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Abstract

Exposure to fine particulate matter (PM2.5) in the ambient air is associated with

various health effects. There is increasing evidence which implicates the central role

played by specific chemical components such as heavy metals of PM2.5. Given the

fact that humans are exposed to complex mixtures of environmental pollutants such

as PM2.5, research efforts are intensifying to study the mixtures composition and

the emission sources of ambient PM, and the exposure-related health effects. Factor

analysis as well source apportionment models are statistical tools potentially useful

for characterizing mixtures in PM2.5. However, classic factor analysis is designed to

analyze samples of independent data. To handle (spatio-)temporally correlated PM2.5

data, a Bayesian approach is developed and using source apportionment, a latent

factor is converted to a mixture by utilizing loadings to compute mixture coefficients.

Additionally there have been intensified efforts in studying the metal composition and

variation in ambient PM as well as its association with health outcomes. We use non

parametric smoothing methods to study the spatio-temporal patterns and variation of

common PM metals and their mixtures. Lastly the risk of low birth weight following

exposure to metal mixtures during pregnancy is being investigated.

xi



1 Introduction

1.1 Air Pollution and PM2.5

Air pollution is a mixture of solid particles, gases, biological molecules, or other harm-

ful materials into the air. It has the potential of causing diseases, death to humans,

damage to other living organisms such as food crops, vegetations, or the natural or

built environment. To protect people and the environment, the Clean Air Act, which

was last amended by the congress in 1990, requires the Environmental Protection

Agency (EPA) to set National Ambient Air Quality Standards (NAAQS) for pollu-

tants considered harmful to public health and the environment. EPA has set NAAQS

for six principal pollutants, which are called ”criteria” pollutants: Carbon Monoxide

(CO), Lead (pb), Nitogen Dioxide (NO2), Ozone (O3), Sulfur Dioxide (SO2), and

Particulate Matter (PM10, PM2.5). Air quality data such as CO, pb, NO2, O3, SO2,

PM10 and PM2.5, as well as PM2.5 speciation chemicals data are housed in the US

EPA Air Quality System (AQS) data base. AQS is divided into several groups around

the continental US called Metropolitan Statistical Area (MSA) with each MSA con-

taining several monitoring stations.

Particulate matter, also known as particle pollution or PM, is a complex mixture

of extremely small particles and liquid droplets. Particulate matter comes from many

different sources such as factories, power plants, dry cleaners, cars, buses, trucks and

even windblown dust and wildfires. Particle pollution is made up of a number of

components, including metals, acids (e.g. nitrates and sulfates), organic chemicals,

1



and soil or dust particles. Particles are either directly emitted into the air or formed

in the atmosphere by transformation of emitted gases such as SO2. They come in

many different size ranges such as coarse, fine and ultrafine. They also vary in compo-

sition and origin. The size of particles is directly linked to their potential for causing

health problems. EPA is concerned about particles that are 10 micrometers in diam-

eter or smaller (PM10) because those are the particles that generally pass through

the throat and nose and enter the lungs. Once inhaled, these particles can affect the

heart and lungs and cause serious health effects. Because of different chemical com-

positions, some airborne particles are more toxic than others (e.g., U.S. EPA, 2004).

In this analysis we are interested in fine particles, those less than 2.5µm aerodynamic

diameter (PM2.5) and especially their metal components.

1.2 Research Motivation

Recent epidemiologic studies showed statistically significant associations of various

ambient PM indicators with a variety of respiratory health endpoints, from physi-

ologic changes in pulmonary function, respiratory illness and symptoms, emergency

department visits, hospital admissions, to mortality. Children, elderly, and individuals

with asthma are among the most susceptible to PM effects (U.S. EPA, 2004).

Although ambient air particulate matter (PM) has been clearly associated with ad-

verse human health outcomes (NRC, 2004; U.S. EPA, 2004), the relationship between

specific physicochemical properties of PM and these health effects remains largely un-

resolved (Schlesinger et.al 2006). In a study linking PM2.5 for motor vehicles and coal

combustion to mortality, Laden et. al. (2000) reported that a 10µg/m3 increase in

PM2.5 from mobile sources accounted for a 3.4% increase in daily mortality, while the

equivalent increase in fine particles from coal combustion sources accounted for a 1.1%

increase. Fine particles from crustal sources were not associated with mortality. They

conclude that ”the results indicate that combustion particles in the fine fraction from

2



mobile and coal combustion sources, but not fine crustal particles, are associated with

increased mortality”. This suggests that maybe not all PM2.5 chemical components

are associated with health effects. PM comprises a mixture of several compounds,

including carbon-centered combustion particles, secondary inorganics, and crustal de-

rived particles. These compounds may contribute, with different potential, to the

PM-induced health effects (Schwarze et al 2006).

