
INTERNATIONAL JOURNAL OF CLIMATOLOGY
Int. J. Climatol. 28: 1213–1225 (2008)
Published online 27 September 2007 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/joc.1626

Synoptic evolution of Midwestern US Extreme dew point
events

Mace L. Bentleya,* and J. Anthony Stallinsb

a Meteorology Programme, Department of Geography, Northern Illinois University, DeKalb, IL 60115-2895, USA
b Department of Geography, Florida State University, Tallahassee, FL 32306-2190, USA

ABSTRACT: Eight Midwestern extremely high dew point events were examined with respect to their synoptic
characteristics and evolution. Individual and composite analyses of events suggest that there exists three predominant
features associated with extreme dew point events. In nearly all cases, the evolution of the synoptic environment includes
the development and propagation of low pressure from the high plains through the upper Great Lakes. The low pressure
increases and backs the surface winds acting to advect low-level moisture from eastern Nebraska, Iowa, Missouri eastward
into Illinois and Indiana. The progression of the low pressure and attendant frontal boundaries also acts to modulate the
length of the extreme low-level dew point event. Healthy crops and sufficient soil moisture content throughout this large
agricultural region were also evident during the periods of extreme low-level moisture. Finally, the vertical thermal profile
of the atmosphere during extreme dew point events supports previous findings and highlights the importance of restricted
low-level mixing as instrumental in allowing near-surface moisture to become trapped and increased. Copyright  2007
Royal Meteorological Society

KEY WORDS synoptic climatology; extreme dew points; heat stress

Received 5 February 2007; Revised 15 August 2007; Accepted 18 August 2007

1. Introduction

Midwestern extreme dew point events pose significant
hazards to human and wildlife populations across the
region. Summer heat waves are a common occurrence
throughout the Midwest. Large amounts of low-level
moisture can elevate heat stress to dangerous conditions
and lead to many injuries and deaths. A severe example
of this occurred during July 1995 when apparent temper-
atures in the upper Midwest exceeded 35 °C due to the
combination of heat and humidity, and caused over 700
deaths in Chicago (Kunkel et al., 1996). Investigations of
factors leading to these conditions concluded that evapo-
transpiration from crops and recently wetted soils assisted
in providing a large supply of low-level moisture in the
region (Kunkel et al., 1996; Karl and Knight, 1997). In a
study that examined dew point levels in extreme Chicago
heat waves over a 75-year period, Changnon et al. (2003)
noted that changes in a number of agricultural practices
(e.g. acres planted with corn and soybean, planting den-
sities, improved hybrids and no till-farming techniques)
have likely enhanced evapotranspiration and increased
surface dew points.

Deep, moist convection is also aided by increased
amounts of low-level moisture. The focusing of low-
level moisture can assist in organizing thunderstorms
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into mesoscale convective systems (MCSs) that produce
damaging winds, hail, and occasional tornadoes (Fritsch
et al., 1986; Bentley and Mote, 1998; Bentley et al.,
2000). A major activity corridor for the occurrence of
warm season derechos, widespread convectively induced
windstorms, is located through the upper Midwest (Johns
and Hirt, 1987; Bentley and Mote, 1998). Without
topographic or organized synoptic-scale forcing, evidence
suggests that warm season MCSs initiate and propagate
along and through regions of greatest low-level moisture
availability (Johns and Hirt, 1987; Johns 1993; Stensrud
and Fritsch, 1994; Bentley et al., 2000). It has been
postulated that primary source regions for this low-level
moisture during weak flow situations within the upper
Midwest are due to evapotranspiration from crops and
vegetation (Chang and Wetzel, 1991; Johns 1993; Bentley
and Mote, 1998).

Previous investigations of land–atmosphere interac-
tions in North America have primarily focused on the
western and southern Great Plains, the intermountain
west, and the desert southwest (Segal et al., 1989; Pielke
et al., 1991). Land–atmosphere interactions in the upper
Midwest have been largely ignored even though it is
a major agricultural region (i.e. corn and soybean) and
an area that experiences dangerous heat waves and fre-
quent MCS development (Johns and Hirt, 1987; Kunkel
et al., 1996; Bentley and Mote, 1998; Palecki et al.,
2001). The upper Midwest exhibits a wide range of
land surface types, from extensive crop and grasslands
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in the west and south to heavily forested regions and
abundant lakes in the northern portions. These land-use
types are also dynamic with major shifts currently ongo-
ing throughout the region (e.g. rural to urban, pasture to
row crops; Changnon et al., 2003; Kalnay and Cai, 2003).
Modelling studies further suggest that land–atmosphere
interactions in mid-continental locations are important
factors in determining the magnitude of global warming-
induced climate changes (Menzel et al., 1992; Wetherald
and Manabe, 1995).

