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superfamily
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Abstract

Background: Enzymes of the cellulose synthase (CesA) family and CesA-like (Csl) families are responsible for the
synthesis of celluloses and hemicelluloses, and thus are of great interest to bioenergy research. We studied the
occurrences and phylogenies of CesA/Csl families in diverse plants and algae by comprehensive data mining of 82
genomes and transcriptomes.

Results: We found that 1) charophytic green algae (CGA) have orthologous genes in CesA, CsIC and CsID families;
2) liverwort genes are found in the CesA, CslA, CsIC and CsID families; 3) The fern Pteridium aquilinum not only has
orthologs in these conserved families but also in the CslB, CsIH and CslE families; 4) basal angiosperms, e.g. Aristolochia
fimbriata, have orthologs in these families too; 5) gymnosperms have genes forming clusters ancestral to CsIB/H and to
CslE/J/G respectively; 6) CsIG is found in switchgrass and basal angiosperms; 7) CslJ is widely present in dicots and
monocots; 8) CesA subfamilies have already diversified in ferns.

Conclusions: We speculate that: () ferns and horsetails might both have CslH enzymes, responsible for the synthesis of
mixed-linkage glucans and (i) CsID and similar genes might be responsible for the synthesis of mannans in CGA. Our
findings led to a more detailed model of cell wall evolution and suggested that gene loss played an important role in
the evolution of Csl families. We also demonstrated the usefulness of transcriptome data in the study of plant cell wall

evolution and diversity.
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Background

Celluloses and hemicelluloses are the most abundant bio-
polymers in nature. In plants, they are the principal com-
ponents of cell walls and the most promising renewable
resources for producing biofuels [1,2]. The biosynthesis of
celluloses and hemicelluloses is therefore one of the major
research foci in plant biology. The past two decades have
seen much progress in deciphering the molecular mecha-
nisms of plant cell wall polysaccharide synthesis and regu-
lation [3-8]. The identification of the cellulose synthase
(CesA) gene family [9,10] and the CesA-like (Csl) gene
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families (collectively known as the CesA superfamily) [11]
is one of the greatest achievements.

Early phylogenetic studies of CesA homologs in model
plant organisms [11,12] established that there are eight
Csl families: CslA, CslB, CslC, CslD, CslE, CslF, CslG and
CslH, all belonging to the glycosyltransferase family 2
(GT2). Recent research in other flowering plants has
added one more family (CslJ) [13]. It was proposed the
Csl families might be involved in the synthesis of the back-
bones of hemicelluloses [11,14]. This “CSL hypothesis”
has been strengthened by the functional characterization
of CslA (mannan synthases) [15,16], CslC (xyloglucan
synthases) [17], CsIF (mixed-linkage glucan synthases)
[18], and CslH (mixed-linkage glucan synthases) [19]
genes. Although the functions of the other Csl families
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remain unknown, they are potentially involved in the
synthesis of other cell wall polysaccharides or the same
set of polysaccharides, e.g. through working together
with other Csl or CesA genes [3].

The evolution of Csl families is also of interest to plant
biologists studying the compositional diversity of cell
walls [20-24]. Among the nine Csl families, CslA and CslC
are distantly related to the other families; CsIF and CslH
are thought to be unique to monocots; CsIB and CslG are
confined to eudicots [25,26], and the rest of the families
are found in both dicots and monocots [27]. Genomes of
the lower land plants bryophyte moss Physcomitrella
patens and lycophyte spike moss (Selaginella moellendor{fii)
only have representatives of the CesA, CslA, CsIC and
CsID families [27,28]. Six completed chlorophyte green
algal genomes each have a single-copy CslA/C-like gene
(herein named CslK), which represents the ancient CslA/C
ortholog before a duplication happened in early land
plants [27]. An evolutionary model was also proposed to
explain the divergence order of Csl families, which has
proved useful for our understanding of the cell wall diver-
sity and evolution [22,24].

Over 40 plant genomes have been sequenced so far, in-
cluding the first gymnosperm genome Picea abies (Norway
spruce) [29]. However there is a lack of completed genomes
for some key clades in the plant species tree: ferns, horn-
worts, liverworts, Streptophyta green algae (also known as
advanced charophycean green algae, CGA), etc. Fortunately,
the accumulation of transcriptome data in the GenBank
database and the advent of the next generation sequencing
have made a large amount of raw sequence data available
for most of these key plants. For example, nine CGAs have
significant amounts of transcriptome data recently avail-
able [30-32]. These data include ESTs (expressed sequence
tags) sequenced by traditional Sanger technology, RNA-
Seq data by the next generation 454 technology, as well as
the pre-assembled UniGenes (mRNA contigs) in the Tran-
scriptome Shotgun Assembly (TSA) sequence database;
all of these data are available at the NCBI (National Center
for Biotechnology Information) website.

Therefore, our goal in this study was to mine the tran-
scriptomes and unfinished genomes of key plant species for
Csl homologous genes in order to gain a better understand-
ing of the evolution of the CesA/Csl superfamily. Specific-
ally, we aimed to answer the question: when did each of the
Csl families first appear in plants according to available se-
quence data? Answering this question will greatly improve
our model of the evolution of Csl gene families and benefit
the study of plant cell wall evolution and diversity.

Results

Csl genes in fully sequenced genomes: new findings

To retrieve Csl homologs, we scanned predicted protein
sequences from the fully sequenced genomes of 32 land
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plants (23 dicots, six monocots, one gymnosperm, one
moss and one spike moss), 10 CGA and two other algae
(one Glaucophyta and one Rhodophyta), using two Pfam
models (Cellulose_synt and Glycos_transf_2) as queries
(see Additional file 1 for the list of species). The two Pfam
models were used in our previous paper [27] and were
able to retrieve all of the 39 documented Arabidopsis Csl
genes. Figure 1 presents an unrooted phylogeny (protein
IDs are provided in Additional file 2 and Additional file 3).

Compared with our previous work [27], one of the
new findings is that CslG appears to have two member
genes (Pavirv00027268m and Pavirv00027269m) from
P. virgatum (see also Additional file 4), ~49% identical
to AtCslG2 (AT4G24000.1). The grouping of these two
switchgrass genes in CslG family is strongly supported
(bootstrap value = 100%), suggesting that CslG can no
longer be considered a dicot-specific family.

By including the newly sequenced P. abies genome in
Figure 1 (orange color), we showed that gymnosperm
proteins are found in CesA, CslA, CslC, CsID families.
P. abies also has proteins clustered in the large CsIB/H/
E/J/G clade, but these proteins’ phylogenetic groupings
are not well resolved. In later sections of this paper,
more gymnosperm species with transcriptomes are in-
cluded to better resolve the phylogenetic clustering of
the gymnosperm Csl homologs.