The multi-centre time series studies, Air Pollution and Health - A European Ap-

proach (APHEA) and National Mortality Morbidity Air Pollution Study (NMMAPS)

(Samet et Al. 2000A, 200B, ALA, 2001), indicate the occurrence of some hetero-

geneity with respect to risk estimates between locations. This observation is further

corroborated by seasonal analyses, which showed stronger effects on mortality in the

summer in the Northeast of the US, whereas there were smaller or no differences be-

tween seasons in other areas (Peng et al. 2005). Schwarze et al 2006 suggested that

these variations in risk estimates between different cities could be due to differences

in particle composition, although other factors may also be involved. In their final

report, the NRC Committee on Research Priorities for Airborne Particulate Matter

(NRC, 2004) provides a summary table of PM characteristics that may be important

to health responses including PM metals.

The importance of combined exposure to different PM-components is far from

elucidated and needs to be determined. Indeed, there seems to be increasing support

for the idea that the chemical characteristics are important for the adverse health

effects of ambient PM. Thus, there has been a call for more specific exposure metrics

which account for the composition or origin of ambient PM (Grahame et al 2005,

Forsberg et al 2005). To comply with this requires the identification of the hazardous

and non-hazardous PM components. Several epidemiological studies have identified

PM metals as one of these components. A good understanding of the PM metals and

the interplay between them become therefore critical. We would like to understand

why concentration of PM metals speciation differs from one city to another or from
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one season to the next. A good knowledge and understanding of the pattern will

be critical in quantifying personal exposure. Additionally we might be able to relate

the exposure to potential health outcomes, such as birth outcomes, respiratory, and

cardiovascular diseases.

Given the fact that humans are exposed to complex mixtures of environmental

pollutants such as PM2.5, research efforts are intensifying to study the mixtures com-

position and the emission sources of ambient PM, and the exposure-related health

effects. Developing statistical tools that are able to identify chemicals mixtures are

therefore critical and important. Factor analysis as well source apportionment models

are statistical tools potentially useful for characterizing mixtures in PM2.5. However,

classic factor analysis is designed to analyze samples of independent data and Air

pollution data in general and PM2.5 speciation metals in particular are generally

temporally correlated within each monitoring station and spatio-temporally corre-

lated when an MSA (several monitoring stations) is considered. Methods to address

this type of data correlation need to be considered.

1.3 Specific Aims

As mentioned earlier, PM2.5 is a complex mixtures of extremely small particles and

liquid droplets. It is made up of a number of different components, including metals,

acids and organic chemicals which form the PM2.5 chemicals speciation. Several

studies have identified PM2.5 metals as some of the chemicals of great concern for

human health. There is a huge variation of these chemicals in the air around the

country and nothing is known about them,

• First, a spatio temporal analysis in order to understand their distribution pattern

is therefore critical.

• Second, our exposure is believed to be in form of mixtures and we are unlikely to

be exposed to only one chemical from the air environment at any given time. It
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is therefore important to understand and be able to quantify mixture exposure.

Unfortunately there is no known theory to do so especially for correlated data.

Chemicals speciation data, a large dataset containing more than 100 different

chemicals including 35 metals are measured every three to six days from the

environment with different source origins in some select stations. Within each

station we have a time series data (temporal correlation) and when several sta-

tions are considered we have multiple time series data with possible correlation

between stations (spatio-temporal correlation).

• Third, Factor analysis in conjunction with source apportionment model will be

used to determine empirical mixture observed.

In this dissertation we therefore sought to understand the temporal and spatial vari-

ation of PM metals in three geographic areas in the US: Tampa Bay Area in Florida,

Houston area in Texas and Pittsburgh area in Pennsylvania. Statistical modeling,

especially those based on nonparametric approach will be used and health impact will

follow subsequently. Additionally theories on metals mixtures will be developed and

applied to one station in Tampa and discussion on extension to several stations will

be added. The followings specific aims will then be addressed.

1. Specific aim 1: In order to improve our understanding of PM2.5 special metals,

we will in this aim carry an analysis of the spatio-temporal patterns and variation

of individual metals and some mixtures in PM2.5

2. Specific aim 2: In this aim we look at the risk of low birth weight (LBW)

from exposure to particulate matter (PM2.5) speciation metals mixtures during

Pregnancy

3. Specific aim 3: In this aim we develop method of identifying mixtures via a

combination of factor analysis and source apportionment methods. As PM2.5

speciation data are (spatio-) temporally correlated, an extension of the regular
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factor analysis is needed. We will develop a Bayesian factor analysis for tem-

porally correlated PM2.5 speciation data. And discuss the extension to spatio-

temporally correlated data. Using a combination of factor analysis and source

apportionment models, we transform latent factors into mixtures.
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2 Spatio-Temporal Patterns and Variation of Common Particulate

Matter Speciation Metals

2.1 Introduction

Particulate matter, also known as particle pollution or PM, is a complex mixture of

extremely small particles and liquid droplets. Particulate matter comes from many

different sources such as factories, power plants, dry cleaners, cars, buses, trucks and

even windblown dust and wildfires. Particle pollution is made up of a number of

components, including metals, acids (e.g. nitrates and sulfates), organic chemicals,

and soil or dust particles. Particles are either directly emitted into the air or formed in

the atmosphere by transformation of emitted gases such as SO2. They come in many

different size ranges such as coarse, fine and ultrafine. They also vary in composition

and origin.

The size of particles is directly linked to their potential for causing health problems.

