-point DFT,
it is the chosen Radix algorithm in the Altera® FFT MegaCore® function. This results in the
highest throughput decomposition, while requiring non-trivial complex multiplications in
the post-butterfly twiddle-factor rotations only. In cases where N is an odd power of two,
the FFT MegaCore automatically implements the Radix-2 pass on the last pass to complete
the transform.

To maintain a high signal-to-noise ratio throughout the transform computation, the FFT
MegaCore function uses a block-floating-point architecture, which is a compromise point
between fixed-point and full-floating point architectures. In the fixed-point architecture,
the data precision needs to be large enough to correctly represent all intermediate values
throughout the transform computation. For large FFT transform sizes, the FFT fixed-point
implementation that allows for word growth can make either the data width excessive or can
lead to a loss of precision.

In the floating-point architecture each number is represented as a mantissa with an individual
exponent, while this leads to greatly improved precision, floating-point operations tend to
demand increased device resources.

In the block-floating point architecture, all of the values have an independent mantissa but
share a common exponent in each data block. Data is input to the FFT function as fixed point
complex numbers (Figure 2).

Figure 2. A simulation of the Fourier transform for the Altera® library routine of 1024 points and for streaming architecture.
Each block of 1024 Fourier coefficients (Fc) is scaled by the factor FFT.exp. Fourier coefficients are provided in a serial way, each
pair of real and imaginary parts of a single Fc in a single time bin. All Fc are calculated in 1024 time bins. FFT.sop (start of
package) and FFT.eop (end of package) indicate begin and end of each 1024-point block.

The block-floating point architecture ensures full use of the data width within the FFT
function and throughout the transform. After every pass through the Radix-4 FFT, the data
width may grow up to logy(4+/2) = 2.5 bits. The data is scaled according to a measure of the
block dynamic range on the output of the previous pass. The number of shifts is accumulated
and then output as an exponent for the entire block. This shifting ensures that the minimum
of least significant bits (LSBs) are discarded prior to the rounding of the post-multiplication
output. In effect, the block-floating point representation acts as a digital automatic gain
control. To yield uniform scaling across successive output blocks, you must scale the FFT
function output by the final exponent [5].
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2.3.2. Variable streaming architecture

The variable streaming architecture uses two different types of architecture, depending on
which representation: the fixed-point or the floating-point is selected. For the fixed-point
data representation, the FFT variation uses a Radix-2? single delay feedback architecture,
which is a fully pipelined architecture. For the floating point representation, the FFT
variation uses a mixed Radix-4/2 architecture. For a length N transform, log4(N) stages
are concatenated together. The Radix-2? algorithm has the same multiplicative complexity
of the fully pipelined Radix-4 architecture, but the butterfly unit retains the Radix-2
architecture. In the Radix-4/2 algorithm, a combination of Radix-4 and Radix-2 architectures
are implemented to achieve the computational advantage of the Radix-4 architecture while
supporting FFT computation with a wider range of transform lengths. The butterfly units
use the DIF decomposition.

The fixed point representation allows for natural word growth through the pipeline. The
maximum growth of each stage is 2 bits. After the complex multiplication the data is rounded
down to the expanded data size using convergent rounding. The overall bit growth is less
than or equal to log2(N)+1. The floating point internal data representation is the single
precision floating point (32-bit). Floating point operations provide more precise computation
results but are costly in hardware resources. To reduce the amount of logic required for
floating point operations, the variable streaming FFT uses "fused" floating point kernels. The
reduction in logic occurs by fusing together several floating point operations and reducing
the number of normalizations that need to occur [5].

3. An FPGA based RFI filter for radio detection of cosmic rays
3.1. A physical background

The energy threshold of radio detection of cosmic rays is limited by the considerable radio
background and noise. The very high level of radio frequency interferences (RFI) in the FM
and the short wave band has to be eliminated by a band pass filter amplifier. Within the
remaining receiver bandwidth of 30 to 80MHz the noise at the quiet-rural environment of
cosmic-rays experiments is dominated by the frequency dependent galactic noise [6] with
noise temperatures of 5000K at 60 MHz.

In addition to galactic noise, there is still a human made background. This background
consists of continuous signals, as from a few radio and TV stations, and transients produced
by machines. Without an effective trigger, a stable and low-level energy threshold is not
guaranteed. Furthermore, the data rate for communication of the triggered data to the central
DAQ would exceed the available power budget.

For self-triggered measurements, the data will be digitized and processed in real time by a
powerful FPGA chip. The narrow peaks in the frequency domain due to radio frequency
interferences have to be strongly suppressed before building a trigger. These peaks are
removed by a median filter. The filter works in the frequency domain using the Fast Fourier
Transform (FFT) routine provided by Altera®. Furthermore, the phase of the signal deformed
by the steep band pass filter is reconstructed by a deconvolution in the frequency domain.

The median FPGA filter eliminates mono-frequent carriers, but broadband radio pulses from
cosmic showers are not affected. After a second inverse FFT, signals are converted back to
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the time domain. This chain of the digital signal processing strongly enhances the signal to
noise ratio, and thus improves the radio pulse detection sensitivity (Figure 3).

Due to the Nyquist theorem, the used 80 MHz band should be sampled with at least 160
MHz. An application of 16-bit ADCs with such a sampling rate would be a challenge for the
price, the power consumption and PCB routing to keep a reasonable noise level. The used
practical option is an 12-bit ADC with 180 MSPS, leaving sufficient space for the anti-aliasing
filter and implementing a high and low gain channel to obtain the required dynamic range.

Figure 3. A diagram showing a (FFT + Median filter + iFFT) chain cleaning the signal from the RFI contamination. The 1% graph
shows the ADC input as unsigned data with an offset of ca. 2300 ADC-counts, the 2™ - the absolute values of FFT coefficients
in the frequency domain, the 3 - FFT coefficients "decontaminated" by the median filter and 4" - signal converted back to the
time domain. Additionally, the 0" FFT coefficient has been zeroed. Thus, the cleaned signal in the time domain is represented
as signed data without the offset. The amplitude of the signal remains roughly the same and the noise is considerably reduced.

