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Harmonic analysis of causal operators

and their spectral properties

A. G. Baskakov and I. A. Krishtal

Abstract. The definition and study of causal operators are based on the
representation theory of group algebras. We study the structure of the spectra
of causal operators, obtain conditions for causal invertibility and state criteria for a
causal operator to belong to the radical.

§ 1. Introduction
Causal (or Volterra) linear operators are used in system theory [1] and in the

study of various classes of functional differential equations [2]–[5]. They are usually
defined in terms of chains of invariant subspaces indexed by points of the set R
of real numbers or the set Z of integers. It should be mentioned that there are
papers dealing with Volterra operators on Hilbert spaces whose authors construct
the chains of invariant subspaces rather than axiomatize their existence [6].
In this paper we define and study causal operators using the representation

theory of Abelian groups (Banach modules over group algebras) and, in particular,
their spectral theory. The class of operators defined here contains not only many
classes of causal operators studied earlier (see [1]–[5] and the references there), but
also some new classes.
In this paper we make systematic use of the concept of the Beurling spectrum

of vectors and operators in representation spaces (Banach modules) and thereby
develop a technique for the investigation of linear operators In particular, the defini-
tion of causal operators is made in terms of the Beurling spectrum: causal operators
are defined to be operators whose Beurling spectrum (with respect to some repre-
sentation in the space of operators) is contained in a certain semigroup (of operators
with a “lower-triangular matrix”).
The main results of this paper deal with the problem of causal invertibility of

operators (in particular, with the study of the structure of inverse operators), the
structure of their spectra, and conditions under which they belong to the radical
of the algebra of causal operators.
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Research (grant no. 04-01-00141).
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§ 2. Banach modules over group algebras
Let X be a complex Banach space and let EndX be the Banach algebra of

bounded linear operators acting in X. Let G be a locally compact Abelian group

and Ĝ its dual, the group of continuous unitary characters of G (see [7]–[9]). Let us

note that the binary operations on G and Ĝ are usually written in additive form. We
denote by L1(G) the Banach algebra of (equivalence classes of) complex functions
defined on G and integrable with respect to the Haar measure on G. The role of

multiplication is played by the convolution of functions. We denote by f̂ : Ĝ → C
the Fourier transform of f ∈ L1(G).
We assume that the space X is a non-degenerate Banach L1(G)-module [8], [10]

whose structure is associated with some isometric representation T : G → EndX.
This means that conditions (i) and (ii) stated in the following assumption hold
for X (in this paper we consider only L1(G)-modules for which this assumption
holds).

Assumption 2.1. The following three conditions hold for the Banach L1(G)-
module X:
(i) the equation fx = 0, f ∈ L1(G), implies that x ∈ X is equal to zero (that

is, X is non-degenerate),
(ii)

T (g)(fx) =
(
S(g)f

)
x = f

(
T (g)x

)
(2.1)

for all f ∈ L1(G), x ∈ X and g ∈ G, where S(g) is the shift operator by g ∈ G
on L1(G), that is, S(g)f(s) = f(s + g), s, g ∈ G, f ∈ L1(G) (that is, the module
structure on X is associated with the representation T : G→ EndX),
(iii) ‖fx‖ � ‖f‖1‖x‖, f ∈ L1(G), x ∈ X, where ‖f‖1 is the norm of f

in L1(G).

Let T : G→ EndX be a strongly continuous isometric representation. Then the
formula

T (f)x = fx =

∫
G

f(g)T (−g)x dg, f ∈ L1(G), x ∈ X, (2.2)

defines on X the structure of a Banach L1(G)-module for which Assumption 2.1
holds, and this structure is associated with T .

Lemma 2.2. Every (non-degenerate) Banach L1(G)-module has precisely one rep-
resentation associated with it.

Proof. Let X be a (Banach) L1(G)-module and let T1, T2 : G → EndX be rep-
resentations associated with it. Consider an arbitrary x ∈ X and g ∈ G. Let
xk = Tk(g)x, k = 1, 2. It follows from (2.1) that

fx1 = T1(g)(fx) = S(g)(fx) = f
(
T2(g)x

)
= fx2, f ∈ L1(G),

that is, f(x1 − x2) = 0 for all f ∈ L1(G). Since X is non-degenerate, we have
x1 = T1(g)x = x2 = T2(g)x, which completes the proof of the lemma.

Remark 2.3. We denote by (X, T ) the Banach L1(G)-module X with associated
representation T .
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Remark 2.4. Instead of requiring that the associated representation T : G→ EndX
for L1(G)-modules be isometric, we can require that it be bounded. In this case T
is isometric with respect to the norm ‖x‖∗ = supg∈G

∥∥T (g)x∥∥, x ∈ X, which is
equivalent to the original norm on X.

Consider the Banach algebraM(G) of bounded Borel measures on G, where the
role of multiplication is played by the convolution of measures, with the canon-
ical embedding of L1(G) in M(G). Assume that the (isometric) representation
T : G → EndX is strongly continuous (that is, the map g �→ T (g)x is continuous
for all x ∈ X). The formula

T (µ)x = µx =

∫
G

T (−g)xµ(dg), µ ∈M(G), x ∈ X (2.3)

(see also formula (2.2)) defines a homomorphism T from M(G) to EndX. The use
of the same symbol T is justified by the following fact: if µg is the Dirac measure
concentrated at the point (−g) of G, then (2.3) implies that T (µg) = T (g).
Formula (2.3) defines on X the structure of a BanachM(G)-module and ‖µx‖ �

‖µ‖ ‖x‖ for all µ ∈ M(G) and x ∈ X. A similar, but more general, approach is
described below in Example 2.12.

Remark 2.5. If the representation T : G → EndX is not assumed to be strongly
continuous andMd(G) is the subalgebra of M(G) formed by the discrete measures,
then the same formula (2.3) defines on X the structure of a BanachMd(G)-module.
We can assume that Md(G) coincides with (is isomorphic to) the algebra L1(Gd),

where Gd is the group G equipped with the discrete topology. The group Ĝd dual

to it is the Bohr compactification (Bohr compactum) of Ĝ. Hence, X is an L1(Gd)-
module. This module will be denoted by (X, Td), where Td : Gd → EndX, Td(g) =
T (g), g ∈ Gd. It follows from Assumption 2.1 that X is an

(
L1(G) ⊕Md(G)

)
-

module.

Definition 2.6. A vector x of the Banach L1(G)-module (X, T ) is said to be
T -continuous if the function

ϕx : G→ X, ϕx(g) = T (g)x, g ∈ G,
is continuous at the zero of G (and so uniformly continuous on G).

We denote the set of T -continuous vectors of X by Xc or (X, T )c. This set is a
closed submodule of X, that is, Xc is a closed linear subspace of X invariant under
the operators T (f), T (g), f ∈ L1(G), g ∈ G.
Lemma 2.7. Let (X, T ) be a Banach L1(G)-module. Then (2.2) holds for
every x ∈ Xc.
Proof. It is clear that formula (2.2) defines the structure of a Banach L1(G)-module
on Xc. It follows from (2.2) that

Tc : G→ EndXc, Tc(g)x = T (g)x, x ∈ Xc,
is a representation associated with the L1(G)-module Xc. By Lemma 2.2, it is
unique. The lemma is proved.

In the following examples we consider the Banach modules frequently used in
this paper and introduce some basic function spaces.
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Example 2.8. Let Σ be the σ-algebra of Borel subsets of Ĝ and E : Σ→ EndX a
bounded countably additive projector-valued measure (see [11]). Then the formula

T (g)x =

∫
Ĝ

γ(g) dE(γ)x, x ∈ X, (2.4)

defines a bounded (isometric by Remark 2.4) strongly continuous representation
T : G → EndX. Hence, X is an L1(G)-module. Formulae (2.2) and (2.4) imply
that

fx =

∫
G

f(g)T (−g)x dg =
∫
Ĝ

f̂(γ) dE(γ)x (2.5)

for all f ∈ L1(G) and x ∈ X.
The next example and Example 2.10 with G = Z are special cases of this.

Example 2.9. Let E = {En, n ∈ Ω} be a family of projectors on the Banach
space X, where Ω ⊆ Z is a non-empty (possibly finite) subset that is a resolution
of the identity, which means that EiEj = 0 for i �= j and for every x ∈ X the series∑
k∈ΩEkx converges unconditionally to x. Hence, the quantity

C(E) = sup
∥∥∥∥∑
k∈Ω
γkEk

∥∥∥∥ <∞
is finite (the equivalent renormalization mentioned above enables us to assume that
this quantity is equal to unity). Here the supremum is taken over the finite sets of
complex numbers (γk) belonging to T =

{
γ ∈ C : |γ| = 1

}
(the algebraic operation

in this group is written in multiplicative form). The formula

U(γ)x =
∑
n∈Ω
γnEnx, x ∈ X, γ ∈ T, (2.6)

defines a bounded (isometric after renormalization) strongly continuous represen-
tation U : T→ EndX of the compact group T (its dual group is identified with Z).
The structure of an L1(T)-module on X associated with U is defined by the formula

U(f)x = fx =
∑
n∈Ω
f̂(n)Enx, f ∈ L1(T), x ∈ X. (2.7)

Example 2.10. LetX = F(Ω, Y ) be a Banach space of functions defined on the set
Ω ⊆ Ĝ of positive Haar measure µ(Ω) that take values in a Banach space Y which is
one of the following spaces. We denote by Lp(Ω, Y ), p ∈ [1,∞], the Banach space
of functions measurable and integrable together with their pth powers (essentially
bounded if p =∞). The norms in these spaces are defined by the formulae

‖x‖p =
(∫
Ω

‖x(g)‖p dg
)1/p
, p ∈ [1,∞),

‖x‖∞ = ess sup
g∈Ω

‖x(g)‖, p =∞.
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If G is a compact group, then Lp(Ω, Y ) is the Banach space of sequences (finite
sets, if Ω is finite) of vectors of Y and will be denoted by lp(Ω, Y ). We denote
by Cb(Ω, Y ) and Cub(Ω, Y ) the subspaces of L∞(Ω, Y ) formed by the continu-
ous and uniformly continuous functions, respectively. We also consider the space

C0(Ĝ, Y ) ⊆ Cub(Ĝ, Y ) of continuous functions decaying at infinity (that is, as small
as desired outside some compact subset of Ĝ) and the space AP (Ĝ, Y ) ⊆ Cub(Ĝ, Y )
of almost periodic functions. We shall omit Y in the symbols denoting these spaces
if Y = C.
In the Banach space X = F(Ω, Y ) we consider the isometric representation

V : G→ EndX defined by the formula(
V (g)x

)
(γ) = γ(g)x(γ), γ ∈ Ĝ, x ∈ X. (2.8)

It is strongly continuous in each of the following spaces: Lp(Ω, Y ), p ∈ [1,∞),
Cub(Ω, Y ) and AP (Ĝ, Y ).

The canonical identification of
̂̂
G with G (by Pontryagin duality) enables us to

define the structure of an L1(G)-module on the X associated with V by the formula(
V (f)x

)
(γ) = f̂(γ)x(γ), γ ∈ Ω, f ∈ L1(G), x ∈ X. (2.9)

In particular, if G = T, Ω is an arbitrary non-empty subset of Z 	 T̂ and X =
F(Ω, Y ) is one of the spaces defined above, then formula (2.9) has the form

(fx)(k) = f̂(k)x(k), k ∈ Ω. (2.10)

Let us note that in the space of sequences X = lp(Ω, Y ) for any p ∈ [1,∞) there is
a resolution {En, n ∈ Ω}, En ∈ EndX, of the identity defined by the formulae

(Enx)(k) = 0, n �= k,
Enx(n) = x(n).

The construction in Example 2.9 shows that the module structures on X defined
by formulae (2.7) and (2.10) coincide.

Example 2.11. Let X = F(G, Y ) be one of the Banach spaces introduced in
Example 2.10. We consider the structure of a Banach L1(G)-module on X defined
by the formula

(fx)(g) = (f ∗ x)(g) =
∫
G

f(τ)x(g − τ) dτ =
∫
G

f(τ)
(
S(−τ)x

)
(g) dτ. (2.11)

Here S : G→ EndX is the isometric representation of G by shift operators acting
on the functions belonging to X, that is,(

S(τ)x
)
(g) = x(g + τ), g, τ ∈ G, x ∈ X. (2.12)

Let us note that Xc = X, that is, S is a strongly continuous representation in the
spaces under consideration, with the exception of L∞(G, Y ) if G is a non-discrete
group.
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Example 2.12. Let F be a closed subspace of the Banach space X∗ (dual to X)
of bounded linear functionals on X that has the following properties:
(1) ‖x‖ = supξ∈F ,‖ξ‖=1

∣∣ξ(x)∣∣ for all x ∈ X,
(2) the convex hull of every relatively F-compact subset of X is relatively

F-compact.
Let there also be given an isometric representation T : G → EndX with the

following properties:
(i) for the adjoint representation T ∗: G → EndX∗, defined by the formula(
T ∗(g)ξ

)
(x) = ξ

(
T (g)x

)
, we have T ∗(g)F ⊆ F , g ∈ G,

(ii) the function g �→ ξ
(
T (g)x

)
: G→ C is continuous for all ξ ∈ F and x ∈ X.

Then for every measure µ ∈M(G) and any x ∈ X there is precisely one xµ ∈ X
such that ∫

G

ξ
(
T (−g)x

)
µ(dg) = ξ(xµ)

for all ξ ∈ F (see [12], Ch. IV). We have a homomorphism T : M(G)→ EndX such
that

∥∥T (µ)∥∥ � ‖µ‖ and µ ∈M(G). Hence, X is a Banach M(G)-module.
The structures of Banach modules in the Banach space Hom(X1, X2) of bounded

linear operators acting from the Banach space X1 to the Banach space X2 are of
special interest. It is with these structures that we deal in § 5.

§3. Spectral properties of vectors in Banach modules
We consider a Banach L1(G)-module (X, T ), where the representation T : G →

EndX is not assumed to be strongly continuous. We do assume, as always, that
Assumption 2.1 holds.

Definition 3.1. The Beurling spectrum Λ(M) = Λ(M,T ) of the subset M of X
is defined to be the complement of the set

{
γ ∈ Ĝ : ∃f ∈ L1(G) : f̂(γ) �= 0 and fx = 0 ∀x ∈M

}
in Ĝ. If M consists of a single vector x, then Λ(M) is denoted by Λ(x) (or Λ(x, T ))
and has the form

Λ(x) =
{
γ ∈ Ĝ : fx �= 0 ∀f ∈ L1(G), f̂(γ) �= 0

}
.

Remark 3.2. Λ(M) coincides with the hull of the closed ideal Im(M) = {f ∈
L1(G) : fx = 0 for all x ∈ M}, that is, Λ(M) = {γ ∈ Ĝ : f̂(γ) = 0 for all
f ∈ Im(M)} is the set of common zeros of the Fourier transforms of functions
belonging to Im(M).

In the next lemma we state properties of the Beurling spectra of vectors. Some
of these properties (for strongly continuous representations) were obtained in [13].
We shall prove the next lemma (see also [10], [12], [14], [15]) using Assumption 2.1
on the Banach L1(G)-modules under consideration.
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Lemma 3.3. Let (X, T ) be a Banach L1(G)-module. Then
(i) Λ(M) is closed for every M ⊆ X, and Λ(M) = ∅⇔M = {0},
(ii) Λ(Ax+By) ⊆ Λ(x) ∪Λ(y) for all A,B ∈ EndX commuting with the T (f),

f ∈ L1(G),
(iii) Λ(fx) ⊆ (supp f̂) ∩Λ(x) for all f ∈ L1(G) and x ∈ X,
(iv) fx = 0 if (supp f̂) ∩ Λ(x) = ∅, where f ∈ L1(G) and x ∈ X,
(v) fx = x if Λ(x) is a compact set, and f̂ = 1 in some neighbourhood of Λ(x),

(vi) if M0 is dense in M ⊆ X, then Λ(M) =
⋃
x∈M0 Λ(x),

(vii) Λ(x, Tγ) = Λ(x, T ) + {γ}, where γ ∈ Ĝ, and Tγ(g) = γ(g)T (g), g ∈ G.

Proof. (i) The set Λ(M) is closed (see Remark 3.2). It is clear that Λ(0) = ∅. If

Λ(M) = ∅, then for any γ ∈ Ĝ there is an f ∈ L1(G) such that f̂(γ) �= 0 and fx = 0
for all x inM . Definition 3.1 and Remark 3.2 imply that Im(M) is a closed ideal of
the algebra L1(G) invariant under shifts of functions (here we use condition (ii) in
Assumption 2.1). Since the hull Λ(M) of Im(M) is empty, Wiener’s theorem [7]–[9]
implies that Im(M) coincides with the whole algebra L1(G). Therefore, fx = 0 for
all f ∈ L1(G). Since X is a non-degenerate module, we have x = 0.
(ii) If γ0 /∈ Λ(x)∪Λ(y), then there are f1, f2 ∈ L1(G) such that f̂1(γ0)f̂2(γ0) �= 0

and f1x = f2y = 0. Then f̂(γ0) �= 0 and fx = fy = 0 for f = f1 ∗ f2, whence
T (f)(Ax +By) = A(fx) + B(fy) = 0 (using the fact that T (f) commutes with A
and B). Hence, γ0 /∈ Λ(Ax+ By).
(iii) Let γ0 /∈ (supp f̂)∩Λ(x). Let ϕ ∈ L1(G) be such that ϕ̂(γ0) �= 0, (supp ϕ̂)∩(
(supp f̂) ∩ Λ(x)

)
= ∅. Then ϕ(fx) = (ϕ ∗ f)x = 0, whence γ0 /∈ Λ(fx).

(iv) follows immediately from (i) and (iii).

