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DRGsarehighly conservedGTPbindingproteins.All eukaryotes examined containDRG1andDRG2orthologs.
The first experimental evidence for GTP binding by a plant DRG1 protein and by DRG2 from any organism is
presented. DRG1 antibodies recognized a single ;43-kDa band in plant tissues, whereas DRG2 antibodies
recognized;45-, 43-, and 30-kDa bands. An in vitro transcription and translation assay suggested that the 45-kDa
band represents full-length DRG2 and that the smaller bands are specific proteolytic products. Homogenates from
pea roots and root apices were used to produce fractions enriched in cytosolic and microsomal monosomes and
polysomes. DRG1 and the 45- and 43-kDa DRG2 bands occurred in the cytosol and associated with cytosolic
monosomes. In contrast, the 30-kDa formofDRG2was strongly enriched in polysome fractions. Thus, DRG1 and
the larger forms of DRG2 may be involved in translational initiation, and the 30-kDa form of DRG2 may be
involved in translational elongation.DRG1and the 45- and43-kDa formsofDRG2can reassociatewith ribosomes
in vitro, a process that is partially inhibited by GTP-g-S. Cells expressing FLAG-tagged ribosomal proteins from
transgenic lines of Arabidopsis and yeast also demonstrated DRG-ribosome interactions.
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Introduction

Well-studied GTP binding proteins (G proteins) are involved
in essential physiological processes such as signal transduction
(Ras and heterotrimeric G proteins), regulation of translational
initiation and elongation (IF2, EF-G, EF-Tu, and their eukary-
otic counterparts), targeting membrane vesicles to their proper
subcellular compartment (Rab and Arf), and controlling pas-
sage through nuclear pores (Ran; Bourne et al. 1990, 1991;
Leipe et al. 2002). The OBG/DRG subfamily of G proteins is
ancient and highly conserved. OBGs occur in bacteria and eu-
karyotes. Although nuclear-encoded OBGs generally appear to
be targeted to mitochondria and chloroplasts, the product of
human ObgH2 localizes near nucleoli (Hirano et al. 2006).
Bacterial Obg is an essential gene, which is needed for proper
DNA replication and chromosome separation (Kobayashi et al.
2001; Morimoto et al. 2002; Slominska et al. 2002). OBG pro-
teins from Bacillus subtilis, Escherichia coli, and Caulibacter
crescentus cofractionate with ribosomes (Scott et al. 2000; Datta
et al. 2004; Lin et al. 2004; Wout et al. 2004; Sato et al. 2005).
The observed effects of obg mutants on DNA replication and
chromosome separation may result from defects in ribosome
biogenesis (Lin et al. 1999; Datta et al. 2004). Compared with
other G proteins, bacterial OBGs are characterized by relatively
low rates of GTP hydrolysis and high rates of GTP-GDP ex-
change (Lin et al. 1999; Wout et al. 2004). OBGs may regulate
translation and stress responses through interactions with SpoT
and RelA (Jiang et al. 2007). In this article, we will explore ri-

bosome binding properties of DRGs from pea, Arabidopsis,
and yeast.
Early studies identified DRGs in developing mouse brain

(Sazuka et al. 1992) and human SV40-transformed fibroblasts
(Schenker et al. 1994). These mouse and human genes became
the archetypes for the DRG1 and DRG2 orthologous groups
(Caldon et al. 2001; Leipe et al. 2002). All eukaryotes exam-
ined contain at least one member of each group (Li and Trueb
2000; Tatusov et al. 2003). Amino acid identity among plant,
animal, and fungal representatives of each orthologous group is
;65%–70%, whereas paralogs from a single species share
;55%–60% identity. Both DRG1 and DRG2 from most organ-
isms contain ;365–370 amino acid residues and have pre-
dicted molecular masses of ;41 kDa. DRG2 proteins from all
plants examined (including the green alga Chlamydomonas)
contain an ;32-amino extension at their C-termini that is not
found in DRG2 proteins of other organisms. The predicted
masses of plant DRG2 proteins is ;44.5 kDa. Although DRGs
are presumed to be able to bind GTP, this property has been
demonstrated experimentally only for DRG1 of two animals,
mouse andDrosophila (Sazuka et al. 1992; Sommer et al. 1994).
Arabidopsis has three DRG genes. AtDRG1 is a DRG1 or-

tholog, and AtDRG2 and AtDRG3 are DRG2 orthologs.
AtDRG1 and AtDRG2 promoter-GUS fusions revealed similar
but subtly different spatial expression patterns in seedlings and
mature organs (Stafstrom 2008). For example, both promoters
showed strong GUS expression in root apices, developing root
primordia, the root stele, cotyledons, pollen, and stigmas. Nei-
ther promoter was active in shoot apices of young seedlings.
The AtDRG1 promoter was more active in leaf veins, and the
AtDRG2 promoter was more active in petals, siliques, and leaf
trichomes. As assayed by quantitative RT-PCR, AtDRG1 and
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AtDRG2 mRNA levels were relatively high and similar to each
other in every tissue examined (Stafstrom 2008). In contrast,
AtDRG3 expression was extremely low in the same tissues.
However, AtDRG3 expression increased ;1000-fold following
3 h of heat stress. Heat stress led to a modest increase in AtDRG1
expression and a modest decrease in DRG2 expression. Mi-
croarray experiments also demonstrated that AtDRG1 and
AtDRG2 expression is quite uniform under essentially all con-
ditions tested and that AtDRG3 is strongly stimulated by heat
stress and stimulated ;10-fold by several other stresses and in
pollen and developing seeds (Schmid et al. 2005). Whereas
DRG1 protein levels were similar in all of these tissues, DRG2
protein levels were quite variable and notable low in older
leaves (Stafstrom 2008). The basis for tissue-specific and devel-
opmental differences in relative mRNA and protein abundance
is unknown. DRG1 and DRG2 protein levels were unaffected
by most environmental and stress conditions tested. The sole
exception was heat stress, which increased the accumulation of
DRG2 slightly and also induced the appearance of an ;70-
kDa band that was recognized by DRG2 antibodies. The iden-
tity of this band is unknown.
The DRG1 and DRG2 antibodies used in this study were

described previously (Devitt et al. 1999; Stafstrom 2008).
DRG1 antibodies recognized a single band with an apparent
molecular mass of ;43 kDa protein (the deduced mass is 41.1
kDa); smaller bands (possible degradation products) were
seen only occasionally. DRG2 antibodies recognized bands
with apparent molecular masses of 30, 43, and 45 kDa, which
varied in abundance in different tissues. The predicted mass of
DRG2 from pea and Arabidopsis is ;44.5 kDa. As will be
demonstrated here, we believe that the 43- and 30-kDa bands
recognized by these antibodies are specific proteolytic prod-
ucts of the full-length DRG2 protein.
Relatively modest changes in AtDRG promoter activities

