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France
3 Department of Mathematics, and Department of Mechanical and Aerospace Engineering,
University of California, Irvine, CA 92697-3875, USA

E-mail: bellout@math.niu.edu, Said.Benachour@antares.iecn.u-nancy.fr and etiti@math.uci.edu

Received 19 September 2002, in final form 18 June 2003
Published 22 August 2003
Online at stacks.iop.org/Non/16/1967

Recommended by P Constantin

Abstract
The global regularity for the two- and three-dimensional Kuramoto–
Sivashinsky equations is one of the major open questions in nonlinear analysis.
Inspired by this question, we introduce in this paper a family of hyper-viscous
Hamilton–Jacobi-like equations parametrized by the exponent in the nonlinear
term, p, where in the case of the usual Hamilton–Jacobi nonlinearity, p = 2.
Under certain conditions on the exponent p we prove the short-time existence
of weak and strong solutions to this family of equations. We also show the
uniqueness of strong solutions. Moreover, we prove the blow-up in finite time
of certain solutions to this family of equations when the exponent p > 2.
Furthermore, we discuss the difference in the formation and structure of the
singularity between the viscous and hyper-viscous versions of this type of
equation.

Mathematics Subject Classification: 35Q53, 35K55

1. Introduction

The Kuramoto–Sivashinsky equation (KSE)

φt + �2φ + �φ + 1
2 |∇φ|2 = 0, (1.1)

subject to the appropriate initial and boundary conditions, is an amplitude equation that
arises when studying the propagation of instabilities in hydrodynamics and combustion theory.
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Specifically, it appears in hydrodynamics as a model for the flow of thin soap films flowing
down an inclined surface, and in combustion theory as a model for the propagation of flame
fronts [20,29]. To avoid dealing with the average of the solution to this equation, most authors
consider, instead, the system of equations for the evolution of u = ∇φ

ut + �2u + �u + 1
2∇|u|2 = 0, (1.2)

which is also called the KSE. In the one-dimensional case, equation (1.2) was studied
by several authors both analytically and computationally (see, e.g. [5–7, 9, 10, 14–16, 18,
19, 25, 26, 31, 32] and references therein). In this case, it has been shown that the long-
term dynamics of this equation are finite-dimensional. In particular, it possesses a globally
invariant, finite-dimensional exponentially attracting inertial manifold. Thus, the long-term
dynamics of this equation are equivalent to those of a finite-dimensional ordinary differential
system.

The question of global regularity of (1.1) or (1.2) in the two-dimensional, or higher, case
is one of the major challenging problems in nonlinear analysis of partial differential equations.
Since u = ∇φ, equation (1.2) can be written as:

ut + �2u + �u + (u · ∇)u = 0, (1.3)

in which the nonlinearity takes a more familiar advection form. Let us assume that it is not
difficult to prove the short-time well-posedness for all regular initial data, or global well-
posedness for small initial data, for any of equations, (1.1), (1.2) or (1.3), at any spatial
dimension, subject to appropriate boundary conditions, such as periodic boundary conditions.
(See also the work of [28] for global well-posedness for ‘small’ but not ‘too-small’ initial
data in two-dimensional thin domains, subject to periodic boundary conditions.) However,
the major challenge is to show the global well-posedness for (1.2) or (1.3) in the two- and
higher-dimensional cases. It is clear that the main obstacle in this challenging problem is not
due to the destabilizing linear term �u. In fact, one can equally consider the system:

ut + �2u + (u · ∇)u = 0 (1.4)

or the equation

φt + �2φ + 1
2 |∇φ|2 = 0. (1.5)

Now, equations (1.4) and (1.5) are more familiar. These are hyper-viscous versions of the
Burgers–Hopf system of equations:

ut − �u + (u · ∇)u = 0 (1.6)

or its scalar version

φt − �φ + 1
2 |∇φ|2 = 0. (1.7)

Using the maximum principle for |u(x, t)|2 one can easily show the global regularity
for (1.6) in one, two and three dimensions, subject to periodic or homogeneous Dirichlet
boundary conditions [21]. Similarly, using the Cole–Hopf transformation v = e−φ/2 − 1,
one can convert equation (1.7) into the heat equation in the variable v and hence conclude
the global regularity in the cases of the Cauchy problem, periodic boundary conditions or
homogeneous Dirichlet boundary conditions (see, e.g. [21] and references therein). However,
it is clear that the maximum principle does not apply to equation (1.4) and the Cole–Hopf
transformation does not apply to (1.5); hence, the global regularity for (1.4) or (1.5) in two and
three dimensions is still an open question. Inspired by this question, and by virtue of (1.5), we
consider in this paper the hyper-viscous generalization of the Hamilton–Jacobi equation to the
initial boundary value problem with L2 initial data (2.2)–(2.4).
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In section 2, we introduce the problem under consideration and our functional setting. In
section 3, under certain constraints on the exponent p, we employ in section 3 the Galerkin
approximation procedure to establish the short-time existence of weak and strong solutions
to the initial boundary value problem (2.2)–(2.4). We observe that all the weak solutions
instantaneously become strong solutions. Moreover, we show in section 3 the uniqueness of
strong solutions. The uniqueness of weak solutions remains an open question. In section 4,
we show that certain solutions to the problem (2.2)–(2.4) blow-up in finite time, provided
p > 2. It is worth mentioning that the same results are proved by Souplet [30] to the following
generalization of the viscous Hamilton–Jacobi equation:

ut − �u = |∇u|p in Q∞, (1.8)

u = 0 on �∞, (1.9)

u(x, 0) = u0(x) in �, (1.10)

where �, �∞ and Q∞ are defined below in section 2. However, there is an essential difference
in the structure of the formation of singularities in problems (1.8)–(1.10) and (2.2)–(2.4). First,
we observe that regardless of the value of p, p � 0, problem (1.8)–(1.10) satisfies a maximum
principle, and hence the L∞(�) norm of the solutions to problem (1.8)–(1.10) remain bounded
for as long as the solutions exist. Thus, the solutions to (1.8)–(1.10) that blow-up in finite time
must develop their singularities in one of their spatial derivatives, while the L∞(�) norm
remains finite. On the contrary, for problem (2.2)–(2.4), we show that at the blow-up time,
the L2(�) norm of the solution and therefore the L∞(�) norm of the solution must tend to
infinity. This is a consequence of the fact that we obtain a lower bound on the existence time
which depends only on the L2 norm of the initial data u0. Notice that in this case, given
the boundary condition (2.3), some derivatives should also blow-up at the same time. This
remarkable observation is in a sense consistent with the common general belief that the hyper-
viscous operator �2 smooths the formation of singularities in the finer/smaller spatial scales
faster than does the viscous operator (−�). This is, of course, valid provided the solution
remains bounded in the L∞(�) norm, which is not the case for problem (2.2)–(2.4) since we
lost the maximum principle.

As we stressed above, our main case of concern is equation (1.4) or (1.5), i.e. the
equation (2.2) when p = 2. The question of global existence for problem (2.2)–(2.4), in
the case p = 2, is still open, while we have global regularity in this case, as we mentioned
earlier, for equations (1.6), (1.7) and (1.8) (when p = 2). In section 5, we consider this
case subject to radial symmetry. In particular, we show global existence for radial initial data
in a radially symmetric domain that excludes a neighbourhood of the origin. Thus, even in
this restricted case, the question of global well-posedness for equation (1.5) is still open. In
particular, one is tempted to look for a radially symmetric self-similar solution, which might
lead to a singularity in finite time, a subject of future research.

Finally, it is worth noting that by replacing the term |∇u|p in (1.8) or in (2.2) by the
nonlocal term |(−�)1/2u|p one gets equations that are, roughly speaking, of the same type
and structure as (1.8) and (2.2). However, it is shown in [27] that in the situation of nonlocal
equations, i.e. where the nonlinear term is |(−�)1/2u|p, certain solutions blow-up in finite
time, for p > 1 and at any spatial dimension including the one-dimensional case.

