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Harmonic analysis of causal operators
and their spectral properties

A. G. Baskakov and I. A. Krishtal

Abstract. The definition and study of causal operators are based on the
representation theory of group algebras. We study the structure of the spectra
of causal operators, obtain conditions for causal invertibility and state criteria for a
causal operator to belong to the radical.

§1. Introduction

Causal (or Volterra) linear operators are used in system theory [1] and in the
study of various classes of functional differential equations [2]-[5]. They are usually
defined in terms of chains of invariant subspaces indexed by points of the set R
of real numbers or the set Z of integers. It should be mentioned that there are
papers dealing with Volterra operators on Hilbert spaces whose authors construct
the chains of invariant subspaces rather than axiomatize their existence [6].

In this paper we define and study causal operators using the representation
theory of Abelian groups (Banach modules over group algebras) and, in particular,
their spectral theory. The class of operators defined here contains not only many
classes of causal operators studied earlier (see [1]—[5] and the references there), but
also some new classes.

In this paper we make systematic use of the concept of the Beurling spectrum
of vectors and operators in representation spaces (Banach modules) and thereby
develop a technique for the investigation of linear operators In particular, the defini-
tion of causal operators is made in terms of the Beurling spectrum: causal operators
are defined to be operators whose Beurling spectrum (with respect to some repre-
sentation in the space of operators) is contained in a certain semigroup (of operators
with a “lower-triangular matrix”).

The main results of this paper deal with the problem of causal invertibility of
operators (in particular, with the study of the structure of inverse operators), the
structure of their spectra, and conditions under which they belong to the radical
of the algebra of causal operators.

This research was carried out with the financial support of the Russian Foundation for Basic
Research (grant no. 04-01-00141).
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§ 2. Banach modules over group algebras

Let X be a complex Banach space and let End X be the Banach algebra of
bounged linear operators acting in X. Let G be a locally compact Abelian group
and G its dual, the group of continuous unitary characters of G (see [7]-[9]). Let us
note that the binary operations on G and G are usually written in additive form. We
denote by L;(G) the Banach algebra of (equivalence classes of) complex functions
defined on G and integrable with respect to the Haar measure on G. The Eole of
multiplication is played by the convolution of functions. We denote by f :G—-C
the Fourier transform of f € Ly (G).

We assume that the space X is a non-degenerate Banach L; (G)-module [8], [10]
whose structure is associated with some isometric representation 7: G — End X.
This means that conditions (i) and (ii) stated in the following assumption hold
for X (in this paper we consider only L;(G)-modules for which this assumption
holds).

Assumption 2.1. The following three conditions hold for the Banach Li(G)-
module X:

(i) the equation fxr =0, f € L1(G), implies that x € X is equal to zero (that
is, X is non-degenerate),

(if)
T(g)(fz) = (S(9)f)z = f(T(9)z) (2.1)

for all f € Li(G), x € X and g € G, where S(g) is the shift operator by g € G
on L1(G), that is, S(g9)f(s) = f(s+9g), s,9€G, fe Li(G) (that is, the module
structure on X is associated with the representation T: G — End X),

(i) [[fzl| < [[fllllzll, f € Li(G), =z € X, where |f||1 is the norm of f

Let T: G — End X be a strongly continuous isometric representation. Then the
formula

T(f)z = fr = /G H@T(~g)edg, feLi@), zeX,  (2.2)

defines on X the structure of a Banach L;(G)-module for which Assumption 2.1
holds, and this structure is associated with 7.

Lemma 2.2. FEvery (non-degenerate) Banach Li(G)-module has precisely one rep-
resentation assoctated with it.

Proof. Let X be a (Banach) L;(G)-module and let T7,75: G — End X be rep-
resentations associated with it. Consider an arbitrary x € X and g € G. Let
xr = Ti(g)z, k=1,2. It follows from (2.1) that

fr1 =Ti(g)(fz) = S(9)(fz) = f(Ta(g)x) = fra, [ € Li(G),
that is, f(x1 — x2) = 0 for all f € L;(G). Since X is non-degenerate, we have
21 = T1(9)x = x2 = Ta(g)z, which completes the proof of the lemma.

Remark 2.3. We denote by (X,T) the Banach L;(G)-module X with associated
representation 7.
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Remark 2.4. Instead of requiring that the associated representation T: G — End X
for Ly (G)-modules be isometric, we can require that it be bounded. In this case T
is isometric with respect to the norm ||z|. = sup,cg||T(g9)z|, = € X, which is
equivalent to the original norm on X.

Consider the Banach algebra M (G) of bounded Borel measures on G, where the
role of multiplication is played by the convolution of measures, with the canon-
ical embedding of L;(G) in M(G). Assume that the (isometric) representation
T: G — End X is strongly continuous (that is, the map g — T'(g)z is continuous
for all x € X). The formula

T(u)z = pz = /G T(~g)ru(dg), peM(G), zeX (2.3)

(see also formula (2.2)) defines a homomorphism 7" from M (G) to End X. The use
of the same symbol T is justified by the following fact: if u, is the Dirac measure
concentrated at the point (—g) of G, then (2.3) implies that T'(ug) = T'(g).

Formula (2.3) defines on X the structure of a Banach M (G)-module and ||ux|| <
||l ||| for all uw € M(G) and € X. A similar, but more general, approach is
described below in Example 2.12.

Remark 2.5. If the representation T: G — End X is not assumed to be strongly
continuous and M, (G) is the subalgebra of M (G) formed by the discrete measures,
then the same formula (2.3) defines on X the structure of a Banach My(G)-module.
We can assume that M;(G) coincides with (is isomorphic to) the algebra L (Gg),
where Gy is the group G equipped with the discrete top/(\)logy. The group @ dual
to it is the Bohr compactification (Bohr compactum) of G. Hence, X is an L1 (Gy)-
module. This module will be denoted by (X, Ty), where T;: G4 — End X, Ty(g) =
T(g), g € Ga. It follows from Assumption 2.1 that X is an (L1(G) ® Mq(G))-
module.

Definition 2.6. A vector x of the Banach L;(G)-module (X,T) is said to be
T-continuous if the function

e G2 X, (g =T(g)z, g€G,
is continuous at the zero of G (and so uniformly continuous on G).

We denote the set of T-continuous vectors of X by X, or (X,T).. This set is a
closed submodule of X, that is, X, is a closed linear subspace of X invariant under
the operators T'(f), T'(g9), f € L1(G), g € G.

Lemma 2.7. Let (X,T) be a Banach L1(G)-module. Then (2.2) holds for
every x € X..

Proof. Tt is clear that formula (2.2) defines the structure of a Banach L, (G)-module
on X.. It follows from (2.2) that

T.: G — End X, T.(9)x =T(g)x, z e X,

is a representation associated with the L;(G)-module X.. By Lemma 2.2, it is
unique. The lemma is proved.

In the following examples we consider the Banach modules frequently used in
this paper and introduce some basic function spaces.
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Example 2.8. Let ¥ be the o-algebra of Borel subsets of Gand E: ¥ > End X a
bounded countably additive projector-valued measure (see [11]). Then the formula

T(g)z = /G Wg)dE()e, € X, (2.4)

defines a bounded (isometric by Remark 2.4) strongly continuous representation
T:G — End X. Hence, X is an L;(G)-module. Formulae (2.2) and (2.4) imply
that

fo= /G F(@)T(—g)xdg = /G () dB () (2.5)

for all f € L1(G) and z € X.
The next example and Example 2.10 with G = Z are special cases of this.

Example 2.9. Let £ = {E,,n € Q} be a family of projectors on the Banach
space X, where Q C Z is a non-empty (possibly finite) subset that is a resolution
of the identity, which means that E;E; = 0 for ¢ # j and for every = € X the series
> req Erx converges unconditionally to z. Hence, the quantity

Z Vi By

keQ

C(&) = sup < 00

is finite (the equivalent renormalization mentioned above enables us to assume that
this quantity is equal to unity). Here the supremum is taken over the finite sets of
complex numbers (y;) belonging to T = {y € C: |y| = 1} (the algebraic operation
in this group is written in multiplicative form). The formula

U(y)x = Z v'Enx, zeX, ~eT, (2.6)
nef

defines a bounded (isometric after renormalization) strongly continuous represen-
tation U: T — End X of the compact group T (its dual group is identified with Z).
The structure of an Lq(T)-module on X associated with U is defined by the formula

U(f)xr=fz= Z f(n)Enz, feLly(T), zelX. (2.7)

ne)

Example 2.10. Let X = F(,Y") be a Banach space of functions defined on the set
QCGof positive Haar measure p(2) that take values in a Banach space Y which is
one of the following spaces. We denote by L,(£,Y), p € [1, c0], the Banach space
of functions measurable and integrable together with their pth powers (essentially
bounded if p = 00). The norms in these spaces are defined by the formulae

fell = ( [ |x<g>|pdg)l/p, pel, o)
Q

[#]loc = esssup [lz(g)l|,  p = oo.
ge
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If G is a compact group, then L,(€2,Y") is the Banach space of sequences (finite
sets, if ) is finite) of vectors of ¥ and will be denoted by 1,(2,Y). We denote
by Cp(Q,Y) and Cup(Q2,Y) the subspaces of Lo (92,Y) formed by the continu-
ous /aimd uniforml/y continuous functions, respectively. We also consider the space
Co(G,Y) C Cup(G,Y) of continuous functions decaying at infinity (that is, as small
as desired outside some compact subset of G) and the space AP(G,Y) C Cuy(G,Y)
of almost periodic functions. We shall omit Y in the symbols denoting these spaces
ifY =C.

In the Banach space X = F(Q,Y) we consider the isometric representation
V: G — End X defined by the formula

(V(g)z)(v) =v(9)z(7), v€G, zeX. (2.8)
It is strongly continuous in each of the following spaces: L,(2,Y), p € [1,00),
Cup(,Y) and AP(G,Y).

The canonical identification of G with G (by Pontryagin duality) enables us to
define the structure of an L (G)-module on the X associated with V' by the formula

V(Hz)() = Ffz(y), ~v€Q, feLi(G), zeX. (2.9)

In particular, if G = T, €2 is an arbitrary non-empty subset of Z ~ T and X =
F(Q,Y) is one of the spaces defined above, then formula (2.9) has the form

~

(fz)(k) = f(k)x(k), ke . (2.10)

Let us note that in the space of sequences X = ,,(Q2,Y) for any p € [1, c0) there is

a resolution {E,,n € Q}, E, € End X, of the identity defined by the formulae
(Enz)(k) =0, n #k,

The construction in Example 2.9 shows that the module structures on X defined

by formulae (2.7) and (2.10) coincide.

Example 2.11. Let X = F(G,Y) be one of the Banach spaces introduced in
Example 2.10. We consider the structure of a Banach L;(G)-module on X defined
by the formula

(f£)(9) = (f * 2)(g) = /G (el —7)dr = /G FO)(S(=)a) (@) dr.  (2.11)

Here S: G — End X is the isometric representation of G by shift operators acting
on the functions belonging to X, that is,

(S(T)z)(9) = z(g + 1), 9, 7€G, zeX. (2.12)

Let us note that X, = X, that is, S is a strongly continuous representation in the
spaces under consideration, with the exception of L (G,Y) if G is a non-discrete

group.



444 A. G. Baskakov and I. A. Krishtal

Example 2.12. Let F be a closed subspace of the Banach space X* (dual to X)
of bounded linear functionals on X that has the following properties:

(1) [lz]| = supger =1 |é(z)| for all z € X,

(2) the convex hull of every relatively F-compact subset of X is relatively
F-compact.

Let there also be given an isometric representation 7: G — End X with the
following properties:

(i) for the adjoint representation 7T*: G — End X*, defined by the formula
(T*(9)€) (2) = €(T(g)a), we have T*(9)F C F, g€ G,

(i) the function g — &(T(g)x): G — C is continuous for all £ € F and z € X.

Then for every measure y € M(G) and any « € X there is precisely one =, € X
such that

/G £(T(~g)) u(dg) = £(x,)

for all £ € F (see [12], Ch.IV). We have a homomorphism T': M (G) — End X such
that | T(u)|| < [|ull and p € M(G). Hence, X is a Banach M(G)-module.

The structures of Banach modules in the Banach space Hom (X7, X5) of bounded
linear operators acting from the Banach space X; to the Banach space X5 are of
special interest. It is with these structures that we deal in §5.

§ 3. Spectral properties of vectors in Banach modules

We consider a Banach L;(G)-module (X, T), where the representation T: G —
End X is not assumed to be strongly continuous. We do assume, as always, that
Assumption 2.1 holds.

Definition 3.1. The Beurling spectrum A(M) = A(M,T) of the subset M of X
is defined to be the complement of the set

{76@: EIfELl(G):f(v)#OandfszVxEM}

in G. If M consists of a single vector z, then A(M) is denoted by A(z) (or A(z,T))
and has the form

A() = {y€G: fu #0Vf € Li(G), f(7) #0}.

Remark 3.2. A(M) coincides with the hull of the closed ideal Im(M) = {f €
Li(G): fx = 0 for all z € M}, that is, A(M) = {y € G: f(y) = 0 for all
f € Im(M)} is the set of common zeros of the Fourier transforms of functions
belonging to Im(M).

In the next lemma we state properties of the Beurling spectra of vectors. Some
of these properties (for strongly continuous representations) were obtained in [13].
We shall prove the next lemma (see also [10], [12], [14], [15]) using Assumption 2.1
on the Banach L;(G)-modules under consideration.
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Lemma 3.3. Let (X,T) be a Banach L1(G)-module. Then
(i) A(M) is closed for every M C X, and A(M) =@ < M = {0},
(ii) A(Az 4+ By) C A(x) UA(y) for all A, B € End X commuting with the T(f),
f e Li(G),
(iii) A(fz) C (suppf) NA(z) for all f € L1(G) and z € X,
(iv) fx =0 4f (suppf) NA(x) = &, where f € L1(G) and z € X,
(v) fx =z if A(x) is a compact set, and f =1 in some neighbourhood of Ax),
(vi) if Mo is dense in M C X, then A(M) = U, ¢y, Al®),
(

vii) Az, Ty) = Az, T) + {~}, where v € G, and Ty (g9) =v(9)T(g9), g€ G.

Proof. (1) The set A(M) is closed (see Remark 3.2). It is clear that A(0) = @. If
A(M) = &, then for any v € G there is an f € L1(G) such that f('y) #0and fx =0
for all  in M. Definition 3.1 and Remark 3.2 imply that Im(M) is a closed ideal of
the algebra L;(G) invariant under shifts of functions (here we use condition (ii) in
Assumption 2.1). Since the hull A(M) of Im(M) is empty, Wiener’s theorem [7]-[9]
implies that Im (M) coincides with the whole algebra L1 (G). Therefore, fo =0 for
all f € L1(G). Since X is a non-degenerate module, we have x = 0.

