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ABSTRACT

On 21 May 1995, a strong tornado developed with an isolated supercell in southwestern Nebraska. Large-
scale conditions were not supportive of a tornadic thunderstorm outbreak; however, evidence suggests significant
mesoscale enhancements produced a local environment favorable for strong tornado formation. This case study
illustrates the importance of ‘‘situation awareness’’ and illustrates how mesoscale enhancements must be antic-
ipated by forecasters in order to properly assess rapidly changing atmospheric conditions.

1. Introduction

On 21 May 1995, a thunderstorm in southwestern
Nebraska produced a strong (F2) tornado that moved
through Perkins County. The tornado developed at 2233
UTC just to the northeast of Madrid, Nebraska, and
moved southeast at approximately 7 m s21 (NCDC
1995; Fig. 1). The major structural damage caused by
the tornado was within the first 1.6 km of the 8.1-km
pathlength (Fig. 1a). A barn, six pivot irrigation systems,
and a dozen light poles were destroyed (NCDC 1995).
Additionally, a grain bin filled with wooden furniture
was demolished, with pieces of furniture found near
Highway 23, 4.8 km away. Midway along the damage
path, the tornado was nearly 0.8 km wide, as estimated
by photographs and damage surveys. However, since
the storm was moving over open farmland, tornado in-
tensity could not be estimated because of a lack of struc-
tural damage. At 2248 UTC the tornado lifted, and with-
in several minutes, a second tornado (F0) developed
west of Elsie, Nebraska, and lasted an additional 10 min.

Observational studies of tornadic thunderstorms and
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their associated environments have been numerous over
the past several decades (Miller 1972; Purdom 1976;
Maddox et al. 1980; among others). A consistent finding
through many of these investigations has been the prox-
imity of thermal boundaries near the region of torna-
dogenesis. The alteration of the mesoscale wind and
thermodynamic fields by boundaries has been shown to
produce a more favorable environment for the produc-
tion of tornadoes (Markowski et al. 1998; Rasmussen
et al. 2000). Evidence suggests that horizontal vorticity
generated at boundaries is an important source of low-
level rotation in mesocyclones via tilting and stretching
(Markowski et al. 1998). Additionally, the preexisting
vertical vorticity along boundaries may also be utilized
in intensifying the mesocyclone (Maddox et al. 1980).

Several boundaries were present in southwest Ne-
braska during the late afternoon of 21 May. These
boundaries, detectable by surface observations, radar,
and high-resolution satellite imagery, appeared to play
an important role in the development of this strong tor-
nado in southwestern Nebraska.

2. Data

Surface data used in this study were obtained from
the National Weather Service (NWS) Automated Sur-
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FIG. 1. (a) Damage track of tornado through a portion of Perkins County, NE. Legend indicates the damage incurred by the tornado. The
X indicates the location of several large storage bins destroyed by the tornado. (b) Photograph of a developing tornado taken from location
1 in (a).

face Observing System (ASOS), the Aviation Weather
Observing System (AWOS), and the Surface Aviation
Observation (SAO) network. Spatial surface mesoana-
lysis was completed by augmenting the NWS obser-
vations with 54 stations from the High Plains Climate
Center’s (HPCC) Automated Weather Data Network,
which records hourly temperature, relative humidity,
and wind vector data.

Upper-air data were obtained from the NWS rawin-
sonde network, with soundings taken at 0000 and 1200
UTC. In addition, hourly wind profiles were obtained
for 24 stations contained in the Wind Profiler Demon-
stration Network.

Visible (1-km resolution), infrared (4 km), and water
vapor (8 km) imagery were obtained at 15-min intervals
from the Geostationary Operational Environmental Sat-
ellite-8 (GOES-8). Weather Surveillance Radar-1988
Doppler (WSR-88D) level-II data from Goodland, Kan-
sas (KGLD), were also processed and evaluated at 12-
min temporal resolution.

Photographs and video of the tornado and parent su-
percell were obtained from several vantage points
around the storm (Fig. 1). A detailed storm damage
survey was conducted immediately after the event. This
survey illustrated the main path of the tornado and sig-
nificant damage as it traveled between Madrid and Elsie,
Nebraska.

3. Analysis and storm evolution

a. Synoptic-scale environment

The synoptic-scale pattern at 1200 UTC 21 May 1995
featured a broad, low-amplitude ridge over the Rocky

Mountain region with a trough extending from the Great
Lakes through the central gulf coast area (Fig. 2). More
important, the 850- and 700-hPa analyses revealed two
short waves, one entering Montana from Alberta, and
a second weaker one in west Texas (Figs. 2a and 2b).
These two disturbances acted in concert to produce a
significant area of low-level warm air advection over
the high plains. Additionally, the short waves helped to
transport moisture from west Texas northward to south-
western Nebraska where it played a critical role in de-
stabilizing the local environment.