The other finding concerns CslJ, which is close to CslG
but is very well self-clustered (bootstrap value = 100%).
CslJ was thought to be unique to cereals [25,26], but here
it is shown to be widely present in four (sorghum, maize,
foxtail millet and switchgrass) out of six fully sequenced
monocot genomes and 16 out of 23 sequenced dicot
genomes (Additional file 4).

The phylogeny of CslB and CslH shown in Figure 1
(also Additional file 4) suggests that these two families
are so tightly clustered that they are hardly distinguish-
able. Therefore it might be more appropriate to consider
them as a single family.

Figure 1 also includes other GT2 proteins. Between
CslA/C/K and CesA/CsID/F/B/H/E/G/], there are some
loosely clustered groups that have very long branches.
The long branches suggest that proteins in these clusters
are quite different from each other; clusters with long
branches are usually not very stable, a sign of small sam-
ple size or rapid sequence divergence.

To explore these clusters, we built a new phylogeny
with proteins using fewer flowering plants and more
algae (Additional file 5). Also included in the phylogeny
are published CesA/Csl protein sequences from several
non-plant species including brown algae, Oomycetes,
fungi and bacteria [33].

In the new phylogeny (Additional file 5) most algal
homologs form a large cluster (denoted as C) including
two Arabidopsis (AT2G39630.1: dolichyl phosphase
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Figure 1 Phylogeny of 893 GT2 proteins from 17 land plants and two green algae. The full-length protein sequences were used to build
the phylogeny. The FastTree bootstrap values (1.00 = 100%) larger than 0.70 are shown beside selected nodes forming the major Csl clusters. Csl

\

B-glucosyltransferase and AT1G20575.1: dolichol phos-
phate mannose synthase 1), two rice, and quite a few moss
and spike moss GT2 proteins. A visual examination of the
multiple sequence alignments in cluster C and those of
the Csl families suggests that most of these non-Csl pro-
teins do not have the characteristic ‘D,D,D,QXXRW’ motif
typically found in Csl/CesA proteins. There are also many
algal homologs clustered with the non-plant CesA/Csl
proteins (aqua color), suggesting that they are likely to be
CesA/Csl genes of distinct origin compared to the canon-
ical land plant CesA/Csl genes. Further study including
more non-plant Csl homologs will be needed in order to
gain a better understanding of their origin and evolution.

Mining for Csl homologs in short read
transcriptomes/genomes

We developed a bioinformatics pipeline (Figure 2) that
combined homology search and short read assembly to
identify Csl homologs in: (i) transcriptome reads of nine
CGAs and two ferns, (ii) genomic DNA reads of one

liverwort, and (iii) pre-assembled uni-transcripts from
GenBank ESTs, which consisted of PlantGDB-assembled
unique transcripts (PUTs) from 26 plants, including six
basal angiosperms, 16 gymnosperms (11 conifers, two cy-
cads, one ginkgo, two gnetophyte), two ferns, one moss
and one liverwort. Table 1 provides information about
data for (i) and (ii) and Table 2 lists data for (iii).

In Figure 2, the dashed rectangle contains all the Csl-
homologous peptides in the surveyed transcriptome/
genome. The peptide sequences were translated from
assembled nucleotide contigs and singletons according
to the fasty alignment with their best Csl hits, which are
published Csl proteins previously classified into the 10
existing Csl families [27]. Note that for PlantGDB’s PUTs,
the assembly step was not needed and tfasty was used to
derive the translated peptide sequences.

Given that transcriptome sequencing and subsequent
assembly are unlikely to recover the full-length tran-
scripts, it was not surprising that many Csl homologs in
the dashed rectangle of Figure 2 were short fragments.



Yin et al. BMC Genomics 2014, 15:260
http://www.biomedcentral.com/1471-2164/15/260

Page 4 of 15

PlantGDB PUTs |

gymnosperms, ferns,

§ ‘ SRA reads ‘ ‘ ESTs | Ferns, liveworts

= & CGAs

% tfasty E-value<{0 tfasty

3 Csl homologous | | Csl homologous

2 reads ESTs

‘g‘ NaPQ/ Phyllogeny
analysis

e Assembled 'y

.qEJ contigs/singlets : Csl homologs :

5|PB v S : with the two &

[y = < - - :

e __is_y_ = _V a_ui _e_ 1 key _Pfam :

8 I Csl homologs and 1"™™sear¢hi domains and &

8la ) ranslated a.a. seq AL L.

o tfasty |E-value<ie-10 Basal angiosperms,

=)

=

a

Figure 2 Computational pipeline for data mining of short read transcriptome/genome data. Details about the mined plants and algae are
provided in Table 1 and 2. SRA: sequence read archive of the NCBI; ESTs: expressed sequence tags; fasty and tfasty are two homology search
commands of the FASTA package [52] (see Methods); hmmsearch is a command of the HMMER3 package [47]. The two Pfam domains include
Pfam models Cellulose_synt and Glycos_transf_2. PUTs are PlantGDB-assembled unique transcripts; Q means to use as the query set in the
homology search; DB means to use as the database; published Csl protein homologs are from [27].

liverworts & mosses

To clean the data, we applied the following filters to
keep significant and long Csl homologs (Figure 2, dotted
rectangle): (i) they had to be highly similar to known Csl
proteins (E-value < 1e-10); (ii) they had to match the
two characteristic Pfam domains (Cellulose_synt and
Glycos_transf_2, E-value < 1le-2); and (iii) they had to be
longer than 150 amino acids. These filters tend to be
very stringent, so that a Csl homolog that passed all of
the three filters would very likely be a true Csl gene.
The filters were also helpful in reducing the impact of
contamination or low quality reads on our downstream

phylogenetic analyses. In particular, we found that the
second filter was very critical for removing false posi-
tives. However, we were very flexible about the length
filter because we did not want to miss real orthologs.
When necessary, we manually inspected peptides shorter
than 150 a.a. to select and include appropriate ones in the
phylogenetic analyses.