and in mRNA and protein levels suggest that other types of reg-
ulation, such as altered subcellular localization, may be important
for the cellular functions of DRGs. Many G proteins function
through transient associations with various organelles. For ex-
ample, Ras reversibly binds to plasma membranes, Ran helps
to shuttle cargos between the cytoplasm and nucleoplasm,
and Rab proteins provide specificity in targeting vesicles to
membrane organelles (Kuersten et al. 2001; Pfeffer 2001;
Pechlivanis and Kuhlman 2006). Using differential centrifuga-
tion, we found that pea DRG2 occurs predominantly in P150
and S150 fractions (Devitt et al. 1999). P150 is a 150,000 g
pellet enriched in microsomal membranes and ribosomes, and
S150 represents the postribosomal cytosolic fraction (Davies
and Abe 1995). Etheridge et al. (1999) showed, using immuno-
cytochemistry on sections prepared for light and electron mi-
croscopy, that Arabidopsis DRG2 (which they called DRG1)
occurred in cytoplasmic granules or bodies. The organelle or
structure responsible for DRG2 association with the P150 frac-
tion or with these cytoplasmic granules is not known.
This report addressed three classes of questions. What are

the identities of the 45-, 43-, and 30-kDa bands recognized by
DRG2 antibodies? Can pea DRG1 and DRG2 bind GTP? Do
DRGs bind to ribosomes? The first question was addressed by
synthesizing 35S-labeled DRG2 in vitro and observing its proteo-
lytic processing in the presence of plant extracts. For the second
question, we tested the ability of DRGs from tissue extracts to

bind to GTP-agarose and determined whether binding was af-
fected by various nucleotides. Ribosome binding properties of
DRGs were the most intensively investigated aspect of this re-
port. Homogenates from mature roots and root apices of pea
were fractionated to yield four subpopulations of ribosomes:
cytosolic monosomes, cytosolic polysomes, microsomal mono-
somes, and microsomal polysomes. Also, an assay was developed
to examine whether DRGs could associate with ribosomes in
vitro. Finally, yeast and Arabidopsis cells containing ribo-
somes incorporating a single FLAG-tagged ribosomal protein
were used in affinity-binding assays to test for ribosome bind-
ing by DRGs in these organisms (Inada et al. 2002; Zanetti
et al. 2005).

Material and Methods

Plants

Pea seeds (Pisum sativum L. cv. Alaska) were imbibed over-
night in running tap water and germinated in the dark on moist
paper towels for 2–3 d. Root apices were defined as the termi-
nal ;2 mm, including the root cap. The next 1 cm of root tis-
sue was discarded; the next 1 cm of root beyond that was
considered to be fully elongated or mature root tissue. Arabi-
dopsis thaliana seedlings were grown in a growth chamber for
7–10 d under a short-day photoperiod (10L : 14D) at 20�C.
Growth was on vertically oriented sterile MS plates. Plant lines
used were ecotype Columbia (Col-0) and 35S:HF-RPL18, a ge-
netically engineered line that expresses a fusion protein with
the His-FLAG peptide at the N-terminus of ribosomal protein
L18 (Zanetti et al. 2005). Tissues were frozen in liquid nitrogen
and stored at�70�C until needed.

Western Blotting

The nucleotide sequence reported in this article for a PsDRG1
cDNA has been submitted to GenBank under accession EU236700.
DRG1 antibodies (antiserum 29) were raised against a His-
tagged protein containing the entire 369 amino acid coding
region of Arabidopsis DRG1. Pea and Arabidopsis DRG2
proteins contain 399 amino acid residues. DRG2 antibodies
(antiserum 55) were raised against a His-tagged fusion protein
containing the N-terminal 202 residues of pea DRG2 (Devitt
et al. 1999). Despite the overall similarity of DRG1 and
DRG2 proteins, there is little cross-reactivity between DRG1
and DRG2 antibodies under our experimental conditions.
Western blots of Arabidopsis drg1 or drg2 T-DNA single gene
knockout mutants demonstrate that DRG1 antibodies show
no recognition for DRG2 and that DRG2 antibodies recognize
DRG2 protein with at least a 10-fold greater specificity than
they recognize DRG1 protein (J. D. Kubic and J. P. Stafstrom,
in preparation). Both antisera were affinity purified on Affigel
AG-10 columns (BioRad) to which the original antigen was co-
valently attached. Antibodies directed against maize RPS6 were
obtained through the courtesy of J. Bailey-Serres (Williams
et al. 2003). The predicted mass of RPS6 from several plants is
;28.1 kDa, but its apparent mass on SDS-PAGE is estimated
to be 30–34 kDa (Williams et al. 2003; Chang et al. 2005).
RPS6 is found only in 40S ribosome subunits and therefore is
a marker for this subunit, 80S monosomes, and polysomes.
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Methods for extracting and purifying proteins are described for
each experiment.
Polyacrylamide gel electrophoresis (SDS-PAGE) was per-

formed on 10% or 12% acrylamide gels using standard tech-
niques. Prestained molecular weight markers were included
on all gels. For Western blots, proteins were electrophoreti-
cally transferred to nitrocellulose or polyvinylidene fluoride
membrane blots using a semidry apparatus. Following trans-
fer, the blots were rinsed briefly in Tris-buffered saline (TBS;
20 mM Tris, pH 7.5, 500 mM NaCl) and then incubated for
1 h in blocking solution (TBS plus 5% instant dry milk). Blots
were incubated overnight with affinity-purified primary anti-
bodies at dilutions ranging from 1 : 100 to 1 : 1000 and then
washed three times for a total of ;1 h in TBS-T (TBS plus
0.05% Tween-20). Blots were then incubated for 2 h with HRP-
DAR secondary antibodies in TBS at a dilution of 1 : 5000
(donkey-antirabbit antibodies conjugated to horseradish per-
oxidase; Amersham), followed by a second series of washes in
TBS-T. Following these washes, blots were incubated in Super-
Signal West Pico chemiluminescence substrate (Pierce) and ex-
posed to x-ray film.

Cell Fractionation

Constituents of pea root apices were fractionated by stan-
dard methods (Devitt et al. 1999). Frozen tissue was ground
under liquid nitrogen, and soluble proteins were extracted
with homogenization buffer (HB; 50 mM Tris-HCl, pH 7.5, 2
mM EDTA, 28 mM 2-mercaptoethanol, 400 mM sorbitol,
and 2 mM PMSF). Samples were kept at 4�C during centrifu-
gation and otherwise kept on ice. Crude homogenates were
further disrupted by passing them through a 25-gauge needle
five times and then cleared by filtration through Miracloth.
The cleared homogenate was centrifuged at 20,000 g for 10 min.
The pellet was discarded. The supernatant above this pellet
was centrifuged at 150,000 g for 2 h. The resulting pellet,
which was enriched in microsomal membranes and ribo-
somes, was resuspended in HB (P150). A postribosomal super-
natant was also produced (S150). Three protein bands
thought to be forms of DRG2 were quite abundant in P150.
To analyze the nature of this association, resuspended P150
was separated into aliquots. The composition of these aliquots
was adjusted to give a final pH of 5.5, 7.5, or 10 or a final
NaCl concentration of 0.1, 0.25, 0.5, or 1.0 M (all at pH 7.5).
These samples then were centrifuged at 150,000 g to obtain a
second set of P150 fractions. These pellets were resuspended
in SDS sample buffer, electrophoresed on 12% acrylamide gels,
and analyzed by Western blotting with DRG2 antibodies.
Stability of 35S-labeled DRG2 synthesized by coupled in

