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ABSTRACT

Estimates of the hydrological budget in the Walnut River Watershed (WRW; �5000 km2) of southern
Kansas were made with a parameterized subgrid-scale surface (PASS) model for the period 1996–2002.
With its subgrid-scale distribution scheme, the PASS model couples surface meteorological observations
with satellite remote sensing data to update root-zone available moisture and to simulate surface evapo-
transpiration rates at high resolution over extended areas. The PASS model is observationally driven,
making use of extensive parameterizations of surface properties and processes. Heterogeneities in surface
conditions are spatially resolved to an extent determined primarily by the satellite data pixel size. The
purpose of modeling the spatial and interannual variability of water budget components at the regional scale
is to evaluate the PASS model’s ability to bridge a large grid cell of a climate model with its subgrid-scale
variation. Modeled results indicate that annual total evapotranspiration at the WRW is about 66%–88% of
annual precipitation—reasonable values for southeastern Kansas—and that it varies spatially and tempo-
rally. Seasonal distribution of precipitation plays an important role in evapotranspiration estimates. Com-
parison of modeled runoff with stream gauge measurements demonstrated close agreement and verified the
accuracy of modeled evapotranspiration at the regional scale. In situ measurements of energy fluxes com-
pare favorably with the modeled values for corresponding grid cells, and measured surface soil moisture
corresponds with modeled root-zone available moisture in terms of temporal variability despite very het-
erogeneous surface conditions. With its ability to couple remote sensing data with surface meteorology data
and its computational efficiency, PASS is easily used for modeling surface hydrological components over an
extended region and in real time. Thus, it can fill a gap in evaluations of climate model output using limited
field observations.

1. Introduction

Key issues in meteorology, climatology, and resource
management deal with water in its various forms in the
global water cycle. To investigate the water and energy
budgets at various spatial and temporal scales, much
research has been conducted on land–atmosphere ex-
changes in the Global Energy and Water-Cycle Experi-
ment Continental-Scale International Project. Built on
detailed surface physical processes, the advanced Or-

egon State University Land Surface Model (Mahrt and
Ek 1984; Marht and Pan 1984; Pan and Mahrt 1987) was
implemented by Chen and Dudhia (2001) in the fifth-
generation Pennsylvania State University–National
Center for Atmospheric Research (NCAR) Mesoscale
Model (MM5) to describe land–atmosphere exchanges.
Because of relatively large errors in modeled precipi-
tation and unrealistic descriptions of land surface fea-
tures, numerical models like this are used mostly for
sensitivity studies, rather than for detailed investiga-
tions of water and energy budgets.

In recent decades, with the advancement of remote
sensing technology and data processing, retrieval of wa-
ter and energy fluxes from land surface models driven
by satellite and surface observations has been more suc-
cessful. For example, Anderson et al. (1997), Mecikal-
ski et al. (1999), and Anderson et al. (2005) detailed a
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method for evaluating fluxes of sensible and latent heat
at the land surface by using the Atmospheric Land Sur-
face Exchange Inverse (ALEXI) model. This model is
driven by Geostationary Operations Environmental
Satellite (GOES)-derived surface brightness tempera-
ture changes and solar insolation, advanced very high
resolution radiometer (AVHRR)-derived land cover
properties, and synoptic weather and radiosonde data.
The fluxes are computed at the end of a given day when
GOES observations of surface radiometric temperature
become available. Because the ALEXI model is driven
primarily by data that can be obtained from remote
sensing instruments, clear-sky condition, especially in
the morning, is very important for the daily energy
flux simulation. In addition, the assumption of a con-
stant evaporative fraction during the day in ALEXI
may not hold when weather changes during the day.
Furthermore, observations from synoptic weather and
radiosonde network are required for the atmospheric
correction and model input. However, intensive and
frequent radiosonde data are only available during ex-
pensive field experiments. Therefore, long-term as well
as near-real-time modeling of surface water and energy
fluxes at regional or large scale limit the model input to
routine observations, which should be easily obtainable
without lengthy processing.

In this study, our purpose is to address two major
questions that are important for the current continen-
tal-scale water cycle study: 1) Can regional- and large-
scale evapotranspiration, energy fluxes, and root-zone
soil moisture over heterogeneous land surfaces be
simulated accurately with routine surface and satellite
observations over multiyear time scales and in nearly
real time? 2) How can modeled evapotranspiration at
the regional scale be evaluated reasonably across mul-
tiple years? The parameterized subgrid-scale surface
flux (PASS) model, detailed in Song et al. (2000b), does
not rely heavily on daily satellite input. It is driven
primarily by routine, continuous surface meteorological
observations, requiring remote sensing composite nor-
malized-difference vegetation index (NDVI) values
only at biweekly intervals. Thus, the PASS model en-
ables the estimation of water and energy fluxes under
all possible weather conditions.