2. Notations

Let � be a smooth, bounded, open domain in R
n, p a given positive number and

Qt = � × (0, t), �t = ∂� × (0, t), �t = � × {t}. (2.1)
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We consider the hyper-viscous Hamilton–Jacobi-type initial boundary value problem

ut + �2u = |∇u|p in Q∞, (2.2)

u = �u = 0 on �∞, (2.3)

u(x, 0) = u0(x) in �, (2.4)

where |∇u| = (∇u, ∇u)1/2 and (·, ·) is the usual Euclidean dot product in R
n.

We will assume that

1 � p <
n + 8

n + 2
. (2.5)

Here, we will use the usual notation ‖u(·, t)‖s,q for the norm of u in the Sobolev space
Ws,q(�t).

We introduce the space

E = W 2,2(�) ∩ W
1,2
0 (�). (2.6)

By classical results of elliptic regularity the dot product 〈u, v〉 = ∫
�

�u�v dx makes E a
Hilbert space. We will denote the dual space of E by E′.

Next, we introduce the concepts of weak and strong solution. In both cases we will require
only enough regularity to be able to make sense of the quantities involved in equation (2.2).

Definition 1. A weak solution to problem (2.2)–(2.4) in the interval [0, T ) with u0 ∈ L2(�) is a
function u ∈ L2((0, T ); E)∩L∞((0, T ); L2(�)) for which ∂u/∂t ∈ L2((0, T ); W−n−2,2(�)),
|∇u|p ∈ L1(QT ) and u ∈ L2

loc((0, T ); W 4,2(�)). The boundary conditions are satisfied in the
sense of traces and initial condition (2.4) in the weak sense. The partial differential equation is
satisfied in the sense that for any φ(x, t) ∈ C∞(QT ) with compact support in QT the following
integral equality holds:∫ T

0

∫
�

∂u

∂t
φ dx ds +

∫ T

0

∫
�

�u�φ dx ds =
∫ T

0

∫
�

|∇u|pφ dx ds. (2.7)

Next, we will define strong solutions. Here, the emphasis is on being able to make sense
of the term utu. This will require higher integrability requirements on ut .

Definition 2. A strong solution in QT to problem (2.2)–(2.4) with u0 ∈ L2(�) is a weak
solution that also satisfies ∂u/∂t ∈ L2((0, T ); E′).

It is clear from our definitions that the boundary conditions would be satisfied in the sense
of traces. Also, a weak solution to the problem is C

1,4
t,x in the interior of QT ; therefore, the

partial differential equation would be satisfied in the usual sense.

3. Local existence and uniqueness

Theorem 1. Assume (2.5). For any u0 ∈ L2(�), there exists at least a maximal weak solution
u of (2.2)–(2.4).

Theorem 2.

1. Let u0 ∈ L2(�). If

1 � p � 2 for n � 3 and 1 � p <
n

n − 2
for n � 4, (3.1)

then every weak solution to problem (2.2)–(2.4) is a strong solution.
2. Assume (3.1), then strong solutions are unique.
3. Under assumption (2.5), for any u0 ∈ W 2,2(�), every weak solution of (2.2)–(2.4) is a

strong solution. Furthermore, in this case u ∈ L∞((0, T ); W 2,2(�)).
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4. Under assumption (2.5), for any u0 ∈ L2(�), every weak solution of (2.2)–(2.4)
instantaneously becomes a strong solution. That is, for any τ > 0 we have ∂u/∂t ∈
L2((τ, T ); E′).

Theorem 3. Assume (3.1) and u0 ∈ L2(�). Let u be any solution of (2.2)–(2.4) and denote
by T ∗ = T ∗(u) its maximal existence time. Then,

T ∗ � C‖u0‖−γ

0,2 , (3.2)

where γ = γ (p, n) > 0 and C = C(p, �). Moreover, if T ∗ < ∞, then

‖u(·, t)‖0,2 � C ′(T ∗ − t)−1/γ on [0, T ∗). (3.3)

Before proving these theorems we wish to start with some auxiliary results that consist of
some a priori estimates.

Lemma 1. Assume that (2.5) holds and let u ∈ L∞((0, T ); L2(�)) be a smooth solution to
problem (2.2)–(2.4). Then, there exists a constant C independent of u such that∫

�t

u2(x, t) dx �
∫

�

u2
0(x) dx + C

∫ t

0

(∫
�

u2(x, s) dx

)σ

ds, (3.4)

where

σ = 1 +
4(p − 1)

n + 8 − (n + 2)p
.

Proof of the lemma. Since u is assumed to be smooth we can multiply (2.2) by u and integrate
by parts so that we get

1

2

∫
�t

u2(x, t) dx +
∫ t

0

∫
�

(�u)2 dx ds = 1

2

∫
�

u2
0 dx +

∫ t

0

∫
�

u|∇u|p dx ds. (3.5)

We intend to estimate the term∫ T

0

∫
�

u|∇u|p dx ds.

Applying Hölder’s inequality we obtain∣∣∣∣
∫

�

u|∇u|p dx

∣∣∣∣ �
(∫

�

|u|s dx

)1/s

·
(∫

�

|∇u|ps ′
dx

)1/s ′

,

where (1/s) + (1/s ′) = 1. We choose s1 such that Ws1,2(�) is included in W 1,ps ′
(�). That is,

we assume ps ′ � 2 and we set

s1 = − n

ps ′ +
n

2
+ 1. (3.6)

We will use the following interpolation inequality (see, e.g. [33] p 186):

‖u‖s1,2 � c‖u‖θ
0,2 · ‖u‖1−θ

2,2 , (3.7)

where s1 = 2(1 − θ) for some θ ∈ (0, 1).
Assuming s1 < 2, we then have that for s1 = 2(1 − θ), and s ′ given by (3.6)(∫

�

|∇u|ps ′
dx

)1/s ′

� c‖u‖θp

0,2 · ‖u‖(1−θ)p

2,2 .

On the other hand, using interpolation inequalities and embedding results for Sobolev spaces
(see, e.g. [33] pp 186, 328) and assuming 0 � 1

2 − 1/s < 2/n we find that(∫
�

|u|s dx

)1/s

� c‖u‖θ1
0,2 · ‖u‖1−θ1

2,2 ,
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where
1

s
= 1

2
− 2(1 − θ1)

n

for some θ1 ∈ (0, 1).
Therefore,∣∣∣∣

∫
�

u · |∇u|p dx

∣∣∣∣ � c‖u‖θ1+θp

0,2 · ‖u‖(1−θ1)+p(1−θ)

2,2

� c‖u‖θ1+pθ

0,2 · ‖u‖1+p−(pθ+θ1)

2,2 . (3.8)

We need to have that 1 + p − (pθ + θ1) < 2. A direct calculation shows that this holds
whenever (2.5) is satisfied.

We will assume that

θ1 = 1 − n

4
+

n(s ′ − 1)

2s ′ and θ = 1

2
− n

4
+

n

2s ′p
. (3.9)

Using Young’s inequality (|ab| � c1|a|q + c2|b|q ′
) we then have∣∣∣∣

∫
�

|u||∇u|p dx

∣∣∣∣ � c‖u‖2σ
0,2 +

1

2
‖�u‖2

0,2, (3.10)

where we made use of the fact that ‖u‖2,2 
 ‖�u‖0,2, which is a classical elliptic regularity
result for functions that vanish on the boundary.

From (3.8), (3.9) and (3.10), it follows that

σ = θ1 + pθ

2
×

(
1 − (1 + p − (pθ + θ1))

2

)−1

.

Using (3.9), we find, after doing some elementary calculations, that

σ = −4 − n + np − 2p

−8 + 2p − n + np
= 1 +

4(p − 1)

n + 8 − (n + 2)p
,

we will observe that σ > 1 for p > 1.
We then deduce from (3.5), (3.8) and (3.10) that∫

�t

u2(x, t) dx +
∫ t

0

∫
�

(�u)2 dx ds �
∫

�

u2
0 dx + C

∫ t

0

(∫
�

u2 dx

)σ

ds, (3.11)

which proves the lemma.