The necessary filtering accuracy requires at least 1024-point Fourier transforms. For the
180 MHz sampling, it corresponds to 360 kHz resolution in the frequency domain. Shorter
transformation blocks give too rough filtering and may affect real signals from showers. For
these parameters, the RFI filter has been developed and optimized [7].

3.2. Selection of the FFT architecture

The Altera® FFT MegaCore offers 4 types of FFT engines with various architectures :

* streaming
® variable streaming
e burst

¢ buffered burst

calculating the FFT and iFFT in real-time. All architectures can be implemented a fixed point
FFT, whereas the variable streaming architecture can also be configured in a floating point
data representation. A comparison of resource occupancy of different architectures is given
in Table 1. Parameters are shown for 12-bit and 16-bit data processing.
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LE memory  DSP LE memory  DSP

architecture TCC BTC wizard bits wizard bits
12-bits 12-bits  12-bits 16-bits  16-bits  16-bits
streaming 1024 1024 3723 155 648 24 4952 155 648 24
variable streaming
fixed bit reverse 1024 1024 6139 31792 48 7175 39976 56
floating bit reverse 1024 1024 23000 73 568 128 23000 73 568 128
fixed natural order 1024 1024 6139 82 992 48 7175 100 380 56
floating natural order 1024 1024 23000 139 104 128 23000 139 104 128
burst (single engine) 1113 3162 2814 57 344 24 3804 57 344 24
burst (4 engines) 345 2394 7864 114 688 96 11136 114 688 96
buffered burst (single engine) 1103 1291 3202 122 880 24 4197 122 880 24

buffered burst (4 engines) 335 1099 8517 245 760 96 11885 245760 96

Table 1. An utilization of resources for various FFT architectures at 12-bit and 16-bit data processing. The 24 column shows
Transform Calculation Cycles (TCC), required by the Altera® wizard, the 3" - Block Throughput Cycles (TBC), the 4! - required
Logic Elements (LE), the 5 - required memory bits, the 6" - required Digital Signal Processing blocks. Parameters in columns
4" to 6! correspond to the 12-bit data processing, in columns 7% to 9 to the 16-bit processing, respectively.

For the RFI filtering scheme shown on Figure 3 sampled ADC data have to be processed
continuously in real-time. "Continuously" means that any dead-time is not acceptable.
Data can be processed in blocks of fixed length, but no any sample can be ignored.
This requirement eliminates two architectures: burst and buffered burst, because for i.e.
1024-point (and 1024 clock cycles when samples appear from the ADC output) these
architectures require more than 1024 clock cycles for processing (BTC = 3162, 2394, 1103
and 1099 for burst and buffered burst and single and 4 engines, respectively). For any
configuration the fundamental requirement of no dead-time is not obeyed.

The floating point representation for the variable streaming architecture requires huge
amount of logic elements and DSP blocks. For two cascade FFT engines for two polarization
channels almost all resources could be utilized for the FFT engines only. There would not
be resources for other tasks. Additionally, the Altera®s documentation shows that the
registered performance for this architecture is much below our expectations (on the level
of 110 MHz, while we need at least 180 MHz for the signal processing).

Some FFT applications require the FFT + the user operation + the iFFT chain. In this case, a
careful selection of the input and output order can significantly save a memory and a latency.
If the input to the first FFT is in the natural order and the output is in the bit-reversed order,
the FFT engine operates in a mode with a minimal resource utilization (called Engine-only
mode). Thus, if the iFFT operation is configured to accept bit-reversed inputs and produces
natural order outputs (iFFT is operating again in Engine-only mode), only the minimum
amount of memory is required, which provides a saving of N complex memory words, and
a latency saving of N clock cycles, where N is the size of the current transform.

However, in the case of the RFI filtering by the median filter the sequence of FFT coefficients
in the frequency domain has to be natural, to eliminate/suppress narrow-band peaks. The
FFT routines have to be working with Engine with bit-reversal modes only. Two architectures:
(a) streaming and (b) variable streaming with the natural order and the fixed-point data
representation survived the selection.
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(a) 12-bit processing (b) 16-bit processing

Figure 4. Histograms of reconstruction errors for the streaming architecture (differences between the original ADC data and
data after application of the 12-bit (a) and 16-bit (b) wide FFT and inverse FFT). "T" denotes ideal configuration with zeroed
offset. However, for a small shift of 2% only, error distributions become wider and more flat.

3.3. Streaming architecture

The streaming architecture accepts as input a two’s complement format with a complex data
vector of length N, where N is the desired transformation block length. The function output
is given as a complex vector in the natural order. An accumulated block exponent is given to
indicate any data scaling that has occurred during the transformation to maintain precision
and maximize the internal numerical signal-to-noise ratio.

The signed block exponent, used for scaling of internal signal values, remains constant for
a full data block. For relatively small variations of the signal samples x, (typical for noise
background), but with not negligible pedestal the Fourier component X, may be relatively
large whereas the X, .o components are rounded off to relatively small values. This may
cause large errors of the reconstructed signals after going through the FFT/iFFT chain.
Hence, the pedestal has to be subtracted carefully from the input signal. Errors of the
reconstruction for the 1024-point transforms of a real event signal recorded in real cosmic
rays experiment are shown in Figure 4.

The streaming architecture introduces, unfortunately, significant distortions of signals in a
data processing for the FFT+FFT cascade chain. The reconstruction errors for the 12-bit
processing are on unacceptable level of 10 and more ADC-counts. The 16-bit configuration
introduces smaller reconstruction errors and maybe used for real data processing, however,
an influence of the data processing errors have to be carefully take into account for the final
trigger and recorded data.

Figure 5 shows a possible optimization, where 12-bit data is processing in 14-bit FFT engine
and 2 lower significant bits are grounded and treated as potentially fractional part.

3.4. Variable streaming architecture

The 12-bit input FFT routine with the variable streaming architecture yields 25-bit Re/Im
Fourier coefficients. Processing of both buses with the full width in the iFFT procedure
would be too spendthrift and slows down the speed significantly. A reasonable compromise
for a selection of the input lines driving the iFFT routine is required.
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Figure 6 shows that cropping the output FFT bus to 12 bits provides already a good
reconstruction. The error is on the level of one ADC-count. This is achieved at the expenses
of 2000 additional LEs and 24 additional DSP blocks. However, this architecture’s maximum
clock frequency of roughly 200 MHz (for selected FPGA from Cyclone® III family) is too low.