vitro transcription and translation. Pea and Arabidopsis
DRG2 cDNA clones (Devitt et al. 1999) were used as tem-
plates for coupled in vitro transcription and translation using
the TnT kit (Promega). A standard 25 mL TnT reaction con-
tained the following: 0.5 mg of plasmid DNA; 0.5 U of T7
RNA polymerase, which produces sense RNAwith these plas-
mids; an amino acid mixture depleted of methionine; and
1 mL of 35S-Translabel, a mixture of labeled methionine and
cysteine (Amersham). The reaction was for 90 min at 30�C.
Samples were electrophoresed on 12% SDS-PAGE gels. For
fluorography, gels were fixed in 10% acetic acid and 30%

methanol, rinsed three times for 15 min in water, soaked in
Econo-Safe (Research Products) for 30 min, dried using a gel
drier, and exposed to x-ray film. This procedure produced
films showing a high level of background. For the experiments
presented here, the products of the TnT reactions were puri-
fied further by immunoprecipitation. Ten microliters of DRG2
antibodies were combined with the products of a TnT reaction
in a total volume of 100 mL in immunoprecipitation buffer
(IB; 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% NP-40,
and 0.5% sodium deoxycholate). None of the buffers used for
this experiment contained protease inhibitors. The reaction
was gently agitated on ice for 1 h. A 15-mL aliquot of Protein
A-Sepharose (Sigma P-3391) was then added and allowed to
incubate under the same conditions for 12 h. Complexes were
sedimented by centrifugation at 12,000 g for 20 s. Pellets were
resuspended and washed three times in each of the following
solutions: (1) IB; (2) 50 mM Tris, pH 7.5, 500 mMNaCl, 0.1%
NP-40, and 0.05% sodium deoxycholate; and (3) 50 mM
Tris, pH 7.5, 0.1% NP-40, and 0.05% sodium deoxycholate.
Aliquots of a single immunoprecipitated DRG2 TnT reaction
were incubated in the presence of homogenization buffer (50 mM
Tris-HCl, pH 7.5, 2 mM EDTA, 28 mM 2-mercaptoethanol)
or cleared extracts from mature root tissue or root apices pre-
pared in the same buffer. Equal amounts of total protein were
present in each tissue extract. Incubations were for 30 min on
ice or at 25�C. Samples were electrophoresed on 12% SDS-
PAGE gels and subjected to fluorography.

GTP Binding Assays

Methods for GTP binding assays were based on published
procedures (Pirovani et al. 2002). About 0.5 g of root apices
were ground in liquid nitrogen and resuspended in 5 mL of ice-
cold binding buffer (BB; 100 mM Tris-HCl, pH 7.5, 50 mM
KCl, 1 mM EDTA, 1% Triton-X, 1 mM PMSF, 0.1 mM DTT,
5 mM MgCl2). The homogenate was filtered through Mira-
cloth and centrifuged at 20,000 g for 20 min at 4�C in an
HB-6 rotor to produce a cleared homogenate (fig. 2, input). Be-
fore incubation with GTP-agarose (Sigma G-9768), 250 mL al-
iquots of the cleared homogenate were preincubated for 1 h on
ice with no additions (control) or with various nucleotides (2
mM GTP, 10 mM GTP, 10 mM GDP, or 10 mM ATP). GTP-
agarose was prepared by washing it three times in 50 mM Tris-
HCl, pH 6.8. Fifty microliter aliquots of GTP-agarose were
incubated with the homogenate samples for 5 h on ice with
gentle shaking. After incubation, the resin was collected by
centrifugation and then washed three times in BB. Bound pro-
teins were released from the resin by heating at 95�C in SDS
sample buffer. Samples were analyzed by SDS-PAGE and West-
ern blotting using DRG1 and DRG2 antibodies.

Ribosome Fractionation

About 1 g of pea root or root apex tissue was ground in liq-
uid nitrogen and immediately added to 10 mL protein isola-
tion buffer (PIB; 200 mM Tris-HCl pH 8.5, 50 mM KCl, 25
mM MgCl2; Davies and Abe 1995). Samples were kept at 4�C
during centrifugation and otherwise kept on ice. Debris was
removed by filtration through Miracloth to give a crude ho-
mogenate fraction. This homogenate was centrifuged at 3000 g
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for 10 min to give a cleared homogenate, which was also des-
ignated as the total fraction (T) in figures 3 and 4. Samples
containing ;5 mg of protein were layered over a 3.5-mL 60%
sucrose pad and centrifuged for 16 h at 170,000 g (Beckman
L8–70M, rotor 70.1 TI). The resulting pellet was resuspended
in 500 mL of PIB. This pellet, which contained ribosome sub-
units, monosomes, cytosolic polysomes, and membrane-associated
polysomes, was designated as the total ribosome pellet (P). The
postribosomal supernatant sample (S) also was analyzed.
The P fraction was fractionated further to produce four ri-

bosome populations. First, the resuspended pellet was centri-
fuged for 20 min at 27,000 g using a Sorvall HB-6 rotor to
separate microsomal ribosomes (pellet) and cytosolic ribo-
somes (supernatant). To release ribosomes from microsomal
membranes, the pellet was resuspended in 500 mL of PIB con-
taining 2 mM EGTA, 100 mg/mL heparin, 2% PTE, and 1%
DOC (Davies and Abe 1995). Microsomal monosomes were
separated from polysomes by centrifugation through a 60%
sucrose pad (2 h at 210,000 g using a Beckman 70.1 TI rotor).
The resulting supernatant contained microsomal monosomes
(MM), whereas the pellet contained microsomal polysomes
(MP). The total cytosolic ribosome sample (supernatant of
the first centrifugation described in this paragraph) were frac-
tionated as for microsomal ribosomes to produce cytosolic
monosome (CM) and cytosolic polysome (CP) fractions.
Ribosome-containing fractions were prepared on an equal-
volume basis. Proteins were concentrated by acetone precipi-
tation before analysis by Western blotting.
The following assay was used to determine whether cytosolic

DRG proteins could associate with ribosomes in vitro. Cleared
root apex homogenates (T) were prepared as described above.
Aliquots were incubated on ice or at 25�C for 2 h in the pres-
ence or absence of added nucleotides (GTP, GDP, or GTP-g-S,
each at 0.5 mM). After incubation, total ribosome pellet (P)
and postribosomal supernatant fractions (S) were prepared as
described and analyzed by Western blotting.