Evidence suggests that low-level moisture is increasing
in the upper Midwest (Sparks et al., 2002; Changnon
et al., 2007). Assessment of warm season dew point
characteristics at Rockford and Chicago, Illinois, indi-
cate that there were significant increases in the num-
ber of hours and days and number of hours per day
when extreme dew points (greater than 24 °C) occurred
during the 1980–2000 period in comparison to that
of 1959–1979. Dew-point temperatures also signifi-
cantly increased during heat waves that have occurred
since 1980 (especially in the mid/late 1990s). Gaffen

and Ross (1998) found similar trends when examin-
ing changes in extreme apparent temperatures and high
heat events in the central and eastern US. A recent
investigation identified nine Midwestern high dew point
events for the period from 1960–2000 (Changnon et al.,
2007). Only one of the nine events occurred before
1986, with four of the events occurring from 1995
to 2000. This investigation will examine the evolu-
tion of synoptic environments during the eight most
recent extreme dew point events identified and anal-
ysed by Changnon et al. (2007) with a goal of deter-
mining atmospheric environments leading to the dis-
tribution and focusing of low-level atmospheric mois-
ture.

2. Data and methodology

The identification of extreme dew point events was con-
ducted utilizing an extensively quality-controlled dataset
consisting of 46 first-order stations (Figure 1; Sandstrom
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Figure 1. First-order stations used in the analysis (after, Changnon et al., 2007).

Station Occurrence
When the daily-average dewpoint
is greater than or equal to 22°C
for at least 2 consecutive days

Extreme Dewpoint Period

Successive days when at least
4 stations experience a station
occurrence

Extreme Dewpoint Event
When at least 50% of stations in dataset
experience a station occurrence during
an extreme dewpoint period

Figure 2. Decision-tree for choosing extreme dew point events.
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et al., 2004). The data emanating from these stations
was found to be the most complete and homogeneous in
the region for the period 1960–2000 (Sandstrom et al.,
2004). The identification criteria for defining an extreme
dew point event utilizes both a temporal and spatial com-
ponent, examining the number of days a station expe-
riences an extreme dew point, and also the number of
stations meeting the extreme dew point threshold (Figure
2; Changnon et al., 2007). Although at least 50% of the
stations in the study region needed to exhibit a station
occurrence in order for inclusion as an extreme dew
point event, the majority of extreme dew-point events

actually contained a much higher station percentage. The
ten northern-most stations in the dataset were used to
identify only the 24–28 July 1997 extreme dew point
event (Figure 1). Therefore the identification criteria pri-
marily relied upon 36 out of the 46 stations in the dataset
to identify extreme dew point events.

Over the forty-year period, nine extreme dew point
events were identified utilizing the before-mentioned
criteria (Changnon et al., 2007). The event occurring
in 1968 could not be analysed due to data limitations.
Therefore, eight of the nine events were analysed in this
investigation (Table I).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. 1000 hPa composited mean air temperature and anomaly (°C) based on 1979–2001 climatology. (a) Early stage, extreme dew point
events, (b) same as (a), except for middle stage, (c) same as (a), except for late stage, (d) same as (a), except for anomaly, (e) same as (d),

except for middle stage, (f) same as (d), except for late stage.
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Table I. Dates of Midwestern extreme dew point events and
dry heat events .

Period of
event

Number of
days

Number of
stations
involved

14–20 July 1986 7 36
24 July – 3 August 1987 11 31
8–17 August 1988 10 28
12–16 July 1995 5 38
11–20 August 1995 10 37
24–28 July 1997 5 24
2–6 July 1999 5 40
19–31 July 1999 13 31

Surface and upper-air data used to construct the
daily and 3-hourly composites were obtained from the
North American regional reanalysis (NARR), a long-
term, consistent, high-resolution climate dataset that
improves upon earlier global re-analysis datasets in both
resolution and accuracy (Mesinger et al., 2006). The
NARR is a 32-km/45-layer regional re-analysis based
on the ETA model 3D-VAR data assimilation system
and provides analyses beginning in 1979 (Mesinger
et al., 2006). Variables utilized from the NARR anal-
yses include temperature, geopotential height, specific
humidity, accumulated precipitation, soil moisture, and
turbulent kinetic energy (TKE). TKE is a measure of
kinetic energy generated by the turbulent component
of atmospheric circulations. Turbulence is modulated