EPA is concerned about particles that are 10 micrometers in diameter or smaller

because those are the particles that generally pass through the throat and nose and

enter the lungs. Once inhaled, these particles can affect the heart and lungs and

cause serious health effects. Because of different chemical compositions, some airborne

particles are more toxic than others (e.g., U.S. EPA, 2004). In this analysis we are

interested in fine particles, those less than 2.5µm aerodynamic diameter (PM2.5).
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2.1.1 Health effects of Total Particulate Matter

Recent epidemiologic studies show statistically significant associations of various am-

bient PM indicators with a variety of respiratory health endpoints, from physiologic

changes in pulmonary function, respiratory illness and symptoms, emergency depart-

ment visits, hospital admissions, to mortality. Children, elderly, and individuals with

asthma are among the most susceptible to PM effects (U.S. EPA, 2004).

Two landmark prospective cohort studies, the 1993 Six Cities Study and the 1995

American Cancer Society study reported that chronic exposure to particulate pollu-

tion increases the risk of premature mortality. In the 1993 Six Cities Study, Harvard

University researchers followed the health of more than 8,000 people in six small cities

that fell along a gradient of air pollution concentrations for a period of 14 to 16 years.

As particle concentrations increased, there was an almost directly proportional in-

crease in the death rate in the residents studied. Residents of the most polluted city

in the study, Steubenville, Ohio, had a 26 percent increased risk of premature mortal-

ity, compared to the residents of the cleanest city studied, Portage, Wisconsin. The

increased risks were associated with a difference in ambient fine particle concentra-

tions of 18.6 micrograms per cubic meter (Dockery et. al.1993). The 1995 American

Cancer Society study reported an association between fine particle air pollution and

premature death by cardio-pulmonary and other causes in a study group of over half

a million people in 151 U.S. cities. All cause mortality increased by 17 percent with

a 24.5 microgram per cubic meter difference in fine particle pollution between the

cleanest and dirtiest city studied (Pope et. al. 1995).

Although ambient air particulate matter (PM) has been clearly associated with ad-

verse human health outcomes (NRC, 2004; U.S. EPA, 2004), the relationship between

specific physicochemical properties of PM and these health effects remains largely un-

resolved (Schlesinger et.al 2006). In a study linking PM2.5 for motor vehicles and coal

combustion to mortality, Laden et. al. (2000) reported that a 10µg/m3 increase in
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PM2.5 from mobile sources accounted for a 3.4% increase in daily mortality, while the

equivalent increase in fine particles from coal combustion sources accounted for a 1.1%

increase. Fine particles from crustal sources were not associated with mortality. They

conclude that ”the results indicate that combustion particles in the fine fraction from

mobile and coal combustion sources, but not fine crustal particles, are associated with

increased mortality”. This suggests that maybe not all PM2.5 chemical components

are associated with health effects. PM comprises a mixture of several compounds,

including carbon-centered combustion particles, secondary inorganics, and crustal de-

rived particles. These compounds may contribute, with different potential, to the

PM-induced health effects (Schwarze et al 2006).

The multi-centre time series studies, Air Pollution and Health - A European Ap-

proach (APHEA) and National Mortality Morbidity Air Pollution Study (NMMAPS),

indicate the occurrence of some heterogeneity with respect to risk estimates between

locations. This observation is further corroborated by seasonal analyses, which showed

stronger effects on mortality in the summer in the Northeast of the US, whereas there

were smaller or no differences between seasons in other areas (Peng et al. 2005).

Schwarze et al 2006 suggested that these variations in risk estimates between differ-

ent cities could be due to differences in particle composition, although other factors

may also be involved. In their final report, the NRC Committee on Research Prior-

ities for Airborne Particulate Matter (NRC, 2004) provides a summary table of PM

characteristics that may be important to health responses including PM metals.

2.1.2 Health effects of PM Metals

The importance of combined exposure to different PM-components is far from eluci-

dated and needs to be determined. Indeed, there seems to be increasing support for

the idea that the chemical characteristics are important for the adverse health effects

of ambient PM. Thus, there has been a call for more specific exposure metrics which
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account for the composition or origin of ambient PM (Grahame et al 2005, Forsberg

et al 2005). To comply with this requires the identification of the hazardous and

non-hazardous PM components. Several epidemiological studies have identified PM

metals as one of these components.

A role for transition metals such as iron (Fe), manganese (Mn), Nickel (Ni), copper

(Co), Silver (Ag) in producing adverse health effects is based on their potential for ox-

idative activity and the production of reactive oxygen species. Similar to the quinones,

soluble forms of these metals can be involved in a Fenton-type reaction (Schlesinger et

al 2006). Elevated oxidative stress in the lungs and hearts of rats exposed to concen-

trated ambient particles (CAPs) in Boston and residual oil fly ash (ROFA) was most

strongly associated with metal fractions of these particles (Gurgueira et al., 2002).