(i) If 4o ¢ A(z) UA(y), then there are f1, fo € L1(G) such that fi(y0)f2(0) # 0
and fiz = foy = 0. Then f(yo) # 0 and fz = fy = 0 for f = f1 = f2, whence
T(f)(Az + By) = A(fx) + B(fy) = 0 (using the fact that T'(f) commutes with A
and B). Hence, 79 ¢ A(Az + By).

(iii) Let vo ¢ (supp FYNA(z). Let ¢ € Ly (G) be such that 3(yo) # 0, (supp )N
((supp f) N A(x)) = @. Then p(fz) = (¢ * f) = 0, whence 7 ¢ A(fz).

(iv) follows 1rnmed1ately from (i) and (iii).

(v) For every ¢ € L1(G) we have supp(3(f — 1)) NA(z) = 2. It follows from (iv)
that p(fzr —x) = 0. Since X is a non-degenerate module, we have fz = x.

(vi) Let A = U ecpr Az). We have A C A(M) by the definition of spectrum,
since A(M) is a closed set. Let vo ¢ A. If f € Ly(G) is such that f(vo) # 0
and (supp f) N A = @, then (iv) implies that fz = 0 for all z € M, whence
Yo ¢ A(M).

(vii) follows immediately from Definition 3.1.

The following definition was made independently in [16]-[18]. It plays an impor-
tant role in various topics in the spectral analysis of representations of Abelian
groups (see, for example, [10], [12]).

Definition 3.4. Let o be a closed subset of G. The submodule
X(o {x € X: Az, T) U}

of the L;(G)-module (X,T) is called a spectral submodule.
Lemma 3.5. Every spectral submodule X (o) C (X,T) is closed.

Proof. The fact that X (o) is a submodule follows from assertions (ii) and (iii) of
Lemma 3.3. Consider an arbitrary convergent sequence (x,) in X (o). Let zg =
lim,, 00z, and yp ¢ o. If f € L1(G) is such that f(vy) # 0 and (supp f) No =<
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then part (iv) of Lemma 3.3 implies that fzg = lim, o fz, = 0. Therefore,
Yo ¢ A(zo), whence A(zg) C 0. The lemma is proved.

We denote by o(A) and ¢(A) the spectrum and the resolvent set of an operator
A: D(A) C Z — Z, where Z is a Banach space.

Let (X,T) be a Banach L;(R)-module. For any z € C\ R we consider the
function f, € Ly (R) whose Fourier transform is the function ¢,: R — C defined by
the formula ¢, (A\) = (A —i2)~!, X € R. Hilbert’s resolvent identity holds for the
operator-valued function

R: C\R — End X, R(z)=T(f.), z€C\R. (3.1)

Since the L;(R)-module X is non-degenerate, we have (1, ¢\ Ker R(z) = {0}.
Therefore, R is the resolvent of some linear operator iB: D(B) C X — X.
The operator B will be called a generator of the L;(R)-module (X,T). If
T:R — End X is a strongly continuous representation, then B is a generator
of the (bounded) strongly continuous group of operators {T'(t); t € R}.

Lemma 3.6. Let (X,T) be a Banach L1(G)-module. Then

o(T(f) = F(AX)),  o(T(9) = {+(9); 7€ AX)}

for all f € L1(G) and g € G. If G = R, then the following equalities hold for the
generator B of the module (X,T):

o(B) = A(X), o(T(t)) = {e?*t; X e a(B)}, tcR. (3.2)

Such equalities were first obtained in [16] and [17] for bounded strongly contin-
uous representations and, in a more general case (for non-quasianalytic represen-
tations), in [19]. The second equality in (3.2) is called the weak spectral mapping
theorem, and has been rediscovered by many authors (see, for example, [20], [21]).

The assertions in the following theorem were obtained in [19].

Theorem 3.7. Let (X,T) be a Banach Li(G)-module and o a compact subset
of G. Then

1(T(g) — 1)z < 2v2 suply(g) ~ 1fllell, @€ X(o), g€G.
YEo

In particular, the restriction T,: G — End X(0), T,(g9) = T(g)|X(U), g €G,
of the representation T to X(o) is continuous in the uniform operator topology.

If G =R and A(X) is a compact subset of R, then the generator B of the Banach
L1 (R)-module (X, T) belongs to End X and || B|| = r(B) = maxyes(B) |Al-
Theorem 3.8. Let (X,T) be a Banach Li(R)-module whose generator B is a
bounded operator. If ¢o: U — C is a function holomorphic in a neighbourhood U
of o(B) and f € Li(R) is such that f(A) = o(\) for all A € U NR, then ¢(B) =
T(f).

Proof. We deduce the desired equality from formula (3.1) for the resolvent R of i B,

defining the functions of operators by Cauchy’s formula (the Riesz—Dunford
formula). A more general result can be found in [22].
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§ 4. Approximate identities and y-nets

In this section, (X,T) stands for a Banach L;(G)-module and the results are
closely connected with ergodic theorems in Banach modules (see [23]-[25] and the
references there) and can be used in the study of causal operators.

Definition 4.1. A bounded net (e,) in L1(G) is called a bounded approzimate
identity (b.a.i.) in the algebra L;(G) if the following two conditions hold:

(i) é4(0) =1 for all v in the net 2,

(ii) imey * f = f for all f € L1(G).

Remark 4.2. The Banach algebra L;(G) has a b.a.iwhich can be constructed as
follows. Consider the net @ of symmetric neighbourhoods of zero in G having
compact closures and measurable with respect to the Haar measure on G (w1 < wo
for wi,wy € Q if w1 C wy) and such that every compact subset of G is contained
in some w € Q. Let x: G — R be the characteristic function of the set w € Q
and Yo : G — R the function whose Fourier transform is x.,. We put ko = h=1|Xw|?,
where h = p(w) is the Haar measure of w. The net (k,) thus obtained is a b.a.1i.
in Ll (G)

Let us note that this net has the following properties:

(i) ko € Co(G) and 0< ky < ko(0)=h, weQ,

(ii) [, kw(s)ds = ku(0) =1,

(iii) k, > 0 and k, = 0 outside w® = w — w = {y1 —72; 11,72 € w},

(iv) lim f; k. (s)ds = 0 for every open subset U of G that does not contain the
zero of G.

IfG=Rand Q= {(—%,2); h > 0} is the net of intervals (the net structure is

272
induced by the increasing order of h), then the above b. a.i. is given by the formula

:(h 2
k() :4%, h> 0.

If G is a discrete group, then the algebra L;(G) contains the identity §y € L1 (G),
where dp(0) =1 and do(g) = 0 for all g € G\ {0}.

It is easy to verify that the following family of functions is a b.a.i. in the
algebra Li(R™):

1 1 B
= =TI 4.1
fﬁ(t) Wml]';llt?_FB?, ( )
where 3 = (61, B2, . .., Bm) € R\ {0}, and the net structure on R\ {0} is defined
as follows: a = (a1, a2,...,am) <B=(61,82,--,0m) if Bi <y, 1<i<m.

We denote by Xcomp the submodule of the Li(G)-module (X,T) formed by
the vectors with compact Beurling spectrum. We denote by Xg the submodule
{fz; f € Li(G), z € X}.

Lemma 4.3.

Xe = X3 = Xcomp = {z € X: limeax =z for every b. a.i. (eq) in L1(G)}.
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Proof. The inclusion Xcomp C X, follows from Lemma 3.7 since X, is closed.
The submodule X¢ is closed by the Cohen-Hewitt factorization theorem (Theo-
rem 32.22 in [8]). Since lime, * f = f for every f € L1(G), where (e,) is the
approximate identity occurring in Remark 4.2, and suppé, C w — w (see prop-
erty (iii) in Remark 4.2), part (iii) of Lemma 3.3 implies that (e, * f)z € Xcomp
for every w € 2. Hence, X C YComp C X..

Now let = be an arbitrary vector in X., let & > 0 and let V be a compact
neighbourhood of zero in G such that

sup 1T (g)x — x|l <e.
ev
Consider an f € L1(G) such that f >0, f(0)=1 and supp f C V. Then
Iz -l | /f e —a)da| <= [ flo)dg = =f(0) =

Therefore, x € Xg. Hence, X, = X¢ = YComp-

If (f,) is an arbitrary b.a.i. in L1 (G), z € X and lim f,z = x, then the above
results imply that x € X.. Let y be an arbitrary vector in X, = X4 and let
f € L1(G) be such that fz =y. Then

lim foy = im(f, * f)z = fx = y.

The lemma is proved.

Definition 4.4. Let v € G. A bounded net (fo) in the algebra Ly (G) is called a
y-net if; the following two conditions hold:

(1) faly) =1 for all

(2) lim f, * f = 0 for every f € L1(G) with f(y) =0
Remark 4.5. Consider the following example of a O-net in Li(G): f, = h™'k,,
w € Q (see Remark 4.2), where wy < wy if w1 D wy. This net has the following
properties:

(1) fw S CO(G)7 w € Q:

() f(0)=1,

(iii) f, =0 and f, = 0 outside w® = w — w.

The net (vf.)(g9) = (g )fw( ), 9€G, we N, where v € G, is a y-net.

IfG=Rand Q= {( 55 2) h > 0} is the set of intervals arranged in decreasing
order of h, then the above 0-net (fy) in Lq(R) is given by the formula

(sm( h t) ) 2
fu(t) = 4?’
Here are two more examples of 0-nets in L; (R):

h > 0.

1),  tel-T,T),
t) = T >0,
or(t) { 0, t¢[-T,T),
e exp(—et), t>0,
t) = > 0.
et) { 0, t <0, ©

The first of these corresponds to increasing order of 7" and the second to decreasing
order of €.
Let us also note that the family of functions (4.1) is a O-net in Ly (R™) as § — oc.
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Definition 4.6. A net (f,) in L1(G) is called an invariant integral if the following
two conditions hold:

(1) fo(0) =1 and f, > 0 for all ,

(i) Ji|falg +u) — fa(g)| dg =0 for all u € G.

Remark 4.7. Every invariant integral (f,) in L1 (G) is a 0-net. Indeed, Definition 4.6
implies that lim(p, — ¢) * fo = 0 for all w € G and ¢ € L1(G). Hence, the set
M = {f € Li(G): lim fo * f = 0}, which is a closed ideal of the algebra L;(G),
contains the ideal My = {¢, — ¢; ¢ € L1(G), u € G}. Since the set of common
zeros of Fourier transforms of functions belonging to M consists of a single (zero)
element, Wiener’s theorem [7]-[9] implies that M = {f € Li(G); f(0) = 0}. Hence,
(fa) is a O-net.

The net (f,), w € Q, constructed in Remark 4.5 and the family of functions (4.1)
are examples of invariant integrals (in what follows, the symbol  will usually be
omitted).

Remark 4.8. If (f.) is a y-net and f is any function belonging to L;(G) and such
that f(vy) = 1, then the net (f, * f) also is a y-net. In this case (fy * f) is an
invariant integral if (f,) is, and f(0) =1, f>0.

Remark 4.9. By definition, every y-net (fo) in L1(G) is such that the net (6o — fa)
in the algebra L;(G) obtained from L;(G) by adjoining to it the identity dy is an
approximate identity in the maximal ideal Z = Kery = {f € Li(G): f(y) = 0}
of L1 (G) (see Example 6 in [24]).

Definition 4.10. Let (fo) be a y-net in Ly (G). We denote by g, (X, (fa)) the
submodule {x € X: there is a lim fax}.

Since the net (f,) is bounded, the submodule Etg., (X, (fa)) is closed in X.

Definition 4.11. A vector zg of the Banach L;(G)-module (X,T) is said to be
almost periodic if its orbit O(zo) = {T(g)z0; g € G} is precompact in X.

The set of almost periodic vectors in X forms a closed submodule, which we
denote by APX or AP(X,T).

Theorem 4.12. AP C X..

Proof. Let x € APX. Then ¢,(9) = T(g9)x, z: G4 — X, is a continuous almost
periodic function (see Remark 2.5). Hence, it is the uniform limit of some sequence
of trigonometric polynomials

n
ZVﬁ(g)y“ Yi € X7 71 € Gd7
=1

and T(9)y; = 3,(9)ys;, 1 <i<n, ge G (see [26]). We claim that ¥, € G,
1 <7 < n. This will be proved if we can establish that 7 € G when z € X is such
that T(g)x = F(g)z, g € G. Since the L;(G)-module (X,T) is non-degenerate,
there is an f € L1(G) such that fx # 0. We have fr € X, and T(f)T(9)z =
T(9)(fz) = (g)(fz). Hence, ¥ € G. The theorem is proved.
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Corollary 4.13. If 2 € Ly(G,Y) = X and the set of shifts {S(g)z,g € G} is
precompact in X, then x coincides almost everywhere with some function belonging
to AP(G,Y) C (X, 5)..

The following result was obtained in [25].

Theorem 4.14. A vector zg in X, is almost periodic if the set A(xo) is completely
imperfect (that is, contains no non-empty perfect subset) and one of the following
conditions holds:

(i) the Banach space X contains no subspace isomorphic to the Banach space
co of numerical sequences converging to zero,

(ii) the orbit of xo is weakly precompact in X.

Definition 4.15. A non-zero vector xg € X is called an eigenvector of the L, (G)-
module (X,T) if there is a character v € G such that T'(g)zg = 70(g)zo for
all g € G.

Remark 4.16. It follows from Definition 4.15 that every eigenvector zg of (X, T') has
a one-point spectrum A(xzg) = {70} (the converse assertion also is true: see [25]).
Therefore, the eigenvectors belong to Xcomp € Xe.

We denote by X(v7) = X ({}) the set of vectors in X with the one-point spec-
trum {v}. Hence, X(7) = {z € X: T(g) z = v(g) z}. We denote by X, the closed

submodule X, = {z € X; v ¢ A(z)}.

Definition 4.17. A point v in the set A(z,T) is said to be an ergodic point of x
if z € Evg, (X, (fa)) for some y-net (fa).

We denote the set of ergodic points of z by Acrg(z) or Aerg(z, T).

Remark 4.18. If y € G \Alz,T), = € (X,T) and (f,) is a y-net in L;(G), then
lim fox = 0.

Theorem 4.19. Let v be a character in G and (fa) a v-net. Then

(i) &vg, (X, (fo)) = X(7)®X,, and the operator P(y)z = lim fox in the algebra
End (X (y) ® X,) is a projector to X (v) parallel to X, [|[P(y)| <1, and the limit
lim fox = 29 € X () does not depend on the choice of the v-net (fa),

(i) APX C &g, (X, (fa)),

(iii) &g, (X, (fa)) = X if X is a reflezive space,

(iv) Evg,, (X, (fa)) = X if and only if the eigenvectors belonging to X () separate
the functionals belonging to the subspace

X*(m) ={€€ X" (T(9) €=1(9)¢ g€G}
of the Banach space X* dual to X,
(v) z € Exg (X, (fa)) if {(fa)z} is a weakly compact subset of X,
(Vi) z € Evg., (X, (fa)) if v is an isolated point of A(X,T), and then P(y)x = fx
for all f € Li(G) such that f(y) =1 and supp f N A(z,T) = @,
(vii) for any x € X, one can find y € X, and f € L1(G) such that v ¢ supp f
and x = fy.