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Same as Figure 3, except for 850 hPa temperature.
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(a)
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(d)

(e)

(f)

Figure 5. Same as Figure 4, except for 700 hPa temperature.

by buoyancy and wind shear, both leading to vertical
motions and mixing within the planetary boundary layer
(PBL). Large shears in thermally unstable atmospheric
conditions tend to increase TKE while a thermally stable
environment with weak shear reduces TKE. Therefore,
TKE is a useful variable in assessing the amount of
mixing within the PBL (Heilman et al., 2003; Sorbjan,
2003).

Hourly surface weather data from the National Weather
Service were also gridded and plotted in 6-hourly inter-
vals from one day prior to the extreme dew point event
until dissipation using the GEMPAK software package.
These data were used in order to determine whether com-
monalities existed among events prior to compositing.
Visual inspection of each event indicated that similar syn-
optic features were prevalent and that composite analyses

would be beneficial in determining predominant synoptic
environments.

Extreme dew point events were composited in three
stages: early, middle, and late. If an event contained
an odd number of days, then three days spaced equally
through the event representing these stages were cho-
sen for the composite analysis. For example, the second
(early), fourth (middle) and sixth (late) days would be
chosen for an event lasting seven days. If the event con-
sisted of an even number of days, each of the three
stages would encompass a two-day composite equally
spaced through the event. The hours chosen for the three
stages of each event were identified by determining the
hour when the maximum number of stations recorded
an extreme dew point (see Table II in Changnon et al.,
2007).
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(f)

(a)
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Figure 6. 850 hPa composited mean geopotential height and anomaly (gpm) based on 1979–2001 climatology. (a) Early stage, extreme dew
point events, (b) same as (a), except for middle stage, (c) same as (a), except for late stage, (d) same as (a), except for anomaly, (e) same as

(d), except for middle stage, (f) same as (d), except for late stage.

3. Results

The relative strength of the capping inversion during
extreme dew point events is illustrated when examining
low- to mid-level isotherms (Figures 3–5). Composited
1000 hPa isotherms indicate an anomalously warm near-
surface atmosphere (Figure 3(a), (b) and (c)). This is
especially evident in the early and middle stages of the
event. When comparing these composites to a 23-year
average of 1000 hPa temperatures, anomalies range from
3 to 5 °C for the extreme dew point events. A similar
magnitude and location of anomalously high temperatures
is evident when examining 850 hPa isotherms (Figure 4).
The region of warmest air develops over Nebraska and

Iowa and gradually shifts east until residing over Illinois
and Indiana during the later stages (Figures 3(f) and
4(f)). At 700 hPa, the anomalously warm air develops
and progresses over the upper Midwest, further north
than lower levels (Figure 5). Using the 10 °C isotherm
as an approximate location of the capping inversion, the
entire region becomes capped during the middle stage
with the greatest extent of air above 10 °C occurring
by the late stage. However, the thermal gradient at
700 hPa does begin to increase over Wisconsin and
Michigan in the late stage. This is indicative of the
ridge axis de-amplifying and shifting south. The extent
of the anomalously warm air throughout the low levels
during extreme dew point events would restrict mixing
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(a)
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(d)

(e)

(f)

Figure 7. Same as Figure 6, except for 700 hPa geopotential height.

by strengthening a capping inversion similar to that
identified by Kunkel et al. (1996). The strength of this
inversion layer would subsequently trap any low-level
moisture being produced through evapotranspiration.

The 850 hPa height fields for extreme dew point
events illustrate the development of a trough along the
western periphery of the Midwestern ridge (Figure 6).
The development of the trough acts to amplify the
Midwestern ridge and then suppresses it southward
through the middle and late stages (Figure 6). By the
late stage, the ridge is anchored over Arkansas and has
also weakened considerably as evident in the composite
anomaly (Figure 6(c) and (f)). The evolution of the
height field suggests that extreme dew point events are

characterized by disturbances propagating through the
upper Midwest thereby suppressing the ridge southward
and backing the flow westward through time. Further
evidence of this persistent evolution during extreme dew
point events is illustrated in the 700 and 500 hPa height
fields (Figures 7 and 8) as well as surface analyses
(Figure 9).