The 1200 UTC North Platte, Nebraska (LBF), sound-
ing indicated that low-level winds were weak but veer-
ing from the surface to nearly 600 hPa (Fig. 3a). Both
the 1200 and 0000 UTC soundings exhibited 0–6-km
shear vectors of nearly 35 m s21, which are in the range
found by Weisman and Klemp (1982, 1984, 1986) to
be supportive of supercells, and greater than the average
values found by Mead (1997) to be associated with tor-
nadic supercells in the southern United States. Also, 0–
3-km storm-relative helicity calculated from the 0000
UTC sounding was approximately 200 m2 s22, which
is slightly higher than the mean value (180 m2 s22)
found in a recent climatology of forecast parameters for
significant tornado–producing supercells (Rassmussen
and Blanchard 1998).

The 1200 UTC soundings from Dodge City (DDC)
and Topeka (TOP) (not shown) showed an area of deep
moisture over Kansas, with an 850-hPa moist axis ex-
tending through western Kansas into southern Nebraska.
The approach and intensification of the lower-tropo-
spheric short-wave trough to the north continued to back
and intensify the low-level winds throughout the morn-
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FIG. 2. (a) Subjective 850-hPa heights (gpm) and isotherms (8C) analyses for 1200 UTC 21 May 1995. The 1500-gpm isoheight and 108C
isotherm are references, and isolines are plotted at 30 gpm and 28C, respectively. (b) Same as in (a) except for 700 hPa. The 3000-gpm
isoheight and 28C isotherm are referenced and isolines are plotted at 30 gpm and 28C, respectively. (c) The 500-hPa heights (gpm) and
isotachs (kt) at 1200 UTC 21 May 1995. The 5700-gpm isoheight is referenced, and isolines are plotted at 60-gpm intervals. The 50- and
60-kt isotachs are shaded. (d) Same as in (c) except for 250 hPa. The 10 500 gpm isoheight is referenced and contours are plotted at 60-
gpm intervals. The 60-, 70-, and 80-kt isotachs are shaded. All station models are plotted using dewpoint temperature.

ing and early afternoon over the northern and central
Great Plains. This transported moist, unstable air into
the region from the southern Great Plains.

b. Mesoscale environment and storm evolution

The surface mesoscale environment during the morn-
ing featured an area of high pressure over north-central
Kansas with a ridge extending through eastern Nebras-
ka. Surface pressures were falling over eastern Wyo-
ming and western Nebraska in response to the ap-
proaching short-wave trough to the north. Winds at the
surface, west of the high, were southerly around 5 m
s21 and had begun to back in response to the approach-
ing short wave. The visible satellite image from 1515
UTC (Fig. 4) shows an area of clouds and fog associated
with the weak short-wave trough that moved through
the area during the morning. Showers associated with

this trough left behind a cool, moist, stable air mass
over western Nebraska, northwestern Kansas, and north-
eastern Colorado, with temperatures at 1500 UTC in the
low to mid-10s 8C (50s 8F) and dewpoints from 88 to
108C. The area of clearing over western Nebraska and
northern Colorado at 1515 UTC (Fig. 4) just west of
the weak short-wave trough allowed for strong heating
and resultant mixing in the convective boundary layer
that led to the dissipation of fog and low clouds from
west to east throughout the late morning and afternoon.
In addition to rapid atmospheric destabilization due to
solar heating within the clearing skies, the differential
heating of the lower troposphere between the clear air
to the west and cloudy, foggy air to the east allowed
for the development of a north–south thermal gradient
over extreme western Nebraska.

Early afternoon pressures continued to fall over the
high plains, with a pressure trough–wind shift line lo-
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FIG. 3. (a) Skew T–log p diagram for North Platte, NE, at 1200
UTC 21 May 1995. Temperatures are in degrees Celsius, and winds
are in knots. (b) Same as in (a) but at 0000 UTC 21 May 1995 and
including hodograph.

FIG. 4. GOES-8 visible satellite image at 1515 UTC 21 May 1995.
Arrows highlight the area of fog and rain and the clear region where
destabilization took place.

FIG. 5. GOES-8 visible satellite image at 1945 UTC 21 May 1995.
Dashed line indicates pressure trough–wind shift line analyzed at
1900 UTC. The arrow highlights the developing thunderstorm that
eventually produced the tornado.

cated through western Nebraska into northern Colorado.
This feature was associated with a weak short-wave
trough that moved through the area during the afternoon
of 21 May. Strong mixing of the dry air under clear
skies along with downsloping winds off the higher ter-
rain west of the surface trough likely allowed for en-
hanced transport of higher westerly momentum to the
surface. Ahead of the surface trough, winds continued
to increase from the south, advecting moisture north-
ward.