3.5. Aliasing and leakage removal

The incoming data stream must be chopped into blocks to be processed by the FFT routine.
If signal pulses are located close to the border of a block, aliasing occurs. It manifests by a
spurious contribution in the opposite border of the block and in the neighboring block as
well. This effect may cause spurious pulses and has to be eliminated. The leakage effect is
caused by the finite length of the blocks, acting like an applied rectangular window function.
Thus, a signal amplitude leaks from one frequency bin to another. By using a suitable
window function, the leakage effect can be reduced. To keep algorithmic costs low, we use a
window function with a constant middle part like a trapezoidal shape or a Tukey-window.

Figure 5. Histograms of reconstruction errors for the streaming architecture (differences between the original ADC data and
data after application of the 14-bit wide FFT and inverse FFT). The width of input data is 12 bits connected to low 12 bits
(starting from LSB) ("low") or to higher 12 bits (starting from MSB (high). For "low" configuration 13" and 12t input bits are
connected to the sign (11*) bit. A distribution of the reconstruction errors is rather wide. For the "high" configuration 0" and
1%t are grounded and they play role of a fractional zeroed input part. For a such modification of input connection only, the error
distribution is significantly narrower.

() (b)

Figure 6. Histogram (a) of reconstruction errors for the variable streaming architecture (differences between the original ADC
data and data after application of the 12-bit wide FFT and inverse FFT). The right plot (b) shows differences for raw data.
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Both problems can only be solved, without introducing dead time between the blocks, by
using an overlapping routine [7]. Therefore the filter engine must run in another clock
domain with higher frequency. Preliminary estimation shows that for an overlapping of N
= 32 errors due to an aliasing contribution is acceptable, however for a better safety margin
N = 64 is preferred. N = 128, allows a total removal of aliasing effect, however this option
requires too high over-clocking according to Table III. An odd value like N = 73 seems to be a
valid compromise, although requiring some special modules to assure a seamless hand over
of the data stream between the different clock domains.

(@) (b)

() (d)

Figure 7. An example of spurious envelopes due to aliasing, when a signal appears close to the border of converted blocks,
128, 32, 8 and exactly on the border, respectively

Figures 7 show a potential danger if the aliasing were ignored. If the signal appears relatively
far from the end of the block border (i.e. 128 time bins for 1024-point conversion) the
envelope of the signal is reconstructed rather good (Figure 7a). There is no any false peaks,
which could be recognized as spurious triggers. If the signal appears relatively close the
end of the block border (Figure 7b) one can observe some spurious wings on the borders of
neighboring blocks. However, if a relatively strong signal appears close to the block border
(Figure 7c) the spurious peaks are created on both borders and there is a very high danger
that these spurious peaks can be mistakenly taken as a trigger. If the signal appears exactly
on the border of two blocks (Figure 7d), the spurious peaks can get an amplitude of more
than 30 % of real signal. An additional procedure removing a spectral leakage has to be
absolutely used to keep a high reliability of the system.
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3.6. Simultaneous processing of two signals with perpendicular polarizations

Each antenna station measures radio signals in two opposite polarization channels. Thus,
it would be straightforward to use two FFT engines for calculating the frequency domain
signal, while setting their imaginary input to zero. A more efficient way is to exploit the
symmetries of the FFT. Therefore the data streams of both antenna channels (N windowed
signal samples f; and g;) are connected to the real respectively imaginary component input
of the FFT engine. The resulting output components, H;, are given in (7).

Hy = YN (f + ig;) )
i

The Hj; can then easily be disentangled into the Fourier components, F, and G, by the
following equations (8)

Hy+ HY , =2F,, H,—H}_, =2iGy, ®)

The (N-n) indices in (8) in a real time system correspond to a time reversed order. The Hj
and HY;_, are synchronized by a routine inverting the order of the Hy like First In Last Out
(FILO) and by using a delay routine for the H, in parallel. Doing so, the amount of needed
FFT engines can be reduced from two to one.

After the iFFT, the envelopes feno(t) and geno(t) (Figure 8) of the output signal x(t) have to
be created to allow the following trigger algorithms to discriminate specific pulse shapes in
each channel.

Figure 8. Schematic view of the resources-optimized implementation of the used two antenna chains with opposite
polarization, each consisting of FFT, median filter, deconvolution, Hilbert transform Im(f) and Im(g) and FIR filters.

4. Wavelets

Let us investigate a time series X, with values of x;, at time index n. Each value is separated
in time by a constant time interval At. The wavelet transform Wj,(s) is just the inner product
(or convolution) of the wavelet function with our original time series:

N=1 mfn)At} 9

Wi(s) = Y xmyp* {(

m=0 5

where the asterisk (*) denotes complex conjugate. The above sum can be evaluated for
various values of the scale s (usually taken to be multiples of the lowest possible frequency),
as well as all values of n between the start and end dates.
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It is possible to compute the wavelet transform in the time domain according to (9). However,
it is much simpler to use the fact that the wavelet transform is the convolution between the
two functions X and ¥, and to carry out the wavelet transform in Fourier space using the
Fast Fourier Transform (FFT). In the Fourier domain, the wavelet transform is :

N-1 .
Wy (s) = Z X ¥ (swy et (10)
k=0

Unlike the convolution, the FFT method allows the computation of all n points
simultaneously, and can be efficiently coded using any standard FFT package.

Wavelets coefficients allow an estimation of the signal power. The global wavelet spectrum,
defined as the time average over a series of p-wavelet powers, can be expressed as [8]:

. 1 N=1 , 1Nl 5
W)= L (P = 1 % x Felp) an
=0 =0

A sum of products of Fourier coefficients calculated in a FFT32 routine for ADC data (x;)
in each clock cycle with pre-calculated Fourier coefficients of a reference wavelet gives an
estimation of the signal power for selected type of the wavelet. Only a single FFT32 routine
for the on-line calculation of Fourier coefficients for data is needed. Fourier coefficients
for various wavelets can be calculated earlier and be available for final power estimation as
constants.