Affinity Purification of Arabidopsis Ribosomes

Zanetti et al. (2005) generated a transgenic line of Arabi-
dopsis (Col-0 background) that expressed ribosomal pro-
tein L18 (rpL18) with a dual His-FLAG peptide tag at its
N-terminus. This protein was chosen because it was expected
to be exposed on the solvent side of the 60S ribosome subunit.
These authors demonstrated that ribosomes (60S subunits,
80S monosomes, and polysomes), together with associated
mRNAs and proteins, could be purified by affinity methods
using anti-FLAG M2-agarose. Transgenic line 35S:HF-RPL18
is referred to here simply as L18.
We used L18 and control Col-0 plant extracts to examine

ribosome association with DRG proteins. Whole 7–10-d-old
seedlings grown on MS plates were used. Approximately 0.25
g of tissue was ground under liquid nitrogen and immediately
resuspended in 2 mL of polyribosome extraction buffer (PEB;
100 mM Tris-HCl, pH 9.0, 200 mM KCl, 25 mM EGTA, 36
mM MgCl2, 5 mM DTT, 50 mg/mL cycloheximide, 50 mg/mL
chloramphenicol, 1% PTE, 2% DOC). Homogenates were
centrifuged at 16,000 g for 30 min, after which the cleared su-
pernatant was removed as the ribosome-containing extract.
Equal amounts of protein were added in each pull-down as-

say, and volumes were equalized by adding PEB to a total of
500 mL per assay. A 50-mL aliquot of anti-FLAG M2-agarose
(Sigma A2220) was added to each assay. The reactions were
incubated on ice for 1.5 h with gentle shaking. After incuba-
tion, resin was pelleted at 1000 g for 30 sec, and the superna-
tant was removed. The resin was washed three times for 15
min each with 500 mL of fresh PEB (without PTE or DOC). Af-
ter the final wash, the resin was pelleted again. To elute bound
proteins from the resin, SDS sample buffer was added directly
to each reaction tube and heated at 95�C for 10 min. Heating
released resin-bound polysomes and anything bound to them.
Resin was removed by centrifugation at 14,000 g for 5 min.
The resulting supernatant contained the eluted protein sample.

Affinity Purification of Yeast Ribosomes

Yeast (Saccharomyces cerevisiae) strain YIT613 contains an
HF (His-FLAG) epitope tag fused to the C-terminus of ribo-
somal protein L25 (Inada et al. 2002). A functional rpL25 gene
is essential for cell viability. The wild-type allele of the rpL25
gene was disrupted during the generation of YIT613, indicating
that rpL25-HF is a functional component of translating ribo-
somes. As for Arabidopsis L18, 60S subunits, 80S monosomes
and polysomes can be readily purified from YIT613 cells using
anti-FLAG agarose.
Cultures of wild type and YIT613 were grown in 200 mL

YPD at 30�C according to standard procedures (Guthrie and
Fink 1991). Cells were collected by centrifugation in exponen-
tial phase (OD600 ¼ 0.8) or in postdiauxic phase (;18 h of
additional growth; OD600 ¼ 2.2; Fuge et al. 1994). Pellets
were resuspended in 700 mL of binding buffer (100mM Tris-
HCl, pH 7.5, 24 mM Mg(OAc)2, 1mM DTT, 1mM PMSF, 50
U/ml RNAsin) containing a protease inhibitor cocktail (Com-
plete Mini-EDTA Free, Roche) and lysed by vortexing in the
presence of 700 mL of sterile glass beads. Homogenates were
cleared by centrifugation in a microfuge at 10,000 rpm for 5
min, followed by a 20-min centrifugation at 10,000 rpm. The
resulting supernatant was removed as the homogenate sample.
For ribosome pull-down assays, 500 mL of homogenate in
binding buffer was mixed with anti-FLAGM2-agarose and in-
cubated for 2 h on ice with constant shaking. Resin was col-
lected by centrifugation at 1000 rpm and washed five times
with 1 mL of IXA-100 buffer (50 mM Tris-HCl, pH 7.5, 100
mM KCl, 12 mM Mg(OAc)2, 1 mM DTT, 1 mM PMSF).
Bound proteins were eluted with SDS sample buffer.

Results

In a previous report, we showed using differential centrifu-
gation that DRG2 was located predominantly in P150 and
S150 cell fractions of pea root apex. P150 was the 150,000 g
pellet, which was prepared from a supernatant depleted of
cell material that could be pelleted at 20,000 g. P150 was
expected to be enriched in microsomal membranes and
ribosomes, whereas the S150 supernatant contained the post-
ribosomal cytosolic components of the cell. P150 contained
protein bands recognized by DRG2 antibodies with apparent
masses of ;45, 43, and 30 kDa (fig. 1a). The nature of the in-
teractions between these bands and other components of the
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P150 fraction was investigated. To do so, the P150 pellet was
resuspended, aliquots were incubated under various condi-
tions, and the resuspended material was centrifuged again at
150,000 g. This second P150 pellet was analyzed by Western
blotting using DRG2 antibodies (fig. 1a). The effect of pH
was tested first (pH 7.5 was the control). All three bands could
be repelleted at pH 5.5 or 7.5. At pH 10, the 45- and 43-kDa
forms were released, whereas much of the 30-kDa band could
be repelleted. NaCl at 0.25 M was sufficient to release the 45-

and 43-kDa bands. In contrast, the 30-kDa band was still
bound at 0.5 M NaCl, but it could be released by 1 M NaCl.
Thus, all bands could be released under some conditions, the
45- and 43-kDa bands were released in tandem, and the 30-
kDa band was most firmly bound to other components of the
P150 fraction.
The relationship between the three bands recognized by

DRG2 antibodies was examined in an in vitro experiment.
Complementary DNA clones corresponding to the complete
coding regions of PsDRG2 and AtDRG2 were used as tem-
plates for coupled in vitro transcription and translation (TnT
kit, Promega). These reactions were performed in the presence
of 35S-labeled methionine and cysteine. The products of these
reactions were then analyzed by SDS-PAGE followed by fluo-
rography. A very high level of background obscured the ex-
pected products at 45 kDa (data not shown). As a refinement,
the products of the TnT reactions were further purified by im-
munoprecipitation with DRG2 antibodies. Following this pro-
cedure, PsDRG2 and AtDRG2 cDNAs each yielded a single
45 kDa band (fig. 1b). As a negative control, the luciferase
cDNA provided with the TnT kit was used as a template. No
precipitable bands were produced from this template.
Aliquots of the 45 kDa product of the PsDRG2 TnT reac-

tion were incubated with buffer, root apex extract, or mature
root extract on ice or at 25�C for 30 min. The reactions were
then subjected to SDS-PAGE followed by fluorography (fig.
1c). In the presence of buffer alone, the 45-kDa protein was
relatively stable at both temperatures. In the presence of an
extract from root apex or mature root, the 45-kDa protein ap-
peared to undergo proteolytic processing, first to a 43-kDa
protein, then to a 30-kDa protein, and finally to be fully de-
graded. This result suggests that the 43- and 30-kDa bands
observed in tissue extracts are specific proteolytic products of
the full-length DRG2 protein. Similar experiments were at-
tempted with root apex proteins labeled in vivo. However, we
were unsuccessful in immunoprecipitating DRGs in these ex-
periments.
A pea DRG1 gene has not been described previously. We