Root-zone available soil moisture plays a key role in
surface hydrological balances because it directly influ-
ences the surface evapotranspiration rate. Variations in
evapotranspiration and runoff into streams and rivers
cannot be fully assessed without knowledge of root-
zone available moisture. However, obtaining accurate
estimates of this quantity over large terrestrial areas
can be difficult, because large temporal and spatial vari-
ability results from the unevenness of precipitation and

the diversity of vegetation. Hirabayashi et al. (2001)
proposed a method for estimating root-zone moisture
content from surface soil moisture, which in turn is es-
timated by microwave remote sensing in the Global
Soil Wetness Project. However, values need to be cor-
rected for time lag and intensity of precipitation. Alter-
natively, the PASS model can be applied directly to
estimate spatial and temporal variations in both evapo-
transpiration rate and root-zone available moisture
(Song et al. 2000b).

To address the water cycle, the U.S. Department of
Energy (DOE) initiated a 3-yr pilot study in the Walnut
River Watershed (WRW), which encompasses an area
of about 5000 km

2
in southeastern Kansas. The White-

water Subbasin lies in the northwest region of the
WRW. Work at the Argonne National Laboratory, one
of five primary participants in the pilot study, included
simulation of root-zone available moisture content and
evapotranspiration in the WRW with the PASS model
over multiyear period. In contrast, most short-term
field experiments and modeling activities, such as the
First International Satellite Land Surface Climatology
Project (ISLSCP) Field Experiment (FIFE)-87 (Sellers
et al. 1988); Cooperative Atmosphere–Surface Ex-
change Study (CASES)-97 (LeMone et al. 2000; Song
et al. 2000b; Yates et al. 2001); Southern Great Plains
(SGP-97) Hydrological Experiment (French et al.
2001), International H2O Project (IHOP2002) (Weck-
werth et al. 2004); Soil Moisture Atmospheric Cou-
pling Experiment (SMACEX02; Anderson et al. 2003),
have concentrated on the summer growing season,
which lasts for only a few months, and at selected en-
vironmental conditions. Surface models verified with
data from intensive experiments might perform less
well in other seasons and during prolonged drought or
wet conditions. The Atmospheric Boundary Layer Ex-
periments (ABLE) site in southern Kansas, the first
long-term site supported by DOE for studies of re-
gional-scale water and energy budgets, has enabled the
current multiyear modeling study of the water and en-
ergy budgets. One goal for long-term modeling of sur-
face hydrological components at regional scales or at a
grid scale suitable for high-resolution global climate
models is to describe seasonal variations in surface hy-
drological variables accurately, even when the surface
is spatially very heterogeneous. Another goal is to re-
solve the subgrid-scale variability of precipitation, soil
moisture, and vegetation to the extent that biases are
not introduced by the scheme of aggregating to com-
putationally manageable grid cell sizes. To address
these goals and to aid in the study of the interannual
variability of key surface hydrological components, re-
search continues on the ability of the PASS model to
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simulate available soil moisture and evapotranspiration
in the WRW over the seven-year period of 1996–2002.

Field observations of soil moisture content are typi-
cally too limited to provide the spatial resolution and
coverage required to describe the spatial heterogeneity
of soil moisture adequately over extended areas. Song
et al. (1997) modeled the influence of heterogeneous
soil moisture on latent and sensible heat fluxes and
found that simulated regional-scale latent heat fluxes
tend to be higher and air temperatures lower under
uniform surface conditions than under spatially hetero-
geneous conditions. Pitman et al. (1993) demonstrated
that possible biases associated with the under represen-
tation of regional land surface heterogeneity within cli-
mate models might explain the propensity of climate
models to overestimate grid-cell evapotranspiration
and to underestimate runoff. This suggests that detailed
information on the spatial distribution of the surface
conditions appears to be necessary to simulate evapo-
transpiration accurately over extended areas. However,
estimating surface fluxes at resolution higher than that
of the climate model’s grid cell can be difficult, because
remote sensing data emphasize local land surface con-
ditions, while the surface fluxes can be strongly influ-
enced by surface–atmosphere interactions over sub-
stantially larger areas (Friedl 1996). The PASS model
overcomes these limitations by coupling NDVI from
satellite AVHRR data (at the climate model’s sub-
grid-scale resolution) with surface meteorological ob-
servations in the study region (at the climate model’s
grid-scale resolution) to infer surface temperature,
root-zone available moisture content, and evapotrans-
piration (at the climate model’s subgrid scale, which is
equivalent to the pixel resolution of the satellite used
here).

The PASS model couples spatially sparse yet con-
tinuous data from meteorological stations with tempo-
rally sparse yet spatially highly resolved satellite remote
sensing data to retrieve updated surface hydrological
components over extended areas. Heterogeneities in
surface conditions are spatially resolved to an extent
determined primarily by the satellite data pixel size.
Previous studies evaluated the model’s ability during a
relatively short intensive observation period (Song et
al. 2000a,b). The present study evaluated long-term
(multiyear) simulation of surface hydrological compo-
nents by PASS modeling with continuous input of data
from satellites, radars, and meteorological stations.