A fundamental limitation for the on-line wavelet analysis in the FPGA is an amount of
embedded DSP multipliers. A multiplication by an utilization of logic elements is rather
inefficients. The Quartus® II environment for an Altera® FPGA programming provides
parametrized FFT routines with various architectures: streaming, variable streaming, burst
and buffered burst. However, all routines deliver the FFT coefficients in a serial form (Figure
4). No any Altera® routine allows calculating all FFT coefficients simultaneously.

If FFT coefficients are spread in time, the wavelet transform can be also calculated in a serial
way (in a single clock cycle only a single pair of X, is multiplied by a single pair of y*),
however, a product will strongly depend on a relative position of X, and ¢*. If the variables
are shifted between themselves, even strong signal may give a negligible final contribution.
Some additional procedure is needed, which could tune a wavelet transform regarding to
the Fourier transform of ADC samples.

This problem can be automatically solved if all Fourier coefficients were provided
simultaneously in each clock cycle. A synchronous multiplication with Fourier coefficients
of wavelets would give required power estimation independently of any relatively
configurations of these variables. The Fourier coefficients of selected wavelets are fixed, a
sliding window of N ADC samples gives all Fourier coefficients in each clock cycle. This
assures that for some set of samples (if a signal appears) the product of both transforms may
give a significant contribution and may be used as a trigger.
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The radio signal is spread in a time interval of an order of couple hundred nanoseconds,
most of registered samples gave a time interval below 200 ns. The frequency window in the
atmosphere, where a signal suppression is on an acceptable level (the atmosphere is relatively
transparent) is ca. 30-80 MHz. According to the Nyquist theorem the sampling frequency
should be at least twice higher than the maximal frequency in a investigated spectrum. The
anti-aliasing filter should have the cut-off frequency of ca. 85 MHz. Taking into account
some width of the transition range for the filter (from pass-band to stop-band) the final
sampling frequency should not be lower than 180 MHz (200 MHz in our considerations).
This frequency corresponds to 5 ns between rising edges of the clock.

The interval of 160 ns (estimated as sufficient time interval for radio signals) requires 32-point
Fourier transform calculated in each clock cycle.

5. General algorithm

Let us consider a DFT X of dimension N

N-1 .
o= Y xaW' where  W=e 2N gnd  k=0,...N-1 (12)

If N is the product of two factors, with N = NjNj, the indices n and k we can redefined as
follows: n = Nynp + nq,

where 1, =0,...,N>-1 and n7 =0,...,N;-1, k = Noky + ky, kp =0,...,N>-1 and k1 =0,...,N;-1

N;—1 N;—1
v Nonqk k; Nymyk:
Xnoky ko = 3, WNEWME2 50 Y e oy W22 (13)

n =0 Wl2=0

For the Radix-2 algorithm: N = 2f , Ny =2 and N, =2!~1 = N/2 . Hence,

N2
Xe= Y (xon + Wiy, ) W2k (14)
n=0
If we split the sum as follows
. N/4-1 N/2-1 N/4-1 N/2-1
Xe= Y, waW™ 4+ ) x4 2 Xt W Y WA (15)
n=0 n=N/4 n=0 n=N/4

and afterwards, if we redefine indices and group the sums, we get

N/4-1 N/4—
Xy = Z (x2n + (*1)kx2(n+N/4))W2nk + JFWk Z (x2n41 + ( 1)kxz(nJrN/4)+1)Wznk

n=0
(16)
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We can introduce the new set of variables defined for n = 0,...,N/4-1 as follows:

Ay = Xon + XoneN/2 Aznnl = X2p41 T X2n 14N /2 17)
ApniN/2 = Xon — XopaNy2 A2n14N/2 = X2ntl — X2ut14N/2/ (18)
we get
. N k 2nk
Xp= ) (Agy+ WAy, )W (19)
n=0

. N k 2k

Xe= Y (Agpns2 + Wi Ay 1) W (20)
n=0

for k even and odd respectively.

Xy represent signals in time domain. They can be easily available from outputs of shift
registers clocked synchronously with the ADC. The DFT coefficients X; can be expressed
by new set of variables A, Because A, are simple linear combination of x;,, they can be
calculated by typical adders (eqs.(17) and sub-tractors (egs.(18) in a single clock cycle. The
input values x,, are real and positive, since they represent the signal in the real time.

Coefficients of DFT in the real domain additional simplify due to the following symmetry:

Re(Xy) = +Re(Xyk)  Im(Xy) = —Im(Xn ) (1)

The Radix-2 algorithm allows regrouping of inputs elements in the DFT expression in order
to utilize some symmetries of Fourier coefficients. In a single step of the Radix-2 algorithm we
can redefine the “new” set of variables by some mathematical expression of the “old” ones.
This step will correspond to an elementary process in the pipeline chain. The redefinition
of variables in eqs.(17) corresponds to the 1% stage of the pipeline. Splitting the sum (14)
reduces of coefficient W¥ set from 0,...,N-1 for input x, to 0,.. N1 for (19-20). The 1° stage
utilizes the feature of the twiddle factors related to the 1! stage of the pipeline.

Wy =WN2=emim= 1 (22)

So, the 15 stage can be implemented in a very simple way. The implementation of
the multi-points algorithm requires multiple pipeline stages and apart from adders and
sub-tractors also requires multipliers, which correspond to the WX coefficients relating to
the fractional “angle” e=%*7/N_The Radix-2 algorithm used in the next stage reduces again
the abundance of W coefficients due to the next twiddle factors’ related to the 2" stage of
the pipeline.

Wp = WN/4 —p=im/2 — (23)

The Wp suggests the similar splitting structure in the 2" pipeline stage as in the 1° one
(minus in (23) as in (22)), however the imaginary unit imposes the DFT calculation separately
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for their real and imaginary parts. If we split the sum in (20) similar as in (15), we get for k

=02,...,N-2
. NEH k 2nk k 2n+1)k
Xe= Y [(Aon + (=) Agy i nya) WK b+ (Agin + (—)F Agyig onya) WEHDR] (24
n=0

Let us consider separately two subset of odd indices: k=4n and k=4n+2 (n = 0,...,N/4-1)

N/8-1
Rap= Y (Ao + Ay /) WO + (Agy1 + Agyirenya) WD) (25)
n=0

Notice that Xy and Xy, are real.