isolated a full-length pea DRG1 clone from an axillary cDNA
bud library using AtDRG1 as a probe. The PsDRG1 cDNA
(GenBank accession no. EU236700) contained an ORF that
would encode a protein of 368 amino acid residues and a pre-
dicted mass of 41.2 kDa. On the basis of BlastP alignments
(Schäffer et al. 2001), amino acid identity/similarity of PsDRG1
with PsDRG2 was 57%/74%, which is typical for DRG para-
logs from a given species. Similar comparisons of PsDRG1 with
DRG1 orthologs from Arabidopsis, Vitis, Oryza, and Chlamy-
domonas indicated levels of identity/similarity of 91%/95%,
92%/97%, 91%/96%, and 74%/86% (AAK59539, CAO71761,
BAC79856, and EDP08619, respectively). Similar to our previ-
ous work on Arabidopsis DRG1, our DRG1 antibodies specifi-
cally recognized a single band in pea tissues with an apparent
mass of ;43 kDa band, with very small amounts of a possible
degradation product seen only occasionally.
The ability of pea DRG1 and DRG2 from root apex ex-

tracts to bind to GTP was tested using GTP-agarose for pull-
down assays (fig. 2). DRG1 and the 45- and 43-kDa forms of
pea DRG2 bound to this resin, whereas the 30-kDa form of
DRG2 did not (lane 2). High concentrations of free nucleo-
tides in the incubation might inhibit DRG proteins from bind-

Fig. 1 Properties of protein bands recognized by DRG2 antibodies.

a, A P150 fraction (150,000 g pellet) from pea root apices was
resuspended in buffer at pH 7.5, incubated with various reagents for 30

min on ice, and then pelleted again at 150,000 g. This second P150

fraction was assayed for DRG2 bands byWestern blotting. The 45- and

43-kDa bands were released in tandem (e.g., by pH 10 or by NaCl at
0.25M higher concentrations). The 30-kDa band was released only by

1MNaCl. b,PsDRG2 (Pea) andAtDRG2 (Arab.) cDNAswere used as

templates for coupled in vitro transcription and translation in the pres-

ence of 35S-labeled amino acids. The products were immunoprecipitated
with DRG2 antibodies, separated by SDS-PAGE, and subjected to fluo-

rography. Each cDNA yielded a single 45-kDa band. Luciferase cDNA

(Luc.), a negative control,didnotyield anyprecipitablebands. c,Aliquots
of 35S-labeled pea DRG2 were incubated in the presence of buffer (Bu),
root apex extract (RA), ormature root extract (RT) for 30minon ice or at

25�C. Protease inhibitors were not included in the incubation or when

preparing the tissue extracts. DRG2 was stable in buffer at both
temperatures. When incubated with a tissue extract, DRG2 appeared to

be degraded first to a 43-kDa band and then to a 30-kDa band.
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ing to GTP-agarose. This was tested by preincubating tissue
extracts with nothing (control), GTP at 2 mM or 10 mM, or
GDP or ATP at 10 mM. GTP at 10 mM significantly reduced
the amount of binding of DRG1 and of the 45- and 43-kDa
forms of DRG2 (lane 4). In contrast, preincubation with 2 mM
GTP, 10 mM GDP, or 10 mM ATP did not reduce the amount
of binding to GTP-agarose (lanes 3, 5, and 6, respectively). The
ATP experiments (lane 6) were slightly overloaded, which may
account for a small amount of the 30-kDa form of DRG2 ap-
pearing in that sample.
Ribosomes were thought to be a major component of the

P150 fraction described above (fig. 1a). Experiments were
conducted to assay for interactions between ribosomes and
DRG proteins. Experiments were begun with equal amounts
of protein in each sample. First, total cleared homogenates (T)
were centrifuged through 60% sucrose pads to yield ribosome-
enriched pellets (P) and postribosomal supernatants (S). Total
ribosome pellets were subjected to differential centrifugation
to produce fractions enriched in four ribosome subpopula-
tions, namely, cytosolic monosomes (CM), cytosolic polysomes
(CP), microsome-associated monosomes (MM), and microsome-
associated polysomes (MP). Fractions were loaded on gels
based on equivalent volumes, so the protein content of these
fractions varied. A Coomassie stained gel of fractionated ex-
tracts from root apices showed many bands and relatively
high protein content in the CP, MP, and T fractions, a moder-
ate amount of protein in the CM and S fractions, and very lit-
tle in the MM fraction (fig. 3a). RPS6 is a component of the
40S ribosome subunit and consequently occurs in this subunit,
in 80S monosomes, and in polysomes. RPS6 is not known to
be present elsewhere in the cell. A Western blot probed with
RPS6 antibodies indicated a strong enrichment in the two

Fig. 2 GTP binding properties of pea DRG1 and DRG2. Input
(cleared homogenate from root apices) contained DRG1 and three

forms of DRG2. Pull-down samples contained proteins that became

bound to GTP-agarose. Before incubation with GTP-agarose, the other

aliquotswere incubated on ice for 5 hwith no additions (control), 2mM
GTP, 10 mMGTP, 10 mMGDP, or 10 mMATP. Preincubation with 10

mMGTP reduced the ability of DRG1 and the 43- and 45-kDa forms of

DRG2 to bind toGTP-agarose, but the other treatments did not. The 10

mM ATP lane is slightly overloaded, so a small amount of the 30-kDa
band appears in this lane.

Fig. 3 Copurification of DRG1 and DRG2 with various ribosome
types. A fraction enriched in all forms of ribosomes was subjected to

differential centrifugation to yield fractions enriched in cytosolic

monosomes (CM), cytosolic polysomes (CP), microsomal monosomes
(MM), and microsomal polysomes (MP). The postribosomal superna-

tant (S) and total extract (T) were also examined. Equal volumes of each

resulting fraction were assayed. a, A Coomassie-stained gel revealed

total protein content of each fraction. b, AWestern blot was probed for
RPS6, which occurs in 40S subunits, 80S monosomes, and polysomes.

Most of this protein occurred in polysomes (CP, MP), with a smaller

amount in the cytosolic monosome/40S fraction. None was found in S.

c, d, DRG1 was present in the cytosol of mature roots and root apices,
as well as in the CM fraction. Relatively little was present in the

polysome fractions. e, f, The fractionation patterns of the 43- and 45-

kDa forms of DRG2 in fractions from root apices were similar to those
of DRG1. In mature roots, however, these forms of DRG2 occurred in

the cytosol but not in any of the ribosome-enriched fractions. The

30-kDa form of DRG2 was highly enriched in both types of polysomes

from mature roots and root apices.
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polysome fractions, CP and MP (fig. 3b). A moderate amount
of RPS6 was present in the CM fraction, but very little oc-
curred in the MM fraction. RPS6 was not detected in S, indi-
cating that this fraction was depleted of ribosomes.
In addition to root apices, which contained actively dividing