2. The PASS model

The original version of PASS model was developed
by Gao (1995) and was applied by Gao et al. (1998).

More recently, the model was improved by Song et al.
(2000a,b) and evaluated with observations from an in-
tensive field experiment. The PASS model uses a com-
putationally efficient algorithm for computing subgrid-
scale surface energy partitioning on the basis of an ana-
lytical solution to surface energy budget equations. An
efficient computing algorithm is needed for long-term
studies because of the large number of pixels associated
with the satellite, land use, and soil characteristics data.
A detailed description of the PASS model was provided
by Song et al. (2000a,b). Here, the approach is briefly
outlined, and additional requirements for long-term
simulation are described.

All variables in the model are described at two scales:
the regional scale of at least 100 km (a climate model’s
grid scale) and the satellite pixel scale (the climate
model’s subgrid scale). The regional-scale variables are
approximated by the average of the observations made
at the surface meteorological stations. Values of satel-
lite pixel-scale surface parameters, including roughness
length, surface albedo, surface conductance for water
vapor, and the ratio of soil heat flux to net radiation,
are estimated according to satellite-derived spectral in-
dices and land use classes. These relationships contain
empirical coefficients whose values have been derived
for midlatitude areas with surface vegetation domi-
nated by grasslands and agricultural crops. To account
for the feedback of locally influenced meteorological
conditions on the local atmosphere–surface exchange,
pixel-specific near-surface meteorological conditions
such as air temperature, vapor pressure, and wind
speed are adjusted from their corresponding values at
the regional scale according to local surface forcing as
described below.

a. Model inputs

For seasonal and long-term studies, variations in veg-
etative condition and precipitation distribution must be
considered. Thus, biweekly composite NDVI data and
daily radar-based precipitation are required, along with
regional incoming solar irradiance, surface air tempera-
ture, relative humidity, and wind speed observed con-
tinuously at surface meteorological stations in the area.
Also required for PASS modeling are land cover data
and available water capacity data from soil surveys.

b. Precalculation

Precalculation focuses on estimating pixel-specific
aerodynamic surface temperature and region-represen-
tative surface temperature, both of which are needed to
apply the distribution function for deriving air tempera-
ture at the pixel scale in the subsequent step. In the
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long-term surface hydrological study, aerodynamic sur-
face temperatures are estimated at each time step in
PASS with a second-order approximation involving the
energy budget equation (Song et al. 2000b) because
radiometric surface temperature is not available con-
tinuously from satellite observations and it also tends to
overestimate the aerodynamic temperature.

c. Subgrid-scale distribution

One of the distinct features of the PASS model is
spatial distribution of meteorological data per the
method of Seth et al. (1994). The regional meteorologi-
cal variables for wind speed, air temperature, and water
vapor pressure are considered as mean values that are
spatially distributed to individual pixels according to
the surface dynamic conditions and the strength of the
local vertical transfer at each time step. For example,
wind speed that corresponds to a cropland pixel with a
higher NDVI will be less than its regional mean value
because of momentum dissipation by a locally rougher
surface. Incoming solar irradiance at the regional scale
is important input for the PASS model, needed to ac-
count the effects of clouds on the long-term energy and
water budgets. The irradiance is distributed homoge-
neously at each pixel. Cloud patterns associated with
frequent midlatitude cyclone systems can be repre-
sented better by observed incoming solar irradiance.
The effects of short-lived cumulus clouds that pass over
the region can also be accounted for, though not at the
scale of individual pixels. For this long-term surface
hydrological study at the regional scale, regional-scale
contributions of pixel-scale fluxes were emphasized.

d. Surface conductance calculation

After the pixel-scale variables are estimated by using
the distribution function, surface conductance at each
pixel is calculated with pixel-specific vapor deficit and
relative root-zone available moisture content, along
with the most recent satellite NDVI data and photo-
synthetically active radiation (PAR). Examination of
the relationship between PAR and solar irradiance with
Surface Radiation Research Branch (SURFRAD) data
(www.srrb.noaa.gov/surfrad/) and ABLE data for the
year 2000 showed that the ratio of PAR to incident
solar irradiance varies from 0.45 to 0.49 at midday to 0.9
at sunrise and sunset over the years. As a first approxi-
mation, PAR is assumed to be equal to half of the
incident solar irradiance for each time step.

e. Energy fluxes

Latent heat flux for each pixel, estimated by using
bulk aerodynamic expression at each pixel, is depen-
dent on the difference between saturation vapor pres-

sure at the pixel-specific surface temperature and air
vapor pressure. Sensible heat flux is likewise estimated
by using bulk aerodynamic expression. The net radia-
tion is found from the radiation balance involving ob-
served incoming solar radiation, together with param-
eterized values of albedo, incoming longwave irradi-
ance, and outgoing longwave irradiance. Surface
ground heat flux is parameterized as function of net
radiation, NDVI, and solar zenith angle.