(v) For every ϕ ∈ L1(G) we have supp
(
ϕ̂(f̂−1)

)
∩Λ(x) = ∅. It follows from (iv)

that ϕ(fx − x) = 0. Since X is a non-degenerate module, we have fx = x.
(vi) Let ∆ =

⋃
x∈M Λ(x). We have ∆ ⊆ Λ(M) by the definition of spectrum,

since Λ(M) is a closed set. Let γ0 /∈ ∆. If f ∈ L1(G) is such that f̂(γ0) �= 0
and (supp f̂) ∩ ∆ = ∅, then (iv) implies that fx = 0 for all x ∈ M , whence
γ0 /∈ Λ(M).
(vii) follows immediately from Definition 3.1.

The following definition was made independently in [16]–[18]. It plays an impor-
tant role in various topics in the spectral analysis of representations of Abelian
groups (see, for example, [10], [12]).

Definition 3.4. Let σ be a closed subset of Ĝ. The submodule

X(σ) =
{
x ∈ X : Λ(x, T ) ⊆ σ

}
of the L1(G)-module (X, T ) is called a spectral submodule.

Lemma 3.5. Every spectral submodule X(σ) ⊆ (X, T ) is closed.

Proof. The fact that X(σ) is a submodule follows from assertions (ii) and (iii) of
Lemma 3.3. Consider an arbitrary convergent sequence (xn) in X(σ). Let x0 =

limn→∞ xn and γ0 /∈ σ. If f ∈ L1(G) is such that f̂(γ0) �= 0 and (supp f̂) ∩ σ = ∅,
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then part (iv) of Lemma 3.3 implies that fx0 = limn→∞ fxn = 0. Therefore,
γ0 /∈ Λ(x0), whence Λ(x0) ⊆ σ. The lemma is proved.
We denote by σ(A) and �(A) the spectrum and the resolvent set of an operator

A : D(A) ⊆ Z → Z, where Z is a Banach space.
Let (X, T ) be a Banach L1(R)-module. For any z ∈ C \ R we consider the

function fz ∈ L1(R) whose Fourier transform is the function ϕz : R→ C defined by
the formula ϕz(λ) = (λ− iz)−1, λ ∈ R. Hilbert’s resolvent identity holds for the
operator-valued function

R : C \ R→ EndX, R(z) = T (fz), z ∈ C \ R. (3.1)

Since the L1(R)-module X is non-degenerate, we have
⋂
z∈C\R KerR(z) = {0}.

Therefore, R is the resolvent of some linear operator iB : D(B) ⊆ X → X.
The operator B will be called a generator of the L1(R)-module (X, T ). If
T : R → EndX is a strongly continuous representation, then iB is a generator
of the (bounded) strongly continuous group of operators

{
T (t); t ∈ R

}
.

Lemma 3.6. Let (X, T ) be a Banach L1(G)-module. Then

σ
(
T (f)

)
= f̂
(
Λ(X)

)
, σ

(
T (g)
)
=
{
γ(g); γ ∈ Λ(X)

}
for all f ∈ L1(G) and g ∈ G. If G = R, then the following equalities hold for the
generator B of the module (X, T ):

σ(B) = Λ(X), σ
(
T (t)
)
=
{
eiλt; λ ∈ σ(B)

}
, t ∈ R. (3.2)

Such equalities were first obtained in [16] and [17] for bounded strongly contin-
uous representations and, in a more general case (for non-quasianalytic represen-
tations), in [19]. The second equality in (3.2) is called the weak spectral mapping
theorem, and has been rediscovered by many authors (see, for example, [20], [21]).
The assertions in the following theorem were obtained in [19].

Theorem 3.7. Let (X, T ) be a Banach L1(G)-module and σ a compact subset

of Ĝ. Then∥∥(T (g)− I)x∥∥ � 2√2 sup
γ∈σ

∣∣γ(g) − 1∣∣‖x‖, x ∈ X(σ), g ∈ G.

In particular, the restriction Tσ : G → EndX(σ), Tσ(g) = T (g)
∣∣
X(σ)
, g ∈ G,

of the representation T to X(σ) is continuous in the uniform operator topology.
If G = R and Λ(X) is a compact subset of R, then the generator B of the Banach
L1(R)-module (X, T ) belongs to EndX and ‖B‖ = r(B) = maxλ∈σ(B) |λ|.
Theorem 3.8. Let (X, T ) be a Banach L1(R)-module whose generator B is a
bounded operator. If ϕ : U → C is a function holomorphic in a neighbourhood U
of σ(B) and f ∈ L1(R) is such that f̂(λ) = ϕ(λ) for all λ ∈ U ∩ R, then ϕ(B) =
T (f).

Proof. We deduce the desired equality from formula (3.1) for the resolvent R of iB,
defining the functions of operators by Cauchy’s formula (the Riesz–Dunford
formula). A more general result can be found in [22].
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§ 4. Approximate identities and γγγ-nets
In this section, (X, T ) stands for a Banach L1(G)-module and the results are

closely connected with ergodic theorems in Banach modules (see [23]–[25] and the
references there) and can be used in the study of causal operators.

Definition 4.1. A bounded net (eα) in L1(G) is called a bounded approximate
identity (b. a. i.) in the algebra L1(G) if the following two conditions hold:
(i) êα(0) = 1 for all α in the net Ω,
(ii) lim eα ∗ f = f for all f ∈ L1(G).

Remark 4.2. The Banach algebra L1(G) has a b. a. i which can be constructed as

follows. Consider the net Ω of symmetric neighbourhoods of zero in Ĝ having

compact closures and measurable with respect to the Haar measure on Ĝ (ω1 ≺ ω2
for ω1, ω2 ∈ Ω if ω1 ⊂ ω2) and such that every compact subset of Ĝ is contained
in some ω ∈ Ω. Let χω : Ĝ → R be the characteristic function of the set ω ∈ Ω
and χ̌ω : Ĝ→ R the function whose Fourier transform is χω. We put kω = h−1|χ̌ω|2,
where h = µ(ω) is the Haar measure of ω. The net (kω) thus obtained is a b. a. i.
in L1(G).
Let us note that this net has the following properties:
(i) kω ∈ C0(G) and 0 � kω � kω(0) = h, ω ∈ Ω,
(ii)
∫
G
kω(s) ds = k̂ω(0) = 1,

(iii) k̂ω � 0 and k̂ω = 0 outside ω0 = ω − ω = {γ1 − γ2; γ1, γ2 ∈ ω},
(iv) lim

∫
U
kω(s)ds = 0 for every open subset U of G that does not contain the

zero of G.
If G = R and Ω =

{(
−h2 ,

h
2

)
; h > 0

}
is the net of intervals (the net structure is

induced by the increasing order of h), then the above b. a. i. is given by the formula

kh(t) = 4

(
sin
(
h
2 t
))2

ht2
, h > 0.

If G is a discrete group, then the algebra L1(G) contains the identity δ0 ∈ L1(G),
where δ0(0) = 1 and δ0(g) = 0 for all g ∈ G \ {0}.
It is easy to verify that the following family of functions is a b. a. i. in the

algebra L1(R
m):

fβ(t) =
1

πm

m∏
i=1

βi
t2i + β

2
i

, (4.1)

where β = (β1, β2, . . . , βm) ∈ Rm+ \{0}, and the net structure on Rm+ \{0} is defined
as follows: α = (α1, α2, . . . , αm) ≺ β = (β1, β2, . . . , βm) if βi � αi, 1 � i � m.
We denote by XComp the submodule of the L1(G)-module (X, T ) formed by

the vectors with compact Beurling spectrum. We denote by XΦ the submodule{
fx; f ∈ L1(G), x ∈ X

}
.

Lemma 4.3.

Xc = XΦ = XComp =
{
x ∈ X: lim eαx = x for every b. a. i. (eα) in L1(G)

}
.
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Proof. The inclusion XComp ⊆ Xc follows from Lemma 3.7 since Xc is closed.
The submodule XΦ is closed by the Cohen–Hewitt factorization theorem (Theo-
rem 32.22 in [8]). Since limeω ∗ f = f for every f ∈ L1(G), where (eω) is the
approximate identity occurring in Remark 4.2, and supp êω ⊂ ω − ω (see prop-
erty (iii) in Remark 4.2), part (iii) of Lemma 3.3 implies that (eω ∗ f)x ∈ XComp
for every ω ∈ Ω. Hence, XΦ ⊆ XComp ⊆ Xc.
Now let x be an arbitrary vector in Xc, let ε > 0 and let V be a compact

neighbourhood of zero in G such that

sup
g∈V
‖T (g)x − x‖ < ε.

Consider an f ∈ L1(G) such that f � 0, f̂(0) = 1 and supp f̂ ⊂ V . Then

‖fx − x‖ =
∥∥∥∥
∫
G

f(g)
(
T (g)x− x

)
dg

∥∥∥∥ � ε
∫
G

f(g) dg = εf̂ (0) = ε.

Therefore, x ∈ XΦ. Hence, Xc = XΦ = XComp.
If (fα) is an arbitrary b. a. i. in L1(G), x ∈ X and lim fαx = x, then the above

results imply that x ∈ Xc. Let y be an arbitrary vector in Xc = XΦ and let
f ∈ L1(G) be such that fx = y. Then

lim fαy = lim(fα ∗ f)x = fx = y.
The lemma is proved.

Definition 4.4. Let γ ∈ Ĝ. A bounded net (fα) in the algebra L1(G) is called a
γ-net if the following two conditions hold:
(1) f̂α(γ) = 1 for all α,

(2) limfα ∗ f = 0 for every f ∈ L1(G) with f̂(γ) = 0.
Remark 4.5. Consider the following example of a 0-net in L1(G): fω = h

−1kω,
ω ∈ Ω (see Remark 4.2), where ω1 ≺ ω2 if ω1 ⊃ ω2. This net has the following
properties:
(i) fω ∈ C0(G), ω ∈ Ω,
(ii) f̂ω(0) = 1,

(iii) f̂ω � 0 and f̂ω = 0 outside ω0 = ω − ω.
The net (γfω)(g) = γ(g)fω (g), g ∈ G, ω ∈ Ω, where γ ∈ Ĝ, is a γ-net.
If G = R and Ω =

{(
−h2 ,

h
2

)
; h > 0

}
is the set of intervals arranged in decreasing

order of h, then the above 0-net (fh) in L1(R) is given by the formula

fh(t) = 4

(
sin
(
h
2 t
))2

h2t2
, h > 0.

Here are two more examples of 0-nets in L1(R):

ϕT (t) =

{
(2T )−1, t ∈ [−T, T ],
0, t /∈ [−T, T ],

T > 0,

ϕε(t) =

{
ε exp(−εt), t � 0,
0, t < 0,

ε > 0.

The first of these corresponds to increasing order of T and the second to decreasing
order of ε.
Let us also note that the family of functions (4.1) is a 0-net in L1(R

m) as β →∞.
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Definition 4.6. A net (fα) in L1(G) is called an invariant integral if the following
two conditions hold:
(i) f̂α(0) = 1 and f̂α � 0 for all α,
(ii)
∫
G

∣∣fα(g + u) − fα(g)∣∣ dg = 0 for all u ∈ G.
Remark 4.7. Every invariant integral (fα) in L1(G) is a 0-net. Indeed, Definition 4.6
implies that lim(ϕu − ϕ) ∗ fα = 0 for all u ∈ G and ϕ ∈ L1(G). Hence, the set
M =

{
f ∈ L1(G) : lim fα ∗ f = 0

}
, which is a closed ideal of the algebra L1(G),

contains the ideal M0 = {ϕu − ϕ; ϕ ∈ L1(G), u ∈ G}. Since the set of common
zeros of Fourier transforms of functions belonging to M0 consists of a single (zero)

element, Wiener’s theorem [7]–[9] implies thatM = {f ∈ L1(G); f̂(0) = 0}. Hence,
(fα) is a 0-net.
The net (fω), ω ∈ Ω, constructed in Remark 4.5 and the family of functions (4.1)

are examples of invariant integrals (in what follows, the symbol Ω will usually be
omitted).

Remark 4.8. If (fα) is a γ-net and f is any function belonging to L1(G) and such

that f̂(γ) = 1, then the net (fα ∗ f) also is a γ-net. In this case (fα ∗ f) is an
invariant integral if (fα) is, and f̂(0) = 1, f � 0.
Remark 4.9. By definition, every γ-net (fα) in L1(G) is such that the net (δ0−fα)
in the algebra L̃1(G) obtained from L1(G) by adjoining to it the identity δ0 is an

approximate identity in the maximal ideal I = Ker γ =
{
f ∈ L1(G) : f̂(γ) = 0

}
of L1(G) (see Example 6 in [24]).

Definition 4.10. Let (fα) be a γ-net in L1(G). We denote by Ergγ
(
X, (fα)

)
the

submodule
{
x ∈ X: there is a lim fαx

}
.

Since the net (fα) is bounded, the submodule Ergγ
(
X, (fα)

)
is closed in X.

Definition 4.11. A vector x0 of the Banach L1(G)-module (X, T ) is said to be
almost periodic if its orbit O(x0) =

{
T (g)x0; g ∈ G

}
is precompact in X.

The set of almost periodic vectors in X forms a closed submodule, which we
denote by APX or AP(X, T ).
Theorem 4.12. AP ⊂ Xc.
Proof. Let x ∈ APX. Then ϕx(g) = T (g)x, ϕx : Gd → X, is a continuous almost
periodic function (see Remark 2.5). Hence, it is the uniform limit of some sequence
of trigonometric polynomials

n∑
i=1

γi(g)yi, yi ∈ X, γi ∈ Ĝd,

and T (g)yi = γi(g)yi, 1 � i � n, g ∈ G (see [26]). We claim that γi ∈ Ĝ,
1 � i � n. This will be proved if we can establish that γ ∈ Ĝ when x ∈ X is such
that T (g)x = γ(g)x, g ∈ G. Since the L1(G)-module (X, T ) is non-degenerate,
there is an f ∈ L1(G) such that fx �= 0. We have fx ∈ Xc and T (f)T (g)x =
T (g)(fx) = γ(g)(fx). Hence, γ ∈ Ĝ. The theorem is proved.
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Corollary 4.13. If x ∈ L∞(G, Y ) = X and the set of shifts
{
S(g)x, g ∈ G

}
is

precompact in X, then x coincides almost everywhere with some function belonging
to AP (G, Y ) ⊂ (X, S)c.
The following result was obtained in [25].

Theorem 4.14. A vector x0 in Xc is almost periodic if the set Λ(x0) is completely
imperfect (that is, contains no non-empty perfect subset) and one of the following
conditions holds:
(i) the Banach space X contains no subspace isomorphic to the Banach space

c0 of numerical sequences converging to zero,
(ii) the orbit of x0 is weakly precompact in X.

Definition 4.15. A non-zero vector x0 ∈ X is called an eigenvector of the L1(G)-
module (X, T ) if there is a character γ0 ∈ Ĝ such that T (g)x0 = γ0(g)x0 for
all g ∈ G.
Remark 4.16. It follows from Definition 4.15 that every eigenvector x0 of (X, T ) has
a one-point spectrum Λ(x0) = {γ0} (the converse assertion also is true: see [25]).
Therefore, the eigenvectors belong to XComp ⊆ Xc.
We denote by X(γ) = X

(
{γ}
)
the set of vectors in X with the one-point spec-

trum {γ}. Hence, X(γ) =
{
x ∈ X : T (g)x = γ(g)x

}
. We denote by Xγ the closed

submodule Xγ =
{
x ∈ X; γ /∈ Λ(x)

}
.

Definition 4.17. A point γ in the set Λ(x, T ) is said to be an ergodic point of x
if x ∈ Ergγ

(
X, (fα)

)
for some γ-net (fα).

We denote the set of ergodic points of x by Λerg(x) or Λerg(x, T ).

Remark 4.18. If γ ∈ Ĝ \ Λ(x, T ), x ∈ (X, T ) and (fα) is a γ-net in L1(G), then
lim fαx = 0.

Theorem 4.19. Let γ be a character in Ĝ and (fα) a γ-net. Then
(i) Ergγ

(
X, (fα)

)
= X(γ)⊕Xγ , and the operator P (γ)x = lim fαx in the algebra

End
(
X(γ)⊕Xγ

)
is a projector to X(γ) parallel to Xγ , ‖P (γ)‖ � 1, and the limit

lim fαx = x0 ∈ X(γ) does not depend on the choice of the γ-net (fα),
(ii) APX ⊂ Ergγ

(
X, (fα)

)
,

(iii) Ergγ
(
X, (fα)

)
= X if X is a reflexive space,

(iv) Ergγ
(
X, (fα)

)
= X if and only if the eigenvectors belonging to X(γ) separate

the functionals belonging to the subspace

X∗(γ) =
{
ξ ∈ X∗;

(
T (g)
)∗
ξ = γ(g) ξ, g ∈ G

}
of the Banach space X∗ dual to X,
(v) x ∈ Ergγ

(
X, (fα)

)
if
{
(fα)x

}
is a weakly compact subset of X,

(vi) x ∈ Ergγ
(
X, (fα)

)
if γ is an isolated point of Λ(X, T ), and then P (γ)x = fx

for all f ∈ L1(G) such that f̂(γ) = 1 and supp f̂ ∩ Λ(x, T ) = ∅,
(vii) for any x ∈ Xγ one can find y ∈ Xγ and f ∈ L1(G) such that γ /∈ suppf̂

and x = fy.

Proof. By Remark 4.9, all these assertions follow from more general results of [24].
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By part (i) of Theorem 4.19, the projector P (γ)x = limfαx, x ∈ Ergγ
(
X, (fα)

)
,

does not depend on the choice of the γ-net (fα). This enables us to denote
Ergγ

(
X, (fα)

)
by ErgγX or Ergγ(X, T ). We shall denote by ErgX or Erg(X, T )

the closed submodule

ErgX =
⋂
γ∈Ĝ

ErgγX =
⋂

γ∈Λ(X)
ErgγX.