and elongating cells, mature roots also were examined. The
patterns of DRG1 fractionation in roots and root apices were
very similar (fig. 3c, 3d). A significant amount of DRG1 occurred
in the S fraction and therefore was not associated with ribo-
somes. A small amount of DRG1 was associated with the two
polysome fractions (CP and MP), but a greater amount was
associated with the CM fraction, which contained 80S mono-
somes as well as 40S and 60S subunits. Given that the overall
abundance of ribosomes is considerably lower in CM than in
CP or MP, DRG1 appears to be considerably enriched in this
fraction. DRG2 fractionation patterns were more complicated
as a result of the presence of three forms of this protein (fig.
3e, 3f ). The 45- and 43-kDa forms tended to cofractionate. In
mature roots, these bands were detected only in S. In contrast,
in root apices, these bands were enriched in the CM fraction
and also were present in CP and MP; this fractionation pat-
tern is very similar to that of DRG1. The 30-kDa form of
DRG2 was strongly enriched in the two polysome fractions
(CP and MP) of both roots and root apices. It was barely de-
tectable in CM and was absent from S.
The previous experiment indicated that in root apices, some

of the DRG1 and the 45- and 43-kDa forms of DRG2 associ-
ated with ribosomes (mostly cytosolic monosomes) but that
much more remained in the postribosomal supernatant (fig.
3). An experiment was designed to test the ability of soluble
DRGs to associate with ribosomes in vitro. Cleared homoge-
nates were prepared from root apices and kept at 4�C during
centrifugation steps and on ice at other times. Then, aliquots
were incubated for 2 h either on ice or at 25�C. After incuba-
tion, a sample of total extract (T) was removed, and the
remainder was used to isolate ribosomal pellet (P) and postri-
bosomal supernatant (S) fractions. In incubations kept on ice,
relatively small amounts of DRG1 and almost none of the 45-
and 43-kDa forms of DRG2 occurred in the ribosome pellet
(fig. 4, ice/cont.). Following incubation of the extracts at
25�C, much more DRG1 and the DRG2 45- and 43-kDa
forms copurified with ribosomes (fig. 4, 25�C/cont.). At both
temperatures, the 30-kDa form of DRG2 occurred exclusively
in the ribosome pellet. Similar temperature shift incubations
were performed in the presence of 0.5 mM GDP, GTP, or
GTP-g-S. Neither GDP nor GTP affected the ability of DRG1
or DRG2 45 and 43 kDa to bind to ribosomes during incuba-
tion at 25�C (data not shown). However, inclusion of GTP-
g-S in the reaction reduced the amount of both DRG1 and
DRG2 that became bound to ribosomes (fig. 4; cf. P fractions
in 25�C/cont. and 25�C/GTP-g-S). The amounts of the 30-
kDa form of DRG2 and RPS6 in the ribosome pellet were un-
affected by any of these treatments.
Arabidopsis 35S:HF-RPL18 expresses a fusion between the

HF (His-FLAG) peptide and ribosomal protein L18 (Zanetti
et al. 2005). Ribosomes and anything bound to them can be
easily purified from extracts of ‘‘L18’’ plants using agarose
coupled to an anti-FLAG antibody for pull-down assays. We
used this system to examine ribosome association of DRGs in
whole Arabidopsis seedlings grown on MS plates (fig. 5a). In

control experiments, cell extracts from wild type or L18 were
used for pull-down assays and probed for RPS6. As expected,
the pull-down fraction from L18 plants contained this protein,
whereas that from wild-type plants did not. DRG1 also was
detected in the pull-down fraction from L18 plants. A signifi-
cant amount of the 30-kDa form of DRG2 also was present in
the FLAG pull-down fraction. In contrast, only small amounts
of the 45- and 43-kDa forms were present in this fraction.
Saccharomyces cerevisiae contains a DRG1 gene (YAL036c/

FUN11/RBG1) and a DRG2 gene (YGR173w/GIR1/RBG2).
The predicted molecular weight of each protein is ;41 kDa.
Each of these proteins is recognized by antibodies raised
against plant DRG1 or DRG2, and each has an apparent mo-
lecular weight of ;43 kDa. Yeast cell line YIT613 contains a
C-terminal FLAG-His tag on ribosomal protein L25 (Inada
et al. 2002). YIT613 does not contain a wild-type rpL25 gene,
so translation depends on rpL25-HF. Similar procedures were
used to affinity purify ribosomes from yeast cells as were used
for Arabidopsis. Cells were harvested in late exponential
phase (OD600 ¼ 0.8) and ;18 h later when cells were in post-
diauxic phase (OD600 ¼ 2.2). Samples containing equal
amounts of total protein from each strain and at each growth
phase were analyzed. DRG1 antibodies recognized a single
;43-kDa band from yeast, which comigrated with Arabidopsis
DRG1 (fig. 5b; Arabidopsis lanes are relatively overloaded).
DRG2 antibodies also recognized a single band at ;43 kDa.
The amount of yeast DRG1 and DRG2 in the total samples
was similar in exponential and postdiauxic phase cells. How-
ever, slightly less DRG1 and considerably less DRG2 was in
the ribosome pull-down fraction of postdiauxic phase cells
compared with exponential phase cells.

Discussion

The very high level of sequence conservation among eukary-
otic DRG1 and DRG2 orthologs implies that they play univer-

Fig. 4 Association of DRGs with ribosomes in vitro. Cleared ho-

mogenateswere prepared frompea root apices and kept on ice. Aliquots

were incubated for 2 h on ice or at 25�C, with or without 0.5 mMGTP-
g-S. The fractions analyzed were as follows: total cleared homogenates

(T), total ribosomes (P), and postribosomal supernatants (S). Western

blots were probed for the presence of DRG1, DRG2, and RPS6. In

controls (no GTP-g-S), a portion of DRG1 and DRG2 that had been in
the soluble fraction became associated with ribosomes during incuba-

tion at 25�C. This association was partly inhibited by GTP-g-S.
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sal and important roles in cell physiology. Nevertheless, an un-
derstanding of these functions remains elusive. Eukaryotic
DRGs and bacterial OBGs are members of the obglike family
of GTP binding proteins (conserved domain 01881; http://
www.ncbi.nlm.nih.gov/). These proteins share considerable
similarity in their GTP binding domains and also contain TGS
domains near their C-termini, which may be important for
RNA binding (Wolf et al. 1999). Interactions between ribo-

somes and OBG proteins are well documented. These interac-
tions may be important for linking cell stress to the regulation
of translation (Jiang et al. 2007). The primary goal of this report
was to investigate ribosome binding properties of DRG1 and
DRG2 proteins from pea, Arabidopsis, and yeast. Before discuss-
ing these results, we will address other aspects of this study.
DRG2 antibodies recognized protein bands with apparent

masses of ;45, 43, and 30 kDa in tissues from pea (figs. 1–4)
and Arabidopsis (fig. 5a; Stafstrom 2008). The actual sizes of
the two larger bands may be closer to 44.5 and 41 kDa. In or-
der to determine the identities of these bands, pea and Arabi-
dopsis DRG2 full-length cDNA clones were used as templates
for in vitro transcription and translation reactions. Immuno-
precipitation of the 35S-labeled products indicated that full-
length DRG2 from both plants has an apparent mass of ;45
kDa (fig. 1b). Labeled DRG2 synthesized in vitro was quite
stable when incubated in buffer on ice or at 25�C (fig. 1c).
However, incubation with cleared homogenates isolated from
either mature roots or root apices led to specific proteolysis of
the labeled 45-kDa band: an ;43-kDa band seemed to appear
first, followed by a 30-kDa band. The rate or extent of prote-
olysis may have been greater at 25�C and in the presence of
mature root extract. Most important, though, these results are
consistent with the hypothesis that the 43- and 30-kDa bands
isolated from plant tissues are specific proteolytic products of
full-length DRG2.
Protease inhibitors were not used for some experiments in-