f. Updates to root-zone available moisture

The change in pixel-scale root-zone moisture content
due to water loss by evapotranspiration and recharge
by precipitation during each time step is computed for
the root zone. Root-zone water loss through gravity is
not considered. The updated values then become
model input in the next time step for iterative calcula-
tion. The amount of water loss through evapotranspi-
ration is integrated at each time step and summed at
each pixel for evaluation of basin-scale hydrological
budgets. Surface runoff is assumed to occur when the
PASS model estimate of root-zone moisture exceeds
the available moisture capacity. Groundwater recharge
was not estimated, though it would have been in a more
complex hydrology model. In addition, frozen soil is not
currently modeled in PASS, and radar-observed pre-
cipitation is all treated as rainfall. These assumptions
may limit the application of PASS model in unfrozen
regions in the winter and in regions with temperate
climate, such as the southern Great Plains.

Though the root-zone depth is a crucial variable, it is
quite difficult to estimate accurately, because it is de-
pendent on plant species and the stage of growth, which
are not identified well by the information available to
PASS. That is, only broad categories of vegetation are
identified, and only the general state of the vegetation
can be inferred on the basis of NDVI data from satel-
lites. The current version of PASS assumes that root
depth depends on land cover. The depth is set equal to
0.2 m for residential- and urban-related grassy areas,
0.6 m for cropland and rangeland, and 2 m for wood-
land. These values account for all-important land use
classes (Song et al. 2000a). The depths might be too
small to include the entire root zone of the vegetation,
but they do include most of the roots (e.g., Jackson et
al. 1996).

For water-covered surfaces, such as lakes and reser-
voirs, evaporation is equal to potential evaporation
with zero surface resistance and unlimited water sup-
ply. In most cases, evaporative loss is greater than pre-
cipitation over these surfaces; the deficit is taken from
runoff of the watershed to assume constant water sup-
ply.
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3. Site and data description

Located in southern Kansas, east of Wichita, the
WRW is a rectangular region having an area of about
5000 km2 within the Atmosphere Radiation Measure-
ment (ARM) Climate Research Facility (Fig. 1). The
WRW is representative of a global climate model’s grid
cell with heterogeneous land cover types. In addition to
the large terrain gradient shown in Fig. 1, annual rain-
fall in the WRW varies from 76 cm in the west to 86 cm
in the east, and average temperature varies from 0°C in
the winter to 26°C in the summer (www.kwo.org/
Org_People/walnut.htm). Land cover in the WRW is
primarily a mix of grassland and cropland, with the
cropland mostly in the western half of the basin. In
addition to a few small scattered towns, Wichita sub-
urbs expand into the western WRW. The Walnut River
is the major stream, and the Whitewater River in the
northwest is one of its tributaries. El Dorado Lake and
Winfield Lake are major reservoirs on the river system.
Surface water use for municipal, irrigation, recre-
ational, and industrial purposes accounts for 91% of the
water use in the basin (www.kwo.org/Org_People/
walnut.htm). The WRW is a quasi-closed basin ame-
nable to computing the components of the hydrological
budget, and it is a tight watershed with minimum leak-
age into the substrata (LeMone et al. 2000). Nested
within the northwest portion of the WRW is the 35 km
� 30 km Whitewater Watershed (WW). These domains
were selected for detailed observations and hydrologi-
cal studies because of information provided by previous
studies (LeMone et al. 2000).

a. Model input data

1) SATELLITE DATA

Simulations of evapotranspiration require descrip-
tions of the spatial and temporal variations in surface
vegetative conditions, especially those affecting bulk
canopy stomatal conductance. Satellite remote sensing
data can provide portions of the detailed information
needed to drive some of the surface model parameter-
izations used to describe surface conditions. In particu-
lar, NDVI derived from the AVHRR on environmental
satellites is a commonly used measure of surface green-
ness and associated surface properties. This study used
biweekly composite 1-km-resolution NDVI values pro-
cessed by the U.S. Geological Survey (USGS); the val-
ues of NDVI were adjusted with improved methods for
compensating for atmospheric effects to estimate sur-
face NDVI (DeFelice et al. 2002). Surface NDVI values
were also obtained for the Whitewater (WH) and Smi-
leyberg (SM) sites (Fig. 1) from measurements col-
lected with a five-band Landsat Compatible Cropscan
Multispectral Radiometer under high sun angles, taken
in five or six samples over an area 200 m � 200 m at and
around each site at biweekly intervals during the grow-
ing season.

The biweekly composite NDVI values derived from
the National Oceanic and Atmospheric Administration
(NOAA) AVHRR satellite represent values at each
1-km2 pixel, while surface-observed NDVI values,
which are shown as individual filled circles in Fig. 2,
represent local point measurements (covering less than

FIG. 1. Walnut River Watershed (WRW with outlet at Winfield) and Whitewater Watershed
(WW with outlet at Towanda): geographic locations, topographic variations, and field sites at
Whitewater and Smileyberg.