For phylogenetic analysis, we combined Csl-homologous
peptides of a specific plant clade (e.g. CGAs) with the
known Csl proteins and then generated new phylogenies.
The new phylogenies were then examined to determine if

Table 1 Short read sequence data sets of ferns, liverwort and CGAs

Plant clades Species NCBI accessions # of reads References
Fern Pteridium aquilinum SRX020701 730,579 [34]
Fern Ceratopteris richardii SRX154690 1,083,570 -
Liverwort Marchantia polymorpha SRX114614- SRX114615 300,372,599° -
SRX030759- SRX030787 22,854,396 -
CGA: Charophyceae Chara vulgaris SRX041525 740,355 [32]
Nitella hyalina SRX025843 949,065 [30,31]
CGA: Coleochaetophyceae Coleochaete orbicularis SRX017046 354,659
Coleochaete_sp. CFD TSA contigs 18,386
CGA: Zygnemophyceae Penium margaritaceum SRX025845 1,077,311
Spirogyra pratensis SRX017045 614,139
CGA: Klebsormidiophyceae Klebsormidium flaccidum SRX025847 994,649
CGA: Chlorokybophyceae Chlorokybus atmophyticus SRX025846 444,743
Chaetosphaeridium globosum SRX025844 884,238

2lllumina reads, not used in this study.
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Table 2 PlantGDB-assembled unique transcripts (PUTs)

Plant clades Species # of GenBank ESTs # of PUTs
Gymnosperm Cryptomeria japonica 57,720 24,299
Gymnosperm Picea abies 14,619 8,715
Gymnosperm Picea engelmannii x Picea glauca 28,190 13,880
Gymnosperm Picea glauca 321,713 48,619
Gymnosperm Picea sitchensis 206,402 31,215
Gymnosperm Pinus banksiana 36,387 13,040
Gymnosperm Pinus contorta 40,489 13,570
Gymnosperm Pinus pinaster 35,139 15,648
Gymnosperm Pinus sylvestris 76,256 73,609
Gymnosperm Pinus taeda 329,066 72,829
Gymnosperm Pseudotsuga menziesii var. menziesii 14,354 9,857
Gymnosperm Cycas rumphii 22,000 10,901
Gymnosperm Zamia vazquezii 11,495 7,657
Gymnosperm Ginkgo biloba 21,709 10,210
Gymnosperm Gnetum gnemon 10,756 6,193
Gymnosperm Welwitschia mirabilis 10,137 6,606
Basal angiosperm Amborella trichopoda 26,403 15,772
Basal angiosperm Aristolochia fimbriata 16,454 7,967
Basal angiosperm Liriodendron tulipifera 24146 14,232
Basal angiosperm Nuphar advena 20,601 13,789
Basal angiosperm Persea americana 16,620 10,928
Basal angiosperm Saruma henryi 10,281 6,754
Liverwort Marchantia polymorpha 33,764 10,959
Moss Syntrichia ruralis 10,010 7,087
Fern Adiantum capillus-veneris 30,561 16,944
Fern Ceratopteris richardii 5,186 4234

the new homologs clustered with the existing Csl families
or if they formed distinct new clusters.

CGAs have representative genes from CesA, CsIC and
CsID families
Figure 3 presents a phylogeny with CGA homologs lon-
ger than 200 a.a. and Additional file 6 provides the se-
quences. It is clear that CGA homologs are found in the
CslC, CslD and CesA clusters. It is surprising however
that none are found in the CslA cluster, as CslA enzymes
are responsible for the synthesis of mannans, which have
been found in the cell walls of CGAs [35]. We investigated
whether any true CslAs were removed in the stringent
filtering steps by manually inspecting the fasty search
results, and found no false negatives.
Penium_margaritaceum-Contig85 is the only CGA
peptide that has a known CslA protein (0s02g09930.1)
as the best hit (identity = 24%). However, it is not clustered
within the CslA clade but with another CGA peptide

(Spirogyra_pratensis-Contig255) with identity = 63%. This
Spirogyra_pratensis peptide has Os03g56060.1 of CslC
as the best hit (identity = 27%). These two CGA peptides
are further placed basal to CslA, CsIC and CslK clusters
(Figure 3).

Lowering the length filter to 100 a.a. did not find any
shorter peptides that clustered within the CslA clade
(Additional file 7). However, three more peptides (Chara_
vulgaris-Contig143, Nitella_hyalina-SRR064326.525840 and
Nitella_hyalina-SRR064326.70219) clustered with the CslC
clade, indicating that four out of the nine surveyed CGA
species have CslC proteins.

CslD and CesA families both have CGA homologs. CslD
homologs were found in Coleochaete species, while CesA
homologs were found in Spirogyra pratensis and Penium
margaritaceum (Figure 3). We also tried to include pep-
tides shorter than 200 a.a. and found CesA homologs in
Klebsormidium flaccidum and CslD homologs in Chae-
tosphaeridium globosum (Additional file 7). Deeper
RNA sequencing will be needed to resolve the question
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of whether CsID and CesA genes are present in the other
CGA species.

The presence of a major CGA-specific cluster close to
the CslD clade, containing peptides from Klebsormidium
flaccidum, Nitella hyaline and Chara vulgaris (Figure 3),
is highly interesting. If peptides shorter than 200 a.a.
were included, more CGA sequences would be clustered
within this CslD-like clade (Additional file 7). It is pos-
sible, but highly speculative, that this CGA-specific clade
encodes the missing CGA mannan synthases. More data
are needed to determine if this clade is actually part of
the CsID family or represent a new Csl family.

Liverworts have representative genes from CesA, CslA,
CsIC and CsID families

The model liverwort species Marchantia polymorpha
has 33,692 ESTs and 31 genomic DNA datasets in the
SRA database of NCBI. The EST data has been assembled

into PUTs in the PlantGDB. Among the 31 SRA datasets,
29 are from 454 sequencing, which yields longer reads
than Ilumina, so we used these 29 datasets, a total of
13GB. We identified liverwort Csl homologs by combin-
ing all sequences together and using the protocol shown
in Figure 2.

Figure 4 shows a phylogeny with liverwort homologs
longer than 200 a.a. and a small number of selected ho-
mologs between 100 and 200 a.a. Additional file 8 pro-
vides the sequences. Similar to the fully sequenced moss
and spike moss genomes, liverwort appears to have genes
in CslA, CslC, CsID and CesA clusters but not in the
CsIB/H/E/G clusters. It is also clear that liverwort Csl ho-
mologs are often clustered with moss and spike moss se-
quences and ancestral to their corresponding orthologs in
seed plants, suggesting that the sequence diversification of
these genes happened after the split of liverworts and seed
plants. Compared to other Csl families, CslD seems to
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have many more liverwort homologs. However, many of
these homologs are very similar to each other (identity > 95%
at the nucleotide level and also demonstrated by the very
short branch lengths), which might be due to under-
assembly. Hence the actual number of CsID homologs in
liverwort is probably much lower. Since our goal is not to
quantitatively but qualitatively assess the occurrence of
Csl families in different plants, such under-assembly does
not affect any of our conclusions. There are three
expressed liverwort homologs found in the PlantGDB’s
PUTs (see below), each in the CslC, CslD and CesA
clusters respectively.