Corollary 4.20. AP(X, T ) ⊂ Erg(X, T ).
To every almost periodic vector x in AP(X, T ) we assign the Fourier series

x ∼
∑
xγ , (4.2)

where xγ = P (γ)x �= 0 and xγ ∈ X(γ), whence

T (g)xγ = γ(g)xγ , γ ∈ Ĝ, g ∈ G. (4.3)

Definition 4.21. The Bohr spectrum Λb(x) = Λb(x, T ) of the vector x is defined

to be the set of γ ∈ Ĝ such that x ∈ ErgγX and P (γ)x = xγ �= 0. The Bohr
spectrum of the module X is defined to be Λb(X, T ) =

⋃
x∈X Λb(x, T ).

Remark 4.22. Since T (g)P (γ)x = γ(g)P (γ)x for all x ∈ ErgγX and fP (γ)x =
f̂(γ)P (γ)x for all f ∈ L1(G), we have Λb(x) ⊆ Λ(x). If x ∈ APX, then Λb(x) =
{γ ∈ Ĝ : xγ �= 0} (see formula (4.2)), Λb(x) = Λ(x), and the set Λb(x) is at most
countable. We deduce the last assertion from the fact that the absolutely convex
hull Cox =

{∑n
i=1 ciT (gi)x;

∑n
i=1 |ci| � 1, gi ∈ G, ci ∈ C

}
of the orbit of the

almost periodic vector x is precompact using the invariant integral to define xγ ,
γ ∈ Λb(x), which enables us to establish that xγ ∈ Co x for all γ ∈ Λb(x). Since
P (γ1)P (γ2) = 0 for γ1 �= γ2 belonging to Λb(x) and ‖P (γ)‖ = 1 for all γ ∈ Λb(x),
the set Λb(x) is at most countable.

§ 5. Two module structures on the space of operators
In this section we consider two (non-degenerate) Banach L1(G)-modules (Xi, Ti),

i = 1, 2, where Ti : G → EndXi, i = 1, 2, are isometric representations that are
not assumed to be strongly continuous.
A special role in this paper is played by two module structures on the space

Hom(X1, X2) introduced below and by relations between the Beurling spectra of
the operators corresponding to these structures. The first of these (the structure
of a Banach L1(G×G)-module) is associated with the representation

T̃ : G×G→ EndHom(X1, X2), T̃ (g1, g2)A = T2(g2)AT1(g1), (5.1)

where A ∈ Hom(X1, X2) and g1, g2 ∈ G. Taking into account that the algebra
L1(G×G) is isometrically isomorphic to the tensor product L1(G)

⊗
π L1(G) (see,

for example, [27]), we see that the formula

T̃ (f1 ⊗ f2)A = T2(f2)AT1(f1), f1, f2 ∈ L1(G), (5.2)
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where (f1⊗f2)(g1, g2) = f1(g1)f2(g2), g1, g2 ∈ G, enables us to define the structure
of a Banach L1(G×G)-module

(
Hom(X1, X2), T̃

)
. An arbitrary f ∈ L1(G×G) can

be written as
f =
∑
k�1
f ′k ⊗ ϕ′k (5.3)

so that
∑
k�1 ‖f ′k‖1‖ϕ′k‖1 <∞, f ′k, ϕ′k ∈ L1(G), k � 1. We put

fA = T̃ (f)A =
∑
k�1
T̃ (f ′k ⊗ ϕ′k)A =

∑
k�1
T2(f

′
k)AT1(ϕ

′
k). (5.4)

Lemma 5.1. The module structure on Hom(X1, X2) associated with the represen-

tation T̃ is well defined.

Proof. We have to establish that the definition of the operator fA in formula (5.4)
does not depend on the representation (5.3) of f . First let us note that if the

map (g1, g2) �→ T̃ (g1, g2)A is continuous in the uniform operator topology
(
that is,

A ∈
(
Hom(X1, X2), T̃

)
c

)
and f ∈ L1(G×G), then fA can be determined from T̃ in

the standard way using formula (2.2). The subspace
(
Hom(X1, X2), T̃

)
c contains,

in particular, the operators T2(ϕ)BT1(ψ), ϕ, ψ ∈ L1(G), B ∈ Hom(X1, X2).
Assume that, along with the representation (5.3), f admits a representation f =∑
k�1 f

′′
k ⊗ ϕ′′k, where

∑
k�1 ‖f ′′k ‖1‖ϕ′′k‖1 <∞. We claim that the operators

A1 =
∑
k�1
T2(f

′
k)AT1(ϕ

′
k), A2 =

∑
k�1
T2(f

′′
k )AT1(ϕ

′′
k)

coincide. Since A1, A2 ∈
(
Hom(X1, X2), T̃

)
c, this will be proved (see formula (2.2)

and the paragraph containing it) if we can establish that (ϕ ⊗ ψ)A1 = (ϕ ⊗ ψ)A2
for all ϕ, ψ ∈ L1(G). Using the equalities

(ϕ⊗ ψ)A1 =
∑
k�1
T2(f

′
k)
(
T2(ϕ)AT1(ψ)

)
T1(ϕ

′
k) = T̃ (f)

(
T2(ϕ)AT1(ψ)

)

and (ϕ ⊗ ψ)A2 = T̃ (f)
(
T2(ϕ)AT1(ψ)

)
, we obtain that A1 = A2. The lemma is

proved.

If there is a non-zero operator in Hom(X1, X2) that annihilates the subspace

(X1, T1)c of T1-continuous vectors, then the Banach module
(
Hom(X1, X2), T̃

)
thus

constructed will not be non-degenerate (in the sense of Assumption 2.1). For this

reason we introduce some non-degenerate closed submodules of
(
Hom(X1, X2), T̃

)
:

U1,τ
(
X1, X2; (fα)

)
= U1,τ(X1, X2) = U1,τ

(
(fα)
)
= U1,τ

=
{
A ∈ Hom(X1, X2) : τ - limT2(ψ)

(
AT1(fα)− T2(fα)A

)
= 0

for every ψ ∈ L1(G)
}

=
{
A ∈ Hom(X1, X2) : τ - lim

(
T2(ψ)

)
A
(
I − T1(fα)

)
= 0

for every ψ ∈ L1(G)
}
,

U2,τ
(
X1, X2; (fα)

)
= U2,τ(X1, X2) = U2,τ

(
(fα)
)
= U2,τ

=
{
A ∈ Hom(X1, X2) : τ - lim

(
AT1(fα)− T2(fα)A

)
= 0
}
.
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Here (fα) is a b. a. i. of the algebra L1(G) and τ is the uniform (u) or strong (s)
operator topology on the space Hom(X1, X2). The symbol τ -lim stands for the
limit in the topology τ . The modules Ui,τ = Ui,τ(X1, X2), i = 1, 2, τ ∈ {u, s}, are
non-degenerate since the module (X2, T2) is non-degenerate (see Lemma 5.11).

Lemma 5.2. The definition of the space U1,u does not depend on the choice of
approximate identity (fα). This space coincides with the space

U′1,u =
{
A ∈ Hom(X1, X2) : ∀ψ ∈ L1(G), ∀ε > 0 ∃ϕ ∈ L1(G) :∥∥T2(ψ)A(I − T1(ϕ))∥∥ < ε}.

Proof. The definition of U1,u
(
(fα)
)
implies that U1,u

(
(fα)
)
⊆ U′1,u for every

b. a. i. (fα).
If A ∈ U′1,u, (ϕα) is an arbitrary b. a. i. of L1(G), ψ is any function belonging

to L1(G) and ε > 0, then there is a ϕ ∈ L1(G) such that

∥∥T2(ψ)A(I − T1(ϕ))∥∥ < ε

2(1 + C)
,

where C = sup ‖ϕα‖. Since limϕα ∗ ϕ = ϕ, there is an α0 such that ‖ϕ − ϕα ∗
ϕ‖ ‖ψ‖ ‖A‖ < ε

2 for α � α0, which implies that∥∥T2(ψ)A(I−T1(ϕα))∥∥ = ∥∥T2(ψ)A[(I−T1(ϕ))(I−T1(ϕα))−T1(ϕ−ϕα ∗ϕ)]∥∥ < ε
for α � α0. The lemma is proved.

We wish to consider another closed non-degenerate submodule U3 of(
Hom(X1, X2), T̃

)
, for which we will need the following definition.

Definition 5.3. A net (xα) in the Banach L1(G)-module (X, T ) is said to be locally

convergent to x0 ∈ X (and we write xα loc→ x0 or loc-limxα = x0) if it is bounded
and lim f(xα − x0) = 0 for every f ∈ L1(G).
By definition, the submodule U3=U3(X1, X2) consists of those A∈Hom(X1, X2)

such that Axα
loc→ Ax0 if xα

loc→ x0. The operators belonging to U3 are said to be
locally continuous.

Remark 5.4. The above definitions imply that

U2,u ⊆ U1,u ⊆ U1,s ⊇ U1,u, U2,u ⊆ U2,s.

Since (fαx)
loc→ x for all x ∈ X1 and every b. a. i. (fα) of L1(G), we have U1,s ⊇ U3.

The operators belonging to one of the submodules U2,τ , τ ∈ {u, s}, are said to
commute with (fα) (in the uniform, strong operator topology, respectively).

Remark 5.5. If (Xi, Ti)c = Xi, i = 1, 2, then U1,s = U2,s = Hom(X1, X2).

Under the assumptions of the preceding remark, not all A ∈ Hom(X1, X2) are
locally continuous.
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Example 5.6. Let X = X1 = X2 = Cub(R) and T1 = T2 = S (see Example 2.11).
Consider the following linear operator A ∈ EndX:

Ax = ξ(x)y, 0 �= y ∈ X, ξ ∈ X∗, (5.5)

where C0(R) ⊆ Ker ξ and ξ(x0) = 1, x0 ≡ 1. The sequence of functions xn(t) =
e−

1
n |t|, t ∈ R, n � 1, belongs to C0(R) and converges locally to x0 (it also

converges locally in the sense of the module structure considered in Example 2.10).
Since ξ(xn) = 0, n � 1, we have Axn = 0, n � 1. On the other hand, Ax0 = y �= 0,
that is, the sequence (Axn) does not converge locally to Ax0. Hence, A is not locally
continuous, although the assumptions of Remark 5.5 hold for

(
Cub(R), S

)
.

Example 5.7. Let X = X1 = X2 = Cb(R), T1 = T2 = S (see Example 2.11),
and let A ∈ EndX be the operator defined by formula (5.5) using a function
y ∈ Cb(R) \ Cub(R) and a functional ξ of the form

ξ(x) =

∫
R

α(t)x(t) dt,

where α ∈ L1(R). Then A is locally continuous but does not commute with any
b. a. i. in L1(R), that is, it does not belong to U2,s. Since

(
S(ψ)A

)
x = ξ(x)(ψ ∗ y)

for all ψ ∈ L1(R), we have A ∈ U1,s.
Consider the representation

T0 : G→ EndHom(X1, X2), T0(g)A = T2(g)AT1(−g), (5.6)

where g ∈ G and A ∈ Hom(X1, X2). On the spaces U0,τ , τ ∈ {u, s}, for which the
map g �→ T0(g)A : G→ Hom(X1, X2) is continuous in the topology τ , the formula

(fA)x = T0(f)Ax =

∫
G

f(g)
(
T0(−g)A

)
x dg

defines the structure of the Banach L1(G)-module associated with T0.

Remark 5.8. If (fα) is a b. a. i. in L1(G), then for A ∈ U0,τ , τ ∈ {u, s}, the
net (fαA) converges to A in the topology τ . Therefore, the U0,τ , τ ∈ {u, s}, are
non-degenerate L1(G)-modules.

Remark 5.9. If A ∈ U0,s, then the boundedness of the representations T1 and T2
implies that

lim
g→0

(
T2(g)Ax −AT1(g)x

)
= 0, x ∈ X1.

Therefore, Ax ∈ (X1, T2)c if x ∈ (X1, T1)c. Multiplying this equality by an arbitrary
b. a. i. (fα) and integrating, we obtain that lim

(
T2(fα)Ax − AT1(fα)x

)
= 0. If T1

is strongly continuous, then A ∈ U2,s, whence U0,s ⊆ U2,s. We likewise show that
U0,u ⊆ U2,u.
In what follows (if not otherwise stated), the symbol U = U(X1, X2) stands for

one of the following closed subspaces of Hom(X1, X2):

Ui,τ1 ∩ U0,τ2 , U3 ∩ U0,τ , τ, τ1, τ2 ∈ {u, s}, i = 1, 2. (5.7)



Causal operators and their spectral properties 455

What has been said implies that U is a non-degenerate Banach L1(G × G)-
and L1(G)-module with the structures associated with the representations T̃ and T0,

respectively (we retain this notation for the restrictions of T̃ and T0 to U, which
are well defined).

Remark 5.10. The classes U(X1, X2) have the following “physical” property. Their
definitions imply that A = 0 if A ∈ U(X1, X2) and Ax = 0 for all x ∈ (X1, T1)c (we
prove this assertion using Lemma 4.3). Hence, A = B whenever A,B ∈ U(X1, X2)
coincide on (X1, T1)c.

Lemma 5.11. U is both an L1(G×G)- and an L1(G)-module.
Proof. It remains to prove that the module (U, T̃) is non-degenerate. We shall do

this only for U = U1,s ∩ U0,s. Let A ∈ U and T̃ (f)A = 0 for all f ∈ L1(G × G).
Then T2(ψ)AT1(ϕ) = 0 for all ϕ, ψ ∈ L1(G). The definition of U1,s implies that
T2(fα)Ax = 0 for all x ∈ X1 and all α ((fα) is a b. a. i.). Therefore, T2(ψ)Ax = 0
for all ψ ∈ L1(G). Since the L1(G)-module (X2, T2) is non-degenerate, we have
Ax = 0 for all x ∈ X1, whence A = 0. The lemma is proved.
Consider the homomorphism τ : L1(G) → EndL1(G × G) of Banach algebras

defined by the formula(
τ(f)ϕ

)
(g1, g2) =

∫
G

f(g)ϕ(g1 − g, g2 + g) dg. (5.8)

Let us note that the functions τ(f)ϕ ∈ L1(G × G), where f ∈ L1(G) and ϕ ∈
L1(G×G), have the Fourier transforms

τ̂(f)ϕ(γ1, γ2) = f̂(γ1 − γ2) ϕ̂(γ1, γ2), γ1, γ2 ∈ Ĝ. (5.9)

Lemma 5.12.
T̃
(
τ(f)ϕ

)
= T̃ (ϕ)T0(f)A = T0(f) T̃ (ϕ)A (5.10)

for all f ∈ L1(G), ϕ ∈ L1(G × G), A ∈ U = U(X1, X2) and τ occurring in
formula (5.8).

Proof. Since the L1(G × G)-module (U, T̃) is non-degenerate, it is sufficient to
prove (5.10) for those A ∈ U such that A = T2(ψ)BT1(φ), φ, ψ ∈ L1(G), B ∈ U
(see the proof of Lemma 5.1). Therefore, we can assume that A ∈ (U, T̃)c and T1, T2
are strongly continuous representations. We have

T̃
(
τ(f)ϕ

)
A =

∫∫
G×G

(∫
G

f(g)ϕ(g1 − g, g2 + g) dg
)
T2(−g2)AT1(−g1) dg1 dg2

=

∫
G

f(g)T2(−g)
(∫∫

G×G
ϕ(g1, g2)T2(−g2)AT1(−g1) dg1 dg2

)
T1(g) dg

= T0(f)T̃ (ϕ)A

=

∫∫
G×G
ϕ(g1, g2)T2(−g2)

(∫
G

f(g)T2(−g)AT1(g) dg
)
T1(−g1) dg1 dg2

= T̃ (ϕ)T0(f)A, ϕ ∈ L1(G×G), f ∈ L1(G)

(the integrals converge in the strong operator topology). The lemma is proved.
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Theorem 5.13.

Λ(A, T0) =
{
γ2 − γ1: (γ1, γ2) ∈ Λ(A, T̃ ) ⊂ Ĝ× Ĝ

}
≡ ∆ (5.11)

for all A ∈ U.

Remark 5.14. It is clear that a similar theorem can be stated for any bimodule with
structures associated with representations for which (5.10) holds.

Proof of Theorem 5.13. We claim that Λ(A, T0) ⊇ ∆. Take a γ0 /∈ Λ(A, T0). There
is an f ∈ L1(G) such that f̂(γ0) �= 0 and T0(f)A = 0. Let σ0 be a neighbourhood
of γ0 such that f̂(γ) �= 0 for all γ ∈ σ0. Assume that there is a character (γ1, γ2)
in Λ(A, T̃) ⊂ Ĝ × Ĝ such that γ2 − γ1 ∈ σ0. Choose a ϕ ∈ L1(G × G) such that
ϕ̂(γ1, γ2) �= 0. It follows from (5.10) that

T̃
(
τ(f)ϕ

)
A = T̃ (ϕ)T0(f)A = 0.

Formula (5.9) implies that τ̂(f)ϕ(γ1, γ2) �= 0. Therefore, (γ1, γ2) /∈ Λ(A, T̃ ). This
is a contradiction. Hence, Λ(A, T0) ⊇ ∆.
To prove the reverse inclusion we take a γ0 /∈ ∆ and an f ∈ L1(G) such that

f̂(γ0) �= 0 and supp f̂ ∩∆ = ∅. It follows from (5.9) that the function ψ = τ(f)ϕ is
such that supp ψ̂∩Λ(A, T̃) = ∅ for all ϕ in L1(G×G). Lemma 3.3 and formula (5.10)
imply that

0 = T̃ (ψ)A = T̃ (ϕ)T0(f)A, ϕ ∈ L1(G×G).