Molinelli et al. (2002) exposed a human airway epithelial cell line to aqueous extracts

of PM collected in the Utah Valley. In this study, part of the extract was treated to

remove cations, including transition metals. Cells exposed to the untreated extract

showed a concentration-dependent increase in the inflammatory mediator interleukin

(IL)-8 compared to controls; cells incubated with the treated extract showed no such

change. This suggests that the removal of metal cations attenuated cellular response

to the aqueous extract, and supports a role for transition metal involvement in PM

toxicity. In this regard, cultured human T cells exposed to 1µm carbon particles or

particles containing both carbon and iron showed increased production of reactive

oxygen species with the latter, but not with the former (Long et al., 2005). Finally,

Sorensen et al. (2005) found a relationship between the vanadium (V) and chromium

(Cr) components of fine particulate CAPs and oxidative damage to DNA. It is un-

clear whether all PM-associated transition metals are equally toxic, or whether there

can be a ranking of toxicity related to specific metal content or metal valence state

(Schlesinger et al 2006).

Furthermore, relative water solubility may also be a factor in modulating biologi-

cal response. When ambient PM from St. Louis, MO, Washington, DC, Dusseldorf,
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Germany, and Ottawa, Canada, were tested for toxicity, the observed greater response

to Ottawa PM was postulated to be due to its higher content of water soluble met-

als (Costa & Dreher, 1997). Other studies have indicated that Zn in PM may be

responsible for various pulmonary effects, such as inflammation, necrosis, and airway

hyperreactivity (Adamson et al., 2000; Dye et al., 2001; Kodavanti et al., 2002a;

Gavett et al., 1997; Schlesinger et al., 2006). Human bronchial epithelial cells ex-

posed to extracts of PM collected in Taiwan showed a correlation between cytokine

production and metal content, with effects on some cytokines correlating with Cr and

Mn, and others with Fe and Cr (Huang et al., 2003). In a study using ROFA, parti-

cles with higher Zn content resulted in greater pulmonary inflammation and airway

responsiveness than did particles with higher Ni or V content (Gavett et al., 1997).

Schlesinger et al. (2006) suggested while the apparent differences in response to var-

ious metals may seem to add to inconsistencies between toxicological studies, they

do, in fact, support the idea that the endpoint examined is critical in reaching any

conclusion as to the efficacy of specific metals and/or that effects may be linked to

specific valence state.

In most epidemiological studies, the metal content of the PM has not been anal-

ysed. However, in some special locations, the PM-sources are known to be rich in

metals, for instance in areas with metallurgic industries. In the Utah Valley area,

air pollution changes during a transient closure of a steel mill were associated with

changes in mortality and morbidity. PM levels and mortality and morbidity declined

during the closure of the mill, but increased again when the mill was reopened (Gheo

et al. 2004).The changes in health effects were not fully accounted for by PM mass.

Though metals were not modeled in the epidemiological study, it seems likely that

the number of metal particles and amount of metals in particles was considerably

reduced during the closure period. The mortality risk estimates in the Utah Valley

studies appeared to be in the upper range compared to other investigations, in which

exposure to traffic dominates.
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Several years ago, WHO published air quality guidelines on metals as air pollutants

(WHO 1987). More recent information about the different metals has resulted in

metals being scrutinized as important constituents of PM. In brief, transition metals,

such as iron and copper, are believed to contribute to particle induced formation of

reactive oxygen species (ROS) through the Fenton reaction, and have, therefore, been

considered important for particle toxicity (Donaldson et. al. 2003, Fubini et. al.

2003, Barchowsky et. al. 2003). Other metals, such as zinc, may trigger effects more

directly by interacting with cellular proteins (Haase et. al. 2005, Tal et. al. 2006).

In a study of Canadian cities, Burnett et al., found that iron, nickel and zinc, in

addition to sulphates, were associated with increased mortality. The associations of

these constituents were even better than for total mass, indicating that they were

better predictors for mortality than mass. However, the larger variation in the metal-

associated effects than those found for mass also indicated that there were other

important contributing components in the mixture (Burnett et al 2005).

A cross-sectional study in Eastern Germany showed higher lifetime prevalence of

respiratory disorders and allergic sensitization in children living near industrial sites

compared to children without such exposure (Heinrich et al 1999). A decline in pol-

lution reduced respiratory symptoms in children (Heinrich et al 2005). Later analyses

revealed higher levels of particles and higher metal content near the industrial site

compared to the more rural area (Schaumann et al 2004). Though metal composition

in these studies was not modeled, the subsequent experimental results suggested that

a reduction in effects might be achieved by the reduction in particle-associated metal

exposure.