Ferns have representative genes from CesA, CslA, CsIC,
CsID, GslE, CsIB and CslH families

Two fern species, Ceratopteris richardii and Pteridium
aquilinum, have transcriptome data sequenced by 454 in
the NCBI SRA database (Table 1). C. richardii and Adiantum
capillus-veneris also have ESTs, which are assembled into
PUTs in PlantGDB (Table 2). Following the procedure

J

shown in Figure 2, we identified Csl homologs in the three
fern species.

The phylogeny shown in Figure 5A includes fern pep-
tides longer than 150 a.a. Additional file 9 provides the
sequences. Ferns have representative genes in CslA,
CslC, CslD, CesA, and even in the CsIB/H/E/G clusters.
Of the three fern species, C. richardii and A. capillus-
veneris have homologs only in the CesA and CslD clus-
ters while P. aquilinum has genes in all the other Csl
clusters. In fact, C. richardii has many fewer Csl homo-
logs than P. aquilinum (15 vs. 281; length > 100 a.a.), al-
though the former has many more reads in the surveyed
datasets (Table 1). This suggests that the transcriptome
data of C. richardii might be very biased and does not
capture the transcripts of many Csl genes, as it is un-
likely that its genome does not encode CslA and CslC
genes.

Most interestingly, P. aquilinum homologs are evi-
dently found in CslE, CsIB and CslH clades (Figure 5B).
The fern CslB ortholog SRR043594-SRR043594.377425
has AtCslB2 (AT2G32540.1) as its best hit (sequence
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identity = 48% at the a.a. level) among all known Csl pro-
teins; the CslH ortholog SRR043594-Contig35 matches
OsCslH1 (0s10g20090.1) as the best hit (sequence
identity = 36%); and the CslE ortholog SRR043594-
SRR043594.512331 has 0s09g30130.1 of the CslE fam-
ily as the best hit (sequence identity = 60%). There are
also fern homologs phylogenetically basal to both CsIB
and CslH. This suggests that the CsIB/H/E clades had
already diverged before ferns appeared, possibly through
ancient duplications from older Csl families (i.e. CesA or
CslD). Given that the completed spike moss genome does
not have CsIB/H/E genes, the emergence of these Csl fam-
ilies must have happened after spike moss split from more
advanced vascular land plants but certainly before ferns.

The CsID family seems to have already diversified be-
fore ferns split from seed plants, as AtCslD1/4 and
AtCsID5 have clear orthologs in ferns (Figure 5D). Simi-
larly, different CesA sub-clusters containing the Arabi-
dopsis genes CesA3, CesA4, CesA7, CesA8, CesAl/10
and CesA2/5/6/9, respectively, all have orthologs in ferns
(Figure 5C), suggesting that their divergence occurred as
early as in the last common ancestor of ferns and later
evolved land plants. It is most interesting to observe
that, for the three major components of the cellulose
synthase complex of secondary cell walls in Arabidopsis:
CesA4, CesA7 and CesAS8, their common ancestral genes
had already diversified in ferns, in contrast to the earliest
vascular plant spike moss, whose CesAs are all clustered
into one monophyletic group (yellow color).

There are also additional fern-specific CesA clusters,
e.g. the large red clusters in the CesA circle of Figure 5A
and also the red sub-clusters beside AtCesA8 and beside
AtCesA1/10 of Figure 5C. All the members of these clus-
ters have known CesA proteins as the best hit, but future
experimental studies are needed to verify whether they
truly have cellulose synthase activity or not.

Gymnosperms have Csl genes basal to CsIB/H and to
CslE/G respectively

Although there is one gymnosperm genome P. abies avail-
able, Figure 1 suggests that more gymnosperm sequences
are needed to resolve the uncertain clustering of P. abies
homologs in CsIB/H/E/]/G clusters. Therefore, we selected
from PlantGDB six basal angiosperms, 16 gymnosperms,
two ferns, one moss and one liverwort (Table 2). The basal
angiosperms include plant species that are neither eudico-
tyledons nor monocotyledons, such as magnoliids, which
are ancestral to both dicot and monocot plants. Following
the procedure in the bottom part of Figure 2, we identified
Csl homologs in these plants.

Figure 6 shows a phylogeny with all of the Csl homologs
longer than 200 a.a. from the 26 surveyed plant transcrip-
tomes and Additional file 10 provides the sequences. We
mainly looked at gymnosperms and basal angiosperms. In

Page 9 of 15

agreement with what we found in Figure 1, no gymno-
sperm homolog (lighter red) is found inside the individual
cluster of CsIB/H/E/G. More precisely, the CslE family
clustered with a large gymnosperm cluster with a boot-
strap value lower than 70%. So it appears that each individ-
ual family does not have clear orthologs in gymnosperms.
Instead, there are gymnosperm-specific clades basal to
CslE/G families and CsIB/H families, respectively. Basal
angiosperm homologs however were found in all of the in-
dividual families including CslG. Interestingly, all of the
six basal angiosperms have genes in the CsIB/H/E/G clus-
ters. Particularly, Aristolochia fimbriata has six genes
found in all of the four Csl families.

Discussion

To our best knowledge, this is the first comprehensive
and large-scale data mining of Csl homologs in the tran-
scriptomes of various plants and algae. Prior to our
study, Sorensen et al. searched the EST data of C. nitel-
larum (CGA species) and found CslD orthologs [35].
Richmond built a web resource (http://cellwall.stanford.
edu) in 2000 to collect Csl genes in plant genomes and
ESTs [11], but that web resource is no longer available.
Publications of transcriptome/genome data of diverse
plants and algae (Tables 1 and 2) in the past few years
have made our comprehensive search possible.

Here we categorized CesA/Csl genes residing in 44
fully sequenced plant and algal genomes (Additional file
11), as well as 38 transcriptomes of CGAs, ferns, gymno-
sperms, and basal gymnosperms, and raw genomic DNA
reads from liverworts (Additional file 6, Additional file 8,
Additional file 9, Additional file 10). We studied their
distribution in 10 different Csl protein families using
phylogenetic analyses, which not only offer cell wall
polysaccharide and bioenergy researchers with a list of
Csl genes in bioenergy-related crops, but also provide
new insights into the evolution and function of the
CesA/Csl families in different plants.