Remark 1. We will explore the particular case n = 2 before continuing.
If we set p = (α(n + 8)/(2 + n)) for some (2 + n)/(n + 8) � α < 1. Then, we will

have that

σ = 3

5(1 − α)
.

Lemma 2. Assume that p > 1, that (2.5) holds and let u ∈ L∞((0, T ); L2(�)) be a smooth
solution to problem (2.2)–(2.4). Then, there exists a constant C, independent of u, and a time
T ∗ = 1/(σ − 1)‖u0‖2(σ−1)

0,2 C such that for all t < T ∗,∫
�t

u2(x, t) dx �
(

‖u0‖2(σ−1)
0,2

1 − (σ − 1)‖u0‖2(σ−1)
0,2 Ct

)1/(σ−1)

< ∞ (3.12)

and∫ t

0

∫
�

(�u)2 dx ds � ‖u0‖2
0,2 + Ct

(
‖u0‖2(σ−1)

0,2

1 − (σ − 1)‖u0‖2(σ−1)
0,2 Ct

)σ/(σ−1)

< ∞. (3.13)
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Proof of the lemma. For σ �= 1, the solution of the initial value problem

v′(t) = C(v(t))σ , v(0) =
∫

�

u2
0(x) dx (3.14)

is given by

v(t) =
(

‖u0‖2(σ−1)
0,2

1 − (σ − 1)‖u0‖2(σ−1)
0,2 Ct

)1/(σ−1)

.

We then deduce from estimate (3.4) of lemma 1 and Gronwall’s integral inequality (see, e.g.
[24] p 86]) that∫

�t

u2(x, t) dx � v(t) =
(

‖u0‖2(σ−1)
0,2

1 − (σ − 1)‖u0‖2(σ−1)
0,2 Ct

)1/(σ−1)

. (3.15)

Estimate (3.13) follows from (3.15) and estimate (3.11).

Remark 2. Notice that σ = 1 corresponds to p = 1. In this case, we have that v(t) = v(0)eCt .

The next lemma will be needed to prove theorem 2.

Lemma 3. Assume that

1 � p � 2 for n � 3 and 1 � p <
n + 8

n + 2
for n � 4 (3.16)

and let u ∈ L∞(0, T ; L2(�)) be a weak solution to problem (2.2)–(2.4). Then, |∇u|p ∈
L2((0, T ); Lr(�)), where r = 1 for n � 3, and r � 2n/(n + 4) for n � 4. Furthermore, there
exist constants C and q independent of u such that∫ T

0

(∫
�

(|∇u|p)r dx

)2/r

ds � C sup
0�t�T

‖u(., t)‖q

0,2

∫ T

0
‖u(., s)‖2

2,2 ds. (3.17)

Proof of the lemma. From interpolation inequalities and embedding results for Sobolev spaces
it follows that (∫

�

|∇u|pσ dx

)1/σ

� c‖u‖p

s,2 � c‖u‖θp

0,2 · ‖u‖(1−θ)p

2,2 , (3.18)

where

s = − n

pσ
+

n

2
+ 1 and s = 2(1 − θ) for some θ ∈ (0, 1/2]. (3.19)

It then follows that

θ = 1

2
− n

4
+

n

2σp
. (3.20)

We will now separate the case n � 3 from the case n � 4.

Case 1: n � 3. Setting δ = (2 − p)/2n, a direct calculation shows that for σ = (2/p) + δ

and 0 � δ � (1/2n), the constraints θ ∈ (0, 1/2] and σ � 1 are satisfied. Tedious but easy
calculations show that p(1 − θ) � 1.

Using Hölder’s inequality we then find that(∫
�

|∇u|p dx

)
� c|�|1−1/σ‖u‖θp

0,2 · ‖u‖(1−θ)p

2,2 , (3.21)

from which (3.17) can be easily deduced.
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Case 2: n � 4. Setting δ = p · (n + 2)/(n + 8), a direct calculation shows that for

σ = 2n

δ(n + 8) − 4
and

n + 2

n + 8
� δ < 1

the constraints θ = 1 − (1/p) ∈ (0, 1/2) and σ � 2n/(n + 4) are satisfied. Notice that
p(1 − θ) = 1.

Once again, (3.17) can easily be deduced from (3.18).

Next, let us prove theorem 1.

Proof of theorem 1. We will use the Galerkin method for establishing the existence of a
solution. For this purpose, we let wi , i = 1, 2, 3, . . . , be the eigenfunctions of the Laplace
operator in W

1,2
0 (�) orthonormalized with respect to the L2(�) norm. It is well known that

this set of eigenfunctions constitutes a basis of L2(�). We set Em := span{w1, . . . , wm}. For
fixed k we look for a function uk = ∑k

i=1 ai,k(t)wi(x), which solves the Galerkin truncated
system ∫

�

∂uk

∂t
φ dx +

∫
�

�uk�φ dx =
∫

�

|∇uk|pφ dx, (3.22)

ai,k(0) =
∫

�

u0wi dx i = 1, . . . , k. (3.23)

for every test function φ ∈ Ek .
This is a system of nonlinear ordinary differential equations for the k unknown coefficients

ai,k(t). For p � 1, this system of ordinary differential equations satisfies the conditions of the
Picard theorem. Therefore, it has a unique local solution a

(k)
i (t), i = 1, . . . , k in some interval

about t = 0.
Since uk ∈ Ek it can be used as a test function in (3.22). Following the same steps as

in the proof of lemma 2 we conclude that, for every k fixed, uk is in L∞((0, T ); L2(�)) ∩
L2((0, T ); W 2,2(�)) for all

T � T ∗
k = 1

(σ − 1)‖uk(x, 0)‖2(σ−1)
0,2 C

.

Since ‖uk(x, 0)‖0,2 � ‖u0(x)‖0,2 for all k, it follows that the T ∗
k are uniformly bounded

from below by

T ∗ = 1

(σ − 1)‖u0(x)‖2(σ−1)
0,2 C

. (3.24)

Proceeding as we did in the proofs of (3.12) and (3.13), we find that, for τ < T ∗ fixed, uk is
bounded in L∞((0, τ ); L2(�)) ∩ L2((0, τ ); W 2,2(�)) independently of k.

From the weak compactness of the sequence uk it follows that there exists a sub-sequence,
denoted again by uk , and a function u(x, t) such that for any t < T ∗

uk −→ u as k → ∞ in L∞
weak-star((0, t); L2

weak(�)), (3.25)

uk −→ u as k → ∞ in L2
weak((0, t); W

2,2
weak(�)). (3.26)

We intend to show that the sequence uk converges to a solution of equation (2.2). Because
of the presence of the nonlinear term |∇u|p in equation (2.2), the estimates we already have
will not be enough to establish the desired result.

Next, we will derive an estimate of ∂uk/∂t .
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For this purpose we let φ be a function in W
n+2,2
0 (�) and we decompose φ = φk +(φ−φk),

where φk is the L2 projection of φ onto the space Ek . It is well known (see [22]) that thanks
to the special choice of the sequence wi we have

‖φk‖n+2,2 � c‖φ‖n+2,2, (3.27)

where c is a constant independent of φ.
Because of the orthogonality property of the functions wi we have that∫

�t

∂uk

∂t
φ dx =

∫
�t

∂uk

∂t
φk dx

and since φk ∈ Ek it follows from (3.22) that∫
�t

∂uk

∂t
φ dx = −

∫
�t

�uk�φk dx +
∫

�t

|∇uk|pφk dx. (3.28)

We need to estimate the last term in the equality above.
From the Hölder inequality and the embedding of Wn+2,2 into L∞ for any n, we find that

for any q > 1∣∣∣∣
∫

�

|∇uk|pφk dx

∣∣∣∣ � ‖∇uk‖p

0,pq‖φk‖0,q ′ � c‖∇uk‖p

0,pq‖φk‖n+2,2|�|1/q ′
, (3.29)

where c is independent of φ and k.
Proceeding as we did in the proof of lemma 1, we find that

‖∇uk‖0,pq � c‖uk‖s,2 � c‖uk‖(1−θ)
0,2 · ‖uk‖θ

2,2, (3.30)

where
1

pq
= 1

2
− s − 1

n
.