An analysis of the Six Cities data, including elemental composition, revealed the

importance of nickel, lead and sulphur on the increased mortality of long-term in-

creased air pollution (Laden et. al 2000). Several experimental studies suggest a role

of metals in PM-induced cardiovascular effects. Longterm inhalation studies have

shown that zinc-containing PM may cause myocardial injury in rats (Kodavantiet al

12



2003). Copper, zinc and vanadium have been shown to induce a range of different

cardiovascular effects, including increased expression of different cytokines and stress

proteins, reduction in spontaneous beat rate, vasoconstriction and vasodilation (Graff

et al. 2004, Li et al 2005, Bagate et al. 2005). Notably, the effects may be triggered

through a complex interplay between different metals. Campen et al., 2001 reported

that nickel and vanadium may interact synergistically to cause immediate and de-

layed cardiovascular effects. Nickel-exposure was found to cause delayed bradycardia,

hypothermia and arrhythmogenesis, whereas vanadium did not cause any significant

delayed effects alone, but enhanced the effect of nickel (Campen et al., 2001). In con-

trast, vanadium, but not nickel or iron exposure, resulted in immediate responses on

the same cardiovascular parameters. Moreover, nickel was also found to exacerbate

the immediate effects of vanadium, whereas iron attenuated the vanadium-induced

effects( Campen et al 2002). Metal-rich particles have also been found to enhance

allergic responses to ovalbumin and house dust mite (Gavett et al. 2003, Lambert et

al 1999, Lambert et al 2000), and to induce the increased release of allergy-related

cytokines, eosinophil recruitment and airway hyper-responsiveness in mice ( Gavett

et al 1999). Moreover, metal ions, such as aluminium, cadmium, nickel and stron-

tium ions, have been found to enhance IL-4 release and degranulation of mast cells

(Walczak-Drzewiecka et al. 2003). Thus, there seems to be some support for the idea

that soluble metals from PM may be involved in allergic responses.

Based on the aforementioned epidemiological studies and findings, a good under-

standing of the PM metals and the interplay between them become critical. We would

like to understand why concentration of PM metals speciation differs from one city

to another or from one season to the next. A good knowledge and understanding of

the pattern will be critical in quantifying personal exposure. Additionally we might

be able to relate the exposure to potential health outcome, such as respiratory and

cardiovascular diseases. In this study we address the temporal and spatial variation of

PM metals in three geographic areas in the US: Tampa Bay Area in Florida, Houston
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area in Texas and Pittsburgh area in Pennsylvania. Statistical modeling, especially

those based on nonparametric approach will be used and health impact will follow in

subsequent studies.

As mentioned above, we have very limited knowledge on health impact of PM

metals and more importantly very little is known on even the distribution and varia-

tion of PM metals in the country. Among the very few studies that attempted work

in the area of particulate matter metals we cite the work done by Bell et. al. 2007,

Mubiana et. al. 2005, Mugica et al. 2002. To our knowledge, no study has focussed

on spatial and temporal variation of particulate matter speciation despite their proven

epidemiologic importance in public health.

In this paper we use nonparametric statistical methods to describe the temporal

and spatial variations of selected metal constituents in PM2.5 using the US EPA’s Na-

tional Air Quality Monitoring Network data collected from three metropolitan areas.

Based on the spatiotemporal models we may be able to propose in subsequent studies

ways to estimate potential inhalation dose, both for lower dose chronic exposure and

possible acute exposure due to short term surge in air pollutants concentration.

2.2 Particulate Matter Metals Speciation Data

Based on the geographic location and more importantly the existing type of industries,

three metropolitan statistical areas (MSA) in the US have been selected for our study:

Pittsburgh MSA belongs to the Ohio valley region dominated by steel industries.

Houston area in addition to being a metropolitan area where traffic is an important

source of particulate matter, is in addition a region dominated by oil industries.

Tampa Bay MSA, the third region is comparable to Houston as for its traffic and

geographic location but yet very different in term of industry types. Tampa Bay is

extremely poor in industries with power plants for electricity generation as major

industries in the region.
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Table 2.1: Study sites and total number of observation per site together with the starting
date and ending date of data collection in Tampa, Houston and Pittsburgh MSAs

Site ID length Start Date End date Location

120571075 489 02/09/2000 12/29/2003 Tampa, FL
120573002 472 01/01/2004 12/29/2007 Plant City, FL
121030026 328 09/06/2004 12/29/2007 Pinellas Park, FL
482010024 798 08/17/2000 12/26/2007 Not a City, TX
482010026 620 08/17/2000 08/29/2005 Channelview, TX
482010055 640 08/18/2000 08/29/2005 Houston, TX
482010803 173 08/17/2000 11/06/2001 Houston, TX
482011034 226 01/02/2002 08/26/2005 Houston, TX
482011039 1582 02/15/2000 12/29/2007 Deer Park, TX
483390078 464 10/25/2001 08/29/2005 Conroe, TX
483390089 124 08/15/2000 09/19/2001 Conroe, TX
420030008 842 06/30/2001 12/29/2007 Pittsburgh, PA
420030021 146 06/30/2001 09/30/2003 Pittsburgh, PA
420030064 226 10/06/2003 12/26/2007 Liberty, PA
421255001 414 06/30/2001 12/26/2007 Not a City, PA
421290008 423 06/30/2001 12/26/2007 Greensburg, PA

Data have been obtained from the US EPA’s National Air Quality Monitoring

Network covering a period of eight years from 2000 to 2007. Table 2.1 presents the

study sites together with the total number of data points, the starting and ending

dates of data collections for each sites. It shows that some sites were not operational

during the whole study period. For the analysis, we use three separate datasets

representing the aforementioned three metropolitan statistical areas (MSA): Tampa-

Saint Pittersburg-Clearwater MSA in Florida, Houston MSA in Texas and Pittsburgh

MSA in Pennsylvania.