Since the L1(G ×G)-module (U, T̃ ) is non-degenerate, we have T0(f)A = 0, that
is, γ0 /∈ Λ(A, T0), whence ∆ ⊆ Λ(A, T0).

Corollary 5.15.

Λ(Ax, T2) ⊂ Λ(A, T0) + Λ(x, T1) (5.12)

for all x ∈ X1 and A ∈ U.

Proof. Let γ2 /∈ Λ(A, T0) + Λ(x, T1). Consider an f ∈ L1(G) such that f̂(γ2) = 1
and supp f̂ ∩Λ(A, T0) + Λ(x, T1) = ∅. We claim that T2(f)Ax = 0. Since A ∈ U, it
is sufficient to verify this equality for vectors in (X1, T1)Comp with compact Beurling
spectra.

Let x ∈ (X1, T1)Comp. Since γ2 /∈ Λ(A, T0) + Λ(x, T1), there is an h ∈ L1(G)
such that ĥ = 1 in the neighbourhood of Λ(x, T1) and γ2 − γ1 lies outside some
neighbourhood of Λ(A, T0) for every γ1 ∈ supp ĥ. Therefore, (γ1, γ2) lies outside
some neighbourhood of Λ(A, T̃ ) for every γ1 ∈ supp ĥ. By Lemma 3.3, we have

T2(f)AT1(h)x = T2(f)Ax = 0,

as was to be shown.
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Example 5.16. For the operator A ∈ U(X1, X2) defined by the formula Ax =
ξ(x)y, where ξ ∈ (X∗1 )c and 0 �= y ∈ X2, we have

Λ(A, T̃) = Λ(ξ, T ∗c ) ×Λ(y, T2),

Λ(A, T0) =
{
γ2 − γ1 : γ1 ∈ Λ(ξ, T ∗c ), γ2 ∈ Λ(y, T2)

}
,

where T ∗c : G→ End(X∗1 )c is the restriction of the representation T ∗1 : G→ EndX∗1
(see Example 2.12) to (X∗1 )c. If y ∈ (X∗2 )c, then A ∈ U1,u ∩ U0,u.
Remark 5.17. U1,s ∩U0,u = U1,u∩ U0,u. For by Lemma 4.3, it is sufficient to verify
that

u-limT2(ψ)A
(
I − T1(fα)

)
= 0

for every A ∈ U1,s with compact Beurling spectrum Λ(A, T0), every ψ ∈ L1(G)
whose Fourier transform has compact support, and every b. a. i. (fα) in L1(G).
This follows from formula (5.12). Indeed, let ϕ be a function belonging to

L1(G) such that supp ϕ̂ is a compact set and
[
supp ϕ̂ + Λ(A, T0)

]
∩ supp ψ̂ = ∅.

Then limα fα ∗ ϕ = ϕ, whence lim
(
T1(fα) − I

)
T1(ϕ) = 0. Formula (5.12) implies

that T2(ψ)AT1(ϕ) = 0. Therefore,

u-limT2(ψ)A
(
I − T1(fα)

)
= u-limT2(ψ)A

(
T1(ϕ) +

(
I − T1(ϕ)

))(
I − T1(fα)

)
= 0.

Remark 5.18. For strongly continuous representations T1 and T2, Theorem 5.13
was proved in [28] by another method. We hope that Lemma 5.12 will make it
possible to apply Theorem 5.13 to other classes of representations.

§ 6. Causal operators. Examples
Let A be a partially ordered set (poset) of indices and let X̃i = {Xαi , α ∈ A},

i = 1, 2, be two families of closed linear subspaces of Banach spaces Xi, i = 1, 2,
respectively.

Definition 6.1. An operator A ∈ Hom(X1, X2) is said to be causal with respect
to the families of subspaces X̃i, i = 1, 2, if AX

α
1 ⊆ Xα2 for all α ∈ A, that is, the

ordered pair of subspaces (Xα1 , X
α
2 ) is invariant under A.

To the best of our knowledge, this is the most general definition of causal opera-
tor. However, it is difficult to construct a sufficiently rich theory from it. We shall

thus impose certain restrictions on the families X̃i, i = 1, 2, which will enable us
to construct such a theory. We shall give another two definitions of causal opera-
tors, which are consistent with familiar ones and equivalent under certain natural
conditions.
We consider Banach L1(G)-modules (Xi, Ti), i = 1, 2, and a closed semigroup

S ⊂ Ĝ such that zero belongs to the closure of its interior IntS (see Remark 6.14).
Sometimes we shall have to impose additional restrictions on S. As before, we
assume that Assumption 2.1 holds.

Let the poset A be the group Ĝ with the following partial ordering: γ1 � γ2 ⇔
γ1 ∈ γ2 + S. Consider the families of spectral subspaces

Xγi = Xi(γ + S, Ti), γ ∈ Ĝ, i = 1, 2.
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Definition 6.2. An operator A ∈ Hom(X1, X2) is said to be causal with respect
to the representations Ti, i = 1, 2, and the semigroup S if AX

γ
1 ⊆ X

γ
2 for all γ ∈ Ĝ.

For operators belonging to the Banach L1(G)-module U (that is, one of the
modules defined by formula (5.7)) we make another definition.

Definition 6.3. An operator A ∈ U is said to be causal with respect to the repre-
sentation T0 : G→ EndU and the semigroup S if Λ(A, T0) ⊆ S.

Theorem 6.4. Let A ∈ U and let the representation T0 be (as usual) defined by
formula (5.6). Then Definitions 6.2 and 6.3 are equivalent.

Proof. Let A ∈ U be causal in the sense of Definition 6.2. We claim that
Λ(A, T0) ⊆ S. By Theorem 5.13, it is sufficient to establish that γ2 − γ1 ∈ S,
that is, γ2 ∈ γ1 + S if (γ1, γ2) ∈ Λ(A, T̃ ) (T̃ is defined by formula (5.1)). Assume
the opposite, that is, assume that there is an ordered pair (γ01 , γ

0
2) in Λ(A, T̃) such

that γ02 /∈ γ01 + S. Then one can find f1, f2 ∈ L1(G) such that f̂1(γ01 )f̂2(γ02) �= 0,
supp f̂2 ∩ (γ∗ + S) = ∅ and supp f̂1 ⊂ (γ∗ + S) for some γ∗ ∈ Ĝ. The existence of
such a γ∗ follows from the above assumption on the semigroup S. Since A is causal
(in the sense of Definition 6.2), Lemma 3.3 implies that

Λ
(
f2
(
A(f1x)

))
⊆ supp f̂2 ∩ Λ

(
A(f1x)

)
⊆ supp f̂2 ∩ (γ∗ + S) = ∅

for all x ∈ X1. Therefore, T2(f2)AT1(f1) = 0, whence (γ01 , γ02) /∈ Λ(A, T̃ ). This is
a contradiction.
Now let A be causal in the sense of Definition 6.3. Formula 5.12 implies that for

any γ ∈ Ĝ and x ∈ Xγ1 we have

Λ(Ax, T2) ⊆ Λ(A, T0) + Λ(x, T1) ⊆ γ + S + S ⊆ γ + S,

that is, Λ(Ax, T2) ⊆ Xγ2 . The theorem is proved.

We denote the set of causal operators inU⊆Hom(X1, X2) by Caus(X1, X2; T0, S),
or Caus(X1, X2) if the choice of the semigroup S and the representations T1, T2
occurring in the construction of T0 is clear.

Definition 6.5. The set Λ(A, T0)\{0} ⊆ Ĝ will be called the memory of the linear
operator A ∈ U. An operator A0 ∈ U will be called an operator with no memory
if Λ(A0, T0) ⊆ {0}.

Hence, an operator A ∈ U = U(X1, X2) is causal with respect to the semigroup S
if and only if its memory is contained in S. In particular, any operator in U with no
memory is causal. The set of operators with no memory is a closed linear subspace
that coincides with the spectral submodule U

(
{0}, T0

)
. In what follows it will be

denoted by one of the following symbols: M(X1, X2), M(X1, X2; T0), M(U),
M(U, T0). If A ∈ Erg0(U) (see Definition 4.10), then A0 =M(A) will stand for its
part with no memory, that is, A0 = M(A) = limT0(fα)A, where (fα) is a 0-net
in L1(G).
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Lemma 6.6. The space M(U) of operators with no memory has the following two
representations:

M(U) =
{
A ∈ U : T0(g)A = A ∀g ∈ G

}
, (6.1)

M(U) =
{
A ∈ U : AX1(σ̄, T1) ⊆ X2(σ̄, T2) ∀σ ∈ Ĝ

}
. (6.2)

Proof. The representation (6.1) follows immediately from Remark 4.16, since oper-
ators with no memory are, by definition, eigenvectors of the L1(G)-module (U, T0)

corresponding to the eigencharacter γ0 = 0 ∈ Ĝ. The representation (6.2) follows
from formula (5.12).

Remark 6.7. There are examples of operators A ∈ Hom(X1, X2) satisfying the
equality T0(g)A = A but lying outside U (and hence, outside M(U)). Such an
example can be found in [3], § 5.1.11 for X1 = X2 = lp and T = S.
Remark 6.8. Now (and up to Example 6.10) let X1 = X2 = X and T1 = T2 = T .
Then it may happen that U = U1,s ∩ U0,s is not an algebra, and we denote by Ua
or Ua(X) one of the subspaces defined in (5.7), with the exception of U1,s ∩ U0,s,
in the case when the spaces of representations and the representations themselves
coincide.

Lemma 6.9. Ua is a Banach algebra.

Proof. First we claim that

Ua = U1,s
(
(fα)
)
∩ U0,u = U1,u ∩ U0,u

is an algebra (see Remark 5.17). Let A,B ∈ Ua. Let us verify that AB ∈ U1,u. Let
ε > 0 and ψ ∈ L1(G). By Remark 5.17, there is a ϕ ∈ L1(G) such that∥∥T (ψ)A(I − T (ϕ))∥∥ < ε

2(1 + c)‖B‖ ,

where c = sup ‖fα‖. Then

Cα = T (ψ)AB(I − fα)x = ψA
(
ϕ+ (1− ϕ)

)
B(1− fα)x

for all x ∈ X. Therefore, there is an α0 such that ‖Cα‖ < ε for all α � α0.
We have AB ∈ U0,u since T0(g)AB =

(
T0(g)A

)(
T0(g)B

)
, g ∈ G. Hence,

AB ∈ Ua = U1,s
(
(fα)
)
∩ U0,u = U1,u ∩ U0,u.

We shall prove the assertion of the lemma only for the submodule Ua = U3∩U0,s
(for the others the proof is equally simple). Let A,B ∈ Ua. If xα

loc→ x0 for the net
(xα) in X, then Bxα

loc→ Bx0, whence ABxα
loc→ ABx0, that is, AB ∈ U3. It is clear

that AB ∈ U0,s, whence AB ∈ Ua = U3 ∩ U0,s. The lemma is proved.
The set Caus(X,X) of causal operators belonging to Ua will be denoted

by Caus(X).
Here are several examples of causal operators.
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Example 6.10. Let X1 and X2 be Banach spaces with resolutions of the identity
Ei = {Ein, n ∈ Ωi ⊆ Z}, i = 1, 2, equipped with the structures of Banach L1(T)-
modules (as in Example 2.9: see formulae (2.6) and (2.7)) associated with the
representations U1 and U2. We have

Λ(x, Ui) =
{
k ∈ Ωi : Eikx �= 0

}
⊆ Z 	 T̂ , i = 1, 2,

which implies that the spectral subspaces Xi(σi), σi ⊂ Z, i = 1, 2, have the
following representations:

Xi(σi) =
{
x ∈ Xi : Eikx = 0 ∀k ∈ Ωi \ σi

}
, i = 1, 2. (6.3)

The family A =
{
Aij = E

2
iAE

1
j ; i ∈ Ω1, j ∈ Ω2

}
of operators belonging

to Hom(X1, X2) is called the matrix of A (with respect to the resolutions Ei).
Formula (6.3) implies that an operator A ∈ U = Hom(X1, X2) (where (Xi, Ui) =
(Xi, Ui)c, i = 1, 2) is causal with respect to the representations U1, U2 and the
semigroup Z+ = N ∪ {0} = R+ ∩ Z if and only if

Aij = E
2
iAE

1
j = 0 ∀i < j, i ∈ Ω1, j ∈ Ω2

(that is, its matrix is lower-triangular if A ∈ Ua = EndX and U1 = U2 = U).
Let us note that since the representation U0 : T → EndHom(X1, X2) given, as

usual, by the formula U0(γ)A = U2(γ)AU1(γ
−1), γ ∈ T, is defined on the compact

group T, it has a Fourier series

U0(γ)A ∼
∑

n∈Ω2−Ω1

Anγ
n

with An ∈ Hom(X1, X2), n ∈ Ω2 − Ω1, that is, the Fourier coefficients of the
function γ �→ U0(γ)A have the following form (see also formula (4.2) and [29], [30]):

An =

∫
T

U0(γ)Aγ
−n dγ =

∑
E2iAE

1
j =
∑
Aij,

where the sum is taken over the i ∈ Ω2 and j ∈ Ω1 such that i− j = n. This is
why the An will be called the diagonals of A. The operator A belongs to U0,u if
and only if

lim
n→∞

∥∥∥∥A− ∑
|k|�n

(
1− |k|

n

)
Ak

∥∥∥∥ = 0.
This follows from the theorem on the approximation of continuous periodic func-
tions by Cesàro means. In particular, A ∈ U0,u, if A has absolutely integrable
diagonals, that is,

∑
n∈Ω2−Ω1 ‖An‖ <∞.

Let us also note that Λ(A,U0) = {n ∈ Ω2 − Ω1 : An �= 0}. Therefore, the no-
memory part M(A) of A coincides with A0. Hence, M(Ua) = M(EndX) is the
subalgebra of operators with diagonal matrices.
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Example 6.11. Let Xi = Lp(Ω, Yi), p ∈ [1,∞], i = 1, 2, be the Banach spaces of
functions considered in Example 2.10. They are the spaces of the representations
Vi : G→ EndXi defined by formula (2.8). The L1(G)-module structures on the Xi
are defined by formula (2.9), which implies that the spectrum Λ(x, Vi) of any x ∈ Xi,
i = 1, 2, coincides with its essential support vrai suppx ⊆ Ω ⊆ Ĝ. It should be noted
that it is this module structure that is used in the conventional definition of causal
operators (see [2], [3]) acting on function spaces.

Consider an operator B = A0 + A ∈ Hom(X1, X2) of the form

(Bx)(ω) = A0(ω)x(ω) +
∫
Ω

A(ω, γ)x(γ) dγ, ω ∈ Ω, (6.4)

where A0 ∈ L∞
(
Ω,Hom(Y1, Y2)

)
and A : Ω ×Ω → Hom(Y1, Y2) is a strongly mea-

surable operator-valued function such that
∥∥A(ω, γ)∥∥ � a(ω−γ) for some a ∈ L1(Ĝ)

and almost all ω, γ ∈ Ω. In this representation A is an integral operator. The opera-
tor B is bounded and ‖B‖ � ‖a‖1+‖A0‖∞. The representations Ṽ : G×G→ EndU
and V0 : G → EndU corresponding to V (see formulae (5.1) and (5.6)) have the
following form on B:

((
Ṽ (g1, g2)B

)
x
)
(ω) =

∫
Ω

ω(g2)γ(g1)A(ω, γ)x(γ) dγ + ω(g1)ω(g2)A0(ω)x(ω),
(6.5)((

V0(g)B
)
x
)
(ω) =

∫
Ω

ω(g)γ−1(g)A(ω, γ)x(γ) dγ +A0(ω)x(ω), (6.6)

where g, g1, g2 ∈ G, x ∈ X1 and V0 is continuous in the uniform operator topology.
Hence,

((
Ṽ (f)B

)
x
)
(ω) =

∫
Ω

f̂(ω, γ)A(ω, γ)x(γ) dγ + f̂(ω, ω)A0(ω)x(ω),
(6.7)((

V0(ϕ)B
)
x
)
(ω) =

∫
Ω

ϕ̂(γ − ω)A(ω, γ)x(γ) dγ + ϕ̂(0)A0(ω)x(ω)
(6.8)

for all f ∈ L1(G ×G), ϕ ∈ L1(G) and x ∈ X1. Formulae (6.7) and (6.8) imply
that

Λ(A, Ṽ ) = vrai suppA, Λ(A0, Ṽ ) =
{
(ω, ω) ∈ Ω×Ω: ω ∈ vrai suppA0

}
,
(6.9)

Λ(A, V0) =
{
γ − ω ∈ Ĝ : (ω, γ) ∈ vrai suppA

}
⊂ Ω− Ω, (6.10)

Λ(A0, V0) ⊆ {0}, Λ(B, V0) ⊆ Λ(A, V0) ∪ {0}. (6.11)

Let us note that B belongs to each of the classes U (see (5.7)).
If (fα) is the 0-net in Remark 4.5, then formula (6.8) implies that

∥∥V0(fα)A∥∥ �
‖f̂αa‖1 → 0, whence lim

∥∥V0(fα)A∥∥ = 0. Hence, A ∈ Erg0(U) andM(A) = 0. Since
V0(fα)A0 = f̂α(0)A0 = A0, we obtain that A0 ∈M(U), whenceM(B) = A0.
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Now let S be a semigroup in Ĝ satisfying our conditions. Then (6.8), (6.10)
and (6.11) imply that Λ(B, V0) ⊆ Λ(A, V0) ∪ {0} ⊆ S if and only if the following
equality for the kernel A of A holds almost everywhere:

A(ω, γ) = 0, γ − ω /∈ S. (6.12)

Therefore, B is causal with respect to S if and only if (6.12) holds for the kernel
of A.
Such representations (formulae (6.5)–(6.8) and (6.9)–(6.12)) hold for various

classes of singular integral operators.