FEBRUARY 2006 S O N G E T A L . 207



10 m2) randomly selected in an area of 200 m � 200 m.
Because of surface heterogeneity, larger spatial varia-
tion is expected in locally measured NDVI values
within an area 200 m � 200 m. Differences between
NDVI derived from AVHRR and observed at the sur-
face can be attributed to 1) scale differences, because
surface measurements were taken at local points
around the Whitewater site, while values from the sat-
ellite represent average NDVI within an area 1 km2,
that includes agricultural areas encompassing the
Whitewater hayfield; 2) heterogeneity in surface condi-
tions due to both soil characteristics and grazing at Smi-
leyberg; and 3) time differences, with biweekly compos-
ite NDVI values derived from the satellite representing
the largest NDVI within each two-week interval, while
surface measurements are taken on a clear day within
the same two-week interval. Despite the larger spatial
variation in surface values than satellite values, the
comparison in Fig. 2 indicates reasonable agreement in
temporal variations. Because of the complexity in in-
terpolating NDVI values at each biweekly interval,
NDVI was assumed to be constant during each bi-
weekly interval in the PASS modeling. Because the
composite NDVI in each two-week period is the largest
value for eliminating cloud contamination, input with

constant biweekly composite NDVI values might lead
to some overestimation in evapotranspiration during
weeks of rapid growth. A study of the sensitivity of
NDVI values to evapotranspiration indicated that ob-
served biweekly NDVI in each year is necessary for
accurate simulation of surface hydrology in the long
term.

2) RADAR DATA

Regional Weather Surveillance Radar-1988 Doppler
(WSR-88D) radar precipitation data were produced
and disseminated by the National Weather Service’s
Arkansas–Red River Forecast Center. These radar-
based rainfall estimates were evaluated independently
by using a high-resolution network of rain gauges
placed in the WRW as part of the DOE Atmospheric
Boundary Layer Experiments (Miller et al. 2003). Rain
gauge data from ABLE were compared to the Arkan-
sas–Red River Forecast Center’s radar-based estimates
by using a nearest neighbor approach. Results show
generally good agreement (within 20%) between these
two independent rainfall estimates over the WRW.
Given the overall quality of these results, the radar-
based estimates for the entire Atmospheric Radiation
Measurement Climate Research Facility are assumed
to be of equally high quality.

Precipitation data in the WRW consisted of Hydro-
logical Rainfall Analysis Project 4-km-resolution data,
adjusted with rain gauge observations and supplied by
the Arkansas–Red River Basin Forecast Center, which
provides 24-h cumulative rainfall amount daily. As re-
quired for the PASS model, in the absence of 30-min
precipitation data precipitation was assumed to be
evenly distributed at 1200–2400 Central Standard Time
(CST). This assumption is based on the general obser-
vation that precipitation tends to occur in the afternoon
and evening hours in spring and summer. In addition,
within each 4 km � 4 km area of radar resolution,
precipitation was assumed to be homogeneously dis-
tributed.

3) LAND AND SOIL DATA

The land cover data were derived from the Kansas
Applied Remote Sensing Program (data available on-
line at http://www.epa.gov/OWOW/watershed/
landcover/lulcusa.html), which performed the deriva-
tion from an unsupervised classification of Landsat
Thematic Mapper data. The original data files contain
information with a resolution of 30 m, from which land
cover data of 1-km resolution were derived by taking
the dominant land cover type.

Data on available water capacity at a resolution of 1

FIG. 2. Comparison of NDVI derived from satellite (solid lines)
with in situ measurements (filled circles) at WH and SM. Upper
and lower dashed lines around each solid line represent maximum
and minimum NDVI, respectively, within a 3 km � 3 km area
centered at each site.

208 J O U R N A L O F H Y D R O M E T E O R O L O G Y VOLUME 7



km were extracted from datasets based on county soil
survey manuals (SSURGO 1995). The texture classes
of soil in the WRW are mostly silt loam in the hills in
the east and the central lowlands, and silty clay loam on
the western uplands.

4) SURFACE DATA

Data on solar irradiance, air temperature, relative
humidity, and wind speed were obtained as 30-min av-
erages from surface stations operated by DOE’s ARM
Program and by ABLE in the WRW. The seven-year
dataset was constructed mostly from observations at
the ARM extended facility near Towanda (Fig. 1). Oc-
casional gaps in the observational data were filled with
data from nearby ARM extended facilities or by inter-
polation or extrapolation of data on days with similar
environmental conditions. These meteorological mea-
surements were used as the regionally representative
values needed in the PASS model.