Proof. By Remark 4.9, all these assertions follow from more general results of [24].
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By part (i) of Theorem 4.19, the projector P(y) z = lim foz, = € Erg. (X, (fa)),
does not depend on the choice of the y-net (f,). This enables us to denote
Erg, (X, (fa)) by Erg, X or Erg (X, T). We shall denote by ErgX or Erg(X,T)
the closed submodule

ErgX = ﬂ Erg, X = ﬂ Erg, X.
veG YEA(X)

Corollary 4.20. AP(X,T) C Evg(X,T).

To every almost periodic vector = in AP(X,T) we assign the Fourier series

T~ va, (4.2)

where z, = P(y) z # 0 and x, € X (v), whence

T(g) vy =Y(g) T+, v€eG, geG. (4.3)

Definition 4.21. The Bohr spectrum Ay(x) = Ap(x, T) of the vector x is defined

to be the set of v € G such that z € &rg, X and P(y)x = z, # 0. The Bohr
spectrum of the module X is defined to be Ay(X,T) = U, x Av(, T).

Remark 4.22. Since T(g) P(y)z = v(g) P(y)x for all z € £rg, X and fP(y)z =
F(7) P(y)z for all f € Li(G), we have Ay(z) C A(z). If € APX, then Ay(z) =
{v € G: x # 0} (see formula (4.2)), Ap(z) = A(z), and the set Ay(z) is at most
countable. We deduce the last assertion from the fact that the absolutely convex
hull Coz = {37 ¢;T(g:)x; Siyleil <1, gs € G, ¢; € C} of the orbit of the
almost periodic vector x is precompact using the invariant integral to define x.,
v € Ap(z), which enables us to establish that ., € Coz for all v € Ay(z). Since
P(y1) P(y2) = 0 for 71 # 72 belonging to Ap(x) and |P(v)|| = 1 for all v € Ap(x),
the set Ap(x) is at most countable.

§5. Two module structures on the space of operators

In this section we consider two (non-degenerate) Banach L; (G)-modules (X;, T;),
i = 1,2, where T;: G — End X;, ¢ = 1,2, are isometric representations that are
not assumed to be strongly continuous.

A special role in this paper is played by two module structures on the space
Hom(X7, X3) introduced below and by relations between the Beurling spectra of
the operators corresponding to these structures. The first of these (the structure
of a Banach L;(G x G)-module) is associated with the representation

T:G x G — EndHom(X1, X2),  T(g1,92)A = Ta(g2) ATy (g1), (5.1)

where A € Hom(X;, Xs) and ¢1,92 € G. Taking into account that the algebra
L1 (G x G) is isometrically isomorphic to the tensor product Li(G) @ Li(G) (see,
for example, [27]), we see that the formula

T(f1 ® f2)A = Ta(f2) AT1(f1), f1, fo € L1(G), (5.2)
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where (f1®f2)(g1, 92) = f1(91)f2(92), 91,92 € G, enables us to define the structure
of a Banach L1 (G x G)-module (Hom(X1, X2),T). An arbitrary f € L1(G x G) can
be written as

F=Y fioe (5.3)
k>1
so that 3o, I£01L €kl < 00, fi, @) € L1(G), k> 1. We put
FA=T(HA=D T(fi @) A=>_ Ta(f) ATi(¢}). (5.4)
k>1 k>1

Lemma 5.1. The module structure on Hom (X7, Xa) associated with the represen-
tation T is well defined.

Proof. We have to establish that the definition of the operator fA in formula (5.4)
does not depend on the representation (5.3) of f. First let us note that if the
map (g1, g2) — T(g1 g2)A is continuous in the uniform operator topology (that is,
A € (Hom(X1, X), ) ) and f € L1 (G xG), then fA can be determined from T in
the standard way using formula (2.2). The subspace (Hom(X1, X,), T)c contains,
in particular, the operators T2 ()BT (¥), ¢, ¥ € L1(G), B € Hom(X;, Xs).
Assume that along with the representation (5.3), f admits a representation f =

Yors1 i @ ¢y, where 37, o (I f ] 1@k, < oo. We claim that the operators
=Y To(fi) ATi(gh), A=) To(fil) ATu(})
k>1 k>1

coincide. Since A1, Ay € (Hom(X1, Xa), )c, this will be proved (see formula (2.2)
and the paragraph containing it) if we can establish that (¢ ® ¥)A1 = (¢ ® ¥) A2
for all p, 9 € L1(G). Using the equalities

(p@vY)Ar =Y To(fi)(Ta(p) ATy (¥)) Ta(¢h) = T(f) (Ta(p) ATi (1))

k>1
and (p @ ¥)Ay = T(f) (T2(p) ATy (¢))), we obtain that A; = Ap. The lemma is
proved.

If there is a non-zero operator in Hom(X;, X») that annihilates the subspace
(X1, T1). of Ti-continuous vectors, then the Banach module (Hom(X1, X5), T) thus
constructed will not be non-degenerate (in the sense of Assumption 2.1). For this
reason we introduce some non-degenerate closed submodules of (Hom(X 1, X2), T):

ul,‘r(Xl;XQQ (fa)) =t (X1, X2) = ﬂ177<(f°‘)) =i
= {4 € Hom(X1, X2): m-Um T () (AT1(fa) — Ta(fa)A) =0
for every ¢ € L1(G)}
= {A c HOm(Xl,XQ)I T—llm(TQ(d))) A<I - Tl(fa)) =0
for every ¢ € Ly (G)}7
Uo7 <X17 Xo; (fa)) = qu‘F(Xh Xz) = uQv"'((fo‘)) =4z
= {A € Hom(X1, Xy): 7-lim(AT1(fa) — T2(fa)A) = 0}.
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Here (f.) is a b.a.i. of the algebra L;(G) and 7 is the uniform (u) or strong (s)
operator topology on the space Hom(X7, X3). The symbol 7-lim stands for the
limit in the topology 7. The modules I; , = 4l; (X1, X2), ¢ =1,2, 7 € {u, s}, are
non-degenerate since the module (X3, 7%) is non-degenerate (see Lemma 5.11).

Lemma 5.2. The definition of the space i1, does not depend on the choice of
approximate identity (fo). This space coincides with the space

U= {A € Hom(X1, X2): V¢ € L1(G), Ve > 03p € L1(G):
| Ta(v) A(I - Ti()) || <}

Proof. The definition of illyu(( fa)) implies that illyu(( fa)) - il’Lu for every

b.a.i. (fa)-
If Aedli,, (pa)is an arbitrary b.a.i. of Li(G), 9 is any function belonging

to L1(G) and € > 0, then there is a ¢ € L;(G) such that

£

1 T5(4) A(T = Tu(9)) || < iETaR

where C' = sup ||pq||. Since lim g, * @ = ¢, there is an ag such that ||¢ — g *
o[l [lP|[[|A]l < § for a = v, which implies that

| T2(¥) A(I =T (pa) || = [|T2(¥) A[(I -T2 (0) (I - T1(pa)) —Ti(p—pa*9)]|| <&

for a > agp. The lemma is proved.

We wish to consider another closed non-degenerate submodule Uz of
(Hom(X1, X5),T), for which we will need the following definition.
Definition 5.3. A net (z,) in the Banach L; (G)-module (X, T)) is said to be locally

convergent to g € X (and we write z, log xo or loc-limz, = xg) if it is bounded
and lim f(z, — xo) = 0 for every f € L;(G).
By definition, the submodule 43 =${5(X7, X2) consists of those A€ Hom(X;, X5)

such that Az, log Axg if x4 log xzg. The operators belonging to Uz are said to be
locally continuous.

Remark 5.4. The above definitions imply that

U © Uy C© s DMy, Ug o C U s

Since (fa) ¢ 2 for all z € X; and every b.a.i. (fo) of L1(G), we have 41 s D 3.
The operators belonging to one of the submodules Us -, 7 € {u,s}, are said to
commute with (f,) (in the uniform, strong operator topology, respectively).

Remark 5.5. If (X;,T;). = X;, i =1,2, then $44 ; = 4y ; = Hom(X;, X2).

Under the assumptions of the preceding remark, not all A € Hom(X;, X5) are
locally continuous.
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Example 5.6. Let X = X1 = X5 = Cp(R) and 77 = To = S (see Example 2.11).
Consider the following linear operator A € End X:

Az = &(x)y, 0#£yeX, &eX*, (5.5)

where Cp(R) C Ker& and &(xg) = 1, zo = 1. The sequence of functions x,(t) =
e~wltl teR, n>1, belongs to Co(R) and converges locally to xo (it also
converges locally in the sense of the module structure considered in Example 2.10).
Since £(z,) =0, n > 1, we have Az, = 0, n > 1. On the other hand, Azg =y # 0,
that is, the sequence (Ax,) does not converge locally to Azy. Hence, A is not locally
continuous, although the assumptions of Remark 5.5 hold for (Cys(R), S).
Example 5.7. Let X = X; = Xo = C,(R), T1 = T» = S (see Example 2.11),
and let A € End X be the operator defined by formula (5.5) using a function
y € Cp(R) \ Cup(R) and a functional £ of the form

where a € Li(R). Then A is locally continuous but does not commute with any
b.a.i. in L1 (R), that is, it does not belong to s 5. Since (S(¥)A) z = &(z) (¥ * y)
for all ¢ € L1 (R), we have A € 4 ;.

Consider the representation
Tot G — EndHom(Xl,Xg), To(g)A ZTQ(Q) ATl(—g), (56)

where g € G and A € Hom(X7, X5). On the spaces o -, 7 € {u, s}, for which the
map g — Tp(9)A: G — Hom(X7, X5) is continuous in the topology 7, the formula

(fA)z = To(f) Az = /G £(9)(To(~g) A) dg

defines the structure of the Banach L; (G)-module associated with Tp.

Remark 5.8. If (fa) is a b.a.i. in L1(G), then for A € o ,, 7 € {u,s}, the
net (foA) converges to A in the topology 7. Therefore, the o ,, 7 € {u, s}, are
non-degenerate L;(G)-modules.

Remark 5.9. If A € 4y 5, then the boundedness of the representations 17 and 75
implies that
;%(Tg(g)Ax — ATi(g)z) =0, z € X;.

Therefore, Az € (X1,Ts). if x € (X1, T1).. Multiplying this equality by an arbitrary
b.a.i. (f.) and integrating, we obtain that lim(T%(fa)Az — ATy (fa)z) = 0. If T
is strongly continuous, then A € iy ,, whence o s C s ;. We likewise show that
LLO,u g LL2,u-

In what follows (if not otherwise stated), the symbol {4 = $(X;, X5) stands for
one of the following closed subspaces of Hom (X7, X3):

i 7 Mo 7y, s N o 7, 71,72 € {u,s}, i=1,2. (5.7)
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What has been said implies that 4 is a non-degenerate Banach L;(G x G)-
and L1 (G)-module with the structures associated with the representations 7" and Tp,
respectively (we retain this notation for the restrictions of T' and Ty to U, which
are well defined).

Remark 5.10. The classes U(X7, X2) have the following “physical” property. Their
definitions imply that A =0if A € U(X;, X5) and Az =0 for all z € (X1,T1). (we
prove this assertion using Lemma 4.3). Hence, A = B whenever A, B € (X3, X5)
coincide on (X7, T7)c.

Lemma 5.11. i is both an L1(G x G)- and an L1(G)-module.

Proof. It remains to prove that the module (&, T) is non-degenerate. We shall do
this only for & = 8, N4o .. Let A € Y and T(f)A = 0 for all f € L (G x G).
Then T5(¢)ATi(p) = 0 for all p,¢ € L1(G). The definition of 4l; ; implies that
To(fo)Ax = 0 for all x € X; and all a ((f,) is a b.a.i.). Therefore, To(¢))Az =0
for all ¢ € Ly(G). Since the L;(G)-module (X2,7T3) is non-degenerate, we have
Ax =0 for all x € X7, whence A = 0. The lemma is proved.

Consider the homomorphism 7: L;(G) — End L; (G x G) of Banach algebras
defined by the formula

(7)) (g1, 2) = /G H9)o(g — 9,92+ g) dg. (5.8)

Let us note that the functions 7(f)p € L1(G x G), where f € L1(G) and ¢ €
L1(G x G), have the Fourier transforms

o —

T(fe(n,2) = fn —7)8n,1), 112G (5.9)
Lemma 5.12. _ _ _
T(r(f)p) = T(p) To(f)A = To(f) T(p)A (5.10)
for all f € L1(G), ¢ € L1(G x G), A e U=8U(X;1,X2) and T occurring in
formula (5.8).

Proof. Since the L1(G x G)-module (4,7T) is non-degenerate, it is sufficient to
prove (5.10) for those A € 4 such that A = To(¢)BT1(¢), ¢,% € L1(G), B e i

(see the proof of Lemma 5.1). Therefore, we can assume that A € (U, T). and Ty, Tp
are strongly continuous representations. We have

A= //M;(/ f(9)e(g1 — 9,92+ 9) dg>T2(—gz)AT1(—91)d91 dga

/f )T (— (//ch, ©(91,92) To(—g2) AT1(— 91)d91d92>T1( )dg
=To(/)T(p)A

=//GXG<P(91792)T2(—92)(/Gf(g) 1>(—g) AT1(9) d9>T1(—91)d91 dga

=T(e)To(f)4, € Li(GxG), feLi(G)

(the integrals converge in the strong operator topology). The lemma is proved.



456 A. G. Baskakov and I. A. Krishtal

Theorem 5.13.

AA,TY) = {2 —m: () €EAA,T)CGxG)=A (5.11)

for all A € 4.

Remark 5.14. 1t is clear that a similar theorem can be stated for any bimodule with
structures associated with representations for which (5.10) holds.

Proof of Theorem 5.13. We claim that A(A,Tp) D A. Take a 9 ¢ A(A,Tp). There
isan f € L1(G) such that f(70) # 0 and Ty(f)A = 0. Let oo be a neighbourhood
of 7o such that f(v) # 0 for all v € . Assume that there is a character (y1,72)
in A(A,T) C G x G such that Yo —y1 € gg. Choose a ¢ € L1(G x G) such that
?(71,72) # 0. It follows from (5.10) that

T(r(f)p) A =T(p) To(f)A = 0.

Formula (5.9) implies that m('yl,'yg) # 0. Therefore, (v1,72) ¢ A(A,T). This
is a contradiction. Hence, A(A,Tp) 2 A.

To prove the reverse inclusion we take a 79 ¢ A and an f € L;(G) such that
f(70) # 0 and supp fNA = @. It follows from (5.9) that the function ¢ = 7(f) is
such that supp yNA(A, T) = @ for all ¢ in L1 (GxG). Lemma 3.3 and formula (5.10)
imply that

0=TW)A=T(p)To(f)A, <€ Li(CxG).

Since the Li(G x G)-module (4, T) is non-degenerate, we have Tp(f)A = 0, that
is, v0 ¢ A(A,Tp), whence A C A(A,Top).