Example 6.12. Let Xi = F(G, Yi), i = 1, 2, be Banach spaces of functions each
coinciding with one of the spaces L∞, Cb, C0, AP (see Example 2.10). We assume
that X2 = L∞(G, Y2) if X1 = L∞(G, Y1), X2 = Cb(G, Y2) if X1 = Cb(G, Y1),
and so on. We equip the Banach spaces under consideration with the structure
of a Banach L1(G)-module using formula (2.11) and the representation S (of the
group of shifts of functions). Consider a bounded continuous function µ : G →
M
(
G,Hom(Y1, Y2)

)
, where M

(
G,Hom(Y1, Y2)

)
is the Banach space of bounded

operator-valued measures on G (see [31]). To this function we assign the operator
A ∈ Hom(X1, X2) defined by the formula

(Ax)(g) =

∫
G

µ(g) (ds)x(s+ g), g ∈ G, x ∈ X1. (6.13)

We have ‖A‖ � supg∈G ‖µ(g)‖. For this definition to be valid, we must impose
certain restrictions on µ. If F = L∞, then we assume that the values of µ are
measures absolutely continuous with respect to the Haar measure on G (so that we
can assume that µ(g) ∈ L1

(
G,Hom(Y1, Y2)

)
for all g ∈ G). However, in this case

we can put Xi = Lp(G, Yi), p ∈ [1,∞], i = 1, 2. This class contains the integral
operators

(A1x)(g) =

∫
G

K(g, s)x(s) ds, g ∈ G, x ∈ X1, (6.14)

where the kernel K : G×G → Hom(Y1, Y2) has the following property: the function
s �→ K(s, s+ g) : G→ L1

(
G,Hom(Y1, Y2)

)
, which will be denoted by K̃, belongs to

the space Cb
(
G, L1

(
G,Hom(Y1, Y2)

))
.

If F = AP , then we assume that µ is almost periodic. In this case
A : AP (G, Y1) → AP (G, Y2). For Cb and C0 no supplementary restrictions on µ
are needed.
There is another special case of operators of the form (6.13):

(A2x)(g) =
∑
k�1
Fk(g)x(g + gk), g, gk ∈ G, x ∈ X1. (6.15)

The functions Fk : G → Hom(Y1, Y2), k � 1, are assumed to belong to
L∞
(
G,Hom(Y1, Y2)

)
if Xi = Lp(G, Yi), i = 1, 2, p ∈ [1,∞]. We assume

that Fk ∈ Cb
(
G,Hom(Y1, Y2)

)
, k � 1, if Xi = Cb(G, Yi) or Xi = C0(G, Yi),
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i = 1, 2. The operator is well defined on the space of almost periodic functions
(if and) only if the Fk, k � 1, are almost periodic functions.
Formulae (6.13)–(6.15) and (5.6) imply that

(
S0(u)Ax

)
(g) =

(
S(u)AS(−u)x

)
(g) =

∫
G

µ(g + u) (ds)x(g + s), (6.16)

(
S0(u)A1x

)
(g) =

∫
G

K(g + u, s+ u)x(s) ds, (6.17)(
S0(u)A2x

)
(g) =

∑
k�1
Fk(g + u)x(g + gk), (6.18)

where g, u ∈ G and x ∈ X1. We deduce from (6.16)–(6.18) that A belongs to
U0,u ⊂ Hom(X1, X2) = U if µ is uniformly continuous. In particular, Ai ∈ U0,u,
i = 1, 2, if the functions K̃ and Fk, k � 1, are uniformly continuous.
For any f ∈ L1(G) the operator S0(f)A = fA ∈ Hom(X1, X2) has the form

(
(fA)x

)
(g) =

∫
G

fµ(g) (ds)x(g + s), x ∈ X1, (6.19)

where

fµ(g) = (f ∗ µ)(g) =
∫
G

f(τ)µ(g − τ) (dτ). (6.20)

Therefore, Λ(A, S0) = Λ(µ) is the Beurling spectrum of µ regarded as an element
of the space C(G,M

(
G,Hom(Y1, Y2)

)
equipped with the structure of an L1(G)-

module via convolution. In particular, Λ(A2, S0) =
⋃
k�1Λ(Fk).

Hence, A is causal with respect to the representation S0 and a semigroup S ⊂ Ĝ
if and only if

Λ(µ) ⊆ S. (6.21)

For A2 this condition can be written as⋃
k�1
Λ(Fk) ⊆ S. (6.22)

Finally, let us note that an A defined by (6.13) is an operator with no memory if
and only if µ is constant, that is, A is the operator of convolution with a measure
belonging toM

(
G,Hom(Y1, Y2)

)
. A1 has this property only if K(g, s) = K0(g−s),

g, s ∈ G, for some K0 ∈ L1
(
G,Hom(Y1, Y2)

)
.

Example 6.13. Let A : D(A) ⊂ X2 → X2 be a linear operator that is the genera-
tor of a strongly continuous isometric group of operators {T2(t); t ∈ R} ⊂ EndX2,
and let B : D(A) → X2 be a linear operator subordinate to A. We denote by X1
the Banach space D(A) equipped with the graph norm ‖x‖A = ‖x‖ + ‖Ax‖,
x ∈ D(A). We denote by T1 : R → EndX1 the restriction of T2 to X, which
is also a strongly continuous isometric representation. Assume that the function
B : R → Hom(X1, X2) defined by the formula B(t) = T0(t)B = T2(t)BT1(−t),
t ∈ R, is continuous (in the uniform operator topology), that is, B ∈ U0,u for
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U = Hom(X1, X2). The operator A+B ∈ U is causal with respect to T0 : R→ EndU
and S = R+ ⊂ R in the sense of Definition 6.3 if and only if Λ(A + B, T0) ⊆ R+.
Since T0(t)A = A, that is, A ∈ M(U), this condition is equivalent to the
condition Λ(B, T0) ⊆ R+, which (see Lemma 8.2 below) is in turn equivalent
to the existence of a bounded holomorphic continuation of B to the half-plane
C+ = {z ∈ C : Re z > 0}.
In particular, if A = d/dt is defined on a Banach space X2 coinciding with one

of the Banach spaces Lp(R, Y ), p ∈ [1,∞], Cb(R, Y ), C0(R, Y ), and B ∈ EndX2,
then A+B is causal with respect to T0 = S0 : R→ End(EndX2) if and only if B has
a bounded holomorphic continuation to C+. If B is an almost periodic operator
with respect to S0, B ∼

∑
j�0Bj is its Fourier series and S0(t)Bj = e

iλjtBj ,
j � 0, then it is causal if and only if λj � 0 for all j � 0. In this case B = B0
if λ0 = 0.

Remark 6.14. The condition 0 ∈ IntS was used only in the proof of the equivalence
of Definitions 6.2 and 6.3. In what follows it will be used only in Theorem 7.23.

§ 7. Causal invertibility. The algebra
of causal operators and its radical

We consider Banach L1(G)-modules (Xi, Ti), i = 1, 2, a semigroup S ⊂ Ĝ and
the set Caus(X1, X2) ⊂ U = U(X1, X2) ⊂ Hom(X1, X2) of operators causal with
respect to T0 and S. As before, U is one of subspaces (5.7) and Ua = Ua(X) is a
closed subalgebra of EndX that coincides with U(X,X), with the exception of the
case when U = U1,s ∩ U0,s. To say that A ∈ Caus(X) means that X1 = X2 = X
and T1 = T2 = T .

Definition 7.1. An operator A ∈ Caus(X1, X2) is said to be hypercausal if
0 /∈ Λ(A, T0). It is said to be uniformly (or strongly) causal if u-limfαA = 0
(or s-limfαA = 0) for some 0-net (fα) in L1(G) (and then the same is true for all
0-nets (fα) in L1(G)).

We denote the set of hypercausal operators belonging to Caus(X1, X2) by
HC(X1, X2) (or HC(X), if X1 = X2 = X). The set of uniformly causal opera-
tors will be denoted by UC(X1, X2) (or UC(X), if X1 = X2 = X).
The results of §§ 3, 4 (see Theorem 4.19) imply the following theorem.

Theorem 7.2. UC(X1, X2) is a closed submodule of the L1(G)-module(
Caus(X1, X2), T0

)
and of the L1(G×G)-module

(
Caus(X1, X2), T̃

)
. It has

the following properties:
(i) any operator belonging to UC(X1, X2) is the limit (in the operator norm) of

a sequence (a net) of hypercausal operators,
(ii) Erg0

(
Caus(X1, X2)

)
=M(U)⊕UC(X1, X2),

(iii) for any A ∈ UC(X1, X2) there is an f ∈ L1(G), f̂(0) = 0, such that
A = fA = T0(f)A,
(iv) AP

((
Caus(X1, X2), T0

)
⊆ M(U) ⊕ UC(X1, X2), and the almost periodic

operator A ∈ Caus(X1, X2) belongs to UC(X1, X2) if and only if 0 /∈ Λb(A, T0),
(v) UC(X) is a closed two-sided ideal of the Banach algebra Caus(X) of causal

operators.
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Remark 7.3. A ∈ Caus(X1, X2) is uniformly causal if and only if 0 is an ergodic
point of Λ(A, T0) that does not belong to the Bohr spectrum of A (regarded as an
element of the L1(G)-module (U, T0)).

In the case when X1 = X2 = H is a Hilbert space, a definition similar to that of
uniformly causal operators was made in [1] in a somewhat different way (in what
follows we use the notation of Example 2.8). An operator A ∈ CausH is said to be
strictly causal (see [1]) if for any ε > 0 there is a partition R =

⋃n
i=1∆i, ∆i ∈ Σ,

1 � i � n, such that
∥∥E(∆i)AE(∆i)∥∥ < ε.

Remark 7.4. Let us return to the examples of causal operators considered in § 6.
The integral operators in Example 6.12 (in this case A0 = 0) are uniformly causal.
For an operator A defined by formula (6.13) to be uniformly causal it is necessary
(if dimE, dimF <∞) and sufficient that µ ∈ Erg0

(
Cb
(
G,M

(
G,Hom(E, F )

))
, S0
)

and 0 /∈ Λb(µ). This condition is equivalent to the following: 0 is an ergodic point
of A and zero does not belong to the Bohr spectrum of µ. Hence, A is uniformly
causal if lim fα ∗ µ = 0 for at least one 0-net in L1(G).
If A ∈ U = Hom(X1, X2) is the L1(T)-module considered in Example 6.10, then

the inclusion Λ(A, T0) ⊆ Ω2 − Ω1 ⊆ Z implies that zero (if it belongs to Ω2 − Ω1)
can only be an isolated point of Λ(A), whence A ∈M(U) ⊕UC(X1, X2).
The majority of the results stated below hold under the following assumption.

Assumption 7.5. U(X1, X2) ⊆ U0,u(X1, X2) and S ∩ (−S) = {0}.
Lemma 7.6. Let (Xi, Ti), i = 1, 2, 3, be Banach L1(G)-modules, let A ∈
Caus(X1, X2; T0) ⊂ U(X1, X2), B ∈ Caus(X2, X3; T ′0) ⊂ U(X2, X3), where T0, as
always, is defined by formula (5.6), and let T ′0 : G→ EndHom(X2, X3), T ′0(g)C =
T3(g)CT2(−g), g ∈ G, C ∈ U(X2, X3). Then BA ∈ Caus(X1, X3; T ′′0 ), where
T ′′0 : G → EndHom(X1, X3), T ′0(g)D = T3(g)CT1(−g), g ∈ G, D ∈ U(X1, X3),
and BA ∈ UC(X1, X3) if one of the operators A, B is uniformly causal and Assump-
tion 7.5 holds.

Proof. First we make the following comment to the assumptions of the lemma: the
three subspaces of operators occurring in the statement of the lemma are assumed to
belong to the same class. For example, if U(X1, X2) = U2,u(X1, X2)∩U0,u(X1, X2),
then U(Xi, X3) = U2,u(Xi, X3) ∩ U0,u(Xi, X3), i = 1, 2. The assertion that BA
belongs to U(X1, X3) can be proved in the same way as in Lemma 6.9.

Let σ be an arbitrary closed subset of Ĝ and let x belong to X1(σ, T1). Corol-
lary 5.13 implies that

Λ(BAx, T3) ⊆ Λ(B, T ′0) + Λ(Ax, T2) ⊆ Λ(B, T ′0) + Λ(A, T0) + Λ(x, T1) ⊆ σ + S.
(7.1)

Since the semigroup S is closed, Definition 6.2 implies that BA is causal (with
respect to T ′′0 and S).
Now assume that one of the operators under investigation is uniformly causal.

We can assume without loss of generality that A is uniformly causal, 0 /∈ Λ(A, T0)
and Λ(A, T0) is a compact set. The above inclusions imply that Λ(BA) ⊆
Λ(A) + S = Λ(A) + S. Since Λ(A, T0) is compact, the assumptions on S imply
that 0 /∈ Λ(BA, T ′′0 ). The lemma is proved.
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Corollary 7.7. CausX is a closed subalgebra of Ua ⊆ EndX, and UC(X) is a
closed two-sided ideal of CausX if Assumption 7.5 holds.

In the proof of (7.1) we did not use the assumption that A and B are causal.
Therefore, the following corollary holds.

Corollary 7.8.

Λ(BA) ⊆ Λ(A) + Λ(B) (7.2)

for all A ∈ U(X1, X2) and B ∈ U(X2, X3).

Definition 7.9. An A ∈ Caus(X1, X2) is said to be causally invertible if it
is invertible and A−1 ∈ Hom(X2, X1) is causal with respect to T−10 : G →
EndHom(X2, X1), T

−1
0 (g)B = T1(g)BT2(−g), g ∈ G, B ∈ U(X2, X1).

We denote by σCaus(A) the spectrum of A ∈ CausX in the algebra CausX.
Conditions for causal invertibility are of importance in the study of the stability of
solutions of differential equations (see [2], § 5.1 and [3], Ch. III).

Lemma 7.10. Let Assumption 7.5 hold and let A ∈ UC(X1, X2). Then A is not
causally invertible.

The proof follows immediately from Lemma 7.6 and the fact that the identity
operator is not uniformly causal.

We need the following definition.

Definition 7.11 [32]. A subalgebra A of a Banach algebra B is said to be full
(in B) if every a ∈ A that is invertible in B is invertible in A.

The definitions imply that a subalgebra Ua(X) is full in EndX if it coincides
with one of the subalgebras U2,s ∩ U0,s, U2,u ∩ U0,u.

Theorem 7.12. Let A ∈ M
(
U(X1, X2)

)
. Then T2(f)A = AT1(f) for all f ∈

L1(G), and A
−1 ∈ M

(
U(X2, X1), T

−1
0

)
if A is invertible. In particular,M(Ua) is

a full subalgebra of EndX.

Proof. Since T2(f)A − AT1(f), f ∈ L1(G), belongs to U(X1, X2), it is sufficient
(see Remark 5.10) to prove that its restriction to (X1, T1)c is the zero operator.
If x ∈ (X1, T1)c, then we have

(
T2(f)A−AT1(f)

)
x = T2(f)Ax−A

∫
G

f(g)T1(−g)x dg = T2(f)Ax−T2(f)Ax = 0

(see Lemma 2.7). The other assertions of the theorem follow immediately from
Lemma 6.6.

Taking into account Theorem 7.12, it is natural to call operators belonging
toM(X) multipliers of the L1(G)-module X.

Theorem 7.13. Let Assumption 7.5 hold, let A ∈ Caus(X1, X2) be a causally
invertible operator and let 0 ∈ Λerg(A, T0), that is, A ∈ M(X1, X2) ⊕UC(X1, X2).
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Then 0 ∈ Λerg(A−1, T−10 ), the operator A0 =M(A) is invertible and
(
M(A)

)−1
=

M(A−1). If A ∈ CausX and 0 ∈ Λerg(A, T0), then σCaus(A) ⊇ σ(A0).
Proof. Assertion (i) of Theorem 4.19 implies that A can be represented in the form
A = A0 + A1, where A1 ∈ UC(X1, X2). By Lemma 7.6, B1 = A−1A1 and B2 =
A1A

−1 belong to the ideals UC(X1) and UC(X2) of uniformly causal operators,
respectively. Then for any 0-net (fα) in L1(G) we have u-limT

i
0(fα)Bi = 0,

i = 1, 2, where T i0(g)Ci = Ti(g)CiTi(−g), Ci ∈ EndXi, g ∈ G, i = 1, 2.
Therefore, there is an ω ∈ Ω such that

∥∥T i0(fω)Bi∥∥ < 1/2, i = 1, 2. By
Theorem 7.12,

I = A−1A = T 10 (fα)
(
A−1(A0 + A1)

)
=
(
T−10 (fα)A

−1)A0 + T 10 (fα)B1,
I = AA−1 = A0

(
T−10 (fα)A

−1)+ T 20 (fα)B2 (7.3)

for all α ∈ Ω. Hence, ‖AωA0 − I‖ < 1/2 and ‖A0Aω − I‖ < 1/2 for Aω =
T−10 (fω)A

−1. These inequalities imply that AωA0 and A0Aω are invertible opera-
tors, which implies that A0 has a left

(
(AωA0)

−1Aω
)
and a right

(
Aω(A0Aω)

−1)
inverse operator. Hence, A0 is an invertible operator and we can pass to the
limit in (7.3). Therefore, u-limT−10 (fα)A

−1 exists. Hence, 0 ∈ Λ′erg(A−1, T−10 ),
A0M(A−1) = I andM(A−1)A0 = I. Therefore, M(A−1) =

(
M(A)

)−1
and 0 ∈

Λerg(A
−1, T−10 ).

The assertion concerning the causal spectrum follows from these assertions.