N/8-1
Rapro= Y. [(Azy — Apuyn/) WD - (Agy iy — Ay inya) WEHHDEPH2)] 0 (26)
n=0

If we introduce new variables

By = Agy + Ayinya Bopy1 = A1+ Adut14N/4 (27)
BonynNy2 = Aon — AduiNya Bont14N/2 = Aout1 — Adnt14N/4 (28)
we get

) N/8—1

Xyp= Y. (Ban+ Bopa W)W (29)
n=0
& NEH Ap+27\ A8 p+4
Xapr2= ). (Boninya+ BongapnaWH T2 wonrsn (30)
n=0

However, repeating the above procedure for odd indices related to the eq.(20) gives more
complicated formulas, which cannot be simplified due to complex coefficients W4("+7?)

(eq.31).

N/8-1
Xaprg=)_ W2 P [( Ay N2 + A1 n/2WPT) F j(Azniansa + Azur1anaWH )]

n=0
@1
where F corresponds to q = 1,3 respectively. Next simplification is possible due to
symmetries of trigonometric functions. However, general considerations give relatively
complicated formulas, which seem to be unnecessary here.
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6. 16-point algorithm
For N = 16 and odd indices we get
Raprq = (Ag T jA12) + (i)P (Ag(—1)PWI —iA;s W 1)+

+(—i)"T (—1)PW2(Agg T iArg) + (i) (Ay WA — iAg3(—1)P W) (32)

Since of W* = —i, all coefficients can be expressed as a linear combination of the complex
base W1, W2, W3

Wl =¢ 1§ :cos(g)—i-sin(g)za—iﬁ (33)
W2 =¢ '3 :cos(g)fivsin(g) =9(1—1i) (34)
W3 =73 :cos(%)—i-sin(%):ﬁ—i-zx (35)

Symmetries in (33-35) allow the following simplification. Notice that

W2(A1p FiArg) = 7(A1g F Arg) (1 — i) (36)

Ag(—1)PWT —iA;sWHT = X[(—1)P Ag — As5)] — iV[(—1)P Ag + As5)] (37)

AW — A (~1)PWH = Y[Ay — (—1)P Ags)] — iX[Aqg + (—1)P Agg)] (38)
where X = g, ﬁ,)A/ = p,a forq=123.
We can extend the set of variables (27 — 28) also to odd indices of X

Bg1o =Ag12 Bgis=A9+ A5  Bioja=Awt A Bz =11t A (39)

Formulae (39) show that the entire 2 pipeline stage can be built also from only adders and
sub-tractors. Signals Ag 1y have to be delayed in parallel shift registers in order to assure
synchronization with adjacent ones.

For N = 16 the DFT coefficients can be expressed by the B;, variables as follows

Re(Xp) = Bo+ By +By+ B3 Re(Xg) = Bo — By + By — B3 (40)
Re(Xy) = By— By (41)
Re( _2) = By+v-(Bs—By) Re(Xé) =By —v-(Bs—By) (42)
Im(X3) = —Bg — - (Bs + By) Im(Xg) = Bs — v - (Bs + By) (43)
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Re(X17) = Bg+aBis+ vBisa+ B3 Re(X35) = Bg+pBis —yBis FaBiz (44)

2

Im(Xq7) = FB12 — BBy F ¥B1g — aByq Im(X35) = £B1p — «By T vB1g + fB11  (45)

The next, 3" pipeline stage requires implementation of 10 multipliers calculating products
from (44-45), 3 adders, 3 sub-tractors and 4 shift registers : according to the following

formulae
Co=Bo+ B, Ci=B1+Bs Cy=By— By C3 =By —Bs (46)
Cs = Bs + By Cy = Bs — By (47)
Cy =By Ce = Bs Cs = Bg Cr2 = Bp2 (48)
Cop =By Cia=a-Byn  Ciza=wa-Biz  Cisa =a-Bjgs (49)
Cop =B+ By Cup=pF-Bi1 Cisp=p Bz Cisp=p Bss (50)
C10 =7 Bio Cia =7 By (51)

The 4" stage utilizes 2 multipliers, 5 adders, 5 sub-tractors and 4 shift registers

Ds7 =v-Csy Dg1 = Co£Cy, Dg14 = Cg £ Cpy, D1p12 = C1o = Cr2 (52)
Dg = Cop — C11p D11 =C11a +Cop D15 = Ci34 — CisB Dy3 = Ci3p +Ci54 (53)
Dy3a6 = C2346 (54)

Finally, the set of DFT X in the 5th stage coefficients is calculated by 6 adders and 6
sub-tractors supported by 4 shift registers.

ReXoa8 = Dopo1 ReXi7 = Dg £ D15 ReXp = Dy+D; ReX3s= D14 F Dyz (55)
ImXy = —Ds3, ImXy7 = FD19— D11 ImXp = FDg — D5 ImX35 = FD1p — Dy (56)

Figure 9 shows the internal structure of the 16-point FFT algorithm. As shown later (compare
Figure 15), this algorithm is higher optimized in comparison to a pure DiF approach.

The algorithm with the 16-point FFT was tested on the 3" d generation of the Auger surface
detector Front-End Board (Figure 10) [9], [10]. The 1% [12] and the 2md [13] generations
of the Front-End Boards could not support the FFT algorithms due to a lack of FPGA
resources. However, the FFT algorithm seems to be less efficient than the DCT approach.
The DCT algorithm implemented into the 4! generation Front-End with the Cyclonelll®
EP3C40F324C7 (Figure 11) passed successfully tests on the field recognizing short peaks
with an exponentially attenuated tails characteristically for signals generated by very inclined
showers.
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7. 32-point FFT algorithm

For 32-point Discrete Fourier Transform X

31 .
Xk=0,...,31 = Z xne*lnkn/l() (57)
n=0

where x,, as samples from an ADC chip are real. The formula (57) can be split on two or
more parts by rearranging of the sum and indices. The standard approach of a formula
simplification is a Radix-2 Decimation-in-Time (DiT) (Figure 1a) or Decimation-in-Frequency
algorithm (DiF) (Figure 1b) one.