For the current study, a resolution of 1 km was cho-
sen as the PASS model grid size; this is compatible with
the scale of satellite AVHRR pixel. The original high-
resolution land-use data files were aggregated spatially
to 1-km-resolution files. Table 1 summarizes the spatial
and temporal resolutions of the PASS model input
data. The satellite remote sensing data were used to
describe the surface vegetative conditions with bi-
weekly composite, 1-km-resolution NDVI data prod-
ucts. The 4-km-resolution radar-based estimates of
daily precipitation also constituted major input. Land
use, root-zone depth, and available soil water capacity
were assigned to each 1-km-resolution pixel. Local sur-
face observations on downwelling solar irradiance, air
temperature, relative humidity, and wind speed pro-
vided the driving force for modeled evapotranspiration.
Regionally representative values of these parameters
were estimated from regional meteorology stations and
from ARM Program extended facilities in and around
the WRW. Continuous meteorological observations
made by ABLE in the WRW were coupled with daily
radar-observed precipitation and biweekly composite
NDVI to implement the PASS model.

Tests with a 200-m model grid—with land cover and
available water capacity aggregated to 200-m-resolution

and 1-km-resolution NDVI distributed homogeneously
to 200-m pixels—revealed only small differences in
modeled hydrological components at 200-m versus
1-km resolution, despite a greater computational de-
mand at 200-m resolution.

On the first day of the first year, initial root-zone
available soil moisture at each model grid was assumed
to be at capacity; this is close to reality, because soil is
typically near saturation at the end of each year.

b. Data for model evaluation

Traditional in situ evaluations for modeled water and
energy fluxes are always complicated by comparison at
different scales. Modeled values for an individual grid
cell generally represent a larger area than can be rep-
resented by in situ observations. On the other hand,
streamflow contributed from upstream tributaries and
influenced mostly by precipitation and evapotranspira-
tion in a basin can be used to evaluate evapotranspira-
tion at the scale of a large watershed. In this study,
besides the traditional comparison of water and energy
fluxes at a few observational sites, streamflow mea-
sured at outlet gauges was used as a benchmark to
evaluate whole-watershed runoff as one of the key wa-
ter budget components.

Daily discharge data were obtained at two gauge sta-
tions operated by the USGS, with one gauge located at
the outlet of the WRW near Winfield and the other one
located at the subbasin WW outlet near Towanda (Fig.
1). The discharge data do not constitute inputs to PASS
modeling, but they can be compared to runoff esti-
mates. In PASS, runoff estimates are equivalent to ex-
cess water from the root zone.

An energy balance Bowen ratio station has been in
operation at the WH site since mid 1999. Net radiation
and latent, sensible, and ground heat fluxes have been
measured, in addition to conventional surface meteo-
rological observations. An eddy correlation (ECOR)
station at the SM site has also taken measurements of
latent and sensible heat fluxes. To overcome the under-
estimation of energy fluxes by the eddy correlation
method, net radiation, and ground heat flux sensors
were installed. Latent and sensible heat fluxes were
adjusted to close the surface energy budget while keep-

TABLE 1. Resolution of input data for the PASS model.

Data Source Spatial resolution (km) Temporal resolution

NDVI NOAA AVHRR 1 Biweekly
Precipitation Radar 4 Daily
Land cover Kansas USGS 1 Permanent
Available water capacity Soil Survey Geographic Database (SSURGO) 1 Permanent
Meteorology Surface stations �50 30 min
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ing Bowen ratio constant. To account for the storage of
soil heat between the surface and the ground heat sen-
sor, gravimetric soil moisture in the surface layer (at
depth of 0–5 cm) was also measured at both sites. PASS
model estimates of surface water and energy fluxes can
be verified with these local measurements.

4. Results of surface hydrological modeling

The PASS modeling was performed over a rectangu-
lar domain 73 km � 109 km, encompassing the WRW.
The model resolution was 1 km (Fig. 1). Modeled out-
puts at each pixel within the WRW were selected for
analysis. Spatial distributions of modeled evapotranspi-
ration in 1996–2002 are displayed in Fig. 3. Within the
WRW, modeled evaporative loss was largest above wa-
ter surfaces (darkest areas) and smallest over urban and
suburban (lightest) areas. Evapotranspiration in the
WRW is very heterogeneous spatially, even when val-
ues are summed for each year. Table 2 summarizes
annual values of modeled evapotranspiration and run-
off for the total domain, as well as observed precipita-
tion and streamflow for the WRW and subbasin WW.
Evapotranspiration was largest in 1999, followed by
1997, and was smallest in 2002.

Seasonal variations in modeled evapotranspiration
and root-zone available moisture are shown with ob-

served precipitation in Fig. 4. The modeled root-zone
available moisture shows an annual wet and dry cycle.
In the summer, the large loss from evapotranspiration
exceeds the moisture input from precipitation corre-

FIG. 3. Spatial patterns of modeled evapotranspiration accumulated in 1996–2002. Areas with largest evaporation are the El Dorado
Lake reservoir (northeast) and the Winfield Lake reservoir (central south).

TABLE 2. Annual water budget in the Walnut River Watershed
and the Whitewater Watershed.