We then find that s = (npq − 2n + 2pq)/2pq. We also have that s = 2θ , and therefore
θ = (npq − 2n + 2pq)/4pq. Hence, we have that∣∣∣∣
∫

�

|∇uk|pφk dx

∣∣∣∣ � c‖uk‖p(1−θ)

0,2 ‖uk‖pθ

2,2‖φk‖n+2,2 (3.31)

� c‖uk‖(2pq−npq+2n)/(4q)

0,2 ‖uk‖(npq−2n+2pq)/(4q)

2,2 ‖φk‖n+2,2. (3.32)

We recall that we are assuming that p < (n + 8)/(n + 2).
The constraint that s ∈ (1, 2) is satisfied whenever we choose q such that

2

p
� q for n � 2 and

2

p
� q � 2n

(n − 2)p
for n � 3. (3.33)

We would also like to have that pθ < 2. This is always the case whenever either
(n + 2)p − 8 � 0 or

q <
2n

(n + 2)p − 8
. (3.34)

For p < (n + 8)/(n + 2) and q satisfying (3.33) and (3.34), then, in (3.32) we have that the
exponent of ‖uk‖2,2 satisfies 0 < (npq − 2n + 2pq)/(4q) < 2. Assuming that uk is uniformly
bounded in L∞((0, t); L2(�)) and in L2((0, t); W 2,2(�)), we deduce from the above that∣∣∣∣

∫
�

|∇uk|pφk dx

∣∣∣∣ � cF (t)‖φk‖n+2,2, (3.35)

where for γ = (2/pθ) > 1, F(t) is bounded in Lγ (0, t) independently of k.
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On the other hand,∣∣∣∣
∫

�

�uk�φk dx

∣∣∣∣ � c‖uk‖2,2 · ‖φk‖n+2,2. (3.36)

Assuming that the dual of W
2+n,2
0 (�) is W−2−n,2(�), we deduce from (3.27), (3.28),

(3.35) and (3.36) that ∂uk/∂t is uniformly bounded in Lγ1((0, t); W−2−n,2(�)), where
γ1 = min(γ, 2).

It then follows from Aubin’s lemma (see, e.g. [22] p 57) that uk is compact in the strong
topology of L2(0, T , W 2−ε,2(�)) for any ε > 0. Therefore, for any r such that r < ∞ when
n � 2 and r < 2n/(n − 2) when n > 2, there is a subsequence of uk , denoted again by uk ,
such that ∇uk converges to ∇u strongly in L2(0, t; Lr(�)).

In order to show that the limit function u is a solution to the partial differential
equation (2.2) we will show next that ∀ψ ∈ C∞(QT ) we have that

∫ t

0

∫
�

|∇uk|pψ dx ds

converges to
∫ t

0

∫
�

|∇u|pψ dx ds as k goes to infinity. Notice that from lemma 3, we get that
|∇u|p ∈ L1(QT ).

Let ψ ∈ C∞(QT ). Then,∣∣∣∣
∫

�

(|∇uk|p − |∇u|p)ψ dx

∣∣∣∣ � c‖ψ‖0,∞‖(|∇uk| − |∇u|)‖0,r‖(|∇uk| + |∇u|)‖(p−1)

0,(p−1)r ′

� c‖ψ‖0,∞‖∇uk − ∇u‖0,r‖(|∇uk| + |∇u|)‖(p−1)

0,(p−1)r ′ ,

where r ′ is the conjugate of r .
Now, using interpolation inequalities, again we find that

‖∇uk‖0,(p−1)r ′ � c‖uk‖s,2 (3.37)

� c‖uk‖1−θ
0,2 ‖uk‖θ

2,2 (3.38)

with
1

(p − 1)r ′ = 1

2
− s − 1

n
and s = 2θ.

We then find that

θ = 1

4

(
n + 2 − 2n

(p − 1)r ′

)
.

We need to choose r ′ � 1 such that s ∈ [1, 2] and (p − 1)θ � 1.
We recall that p is subject to assumption (2.5).
In the case where n � 2, we only impose that r ′ > 1, and we find that the conditions

above are met whenever
3

2
(p − 1) − 2 � 1

r ′ � p − 1

2
for n = 1, (3.39)

(p − 2) � 1

r ′ � (p − 1)

2
for n = 2. (3.40)

For the case n � 3 we will also require that r � 2n/(n − 2) so we will denote
r = τ(2n/(n − 2)) and require that ((n − 2)/2n) � τ < 1. We recall that (1/r ′) = 1 − (1/r)

and we find that the constraints above are satisfied whenever τ is chosen such that the following
conditions are satisfied:

2n

n − 2
− n

n − 2
(p − 1) � 1

τ
� 2n

n − 2
− (p − 1) for n � 3 and p � 2, (3.41)

2n

n − 2
− n

n − 2
(p − 1) � 1

τ
� 2n

n − 2
− (p − 1) +

4

n − 2
(2 − p)

for n � 3 and p � 2. (3.42)
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Using (2.5) and (3.39)–(3.42), it is always possible to choose θ such that θ(p − 1) < 1.
Then, from (3.38) it follows that∣∣∣∣
∫

�

(|∇uk|p − |∇u|p)ψ dx

∣∣∣∣ � c‖ψ‖0,∞‖∇uk − ∇u‖0,r (1 + ‖uk‖2,2 + ‖u‖2,2), (3.43)

where we made use of the fact that uk is uniformly bounded in L∞((0, t); L2(�)).
Therefore, for any ψ ∈ C∞(QT )∫ t

0

∫
�

(|∇uk|p − |∇u|p)ψ dx ds −→ 0 as k → ∞ (3.44)

We then deduce from (3.28) that the limit u of the sequence uk satisfies∫ t

0

∫
�t

∂u

∂t
ψ dx ds +

∫ t

0

∫
�t

�u�ψ dx ds =
∫ t

0

∫
�t

|∇u|pψ dx ds (3.45)

for all ψ ∈ C∞(QT ) ∩ L2(0, t; W
1,2
0 (�)).

We also have that u belongs to W 1,2(0, t; W−2,2(�)), whence its trace at t = 0 is well-
defined, and that u(x, 0) = limk→∞ uk(x, 0) = u0(x).

To finish proving that the function u is a solution to the boundary value problem (2.2)–(2.4)
we still need to show that u satisfies �u = 0 on �t . For this purpose, we will need to have a
stronger estimate on the sequence uk . This is the purpose of the next lemma.

Lemma 4. Let τ and T be numbers such that 0 < τ < T < T ∗, and let uk be the sequence
of solutions to the Galerkin system (3.22)–(3.23). Then, there exists a positive number Mτ

such that ∫ T

τ

∫
�

(�2uk)
2 dx ds � Mτ . (3.46)

Proof of the lemma. Let τ and T be fixed. For each k we know from (3.13) that ‖uk(·, t)‖2,2

is bounded in L2(0, τ ) uniformly with respect to k. Therefore, there exists a time tk ∈ (0, τ )

such that

‖uk(·, tk)‖2,2 � 1

τ

∫ τ

0
‖uk(·, t)‖2,2 ds � c, (3.47)

where c is independent of k.
Since �uk ∈ Ek we can set φ = �2uk in (3.22) and integrate over (tk, T ). We then

get that∫
�

(�uk(x, T ))2 dx + 2
∫ T

tk

∫
�

(�2uk)
2 dx ds

=
∫

�

(�uk(x, tk))
2 dx + 2

∫ T

tk

∫
�

(�2uk)|∇uk|p dx ds. (3.48)

We need to estimate the last term in the inequality above. First, we get from using Young’s
inequality and (3.13) that∫

�

(�uk(x, T ))2 dx +
∫ T

tk

∫
�

(�2uk)
2 dx ds �

∫
�

(�uk(x, tk))
2 dx +

∫ T

tk

∫
�

|∇uk|2p dx ds.