About mannans in CGAs

As shown in Figures 3 and 7, CslA appears to be absent in
CGAs. There are many possible reasons for why these
genes are missing in CGAs, but we believe the following
are the most likely: (i) CGA mannan synthase genes were
not captured by the transcriptome data that we mined
due to low expression, or (ii) CGA mannan synthases are
not encoded by the canonical CslA gene family. In other
words, convergent evolution may have given gene families
other than CslA the ability to synthesize mannans in
CGAs, eg. the CGA-specific clusters found in Figure 3.
Notably, these clusters are close to the CsID family in the
phylogeny. The literature contains discussions of the pos-
sibility of CslD proteins are glucomannan synthases
[3,36,37]. It is therefore tempting to speculate that the
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CsID and/or CsID-like genes (Figure 3 and Additional file 7)
are responsible for the synthesis of CGA mannans, given
that (i) CGAs have genes only in the CesA, CslA, CslD
and CslD-like clusters, (ii) the cell walls of CGAs contain
both xyloglucans and mannans, (iii) the CslA family en-
codes xyloglucan synthases and (iv) the function of the
CsID family is still unknown.

The first possibility could be validated by deeper RNA
sequencing of CGAs that have experimental evidence of
mannans, e.g. Coleochaete nitellarum and Spirogyra spl
[35]. However, we noticed that two closely related species,
Coleochaete orbicularis and Spirogyra pratensis, were in-
cluded in our data mining and only one relevant sequence
(Spirogyra_pratensis-Contig255) was found in either spe-
cies; this sequence is most similar to a known CslC pro-
tein. For this reason, the possibility that mannan synthesis
genes are missing from the data for artifactual reasons
seems unlikely.

About MLG in horsetail (Equisetum arvense)
In NCBI’s taxonomy database, the two fern species, Cera-
topteris richardii and Pteridium aquilinum, both belong

to Polypodiopsida under Moniliformopses (ferns). Inter-
estingly, horsetails (Equisetopsida) that are also of Mon-
iliformopses have been shown to have mixed-linkage
glucans (MLGs) in their cell walls [38-41]. Since MLGs
are only narrowly found in the plant kingdom, in Poa-
ceaes, horsetails and some algae, it has been proposed
that horsetails and algae might have independently ac-
quired their abilities to synthesize MLGs by using en-
zymes of the Csl families. Here we found that CslH
has orthologs in the fern species Pteridium aquilinum.
It is likely that these CslH genes also encode MLGs in
Pteridium aquilinum, although experimental evidence
is needed to prove this. On the other hand, this sug-
gests that horsetails probably also have CslH ortho-
logs that are responsible for the synthesis of MLGs in
their cell walls. Therefore, our finding supports the
hypothesis that CslH genes were in the common an-
cestor of ferns and seed plants but later lost in gymno-
sperms. Such gene loss event might be fairly prevalent,
as Ceratopteris richardii, which has more reads than
Pteridium aquilinum (Table 1), appears to have no
CslH genes.
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dotted line means it is uncertain if the CsID-like family truly exists.
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Figure 7 An evolutionary model of Csl gene families. The top panel shows the occurrence of Csl families. “+" means the family is found; “?"
means it is uncertain. In the bottom panel, the numbers 1 to 12 are used to label each divergence node, which are detailed in the main text. The

Given that both CsIF and CsIH encode MLG synthases
and CslF is strictly confined to monocots, we conclude
that CslH is the more ancient MLG synthase family [41].

It was suggested that leafy liverwort Lophocolea biden-
tata might have MLG-like polysaccharides [42], but our
search in the liverwort Marchantia polymorpha genome
did not find any CslH orthologs. Spike moss and CGAs
were also suggested to have MLG [35], but the MLG is
unlikely to be synthesized by CslH as no CslH orthologs
were found in the completed spike moss genome or the
surveyed CGA transcriptomes. In this case, the conver-
gent evolution hypothesis is still a plausible explanation
for the synthesis of MLGs in these organisms that do
not have CsIH and CslF families.

Evolution of Csl families

Many of our previous views about the Csl families were
changed in light of our new findings, which led to a re-
vised evolutionary model with more details (Figure 7).
Twelve nodes were labeled to represent the speculated
evolutionary events that might have led to the divergence
of CesA/Csl gene families.

About CsIA/C/K

Node 1 represents the endosymbiosis event(s) that gave
rise to the earliest plant cell. Two distinct ancestral
genes were passed to the earliest plant cell, which shared

an even earlier GT2 ancestor in ancient prokaryotes.
One gene was the ancestor of extant CslA/C/K families
and the other was the ancestor of the rest of the Csl
families. A larger scale analysis including non-plant GT2
proteins will be useful to disentangle the different ori-
gins of the two groups of families.

After node 2, the ancestral gene became the current CslK
family in chlorophytes, while in CGA, it evolved into the
CslA and CsIC families through duplication (node 4). This
duplication event should have occurred after the split of
CGAs and chlorophytes. We did not find CslA genes in
CGAs, suggesting that CslA might have been lost in
evolution.

About CesA/CsID/F

The other ancestral gene that the earliest plants inher-
ited was very likely to be a CesA gene, which might be
from some ancestral cyanobacteria [43,44]. Node 3 rep-
resents an early gene duplication that occurred, probably
in ancient algal species, where one gene later evolved to
be the latest common ancestor of CesA/CsID/F families,
while the other evolved to be the latest common ances-
tor of CsIB/H/E/]/G.

Node 5 implies that the ancestor of CesA/CslD dupli-
cated and diverged into the CesA and CsID clades. As
both families are present in CGAs, their divergence must
have happened before CGAs appeared. Afterwards, the
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evolution of the CsID genes seem to be enigmatic in that
some CGAs (Coleochaete orbicularis and Chaetosphaeri-
dium globosum) have CslD homologs while others have
CsID-like homologs (Figure 3 and Additional file 7). It is
therefore uncertain if there was an additional divergence
(node 6) that gave rise to the CslD-like homologs in
CGAs. Completed CGA genomes will be needed to reach
a conclusive answer.

It is worthy of mentioning that different CesA subfamilies,
including the AtCesA4, AtCesA7 and AtCesA8 subfamilies,
diversified after spike moss but before ferns appeared
(Figure 5C). This suggests that the secondary cell wall
cellulose synthase protein complex has been in exist-
ence since ferns.

CslF genes are only present in monocots, and they
have long branches in the phylogenies (Figure 1), sug-
gesting a rapid divergence after splitting from CslD fam-

ily through duplication (node 12). Therefore, among all
Csl families, CsIF was the last one to arise.
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About CsIB/H/E/J/G

The divergence of CsIB/H and CslE/J/G (node 7) should
be much later than node 5, because CsIB/H/E appeared
since ferns. The common ancestor of CsIB/H/E/J/G
might be very ancient, but the diversification of this an-
cestral gene into each of the individual families seems to
have occurred much later.