Corollary 5.15.

A(Az, Ty) € A(A, To) + Az, Th) (5.12)

for all x € X; and A € 4.

Proof. Let v2 ¢ A(A, To) + Az, T1). Consider an f € Ly (G) such that f(y2) = 1
and supp f NA(A, Ty) + A(z, Ty) = @. We claim that T5(f)Az = 0. Since A € 41, it
is sufficient to verify this equality for vectors in (X1, T1)comp With compact Beurling
spectra.

Let z € (X1,T1)comp- Since 2 ¢ A(A,Tp) + Az, T1), there is an h € Lq(G)
such that A = 1 in the neighbourhood of A(x,T1) and v2 — 71 lies outside some
neighbourhood of A(A,Tp) for every v € supp h. Therefore, (71,72) lies outside
some neighbourhood of A(A, T) for every v, € supp h. By Lemma 3.3, we have

T5(f) ATi(h) x = T>(f) Az =0,

as was to be shown.
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Example 5.16. For the operator A € (X7, X3) defined by the formula Az =
&(z)y, where £ € (X7). and 0 # y € X5, we have
A(A7 T) = A(§7 Tc*) X A(y7 TQ);
MATY) = {72 —m:m € A& TY), 2 € Ay, T») },

where T): G — End(X7). is the restriction of the representation 7;: G — End X7
(see Example 2.12) to (X7)c. If y € (X3)c, then A € Uy, N Lo .

Remark 5.17. 4 s Ny o, = Ly ,, Ny . For by Lemma 4.3, it is sufficient to verify
that

u—hmTQ(d)) A(I - Tl (fa)) =0

for every A € il ¢ with compact Beurling spectrum A(A,Tp), every ¢ € Lq1(G)
whose Fourier transform has compact support, and every b.a.i. (f,) in L1(G).
This follows from formula (5.12). Indeed, let ¢ be a function belonging to
L1 (G) such that supp ¢ is a compact set and [supp@ + A(A,To)] N supp{/; = g.
Then lim, fo * ¢ = ¢, whence lim(Ti(fo) — I) Ti(p) = 0. Formula (5.12) implies
that To(¢)) AT () = 0. Therefore,

ulim Ty () A(I = T1(fa)) = ulimTo(v) A(Ti(¢) + (I = T1(9))) (I = T1(fa)) = 0.

Remark 5.18. For strongly continuous representations 77 and 75, Theorem 5.13
was proved in [28] by another method. We hope that Lemma 5.12 will make it
possible to apply Theorem 5.13 to other classes of representations.

§ 6. Causal operators. Examples

Let 2 be a partially ordered set (poset) of indices and let X, = {X&, a € A},
i = 1,2, be two families of closed linear subspaces of Banach spaces X;, i = 1,2,
respectively.

Definition 6.1. An operator A € Hom(X7, X5) is said to be causal with respect
to the families of subspaces X;, i = 1,2, if AX{Y C X§ for all « € 2, that is, the
ordered pair of subspaces (X, X§) is invariant under A.

To the best of our knowledge, this is the most general definition of causal opera-
tor. However, it is difficult to construct a sufficiently rich theory from it. We shall
thus impose certain restrictions on the families X;, ¢ = 1,2, which will enable us
to construct such a theory. We shall give another two definitions of causal opera-
tors, which are consistent with familiar ones and equivalent under certain natural
conditions.

We consider Banach L;(G)-modules (X;,T;), i = 1,2, and a closed semigroup
S C G such that zero belongs to the closure of its interior IntS (see Remark 6.14).
Sometimes we shall have to impose additional restrictions on S. As before, we
assume that Assumption 2.1 holds.

Let the poset 2 be the group G with the following partial ordering: 1 > v <
Y1 € 72 + S. Consider the families of spectral subspaces

X! =Xi(y+S,T;), ~€G, i=1.2
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Definition 6.2. An operator A € Hom(X7, X5) is said to be causal with respect
to the representations T, i = 1,2, and the semigroup S if AX] C XJ forally € G.

For operators belonging to the Banach L;(G)-module i (that is, one of the
modules defined by formula (5.7)) we make another definition.

Definition 6.3. An operator A € 4 is said to be causal with respect to the repre-
sentation Tp: G — End 4l and the semigroup S if A(A4,Tp) C S.

Theorem 6.4. Let A € Y and let the representation Ty be (as usual) defined by
formula (5.6). Then Definitions 6.2 and 6.3 are equivalent.

Proof. Let A € i be causal in the sense of Definition 6.2. We claim that
A(A,Tp) € S. By Theorem 5.13, it is sufficient to establish that v — v € S,
that is, 72 € 71 + S if (11,72) € A(A,T) (T is defined by formula (5.1)). Assume
the opposite, that is, assume that there is an ordered pair (7?,49) in A(A,T) such
that 79 ¢ 79 +S. Then one can find fi, fo € Li(G) such that fi(79)f2(13) # 0,
supp fo N (1x +S) = @ and supp fi C (7. + S) for some 7, € G. The existence of
such a v, follows from the above assumption on the semigroup S. Since A is causal
(in the sense of Definition 6.2), Lemma 3.3 implies that

A(f2(A(fi2))) € supp f> N A(A(f1z)) € supp fo N (14 +S) = @

for all z € X;. Therefore, Ty(f2) ATi(f1) = 0, whence (19,49) ¢ A(A,T). This is
a contradiction.

Now let A be causal in the sense of Definition 6.3. Formula 5.12 implies that for
any v € G and z € X7 we have

A(Az, Ty) € A(A, To) + Az, Th) Sy +S+SCy+S,

that is, A(Az,T>) C X, . The theorem is proved.

We denote the set of causal operators in 4 C Hom(X7, X3) by Caus(X;, Xo; T, S),
or Caus(Xy, Xo) if the choice of the semigroup S and the representations T, T
occurring in the construction of Tj is clear.

Definition 6.5. The set A(A,Tp)\{0} C G will be called the memory of the linear
operator A € Y. An operator Ag € U will be called an operator with no memory
if A(Ao, To) € {0}

Hence, an operator A € 4 = (X7, Xo) is causal with respect to the semigroup S
if and only if its memory is contained in S. In particular, any operator in 4 with no
memory is causal. The set of operators with no memory is a closed linear subspace
that coincides with the spectral submodule £(({0},Ty). In what follows it will be
denoted by one of the following symbols: M (X7, X3), M(X1, X2;Tp), M(U),
ML T). If A € Exgy(Ll) (see Definition 4.10), then Ay = M(A) will stand for its
part with no memory, that is, A9 = M(A) = limTy(f)A, where (f,) is a 0-net
in Ll (G)
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Lemma 6.6. The space M(LL) of operators with no memory has the following two
representations:

M) = {Aey: Ty(9)A = AVg € G}, (6.1)
M) = {A € i: AX1(3,T1) C X2(3,T») Vo € G}. (6.2)

Proof. The representation (6.1) follows immediately from Remark 4.16, since oper-
ators with no memory are, by definition, eigenvectors of the L; (G)-module (4, Tp)
corresponding to the eigencharacter 7o = 0 € G. The representation (6.2) follows
from formula (5.12).

Remark 6.7. There are examples of operators A € Hom(X;, X5) satisfying the
equality To(g)A = A but lying outside Y (and hence, outside M(4l)). Such an
example can be found in [3], §5.1.11 for X; = Xo =1l, and T = S.

Remark 6.8. Now (and up to Example 6.10) let X; = Xo =X and Ty =To =T.
Then it may happen that & = £ s N Ly 5 is not an algebra, and we denote by U,
or g (X) one of the subspaces defined in (5.7), with the exception of l; ¢ N Ly s,
in the case when the spaces of representations and the representations themselves
coincide.

Lemma 6.9. i, is a Banach algebra.

Proof. First we claim that

LLa = LL1,s<(foz)) mLLO,u = LL1,u mLLO,u

is an algebra (see Remark 5.17). Let A, B € ,. Let us verify that AB € ${; ,,. Let
e >0 and ¢ € L1 (G). By Remark 5.17, there is a ¢ € L1 (G) such that

3
IT@)A( =T < 5575

where ¢ = sup || fo|. Then
Co=TW)AB(I - fo)z =9A(p+ (1 —¢))B(1 - fa)x

for all x € X. Therefore, there is an ag such that ||Cy|| < € for all a > ap.
We have AB € o, since To(g) AB = (To(g9) A) (To(9)B), g € G. Hence,

AB € LLa = LL1,s<(foz)) mLLO,u = LL1,u mLLO,u-

We shall prove the assertion of the lemma only for the submodule 4, = 43N Ug o
(for the others the proof is equally simple). Let A, B € i,. If x, 11? o for the net
(o) in X, then Bz, log Bz, whence ABzx,, log ABzxyg, that is, AB € U3. It is clear
that AB € g 5, whence AB € i, = H3 N4l ;. The lemma is proved.

The set Caus(X, X) of causal operators belonging to i, will be denoted
by Caus(X).

Here are several examples of causal operators.
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Example 6.10. Let X; and Xs be Banach spaces with resolutions of the identity
& ={E\, neQ; CZ}, i=1,2, equipped with the structures of Banach L;(T)-
modules (as in Example 2.9: see formulae (2.6) and (2.7)) associated with the
representations U; and Us. We have

Az, U)={keQ: Bl #0} CZ~T, i=1,2,

which implies that the spectral subspaces X;(c;), 0y C Z, i = 1,2, have the
following representations:

Xi(0;)={z€X;: Elz =0Vk € Q; \ 0, }, i=1,2. (6.3)

The family A = {A;; = E?AE};i € (y,j € Qy} of operators belonging
to Hom(X7, X3) is called the matriz of A (with respect to the resolutions &;).
Formula (6.3) implies that an operator A € { = Hom(X;, Xs) (where (X;,U;) =
(Xi,Ui)e, @ = 1,2) is causal with respect to the representations Uy, Uz and the
semigroup Zy = N U {0} = Ry NZ if and only if

Ay =E}AE; =0 Vi<j, i€, jE

(that is, its matrix is lower-triangular if A € i, = End X and U; = Us = U).

Let us note that since the representation Up: T — End Hom(X;, X2) given, as
usual, by the formula Uy () A = Us(y) AUy (v~ 1), v € T, is defined on the compact
group T, it has a Fourier series

Uo(7)A ~ Z Apy"

neas—Q

with A, € Hom(X3,X53), n € Qo — Q, that is, the Fourier coefficients of the
function v — Up(y) A have the following form (see also formula (4.2) and [29], [30]):

A, = / Uo(y) Ay " dy = ZE?AE} = ZAU:
T

where the sum is taken over the i € Q3 and j € 3 such that ¢ — j = n. This is
why the A,, will be called the diagonals of A. The operator A belongs to Lo, if

and only if
. k|
nh_rgoHA - E ( - Ay

|k|<n

=0.

This follows from the theorem on the approximation of continuous periodic func-
tions by Cesaro means. In particular, A € ilg,, if A has absolutely integrable
diagonals, that is, > o, o [[Anll < oo.

Let us also note that A(A,Up) = {n € Qs — Qy: A, # 0}. Therefore, the no-
memory part M(A) of A coincides with Ag. Hence, M(i,) = M(End X) is the
subalgebra of operators with diagonal matrices.
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Example 6.11. Let X; = L,(Q,Y;), p € [1,00], i = 1,2, be the Banach spaces of
functions considered in Example 2.10. They are the spaces of the representations
Vi: G — End X; defined by formula (2.8). The L; (G)-module structures on the X;
are defined by formula (2.9), which implies that the spectrum A(x, V;) of any = € X,
i = 1,2, coincides with its essential support vraisuppx C 2 C G. It should be noted
that it is this module structure that is used in the conventional definition of causal
operators (see [2], [3]) acting on function spaces.

Consider an operator B = Ag + A € Hom(X7, X5) of the form
w@wwa%wnm»+/Awmmwwm weq, (6.4)
Q

where Ay € Loo (22, Hom(Y7,Y2)) and A: Q x Q — Hom(Y7,Y3) is a strongly mea-
surable operator-valued function such that ||.A(w, v) || < a(w—~) for some a € Ly (G)
and almost all w, v € . In this representation A is an integral operator. The opera-
tor B is bounded and || B|| < ||all1+Ao||cc- The representations V: G xG — End i
and Vp: G — End il corresponding to V' (see formulae (5.1) and (5.6)) have the
following form on B:

((V(g1,92)B) ) (w) =/w(92)7(91)A(w,7)w(7) dy + w(g1)w(gz) Ao(w) z(w),
0 (6.5)

<mmwwwm=/w@¢Hmmwwﬂww+mwme (6.6)

Q

where g, 91,92 € G, = € X; and Vj is continuous in the uniform operator topology.
Hence,

(Wuwwwwz/fwwAwwﬂww+ﬂ%wmwmwx
o (6.7)

((Vo(p)B) z)(w) = / Py — w) A(w, v) z(v) dy + $(0) Ag(w) z(w)
Q (6.8)

forall f € Li(G xG), p € L1(G) and z € X;. Formulae (6.7) and (6.8) imply
that

A(A, TN/) = vraisuppA, A(A, 17) = {(w,w) € Q x Q: w € vraisupp .Ao},

(6.9)
AAVY) ={y—-we G: (w,7) € vrai supp A} C Q- Q, (6.10)
A(4o, Vo) € {0}, A(B, Vo) C A(A, 1) U {0). (6.11)

Let us note that B belongs to each of the classes 4l (see (5.7)).
If (fo) is the O-net in Remark 4.5, then formula (6.8) implies that ||Vo(fa) A <

|| faall1 — 0, whence lim||Vo(fo) A| = 0. Hence, A € Ergy(4h) and M(A) = 0. Since
Vo(fa) Ao = f2(0) Ag = Ay, we obtain that Ag € M(&l), whence M(B) = Aq.
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Now let S be a semigroup in G satisfying our conditions. Then (6.8), (6.10)
and (6.11) imply that A(B, Vo) C A(A, Vo) U {0} C S if and only if the following
equality for the kernel A of A holds almost everywhere:

Alw,v) =0, vy—wé¢S. (6.12)

Therefore, B is causal with respect to S if and only if (6.12) holds for the kernel
of A.

Such representations (formulae (6.5)—(6.8) and (6.9)—(6.12)) hold for various
classes of singular integral operators.