Water budget (� 109 m3)

Year
Precipitation

observed
Evaporation

modeled
Runoff

modeled
Streamflow

observed

Walnut River watershed
1996 3.60 3.16 0.51 0.37
1997 4.45 3.64 0.89 1.12
1998 5.05 3.31 1.63 1.81
1999 5.31 3.82 1.50 1.70
2000 4.49 3.37 1.09 0.82
2001 3.97 3.46 0.96 0.76
2002 4.34 3.07 0.86 0.63
Total 31.22 23.83 7.45 7.21
Whitewater watershed
1996 0.82 0.73 0.10 0.07
1997 1.01 0.86 0.18 0.27
1998 1.21 0.76 0.43 0.44
1999 1.26 0.90 0.35 0.33
2000 1.02 0.79 0.22 0.11
2001 0.88 0.79 0.20 0.19
2002 0.87 0.69 0.09 0.08
Total 7.06 5.52 1.57 1.50
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sponding to the growing season. The wet periods at the
end of each year reflect the reduction in evapotranspi-
rative loss and the recharge from precipitation. An ex-
ception is the year 2001, when precipitation recharge
was minimal after the growing season. In each year,
precipitation was unevenly distributed; most rain fell in
the warm growing season, except in 2002 (Fig. 4). The
low modeled total evapotranspiration in 2002 is due to
the timing of the rainfall as well as lower NDVI. Pre-
cipitation events in 2002 occurred mostly in spring and
fall, rather than in the summer peak growing season
(Fig. 4). With drier soil, vegetation did not grow well, as
indicated by lower NDVI values, and thus evapotrans-
piration was limited. Similarly, in 1996, modeled evapo-
transpiration was next to lowest, because a prolonged
dry period in the spring and early summer influenced
both soil moisture and vegetation growth. In compari-
son, the largest modeled evapotranspiration, in 1999,
corresponded to abundant precipitation during the en-
tire growing season. In 1998, although annual total pre-
cipitation was greater than in 1999, modeled evapo-
transpiration was lower (Table 2), because relatively
less rain fell during the summer growing season, leading
to lower soil moisture and lower NDVI. Although the
heaviest precipitation occurred later in the year 1998,
evapotranspiration did not increase much after the
growing season.

To evaluate modeled evapotranspiration over the ex-
tended heterogeneous region, we compared modeled
runoff with the stream-gauge-measured streamflow
(Fig. 5). Modeled runoff at each pixel was estimated as
the excess soil water over capacity, and the values were
summed for both the WRW and the WW subbasin. The
Winfield stream gauge measures runoff integrated over

the whole WRW; the Towanda stream gauge measures
flow from the WW subbasin (Fig. 1). Figure 5 shows
generally good correlation between modeled runoff
and measured streamflow. At times, when the model
assumptions are best satisfied, agreement is excellent.
An example is in 1998, when a large amount of precipi-
tation saturated the soil. At other times the agreement
is not so good. An example of this is in early 2000 and
2001, when some of the precipitation might have oc-
curred as snow. Modeled runoff exceeds observed
streamflow in some of the high-flow periods but is less
than the observed value during some low-flow periods.
This may be explained by reservoir regulation and stor-
age pond and is examined further below. The overall
correlation values between modeled runoff and ob-
served streamflow for the WRW and the WW are 0.91
and 0.89, respectively, with significance at 0.05.

Over the seven-year period shown in Table 2 for both
the WRW and the WW, precipitation amounts varied
greatly from dry years (e.g., 1996) to wet years (e.g.,
1999). The modeled water loss due to evapotranspira-
tion in the WRW varied from 66% (1998, a wet year) to
88% (1996, a dry year) of precipitation at the end of
each year, which is reasonable for southern Kansas.
The differences between the observed discharge and
modeled runoff are small in comparison with precipi-
tation amount. Modeled runoff amounts exceeded ob-
served streamflow in years when annual precipitation
was relatively low, such as 1996, 2001, and 2002. Mod-
eled runoff was less than observed streamflow in years
when annual precipitation was relatively high, such as
1998 and 1999. At the end of the seven-year period, the
overall modeled runoff in the WRW was about 3%
more than observed streamflow (5% for the WW sub-
basin).

Runoff comparisons can provide an evaluation of the

FIG. 4. Basin-scale observed precipitation and modeled
evapotranspiration, with modeled mean root-zone available moisture.

FIG. 5. Comparison of modeled runoff and stream gauge obser-
vations at the Winfield station for the Walnut River Watershed
and at the Towanda station for the Whitewater Watershed.
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regional-scale water budget, and comparisons with
available field measurements can provide evidence for
model performance at the pixel or local scale. In addi-
tion, the possibility that underestimation in modeled
evapotranspiration resulted in increased modeled run-
off during years 2000–2002 can be evaluated with in situ
observations. Modeled latent heat fluxes and net radia-
tion at the pixels nearest the WH and SM sites are
compared in Fig. 6 with corresponding in situ observa-
tions during 2000–2002. Results indicate that modeled
net radiation and latent heat fluxes are similar to the
observations. On average, modeled net radiation is 11
(WH) and 24 W m�2 (SM) below the observed values,
but modeled latent heat fluxes are only 2 (WH) and 8
W m�2 (SM) more than the observed values. Modeled
sensible and ground heat fluxes are below the corre-
sponding observations (data not shown), with average
differences of 16 (WH) and 3 W m�2 (SM) for sensible
heat and 1 (WH) and 2 W m�2 (SM) for ground heat.