volving ribosome purification (figs. 3, 4). Nevertheless, DRG
proteins isolated from pea tissues appeared to be quite stable.
For example, there were no marked differences between equiv-
alent samples kept on ice at all times and ones incubated at
25�C for 2 h (fig. 4). Some recent proteomic studies on ribo-
somes and ribosome-associated proteins from Arabidopsis and
Chlamydomonas also did not report using protease inhibitors
during purification (Chang et al. 2005; Manuell et al. 2005;
Carroll et al. 2008). Whereas DRG1 and DRG2 isolated from
tissues appeared to be stable, DRG2 synthesized in vitro and
combined with tissue extracts was processed to smaller forms
(fig. 1c). What might account for this discrepancy? One possi-
bility is that in cells, DRGs interact with stabilizing proteins.
A class of such proteins, called DFRPs (DRG family regula-
tory proteins), has been described (Ishikawa et al. 2005).
In Xenopus, DFRP1 interacts specifically with DRG1, and
DFRP2 interacts specifically with DRG2. Physical interaction
between a DRG and its DFRP partner inhibits polyubiquitina-
tion of DRG and its subsequent degradation. Engineered mu-
tations in the chicken DFRP1 gene reduced the accumulation
of DRG1 protein but not that of DRG2 (Ishikawa et al.
2005). DRG1 and DRG2 mRNA levels were unaffected in
these mutants. DFRP gene homologs also occur in plants and
fungi. We have found that a T-DNA knockout in the Arabi-
dopsis DFRP1 gene (At2g20280) reduces the accumulation of
DRG1 and that a knockout in DFRP2 (At1g51730) reduces
the accumulation of DRG2 (J. D. Kubic and J. P. Stafstrom, in
preparation). It is possible that DRG2 synthesized in vitro was
not stable in the presence of cell extracts because it was not
associated with a stabilizing partner, whereas DRGs isolated
from cells were stabilized by such associations.
We demonstrated previously using differential fractionation

techniques that pea DRG2 was localized predominantly in a

Fig. 5 Association of DRGs with FLAG-tagged ribosomes from

Arabidopsis and yeast. a, Homogenates were prepared from Arabi-
dopsis Col-0 wild-type (WT) and 35S:HF-RPL18 (L18) plants; the

latter expressed FLAG-tagged ribosomal protein L18. Anti-FLAGM2-

agarose was used to purify ribosomes and associated proteins. Total

cleared homogenates (T) and pull-down (PD) fractions were probed for
RPS6, DRG1, and DRG2 by Western blotting. None of these proteins

were pulled down in extracts fromwild-type plants. The PD fractions of

L18 plants contained RPS6, DRG1, and the 30-kDa form of DRG2.
Small amount of the 45- and43-kDa formsofDRG2alsowere in the PD

fraction. b, Homogenates were prepared from Saccharomyces cerevi-
siae YIT613 cells, which expressed FLAG-tagged ribosomal protein

L25. Cells were harvested in late exponential phase (EXP) or in
postdiauxic phase (PDP). Total (T) and pull-down (PD) fractions were

probed using DRG1 and DRG2 antisera. Each antiserum recognized a

single;43-kDa band. The amount of DRG1 and especially of DRG2 in

PD fractions was reduced in postdiauxic cells relative to exponentially
growing cells. Yeasts DRG1 and DRG2 are encoded by YAL036c and

YGR173w, respectively.
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150,000 g pellet fraction (P150) and in the supernatant of this
pellet (S150; Devitt et al. 1999). P150 is enriched in micro-
somal membranes and ribosomes, and S150 is the postriboso-
mal cytosolic fraction. On the basis of several types of
experiments presented here, DRG1 and DRG2 appear to co-
purify with ribosomes. Centrifugation of cell homogenates
through a 60% sucrose pad yields a pellet enriched in ribo-
some subunits, monosomes, and polysomes (Davies and Abe
1995). DRG1 and DRG2 also occur in this pellet (fig. 4).
This pellet was further fractionated to yield fractions en-
riched in cytosolic and microsomal monosomes and in cyto-
solic and microsomal polysomes (fig. 3). We examined root
tissues at two developmental stages. Root apices contain ac-
tively dividing and elongating meristematic cells, whereas
these processes have ceased in mature, fully elongated roots.
RPS6 was used as a marker for 40S subunits, 80S monosomes,
and polysomes (Williams et al. 2003). DRG1 and the three
forms of DRG2 showed distinct patterns of ribosome cofrac-
tionation. In both tissues, DRG1 was present in the cytosolic
fraction. A small amount of DRG1 cofractionated with the
two polysome fractions, but the majority of DRG1 was associ-
ated with cytosolic monosomes (on the basis of RPS6 levels,
membrane-associated monosomes were not abundant, so this
fraction will not be discussed). The enrichment of DRG1 with
cytosolic monosomes relative to polysomes is even more ap-
parent when compared with the amount of RPS6 in these frac-
tions. The 30-kDa form of DRG2 was highly enriched in
cytosolic and microsomal polysomes of root apices and mature
roots. Localization patterns of the 45- and 43-kDa forms of
DRG2 isolated from root apices were similar to those of
DRG1 in root apices and mature roots. In mature roots, how-
ever, these forms of DRG2 occurred in the cytosol but were
not found in any of the ribosome-containing fractions. Devel-
opmental differences in DRG-ribosome association were also
seen in yeast, most notably a considerable reduction in DRG2
in the ribosome pull-down fraction of postdiauxic phase cells
(fig. 5b). Rates of protein synthesis in postdiauxic cells are no
more than 10% of those of exponential cells (Fuge et al.
1994). Thus, yeast DRG2 appears to be associated primarily
with translating ribosomes.
The 45- and 43-kDa forms of DRG2 occur in both the cyto-

sol and the CM fraction (fig. 3), so initial attachment of
DRG2 to monosomes or subunits may occur in one of these
forms. Cleavage to produce the 30-kDa form might occur as
monosomes are formed or after translational elongation begins
to occur on polysomes. It is interesting that the 30-kDa form
binds to the translation machinery much more tightly than
the larger forms (fig. 1a). Since the 30-kDa form is essentially
absent from the cytosol, its fate at the end of a translational
cycle is unclear. Does it immediately interact with another
polysome? Is it immediately degraded? It is also not known
whether this form of DRG2 is necessary for some aspect of
translational elongation. Further biochemical studies, together
with analyses of mutants, should prove to be illuminating.
We are also interested in understanding how DRG1 and the

three forms of DRG2 interact with ribosomes. These associations
could involve protein-protein interactions with a ribosomal
protein or with a ribosome-associated protein. Interactions
also might result from rRNA-protein interactions mediated
by the DRG TGS domain. Recent large-scale proteomic studies