We equip Hom(X1, X2) with two further Banach L1(G)-module structures which
will be needed later in the study of Caus(X). These structures are associated with
the representations

T r1 : G→ End
(
Hom(X1, X2)

)
, T r1 (g)A = AT1(g),

T l2 : G→ End
(
Hom(X1, X2)

)
, T l2(g)A = T2(g)A,

where A ∈ Hom(X1, X2) and g ∈ G. Hence,

T r1 (f)A = AT1(f), T l2(f)A = T2(f)A, f ∈ L1(G), A ∈ Hom(X1, X2).

It is clear that T r1 and T
l
2 commute and T0(g) = T

l
2(g)T

r
1 (−g), g ∈ G. Let us note

that the module structures thus defined are non-degenerate.
We conclude this section with a study of the Banach algebra CausX of causal

operators, which is a subalgebra of Ua(X) under the conventional assumption con-
cerning the coincidence of the latter algebra with one of the above classes of opera-
tors belonging to EndX. We denote byRad(CausX) the radical (see [33]) of CausX.
It may happen that the radical of CausX does not contain the two-sided ideal

UC(X) of uniformly causal operators. This is why we need some supplementary
conditions describing the set Rad(CausX).

Definition 7.14. The operators belonging to the subspace

RC(X) =
(
(Ua, T

l)c ∪ (Ua, T r)c
)
∩ UC(X)

will be called radically causal.
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Definition 7.14 implies that A ∈ UC(X) is radically causal if and only if one of
the following conditions holds:
(i) u-limT (fα)A = A or u-limAT (fα) = A for some b. a. i. (fα) in L1(G),
(ii) for any ε > 0 there is a ϕ ∈ L1(G) such that ‖T (ϕ)A − A‖ < ε or

‖AT (ϕ) −A‖ < ε,
(iii) one of the functions g �→ T (g)A, g �→ AT (g) : G→ EndX is continuous (in

the uniform operator topology).
Let us note that RC = UC if Λ(X, T ) is compact.

Remark 7.15. If Ua is contained in one of the algebras U2,u, U0,u, then (Ua, T
l)c =

(Ua, T
r)c. This implies that limT (fα)A = A if and only if limAT (fα) = A.

Assumption 7.16. A semigroup S ⊂ Ĝ satisfies the following condition: for any
compact sets K1 ⊂ S \ {0} and K2 ⊂ S there is a positive integer m such that
(mK1) ∩K2 = ∅, where mK1 = K1 +K1 + · · ·+K1︸ ︷︷ ︸

m

.

For example, Assumption 7.16 holds for the semigroup S = Rn+ contained in R
n,

but does not hold for the semigroup S =
{
(x, y) ∈ R2 : y � 0

}
⊂ Ĝ = R2. Let us

also note that −S ∩ S = {0} if Assumption 7.16 holds for S.

Theorem 7.17. If Assumption 7.16 holds for a semigroup S, then RC(X) ⊆
Rad(CausX).

Proof. Let A ∈ RC(X). Then A is the uniform limit of the sequence of hypercausal
operators defined by the formula An = A − T0(fn)A, n � 1, where (fn) is a
0-net in L1(G) such that f̂n = 1 in some neighbourhood of zero. It is obvious that
An ∈ RC(X), n � 1. Taking into account that the radical of CausX is closed, it is
sufficient to consider the case when A ∈ HC(X), that is, 0 /∈ Λ(A, T0).
Let f ∈ L1(G) be an arbitrary function with compact support supp f̂ and B any

operator in CausX. Corollaries 5.15 and 7.8 imply that

Λ
((
T (f)AB

)k
, T0
)
⊆ supp f̂ ∩ (k − 1)

(
supp f̂ ∩ Λ(A, T0)

)
for all positive integers k. By Assumption 7.16, the right-hand side of this inclu-

sion is empty if k ∈ N is sufficiently large. Therefore,
(
T (f)AB

)k
= 0, that

is, T (f)AB is a nilpotent operator (which implies that BT (f)A is a nilpotent
operator). This means that T (f)A belongs to Rad(CausX). We prove likewise
that AT (f) ∈ Rad(CausX). By Definition 7.14, the closure of one of the sets{
T (f)A, f ∈ L1(G)

}
,
{
AT (f), f ∈ L1(G)

}
contains A, whence A ∈ Rad(CausX).

Corollary 7.18. σCaus(A +B) = σCaus(A) for all A ∈ CausX and B ∈ RC(X).

Theorem 7.19. Let A ∈ UC(X) be a compact operator, let T be a strongly con-
tinuous representation and let Assumption 7.16 hold for a semigroup S. Then
A ∈ Rad(CausX).

Proof. Since A is compact and T is strongly continuous, the function g �→
T (g)A : G → EndX is continuous in the strong operator topology, whence A ∈
RC(X). It remains to use Theorem 7.17.
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We can state other conditions on compact operators under which they belong
to the radical of CausX. Let us begin with compact operators with no memory.
We shall reinforce the corresponding results obtained in [2], [3], [5]. The two-sided
ideal of compact operators will be denoted by K(X). The ideal of compact causal
operators will be denoted by KC(X).

Theorem 7.20. Let A ∈ K(X)∩M(Ua). Then its image ImA is contained in the
closure of the linear span of the set of eigenvectors of the L1(G)-module (X, T ).

Proof. Since A ∈ K(X), the set {AT (g)x, g ∈ G} is precompact in X for every
fixed x ∈ X. The equalities T (g)Ax = AT (g)x, g ∈ G, imply that Ax is an almost
periodic vector in Xc (see Definition 4.11 and Theorem 4.12). Therefore, Ax is the
limit of a linear combination of eigenvectors of the L1(G)-module (X, T ).

Corollary 7.21. If Λb(X, T ) = ∅, that is, the Bohr spectrum of every x ∈ (X, T )
is empty, then K(X) ∩M(Ua) = {0}.
Corollary 7.22. Let Λb(X, T ) = ∅, X = Xc, A ∈ KC(X), and let 0 be an
ergodic point, that is, A ∈ Erg0(CausX, T0). Then A ∈ Rad(CausX).
Proof. We can represent A in the form A = A0+A1, where A0 ∈M(Ua) and A1 ∈
UC(X). By Corollary 7.21, we have A0 = 0. Therefore, A = A1 ∈ UC(X). It
remains to use Theorem 7.19.

Theorem 7.23. Let A ∈ KC(X), Λb(X, T ) = ∅, and let Assumption 7.5 hold.
Then A ∈ Rad(CausX).
Proof. Assume the opposite. Take an α such that 0 �= α ∈ σ(A). The Riesz
projector P corresponding to the one-point set {α} is defined by the formula

P =
1

2πi

∫
Γ

(A − λI)−1 dλ, (7.4)

where Γ is a closed Jordan contour encircling {α}, separating {α} from σ(A) \ {α}
and positively oriented. Since the set σ(A) is at most countable, we have σCaus(A) =
σ(A) (see [3], [32]). Therefore, the (A−λI)−1 , λ ∈ Γ, are causal operators. Hence,
P is a causal operator, that is, P ∈ CausX ⊆ U0,s. Therefore, one can find a
γ ∈ Ĝ such that PXγ �= {0}. Moreover, the condition imposed on S and the fact
that (the image of) P is finite-dimensional enable us to assume that PXγ+ε = {0}
for all ε ∈ S \ {0}. Passing to the restrictions P γ and T γ0 of P and T0 to the
spectral subspace Xγ and using formula (5.11), we obtain that Λ(P γ, T γ0 ) = {0}.
Corollary 7.21 now implies that P γ = 0. This is a contradiction.

Remark 7.24. Consider the following properties of an A ∈ CausX:
(i) A− T0(f)A ∈ K(X) for all f ∈ M0 =

{
ϕ ∈ L1(G) : ϕ̂(0) = 1

}
,

(ii) A − T0(f)A ∈ RC(X) for all f ∈M0.
If A ∈ U0,u, then (i) is equivalent to
(i′) T (g)AT (−g) −A ∈ K(X) for all g ∈ G,
and (ii) is equivalent to
(ii′) T (g)AT (−g) − A ∈ RC(X) for all g ∈ G.
The operators A − T0(f)A, f ∈ M0, are uniformly causal and, under certain

conditions, belong to the radicalRad(CausX) of CausX, as was proved in a series of
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assertions in this section. For example, if (i′) holds andX = Xc, then Theorem 7.19
implies that A ∈ Rad(CausX). Since the A − T0(f)A, f ∈ M0, belong to the
radical, we have the estimate

r(A) � inf
f∈M0

‖T0(f)A‖

for the spectral radius r(A) of A. It should be noted that A = A0 + A1 if A ∈
Erg0(CausX, T0), where A0 ∈ M(Ua) and A1 ∈ UC(X). Moreover, σCaus(A) =
σ(A0). In particular, r(A) = r(A0).

This remark implies the following theorem.

Theorem 7.25. Let A ∈ CausX ∩ Erg0(CausX, T0) and A = A0 + A1, where
A0 ∈ M(Ua) and A1 ∈ UC(X). If the assumptions of any of Theorems 7.17, 7.19,
7.22, 7.23 hold for A1, then σCaus(A) = σ(A0).

Other approaches to the estimation of the spectral radii of causal operators can
be found in [5], § 2.4, and [34]. Special attention should be paid to [2] and [3],
where one can find conditions sufficient for an operator to belong to the radical of
the algebra of causal operators. These conditions are stated in other terms, and
other approaches are used. For example, instead of the Bohr spectrum of a vector in
a Banach L1(G)-module, continuous chains of subspaces indexed by points of R are
used (that is, G = R and S = R+). As a rule, these chains coincide with the spectral
submodules Xt = X

(
(−∞, t], V

)
, t ∈ R (see Example 2.10 with Ω = G = R). In

this case, simple examples show that Theorem 7.23 has a wider scope of application.

Example 7.26. Let CausX be the algebra of causal operators considered in
Example 6.10, where X1 = X2 = X, E1 = E2 = E , and E1k = E

2
k = Ek,

k ∈ Ω1 = Ω2 = Ω. We assume for definiteness that Ω = Z. A causal operator
A ∈ CausX (whose matrix Aij is lower-triangular: Aij = 0 if i < j) belongs
to UC(X) if its diagonal A0 is zero. Such an operator is radically causal (which
implies that A ∈ Rad(CausX)) if A ∈ U0,u and

lim
k→∞

∥∥∥∥ ∑
i−j=n,i�k

EiAEj

∥∥∥∥ = 0
for all n ∈ Z+ (see Theorem 7.23).

Example 7.27. Consider the operator B = A0 + A defined by formula (6.4)
in Example 6.11, where X1 = X2 = X = Lp(Ω, Y ), p ∈ [1,∞]. We assume
that condition (6.12) holds for the kernel A of the integral operator A, that
is, B is a causal operator. It was mentioned in Example 6.11 that M(A) = 0
and M(A0) = A0. Since the Bohr spectrum Λb(ϕ) = Λb(ϕ, V ) is empty for
every ϕ ∈ X if Ĝ is a non-discrete group, every compact integral operator A
(these conditions hold if Ω is a compact subset of Ĝ and dimY < ∞) belongs
to Rad(CausX). Therefore, σCaus(B) = σ(A0). If Ω is precompact, then Λ(A, Ṽ ) is
contained in the compact set Ω −Ω. Hence, A is radically causal, and Theorem 7.23
implies that A ∈ Rad(CausX).
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§ 8. Causal operators and methods of the theory of holomorphic
functions. A theorem on the spectral components of causal operators

The fact that causal operators have their Beurling spectra in a semigroup S
enables us to use the theory of holomorphic functions (for a certain class of semi-
groups in G). To avoid technical difficulties, which would considerably increase the
length of this paper, we restrict ourselves to the study of the groups R, T and the

corresponding semigroups R+ ⊂ R 	 R̂ and Z+ ⊂ Z 	 T̂.
An important role in this section is played by the family of functions {fz; z ∈ C+}

in L1(R) of the form

fz(t) =
β

π

1

(t+ α)2 + β2
, z = α+ iβ, β > 0, (8.1)

where C+ = {z ∈ C : z = α+ iβ, β > 0}. These functions have Fourier transforms
of the form

f̂z(λ) = e
−β|λ|+iαλ, λ ∈ R, z = α+ iβ, β > 0. (8.2)

In the following lemma we denote by R↓+ the set R+ \{0} arranged in decreasing
order. The symbol R↑+ stands for the set R+ \ {0} arranged in increasing order.
Lemma 8.1. The following assertions hold for {fz; z ∈ C+}:
(i) the map

Φ: C+ → L1(R), Φ(z) = fz, z ∈ C+, (8.3)

from the open half-plane C+ to the Banach algebra L1(R) is continuous, and

‖Φ(z)‖ = 1, z ∈ C+, (8.4)

(ii) Φ(z1+z2) = Φ(z1)∗Φ(z2) for all z1, z2 ∈ C+ (that is, Φ is a homomorphism
from the semigroup C+ ⊂ C to the algebra L1(R)),
(iii) the net (fiβ), β ∈ R↓+, is a b. a. i. in L1(R),
(iv) for any α ∈ R the net (fα+iβ), β ∈ R↑+, is an α-net in L1(R).

Proof. It is obvious that Φ is continuous.
Let us note that every fz, z = α+ iβ ∈ C+, can be written as

fz(t) = fiβ(t+ α), t ∈ R,

whence ‖fz‖ = ‖fiβ‖. The fiβ, β > 0, are positive functions, whence ‖fz‖ =
‖fiβ‖ =

∣∣f̂iβ(0)∣∣ = 1. Therefore, (8.4) holds.
Assertion (ii) follows from (8.2) and the equalities

f̂z1+z2(λ) = f̂z1(λ)f̂z2(λ), λ ∈ R, z1, z2 ∈ C+.

A simple verification shows that assertions (iii) and (iv) follow from the defini-
tions of b. a. i. and γ-nets (see Definitions 4.1, 4.4 and 4.6).
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Lemma 8.2. Let (X, T ) be a Banach L1(R)-module, and let Xc = X and x ∈ X.
The inclusion

Λ(x, T ) ⊂ R+ (8.5)

holds if and only if the function

ϕ : R→ X, ϕ(t) = T (t)x, t ∈ R, (8.6)

has precisely one bounded holomorphic continuation ϕ̄ to the half-plane C+. If (8.5)
holds, then ϕ̄ has the form

ϕ(z) = T (fz)x, z ∈ C+. (8.7)

Proof. We denote by B the generator of the L1(R)-module (X, T ), that is, iB is the
generator of the strongly continuous group of operators

{
T (t); t ∈ R

}
. If Λ(X) is

compact, then B ∈ EndX, and there is a holomorphic continuation ϕ̄ defined by
the formula ϕ̄(z) = eizB , z ∈ C+ (in fact, it is an entire function). Hence, the
problem is reduced to that of finding conditions under which ϕ̄ is bounded.
Let Λ(x, T ) ∈ R+. First we assume that σ = Λ(x) is compact. We assume

without loss of generality that σ = Λ(X) is a compact subset of Ĝ (otherwise we
must consider the restriction of T to the spectral submodule X(σ)). Then ϕ̄(z) =
eizBx, z ∈ C, is a holomorphic extension of ϕ to C. We claim that ϕ̄ is bounded
in C+. Let us fix a z ∈ C+ and a sequence (εn) of positive numbers converging to
zero. Consider a sequence of functions fz,n, n � 1, belonging to L1(R) and defined
by the formula fz,n(t) = fz(t) exp

(
(β − it)εn

)
, t ∈ R. It is clear that f̂z,n(λ) =

exp(iλz) for λ ∈ (−εn,∞) and limn→∞ fz,n = fz (in L1(R)) for every z ∈ C+.
Theorem 3.8 implies that ψz(B) = exp(izB) = T (fz,n), n � 1, for ψz(λ) =
exp(λz), λ ∈ C, whence

eizB = T (fz) = lim
n→∞

T (fz,n). (8.8)

We thus obtain formula (8.7) and the estimates

‖eizB‖ = ‖T (fz)‖ � ‖fz‖ = 1, z ∈ C+.

If x is an arbitrary vector in Xc, then x = limn→∞ xn, where the Λ(xn), n � 1,
are compact sets. Combining these results with part (i) of Lemma 8.1, we obtain
that the sequence of holomorphic functions

ϕ̄n(z) = T (fz)xn, z ∈ C, n � 1,

converges uniformly in C+ to the holomorphic function ϕ̄ : C+ → X given by (8.7).
Hence, the desired continuation is unique, which completes the proof of necessity.
Now assume that ϕ has a bounded holomorphic extension ϕ̄: C+ → X, and

that Λ(x) ∩ R− �= ∅, where R− = R \ R+ = (−∞, 0). Then there is a non-zero
function ψ ∈ L1(R) such that supp ψ̂ is a compact set in R− and y = ψx is a
non-zero vector. Hence, ∆ = Λ(y) ⊆ supp ψ̂ ∩ Λ(x) is a compact set in R−.
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We can again (as in the proof of necessity) assume (by passing to the restriction
of T to X(∆)) that Λ(X) = ∆. The function ϕ1(t) = T (t)y, t ∈ R, (as well
as ϕ) has a holomorphic extension to C+, which coincides with ϕ̄1(z) = T (ψ)ϕ̄(z),
z ∈ C+. This extension in turn coincides with the function z �→ eizBy, z ∈ C+.
Lemma 3.6 implies that σ(B) = Λ(X) = ∆ ⊂ (−∞,−ε] for some ε < 0. Hence,
‖ exp(βB)‖ � C exp(−εβ/2) for all β > 0, where C � 1. Therefore,

‖y‖ = ‖ exp(βB) exp(−βB)y‖ � C exp
(
−εβ
2

)
‖ϕ̄1(iβ)‖, β > 0.