The dataset in Tampa includes 1289 observations days across all sites (i.e., monitors-

days of data). Except for few days, data were collected every three days during the

collection periods. Houston MSA data and Pittsburgh MSA data include 4627 and

2051 observations days across all sites respectively. Each dataset contains several co-

variates including: dates of data collection, site numbers, county, state and address

indicating site locations, daily average temperature, daily average barometric pressure,
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latitude, longitude and PM2.5 total mass and speciation chemical concentrations.

There are three speciation sites in the Tampa Bay Area with an average of 415

observations per site, covering a population of approximately 2,723,949 as of July 1st

2006. The site located in Tampa have been relocated in 2003 and has data only from

February 09, 2000 to December 29, 2003. The other two currently operational sites

are both of residential land use and have started operating in January 01, 2004 and

September 06, 2004 respectively (Table 2.1). They are both of population exposure

monitoring objective with rural and suburban location. Data of all three stations

have been used in the analysis. Houston MSA has eight sites with an average of

489 observations per site, while Pittsburgh MSA has five operational sites covering

a population of roughly two million (Wittig et. al. 2004) with an average of 386

observations per site. While a comprehensive analysis and discussion of all PM metals

is sought, we will concentrate our effort on highly concentrated metals or metals where

a clear pattern and noticeable differences between regions are observed.

There is an increasing belief in environmental research studies that, in the natural

environment, we are not exposed to one chemical at the time but rather to a mixture

of chemicals which is defined as a combination of several chemicals. In addition to

individual metals, we will analyze and discuss some mixture of metals, whose selection

will be solely based on known emission sources and factor analysis.

Table 2.2 gives the average daily concentration of each metal and total PM mass

together with their standard errors in Tampa, Houston and Pittsburgh MSAs. Except

for the total PM mass which is in microgram per cubic meter, all other concentrations

are in nanogram per cubic meter. Aluminum, calcium, iron, potassium and sodium are

the most abundant metals in all three areas. Aluminum and calcium daily average

concentration are lowest in Pittsburgh and highest in Houston. Iron is lowest in

Tampa and highest in Pittsburgh probably because of steel industries, while potassium

and sodium are lowest in Pittsburgh and highest in Tampa. Among other heavy

metals with huge variation in concentration between regions are chromium, lead,

17



Tampa-Aluminum

Day
C

on
ce

nt
ra

tio
n

0 500 1000 1500 2000 2500 3000

0.
0

0.
6

1.
2

Pittsburgh-Aluminum

Day

C
on

ce
nt

ra
tio

n

500 1000 1500 2000 2500 3000

0.
0

0.
4

Houston-Aluminum

Day

C
on

ce
nt

ra
tio

n

0 500 1000 1500 2000 2500 3000

0.
0

1.
0

Figure 2.2: Plot of Aluminum in Tampa, Pittsburgh and Houston

manganese, magnesium and zinc. These metals are heavily concentrated in Pittsburgh

with concentration in general two to three times higher than that of the other two

regions. Magnesium in the contrary is very low in Pittsburgh. It is half the amount

found in Tampa and one third of that of Houston.

Time series plots of aluminum (Figure 2.2) indicates that the metal is periodic

with low concentration in the winter and high in the summer in Tampa and Houston,

while it is variable in the Pittsburgh area. Calcium although variable in all three

regions, is generally high in the summer (Figure 2.3). Sodium does not show any

noticeable pattern in all three regions (Figure 2.4) and is generally high compare to

aluminum and calcium. Aluminum has no noticeable trend in Tampa. The aluminum

average concentration in Tampa was 33.26 in 2000, its increase to the highest average

concentration of 53.09 in 2001 followed by a decreasing trend leading to the average

lowest concentration of 30.64 in 2005. There seems to be a huge increase of aluminum

concentration in 2006 and 2007. On average the lowest concentrations are recorded in
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site 3 located in Pinellas Park. Concentrations per site are comparable, except in 2004

where from Table 2.3 we see that the average daily concentration in Site 2 in Tampa

(43.49) is approximately five times that of site 3 in Tampa (8.10). Aluminum trend

in Houston is in general increasing, with a huge drop in concentration to a minimum

of 5.75 in 2003. The highest concentration of 131.13 is observed in 2007. There is a

noticeable site to site variation, with year 2003 seing the lowest observation across all

sites. Pittsburgh aluminum is moderately increasing. Although moderate as it is the

case with the general trend, there is a site to site variation. Here the concentrations

are low compared to the other two MSAs. Among the three regions, Houston sees

the highest concentration of aluminum and Pittsburgh having the lowest. This may

suggest that the steel industries are not the main source of PM aluminum.

Table 2.4 presents the average daily concentration of calcium per year and per site

in Tampa, Houston and Pittsburgh. Calcium is in general decreasing in Tampa-St.