The above evaluation of in situ latent heat fluxes
indicates that the reason for greater modeled runoff
than observed streamflow during years 2000–02 was not
due to the underestimation of evapotranspiration
within the watershed. In fact, evapotranspiration may
have been overestimated slightly when biweekly com-
posite NDVI was used instead of daily NDVI. To ex-
plain the possible cause of less observed than modeled
runoff during the peak flow periods shown in Fig. 5, we
further examined surface water usage in the WRW and
found that water stored in the two major reservoirs in
the WRW during the high-flow episodes was later with-
drawn for municipal and irrigation purposes (Miller et
al. 2005). The larger El Dorado Reservoir (Fig. 3) es-
pecially dominates water flow in the lower section of
the Walnut River, because the river is fed primarily by
water released from the reservoirs. At a smaller scale,
collection of detailed sets of precipitation, stream, and
soil water samples from a small tributary of the White-
water River (the Rock Creek drainage basin) in May of
2002 (Miller et al. 2005) showed that the upper 30% of
the drainage basin feeds into a stock pond that limits
flow to the lower part of the creek to periods following
precipitation events. Thus, in addition to snow accumu-
lation, which can delay surface runoff in the spring,
runoff storage in reservoirs and stock ponds in the up-
per part of the river drainage can cause observed
streamflow to be less than modeled flow during a high-
flow period but more than modeled flow during a low-
flow period, as Fig. 5 shows. In addition, groundwater
recharge is not modeled or measured, leaving the ac-
counting for water loss incomplete.

Interannual and seasonal variations in modeled root-
zone available moisture have shown reasonable trends

within the WRW. Evaluation is problematic because of
a lack of observations at root-zone depth, although
near-surface (at 2.5 cm) soil moisture has been mea-
sured at the WH and SM sites to account for heat stor-
age for a ground heat flux correction. As a result, large
differences are expected when comparisons are made
between modeled root-zone available moisture at the
pixels nearest the WH and SM sites and in situ surface
soil moisture measurements (Fig. 7). The first reason
for the difference between modeled and observed val-
ues is that unlike the observed total soil moisture con-
tent, modeled values are available moisture content,
which does not include soil water that is not accessible
at wilting point. In contrast, the observed values are not
limited to available soil water. Second, modeled values
represent the root-zone condition, which tends to be
less extreme than surface conditions and does not re-
spond to dryness and wetness as quickly as the ob-
served surface condition. Third, because heterogeneity
in soil texture and soil moisture is large, sampling even
at five points within an area of about 4 m2 at each site

FIG. 6. Comparison of energy fluxes (modeled vs observed) at
the Whitewater site and the Smileyberg site.
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might not adequately represent root-zone available
moisture modeled at 1-km resolution. Fourth, hetero-
geneous soil texture requires calibration functions for
moisture sensors to be generated by a field scientist for
each site. Soil at SM soil is silty clay (bulk density 1.22,
porosity 54%), while soil at WH is clay loam (bulk
density 1.33, porosity 50%). The soil moisture values
are adjusted according to nonlinear functions fitted to
collected soil samples in a limited moisture range. De-
spite the difference between the modeled and observed
values, temporal variations in the monthly averaged
measurements shown in Fig. 7 are similar to those in
modeled root-zone values, which sometimes lag behind
the measured surface values because response is slower
at root-zone depth.

5. Summary and conclusions

Estimates of evaporative water loss and root-zone
available moisture in the WRW and WW were made

with the PASS model and applied in an evaluation of
hydrological balance components for 1996–2002. Satel-
lite remote sensing data in biweekly composite, 1-km-
resolution NDVI data products were used to describe
the surface vegetative conditions. In addition, 4-km-
resolution radar-based estimates of precipitation con-
stituted major input. Surface radiation and basic me-
teorological data provided the driving force for model-
ing evapotranspiration.

The small differences between modeled runoff and
observed streamflow, which is less than 5% for the
seven-year period, indicates that the regional-scale sur-
face evapotranspiration modeled by PASS is realistic,
with errors of 10% or less. Seasonal changes in mod-
eled evapotranspiration in years 2000–02 matched fairly
well with the in situ flux measurements, with slight
overestimates during certain seasons. Overall, modeled
water and energy fluxes closely reflected observed spa-
tial and long-term temporal variations in the region.
The results suggest that a highly parameterized but
relatively simple surface model like PASS can be exer-
cised efficiently to estimate both real-time and long-
term surface energy fluxes and hydrological compo-
nents. Moreover, with its subgrid-scale resolvability,
PASS can provide scale linkage for evaluating each grid
cell of global climate models with regional streamflow
measurements and field observations. Work continues
on selection of proper root-zone depths for various
types of vegetation.
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