(3.49)

Using Sobolev embedding and interpolation inequalities, we then find that

‖∇uk‖0,2p � c‖uk‖1−θ
0,2 ‖uk‖θ

4,2 � c‖uk‖1−θ
0,2 ‖�2uk‖θ

0,2 (3.50)
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for

θ = 1

4
+

n

8

(
1 − 1

p

)
.

Raising both sides to the power 2p and using Young’s inequality we then get that

‖∇uk‖2p

0,2p � c‖uk‖2p(1−θ)q

0,2 + 1
2‖�2uk‖2

0,2, (3.51)

where q is the conjugate of q ′ = 2/2pθ . An elementary calculation shows that
q = 8/(8 − 2p − np + n). It is easy to verify that for 1 � p < (n + 8)/(n + 2) we have
that 4/3 � q < ∞.

Combining (3.51) and (3.49) we get that∫
�

(�uk(x, T ))2 dx +
1

2

∫ T

tk

∫
�

(�2uk)
2 dx ds �

∫
�

(�uk(x, tk))
2 dx + c

∫ T

tk

‖uk‖2p(1−θ)q

0,2 ds.

(3.52)

Assuming that ‖uk‖0,2 is in L∞(0, T ) and that its norm in this space is bounded uniformly
with respect to k we then have that∫

�

(�uk(x, T ))2 +
1

2

∫ T

tk

∫
�

(�2uk)
2 dx ds �

∫
�

(�uk(x, tk))
2 dx + cT . (3.53)

We now use the fact that by our choice of tk we have that ‖uk(., tk)‖2
2,2 �

(1/τ)
∫ τ

0 ‖uk(., t)‖2
2,2 ds � c, where c is independent of k.

Therefore, we have that∫ T

τ

∫
�

(�2uk)
2 dx ds � Mτ, (3.54)

where Mτ is independent of k. This ends the proof of lemma 4.

We will now finish the proof of the existence of a weak solution.
From the basis we used in our Galerkin approximation it is immediate that uk = �uk = 0

on �T ∗ . Now, for τ > 0 we have, from lemma 4, that there exists a subsequence ukn
which

converges to u in L2
weak((τ, T ); W

4,2
weak(�)). Therefore by taking a sequence of τn which

converges to zero as n goes to infinity and using the usual diagonal procedure we can find a
subsequence ukm

such that for any τ > 0, ukm
will converge weakly in L2((τ, T ); W 4,2(�)) to

u. Furthermore, by virtue of (3.54), we also have∫ T

τ

∫
�

(�2u)2 dx ds � Mτ,

as required by weak solutions. From all the above we deduce that ∀τ > 0, �u = 0 on � as an
element of L2(τ, T ; W 3/2,2(�)). This finishes the proof of theorem 1.

Proof of theorem 2.

Remark 3. In the case p = 1, the proofs are very simple we will concentrate on the case
p > 1.

Since u is a weak solution, by definition, u ∈ L2((0, T ); E). Also, for any t > 0, and any
v ∈ E, we have that∫

�t

v�2u dx =
∫

�t

�v�u dx. (3.55)

Hence, �2u ∈ L2((0, T ); E′).
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Now let v ∈ L2((0, T ), E). Then by embedding theorems for Sobolev spaces we have
E ⊂ C0(�̄) for n � 3, E ⊂ Lδ(�)) ∀δ ∈ [1, ∞) for n = 4, and E ⊂ Lδ(�)) with
1 � δ � 2n/(n − 4) for n > 4.

It then follows from lemma 3 that |∇u|p ∈ L2((0, T ); E′).
We then deduce from the partial differential equation that ut ∈ L2((0, T ); E′).
Next, we will prove uniqueness.
Let u1, u2 be two strong solutions corresponding to the same initial u0. We denote

w = u1 − u2. Taking the difference of the equations satisfied by each function, we get that

∂w

∂t
+ �2w = |∇u1|p − |∇u2|p. (3.56)

Notice that all of the terms appearing in equation (3.56) are in L2((0, T ); E′). Since
the function w is in L2((0, T ); E), a well-known lemma from Lions–Magenes [23] (see
also [32]) implies that the function ‖w(t)‖L2 is absolutely continuous and that d/dt‖w(t)‖2

L2 =
2〈∂w/∂t, w〉E′ . Therefore, by taking the action of equation (3.56) on w and integrating by
parts we find that

1

2

∫
�t

w2(x, t) dx +
∫ t

0

∫
�t

(�w)2 dx ds =
∫ t

0

∫
�t

(|∇u1|p − |∇u2|pw dx ds

� c

∫ t

0

∫
�t

(|∇u1|p−1 + |∇u2|p−1)|∇w||w| dx ds.

(3.57)

The uniqueness will be derived using Gronwall’s inequality. For this purpose, we need to
derive some estimates of the last term in the inequality above.∫

�t

|∇u1|p−1|∇w||w| dx � c‖∇u1‖p−1
0,2(p−1)α′ ‖∇w‖0,2α‖w‖0,2, (3.58)

where α′ is the conjugate of α.
Using the Sobolev embedding theorem together with interpolation inequalities we

have that

‖∇w‖0,2α � c‖w‖1−θ
0,2 ‖w‖θ

2,2 � c‖w‖1−θ
0,2 ‖�w‖θ

0,2 (3.59)

for θ = 1
2 + (n(α − 1)/4α). In order that θ ∈ (0, 1) we will require that for n > 2 there holds

α � n

n − 2
⇐⇒ 1 − 1

α
= 1

α′ � 2

n
. (3.60)

Combining (3.57) with (3.59) and (3.58) and using Young’s inequality we find that

1

2

∫
�t

w2(x, t) dx +
∫ t

0

∫
�t

(�w)2 dx ds � 1

2

∫ t

0
‖�w‖θq ′

0,2 dx ds (3.61)

+c

∫ t

0

(‖∇u1‖q(p−1)

0,2(p−1)α′ + ‖∇u2‖q(p−1)

0,2(p−1)α′
)‖w‖(2−θ)q

0,2 ds,

where we use the notation ′ to refer to conjugates, and c refers to a generic constant.
Choosing q ′ = 2/θ , q = 2/(2 − θ) (where θ is as above) and absorbing the term∫ t

0 ‖w‖θq ′
2,2 dx ds on the right-hand side, we find from (3.61) that∫

�t

w2(x, t) dx � c

∫ t

0

(‖∇u1‖q(p−1)

0,2(p−1)α′ + ‖∇u2‖q(p−1)

0,2(p−1)α′
)‖w‖2

0,2 ds. (3.62)
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We now estimate ‖∇u1‖0,2(p−1)α′ in terms of ‖u1‖0,2 , and ‖u1‖2,2. Proceeding as we did
in estimating ‖∇w‖0,2α we get

‖∇u1‖0,2(p−1)α′ � c‖u1‖(1−γ )

0,2 ‖u1‖γ

2,2,

with

γ = 1

2
+

n((p − 1)α − α + 1)

4(p − 1)α
.