Petersburg-Clearwater MSA with a minimum of 48.91 in 2007 and a maximum of 74.41

in 2001. Site to site variations are comparable. Calcium concentrations in Houston

are decreasing till 2003 then increased afterward. Here site to site concentrations

are variable. The concentrations seems to generally decreased in Pittsburgh. The

maximum concentration of 49.14 is recorded in 2001 while the minimum of 35.11 is

in 2006. Sites concentrations are moderately variable.

From Table 2.5, we see that sodium concentrations decreased from 2001 to a low

level of 74.59 in 2003 and increased to more than double in 2007 in Tampa. Site

concentrations are variable. In Houston the concentrations see a yearly variation

with a huge increase starting from 2005. Here also there is a site to site variation.

Pittsburgh sees in general a decrease in it sodium concentrations. This decrease in

also noticeable from site to site except in site 3 with data available from 2003 where

we see yearly variation.
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Table 2.2: Average daily concentration and standard error in ng/m3 of PM2.5 speciation
metals in Tampa, Houston and Pittsburgh

Metal Tampa Houston Pittsburgh

Aluminum 43.70(0.086) 68.54(0.040) 24.06(0.028)
Barium 17.49(0.028) 11.62(0.004) 13.36(0.010)
Cadmium 1.81(0.003) 1.14(0.000) 2.12 (0.002)
Calcium 56.03(0.031) 62.98(0.012) 41.45(0.020)
Chromium 1.64(0.003) 0.97(0.000) 3.01(0.003)
Cobalt 0.18(0.000) 0.14(0.000) 0.23(0.000))
Copper 4.49(0.010) 3.79(0.002) 4.82(0.002)
Cesium 3.15(0.008) 2.31(0.001) 3.08(0.004)
Gallium 0.62(0.001) 0.32(0.000) 0.48(0.000)
Iron 62.30(0.055) 93.11(0.032) 107.88(0.048)
Hafnium 1.89(0.004) 1.98(0.001) 1.96(0.003)
Lead 2.93(0.003) 2.74(0.001) 9.55(0.006)
Indium 2.15(0.003) 1.34(0.000) 2.18(0.002)
Manganese 1.31(0.001) 2.30(0.001) 5.06(0.003)
Iridium 0.96(0.001) 0.56(0.000) 1.19(0.001)
Molybdenum 0.71(0.001) 1.02(0.001) 1.30(0.001)
Nickel 2.69(0.017) 1.57(0.001) 1.64(0.001)
Magnesium 11.51(0.030) 18.77(0.010) 6.70(0.011)
Mercury 1.29(0.002) 0.60(0.000) 1.43(0.002)
Gold 1.05(0.001) 0.69(0.000) 1.11(0.001)
Lanthanum 6.51(0.012) 3.37(0.002) 5.36(0.006)
Niobium 0.47(0.001) 0.28(0.000) 0.48(0.001)
Tin 6.41(0.007) 3.98(0.001) 6.71(0.005)
Titanium 5.52(0.007) 7.49(0.003) 4.73(0.003)
Scandium 0.17(0.000) 0.22(0.000) 0.18(0.000)
Vanadium 2.73(0.002) 3.72(0.001) 1.28(0.001)
Silver 2.30(0.002) 1.25(0.000) 2.21(0.002)
Zinc 5.21(0.005) 12.33(0.003) 25.71(0.018)
Strontium 1.18(0.004) 1.07(0.000) 0.98(0.001)
Tantalum 5.10(0.007) 2.95(0.001) 5.65(0.006)
Rubidium 0.37(0.001) 0.23(0.000) 0.36(0.000)
Potassium 92.77(0.282) 82.31(0.024) 67.36(0.041)
Yttrium 0.41(0.001) 0.28(0.000) 0.42(0.000)
Sodium 130.11(0.113) 127.66(0.040) 57.45(0.046)
Zirconium 0.89(0.003) 0.53(0.000) 0.68(0.001)
PM Mass 12.65(0.006) 11.60(0.001) 17.13(0.005)
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Table 2.3: Average daily concentration of aluminum in ng/m3 per Year and site in Tampa,
Houston and Pittsburgh

Site 2000 2001 2002 2003 2004 2005 2006 2007

Tampa 33.26 53.09 44.45 47.13 35.65 30.64 52.63 52.18
Tampa 1 33.26 53.09 44.45 47.13 NA NA NA NA
Tampa 2 NA NA NA NA 43.49 29.88 54.86 53.23
Tampa 3 NA NA NA NA 8.10 31.55 49.91 50.92
Houston 65.78 72.61 71.25 5.58 78.26 95.19 98.30 127.66
Houston 1 37.79 73.02 66.05 8.41 75.42 114.56 144.18 128.2
Houston 2 31.13 74.08 30.43 2.59 79.21 131.01 NA NA
Houston 3 24.66 68.12 77.22 2.76 38.77 114.98 NA NA
Houston 4 49.91 93.96 NA NA NA NA NA NA
Houston 5 NA NA 82.55 16.16 90.39 125.14 NA NA
Houston 6 131.36 64.79 66.71 5.76 98.06 62.22 84.57 127.45
Houston 7 NA 32.54 108.46 2.55 68.38 105.75 NA NA
Houston 8 49.87 70.79 NA NA NA NA NA NA
Pittsburgh NA 11.77 28.94 15.87 26.92 19.07 30.24 31.08
Pittsburgh 1 NA 18.28 29.30 17.85 37.04 22.62 32.57 31.67
Pittsburgh 2 NA 7.17 31.57 22.09 NA NA NA NA
Pittsburgh 3 NA NA NA 5.90 16.36 21.50 44.42 45.96
Pittsburgh 4 NA 12.70 35.76 12.25 15.47 9.83 22.17 25.56
Pittsburgh 5 NA 5.83 19.45 13.25 14.73 15.80 21.44 21.46
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Table 2.4: Average daily concentration of calcium in ng/m3 per Year and site in Tampa,
Houston and Pittsburgh