Example 6.12. Let X; = F(G,Y;), i = 1,2, be Banach spaces of functions each
coinciding with one of the spaces L, Cp, Co, AP (see Example 2.10). We assume
that Xo = Loo(G,Ya) if X1 = Leo(G,Y1), X = Cb(G,Ya) if X1 = Cu(G, Y1),
and so on. We equip the Banach spaces under consideration with the structure
of a Banach L;(G)-module using formula (2.11) and the representation S (of the
group of shifts of functions). Consider a bounded continuous function p: G —
M (G,Hom(Y1,Y2)), where M(G,Hom(Y1,Y2)) is the Banach space of bounded
operator-valued measures on G (see [31]). To this function we assign the operator
A € Hom(X7, X5) defined by the formula

(Az)(g) = /G wg)ds)z(s+g), geG, zeX. (6.13)

We have [|A]| < sup,cg [[p(g)]|- For this definition to be valid, we must impose
certain restrictions on u. If F = L., then we assume that the values of u are
measures absolutely continuous with respect to the Haar measure on G (so that we
can assume that (g) € Ly (G, Hom(Y7,Y3)) for all g € G). However, in this case
we can put X; = Ly(G,Y;), p € [1,00], i =1,2. This class contains the integral
operators

(A1z)(g) = /GIC(g, s)x(s)ds, geG, xzelX, (6.14)

where the kernel £: G x G — Hom(Y7, Y3) has the following property: the function
s K(s,s+9): G — L1 (G,Hom(Y1, Y2)), which will be denoted by K, belongs to
the space Cy(G, L1 (G, Hom(Y7, Y2))).

If F = AP, then we assume that g is almost periodic. In this case
A: AP(G,Y1) — AP(G,Yz). For Cp and Cj no supplementary restrictions on pu
are needed.

There is another special case of operators of the form (6.13):

(A2z)(9) = > Fu(@)z(g+gr), g €G, zeXy. (6.15)
k>1

The functions Fy: G — Hom(Y1,Y2), %k > 1, are assumed to belong to
Loo (G, Hom(Y1,Y2)) if X; = Ly(G,Y;), i = 1,2, p € [l,00]. We assume
that F, € Cp(G,Hom(Y1,Y2)), k > 1, if X; = Gy(G,Y;) or X; = Co(G,Y;),
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= 1,2. The operator is well defined on the space of almost periodic functions

i
(if and) only if the Fy, k > 1, are almost periodic functions.
Formulae (6.13)—(6.15) and (5.6) imply that

(So(u) Az)(g) = (S(u) AS(—u) z)(g) = /Gu(g +u)(ds)z(9+s), (6.16)

(So(u) A1) (g) = /K(g+u s+ u) x(s) ds, (6.17)
(So(u) Azz) ( ZFk g+ u)z(g+ gx), (6.18)
k>1

where g,u € G and = € X;. We deduce from (6.16)-(6.18) that A belongs to
o C Hom(Xq, Xp) = 4 if p is uniformly continuous. In particular, 4; € o .,
i = 1,2, if the functions K and Fy, k > 1, are uniformly continuous.

For any f € L1(G) the operator Sy(f) A = fA € Hom(X;, X3) has the form

((fA) ) /f# ) (ds) z(g + ), xz € X, (6.19)

where

Fulg) = (F * ) / F(r)ulg - 7) (dn). (6.20)

Therefore, A(A, Sp) = A(p) is the Beurling spectrum of p regarded as an element
of the space C(G, M (G, Hom(Yl,Yg)) equipped with the structure of an L;(G)-
module via convolution. In particular, A(Az, So) = Uy~ A(Fk).

Hence, A is causal with respect to the representation Sy and a semigroup S C G

if and only if
A(u) CS. (6.21)

For A, this condition can be written as

UAFE) cs. (6.22)

k>1

Finally, let us note that an A defined by (6.13) is an operator with no memory if
and only if u is constant, that is, A is the operator of convolution with a measure
belonging to M (G, Hom(Y1,Y2)). A; has this property only if K(g, s) = Ko(g—s),
g, s € G, for some Ky € L1 (G, Hom(Y7, Y2)).

Example 6.13. Let A: D(A) C X2 — X3 be a linear operator that is the genera-
tor of a strongly continuous isometric group of operators {T5(t);t € R} C End X,
and let B: D(A) — X» be a linear operator subordinate to A. We denote by X;
the Banach space D(A) equipped with the graph norm |jz|a = |z| + ||Az],
x € D(A). We denote by T1: R — End X; the restriction of T5 to X, which
is also a strongly continuous isometric representation. Assume that the function
B: R — Hom(X;, X3) defined by the formula B(t) = To(t)B = T2(t)BTi(-t),
t € R, is continuous (in the uniform operator topology), that is, B € g, for
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34 = Hom(X;, X5). The operator A+B € {lis causal with respect to Tp: R — End U
and S = R4 C R in the sense of Definition 6.3 if and only if A(A + B,Tp) C R,
Since Tp(t)A = A, that is, A € M(Y), this condition is equivalent to the
condition A(B,Tp) € R4, which (see Lemma 8.2 below) is in turn equivalent
to the existence of a bounded holomorphic continuation of B to the half-plane
Cy={z€C: Rez > 0}.

In particular, if A = d/dt is defined on a Banach space X5 coinciding with one
of the Banach spaces L,(R,Y), p € [1,00], Cp(R,Y), Co(R,Y), and B € End X,
then A+ B is causal with respect to Tp = Sp: R — End(End X5) if and only if B has
a bounded holomorphic continuation to C,. If B is an almost periodic operator
with respect to Sg, B ~ Y. ;>0 Bj is its Fourier series and So(t)B; = ei'B;,
j = 0, then it is causal if and only if A; > 0 for all j > 0. In this case B = By
if Ap =0.

Remark 6.14. The condition 0 € Int S was used only in the proof of the equivalence
of Definitions 6.2 and 6.3. In what follows it will be used only in Theorem 7.23.

§ 7. Causal invertibility. The algebra
of causal operators and its radical

We consider Banach L;(G)-modules (X;,T}), i = 1,2, a semigroup S C G and
the set Caus(X;, Xo) C U = (X7, X2) C Hom(X;, X2) of operators causal with
respect to Tp and S. As before, { is one of subspaces (5.7) and i, = U, (X) is a
closed subalgebra of End X that coincides with (X, X), with the exception of the
case when 4 = $l; s N Ly . To say that A € Caus(X) means that X; = X = X
and Tl = T2 =T.

Definition 7.1. An operator A € Caus(X;,X3) is said to be hypercausal if
0 ¢ A(A,Tp). Tt is said to be uniformly (or strongly) causal if u-lim f,A = 0
(or s-lim f, A = 0) for some 0-net (f,) in L1(G) (and then the same is true for all
0-nets (fo) in L1 (G)).

We denote the set of hypercausal operators belonging to €aus(X;, Xs) by
HC(X1, X2) (or HC(X), if X1 = X2 = X). The set of uniformly causal opera-
tors will be denoted by UC(X7, Xa) (or UC(X), if X; = Xo = X).

The results of §§3,4 (see Theorem 4.19) imply the following theorem.

Theorem 7.2. UC(Xy, X3) is a closed submodule of the Li(G)-module
(Caus(Xy1, Xs), Ty) and of the L1(G x G)-module (Caus(Xi,Xs), T) It has
the following properties:

(i) any operator belonging to UC(X1, X3) is the limit (in the operator norm) of
a sequence (a net) of hypercausal operators,

(ii) Ergy (Caus(X1, X2)) = M(L) SUC(X1, Xa),

(i) for any A € UC(X1,Xy) there is an f € L1(G), f(0) = 0, such that
A= fA=Ty(H)A,

(iv) AP((Caus(X1,X2),To) € M(8) & UC(X1, X2), and the almost periodic
operator A € Caus(Xy, Xo) belongs to UC(X1, X2) if and only if 0 ¢ Ay(A, Tp),

(v) UC(X) is a closed two-sided ideal of the Banach algebra €aus(X) of causal
operators.
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Remark 7.3. A € Caus(Xy, X3) is uniformly causal if and only if 0 is an ergodic
point of A(A,Tp) that does not belong to the Bohr spectrum of A (regarded as an
element of the L (G)-module (4, Tp)).

In the case when X; = X5 = H is a Hilbert space, a definition similar to that of
uniformly causal operators was made in [1] in a somewhat different way (in what
follows we use the notation of Example 2.8). An operator A € €ausH is said to be
strictly causal (see [1]) if for any € > 0 there is a partition R = |J]_; A;, A; € %,
1 <i < n, such that [|[E(A;)AE(A)]| <e.

Remark 7.4. Let us return to the examples of causal operators considered in §6.
The integral operators in Example 6.12 (in this case Ag = 0) are uniformly causal.
For an operator A defined by formula (6.13) to be uniformly causal it is necessary
(if dim E, dim F' < co) and sufficient that p € Evgy (Ch (G, M (G, Hom(E, F))), So)
and 0 ¢ Ap(p). This condition is equivalent to the following: 0 is an ergodic point
of A and zero does not belong to the Bohr spectrum of p. Hence, A is uniformly
causal if lim f,, * u = 0 for at least one O-net in L1 (G).

If A €8l =Hom(X;,X>) is the Ly (T)-module considered in Example 6.10, then
the inclusion A(A,Tp) C Qo — Qy C Z implies that zero (if it belongs to Qa — Q)
can only be an isolated point of A(A4), whence A € M(U) ® UC(X1, X2).

The majority of the results stated below hold under the following assumption.

Assumption 7.5. U(Xq, X2) C Loy (X1, X2) and SN (-S) = {0}.

Lemma 7.6. Let (X;,T;), i = 1,2,3, be Banach Li(G)-modules, let A €
(’:aus(Xl,XQ;To) C ﬂ(Xl,XQ), B e (’:aus(XQ,Xg;Té) C ﬂ(XQ,Xg), where Ty, as
always, is defined by formula (5.6), and let Tj: G — End Hom(X>5, X3), T{(g)C =
T5(9) CTa(—g), g € G, C € (X2,X3). Then BA € Caus(X1, X3;T('), where
Té/t G — EndHom(Xl,Xg), Té(g)D = Tg(g) CTl(—g), g < G, D e ﬂ(Xl,Xg),
and BA € UC(X1, X3) if one of the operators A, B is uniformly causal and Assump-
tion 7.5 holds.

Proof. First we make the following comment to the assumptions of the lemma: the
three subspaces of operators occurring in the statement of the lemma are assumed to
belong to the same class. For example, if U(X7, Xo) = Us (X1, X2) Nl o (X1, X2),
then (X, X3) = Ho o(X;, X3) N Uo,o(Xi, X3), ¢ = 1,2. The assertion that BA
belongs to U(X7, X3) can be proved in the same way as in Lemma 6.9.

Let o be an arbitrary closed subset of G and let = belong to Xi (o, T;). Corol-
lary 5.13 implies that

A(BAz,T3) C A(B,T)) + A(Az, T>) € A(B,T}) + A(A, To) + Az, T1) C o +S.
(7.1)

Since the semigroup S is closed, Definition 6.2 implies that BA is causal (with
respect to T and S).

Now assume that one of the operators under investigation is uniformly causal.
We can assume without loss of generality that A is uniformly causal, 0 ¢ A(A,To)
and A(A,Tp) is a compact set. The above inclusions imply that A(BA) C
A(A)+S = A(A) +S. Since A(A,Tp) is compact, the assumptions on S imply
that 0 ¢ A(BA,T{'). The lemma is proved.
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Corollary 7.7. CausX is a closed subalgebra of U, C End X, and UC(X) is a
closed two-sided ideal of CausX if Assumption 7.5 holds.

In the proof of (7.1) we did not use the assumption that A and B are causal.
Therefore, the following corollary holds.

Corollary 7.8.
A(BA) C A(A) + A(B) (7.2)

for all A € U(X1,X2) and B € U(Xo, X3).

Definition 7.9. An A € Caus(X;, Xs) is said to be causally invertible if it
is invertible and A=! € Hom(X,, X;) is causal with respect to To_lt G —
End Hom(Xy, X1), Ty '(9)B = T1(9)BTa(—g), g €G, B € U(X2, Xy).

We denote by cequs(A) the spectrum of A € CausX in the algebra CausX.
Conditions for causal invertibility are of importance in the study of the stability of
solutions of differential equations (see [2], §5.1 and [3], Ch. III).

Lemma 7.10. Let Assumption 7.5 hold and let A € UC(X1, X2). Then A is not
causally invertible.

The proof follows immediately from Lemma 7.6 and the fact that the identity
operator is not uniformly causal.
We need the following definition.

Definition 7.11 [32]. A subalgebra A of a Banach algebra B is said to be full
(in B) if every a € A that is invertible in B is invertible in .A.

The definitions imply that a subalgebra ,(X) is full in End X if it coincides
with one of the subalgebras &y s Mg 5, oo N Loy

Theorem 7.12. Let A € M(W(X1,X3)). Then To(f) A = ATy(f) for all f €
Li(G), and A™' € M(U(X2,X1),Ty ") if A is invertible. In particular, M(8l,) is
a full subalgebra of End X.

Proof. Since To(f) A — AT1(f), [ € Li(G), belongs to U(X7, Xs), it is sufficient
(see Remark 5.10) to prove that its restriction to (Xi,71). is the zero operator.
If € (X1,T1)c, then we have

(Ts(f) A~ ATy () & = To(f) Az—A /G F(9) Th (—g) x dg = To(f) Az—Ty (f) Az = 0

(see Lemma 2.7). The other assertions of the theorem follow immediately from
Lemma 6.6.

Taking into account Theorem 7.12, it is natural to call operators belonging
to M(X) multipliers of the L;(G)-module X.

Theorem 7.13. Let Assumption 7.5 hold, let A € Caus(X;,X2) be a causally
invertible operator and let 0 € Aerg(A, 1), that is, A € M(X1,X2) @UC(X1, Xo).
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Then 0 € Aerg(A™1, Ty "), the operator Ag = M(A) is invertible and (M(A))_lz
M(A™Y). If A€ CausX and 0 € Aerg(4,Th), then ocaus(A) 2 a(Ao).

Proof. Assertion (i) of Theorem 4.19 implies that A can be represented in the form
A= AO + Al, where A; € Z/{C(Xl,XQ) By Lemma 7.6, By = A_lAl and By =
A1 A~ belong to the ideals UC(X1) and UC(X3) of uniformly causal operators,
respectively. Then for any O-net (f,) in L1(G) we have wu-limT¢(f,)B; = 0,
i =1,2, where T¢(g9) C; = T;(9) CiTi(—g), C; €EndX;, g€ G, i=1,2.

Therefore, there is an w € Q such that ||T¢(f,)Bi|| < 1/2, i = 1,2. By
Theorem 7.12,

I=AYA=THfo) (A Ao + A1) = (T (fa) A1) Ao + T3 (fa) Bi,

I=AA"" = Ay(Ty ' (fa)A™Y) + T3 (fa) B2 (7.3)
for all & € Q. Hence, |4 A0 —I|| < 1/2 and [[AoAs — I]] < 1/2 for A, =
Ty ' (fu)A™!. These inequalities imply that A, Ay and AgA,, are invertible opera-
tors, which implies that Ao has a left ((A,Ao) *A,) and a right (A, (AoAL)™!)
inverse operator. Hence, Ag is an invertible operator and we can pass to the
limit in (7.3). Therefore, u-lim Ty ' (f,)A~" exists. Hence, 0 € AL, (A1, Ty 1),

erg
1

AgM(A™Y) = I and M(A"1)Ag = 1. Therefore, M(A™1) = (M(A))  and 0 €
Aerg(A71,T5H).
The assertion concerning the causal spectrum follows from these assertions.