In order to have γ ∈ (0, 1) we will require that (2.5) be satisfied and that

(p − 1)

(
1 − 2

n

)
� 1

α′ � (p − 1)

(
1 +

2

n

)
. (3.63)

We then get from (3.62) that∫
�t

w2(x, t) dx � c

∫ t

0

(‖u1‖q(p−1)(1−γ )

0,2 ‖u1‖q(p−1)γ

2,2 + ‖u2‖q(p−1)(1−γ )

0,2 ‖u2‖q(p−1)γ

2,2

)‖w‖2
0,2 ds

� c

∫ t

0

(‖u1‖q(p−1)γ

2,2 + ‖u2‖q(p−1)γ

2,2

)‖w‖2
0,2 ds. (3.64)

To obtain (3.64) we used that ‖u1(t, ·)‖0,2, and ‖u2(t, ·)‖0,2, are bounded in L∞(0, T ),
and that q(p − 1)(1 − γ ) > 0. By the choice of q we have (2 − θ)q = 2. Now elementary
calculations show that

q(p − 1)γ = −2(2αp − 2α + nαp − 2nα + n)

−6α + nα − n
. (3.65)

Owing to (2.5) notice that q(p − 1)γ � 2 whenever 1/α′ � 6/n. Therefore, assuming
that (3.60) and (3.63) are satisfied, we then have that∫

�t

w2(x, t) dx � c

∫ t

0

(‖u1‖q(p−1)γ

2,2 + ‖u2‖q(p−1)γ

2,2

)‖w‖2
0,2 ds (3.66)

with ‖u1(s, ·)‖q(p−1)γ

2,2 ∈ L1(0, t), ‖u2(s, ·)‖q(p−1)γ

2,2 ∈ L1(0, t) and
∫
�t

w2(x, 0) dx = 0, from
which we deduce by Gronwall’s inequality that

∫
�t

w2(x, t) dx = 0, for all t > 0.
A compatibility condition between conditions (3.60) and (3.63) requires that

(p − 1)

(
1 − 2

n

)
� 1

α′ � 2

n
. (3.67)

This is easily seen to be satisfied whenever condition (3.1) holds.
To prove part 3 of theorem 2, we follow similar steps to those in the proof of theorem 1.

Since u0 ∈ W 2,2(�), one can easily establish a similar estimate to (3.52) to reach∫
�

(�u(x, t))2 dx +
1

2

∫ t

0

∫
�

(�2u)2 dx ds �
∫

�

(�u(x, 0))2 dx + c

∫ t

0
‖u‖2p(1−θ)q

0,2 ds,

(3.68)

for every t ∈ [0, T ). Here,

θ = 1

4
+

n

8

(
1 − 1

p

)
and q = 8

8 − 2p − np + n
.

Again, it is easy to verify that for 1 � p < (n+8)/(n+2) we have that 4/3 � q < ∞. Thanks
to definition 1, and to (3.68), we conclude that u ∈ L∞((0, T ); W 2,2(�)), from which we can
easily complete the proof of part 3 of theorem 2.

The proof of part 4 of theorem 2 can easily be deduced from the previous parts.
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Proof of theorem 3. Let u be a fixed maximal weak solution of (2.2)–(2.4) and T := T ∗(u)

its maximal existence time.
For each fixed t0 ∈ (0, T ), let wt0 be the maximal solution constructed in theorem 1

(see (3.24)), with initial condition wt0(t0) = u(t0). On the one hand, as a consequence of the
proof of theorem 1, we have:

T ∗(wt0) − t0 � C‖u(t0)‖−γ

0,2 .

On the other hand, clearly we have u(t0) ∈ W 2,2 (for a.e. t0), so that by theorem 2 (point 3)
wt0 is a strong solution. Also, by theorem 2 (point 4), we know that u is a strong solution
for t � t0. It then follows from theorem 2 (point 2) that u and wt0 coincide on their common
existence interval. Since u is a maximal solution, it follows that:

T � T ∗(wt0) � t0 + C‖u(t0)‖−γ

0,2 , for a.e. t0 ∈ (0, T ).

This yields

‖u(t0)‖0,2 � C
′
(T − t0)

−1/γ ,

that is (3.3).
Since, by definition 1, u(t) converges to u0 weakly in L2 as t → 0, we have:

‖u0‖0,2 � lim sup
t→0

‖u(t)‖0,2

and (3.2) follows from (3.3).

4. Finite time blow-up

We will show here that under certain assumptions the solution u to problem (2.2)–(2.4) blows
up in finite time. For this purpose, we start by introducing some notation and recalling some
well-known results.

It is well known (see, e.g. [17] and the references therein) that under the assumptions we
made on �, the eigenvalue problem

−�ψ = λψ ψ ∈ W
1,2
0 (�) (4.1)

has a smallest positive eigenvalue λ = λ1 and that the associated eigenfunction φ does not
vanish in �. Notice that φ ∈ W 2,2(�) ∩ W 1,∞(�). We, therefore, can choose a φ such that
φ > 0 in � and

∫
�

φ dx = 1. Furthermore, it can be proved (see [2, 3, 30] and the references
therein) that ∫

�

φ−α dx = C(α, �) < ∞ ∀α ∈ (0, 1). (4.2)

Proposition 1. Assume p > 2 and let u0 ∈ L2(�) satisfy
∫
�

u0(x)φ(x) dx > M =
M(�, p) > 0 sufficiently large. Then, problem (2.2)–(2.4) cannot admit a globally defined
weak solution. Indeed, there exists T # = T #(M) > 0 such that either u ceases to exist before
T #, or the quantity z(t) = ∫

�
u(x, t)φ(x) dx satisfies limt→T #− z(t) = +∞.

Proof. The proof follows the well-known technique of Kaplan introduced in [17]. Multiplying
equation (2.2) by φ and integrating over � we find∫

�t

utφ dx +
∫

�t

(�2u)φ dx =
∫

�t

|∇u|pφ dx.
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Integrating the term
∫
�t

(�2u)φ dx by parts enough times, and using that φ is an
eigenfunction we find that∫

�

(�2u)φ dx =
∫

�

u(�2φ) dx = (λ1)
2
∫

�

uφ dx.

Therefore, setting z(t) = ∫
�

u(x, t)φ(x) dx, we have that

z′(t) + λ2
1z(t) =

∫
�

|∇u|pφ(x) dx. (4.3)

Using Poincaré’s inequality, one can then show that∫
�

|∇u|pφ(x) dx � c

∣∣∣∣
∫

�

u(x, t)φ dx

∣∣∣∣
p

, (4.4)

where c is a positive constant. See, for example, [2, 3, 30] and the references therein for a
complete proof of this estimate. For convenience, we will provide here a quick sketch of this
proof: note that∫

�

|∇u| dx �
∫

�

|∇u|φ1/pφ−1/p dx �
(∫

�

|∇u|pφ dx

)1/p (∫
�

φ−p′/p dx

)1/p′

, (4.5)

where p′ is the conjugate of p.
Now,

|z(t)|p � ‖φ‖p

L∞(�)

(∫
�

|u| dx

)p

� ‖φ‖p

L∞c

(∫
�

|∇u| dx

)p

, (4.6)

where Poincaré’s inequality was used. Observe that (4.4) follows from (4.5) and (4.6).
Combining (4.4) with (4.3) we get that

z′(t) + λ2
1z(t) � c|z(t)|p. (4.7)

Now if z(0) � (λ2
1/c)

1/(p−1) ≡ M then it follows from the inequality above that z(t) �
(λ2

1/c)
1/(p−1), ∀t > 0.

Therefore, we have that there exist constants a0 and a1 such that

z′(t) � a0(z − a1)
p

and z(0) � a1. Hence,

z(t) � a1 +

(
1

A − Bt

)1/(p−1)

,

where A = (z(0) − a1)
(1−p) and B = (p − 1)a0.

Consequently, either z(t) ceases to exit before the time Tblow-up = A/B or it becomes
infinite at the time Tblow-up = A/B.

Remark 4. We observe that a similar proof is used in [30] to prove the blow-up of
certain solutions to problem (1.8)–(1.10), for p > 2. However, since each solution to
problem (1.8)–(1.10), for p > 2, satisfies a maximum principle, the L∞(�) norm of the
solution remains finite for as long as the solution exists. Since the solution, nonetheless, blows
up, it follows that some of the derivatives of the solution must become singular in a finite time.