By 2000 UTC the atmosphere had become increas-
ingly unstable under sunny skies in extreme southwest
Nebraska as temperatures climbed into the low 20s 8C
(70s 8F) and dewpoints had risen to near 168C. A strong
thermal gradient existed over southwest Nebraska at
1800 UTC, with temperatures in the low 20s 8C (70s
8F) in western Nebraska and northeastern Colorado and
temperatures in the mid- to upper 10s 8C (low 60s 8F)
throughout central Nebraska. The surface trough–wind
shift line had moved slowly eastward and had begun to



1272 VOLUME 17W E A T H E R A N D F O R E C A S T I N G

FIG. 6. Subjective surface isobar (hPa) and surface ue (K) analysis at 2200 UTC 21 May 1995.
Isobars are plotted at 1-hPa intervals while surface ue is shaded at 2-K intervals. The dashed line
denotes trough–wind shift axis.

bulge east-southeastward through northeastern Colora-
do and the Nebraska Panhandle. Winds to the east and
southeast of the trough had increased and backed to the
south-southeast by 2000 UTC with winds behind the
trough primarily out of the west-northwest. Cumulus
had developed along the leading edge of this convergent
boundary, with a local enhancement of cumuliform de-
velopment near the bulging apex (Fig. 5).

The small area of enhanced cumulus at the apex of
the bulging trough began to rapidly intensify upon
reaching the western edge of the ue ridge (approximately
2100 UTC). The resulting thunderstorm, which even-
tually became the tornadic supercell, continued to de-
velop and move eastward through 2200 UTC.

At 2200 UTC, temperatures over extreme southwest
Nebraska had climbed into the mid-20s 8C (mid-70s 8F)
with dewpoints near 168C (608F) and southeast winds
between 5 and 7.5 m s21 (Fig. 6). The gradient of the
ue axis over northern Kansas and southern Nebraska also
intensified, with values approaching 344 K over extreme
southwest Nebraska (Fig. 6). The surface trough–wind

shift line continued to move eastward and by 2200 UTC
intersected the western edge of the ue ridge. The position
of the surface trough–wind shift line as interpolated
from surface, satellite, and radar data from 1800 to 2300
UTC is illustrated in Fig. 7. The pressure trough–wind
shift line moved eastward and southward through the
afternoon while the ue gradient remained quasi-station-
ary over southwest Nebraska. At 2200 UTC, the HPCC
station closest to the storm inflow had a temperature
and dewpoint of 248 and 158C (758 and 598F), respec-
tively. Modifying the 0000 UTC 22 May LBF sounding
with this surface parcel yields large surface-based CAPE
values approaching 3200 J kg21 and a surface-based
lifted index of 29, with little or no convective inhibi-
tion. This instability, combined with a favorable shear
profile, produced a localized environment conducive to
supercell formation (Fig. 3b).

c. Radar characteristics and storm-scale environment
The storm that would eventually produce the tornado

in Perkins County developed around 2030 UTC near
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FIG. 7. Dashed line indicates the surface trough–wind shift line identified from satellite, radar,
and surface analyses overlaid on the 2302 UTC 22 May 1995 GOES-8 visible satellite image.
Numbers represent time-relative locations.

the Keith–Perkins County line as a small, somewhat
disorganized, area of weak (;20 dBZ) echoes as seen
in the Goodland, Kansas (KGLD), WSR-88D base re-
flectivity and also noted in the visible satellite imagery
(Fig. 5). From 2032 to 2056 UTC this area of convective
activity began to evolve into one discrete cell while
moving/developing east-northeastward just north of the
Keith–Perkins County border and just ahead of the pres-
sure trough–wind shift line. Additionally, another cell
that had developed earlier was moving through Chase
County and produced a distinct, northward-moving out-
flow boundary (Fig. 8).

Over the next hour, significant changes in storm struc-
ture ensued, culminating in tornadogenesis at 2233
UTC. Base reflectivities rapidly increased to over 70
dBZ by 2144 UTC (Figs. 8c and 8d). Simultaneously,
the updraft strengthened and became more erect as a
weak-echo region (WER) developed on radar (Fig. 9c;
Lemon and Doswell 1979). By 2156 UTC, very little
rotation was seen in the low and midlevels of the storm.
At that time, an area of stronger inbound velocities be-
gan to develop on the west-northwest side of the updraft.
At 2208 UTC a pronounced inflow notch and pendant
echo developed and rotation became evident within the
updraft. An area of stronger inbound velocities on the
western side of the updraft were collocated with the
leading edge of the pendant echo.