The most exciting findings of this paper are about
these families. Prior to our study, it was believed that: i)
CsIB and CslG are dicot-specific; ii) CslH and CslJ are
found only in cereals; iii) CslE is only found in angiosperms.
As shown in Figure 8, these views are subject to modifica-
tions: 1) CslB, CsIH and CslE have orthologs in ferns and
basal angiosperms; 2) CslG is found in switchgrass and
basal angiosperms (also see Figure 1 and Additional file 4);
Additional file 3) CslJ is found in most dicots (Figure 1
and Additional file 4) and in basal angiosperms too.

No gymnosperm genes are found in any of the individ-
ual families of CsIB/H/E/J/G. However the presence of

CsIB/H-like

—9lauc
M_X_Picea_g
PUT-183a-Picea_sitche

50

{[3a]5]
2910~

CsIE/J/G-like

8Y2Sv96 L-p1ovdlt 0 LOYZOVLY|

Figure 8 Phylogeny with CsIB/H/E/J/G homologs from selected organisms. Sb03g047220.1, GRMZM2G122431_T01, Potri.010G074700.1,

Potri.010G074800.1 of CslJ family and Pavirv00027268m of CsIG family are selected from Figure 1. The rest proteins are selected from
Figures 3 to 6.

—0.1

= Angiosperms
- Ferns
== Gymnosperms

4
1966296
\AT1655850-‘\PAC‘d
CsIEN

SRR043594—'SRR043594 512331




Yin et al. BMC Genomics 2014, 15:260
http://www.biomedcentral.com/1471-2164/15/260

CsIB/H-like cluster (Figure 8) suggests that CslB and
CsIH might have evolved in ferns and then lost in gym-
nosperms. Similarly the gymnosperm-specific CslE/]/G-
like gene cluster contains expressed genes from almost
all surveyed gymnosperms including the ginkgo species,
suggesting that it is functionally very important and con-
served (short branches in Figure 8).

It remains a mystery why and how gymnosperms lost
CslB, CslH and CslE genes but retained the apparently
more ancestral CslB/H-like and CslE/]/G-like families.
However, all of the CsIB/H/E/J/G families are no longer
narrowly distributed and they appear to be much older
than previously thought. It has been suggested that gym-
nosperms have lower substitution rate in their genomes
[45], which should be considered for the future study of
the evolution of CsIB/H/E/J/G families.

About the divergence order of these families, node 8
and 9 must precede the occurrence of ferns. CslE then
diverged from CslJ/G (node 10), probably also before
ferns. CslG might have evolved in early angiosperms
through gene duplication from the CslJ family (node 11).

Our study suggests that gene duplication and gene loss
(e.g. loss of CsIB/H/E in gymnosperms) occurred very
often throughout plant genome evolution, and together
they have played a significant role in shaping the expan-
sion and diversification of the Csl families.

Conclusions

In summary, the following major contributions were made
in this paper: 1) we demonstrated that the toolkits for the
study of the plant cell wall evolution and diversity could
be complemented by bioinformatics data mining of the
transcriptomes of plant clades that do not have completed
genomes; 2) we found that fern transcriptomes have
expressed genes of the CsIB/H/E families so these families
are much older than we thought; 3) we predicted that
CslH genes might also exist and encode MLG synthases
in horsetails; 4) we speculated that the mannan synthases
in CGAs might be encoded by Csl families other than
CslA as it is missing in all surveyed CGA transcriptomes;
and 5) we proposed a more complete model for the evolu-
tion of Csl families and suggested that gene loss following
duplication played a significant role in the evolution of Csl
gene families.

Methods

Sequence data

Previously categorized Csl protein sequences were down-
loaded from the supplemental data of [27].

The fully sequenced plant and algal genomes were
downloaded from Phytozome and JGI [46], except for
Picea abies, downloaded from http://congenie.org. The
HMMERS3 package [47] was used to search the two Pfam
domains (Cellulose_synt and Glycos_transf_2) against the
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above genomes, following our previous papers [27,48,49].
The fern, liverwort and CGA short read data sets
were downloaded from the NCBI SRA database. The
pre-assembled PUT data sets were downloaded from
PlantGDB [50].

The owners of the unpublished fern (Ceratopteris
richardii) transcriptome data and the unpublished liver-
wort (Marchantia polymorpha) genome data agreed with
the use of these data in this study and were acknowl-
edged in the Acknowledgement. The liverwort genome
sequence data were produced by the US Department of
Energy Joint Genome Institute (http://www.jgi.doe.gov/)
in collaboration with the user community. All other
SRA sequence data that have been published were prop-
erly cited in Table 1.

Data mining pipeline

The pipeline was depicted in Figure 2. For the assembly
of 454 transcriptomes/genomes of ferns, liverwort and
algae, we used cap3 [51] with overlap length > 60 bp and
overlap percent identity > 97% (-o 60 and -p 97). Because
short read assembly is well known to be computationally
intense when the data size is large, we did a pre-screening
homology search prior to the assembly and only assem-
bled the reads of a same species that are homologous to
known Csl proteins.

The FASTA package [52] was used for all homology
searches. Specifically, fasty and tfasty commands were
used, which have the advantage that they can tolerate se-
quence errors and tend to yield longer alignments by in-
cluding stop codons and frame shifts, as compared to
the common BLAST searches.

After fasty/tfasty search, the peptide sequences were
translated from assembled nucleotide contig/singleton
sequences according to the alignment with their best Csl
hits. Symbols of frame shifts (“/” and “\”) and stop co-
dons (“*”) in the fasty/tfasty alignments were removed
before multiple sequence alignment (MSA).

Phylogenetic analysis

MSAs were generated using MAFFT v6.935b with the
L-INS-i method [53], which is among the most accurate
sequence alignment algorithms. Phylogenies were made
using the FastTree program version 2.1.3 [54]. FastTree
implements an ultrafast and fairly accurate approximate
maximum likelihood method. The accuracy of FastTree is
considered to be slightly better than PhyML version 3.0,
with minimum-evolution nearest neighbor interchanges
moves, and is 100 to 1,000 times faster and requires much
less computer memory.

FastTree analyses were conducted with default parame-
ters; specifically, the amino acid substitution matrix was
JTT, the number of rate categories of sites (CAT model)
was 20, and the local support values of each node were
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computed by resampling the site likelihoods 1000 times
and performing the Shimodaira Hasegawa test. Based
on our previous work [27,48,49], FastTree performs suf-
ficiently well for protein family evolution studies.

We also tried the much slower but more accurate PhyML
program to build all of the phylogenies and the tree top-
ology does not differ much and does not change any of
our findings. The iTOL server was used to generate the
phylograms [55].

Availability of supporting data
The data sets supporting the results of this article are

included within the article and its additional files.