For Radix-2 DiT, we get the formula 3. N-point DFT can be easily split on two N/2-point
transforms. Outputs from DFT procedures are complex. So, a calculation of final DFT
coefficients by using DiT algorithm requires the complex multiplication for final merging

Figure 9. A global pipeline internal structure of FFT_16 [11] .
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Figure 10. The 3 generation of the Front-End Board with Cyclone® FPGA EP1C12Q240I7 used in more than 800 surface
detectors in the Pierre Auger Observatory on the Argentinean pampas. The EP1C12Q24017 does not contain DSP blocks. The
multipliers had to be implemented from logic elements according to the scheme on the Figure 9.

Figure 11. The 4" generation of the Front-End Board with Cyclonelll® FPGA EP3C40F32417. The EP3C40F32417 contains DSP
blocks and it is possible to implement even a sophisticated algorithm like DCT engines for a recognition of horizontal or very
inclined showers. This board has been used also for preliminary testing of the wavelet trigger and the signal filtering based on
a chain: FFT+Median filter+iFFT.
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data from parallel DFT procedures with a lower order i.e. multiplication of twiddle factors
W’g, :

WE = e (58)
by G[k] and H[k] in Figure 1. Altera® provides a library routine of the complex multiplication
in the FPGA (Figure 12a), however, for i.e. 16x16 bits operation requires 6 DSP embedded 9x9
multipliers even in most economical (canonical) mode. Generally, the complex multiplication

in the FPGA is rather resource-spendthrift and if possible it should be replaced by the
multiplication of real variables.

(a) (b)

Figure 12. The ALTMULT_COMPLEX and ALTMULT_ADD procedures provided by Altera®. For a calculation of |Wj|?, dataa_0
= datab_0 and dataa_1 = datab_1. The ALTMULT_ADD routine requires 4 DSP 9 x 9 multipliers. It is used in E_bin pipeline
stage for odd FFT indices (Figure 17). Inputs dataa_0, 1 are used for Cy, datab_0, 1 for constants &, B, ¢, 7, o and p. The routine
requires two clock cycles. Sub-products are registered in MULTO and MULT1 DSP blocks, respectively. Thus, the sum appears in
the next register stage.

For the Radix-2 DiF, we get the formula 4. The standard Radix-2 Decimation-in-Frequency
algorithm (DiF) rearranges the DFT equation (57) into two parts: computation of the

even-numbered discrete-frequency indices X (k) for k=[0,2/4,...,30] and computation of the
odd-numbered indices k=[1,3,5,. . .,31]. This corresponds to a splitting N-point DFT into two
k = N/2-point routines. The first corresponding twiddle factor is e"iN2 = —1. The first
operations are simple sums and subtractions of real variables (see Figure 1b). Each operation
related to the consecutive twiddle factor will be performed in a single clock cycle.

The algorithm of Decimation in Frequency used for the 32-point DFT allows splitting eq. 57
as follows:

15 )
Rpcop = Y Ape ™8 = FFT1600en (59)
n=0
— 15 .
Ri—zpr1 =), Ayyrge” mETI/16 (60)
n=0

Ap = Xn + Xy416 Apt16 = Xn — Xny16 n=20,1,..,15 (61)
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The next twiddle factors are:

Wp =e /2 = —j We = e /% = (1 —i) Wp=e /8 —a—ip (62)
Wi = e /16 =& — iy Wp=e3m/16 =g —ijp  (63)

¥ = cos(rt/4) « = cos(7t/8) ¢ = cos(mt/16) o =cos(3/16)  (64)
B = sin(m/8) 7 = sin(m/16) p =sin(31/16)  (65)

The scheme developed on the pure Radix-2 Decimation in Frequency algorithm is presented
in Figure 15. The algorithm takes into account only FFT coefficients with indices k = 0,...,15.
Due to real input data (xp,_ 31) the higher FFT coefficients have well known symmetry :
ReX3_y = ReX, and ImX3;_, = —ImX, (n > 0). The calculation of X, 15 according the
pure Radix-2 DiF algorithm requires 8 pipeline stages. For Xg481216 2 pipeline stages are
necessary only for a synchronization.

According to the eq. (59) all X(5 4 14 with even indices could be calculated by the algorithm
presented in [11]. Variables x;, in Figure 2 in [11] were be replaced by variable of A, according
to eq. (61). An application of a modified algorithm reduces an amount of 9 x 9 multipliers
from 12 to 10 only and shorten a pipeline chain on stages (the last 2 stages are simple registers
for synchronization) (see Figure 16).

Let us notice that for the odd indices stages B and C for k=16,...,19 and k = 24,...27 are pure
delay lines, while for neighboring indices k=20,...,23 and k = 28,...31 mathematical operation
are performed in a cascade. Let us multiply Ajq 19 and Apy o7 by the factor A = yL
Then to adjust variables in the C stage for odd FFT coefficients (for k = 20,21,22,33 and k =
28,29,30,31)

Cy=AX7q=5B (66)

Thus, by such a redefinition, The C stage for the odd FFT indices is a pure pipeline stage. It
can be removed with one of pipeline stage for the even FFT indices. In order to come back
to the correct values coefficients in F stage can be simple redefined

W'=yxa P =gxB F=9x¢ p=yxy d=yxoc p=yxp (67)

but for indices k = 16, 20, 24 and 28 we have to use additional 4 multipliers. Nevertheless,
at this cost we save one pipeline stage and depending on a width of buses in the final FFT
coefficients we save at least of 1000 logic elements.

We can save a next pipeline stage and more ca. 1000 logic elements but again at the cost
of additional utilized multipliers. The algorithm used for indices k = 2,6,10,14 is neither
Decimation in Time nor Decimation in Frequency. The eq. (60) can be rewritten as follows:
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7
_ L. n(2p+1)n
Xi—opi1 = At + Apa+ Y (COSPB,, 124 — isingBy16) ¢ = 2t 1n P16 )
n=1

Bi624 = A1624
Biyie = Anyie+Azz—n n=1..7 (68)
Buiyoa = Apy16 — Azz-n n=1..7

A development of the algorithm according to eq. (22) would allow a reduction of the next
pipeline stage, but unfortunately at the cost of additional 16 ALTMULT_ADD routines (64
DSP blocks) (see Figure 12b).