have examined the composition of ribosomes of Arabidopsis
(Chang et al. 2005; Carroll et al. 2008), Chlamydomonas
(Manuell et al. 2005), and other organisms. In addition to ri-
bosomal proteins per se, each study identified a number of
nonribosomal proteins that associate with ribosomes. None
of these studies detected DRGs among the latter group. A
study in yeast specifically sought to identify uncharacterized
ribosome-associated proteins, which were referred to as trans-
lation machinery–associated proteins, or TMAs (Fleischer et al.
2006). TMA46 is the yeast homolog of Xenopus DFRP1,
which, as described above, specifically interacts with DRG1
(Inada et al. 2002). TAP-affinity tags were fused to both
TMA46 and DRG1, and each tagged protein was able to in-
teract with the other protein in affinity assays (Fleischer et al.
2006). Thus, the association we observed between yeast FLAG-
tagged ribosomes and DRG1 and DRG2 (fig. 5b) may be me-
diated by indirect interactions.
DRGs contain canonical G boxes and switch domains

needed for binding guanine nucleotides (Leipe et al. 2002).
However, experimental evidence for GTP binding previously
was available only for DRG1 of mouse and Drosophila
(Sazuka et al. 1992; Sommer et al. 1994). We demonstrated
that pea DRG1 and DRG2 are capable of binding to GTP-
agarose (fig. 2). This binding could be partly inhibited by 10
mM GTP but not by 2 mM GTP or 10 mM GTP or ATP. In
contrast to these results, binding of soybean sucrose binding
protein to GTP-agarose could be inhibited completely by ei-
ther 2 mM GTP or GDP (Pirovani et al. 2002). Most G pro-
teins exchange GDP for GTP in response to a specific guanine
nucleotide exchange factor (GEF) and hydrolyze GTP to GDP
in response to a specific GTPase activation protein (GAP;
Bourne et al. 1990, 1991). Nothing is known about GEFs,
GAPs, or guanidine dissociation inhibitors that might regulate
GTP binding or hydrolysis by DRGs. Compared with most G
proteins, OBGs exhibit relatively low rates of GTP hydrolysis
and high rates of GTP/GDP exchange (Lin et al. 1999; Datta
et al. 2004). The high concentration of GTP needed to partly
inhibit DRG1 and DRG2 from binding to GTP-agarose may
reflect relatively high rates of guanine nucleotide exchange by
these proteins as well.
Unbound, cytosolic DRG1 and DRG2 appear to be capable

of binding to ribosomes in vitro following incubation at 25�C
for 2 h (fig. 4). This association could be partially inhibited by
0.5 mM GTP-g-S (fig. 4) but not by GTP or GDP at the same
concentration (not shown). Because GTP-g-S cannot by hy-
drolyzed, it would tend to lock DRG in the GTP-bound state.
As discussed above, though, it is not known whether DRGs,
like OBGs, can release GTP without hydrolyzing it. More
work needs to be done on the enzymology of GTP hydrolysis
and GTP/GDP exchange and on the effects of GTP-g-S and
GDP-b-S at a range of concentrations. Significantly, the ribo-
some reassociation assay should be a useful tool.
Since the 45-, 43-, and 30-kDa forms of DRG2 showed dis-

tinctive patterns of ribosome association (fig. 3), it would be
useful to know where full-length DRG2 is cleaved to produce
the smaller forms. DRG2 has a GTP binding domain within
the N-terminal ;30 kDa, which is followed by an ;10–12-
kDa TGS domain. In addition, DRG2 proteins of plants and
green algae contain an extension of ;32 residues at the
C-terminus that is not found in DRG1 or DRG2 from other
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organisms. The in vitro processing experiment suggested that
the 43-kDa form appears before the 30-kDa form (fig. 1c). On
the basis of Western blotting experiments of transgenic Arabi-
dopsis plants expressing an N-terminal GFP-DRG2 fusion
protein, we believe that this first cleavage occurs near the
C-terminus (B. J. Nelson and J. P. Stafstrom, in preparation). If
the second cleavage occurred nearer to the C-terminus, an
;30-kDa protein would be produced with an intact GTP bind-
ing domain. In this context, it is interesting to note that the
30-kDa form does not bind to GTP-agarose, whereas the larger
forms do (fig. 2). This result might indicate that the cleavage
that produces the 30-kDa form occurs within the GTP domain.
To clarify this matter, we are attempting to purify the 30-kDa
form of DRG2 in order to determine its N-terminal sequence.
In addition to showing interactions with pea ribosomes,

we also have demonstrated interactions between DRG1 and
DRG2 with ribosomes in Arabidopsis and yeast (fig. 5). Both
of these efforts utilized copurification of DRGs with ribo-
somes containing a FLAG-tagged ribosomal protein (Inada
et al. 2002; Zanetti et al. 2005). There is no published work
that directly addresses DRG-ribosome interactions. However,
the indirect ribosome-TMA46-DRG1 link in yeast is quite in-
triguing (Fleischer et al. 2006). Many additional suggestive
interactions are listed in the Biological General Repository
for Interaction Datasets (BioGRID; http://www.thebiogrid
.org/), which contains nearly 200,000 interactions gleaned
from many publications in the primary literature. A large
number of interactions come from high-throughput studies of
physical and genetic interactions in budding yeast. From this
compilation, yeast DRG1 (YAL036c) was suggested to inter-
act with translation initiation factors (TIF2, TIF4631), heat
shock proteins and chaperones (HSP70- and HSP90-related
genes), a component of the 26S proteasome protein degrada-
tion pathway (RPN1), and two DFRP domain-containing
genes (TMA46, GIR2), among others. From the same data
set, some of the genes/proteins suggested to interact with
yeast DRG2 (YGR173w) are as follows: a translation elonga-

tion factor (ELP2), a component of the amino acid starvation
pathway (GCN1), a number of genes involved in rRNA pro-
cessing and other aspects of ribosome biogenesis (POP7,
POP8, RRP5), and a DFRP2 homolog (GIR2). With the ex-
ception of GIR2, there was no overlap between these lists of
DRG1 and DRG2 interacters, suggesting that each plays a
distinct role in ribosome assembly or activity or other cellular
functions. For example, DRG1 interacted with two translation
initiation factors, whereas DRG2 interacted with a translation
elongation factor. Our ribosome fractionation experiments sug-
gest similar associations (fig. 3). Specifically, we documented
an enrichment of DRG1 in the CM ribosome fraction (which
includes 40S and 60S subunits and 80S monosomes, which
would be involved in translation initiation), and a highly
specific association between the 30-kDa form of DRG2 and
polysomes (where translation elongation factors would be
abundant). Also of interest is the association of DRG1 with
heat shock proteins and chaperones. OBG proteins, the bac-
terial cousins of DRGs, are associated with ribosomes and
implicated in mediating stress responses (Jiang et al. 2007).
In Arabidopsis, heat stress stimulates AtDRG3 mRNA accu-
mulation and also alters accumulation patterns of proteins
recognized by DRG antibodies (Stafstrom 2008). We are con-
tinuing to study relationships between plant stress, ribosome
activity, and DRG localization.
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