Additional files

Additional file 1: 44 fully sequenced plants and algae.
Additional file 2: Circular view of Figure 1.
Additional file 3: Sequences included in Figure 1.

Additional file 4: Zoomed-in view of CsIB/H/E/J/G clusters in
Figure 1.

Additional file 5: Phylogeny with plant and algal GT2 homologs
forming three large clusters (the inset shows the radial view).

Additional file 6: Csl homologs found in CGAs and sequences.
Additional file 7: Phylogeny with CGA homologs longer than 100 a.a.

Additional file 8: Csl homologs found in Marchantia polymorpha
and sequences.

Additional file 9: Csl homologs found in ferns and sequences.

Additional file 10: Csl homologs found in PUTs of surveyed plants
and sequences.

Additional file 11: Csl homologs of 44 plant and algal genomes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

YY conceived this study, carried out all the analysis and wrote the paper.
MAJ, HC, and MR helped in the data analysis and the paper writing. Al
authors read and approved the final manuscript.

Acknowledgements

This work was supported the start-up funds and the Research & Artistry Award
from Northern Illinois University to Y.Y. We acknowledge all of the individual
groups worldwide who have made their genomic and transcriptomic data
available to the public. In particular, we acknowledge Dr. John L. Bowman
for allowing us to use the Marchantia polymorpha genomic DNA data and
Dr. Stanley J. Roux for the Ceratopteris richardii RNA-Seq data, which are all
available at the SRA database before publication.

Received: 27 September 2013 Accepted: 31 March 2014
Published: 4 April 2014

References

1. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA,
Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R,
Tschaplinski T: The path forward for biofuels and biomaterials. Science 2006,
311(5760):484-489.

2. Pauly M, Keegstra K: Cell-wall carbohydrates and their modification as a
resource for biofuels. Plant J 2008, 54(4):559-568.

3. Scheller HV, Ulvskov P: Hemicelluloses. Annu Rev Plant Biol 2010,
61:263-289.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Page 14 of 15

Driouich A, Follet-Gueye ML, Bernard S, Kousar S, Chevalier L, Vicre-Gibouin M,
Lerouxel O: Golgi-mediated synthesis and secretion of matrix
polysaccharides of the primary cell wall of higher plants. Front Plant
Sci 2012, 3:79.

Ulvskov P: Annual Plant Reviews: Plant Polysaccharides, Biosynthesis and
Bioengineering. Edited by Ulvskov P. Oxford, UK: Wiley-Blackwell; 2011.
Carpita NC: Progress in the biological synthesis of the plant cell wall:
new ideas for improving biomass for bioenergy. Curr Opin Biotechnol
2012, 23(3):330-337.

Zhong R, Lee C, Ye ZH: Evolutionary conservation of the transcriptional
network regulating secondary cell wall biosynthesis. Trends Plant Sci 2010,
15(11):625-632.

Wang HZ, Dixon RA: On-off switches for secondary cell wall biosynthesis.
Mol Plant 2012, 5(2):297-303.

Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM: Higher
plants contain homologs of the bacterial celA genes encoding the
catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A 1996,
93(22):12637-12642.

Delmer DP: CELLULOSE BIOSYNTHESIS: exciting times for a difficult field
of study. Annu Rev Plant Physiol Plant Mol Biol 1999, 50:245-276.

Richmond TA, Somerville CR: The cellulose synthase superfamily. Plant
Physiol 2000, 124(2):495-498.

Hazen SP, Scott-Craig JS, Walton JD: Cellulose synthase-like genes of rice.
Plant Physiol 2002, 128(2):336-340.

Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB:
Plant cell wall biosynthesis: genetic, biochemical and functional genomics
approaches to the identification of key genes. Plant Biotechnol J 2006,
4(2):145-167.

Lerouxel O, Cavalier DM, Liepman AH, Keegstra K: Biosynthesis of plant cell
wall polysaccharides - a complex process. Curr Opin Plant Biol 2006,
9(6):621-630.

Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS,
Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P: Guar seed beta-mannan
synthase is a member of the cellulose synthase super gene family.

Science 2004, 303(5656):363-366.

Liepman AH, Wilkerson CG, Keegstra K: Expression of cellulose synthase-like
(Csl) genes in insect cells reveals that CsIA family members encode
mannan synthases. Proc Natl Acad Sci U S A 2005, 102(6):2221-2226.
Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K,
Raikhel N, Wilkerson CG: A gene from the cellulose synthase-like C family
encodes a beta-1,4 glucan synthase. Proc Natl Acad Sci U S A 2007,
104(20):8550-8555.

Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Stone BA, Newbigin EJ,
Bacic A, Fincher GB: Cellulose synthase-like CsIF genes mediate the synthesis
of cell wall (1,3;1,4)-beta-D-glucans. Science 2006, 311(5769):1940-1942.
Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB,
Newbigin E, Bacic A: A barley cellulose synthase-like CSLH gene mediates
(1,3;1,4)-beta-D-glucan synthesis in transgenic Arabidopsis. Proc Nat/
Acad Sci U S A 2009, 106(14):5996-6001.

Popper ZA: Evolution and diversity of green plant cell walls. Curr Opin
Plant Biol 2008, 11(3):286-292.

Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WG:
Cell wall evolution and diversity. Front Plant Sci 2012, 3:152.

Popper Z, Michel G, Herve C, Domozych DS, Willats WG, Tuohy MG, Kloareg B,
Stengel DB: Evolution and diversity of plant cell walls: from algae to
flowering plants. Annu Rev Plant Biol 2011, 62:567-590.

Sorensen |, Domozych D, Willats WG: How have plant cell walls evolved?
Plant Physiol 2010, 153(2):366-372.

Popper ZA, Tuohy MG: Beyond the green: understanding the
evolutionary puzzle of plant and algal cell walls. Plant Physiol 2010,
153(2):373-383.

Doblin MS, Pettolino F, Bacic A: Plant cell walls: the skeleton of the plant
world. Funct Plant Biol 2010, 37(5):357-381.

Fincher GB: Revolutionary times in Our understanding of cell wall
biosynthesis and remodeling in the grasses. Plant Physiol 2009,
149(1):27-37.

Yin Y, Huang J, Xu Y: The cellulose synthase superfamily in fully
sequenced plants and algae. BMC Plant Biol 2009, 9(1):99.

Roberts AW, Bushoven JT: The cellulose synthase (CESA) gene
superfamily of the moss Physcomitrella patens. Plant Mol Biol 2007,
63(2):207-219.


http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S6.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S7.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S8.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S9.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S10.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-15-260-S11.xls

Yin et al. BMC Genomics 2014, 15:260
http://www.biomedcentral.com/1471-2164/15/260

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F,
Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K,
Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O,
Klasson L, Koriabine M, Kucukoglu M, Kéller M, Luthman J, Lysholm F,
Niittyld T, Olson A, Rilakovic N, Ritland C, Rossellé JA, Sena J: The Norway
spruce genome sequence and conifer genome evolution. Nature 2013,
497(7451).579-584.