If the speed is not a factor, sums of products in the E_bin routine can be performed in a single
clock cycle instead of two cycles as shown on Figure 17. Thus, Dy 202428 shift registers are
not necessary and can be removed. A shorter chain for the odd indices allows removing
also the last pipeline chain for even indices and saving totally more than 1000 logic elements
without the cost of additional multipliers. However, we should be aware, that a registered
performance significantly decreases from ca. 220 MHz to only 158 MHz for EP3C120F780C?7.

8. Wavelet power calculation

The reference wavelets are real, however, their Fourier transform are already complex. An
elementary product from eq. (11) is a product of two complex numbers: Fourier coefficients
of data and Fourier coefficient of a reference wavelet. The simplest way is to use the Altera®
routine from Figure 12. However, due to a fact that the wavelet Fourier coefficients are
predefined constant and finally we are going to calculate a module of a complex product as
well as [W x ¥|2 = |[W|? x |¥|?, we can calculate only |W|?> and next as real number multiply
by a next real |¥|%.

The FFT32 routine from Figure 17 utilizes 96 DSP 9 x 9 multipliers. For a calculation of |[Wj|?,
the ALTMULT_ADD routine utilizes 4 DSP 9 x 9 multipliers for each index k, totally 60 (| Wp|
is trivial). |W|? x |¥x|? products use next 30 DSP 9 x 9 multipliers.

This algorithm can be implemented only in very powerful modern FPGA chips. The FPGA
families ACEX® or Cyclone®, currently used in surface detectors, do not contain DSP blocks.
Even CycloneIII® EP3C40F32417 [14] used for DCT trigger tests ([15], [16]) does not consist
of a sufficient amount of DSP blocks to implement the wavelet trigger.

The biggest FPGAs from the Cyclonelll® EP3C120F780C7 (Figure 13) and CyclonelV®
EP4CE115F29C7 (Figure 14) families with 576 and 532 DSP multipliers, respectively, allow
the implementation of the FFT32 routine (96 DSP blocks) + "Module" block (60 DSP blocks)
+ 14 or 11 "engines" (30 DSP blocks each) simultaneously for a power estimation of 14 or 11
various reference wavelets, respectively.

Table 2 shows results calculated and measured in the Altera®s development kit
DK-DSP-3C120N for various variants for Cyclone® III EP3C120F780C7 (a heart of this
development kit). Results do not fully agree with our expectations. A reduction of a single
pipeline stage decreases a resource occupation on ca. 410 (not 640) logic elements. This
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Figure 13. The test system based on a development kit with Altera® Cyclonelll® FPGA EP3C120F780C7 supported by two
daughter boards: AD/DA Data Conversion Card (left) with two ADCs (150MHz sampling) and two DACs (250 MHz), as well as
the Industrial Communication Board (ICB-HSMC)(right) allowing a connection via the galvanic isolated RS485 ports.

Figure 14. Test system based on a development kit with Altera® CyclonelV® EP4CE115F29C7 supported by ICB-HSMC daughter
board.
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Figure 15. An internal structure of the FFT32 FPGA procedure. The algorithm uses 14 single clock-cycle multipliers (i.e.
F; = Dy - each utilizes two 9x9 DSP multipliers) and 16 two clock-cycles multipliers (i.e. N; = BG; — aHy - each utilizes four
9x9 DSP multipliers). Totally, the algorithm needs 92 9x9 DSP multipliers.

may be due to optimization processes performed by the Quartus® II compiler to achieve
the maximal registered performance. Nevertheless, for all comparisons the speed in the
"optimized" design is higher than for the "pure DiF". For a development of wavelet engines
the "optimized variant has been selected as potentially faster.
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Figure 16. A modified structure for X, 419,14 allowing a reduction of two 9 x 9 multipliers and shorten a pipeline chain on two
stages (shift registers still used for synchronization).

The Quartus® II compiler estimated a power consumption for the core, a static mode and for
the I/O sector. As possible, the output of registers were multiplexed to reduce an amount
of output pins (all pins were achieved to HSMC connectors on the development board).
According to expectation the power for I/O increase ca. linear with a number of used pins.
The static power consumption is on a level ~100 mW. It is a reasonable level. In comparison
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Figure 17. An optimized structure with a reduced a single pipeline stage at the cost of only 4 additional multipliers (8 DSP
9 x 9 blocks).

the Stratix® III chips have a huge power consumption in a static mode of ~600 mW, which
significantly limited their application in systems supplied from solar panels. The power
consumption for the "optimized" variant is ~35 mW higher than for the "pure DiF" solution.
The additional 35 mW is not a factor, if it allows an improvement of the safety margin for the
register performance. The EP3C120F780C7 allows the implementation of 14 wavelet engines.
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power power power power

config logic DSpP pins fmax sim. sim. mea. mea.
elements (MHz)  core 1/0 core 1/0

mW) @mW) @mW) (mW)
pure FFT32 pure DiF  4712-4% 92 -16% 25 - 5% 236 557 65 580 170
pure FFT32 optimized 4301 -4% 96 - 16% 25 - 5% 241 589 65 588 170
plus Module pure DiF 4990 - 4% 152 -26%  25-5% 245 750 68 779 170
plus Module opt 4541 -4% 156 -27%  25-5% 246 787 68 783 170
1 wavelet - 24-bit opt 4726 - 4% 186 -32%  29-5% 235 861 88 840 240
1 wavelet - 16-bit opt ~ 4265-4% 186-32% 21 -4% 228 814 66 790 170

4 wavelets - 16-bit opt 5478 - 5% 276 -48% 81 -15% 212 1134 215 1040 240
8 wavelets - 16-bit opt 5967 - 5% 396 - 69% 161 - 30% 204 1591 413 1363 360
12 wavelets - 16-bit opt 7060 - 6% 516 -90% 241 - 45% 208 1980 612 1691 478

Table 2. Resources Occupancy and Power Consumption for the Cyclone Il FPGA - EP3C120F780C7 for 200 MHz PLL Global

Clock
Slack  Fmax Fmax
Family FPGA config logic DSP Fast Slow Slow
elements 0°C 85°C
(ns) (MHz) (MHz)
Cyclone IV EP4CE115F29C7 12 wavelets 7120-6% 516-97%  2.594 234 214
Cyclone V. 5CGXFC7D6F31C6 12 wavelets 6933 - 6% 156 - 100%  2.111 195 196

Cyclone V. 5CGXFC7D6F31C6 4 wavelets 3177 -3% 111-71%  2.169 227 228

Table 3. Resources Occupancy and Timing for the Cyclone® IV and Cyclone® V FPGAs for 200 MHz PLL Global Clock

A design with 12 engines has been tested. The power consumption is on a level of ~100-110
mW per the wavelet engine. It gives ~2 W for 12 engines. This may be a challenge for an
autonomous system supplied from solar panels.