Additionally, the outflow boundary produced by con-

vection to the south of the storm continued progressing
northward as seen in radar and satellite imagery (Fig.
9). Relative positions of the outflow boundary identified
and plotted from radar and satellite imagery through
2208 UTC indicated a northward velocity of approxi-
mately 8.7 m s21 (Figs. 10a and 10b). The outflow
boundary became less identifiable on radar after 2208
UTC primarily because the radar beam altitude at base
elevation was 1.7 km over central Perkins County. How-
ever, assuming a constant northward progression, the
outflow boundary would have collided with the super-
cell in Perkins County just prior to tornadogenesis (Figs.
10c and 10d).

4. Discussion

It appears the tornadic thunderstorm initiated in the
very unstable air forced upward by localized conver-
gence along the bulging pressure trough–wind shift line
(Fig. 7). As the storm moved eastward, intensification
ensued. This rapid intensification was likely the result
of release of greater instability as the thunderstorm
moved along and into the ue axis. The storm continued
to intensify and develop into a supercell, moving slowly
southeastward (Fig. 7). Using the supercell motion tech-
nique of Bunkers et al. (2000), the expected supercell
motion given the shear evident in the 0000 UTC North
Platte sounding is nearly identical to the observed mo-
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FIG. 8. (a) Grayscaled WSR-88D base reflectivity image at 2056 UTC 21 May 1995. (b) GOES-8 visible satellite image at 2045 UTC 21
May 1995. (c) Same as in (a) but at 2144 UTC 21 May 1995. (d) Same as in (b) but at 2145 UTC 21 May 1995. Arrows indicate location
of outflow boundary and enhanced convection due to this boundary.

tion of this storm. This deviant motion enhanced storm-
relative inflow, helicity, and subsequent storm rotation.
As the storm continued to move southeastward, it col-
lided with a northward-moving outflow boundary. We
speculate that this interaction of the storm with the out-
flow boundary over extreme southwest Nebraska was
instrumental in enhancing storm rotation and tornado
potential.

This investigation underlines the importance of rec-
ognizing relatively diffuse mesoscale features that can
interact to create a local environment conducive to
strong tornadogenesis. Although the synoptic environ-
ment was not favorable for a widespread tornado out-
break on 21 May 1995, multiscale interactions led to
the development of a localized region favorable for me-
socyclone and subsequent tornado development. Fore-
casters need to be cognizant of the interaction of me-
soscale features that can lead to significant storm in-

tensification or risk overlooking the development of a
strong to violent tornado with relatively short spatial
and temporal characteristics.

An ongoing aspect of this investigation involves es-
timating the wind speeds near the tornado by utilizing
photogrammetry. Global positioning system (GPS)
measurements along the tornado’s path and the locations
of the photographers and videographers have been sam-
pled in order to estimate the speed of debris traveling
around the cyclone. Results from this research will be
disseminated at a later date.
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FIG. 9. (a) Grayscaled WSR-88D base reflectivity image at 2156 UTC 21 May 1995. (b) GOES-8 visible satellite image at 2202 UTC 21
May 1995. (c) Same as in (a) but at 2208 UTC 21 May 1995. (d) Same as in (b). Arrows indicate weak echo notch and enhanced convection
due to convergence along the northward-moving outflow boundary.
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APPENDIX

Equivalent Potential Temperature Calculation

The equivalent potential temperature (ue) values for
the High Plains Climate Center’s stations were com-
puted manually using interpolated sea level pressure ob-
tained from a subjective analysis of the sea level pres-
sure field from NWS first-order ASOS and AWOS sta-
tions. After assigning each high plains station a sea level
pressure value, a standard atmospheric lapse rate and
previous 12-h average ambient surface temperature were
used along with station elevations to reduce sea level

pressure to station pressure according to the following
equation:

p 5 p exp{2g/[RT(Z 2 Z )]}2 1 2 1

where p1 is mean sea level pressure, p2 is the station
pressure, g is the acceleration due to gravity (9.80665
m s22), R is the gas constant for dry air (5287.04 J
kg21 K), T is the 12-h average ambient surface tem-
perature in kelvins, and (Z2 2 Z1) is the station elevation
in meters. This method is consistent with that used by
the ASOS stations to convert between station and sea
level pressure (Chu 1994). After computing station pres-
sure, surface temperatures and dewpoints were used to
calculate ue for each station. Sensitivity tests of calcu-
lated ue using 1-hPa variances in interpolated sea level
pressure produced variances of approximately 0.1 K, or
about one order of magnitude less than the implied ac-
curacy of 1 K used in the analysis.
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FIG. 10. (a) Grayscaled WSR-88D base reflectivity image at 2208 UTC 21 May 1995. Series of black lines indicates the progression of
the outflow boundary as identified on radar. The Xs indicate individual cell motion through 2231 UTC. (b) GOES-8 visible satellite image
at 2202 UTC 21 May 1995. (c) Grayscaled WSR-88D base reflectivity image at 2231 UTC 21 May 1995. (d) Same as in (b) but at 2232
UTC 21 May 1995.
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