Next we will show that under certain conditions genuine blow-up, in the sense of [12], of
the solution does occur.
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Theorem 4. Assume n � 3 and 2 < p < (n + 8)/(n + 2). Let u0 ∈ L2(�) satisfy∫
�

u0(x)φ(x) dx > M = M(�, p) > 0 sufficiently large. Then, for any maximal weak
solution u of the problem (2.2)–(2.4), it holds T ∗ < ∞. Furthermore, u satisfies

lim
t→T ∗

‖u(·, t)‖0,2 = ∞ and therefore lim
t→T ∗

‖u(·, t)‖∞ = ∞. (4.8)

Proof. This is an immediate consequence of proposition 1. Indeed, if T ∗ = ∞ it would imply
that u ∈ L∞(0, T ; L2(�)) for all T < ∞, which clearly contradicts proposition 1. As for
(4.8) it directly follows from theorem 1.

Remark 5. It is clear from part 3 of theorem 2 (see also (3.68)) and theorem 4 that for as long
as the L∞(�) norm of the solution u remains finite, the W 2,2(�) norm of the solution remains
finite as well. That is, the derivatives do not become singular before the L∞(�) norm blows
up. This is different from the behaviour of the singular solutions to problem (1.8)–(1.10) as is
observed in remark 4, and as we have already mentioned in section 1.

Remark 6. Estimate (4.4) does not hold for the case p � 2. First, we present a direct proof for
the case of p < 2. To see this, let n = 1 and � = (0, π), so that φ(x) = sin(x). Now consider
the sequence of functions uk(x) = kx, for 0 � x � 1/k, uk(x) = 1, for 1/k � x � π − 1/k,
and uk(x) = (π − x)k for π − 1/k � x � π . It is then easy to see that

lim
k→∞

∫
�

|∇uk|pφ(x) dx = 0 (4.9)

while

lim
k→∞

∫
�

ukφ(x) dx = 2 �= 0. (4.10)

For the case p = 2 we give an indirect proof. Suppose (4.4) is true for p = 2. Following
the work of Souplet [30] and applying this inequality one can show that certain solutions to
equation (1.10) (for p = 2), i.e. equation (1.7), blow-up in finite time. This is certainly not
true, because, as we have mentioned in section 1, the scalar Burgers equation (1.7) has global
regularity.

Remark 7. The theorem of this section would still hold for �2u replaced by (−�)ku, k integer
and appropriate boundary conditions.

5. Global existence of a radial solution in an annulus with Neumann boundary
conditions

In this section, we will consider the case where � is an annulus. We will assume that

� = {x ∈ R
2 such that 0 < r0 < ‖x‖ < R1}, (5.1)

where r0 and R1 are given positive numbers.
We will then consider problem (2.2)–(2.4), in � with p = 2, but with Neumann boundary

conditions, i.e.

ut + �2u = |∇u|2 in Q∞, (5.2)
∂u

∂r
= ∂�u

∂r
= 0 on �∞, (5.3)

u(x, 0) = u0(x) in �. (5.4)

Notice that now � = {x such that ‖x‖ = r0 or ‖x‖ = R1}. In this section, we will assume
that the initial condition u0 is a radial function, i.e.

u0(x) = u0(r). (5.5)
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Following a procedure similar to the one introduced in section 3, one can show the short-
time existence and uniqueness of solutions to system (5.2)–(5.4) for any smooth initial condition
(not necessarily a radial function). Since the above problem is equivariant under rotation and
since u0 is assumed to be a radial function, one can search for radial solutions as an ansatz to
this end and obtain the following reduced radial system of PDEs:

ut +

(
∂2

∂r2
+

1

r

∂

∂r

)2

u =
∣∣∣∣∂u

∂r

∣∣∣∣
2

in Q∞, (5.6)

∂u

∂r
= ∂

∂r

(
∂2

∂r2
+

1

r

∂

∂r

)
u = 0 on �∞, (5.7)

u(x, 0) = u0(x) in �, (5.8)

u0(x) = u0(r). (5.9)

Once we establish the existence of solution to the reduced radial problem (5.6)–(5.9),
by the uniqueness of the solutions to problem (5.2)–(5.4), we may conclude that this radial
solution is the only solution to problem (5.2)–(5.4). Later, we show that this radial solution
exists globally in time, and by this, we establish the global existence and uniqueness of solutions
to problem (5.2)–(5.4) with radial initial data. Based on the above observation, we will deal,
from now on, only with the ansatz radial solution and the reduced radial system (5.6)–(5.9).

Next, we will derive some a priori estimates.

Lemma 5. Let u(r, t) be a radially symmetric solution to problem (5.2)–(5.4), so that
(5.6)–(5.9) hold. Then,∫ R1

r0

u2
r (r, t) dr � ec·t

∫ R1

r0

u2
r (r, 0) dr (5.10)

and ∫ T

0

∫ R1

r0

u2
rrr (r, t) dr dt � 2ec·T

∫ R1

r0

u2
r (r, 0) dr, (5.11)

where the constant c depends only on the domain �.

Proof of the lemma. Multiplying equation (5.2) (or (5.6)) by (1/r)urr and integrating by
parts in space we get

1

2

∫ R1

r0

u2
r (r, t) dr +

∫ t

0

∫ R1

r0

∇(�u)∇
(

1

r
urr

)
r dr ds = 1

2

∫ R1

r0

u2
r (r, 0) dr. (5.12)

Here, we have used the following immediate consequence of our boundary conditions (5.3):∫ R1

r0

u2
r (r, t)urr (r, t) dr = 0. (5.13)

Assuming that the function u is radially symmetric and that the Laplace operator restricted
to such functions is given by

� = ∂2

∂r2
+

1

r

∂

∂r

and that

∇ = �r
|�r|

∂

∂r
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we find that∫ R1

r0

∇(�u)∇
(

1

r
urr

)
r dr =

∫ R1

r0

(
urrr +

urr

r
− ur

r2

) (
urrr − urr

r

)
dr

=
∫ R1

r0

(urrr )
2 dr −

∫ R1

r0

(urr

r

)2
dr −

∫ R1

r0

(
urrr

ur

r2

)
dr

+
∫ R1

r0

(ururr

r3

)
dr. (5.14)

It then follows from (5.12) that

1

2

∫ R1

r0

u2
r (r, t) dr +

∫ t

0

∫ R1

r0

(urrr )
2 dr ds = 1

2

∫ R1

r0

u2
r (r, 0) dr +

∫ t

0

∫ R1

r0

(urr

r

)2
dr ds

+
∫ t

0

∫ R1

r0

(
urrr

ur

r2

)
dr ds −

∫ t

0

∫ R1

r0

(ururr

r3

)
dr ds. (5.15)

Using the Cauchy–Schwarz and Young inequalities to estimate the term | ∫ R1

r0
(urrr (ur/r

2)) dr|
and integrating the term

∫ R1

r0
(ururr/r

3) dr by parts in space we get from (5.15) that

1

2

∫ R1

r0

u2
r (r, t) dr +

1

2

∫ t

0

∫ R1

r0

(urrr )
2 dr ds � 1

2

∫ R1

r0

u2
r (r, 0) dr +

∫ t

0

∫ R1

r0

(urr

r

)2
dr ds

+
1

2

∫ t

0

∫ R1

r0

(ur

r2

)2
dr ds +

3

2

∫ t

0

∫ R1

r0

(
u2

r

r4

)
dr ds. (5.16)

Next, we will estimate the term
∫ R1

r0
(urr/r)2 dr . Working in W

2,2
0 (r0, R1) we find from

interpolation inequalities of the type of (3.7) that∫ R1

r0

(urr )
2 dr � c1

(∫ R1

r0

u2
r dr

)1/2 (∫ R1

r0

u2
rrr dr

)1/2

, (5.17)

where the constant c1 depends only on the domain. Using the Young inequality we then get∫ R1

r0

(urr

r

)2
dr � 4c2

1

r4
0

∫ R1

r0

u2
r dr +

1

4

∫ R1

r0

u2
rrr dr. (5.18)

It then follows from (5.16) that

1

2

∫ R1

r0

u2
r (r, t) dr +

1

4

∫ t

0

∫ R1

r0

(urrr )
2 dr ds � 1

2

∫ R1

r0

u2
r (r, 0) dr

+

(
4c2

1

r4
0

+
2

r4
0

) ∫ t

0

∫ R1

r0

ur
2 dr ds. (5.19)

Setting

c = 2

(
4c2

1

r4
0

+
2

r4
0

)
,

we then have that∫ R1

r0

u2
r (r, t) dr �

∫ R1

r0

u2
r (r, 0) dr + c

∫ t

0

∫ R1

r0

u2
r dr ds, (5.20)

from which we deduce (5.10) by Gronwall’s inequality.
The estimate (5.11) can be deduced from (5.10) and (5.19) by elementary calculations.