Measurements of the power consumption for all considered variants show some
discrepancies with simulations. The Measured power consumption for the core increases
slower with new wavelet engines than simulations show. Almost 300 mW lower power taken
by the FPGA (in comparison to simulations) for 12 engines gives optimistic predictions for the
future applications. The power consumption for the core seems to be ca 15% overestimated in
simulations. On the other hand, the power consumption for the I/O section is unpredictable
much higher than for simulations. However, differences decrease with a higher amount of
active pins. This, actually, is not a problem, I/O pins have been attached for test only. In
real applications almost all variables are utilized as internal nodes. The power optimization
is highly recommended.

Designs have been also implemented into EP4CE115F29C7 from the Cyclone® IV family of
Altera® used in a development kit DE2-115 (Terasic). According to the Altera®’s specification,
the power consumption for the Cyclone® IV family is 30% less than for the Cyclone® III one.
However, the Terasic’s development kit does not contain any system allowing a measurement
of the power consumption on the board.

For the Cyclone®IV EPACE115F29C7 timing shows a pretty good safety margin.
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9. Spectral leakage

For the serial FFT processing the input data have to be chopped into blocks to be processed
by the FFT routine. If signal pulses are located close to the border of a block, aliasing
occurs. It manifests by a spurious contribution in the opposite border of the block and in the
neighboring block as well. This effect may cause spurious pulses and has to be eliminated.
The problem can only be solved, without introducing dead time between the blocks, by using
an overlapping routine. Therefore the FFT engines have to be over-clocked. Practically for
1024-length blocks aliasing is reduced to a negligible level, when two blocks are overlapped
during 64 time bins [7]. For parallel data processing, when all set of Fourier coefficients
is available for each clock cycle FFT engines aliasing can be eliminated by a selection of a
set of these coefficients not significantly affected. If a reduced set of Fourier coefficients is
taken for data analysis, there is a possibility to increase an amount of wavelet engines for
simultaneously analysis of more reference wavelets.

10. Design improvement

The new Altera®s FPGA family - Cyclone® V provides the industry’s lowest system cost
and power, along with performance levels that make the device family ideal for high-volume
applications. A total power consumption compared with the previous generation (Cyclone®
IV) is reduced up to 40%.

The biggest FPGA from the Cyclone® V E family 5CEA9 (with logic only without ARM-based
hard processor system (HPS) contains 684 DSP 18 x 18 multipliers + 342 variable-precision
DSP blocks (DSP blocks include three 9 x 9, two 18 x 19, and one 27 x 27 multiplier).
Assuming roughly a single 18 x 18 multiplier is equivalent to two 9 x 9 ones, 5CEA9 could
implement FFT32 + 18 engines for various 18 reference wavelets. However, the 5CEA9 FPGA
is not yet available even for compilation (latest Quartus® II version 12.0). An estimation for
12 wavelet engines for 5SCGXFC7 FPGA shows the scarcity of DSP blocks. Fast multipliers
are replaced by logic elements, which significantly reduced the register performance for slow
models, below our requirements. Nevertheless, if all multiplication all implemented in the
fast DSP blocks (see Table 3 Cyclone® V for 4 wavelet engines only), timing is perfect. This
allows anticipating also a perfect timing for the 5SCEA9 chip. Expected total 58% less power
consumption (30% and next 40% of reduction of power consumption from Cyclone® III to
Cyclone® V) gives an estimation of 840 mW for 12 and 1260 mW for 18 wavelet engines,
respectively. It is acceptable level of the power consumption for currently used supply
systems in cosmic rays experiments.

11. Conclusions

The FFT32 routine has been successfully and cost-effectively implemented into the
powerful FPGA EP3C120F780C7 from the Cyclone® III family used in a development kit
DK-DSP-3C120N (Altera®) and EP4CE115F29C7 from the Cyclone® IV family of Altera®
used in a development kit DE2-115 (Terasic).

Nevertheless, both FPGAs from Cyclone® III and IV families were treated as an engineering
test platform for a development of the algorithm and a timing verification. The prototype
targeted for real detection of radio signals coming from air showers developing in the
atmosphere will be built on a basis of Cyclone® V family.
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The Pierre Auger Observatory is worldwide the largest cosmic ray experiment and operates
its southern observatory since 2004. Results from Auger South have shown that the spectrum
of cosmic rays has a characteristic cut-off at ca. 50 EeV; that events with higher energy arrive
anisotropic; and that cosmic rays at highest energies are probably built from heavy nuclei.
These results define the requirements for the next generation experiment: it needs to be
considerably increased in size, it needs a better sensitivity to composition, and it should
cover the full sky. Such a facility, AugerNext, will be specified within the next 3-5 years.

The innovative research studies are needed in order to prepare an AugerNext proposal
fulfilling the demands. Requested resources are primarily focused in the areas: consolidation
of the detection of cosmic rays using MHz radio antennas, proof-of-principle of cosmic rays
microwave detection, testing the large-scale application of new generation photo sensors,
generalization of data communication techniques, and developing a new technique of muon
detection with surface arrays. Studies for such a next generation cosmic ray experiment
and the utilization of detection methods are principle elements of the ASPERA /ApPEC
roadmaps.

ASPERA-2 [18] supporting these efforts is the project of "The Innovative Research
Studies for the Next Generation Ground-Based Ultra-High Energy Cosmic-Ray Experiment:
AugerNext".
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