Timme RE, Delwiche CF: Uncovering the evolutionary origin of plant
molecular processes: comparison of Coleochaete (Coleochaetales) and
Spirogyra (Zygnematales) transcriptomes. BMC Plant Biol 2010, 10:96.
Timme RE, Bachvaroff TR, Delwiche CF: Broad phylogenomic sampling and
the sister lineage of land plants. PLoS One 2012, 7(1):¢29696.

Wodniok S, Brinkmann H, Glockner G, Heidel AJ, Philippe H, Melkonian M,
Becker B: Origin of land plants: do conjugating green algae hold the key?
BMC Evol Biol 2011, 11:104.

Michel G, Tonon T, Scornet D, Cock JM, Kloareg B: The cell wall
polysaccharide metabolism of the brown alga Ectocarpus siliculosus.
Insights into the evolution of extracellular matrix polysaccharides in
Eukaryotes. New Phytol 2010, 188(1):82-97.

Der JP, Barker MS, Wickett NJ, De Pamphilis CW, Wolf PG: De novo
characterization of the gametophyte transcriptome in bracken fern.
Pteridium aquilinum. BMC Genomics 2011, 12:99.

Sorensen |, Pettolino FA, Bacic A, Ralph J, Lu F, O'Neill MA, Fei Z, Rose JK,
Domozych DS, Willats WG: The charophycean green algae provide
insights into the early origins of plant cell walls. Plant J 2011,
68(2):201-211.

Verhertbruggen Y, Yin L, Oikawa A, Scheller HV: Mannan synthase activity
in the CSLD family. Plant signaling & behavior 2011, 6(10):1620-1623.

Yin L, Verhertbruggen Y, Oikawa A, Manisseri C, Knierim B, Prak L, Jensen JK,
Knox JP, Auer M, Willats WG, Scheller HV: The cooperative activities of
CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis
development. Mol Plant 2011, 4(6):1024-1037.

Sorensen |, Pettolino FA, Wilson SM, Doblin MS, Johansen B, Bacic A,
Willats WGT: Mixed-linkage (1 - > 3), (1 - > 4)-beta-D-glucan is not unique
to the poales and is an abundant component of Equisetum arvense cell
walls. Plant J 2008, 54(3):510-521.

Fry SC, Nesselrode BHWA, Miller JG, Mewburn BR: Mixed-linkage (1 - > 3,1 - > 4)-
beta-D-glucan is a major hemicellulose of Equisetum (horsetail) cell walls.
New Phytol 2008, 179(1):104-115.

Burton RA, Fincher GB: (1,3;1,4)-Beta-D-glucans in cell walls of the
poaceae, lower plants, and fungi: a tale of Two linkages. Mol Plant 2009,
2(5):873-882.

Fincher GB: Exploring the evolution of (1,3;1,4)-beta-D-glucans in plant
cell walls: comparative genomics can help! Curr Opin Plant Biol 2009,
12(2):140-147.

Popper ZA, Fry SC: Primary cell wall composition of bryophytes and
charophytes. Ann Bot 2003, 91(1):1-12.

Nobles DR, Brown RM: The pivotal role of cyanobacteria in the evolution
of cellulose synthases and cellulose synthase-like proteins. Cellulose 2004,
11(3-4):437-448.

Nobles DR, Romanovicz DK, Brown RM: Cellulose in cyanobacteria. Origin
of vascular plant cellulose synthase? Plant Physiol 2001, 127(2):529-542.
Buschiazzo E, Ritland C, Bohlmann J, Ritland K: Slow but not low: genomic
comparisons reveal slower evolutionary rate and higher dN/dS in
conifers compared to angiosperms. BMC Evol Biol 2012, 12:8.

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T,
Dirks W, Hellsten U, Putnam N, Rokhsar DS: Phytozome: a comparative
platform for green plant genomics. Nucleic Acids Res 2012,

40(Database issue):D1178-D1186.

Eddy SR: Accelerated Profile HMM Searches. PLoS Comput Biol 2011,
7(10):21002195.

Yin Y, Chen H, Hahn MG, Mohnen D, Xu Y: Evolution and function of the
plant cell wall synthesis-related glycosyltransferase family 8. Plant physiol
2010, 153(4):1729-1746.

Yin Y, Huang J, Gu X, Bar-Peled M, Xu Y: Evolution of plant nucleotide-sugar
interconversion enzymes. PLoS One 2011, 6(11):e27995.

Dong QF, Lawrence CJ, Schlueter SD, Wilkerson MD, Kurtz S, Lushbough C,
Brendel V: Comparative plant genomics resources at PlantGDB. Plant
Physiol 2005, 139(2):610-618.

Huang XQ, Madan A: Cap3: a DNA sequence assembly program. Genome
Res 1999, 9(9):868-877.

Page 15 of 15

52. Pearson WR, Wood T, Zhang Z, Miller W: Comparison of DNA sequences
with protein sequences. Genomics 1997, 46(1):24-36.

53. Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in
accuracy of multiple sequence alignment. Nucleic Acids Res 2005,
33(2):511-518.

54.  Price MN, Dehal PS, Arkin AP: FastTree 2-approximately maximum-likelihood
trees for large alignments. PLoS One 2010, 5(3):29490.

55. Letunic |, Bork P: Interactive Tree Of Life (iTOL): an online tool for
phylogenetic tree display and annotation. Bioinformatics 2007,
23(1):127-128.

doi:10.1186/1471-2164-15-260

Cite this article as: Yin et al: A survey of plant and algal genomes and
transcriptomes reveals new insights into the evolution and function of
the cellulose synthase superfamily. BMC Genomics 2014 15:260.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Csl genes in fully sequenced genomes: new findings
	Mining for Csl homologs in short read transcriptomes/genomes
	CGAs have representative genes from CesA, CslC and CslD families
	Liverworts have representative genes from CesA, CslA, CslC and CslD families
	Ferns have representative genes from CesA, CslA, CslC, CslD, CslE, CslB and CslH families
	Gymnosperms have Csl genes basal to CslB/H and to CslE/G respectively

	Discussion
	About mannans in CGAs
	About MLG in horsetail (Equisetum arvense)
	Evolution of Csl families
	About CslA/C/K
	About CesA/CslD/F
	About CslB/H/E/J/G


	Conclusions
	Methods
	Sequence data
	Data mining pipeline
	Phylogenetic analysis
	Availability of supporting data

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