The 700 hPa ridge axis drifts eastward and then
retrogrades and shifts southward during extreme dew
point events (Figure 7). Given the height gradient and
northwesterly flow found on the northern periphery of the
700 hPa ridge, it is likely that this is also the storm track
(Figure 7(a), (b) and (c)). Similar to the 850 hPa height
field, the ridge also weakens considerably in the late stage

Copyright  2007 Royal Meteorological Society Int. J. Climatol. 28: 1213–1225 (2008)
DOI: 10.1002/joc



1220 M. L. BENTLEY AND J. A. STALLINS

(a)
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Figure 8. Same as Figure 7, except for 500 hPa geopotential height.

as disturbances progress over the ridge axis (Figure 7(f)).
The surface accumulated precipitation composite anal-
ysis also illustrates a persistent migration of rainfall
producing systems over the northern periphery of the
ridge (Figure 10). At 500 hPa, ridge orientation during
extreme dew point events resembles the classic ‘ring-
of-fire’ convective situation with persistent formation of
mesoscale convective systems propagating through the
upper Midwest (Figure 8). As a shortwave rotates over
the ridge axis, the ridge is deformed southward and
re-amplifies northward once the shortwave moves east-
ward.

When examining the surface analyses of each event,
the development of low pressure in the upper Great Plains

and its subsequent propagation out of the lee–trough
and through the upper Midwest was a characteristic
of extreme dew point events (Figure 9(a), (b) and (c)).
While moisture transport was found to remain maximized
west of the region experiencing extreme dew points, the
intensification of southerly flow in response to the devel-
oping surface low ejecting out of the lee-side trough in
Nebraska led to an increase in dew points throughout
the Midwest (Figure 9(a) and (b)). Therefore, moisture
advection from the Gulf of Mexico cannot be completely
ruled out as a contributor to low-level moisture. However,
evidence suggests that shallow mixing depths, adequate
soil moisture and enhanced evapotranspiration are essen-
tial in producing extreme dew point events.
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Figure 9. Isobars (hPa), isodrosotherms (°C, dashed lines) and surface
moisture transport (12 kg s−1 m−1 light shade, 15 kg s−1 m−1 darker
shade). (a) 15 July 1986, 1800 UTC (early stage, extreme dew point
event), (b) 4 July 1999, 1200 UTC (middle stage, extreme dew point
event), (c) 2 August 1987, 1200 UTC (late stage, extreme dew point

event).

The centre of a region of enhanced low-level moisture
during extreme dew point events is located over Iowa
and Missouri in the early composite of 1000 hPa specific
humidity (17g kg−1 to 18g kg−1; Figure 11(a)). This is
co-located with an area of moisture transport produced
by the tightening pressure gradient in response to devel-
oping low pressure in western Nebraska (Figure 9(a)).
During the evolution of the extreme dew point event,
winds back southwesterly which focuses and advects this
moisture throughout the Midwest (Figure 11(b) and (e)).
Note that in the early and middle stages of extreme dew
point events, the area of enhanced low-level moisture

(a)

(b)

(c)

Figure 10. Daily surface accumulated precipitation (cm) composited
means. (a) early stage, extreme dew point events, (b) same as (a),

except for middle stage, (c) same as (a), except for late stage.

is located throughout the Midwest and appears sepa-
rated from low-level moisture emanating from the Gulf
of Mexico (Figure 11(a) and (b)). As the flow contin-
ues to back southwesterly in response to the migra-
tory shortwave, the low-level moisture spreads through-
out the Midwest with a region of specific humidities
equal to or greater than 18 g kg−1 encompassing sev-
eral states (Figure 11(c) and (f)). With the flow backing
westward, it is unlikely that the increase and expan-
sion of the low-level moisture field is due to advec-
tion from the Gulf of Mexico. Evidence suggests that
this increase of low-level moisture is due to regional
advection (i.e. from Iowa/Missouri/eastern Kansas to Illi-
nois/Indiana) and a focusing of available moisture already
trapped within a shallow mixing layer. The source of the
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(a)
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(f)

Figure 11. 1000 hPa composited means. (a) specific humidity (g kg−1) early stage, extreme dew point events, (b) same as (a), except for middle
stage, (c) same as (a), except for late stage, (d) geopotential height (gpm) early stage, extreme dew point events, (e) same as (d), except for

middle stage, (f) same as (d), except for late stage.

advected and focused moisture is likely from evapotran-
spiration due to intensive agriculture during extreme dew
point events throughout Iowa, Missouri, Illinois and Indi-
ana.