We equip Hom(X7, X5) with two further Banach L;(G)-module structures which
will be needed later in the study of €aus(X). These structures are associated with
the representations

T{: G — End(Hom(X1, X2)),  T7(9)A = ATi(g),
T}: G — End (Hom(X1, X»)), Ti(9)A = Th(g)A,

where A € Hom(X;, X5) and g € G. Hence,
T (f)A = AT\(f),  Ti(f)A=Ta(f)A, f€Li(G), AecHom(X;,Xy).

It is clear that T} and T% commute and Ty(g) = T4(g)T7 (—g), g € G. Let us note
that the module structures thus defined are non-degenerate.

We conclude this section with a study of the Banach algebra €ausX of causal
operators, which is a subalgebra of 4(,(X) under the conventional assumption con-
cerning the coincidence of the latter algebra with one of the above classes of opera-
tors belonging to End X. We denote by Jad(€aus X)) the radical (see [33]) of Caus X.

It may happen that the radical of CausX does not contain the two-sided ideal
UC(X) of uniformly causal operators. This is why we need some supplementary
conditions describing the set Rad(CausX).

Definition 7.14. The operators belonging to the subspace
RC(X) = ((Ua, T e U (Ua, T7)) NUC(X)

will be called radically causal.
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Definition 7.14 implies that A € UC(X) is radically causal if and only if one of
the following conditions holds:

(i) u-limT(fo)A = A or u-lim AT(f,) = A for some b.a.i. (f,) in L1 (G),

(ii) for any € > 0 there is a ¢ € Lq1(G) such that ||T(p)A — A|| < € or
|AT (o) — Al < e,

(iii) one of the functions g — T'(g9)A, g+— AT(g): G — End X is continuous (in
the uniform operator topology).

Let us note that RC =UC if A(X,T) is compact.

Remark 7.15. If 4, is contained in one of the algebras 8l ,,, o 4, then (8, T?). =
(Ua, T")¢. This implies that imT'(f,) A = A if and ouly if lim AT (f,) = A.

Assumption 7.16. A semigroup S C G satisfies the following condition: for any
compact sets K1 C S\ {0} and Ky C S there is a positive integer m such that
(mK;)N Ky =&, where mK; = K1 + K1 +---+ K.

m

For example, Assumption 7.16 holds for the semigroup S = R”} contained in R",

but does not hold for the semigroup S = {(z,y) € R?: y > 0} ¢ G = R%. Let us
also note that —SN'S = {0} if Assumption 7.16 holds for S.

Theorem 7.17. If Assumption 7.16 holds for a semigroup S, then RC(X) C
Rad(Caus X).

Proof. Let A € RC(X). Then A is the uniform limit of the sequence of hypercausal
operators defined by the formula A, = A — To(fn)A, n > 1, where (f,) is a
0-net in L;(G) such that f, = 1 in some neighbourhood of zero. It is obvious that
A, € RC(X), n > 1. Taking into account that the radical of CausX is closed, it is
sufficient to consider the case when A € HC(X), that is, 0 ¢ A(A, Tp).

Let f € L1(G) be an arbitrary function with compact support supp f and B any
operator in CausX. Corollaries 5.15 and 7.8 imply that

A((T(f) AB)*, To) C supp f N (k — 1) (supp f N A4, Tp))

for all positive integers k. By Assumption 7.16, the right-hand side of this inclu-
sion is empty if k& € N is sufficiently large. Therefore, (T( hH AB)k = 0, that
is, T(f) AB is a nilpotent operator (which implies that BT (f) A is a nilpotent
operator). This means that T(f) A belongs to Rad(CausX). We prove likewise
that AT(f) € Rad(CausX). By Definition 7.14, the closure of one of the sets
{T(f)A, f € Li(G)}, {AT(f),f € L1(G)} contains A, whence A € Rad(CausX).

Corollary 7.18. oequs(A + B) = 0¢aus(A) for all A € CausX and B € RC(X).

Theorem 7.19. Let A € UC(X) be a compact operator, let T be a strongly con-
tinuous representation and let Assumption 7.16 hold for a semigroup S. Then
A € Rad(Caus X).

Proof. Since A is compact and T is strongly continuous, the function g
T(g)A: G — End X is continuous in the strong operator topology, whence A €
RC(X). It remains to use Theorem 7.17.
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We can state other conditions on compact operators under which they belong
to the radical of CausX. Let us begin with compact operators with no memory.
We shall reinforce the corresponding results obtained in [2], [3], [5]. The two-sided
ideal of compact operators will be denoted by £(X). The ideal of compact causal
operators will be denoted by K&(X).

Theorem 7.20. Let A € R(X)NM(Uy,). Then its image Im A is contained in the
closure of the linear span of the set of eigenvectors of the Li(G)-module (X, T).

Proof. Since A € R(X), the set {AT(g)x, g € G} is precompact in X for every
fixed © € X. The equalities T'(g)Ax = AT(g9) z, g € G, imply that Az is an almost
periodic vector in X, (see Definition 4.11 and Theorem 4.12). Therefore, Ax is the
limit of a linear combination of eigenvectors of the L; (G)-module (X, T).

Corollary 7.21. If Ay(X,T) = @, that is, the Bohr spectrum of every x € (X, T)
is empty, then R(X) N M(L,) = {0}.

Corollary 7.22. Let Ap(X,T) = @, X = X.,, A € R&X), and let 0 be an
ergodic point, that is, A € Erge(Caus X, Ty). Then A € Rad(CausX).

Proof. We can represent A in the form A = Ag+ Ay, where Ag € M(4,) and A4; €
UC(X). By Corollary 7.21, we have Ay = 0. Therefore, A = A; € UC(X). Tt
remains to use Theorem 7.19.

Theorem 7.23. Let A € RE(X), Ap(X,T) = @, and let Assumption 7.5 hold.
Then A € Rad(CausX).

Proof. Assume the opposite. Take an « such that 0 # o € o(A). The Riesz
projector P corresponding to the one-point set {a} is defined by the formula

1 ~1

P = 57 F(A A7 dA, (7.4)
where T is a closed Jordan contour encircling {a}, separating {a} from o(4) \ {a
and positively oriented. Since the set o(A) is at most countable, we have g qys(A) =
a(A) (see [3], [32]). Therefore, the (A—XI)~%, X\ €T, are causal operators. Hence,
P is a causal operator, that is, P € €ausX C iy ,. Therefore, one can find a
v € G such that PX7 # {0}. Moreover, the condition imposed on S and the fact
that (the image of) P is finite-dimensional enable us to assume that PX7*¢ = {0}
for all e € S\ {0}. Passing to the restrictions P and Ty of P and Tp to the
spectral subspace X7 and using formula (5.11), we obtain that A(P7,T) = {0}.
Corollary 7.21 now implies that PY = 0. This is a contradiction.

Remark 7.24. Consider the following properties of an A € Caus X:

(1) A—To(f) A € R(X) for all f € My = {¢ € Li(G): p(0) =1},

(ii) A — To(f) A € RC(X) for all f € M,.

If A€y, then (i) is equivalent to

(i) T(9) AT (—g) — A € K(X) for all g € G,

and (ii) is equivalent to

(ii") T(9) AT(—g) — A € RC(X) for all g € G.

The operators A — To(f)A, f € My, are uniformly causal and, under certain
conditions, belong to the radical SRad(Caus X) of Caus X, as was proved in a series of
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assertions in this section. For example, if (i’) holds and X = X, then Theorem 7.19
implies that A € Rad(CausX). Since the A — To(f) A, f € My, belong to the
radical, we have the estimate

r(4) < g |To(f) A

for the spectral radius r(A) of A. It should be noted that A = Ag + A; if A €
Ergy(Caus X, Tp), where 4y € M(4,) and A; € UC(X). Moreover, oeaus(A) =
0(Ap). In particular, r(A) = r(Ao).

This remark implies the following theorem.

Theorem 7.25. Let A € CausX N Ergy(CausX,Tp) and A = Ay + A1, where
Ag € M(Uy,) and Ay € UC(X). If the assumptions of any of Theorems 7.17, 7.19,
7.22,7.23 hold for A;, then oequs(A) = o(Ap).

Other approaches to the estimation of the spectral radii of causal operators can
be found in [5], §2.4, and [34]. Special attention should be paid to [2] and [3],
where one can find conditions sufficient for an operator to belong to the radical of
the algebra of causal operators. These conditions are stated in other terms, and
other approaches are used. For example, instead of the Bohr spectrum of a vector in
a Banach L;(G)-module, continuous chains of subspaces indexed by points of R are
used (that is, G =R and S = R, ). As arule, these chains coincide with the spectral
submodules X! = X ((—o00,t],V), t € R (see Example 2.10 with Q@ = G = R). In
this case, simple examples show that Theorem 7.23 has a wider scope of application.

Example 7.26. Let CausX be the algebra of causal operators considered in
Example 6.10, where X1 = Xo = X, & = & = &, and E} = E? = Ey,
ke Q= Q =N We assume for definiteness that 2 = Z. A causal operator
A € CausX (whose matrix A;; is lower-triangular: A;; = 0 if ¢ < j) belongs
to UC(X) if its diagonal Ag is zero. Such an operator is radically causal (which
implies that A € Rad(Caus X)) if A € 4y, and

> EiAE;

i—j=n,i>k

=0

lim
k— o0

for all n € Z (see Theorem 7.23).

Example 7.27. Consider the operator B = Ay + A defined by formula (6.4)
in Example 6.11, where X1 = X; = X = L,(Q,Y), p € [1,00]. We assume
that condition (6.12) holds for the kernel A of the integral operator A, that
is, B is a causal operator. It was mentioned in Example 6.11 that M(A) = 0
and M(Ap) = Ap. Since the Bohr spectrum Ay(p) = Ap(p,V) is empty for
every ¢ € X if G is a non-discrete group, every compact integral operator A
(these conditions hold if Q is a compact subset of G and dimY < 00) belongs
to Rad(Caus X). Therefore, oequs (B) = o(Ag). If Q is precompact, then A(A, V) is
contained in the compact set {2 — Q. Hence, A is radically causal, and Theorem 7.23
implies that A € Rad(CausX).
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§ 8. Causal operators and methods of the theory of holomorphic
functions. A theorem on the spectral components of causal operators

The fact that causal operators have their Beurling spectra in a semigroup S
enables us to use the theory of holomorphic functions (for a certain class of semi-
groups in G). To avoid technical difficulties, which would considerably increase the
length of this paper, we restrict ourselves to the study of the groups R, T and the
corresponding semigroups Ry C R ~ R and 74 CZ~ T.

An important role in this section is played by the family of functions { f,; z € C }
in L1 (R) of the form

fz(t)zé !

ﬂ-m7 Z:CX—F’L'B, 6>07 (81)

where C; = {2 € C: z =a + i3, f > 0}. These functions have Fourier transforms
of the form

) = e ARIFeA N eR z=a+i8, B>0. (8.2)

In the following lemma we denote by R, the set R \ {0} arranged in decreasing
order. The symbol R! stands for the set Ry \ {0} arranged in increasing order.

Lemma 8.1. The following assertions hold for {f.; z € C4}:
(i) the map
[OF C+ — Ll(R), CI)(Z) = fz, AS C+, (83)

from the open half-plane C, to the Banach algebra Lq(R) is continuous, and

(ii) (21 +22) = P(21) * D(22) for all z1, 22 € C4 (that is, ® is a homomorphism
from the semigroup C, C C to the algebra L,(R)),

(iii) the net (fiz), B € R, is ab.a.i. in Li(R),

(iv) for any a € R the net (fatig), B € Rl, is an a-net in Lq(R).
Proof. 1t is obvious that ® is continuous.

Let us note that every f,, z =a+1i8 € C,, can be written as

f(t) = fist+a),  teR,

whence ||f.|| = ||figll- The fiz, B > 0, are positive functions, whence | f.| =
| fisll = |£i5(0)| = 1. Therefore, (8.4) holds.
Assertion (1 ) follows from (8 2) and the equalities

f21+22(>‘) = le (A)fzz (A)a AER, 21,20 € C+'

A simple verification shows that assertions (iii) and (iv) follow from the defini-
tions of b. a.i. and y-nets (see Definitions 4.1, 4.4 and 4.6).
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Lemma 8.2. Let (X,T) be a Banach Li(R)-module, and let X. = X and x € X.
The inclusion
Az, T) C Ry (8.5)

holds if and only if the function
v:R— X, ot)=T(t)x, teR, (8.6)

has precisely one bounded holomorphic continuation @ to the half-plane C.. If (8.5)
holds, then @ has the form

o(z) =T(f.)=x, z€Cy. (8.7)

Proof. We denote by B the generator of the L; (R)-module (X, T), that is, i B is the
generator of the strongly continuous group of operators {T'(t); t € R}. If A(X) is
compact, then B € End X, and there is a holomorphic continuation ¢ defined by
the formula @(z) = ¢**B, 2 € C, (in fact, it is an entire function). Hence, the
problem is reduced to that of finding conditions under which ¢ is bounded.

Let A(z,T) € R;. First we assume that o = A(x) is compact. We assume
without loss of generality that ¢ = A(X) is a compact subset of G (otherwise we
must consider the restriction of T to the spectral submodule X (o)). Then ¢(z) =
e*Bg, z € C, is a holomorphic extension of ¢ to C. We claim that ¢ is bounded
in C4. Let us fix a z € C; and a sequence (e,) of positive numbers converging to
zero. Consider a sequence of functions f, ,,, n > 1, belonging to L (R) and defined
by the formula f, ,(t) = f.(t)exp((8 — it)en), t € R. It is clear that f,,(\) =
exp(iAz) for A € (—ep,00) and lim, o fo ., = f. (in Li(R)) for every z € C,.
Theorem 3.8 implies that ¢,(B) = exp(izB) = T(f.n), n > 1, for ¥, () =
exp(Az), A € C, whence

B =T(f.) = lim T(f..n). (8.8)
We thus obtain formula (8.7) and the estimates
le*EI =TI < Nf:ll=1,  z€Cy.

If x is an arbitrary vector in X, then x = lim,,_, o ,, where the A(x,), n > 1,
are compact sets. Combining these results with part (i) of Lemma 8.1, we obtain
that the sequence of holomorphic functions

@n(z) =T(f2) xn, z€eC, n>1,

converges uniformly in C; to the holomorphic function ¢: C; — X given by (8.7).
Hence, the desired continuation is unique, which completes the proof of necessity.
Now assume that ¢ has a bounded holomorphic extension ¢: C; — X, and
that A(x) NR_ # &, where R_ = R\ Ry = (—00,0). Then there is a non-zero
function ¢ € L;(R) such that supp is a compact set in R_ and y = ¢z is a
non-zero vector. Hence, A = A(y) C suppt N A(z) is a compact set in R_.
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We can again (as in the proof of necessity) assume (by passing to the restriction
of T to X(A)) that A(X) = A. The function ¢1(t) = T(t)y, t € R, (as well
as ) has a holomorphic extension to C,, which coincides with ¢1(z) = T(¢)@(2),
z € C,. This extension in turn coincides with the function z — ¢**By, 2 € C,.
Lemma 3.6 implies that o(B) = A(X) = A C (—o0, —¢] for some £ < 0. Hence,

|lexp(BB)|| < Cexp(—eB3/2) for all > 0, where C' > 1. Therefore,

ol = lexp(3B) exp(-5Bl < Coxp( - L )Ieatid)l. 5> 0.