These estimates imply that ‖ϕ̄1(iβ)‖ � C exp(−εβ/2), β > 0, which contradicts
the fact that ϕ̄ is bounded in C+. This contradiction completes the proof.

Combining the proof of sufficiency in the proof of Lemma 8.2 with theorems of
Phragmén–Lindelöf type [35], we obtain the following corollary.

Corollary 8.3. If the function ϕ (see (8.6)) has (precisely) one holomorphic exten-
sion ϕ : C+ → X such that

lim
0<β→∞

ln ‖ϕ(iβ)‖
β

= 0, (8.9)

then Λ(x) ⊆ R+.
Corollary 8.4. If Λ(x) ⊆ R+, then T : R → EndX has precisely one bounded
holomorphic extension T : C+ → EndX, namely,

T (z) = T (α) exp(−βB), z = α+ iβ ∈ C+, (8.10)

where B is the generator of the L1(R)-module (X, T ) = (X, T )c. Moreover,
‖T (z)‖�1 for all z ∈ C+.
Since B is sectorial (see [36]), the operators exp(−βB), β > 0, are defined

as usual in terms of integrals of Dunford–Riesz type [11]. We can prove that the
extension of the function ϕ defined by (8.6) is holomorphic when (8.5) holds using
the fact that the restriction of B is sectorial.

Remark 8.5. Assumption (8.9) can be replaced by the assumption that

lim
n→∞

ln‖ϕ(iβn)‖
βn

= 0

for some sequence 0 < βn →∞, n � 1. However, in this case we must impose fur-
ther conditions on ϕ̄ to guarantee the uniqueness of ϕ̄. For example, it is sufficient
to assume that sup0<Imz�β ‖ϕ̄(z)‖ = Φ(β) <∞ for all β > 0.
Now let us return to the study of the Banach L1(R)-modules (Xi, Ti), i =

1, 2, and the Banach L1(R)-module of operators (U, T0) =
(
U(X1, X2), T0

)
. Our

assumptions imply that U ⊆ U0,s. Hence, anyA ∈ U is a strong limit of the sequence
of operators An = T0(fn)A, n � 1, where (fn) is any b. a. i. of L1(R). If the
supp f̂n, n � 1, are compact sets, then so are the Λ(An, T0), n � 1. This enables
us to repeat almost verbatim the proof of Lemma 8.2 for the L1(R)-module (U, T0).
One need only observe that the operator-valued function holomorphic (on C+) in
the strong operator topology which was obtained in this proof is holomorphic in the
uniform operator topology as well. In this way we obtain the following theorem.
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Theorem 8.6. C ∈ (U, T0) is causal if and only if the function

ϕC : R→ U, ϕC(t) = T0(t)C = T2(t)CT1(−t), t ∈ R,

has precisely one bounded holomorphic continuation ϕ̄C : C+ → U. If C ∈
Caus(X1, X2), then ϕ̄C is given by the formula

ϕ̄C(z) = T0(fz)C, z ∈ C+, (8.11)

and T0(fz)C ∈ Caus(X1, X2) for all z ∈ C+.

Corollary 8.7. An operator C is causal if and only if ϕC has a holomorphic
continuation to C+ such that one of the following conditions holds:

(i) lim0<β→∞
1
β
ln‖T0(fiβ)C‖ = 0,

(ii) sup0<Im z�β
∥∥T0(fz)C∥∥ = M(β) < ∞ for all β > 0 and there is a sequence

0 < βn →∞, n � 1, such that limn→∞ 1
βn
ln
∥∥T0(fiβn)C∥∥ = 0.

Theorem 8.8. Let A ∈ Caus(X1, X2). The following assertions are equivalent:
(i) A is causally invertible,

(ii) A is invertible, and the assumptions of Theorem 8.6 hold for C = A−1 ,

(iii) A is invertible, and one of the conditions in Corollary8.7 holds for C=A−1.

This follows from Theorem 8.6 and Corollary 8.7 applied to C = A−1 ∈
Hom(X2, X1). It need only be noted that in this case we use the representation
of T−10 given in Definition 7.9.

Remark 8.9. Let (Xi, Ti) = (Xi, Ti)c, i = 1, 2, 3, be three Banach L1(R)-modules.
Consider the representations T0, T

′
0 and T

′′
0 introduced in Lemma 7.6 and two

causal operators A ∈ Caus(X1, X2) and B ∈ Caus(X2, X3). By Lemma 7.6,
C = BA is also causal, that is, C ∈ Caus(X1, X3). Theorem 8.6 implies that the
functions ϕA(t) = T0(t)A, ϕB(t) = T

′
0(t)B and ϕC (t) = T

′′
0 (t)C have holomorphic

continuations ϕ̄A, ϕ̄B and ϕ̄C to the half-plane C+ (see formula (8.11)). Since
ϕC(t) = ϕB(t)ϕA(t) for all t ∈ R, ϕ̄C and ϕ̄Bϕ̄A are two bounded holomorphic
continuations of ϕC to C+. Then uniqueness of continuation implies that

ϕ̄C (z) = ϕ̄B(z) ϕ̄A(z), z ∈ C+. (8.12)

Lemma 8.10. Let A ∈ Caus(X1, X2) be causally invertible. Then the T0(fz)(A) =
ϕ̄A(z), z ∈ C+, are causally invertible, and

(
T0(fz)A

)−1
= T−10 (fz)A

−1, z ∈ C+. (8.13)

This follows from Remark 8.9. In this case X3 = X1, C = I, B = A
−1,

T ′0 = T
−1
0 and T ′′0 (t)L = T1(t)LT1(−t), t ∈ R, L ∈ EndX1. Formula (8.13)

follows from (8.12).



Causal operators and their spectral properties 475

Corollary 8.11. If X1 = X2 = X and T1 = T2 = T , then

T0(fz)(AB) =
(
T0(fz)A

)(
T0(fz)B

)
for every T0(fz), z ∈ C+, for all A,B ∈ CausX, that is, the T0(fz), z ∈ C+, are
homomorphisms of the algebra CausX that preserve the identity element.

Now let G = T, let (X, T ) be a Banach L1(T)-module, let Ĝ 	 Z and let S = Z+.
In what follows we assume that Xc = X. Hence, the functions

ϕx : T→ X, x ∈ X, ϕx(θ) = T (θ)x, θ ∈ T,

are continuous, and we can consider their Fourier series

ϕx ∼
∑
n∈Z
θnPnx, θ ∈ T, x ∈ X, (8.14)

where {Pn, n ∈ Z} is a bounded sequence of projectors.
We state below several assertions similar to 8.2, 8.6, 8.8 and 8.10. We omit the

proofs as they are simple and similar to those of the assertions cited (corresponding
to the representations of the group G = R). It is possible to reduce these to results
obtained above by considering the (periodic) representation T (t) = T (eit), t ∈ R,
T : R → EndX (X is regarded as an L1(R)-module). In this case Λ(X, T ) =
Λ(X, T ) ⊆ Z.

Lemma 8.12. Λ(x, T ) ⊆ Z+ for x ∈ X if and only if the function ϕx given
by (8.14) has a holomorphic continuation ϕ̄x to the disc D =

{
z ∈ C : |z| � 1

}
.

If Λ(x, T ) ⊆ Z+, then this holomorphic continuation is given by

ϕ̄x(z) =
∑
n�0
znPnx = T (gz)x, |z| < 1,

where gz ∈ L1(T) is defined by the formula

gz(θ) =
1− z2

(1− zθ)(1 − zθ̄ )
, θ ∈ T, |z| < 1. (8.15)

Consider the Banach L1(T)-modules (Xi, Ti), i = 1, 2, and the Banach L1(T)-
module (U, T0) =

(
U(X1, X2), T0

)
. We assume that the Ti, i = 1, 2, are strongly

continuous.

Theorem 8.13. C ∈ (U, T0) is causal if and only if the function

ϕC : T→ U, ϕC (θ) = T0(θ)C = T2(θ)CT1(θ
−1), θ ∈ T,

has a holomorphic extension ϕ̄C : D→ U. If C ∈ Caus(X1, X2), then ϕ̄C is given
by ϕ̄C(z) = T0(gz)C, z ∈ D, where gz is defined by formula (8.15), and T0(gz)C ∈
Caus(X1, X2) for all z ∈ D.
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Theorem 8.14. LetA∈Caus(X1, X2).The following two conditions are equivalent:
(i) A is causally invertible,
(ii) the function ψA−1 : T→ Hom(X2, X1), ψA−1(θ) = T1(θ)A−1T1(θ), θ ∈ T,

has a holomorphic extension to D.

Lemma 8.15. Let A ∈ Caus(X1, X2) be causally invertible. Then the T0(gz)A =
ϕ̄A(z), z ∈ D, are invertible operators, and(

T0(gz)A
)−1
= T−10 (gz)A

−1, z ∈ D. (8.16)

Corollary 8.16. The T0(gz) : CausX → CausX, z ∈ D, are homomorphisms of
the Banach algebra (CausX, T0), and ‖T0(gz)‖ � 1 for all z ∈ D.
One of the main results stated in this section is the theorem on spectral com-

ponents of causal operators stated below. We know of no close analogues of this
theorem, even for the causal operators considered in [1]–[6].
In what follows we consider a Banach L1(G)-module (X, T ). We assume that T

is strongly continuous and G ∈ {R,T}. A spectral component of an element a of the
Banach algebra B is defined to be a non-empty closed subset σ1 of the spectrum σ(a)
of a such that σ2 = σ(a) \ σ1 is a non-empty closed set and σ1 ∩ σ2 = ∅, that is, σ1
is both open and closed in the topology on σ(a) induced from C.

Theorem 8.17. Let A ∈ CausX be a causal operator belonging to U0,u ∩
Erg0(U, T0). Then σCaus(A) ⊇ σ(A0), where A0 =M(A), and every spectral com-
ponent of σCaus(A) contains at least one spectral component of σ(A0) = σCaus(A0).

Proof. Let σ0 be a spectral component of σCaus(A), that is, σCaus(A) = σ0 ∪ σ1,
where σ̄1 = σ1 and σ0∩σ1 = ∅. We denote by P0 the Riesz projector corresponding
to σ0 (see formula (7.4), where Γ is a contour that encircles σ0 and separates σ0
from σ1).
Assuming for definiteness that G = R, we consider the family of homomorphisms

T0(fiβ) ∈ End(CausX) for β > 0 (see Corollary 8.11) and the family of operators
Aβ = T0(fiβ)A, β > 0. Since each of the T0(fiβ) is a homomorphism of the Banach
algebra, we have σCaus(Aβ) ⊆ σCaus(A), which yields the corresponding partition
of the causal spectrum of Aβ :

σCaus(Aβ) = σ0,β ∪ σ1,β, β > 0, (8.17)

where σi,β = σi ∩ σCaus(Aβ), i = 0, 1. Hence, the contour Γ (see formula (7.4))
encircles σ0,β and separates σ0,β from σ1,β. Making T0(fiβ) act on both sides of
formula (7.4), we obtain the formula

Pβ = T0(fiβ)P0 =
1

2πi

∫
Γ

(Aβ − λI)−1 dλ

for the Riesz projector Pβ, β > 0, corresponding to the spectral component σ0,β.
Now let us use assertions (iii) and (iv) of Lemma 8.1. Since A ∈ U0,u and (fiβ),

β ∈ R↓+, is a b. a. p. in L1(R), we have limβ→0 T0(fiβ)A = A (in this proof all
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limits are understood in the sense of the uniform operator topology). Hence,

P0 = limβ→0 Pβ. Since A ∈ Erg0(U, T0) and (fiβ), β ∈ R
↑
+, is a 0-net, we have

limβ→∞ T0(fiβ)A = A0 =M(A). Hence, the following limit exists:

lim
β→∞

Pβ = lim
β→∞

T0(fiβ)P0 =
1

2πi

∫
Γ

(A0 − λI)−1 dλ = P∞.

Let us note that P∞ is the Riesz projector corresponding to the spectral set σ0,∞
occurring in the partition σCaus(A0) = σ(A0) = σ0,∞ ∪ σ1,∞, σ0,∞ = σ0 ∩ σ(A0),
σ1,∞ = σ1 ∩ σ(A0), as follows from the inclusion σ(A0) ⊆ σCaus(A) (see Theo-
rem 7.13).

Hence, {Pβ}, β ∈ [0,∞] = R+, is a family of projectors defined on the Aleksan-
drov one-point compactification R+ of R+ and continuous in the operator norm.
Since this family is continuous, P∞ is different from the zero operator and from the
identity operator. Hence, σ0,∞ is the spectral component of σ(A0) contained in σ0.
In the case when G = T we use the family of homomorphisms T0(giα), α ∈ (0, 1)

(see formula (8.15)) and Assertions 8.12–8.16.

Corollary 8.18. If σ0 is a finite set and the Riesz projector P0 is finite-
dimensional, then the spectral component σ0 lies in the spectrum of A0 and the
dimensions of the images of the Pβ, β ∈ R+, coincide.

Corollary 8.19. If A ∈ UC(X), then σCaus(A) is a connected set containing 0.

Proof. This corollary is obvious under the assumptions of the theorem. However,
it also holds under certain very weak restrictions imposed on the uniformly causal
operator. The inclusion 0 ∈ σCaus(A) follows immediately from Corollary 7.7. We
prove by contradiction that the set under consideration is connected by applying
Corollary 7.7 to the restriction of A to the image of the corresponding Riesz
projector.

Corollary 8.20. The number of connected components of σCaus(A) does not exceed
the number of connected components of σ(A0).

Corollary 8.21. If A is a compact operator, then σCaus(A) = σ(A) = σ(A0).

In all these corollaries (with the exception of Corollary 8.19) it is assumed that
the assumptions of Theorem 8.17 hold for A.
We now state several corollaries concerning the causal operators considered in

the examples given in § 6. We keep to the notation used there.
Let X1 = X2 = X and E1 = E2, and let Ω1 = Ω2 = Ω and E1n = E2n = En,

n � 1 (see Examples 6.10 and 2.9). Let A =
∑
n�0An,

∑
n�0 ‖An‖ < ∞, be a

causal operator belonging to EndX. Since its diagonals are absolutely integrable,
A belongs to U0,u. Since 0 is an isolated point of Λ(A,U0) ⊆ Z+, we have A ∈
Erg0(U, U0).

Corollary 8.22. ⋃
i∈Ω
σ(A0i ) ⊆ σCaus(A),
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where A0i is the restriction of Aii to Xi = ImEi = EiX. Moreover, every spectral
component of σCaus(A) contains a spectral component of A0 and a spectral com-
ponent of one of the A0i , i ∈ Ω. If the A0i , i ∈ Ω, are zero operators (that is,
A0 = 0), then 0 ∈ σCaus(A) and σCaus(A) is a connected set.
In the next corollary we use the notation of Examples 2.10 and 6.11, where

X1 = X2 = X, G = R (whence Ω ⊆ R).
Corollary 8.23. Let B ∈ EndLp, p ∈ [1,∞], be the operator defined by for-
mula (6.4) and assume that it is causal with respect to the representation V0 and
the semigroup R+ (that is, (6.12) holds). Then

(i) σCaus(B) is a connected set and σ(B) ⊇
⋃
ω∈Ω σ

(
A0(ω)

)
= ∆0 if Ω is a

connected set and A0 is a continuous function,
(ii) σCaus(B) = ∆0 if Ω is a compact set, p �=∞ and A0 has only finitely many

discontinuities of the first kind.

Now consider Example 6.12 with G ∈ {R,T} and Y1 = Y2. Assume that the
operator is causal with respect to the representation S0 and the semigroup R+
(Z+), and assume that the function µ is almost periodic, that is, it has a Fourier
series

µ(t) ∼
∑
j�0
µje

itλj , t ∈ R, λj � 0

(µ(θ) ∼
∑
j∈Z+ µjθ

j , θ ∈ T). Under these assumptions we have B ∈ U0,u ∩
Erg0(U, S0). Hence, Theorem 8.17 is applicable to B. In this case M(B) = B0,
where (B0x)(g) =

∫
G
µ0(ds)x(g + s), x ∈ Lp.

Corollary 8.24. If µ0 is the sum of two measures one of which is absolutely
continuous and the other discrete, then

σCaus(B) ⊇ σ(B0) =
⋃
γ∈Ĝ

σ
(
µ̂0(γ)

)

and σCaus(B) is a connected set when G = R.

§ 9. Operators with two-point Bohr spectrum
Let us return to the study of the Banach L1(G)-modules (Xi, Ti), i = 1, 2, and

the Banach L1(G)-module U = U(X1, X2) in Hom(X1, X2).

Definition 9.1. An A ∈ U is called an operator with two-point Bohr spectrum
(with respect to the representation T0) if Λ(A, T0) = {γ1, γ2} is a two-point subset
of Ĝ. If Λ(A, T0) = {γ0} is a one-point set and γ0 �= 0, then A will be called a
circular operator or an abstract weighted shift operator.

Remark 9.2. Let A ∈ U be an operator with two-point spectrum Λ(A, T0) =
{γ1, γ2} ⊂ Ĝ. Consider functions fi, i = 1, 2, belonging to L1(G) and such that
f̂i = 1 in some neighbourhood of γi, i = 1, 2, γ1 /∈ supp f̂2 and γ2 /∈ supp f̂1.
Assertions (iii) and (v) of Lemma 3.3 imply that

A = A1 +A2, (9.1)
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where Ai = T0(fi)A and Λ(Ai, T0) = {γi}, i = 1, 2. Therefore (see Remark 4.16),
we have

T0(g)Ai = T2(g)AiT1(g) = γi(g)Ai, i = 1, 2, g ∈ G,

that is, each Ai, i = 1, 2, has a one-point Beurling spectrum. Hence, the Ai,
i = 1, 2, are circular operators (if γi �= 0) that are eigenvectors of the L1(G)-
module (U, T0). The equalities

T0(g)A = γ1(g)A1 + γ2(g)A2, g ∈ G, (9.2)

imply that A (regarded as an element of the L1(G)-module (U, T0); see Def-
inition 4.11) is almost periodic. We obtain from (9.2) that the Bohr spec-
trum Λb(A, T0) of A coincides with its Beurling spectrum Λb(A, T0) = {γ1, γ2},
which justifies the terminology in Definition 9.1.