1986 H Bellout et al

Lemma 6. Let u(r, t) be a radially symmetric solution to problem (5.2)–(5.4). Then,∫ R1

r0

u2(r, t) dr � et R1

r0

∫ R1

r0

u2(r, 0) dr + (tet + 1)
16c2R2

1

r2
0

e4ct

(∫ R1

r0

u2
r (r, 0) dr

)3

, (5.21)

where the constant c depends only on the domain �.

Proof of the lemma. Multiplying equation (5.2) by u and integrating by parts in space we get

1

2

∫ R1

r0

u2(r, t)r dr +
∫ t

0

∫ R1

r0

(�u)2r dr ds = 1

2

∫ R1

r0

u2(r, 0)r dr +
∫ t

0

∫ R1

r0

u(ur)
2r dr ds.

(5.22)

We will estimate the last term on the right-hand side of the above equality:∣∣∣∣
∫ t

0

∫ R1

r0

u(ur)
2r dr ds

∣∣∣∣ � R1

∫ t

0

(
‖u(·, s)‖0,∞

∫ R1

r0

(ur)
2 dr

)
ds

� R1ect

(∫ R1

r0

u2
r (r, 0) dr

) ∫ t

0
‖u(·, s)‖0,∞ ds, (5.23)

where (5.10) was used. Using embedding results for Sobolev spaces and interpolation
inequalities (see, e.g. [1]) we have that

‖u(·, t)‖0,∞ � c

(∫ R1

r0

u2(r, t) dr

)1/2 (∫ R1

r0

u2
rrr (r, t) dr

)1/2

. (5.24)

Using (5.11) and the Cauchy–Schwarz inequality we then find that∫ t

0
‖u(·, t)‖0,∞ ds � c

(∫ t

0

∫ R1

r0

u2(r, t) dr ds

)1/2

(2ec·t )1/2

(∫ R1

r0

u2
r (r, 0) dr

)1/2

. (5.25)

We then get from (5.22)–(5.25) that∫ R1

r0

u2(r, t) dr � R1

r0

∫ R1

r0

u2(r, 0) dr

+

√
2cR1

r0
e2ct

(∫ R1

r0

u2
r (r, 0) dr

)3/2 (∫ t

0

∫ R1

r0

u2(r, t) dr ds

)1/2

� R1

r0

∫ R1

r0

u2(r, 0) dr +
8c2R2

1

r2
0

e4ct

(∫ R1

r0

u2
r (r, 0) dr

)3

+

(∫ t

0

∫ R1

r0

u2(r, s) dr ds

)
. (5.26)

By integration it follows that∫ t

0

∫ R1

r0

u2(r, s) dr ds � (et − 1)
R1

r0

∫ R1

r0

u2(r, 0) dr + tet 8c2R2
1

r2
0

e4ct

(∫ R1

r0

u2
r (r, 0) dr

)3

.

(5.27)

The lemma immediately follows from substituting (5.27) in (5.26).

We are now ready to give the main theorem of this section.
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Theorem 5. Assume that the initial condition u0 is a radially symmetric function and that
u0 ∈ W 1,2(�). Then, there exists a function u(r, t) defined for all t > 0, such that

u ∈ L∞
loc([0, ∞); W 1,2(�)), (5.28)

u ∈ L2
loc([0, ∞); W 3,2(�)) (5.29)

and u is the unique radially symmetric solution to problem (5.2)–(5.4). Furthermore, u satisfies
estimates (5.10), (5.11) and (5.21).

Proof of theorem 5. We will first show the existence of a solution for a short time. Then, we
will show that such a solution in fact exists for all time.

We will use the Galerkin method to show the existence of a solution for a short time. For
this purpose, we let wi , i = 1, 2, . . . , be an orthonormalized basis for L2(�). It is well known
that we can choose the special basis made of functions that satisfy

�ψi = µiψi in �,
∂ψi

∂r
= 0 on ∂�. (5.30)

It is easy to see that these functions are radially symmetric. We proceed as we did in
the proof of theorem 1 and use the same notation as we did there. For k fixed we look for a
function uk = ∑k

i=1 ai,k(t)wi(r) such that∫
�

∂uk

∂t
φ dx +

∫
�

�u�φ dx =
∫

�

(∇uk)
2φ dx, (5.31)

ai,k(0) =
∫

u0wi dx i = 1, . . . , k (5.32)

for all φ ∈ Ek .
As before, the existence and uniqueness of uk follows from the Picard theorem. That the

function uk satisfies the boundary conditions follows from the choice of the special basis.
Since uk ∈ Ek it can be used as a test function in (5.31). Setting φ = uk in (5.31),

proceeding as we did in the proof of 3.4, and using the estimate

‖u‖1,4 � c‖u‖1/4
0,2 (‖u‖0,2 + ‖�u‖0,2)

3/4, (5.33)

we get that∫
�T

u2
k(x, T ) dx +

∫ T

0

∫
�

(�uk)
2 dx ds �

∫
�

u2
k(x, 0) dx (5.34)

+ c

∫ T

0

(∫
�

u2
k dx

)3

ds, (5.35)

where the constant c is independent of k.
Using differential inequalities as we did in the proof of lemma 1, we then find that there

exists a time T ∗ > 0, which depends on the initial condition u(x, 0), such that the sequence uk

is uniformly bounded in L∞((0, T ∗); L2(�)) ∩ L2((0, T ∗); W 2,2(�)). We then deduce that
there exists a subsequence uk and a function u such that

uk −→ u as k → ∞ in L∞
weak-star(0, t; L2

weak(�)), (5.36)

uk −→ u as k → ∞ in L2
weak(0, t; W

2,2
weak(�)). (5.37)

Then, one needs to show that the limit function does satisfy the partial differential equation.
This can be done in the same way as we did in the proof of theorem 1. Since no new difficulty
arises we will not repeat that proof here. Similarly, the uniqueness is handled in the same way
as in theorem 2 and we will therefore not repeat its proof here.

That the solution exists for all time is a direct consequence of the a priori estimates (5.10)
and (5.21).
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Remark 8. The global existence result of this section is also true in space dimension three in
a shell domain between two concentric spheres. The proof is similar to the one we used in the
case of space dimension two.

Remark 9. Using standard energy methods and estimates one can easily show the global
regularity of solutions to our problem (5.2)–(5.4) in the one-dimensional case in the interval
� = (a, b).

Remark 10. Here, we were unable to obtain global existence of radial solutions to
problem (5.2)–(5.4) for the case where � is a disk/ball. However, in a forthcoming paper
we will study the global existence of radial solutions to the modified equation

∂u

∂t
+ �2u = |rn−1∇u|2 (5.38)

in a disk/ball. Whether there is a connection between the global existence of radial solutions
to (5.38) and the potential formation of singularity at the origin for certain radial solutions to
problem (5.2)–(5.4) for the case where � is a disk/ball is a subject of future research.

It is worth observing that the restriction of equation (5.38) to radial solutions might be
viewed as a higher dimensional generalization of the following one-dimensional equation:

∂u

∂t
+ uxxxx = (ux)

2.

To see this, the term u2
x may be viewed, morally speaking, as the the anti-derivative of the

one-dimensional Laplacian of u squared, subject to the boundary condition (5.7). That is,
u2

x(x) = (
∫ x

uyy dy)2. Using the radial symmetry and the boundary condition (5.7), then, the
corresponding analogue of the above integral formula in space dimension n would be

|rn−1∇u|2 =
(∫

1

rn−1
(rn−1ur)rr

n−1 dr

)2

. (5.39)
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