These estimates imply that ||@g1(i8)]] > Cexp(—e8/2), B > 0, which contradicts
the fact that ¢ is bounded in C,. This contradiction completes the proof.

Combining the proof of sufficiency in the proof of Lemma 8.2 with theorems of
Phragmén—Lindeldf type [35], we obtain the following corollary.

Corollary 8.3. If the function ¢ (see (8.6)) has (precisely) one holomorphic exten-
sion ¢: CL — X such that

lim
0<B—00

ol _, 59

then A(z) CR,.

Corollary 8.4. If A(x_) C R4, then T: R — End X has precisely one bounded
holomorphic extension T: C; — End X, namely,

T(z) = T(a) exp(—BB), z=a+if €Cy, (8.10)

where B is the generator of the Li(R)-module (X,T) = (X,T).. Moreover,
IT(2)||<1 for all z € Cy.

Since B is sectorial (see [36]), the operators exp(—BB), [ > 0, are defined
as usual in terms of integrals of Dunford—Riesz type [11]. We can prove that the
extension of the function ¢ defined by (8.6) is holomorphic when (8.5) holds using
the fact that the restriction of B is sectorial.

Remark 8.5. Assumption (8.9) can be replaced by the assumption that
1 On
A

n—00 On
for some sequence 0 < 3, — oo, n > 1. However, in this case we must impose fur-
ther conditions on ¢ to guarantee the uniqueness of ¢. For example, it is sufficient
to assume that supy 1, <5 [|P(2)|| = ®(8) < co for all > 0.

Now let us return to the study of the Banach L;(R)-modules (X;,T;), i =
1,2, and the Banach Li(R)-module of operators (U4,7Tp) = (4(X1, X2),Tp). Our
assumptions imply that U C i, ;. Hence, any A € il is a strong limit of the sequence
of operators A,, = To(fn) A, m > 1, where (f,) is any b.a.i. of Ly(R). If the
supp fn, n > 1, are compact sets, then so are the A(A,,Ty), n > 1. This enables
us to repeat almost verbatim the proof of Lemma 8.2 for the L; (R)-module (4, Tp).
One need only observe that the operator-valued function holomorphic (on C;) in
the strong operator topology which was obtained in this proof is holomorphic in the
uniform operator topology as well. In this way we obtain the following theorem.
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Theorem 8.6. C € (M, Ty) is causal if and only if the function
poi R4, o) = To(t)C = Ta(t) CTi(~t),  teR,

has precisely one bounded holomorphic continuation ¢co: C, — U. If C €
Caus(X1, Xo), then @¢ is given by the formula

¢c(z) =To(f.)C,  z€Cy, (8.11)

and To(f.)C € Caus(X;, Xs) for all z € C,.

Corollary 8.7. An operator C is causal if and only if pc has a holomorphic
continuation to C such that one of the following conditions holds:

(i) limo<g—s00 5 In | To(fi5)C|| = 0,

(i) supgetm <]/ To(f=)C|| = M(B) < oo for all 3 > 0 and there is a sequence
0 < Bn — 00, n=1, such that limy, BL"IHHTO(fwn)CH =0.

Theorem 8.8. Let A € Caus(Xy, X3). The following assertions are equivalent:
(i) A is causally invertible,
(ii) A is invertible, and the assumptions of Theorem 8.6 hold for C = A= |
(iii) A is invertible, and one of the conditions in Corollary8.7 holds for C=A~1.

This follows from Theorem 8.6 and Corollary 8.7 applied to C = A~! ¢
Hom(X5, X1). It need only be noted that in this case we use the representation
of Ty ! given in Definition 7.9.

Remark 8.9. Let (X;,T;) = (X;,T;)c, @ = 1,2,3, be three Banach L;(R)-modules.
Consider the representations Ty, Ty and Tj introduced in Lemma 7.6 and two
causal operators A € Caus(X;, X2) and B € Caus(Xo, X3). By Lemma 7.6,
C = BA is also causal, that is, C' € €aus(X;, X3). Theorem 8.6 implies that the
functions p4(t) = To(t) A, ¢p(t) = T5(t)B and ¢c(t) = T4 (t)C have holomorphic
continuations g4, ¢p and @c to the half-plane C; (see formula (8.11)). Since
wo(t) = ep(t) pa(t) for all t € R, @¢ and gppa are two bounded holomorphic
continuations of ¢ to C . Then uniqueness of continuation implies that

@c(z) = pB(z) Pal(2), z€Cy. (8.12)

Lemma 8.10. Let A € Caus(Xy, X2) be causally invertible. Then the To(f,)(A) =
?a(2), z € C, are causally invertible, and

(To(f)A) " =T5 ' (f) A7, zeCy. (8.13)

This follows from Remark 8.9. In this case X3 = X;, C =1, B = A~1,
Ty = Tyt and TY(t)L = Ty(t)LTi(~t), t € R, L € End X;. Formula (8.13)
follows from (8.12).
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Corollary 8.11. If X1 =Xo =X and Ty =15 =T, then

TO(fz)(AB) = (TO(fz) A) (TO(fz)B)

for every To(f.), z € C4, for all A, B € €CausX, that is, the To(f.), z € C4, are
homomorphisms of the algebra CausX that preserve the identity element.

Now let G =T, let (X,T) be a Banach L; (T)-module, let G ~ZandletS = Z.
In what follows we assume that X. = X. Hence, the functions

pr: T— X, zeX, ¢ (0)=T0O)z, 6€T,
are continuous, and we can consider their Fourier series

pr~ Y 0"Px, OeT, zeX, (8.14)
nez

where {P,,n € Z} is a bounded sequence of projectors.

We state below several assertions similar to 8.2, 8.6, 8.8 and 8.10. We omit the
proofs as they are simple and similar to those of the assertions cited (corresponding
to the representations of the group G = R). It is possible to reduce these to results
obtained above by considering the (periodic) representation T(t) = T(e'), t € R,
T:R — End X (X is regarded as an L;(R)-module). In this case A(X,T) =
AX,T) C Z.

Lemma 8.12. A(z,T) C Zy for x € X if and only if the function ¢, given
by (8.14) has a holomorphic continuation @, to the disc D = {z € C: |z] < 1},
If A(z,T) C Z, then this holomorphic continuation is given by

Pu(2) = Zz" wt =T(g.)z, |z| <1,

n=0
where g, € L1(T) is defined by the formula

1— 22

g-(0) = A= 201 —20)

beT, |z2<l1. (8.15)

Consider the Banach L;(T)-modules (X;,T;), ¢ = 1,2, and the Banach L, (T)-
module (8, Ty) = (U(X1, X2),Tp). We assume that the T;, i = 1,2, are strongly
continuous.

Theorem 8.13. C € (4, Tp) is causal if and only if the function
pc: T—)ﬂ, ()DC(G) :To(a)C:TQ(G) CT1(0_1)7 0€T7
has a holomorphic extension gc: D — Y. If C € Caus(Xq, Xs), then @¢ is given

by ¢c(z) = To(g.) C, z € D, where g, is defined by formula (8.15), and To(g,) C €
Caus(Xy, Xo) for all z € D.
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Theorem 8.14. Let A€ Caus(Xy, Xs). The following two conditions are equivalent:
(i) A is causally invertible,
(i) the function 4-1: T — Hom(Xz, X1), ¥a-1(0) =T1(0) A~1T1(0), 6 €T,
has a holomorphic extension to D.

Lemma 8.15. Let A € Caus(Xy, X2) be causally invertible. Then the Ty(g.) A =
?a(z), z €D, are invertible operators, and

(To(g-) A) " =Ty (g) A}, zeD. (8.16)

Corollary 8.16. The Ty(g,): CausX — CausX, z € D, are homomorphisms of
the Banach algebra (CausX,Tp), and || To(g.)|| < 1 for all z € D.

One of the main results stated in this section is the theorem on spectral com-
ponents of causal operators stated below. We know of no close analogues of this
theorem, even for the causal operators considered in [1]-[6].

In what follows we consider a Banach L (G)-module (X, T). We assume that T
is strongly continuous and G € {R, T}. A spectral component of an element a of the
Banach algebra B is defined to be a non-empty closed subset o1 of the spectrum o(a)
of a such that o2 = o(a) \ 01 is a non-empty closed set and o1 No2 = &, that is, o1
is both open and closed in the topology on ¢(a) induced from C.

Theorem 8.17. Let A € CausX be a causal operator belonging to Ly, N
Ergy (M, Tp). Then oeaus(A) 2 0(Ag), where Ag = M(A), and every spectral com-
ponent of oeaus(A) contains at least one spectral component of o(Ap) = oeaqus(Ao)-

Proof. Let oo be a spectral component of o¢qys(A), that is, oequs(4) = oo U 071,
where 61 = 01 and opNo1 = &. We denote by Py the Riesz projector corresponding
to oo (see formula (7.4), where I" is a contour that encircles op and separates og
from oy).

Assuming for definiteness that G = R, we consider the family of homomorphisms
To(fig) € End(€ausX) for 8 > 0 (see Corollary 8.11) and the family of operators
Ag =To(fig) A, B8 > 0. Since each of the Ty(fig) is a homomorphism of the Banach
algebra, we have oequs(Ag) C Teaus(4), which yields the corresponding partition
of the causal spectrum of Ag:

Ugaug(Ag) = 09,3 U013, G >0, (8.17)

where 0; 3 = 0; N Geaus(Ag), @ = 0,1. Hence, the contour I' (see formula (7.4))
encircles 0g g and separates 03 from o1 3. Making Ty(fiz) act on both sides of
formula (7.4), we obtain the formula

1 _
Ps =To(fig)Po = 5 F(Ag —A)7tdA

for the Riesz projector Pg, (3 > 0, corresponding to the spectral component oyg g.
Now let us use assertions (iii) and (iv) of Lemma 8.1. Since A € o, and (fig),

B € RY, isab.ap. in Li(R), we have limg o To(fis) A = A (in this proof all
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limits are understood in the sense of the uniform operator topology). Hence,
Py = limg_,q Pg. Since A € Ergy(Y, Tp) and (fig), B € Rl, is a 0-net, we have
limg_,00 To(fig) A = Ag = M(A). Hence, the following limit exists:

Bli_{r;o Ps = Bli_{r;o To(fig)Po = 2%1 /F(AO — M) tdx=P..
Let us note that P, is the Riesz projector corresponding to the spectral set 0 oo
occurring in the partition oequs(Ao) = 0(Ay) = 00,00 U 01,00, 00,00 = 00 N 0(Ap),
01,00 = 01 No(Ag), as follows from the inclusion 0(Ag) C oequs(A) (see Theo-
rem 7.13).

Hence, {Ps}, B € [0,00] = Ry, is a family of projectors defined on the Aleksan-
drov one-point compactification R, of R, and continuous in the operator norm.
Since this family is continuous, Py, is different from the zero operator and from the
identity operator. Hence, 0 « is the spectral component of o(Ay) contained in oy.

In the case when G = T we use the family of homomorphisms Ty (gia), « € (0,1)
(see formula (8.15)) and Assertions 8.12-8.16.

Corollary 8.18. If oy is a finite set and the Riesz projector Py is finite-
dimensional, then the spectral component oo lies in the spectrum of Ao and the
dimensions of the images of the Pg, [ € R, coincide.

Corollary 8.19. If A € UC(X), then oeaus(A) is a connected set containing 0.

Proof. This corollary is obvious under the assumptions of the theorem. However,
it also holds under certain very weak restrictions imposed on the uniformly causal
operator. The inclusion 0 € o¢qus(A) follows immediately from Corollary 7.7. We
prove by contradiction that the set under consideration is connected by applying
Corollary 7.7 to the restriction of A to the image of the corresponding Riesz
projector.

Corollary 8.20. The number of connected components of oeaus(A) does not exceed
the number of connected components of o(Ap).

Corollary 8.21. If A is a compact operator, then oeaus(A) = o(A) = o(Ap).

In all these corollaries (with the exception of Corollary 8.19) it is assumed that
the assumptions of Theorem 8.17 hold for A.

We now state several corollaries concerning the causal operators considered in
the examples given in § 6. We keep to the notation used there.

Let X1 = Xo = X and & = &, and let Q) = Qy = Q and E} = E2 = E,,
n > 1 (see Examples 6.10 and 2.9). Let A = 3" - A, > o,llA4nll < oo, be a
causal operator belonging to End X. Since its diagonals are absolutely integrable,
A belongs to Hg,. Since 0 is an isolated point of A(A,Uy) C Z,, we have A €
Ergy (U, Up).

Corollary 8.22.
U 0(49) € ocas(A),

1€Q
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where A? is the restriction of Ay to X; =Im E; = E; X. Moreover, every spectral
component of oeaus(A) contains a spectral component of Ay and a spectral com-
ponent of one of the AV, i € Q. If the A9, i € Q, are zero operators (that is,

Ao =0), then 0 € oeaus(A) and oeaus(A) is a connected set.

In the next corollary we use the notation of Examples 2.10 and 6.11, where
X1 =Xo;=X, G=R (whence Q CR).

Corollary 8.23. Let B € EndL,, p € [1,00], be the operator defined by for-
mula (6.4) and assume that it is causal with respect to the representation Vo and
the semigroup Ry (that is, (6.12) holds). Then

(i) ocaus(B) is a connected set and o(B) 2 U,yecqo(Ao(w)) = A if Q is a
connected set and Ay is a continuous function,

(ii) oeaus(B) = Ag if Q is a compact set, p # oo and Ay has only finitely many
discontinuities of the first kind.

Now consider Example 6.12 with G € {R, T} and Y¥; = Y2. Assume that the
operator is causal with respect to the representation Sy and the semigroup R

(Z4), and assume that the function p is almost periodic, that is, it has a Fourier
series

pt) ~ > pe™, teR, A =0
j=0

(1(O) ~ Xz, 1i#, 6 € T). Under these assumptions we have B € o, N
Ergy(4, Sp). Hence, Theorem 8.17 is applicable to B. In this case M(B) = By,
where (Boz)(g) = [; po(ds) z(g +s), = € Ly.

Corollary 8.24. If pg is the sum of two measures one of which is absolutely
continuous and the other discrete, then

Teaus(B) 2 0(Bo) = | J o(f0(7))
76@

and oeaus(B) is a connected set when G = R.

§9. Operators with two-point Bohr spectrum

Let us return to the study of the Banach L;(G)-modules (X;,T;), i =1,2, and
the Banach L;(G)-module $ = $4(X7, X3) in Hom(X;, X5).