Here are some examples of operators with two-point Bohr spectrum.

Example 9.3. Let X1 and X2 be the Banach spaces considered in Example 6.10.
Any A ∈ Hom(X1, X2) = U whose matrix is bidiagonal is an operator with a
two-point Bohr spectrum contained in Ω2 − Ω1 ⊆ Z. The causal operators in U
whose matrices are lower-triangular with only finitely many non-zero diagonals
can be regarded as operators with two-point Bohr spectrum with respect to a
slightly altered representation obtained by “lumping together” the partitions of the
identities in X1 and X2 (this approach was described in detail in [29]).

Example 9.4. Let Xi, i = 1, 2, be the Banach spaces considered in Example 6.12.
The operator B ∈ U defined by the formula

(Bx)(g) =
∑
j=1,2

(
Cjγj(g)x(g) +

∫
G

γi(g)Aj(g − s)x(s) ds
)
,

where γj ∈ Ĝ, Cj ∈ Hom(Y1, Y2) and Aj ∈ L1
(
G,Hom(Y1, Y2)

)
, j = 1, 2, has

the two-point Bohr spectrum Λb(B, S0) = {γ1, γ2} with respect to S0.
Example 9.5. Let X1 and X2 be the Banach spaces considered in Example 6.11

with Ω = Ĝ. The difference operator A ∈ Hom(X1, X2) defined by the formula

(Ax)(γ) = U1(γ)x(γ − γ1) + U2(γ)x(γ − γ2), x ∈ X1, γ ∈ Ĝ,

where Ui ∈ Cb
(
Ĝ,Hom(Y1, Y2)

)
and γi ∈ Ĝ, i = 1, 2, has the two-point Bohr

spectrum Λb(A) = Λb(A, V0) = {γ1, γ2}. In particular, if G = T, then the difference
operator D ∈ EndX, X = Lp(Z, Y ) = lp(Z, Y ), p ∈ [1,∞], defined by the formula

(Dx)(n) = x(n)− U(n)x(n− 1), n ∈ Z, x ∈ lp(Z, Y ), (9.3)

where U ∈ l∞(Z,EndY ), has the two-point Bohr spectrum Λb(D, V0) = {0, 1} ⊂
Z 	 T. A = I − D is a weighted shift operator (circular operator), whose spec-
tral properties play an important role in the study of abstract parabolic operators
(see [37], [38]).
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Mlak [39] studied the properties of circular operators acting on a Hilbert spaceH:
an A ∈ EndH was said to be circular if

U(t)A = exp(iαt)AU(t), t ∈ R,

for some group of unitary operators U(t), t ∈ R, belonging to EndH and some
α ∈ R. It is clear that Λ(A,U0) = {α}, that is, A is a circular operator in the sense
of Definition 9.1 (if α �= 0).
If A is a circular operator belonging to Ua = Ua(X) and Λ(A, T0) = {γ0} ⊂ Ĝ,

then the A − λI, λ ∈ C \ {0}, are operators with the two-point Bohr spectrum
Λ(A− λI, T0) = {0, γ0} ⊂ Ĝ. Hence, we have to consider operators with two-point
Bohr spectrum when using the resolvents of circular operators.
Let A ∈

(
U(X1, X2), T0

)
and Λ(A, T0) = {γ1, γ2}. If γ1 = 0, then A is causal (by

Definition 6.3) with respect to every semigroup S containing γ2. In the results
stated below we do not assume that A is a causal operator. However, these
results can be of use in the study of causal operators with two-point Bohr spectrum.
We shall study operators with two-point Bohr spectrum using the spectral theory

of ordered pairs of linear operators.
Consider an ordered pair (A1, A2) of operators belonging to the Banach space

Hom(X1, X2), where X1 and X2 are complex Banach spaces. Let us recall some
definitions and results in the spectral theory of ordered pairs of operators follow-
ing [40], § 6, where one can find many references concerning the problems considered
in this paper.

Definition 9.6. The resolvent set �(A1, A2) of the pair (A1, A2) is defined to be the
set of all λ ∈ C for which the operator A1 − λA2 ∈ Hom(X1, X2) has a continuous
inverse. The set σ(A1, A2) = C \ �(A1, A2) is called the spectrum of this pair.
The operator-valued function R = R( · ;A1, A2) : �(A1, A2) → Hom(X1, X2),

R(λ) = (A1 − λA2)−1, λ ∈ �(A1, A2), is called the resolvent of (A1, A2). The
functions Rl = Rl( · ;A1, A2) : �(A1, A2) → EndX1, R(λ) = (A1 − λA2)−1A2,
λ ∈ �(A1, A2), and Rr = Rr( · ;A1, A2) : �(A1, A2) → EndX2, R(λ) =
A2(A1− λA2)−1, λ ∈ �(A1, A2), are pseudoresolvents (they satisfy Hilbert’s resol-
vent identity). They are called the left and right pseudoresolvents of (A1, A2).

Definition 9.7. The subset σ̃(A1, A2) of the extended complex plane C̃ = C∪{∞}
which coincides with σ(A1, A2) if the function R( · ;A1, A2) has a holomorphic con-
tinuation to ∞ and lim|λ|→∞R(λ;A1, A2) = 0 (otherwise σ̃(A1, A2) = σ(A1, A2) ∪
{∞}), will be called the extended spectrum of (A1, A2). The set �̃(A1, A2) =
C̃ \ σ̃(A1, A2) will be called the extended resolvent set of (A1, A2).
Theorem 9.8 [40]. The following formula holds for the extended spectra of (A1, A2)
and (A2, A1):

σ̃(A2, A1) =
{
1/λ : λ ∈ σ̃(A1, A2)

}
.

Corollary 9.9. ∞ /∈ σ̃(A1, A2) if and only if A2 has a continuous inverse.
Definition 9.10. An ordered pair of closed subspaces (X01 , X

0
2), where

X01 ⊂ X1 and X
0
2 ⊂ X2, is said to be invariant for the pair (A1, A2) if

A1X
0
1 ⊂ X02 and A2X01 ⊂ X02 .
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Definition 9.11. Let X1 = X
0
1 ⊕ X11 and X2 = X02 ⊕ X12 be direct sums of

closed subspaces, where (X01 , X
0
2 ) and (X

1
1 , X

1
2 ) are invariant pairs of subspaces

for (A1, A2). Let A
(k)
i : X

k
1 → Xk2 , i = 1, 2, k = 0, 1, be the restrictions of Ai,

i = 1, 2, to Xk1 , k = 0, 1. Then we write

(A1, A2) =
(
A
(0)
1 , A

(0)
2

)
⊕
(
A
(1)
1 , A

(1)
2

)
(9.4)

and say that (A1, A2) admits the representation (9.4) with respect to the decom-

position of X1 and X2 under consideration and is the direct sum of
(
A
(0)
1 , A

(0)
2

)
and

(
A
(1)
1 , A

(1)
2

)
(the parts of A1 and A2). In this case we shall also write

Ai = A
(0)
i ⊕ A

(1)
i , i = 1, 2 (the operators A1 and A2 are the direct sums of

their parts).

Again consider an operator A ∈ U(X1, X2) with two-point Bohr spectrum
{γ1, γ2} ⊂ Ĝ. By Remark 9.2, formula (9.1) holds for A with Λ(Ai, T0) = {γi},
i = 1, 2, and

T0(g)Ai = γi(g)Ai, i = 1, 2, g ∈ G. (9.5)

From now on we shall assume that the following two assumptions hold.

Assumption 9.12. For the character γ0 = γ2γ
−1
1 ∈ Ĝ the set {γ0(g); g ∈ G}

is dense in T ⊂ C (here and below we use the multiplicative form for the binary
operation in Ĝ).

Assumption 9.13. The operator A has a (continuous) inverse B = A−1

in
(
U(X2, X1), T

−1
0

)
.

Let us note that Assumption 9.12 holds if G is a connected group (and γ0 is a
non-zero character).

Lemma 9.14. σ(A1, A2) ∩ T = ∅.

Proof. It follows from (9.2) that

T0(g)A = T2(g)AT1(−g) = γ1(g)
(
A1 − γ0(g)A2

)
, g ∈ G.

Since A is an invertible operator, the γ0(g), g ∈ G, are contained in the resolvent
set �(A1, A2) of (A1, A2) in U(X1, X2). Since the set σ(A1, A2) is closed, Assump-
tion 9.12 implies that T ⊂ �(A1, A2). The lemma is proved.

Corollary 9.15. The set σ̃(A1, A2) can be represented in the form

σ̃(A1, A2) = σ0 ∪ σ1, (9.6)

where σ0 = {λ ∈ σ(A1, A2); |λ| < 1} and σ1 ⊆ {λ ∈ σ(A1, A2); |λ| > 1} ∪ {∞}.

Corollary 9.16. The set σ(A1, A2) is invariant under rotations about zero in C.

This implies that the usual spectrum of every circular operator belonging
to Ua(X) is invariant under rotation.
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Integrating over the circle T, regarded as a positively oriented closed contour
encircling σ0, we obtain the formulae

P0 = −
1

2πi

∫
T

Rl(λ;A1, A2) dλ = −
1

2πi

∫
T

(A1 − λA2)−1A2 dλ, (9.7)

Q0 = −
1

2πi

∫
T

Rr(λ;A1, A2) dλ = −
1

2πi

∫
T

A2(A1 − λA2)−1 dλ (9.8)

for the projectors P0, P1 = I − P0 ∈ EndX1 and Q0, Q1 = I −Q0 ∈ EndX2.
Consider the closed subspaces (images of projectors)

X01 = ImP0 = P0X1, X11 = ImP1, X02 = ImQ0, X12 = ImP1.

We have

X1 = X
0
1 ⊕X11 , X2 = X

0
2 ⊕X12 . (9.9)

Formulae (9.7) and (9.8) imply that

A1P0 = Q0A1, A2P0 = Q0A2, (9.10)

whence (X01 , X
0
2 ) and (X

1
1 , X

1
2) are invariant for (A1, A2). Thus

(A1, A2) =
(
A
(0)
1 , A

(0)
2

)
⊕
(
A
(1)
1 , A

(1)
2

)
(see formula (9.4)), where A

(0)
1 , A

(0)
2 ∈ Hom(X01 , X02 ) and A

(1)
1 , A

(1)
2 ∈ Hom(X11 , X12)

are the restrictions of A1 and A2 to X
0
1 and X

1
1 .

Lemma 9.17. The projectors P0 and Q0 commute with the operators of the rep-
resentations T1 and T2, respectively.

Proof. We have

T1(g)Rl(λ;A1, A2)T1(−g) = T1(g)(A1 − λA2)−1T2(−g)
(
T0(g)A2

)
=
(
γ1(g)A1 − λγ2(g)A2

)−1
γ2(g)A2 = γ0(g)Rl

(
γ0(g)λ;A1, A2

)
,

where λ ∈ T and g ∈ G. Formula (9.7) implies that T1(g)P0T1(−g) = P0 for
all g ∈ G. We likewise establish that Q0 commutes with the operators of the
representation T2.

Lemma 9.17 implies that the Xki are invariant under Ti, i = 1, 2, k = 0, 1 (respec-
tively). This enables us to consider the following representations on Hom(Xk1 , X

k
2 ):

T k0 (g)Ck = T
0
2 (g)CkT

0
1 (−g), Ck ∈ Hom(Xk1 , Xk2 ), k = 0, 1, (9.11)

where T ki is the restriction of Ti to X
k
i , k = 0, 1, i = 1, 2.
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Theorem 9.18. Let Assumption 9.13 hold for A ∈ U(X1, X2). Then
(i) the operator A−1 ∈ U(X2, X1) is almost periodic with respect to T−10 : G →

EndU(X2, X1) and its Bohr spectrum Λb(A
−1, T−10 ) is contained in {γ−12 γn0 ;

n � 0} ∪ {γ−11 γn0 ; n � 0},
(ii) σ

(
A
(0)
1 , A

(0)
2

)
= σ̃
(
A
(0)
1 , A

(0)
2

)
= σ0, the operator A

(0)
2 ∈ Hom(X01 , X02)

is invertible, σ
((
A
(0)
2

)−1
A
(0)
1

)
= σ0

(
hence, the spectral radii of

(
A
(0)
2

)−1
A
(0)
1 ∈

EndX01 and A
(0)
1

(
A
(0)
2

)−1 ∈ EndX02 are such that r
((
A
(0)
2

)−1
A
(0)
1

)
=

r
(
A
(0)
1

(
A
(0)
2

)−1)
< 1
)
, and σ

(
A
(0)
1

(
A
(0)
2

)−1) \ {0} = σ0 \ {0},
(iii) σ̃

(
A
(1)
1 , A

(1)
2

)
= σ1, the operator A

(1)
1 ∈ Hom(X11 , X12 ) is invertible, and

σ
((
A
(1)
1

)−1
A
(1)
2

)
= σ
(
A
(1)
2

(
A
(1)
1

)−1)
= {λ−1; λ ∈ σ1}

(
whence r

((
A
(1)
1

)−1
A
(1)
2

)
=

r
(
A
(1)
2

(
A
(1)
1

)−1)
< 1
)
,

(iv) Λb
(
A
(0)
1 , T

0
0

)
∪ Λb
(
A
(1)
1 , T

1
0

)
= {γ1}, Λb

(
A
(0)
2 , T

0
0

)
∪ Λb
(
A
(1)
2 , T

1
0

)
= {γ2},

(v) with respect to the decomposition (9.9) A−1 is a direct sum A−1 = Ã−11 ⊕Ã−12 ,
where Ã1 = A

(0)
1 +A

(0)
2 , Ã2 = A

(1)
1 + A

(1)
2 , and

Ã−11 =
(
A
(0)
2

)−1∑
n�0
(−1)n

(
A
(0)
1

(
A
(0)
2

)−1)n
=
∑
n�0
(−1)n

((
A
(0)
2

)−1
A
(0)
1

)n(
A
(0)
2

)−1
, (9.12)

Ã−12 =
(
A
(1)
1

)−1∑
n�0
(−1)n

(
A
(1)
2

(
A
(1)
1

)−1)n
=
∑
n�0
(−1)n

((
A
(1)
1

)−1
A
(1)
2

)n(
A
(1)
1

)−1
. (9.13)

Proof. The equalities in assertions (ii) and (iii) were established in [40], Theo-
rem 6.3. Using the inclusions

σ0 ∪ {1/λ; λ ∈ σ1} ⊂
{
λ ∈ C : |λ| < 1

}
,

we obtain that A
(0)
2 and A

(1)
1 are invertible operators and the estimates (for spectral

radii) in (iii) hold.

We deduce (v) from (ii) and (iii) using the decomposition A = Ã1 ⊕ Ã2.
Assertion (iv) follows using the definitions of T 00 , T

1
0 and the equalities

Λb(Ai, T0)= {γi}, i = 1, 2.
To prove that A−1 is almost periodic with respect to T−10 , it is sufficient to

observe that the function ψ(g) = T−10 (g)A
−1 = T1(g)A

−1T2(−g), g ∈ G, is
almost periodic, since it is related to ϕ(g) = T0(g)A by the formula ψ(g) =
ϕ(g)−1, g ∈ G. Hence, Λb(A−1, T−10 ) ⊆ {γn1 γm2 ;m, nZ}. More detailed infor-
mation on the Bohr spectrum of A−1 can be obtained from the representation

A−1 = Ã−11 ⊕ Ã−12 and formulae (9.12), (9.13) using the representations T 00 , T
1
0

(see formula (9.11)) and their inverses (T 00 )
−1, (T 10 )

−1. For example, we obtain
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from (9.12) that

(
T 00
)−1
(g)
(
Ã1
)−1
=
∑
n�0
(−1)n

(
γ1γ

−1
2

)n
(g)γ−12 (g)

((
A
(0)
2

)−1
A
(0)
1

)n(
A
(0)
2

)−1
.

Hence, Λb
(
Ã−11 , (T

0
0 )
−1) ⊆ {γn−11 γn2 ; n � 0} = {γ−11 γn0 ; n � 0}.

We prove likewise that

Λb
(
Ã−12 , (T

1
0 )
−1) ⊆ {γ−n−12 γn1 ; n � 0} = {γ−12 γn0 ; n � 0}.

It remains to observe that T−10 A
−1 = (T 00 )

−1(g) Ã−11 ⊕ (T 10 )−1(g) Ã−12 .
Theorem 9.19. Let A ∈ U(X1, X2) be an operator with the two-point Bohr
spectrum Λb(A, T0) = {e0, γ0} ⊂ Ĝ, where e0 is the identity in Ĝ, and let Assump-
tion 9.13 hold. The operator A is causally invertible with respect to a semi-
group S containing γ0 if and only if the operator A1 is invertible and r(A2A

−1
1 ) =

r(A−11 A2) < 1.

Proof. Assertion (i) of Theorem 9.18 implies that A is causally invertible if and
only if Λb(A

−1, T−10 ) ⊂ {γn0 ; n � 0}. This inclusion implies that σ̃(A1, A2) = σ1.
By assertion (iii) of Theorem 9.18, this equality holds if and only if A1 is invertible
and r(A2A

−1
1 ) = r(A

−1
1 A2) < 1.

Theorem 9.18 can be used in the study of the structure of operators inverse
to operators belonging to certain classes. For example, for difference operators of
the form (9.3), this theorem implies that the family of evolutionary operators corre-
sponding to U is exponentially dichotomous if the operator D is invertible (see [37]
for more details).
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