An examination of soil moisture for the extreme dew
point events illustrates the amount of near surface water
available for input into the PBL through evapotranspira-
tion (Figure 12). A region of high soil moisture runs from
eastern Kansas through western Missouri and southern
Iowa during the early stage of the events. This region is
also the locus for advection of low-level moisture into
the upper Midwest via southwesterly flow ahead of the

developing lee trough (Figure 9). Kunkel et al. (1996)
found similar evidence of PBL moistening when calcu-
lating potential evapotranspiration during the 1995 event.

In order to assess mixing within the PBL during
extreme dew point events, composites were constructed
of TKE at 900 hPa (Figure 13). Evidence suggests that
the evolution in the number of stations experiencing
extreme dew point temperatures is related to PBL mixing
(or lack thereof) through reducing or increasing evapo-
transpired moisture. There appears to be a uniform region
of relatively low values of TKE (<0.25–0.275 J kg−1)
throughout the Midwest up until the period when the
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Figure 12. Soil moisture content (0–2 m; kg m−2) composited mean, early stage, extreme dew point events.

maximum number of stations reported a high dew point
event (Figure 13(a) through (d)). These low TKE val-
ues suggest that PBL mixing was suppressed at this
time. Limited mixing continues until immediately prior
to the time when the maximum number of stations
reported an extreme dew point. TKE then significantly
increases immediately after the 3-hperiod when the max-
imum number of stations reported an extreme dew point
(Figure 13(e) and (f)). TKE more than doubles from 0.4 J
kg−1 at the time when the maximum number of stations
reported an extreme dew point to values greater than
0.9 J kg−1 in the later 3-h periods. During the morn-
ing hours after sunrise and when mixing is limited, the
number of stations experiencing extreme dew point tem-
peratures gradually increase (Figure 13(b), (c) and (d)).
Evidence suggests that once greater PBL mixing com-
mences a reduction in the buildup of extreme low-level
moisture occurs.

4. Conclusions

We investigated eight extreme dew point events in
order to ascertain the predominant factors behind their
formation. A summary of major findings follows.

• In nearly all cases, the evolution of the synoptic envi-
ronment associated with extreme dew point events
includes the development and propagation of low pres-
sure from the high plains through the upper Great
Lakes. The low pressure increases and backs the sur-
face winds and advects low-level moisture from eastern
Kansas, Iowa, and Missouri eastward into Illinois and
Indiana during the event. The surface wind field acts
to advect and also focus the low-level moisture already
trapped within the PBL throughout the Midwest, likely

enhancing the apparent temperatures throughout the
region. The progression of the low pressure also acts
to modulate the length of the event as thunderstorms
often propagated through the Midwest as the low pres-
sure moved through the Great Lakes. In some cases,
this low pressure development and evolution took place
in several days, while in other events it took over one
week. In a few events, it took the development and
propagation of several low pressure centres before the
ridge was suppressed southward far enough to end the
extreme dew point event in the Midwest.

• Examination of soil moisture over the region for
extreme dew point events illustrates that evapotranspi-
ration over eastern Kansas, Iowa, and Missouri would
provide a rich source of PBL moisture. The surface
analyses indicated that low-level flow would advect
moisture from this region into the Midwest.

• The vertical thermal profile of the atmosphere during
extreme dew point events along with analysis of TKE
further highlights the importance of restricted low-level
mixing in the PBL as instrumental in allowing near-
surface moisture to increase.

The major mechanisms listed above act in concert to
create dangerous combinations of low-level warm air and
moisture. If one of these ingredients is missing, it is
likely that extreme amounts of low-level moisture will
not develop and focus over the region. Meteorologists
and climatologists should monitor soil moisture and veg-
etative health in the region as well as ridge amplification,
the development of shallow mixing layers, and increasing
winds behind high pressure (in response to developing
lee-side low pressure) as indicators of the initiation of an
extreme dew point event.

Copyright  2007 Royal Meteorological Society Int. J. Climatol. 28: 1213–1225 (2008)
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Figure 13. Composite analysis of 900 hPa turbulent kinetic energy (TKE; j kg-1) during the five most extreme dew point events. (a) TKE 3 h
before the minimum number of stations reported a high dew point, (b) same as (a), except for during the hour when the minimum number of
stations reported a high dew point, (c) same as (a), except for 3 h before the maximum number of stations reported a high dew point, (d) same
as (a), except for during the hour when the maximum number of stations reported a high dew point, (e) same as (a), except for 3 h after the
maximum number of stations reported a high dew point, (f) same as (a), except for 6 h after the maximum number of stations reported a high

dew point.
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