Definition 9.1. An A € U is called an operator with two-point Bohr spectrum
(with respect to the representation Tp) if A(A4,Tp) = {71,772} is a two-point subset

of G. If A(A,To) = {0} is a one-point set and 79 # 0, then A will be called a
circular operator or an abstract weighted shift operator.

Remark 9.2. Let A € 4l be an operator with two-point spectrum A(A,Tp) =
{7,72} C G. Consider functions fi, i = 1,2, belonging to L1(G) and such that
f; = 1 in some neighbourhood of v;, i = 1,2, v ¢ supp f2 and 72 ¢ supp fi.
Assertions (iii) and (v) of Lemma 3.3 imply that

A=A+ A, (91)
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where A; = To(f;) A and A(A;, Tp) = {vi}, @ = 1,2. Therefore (see Remark 4.16),
we have

To(g9) Ai = Ta(g) AiT1(g) = 7i(g) Ai, i=1,2, geG,

that is, each A;, ¢ = 1,2, has a one-point Beurling spectrum. Hence, the A;,
i = 1,2, are circular operators (if v; # 0) that are eigenvectors of the L;(G)-
module (4, Tp). The equalities

To(9) A =(9) A1 +12(9) 42, g €G, (9.2)

imply that A (regarded as an element of the L;(G)-module (i,7Tp); see Def-
inition 4.11) is almost periodic. We obtain from (9.2) that the Bohr spec-
trum Ap(A,Ty) of A coincides with its Beurling spectrum Ay(A,To) = {71,712},
which justifies the terminology in Definition 9.1.

Here are some examples of operators with two-point Bohr spectrum.

Example 9.3. Let X; and X5 be the Banach spaces considered in Example 6.10.
Any A € Hom(X;,X2) = U whose matrix is bidiagonal is an operator with a
two-point Bohr spectrum contained in Q2o — €y C Z. The causal operators in i
whose matrices are lower-triangular with only finitely many non-zero diagonals
can be regarded as operators with two-point Bohr spectrum with respect to a
slightly altered representation obtained by “lumping together” the partitions of the
identities in X; and X (this approach was described in detail in [29]).

Example 9.4. Let X, i = 1,2, be the Banach spaces considered in Example 6.12.
The operator B € i defined by the formula

B0 = 3 (Cru@ato) + [ (0 Ata ) 2(6)ds).

7j=1,2

where 7; € G, C; € Hom(Y1,Yz) and A; € Ly (G, Hom(Y3,Y2)), j = 1,2, has
the two-point Bohr spectrum Ay (B, So) = {71,72} with respect to S.

Example 9.5. Let X; and X5 be the Banach spaces considered in Example 6.11
with Q = G. The difference operator A € Hom(X;, X5) defined by the formula

(A2)(y) = (M e(y =) + VoM a(y =),  we X, 7€G,

where U; € Cb(@,Hom(Yl,Yg)) and ; € @, 1 = 1,2, has the two-point Bohr
spectrum Ap(A) = Ap(A, Vo) = {71,72}. In particular, if G = T, then the difference
operator D € End X, X = L,(Z,Y) =1,(Z,Y), p € [1,00], defined by the formula

(Dz)(n) =z(n) — U(n)z(n — 1), neZ, zcl,(Z,Y), (9.3)

where U € lo(Z,EndY), has the two-point Bohr spectrum Ay(D, Vo) = {0,1} C
Z~T. A=1-D is a weighted shift operator (circular operator), whose spec-
tral properties play an important role in the study of abstract parabolic operators
(see [37], [38]).
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Mlak [39] studied the properties of circular operators acting on a Hilbert space H:
an A € End H was said to be circular if

U(t) A = exp(iat) AU(t), teR,

for some group of unitary operators U(t), t € R, belonging to End H and some
a € R. Tt is clear that A(A4,Up) = {a}, that is, A is a circular operator in the sense
of Definition 9.1 (if o # 0).

If A is a circular operator belonging to U, = 4, (X) and A(4,Ty) = {1} C G,
then the A — AI, A € C)\ {0}, are operators with the two-point Bohr spectrum
AA =N, Ty) ={0,v} C G. Hence, we have to consider operators with two-point
Bohr spectrum when using the resolvents of circular operators.

Let A (S (ﬂ(Xl, XQ), To) and A(A, To) = {’)/1, ’)/2} If Y1 = 0, then A is causal (by
Definition 6.3) with respect to every semigroup S containing v2. In the results
stated below we do not assume that A is a causal operator. However, these
results can be of use in the study of causal operators with two-point Bohr spectrum.

We shall study operators with two-point Bohr spectrum using the spectral theory
of ordered pairs of linear operators.

Consider an ordered pair (Aj, As) of operators belonging to the Banach space
Hom(X7, X3), where X; and X5 are complex Banach spaces. Let us recall some
definitions and results in the spectral theory of ordered pairs of operators follow-
ing [40], § 6, where one can find many references concerning the problems considered
in this paper.

Definition 9.6. The resolvent set o(A;, As) of the pair (A7, A2) is defined to be the
set of all A € C for which the operator A; — AAy € Hom(X7, X2) has a continuous
inverse. The set o(A1, A2) = C\ o(A1, As) is called the spectrum of this pair.

The operator-valued function R = R(-; A1, A2): 0(A41,A2) — Hom(Xi, Xa),
R()\) = (A — MA2)7L, X € o(Ay, Ap), is called the resolvent of (A, A2). The
functions R; = Rl(';Al,AQ)Z ,Q(Al,AQ) — EnXm, R()\) = (Al — )\AQ)_lAQ,
A€ ,Q(Al,AQ), and R, = RT(';Al,AQ): ,Q(Al,AQ) — EndXQ, R()\) =
Ay(Ar — MA2)™L, X € o(A1, As), are pseudoresolvents (they satisfy Hilbert’s resol-
vent identity). They are called the left and right pseudoresolvents of (A, As).

Definition 9.7. The subset 6(A;, A) of the extended complex plane C = CU{o0}
which coincides with o(A;, As) if the function R(-; A;, A2) has a holomorphic con-
tinuation to co and limy|—e R(A; A1, A2) = 0 (otherwise (A1, A2) = 0(Ay1, A2) U
{o0}), will be called the extended spectrum of (A1, A2). The set g(Ay, A2) =
C\ (A1, Ay) will be called the extended resolvent set of (A, Ay).

Theorem 9.8 [40]. The following formula holds for the extended spectra of (A1, As)
and (AQ, Al)t

&(AQ,Al) = {1/)\ AE &(Al,AQ)}

Corollary 9.9. oo ¢ (A1, As) if and only if As has a continuous inverse.

Definition 9.10. An ordered pair of closed subspaces (X?,XY9), where
XY c X; and X§ C X,, is said to be invariant for the pair (A, Ag) if
AlX? C Xg and AQX? C Xg
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Definition 9.11. Let X; = X{ ® X] and X, = XJ & X3 be direct sums of
closed subspaces, where (X{, X9) and (X{, X1) are invariant pairs of subspaces

for (Ay, Az). Let Al(k): Xk — X5, i =1,2, k=01, be the restrictions of A;,
i=1,2,to X¥ k=0,1. Then we write

(A1, Ag) = (A”, A @ (4P, A (9.4)

and say that (A1, As) admits the representation (9.4) with respect to the decom-
position of X; and X, under consideration and is the direct sum of (Ago),AgO))
and (Agl),Agl)) (the parts of A; and Aj). In this case we shall also write

A, = AEO) @ Agl), it = 1,2 (the operators A; and Ay are the direct sums of
their parts).

Again consider an operator A € (X, X5) with two-point Bohr spectrum
{7,72} C G. By Remark 9.2, formula (9.1) holds for A with A(A;, To) = {v},
1=1,2, and

To(g) Ai = vi(g) Ai, i=1,2, geG. (9.5)

From now on we shall assume that the following two assumptions hold.

Assumption 9.12. For the character v = Y2y, = € G the set {7(9); g € G}
is dense in T C C (here and below we use the multiplicative form for the binary
operation in G).

Assumption 9.13. The operator A has a (continuous) inverse B = A~!
in (W(X2, X1), Ty ).

Let us note that Assumption 9.12 holds if G is a connected group (and vy is a
non-zero character).

Lemma 9.14. o(A;,A)NT = 2.
Proof. Tt follows from (9.2) that

To(g) A = Ta(g) ATy (—g) = 1(g) (A1 — 0(g) A2), geG.

Since A is an invertible operator, the v9(g), g € G, are contained in the resolvent
set o(A1, A2) of (A1, A2) in $4(X7, X2). Since the set o(A1, As) is closed, Assump-
tion 9.12 implies that T C 9(A41, A2). The lemma is proved.

Corollary 9.15. The set 6(A;1, A2) can be represented in the form
&(Al,AQ):UOU(Tl, (96)

where oo = {A € 0(A1, A2); |\ <1} and o1 C{\ € 0(A1, Az); |A] > 1} U {o0}.
Corollary 9.16. The set o(Ay, A2) is invariant under rotations about zero in C.

This implies that the usual spectrum of every circular operator belonging
to ,(X) is invariant under rotation.
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Integrating over the circle T, regarded as a positively oriented closed contour
encircling oo, we obtain the formulae

1 1

- . — _ _ -1
PO = omi i Rl ()\, Al, AQ) d\ i '[[‘(Al >\A2) A2 d>\7 (97)
1 1 1
QO = —2—7” . RT(A, Al, AQ) d\ = —2_7” '[[‘AQ(Al - >\A2) dA (98)

for the projectors Py, P =1— Py € End X; and Qp, @1 =1— Qo € End Xs.
Consider the closed subspaces (images of projectors)

XV =ImPy=PX;, Xi=ImP, X)=ImQy, X;=ImP;.

We have
X =XxVe X{, X, =X® X;. (9.9)

Formulae (9.7) and (9.8) imply that
APy = QoAr, APy = Qo Az, (9.10)
whence (XY, X9) and (X{, X21) are invariant for (A;, A2). Thus
(A1, 42) = (417, 4) @ (41", 457)

(see formula (9.4)), where A, A% € Hom(X?, X9) and A, ASY € Hom (X}, X1)
are the restrictions of A; and Az to X? and X{.

Lemma 9.17. The projectors Py and Qy commute with the operators of the rep-
resentations T1 and Ts, respectively.

Proof. We have

Ti(9)Ri(X; A1, A2) Ti(—g) = Ti(g) (A1 — Mz2) ' Ta(—g)(To(g) Az2)
= (1(9) A1 — M2(9) A2) 72(9) A2 = Y0(9) Rt (v0(9)X; A1, A2),

where A € T and g € G. Formula (9.7) implies that 77(g)PyT1(—g) = Po for
all g € G. We likewise establish that Qo commutes with the operators of the
representation T5.

Lemma 9.17 implies that the X* are invariant under T}, i = 1,2, k = 0, 1 (respec-
tively). This enables us to consider the following representations on Hom(X¥, X%):

T3 (9)Cr = T3 (9)Ck TP (=g),  Ck € Hom(XT, X3), k=0,1, (9.11)

where TF is the restriction of T; to XF, k=0,1, i =1,2.
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Theorem 9.18. Let Assumption 9.13 hold for A € (X1, X3). Then

(i) the operator A=' € (X, X1) is almost periodic with respect to Ty *: G —
End (X2, X1) and its Bohr spectrum Ay(A~Y, Ty ') is contained in {vy 'v
n >0} U{y 'vg; n <0},

(ii) O’(Ago),AgO)) = &(Ago),AgO)) = 0y, the operator Ago) € Hom(XY{, X9)
is invertible, U((Ago))_lAgO)) = oo (hence, the spectral radii of (Ago))_lAgO) €
EndX? and A" (Ago))—l € End XY are such that r((AgO))_lAgO))
r(A”(AP) ) <1), and o (AP (A5) 1) \ {0} = 00\ {0},

(iii) &(Agl),Agl)) = 01, the operator Agl) € Hom(X{, X3) is invertible, and
U((Agl))_lAgl)) = U(Agl)(Agl))_l) ={A"5 A€o} (whence r((Agl))_lAgl)) =
(A9 (49) 7 <),

() AP T8) U s (A0, ) = (), An(AL, TE) U A (AL, T) = ),

(v) with respect to the decomposition (9.9) A~ is a direct sum A~* = AT @AY,
where Ay = Ago) + Ago), Ay = Agl) + Agl), and

A= (A AP (a)h”

n=0
= DD (A7) A) " () (9.12)
n=0
Ayt = (A7) (A (a) )"
n=0
=3 ()n((Al) A (A (9.13)
n=0

Proof. The equalities in assertions (ii) and (iii) were established in [40], Theo-
rem 6.3. Using the inclusions

oo U{1/X Aeoi} c{reC: )< 1},

we obtain that Ago) and Agl) are invertible operators and the estimates (for spectral
radii) in (iii) hold.

We deduce (v) from (i) and (iii) using the decomposition A = A; & A,.

Assertion (iv) follows using the definitions of 77, Tq and the equalities
Ab(A“To)Z {’)/1}, 1= 1,2

To prove that A~! is almost periodic with respect to To_l, it is sufficient to
observe that the function ¢(g) = Ty *(9) A~ = Ti(9) A~ 'Tz(—g), g € G, is
almost periodic, since it is related to ¢(g) = Tp(g) A by the formula ¥(g) =
0(g)™, g € G. Hence, (A1, Ty") C {495*;m,nZ}. More detailed infor-
mation on the Bohr spectrum of A~! can be obtained from the representation
A"t = AT' @ A;' and formulae (9.12), (9.13) using the representations Tg, T¢
(see formula (9.11)) and their inverses (T3))~!, (T¢)~!. For example, we obtain
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from (9.12) that

(1) (9 (A1) " =Y (-1 ()" (973 (9) (A7) A" (aP)

n=0

Hence, Ay (A", (T9) ™) € {47 "985 n > 0} = {77 "48; n <0}
We prove likewise that

Ay(AH (TH ™Y C {9 n = 0} = {5 198 n < 0}.

It remains to observe that Ty *A~! = (T9)~(g) AT & (T¢)1(g) A7 .

Theorem 9.19. Let A € (X1, Xs) be an operator with the two-point Bohr
spectrum Ap(A, Ty) = {eo, Y0} C @, where e is the identity in @, and let Assump-
tion 9.13 hold. The operator A is causally invertible with respect to a semi-
group S containing o if and only if the operator A; is invertible and r(AxA;') =
T(Al_lAQ) < 1.

Proof. Assertion (i) of Theorem 9.18 implies that A is causally invertible if and
only if Ay(A=1, Ty Y) € {7; n > 0}. This inclusion implies that &(A;, A2) = 0.
By assertion (iii) of Theorem 9.18, this equality holds if and only if A; is invertible
and r(A2A7Y) = r(A7 T Ag) < 1.

Theorem 9.18 can be used in the study of the structure of operators inverse
to operators belonging to certain classes. For example, for difference operators of
the form (9.3), this theorem implies that the family of evolutionary operators corre-
sponding to U is exponentially dichotomous if the operator D is invertible (see [37]
for more details).
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