Site 2000 2001 2002 2003 2004 2005 2006 2007

Tampa 63.68 74.41 53.90 58.37 53.88 51.35 55.10 48.91
Tampa 1 63.68 74.41 53.90 58.37 NA NA NA NA
Tampa 2 NA NA NA NA 57.11 52.43 59.27 50.41
Tampa 3 NA NA NA NA 42.55 50.04 49.97 47.11
Houston 61.21 56.28 51.09 62.57 71.01 70.24 66.64 71.11
Houston 1 57.33 55.97 57.13 79.66 83.16 78.92 74.74 93.68
Houston 2 51.48 61.30 31.69 42.71 77.57 89.88 NA NA
Houston 3 44.82 48.24 49.43 53.41 40.93 57.21 NA NA
Houston 4 77.09 82.78 NA NA NA NA NA NA
Houston 5 NA NA 79.61 99.45 115.12 104.28 NA NA
Houston 6 78.02 48.13 44.49 64.08 69.35 64.08 64.21 62.11
Houston 7 NA 29.41 56.41 51.29 65.04 52.13 NA NA
Houston 8 41.41 42.00 NA NA NA NA NA NA
Pittsburgh NA 44.41 49.14 38.79 39.49 42.06 35.11 40.30
Pittsburgh 1 NA 46.22 53.16 43.27 47.10 48.60 38.94 44.99
Pittsburgh 2 NA 44.19 46.92 40.87 NA NA NA NA
Pittsburgh 3 NA NA NA 30.34 34.99 39.23 35.50 62.14
Pittsburgh 4 NA 51.96 50.27 28.21 25.29 30.62 26.51 26.48
Pittsburgh 5 NA 34.49 43.60 41.13 33.05 37.66 36.75 25.44

23



Table 2.5: Average daily concentration of sodium in ng/m3 per Year and site in Tampa,
Houston and Pittsburgh

Site 2000 2001 2002 2003 2004 2005 2006 2007

Tampa 139.38 173.15 109.16 74.59 116.61 131.64 131.63 150.03
Tampa 1 139.38 173.15 109.16 74.59 NA NA NA NA
Tampa 2 NA NA NA NA 111.88 121.97 113.56 136.02
Tampa 3 NA NA NA NA 133.24 143.25 153.79 166.94
Houston 116.13 101.81 135.57 36.20 145.16 186.05 212.41 202.58
Houston 1 85.00 89.15 147.74 35.93 171.55 196.55 226.31 267.90
Houston 2 100.54 105.65 73.25 21.33 136.10 206.97 NA NA
Houston 3 88.92 70.46 125.43 30.11 101.70 198.90 NA NA
Houston 4 98.40 102.95 NA NA NA NA NA NA
Houston 5 NA NA 171.47 37.08 207.30 266.94 NA NA
Houston 6 174.64 143.72 165.55 44.99 155.06 162.09 208.24 176.54
Houston 7 NA 49.11 137.72 38.81 116.39 175.13 NA NA
Houston 8 85.63 96.15 NA NA NA NA NA NA
Pittsburgh NA 165.48 59.93 46.23 56.64 35.63 41.12 33.59
Pittsburgh 1 NA 146.10 59.14 43.78 73.26 40.62 47.69 38.47
Pittsburgh 2 NA 209.60 65.58 44.75 NA NA NA NA
Pittsburgh 3 NA NA NA 22.90 36.52 50.24 56.60 38.09
Pittsburgh 4 NA 136.00 56.40 51.12 43.67 23.07 30.95 23.53
Pittsburgh 5 NA 191.09 59.33 50.81 33.03 19.81 26.19 31.08
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2.3 Statistical Methods

The traditional time series models are useful in describing the temporal variations,

including seasonality and trend, in ambient air PM2.5 metals. However, preliminary

examination of the PM2.5 metals (Figures 2.2-2.4) suggested variations that are less

regular and less appropriate for time series modeling. As a result, we will use additive

models, a type of non-parametric methods to describe the temporal variations.

Being time series, PM2.5 metals speciation data are likely to be correlated. Several

data values are also recorded from each sites giving it a structure of clustered data

with site as a cluster. A model that can take into account this nature of the data is

needed. In general, when dealing with correlated data such as clustered, hierarchical

and spatial designs data, model that could account for the correlation need to be

used and random effect models are good candidate. For these reasons we will use the

Generalized Additive Mixed Models(GAMM) described below for the modeling.

Suppose that yi is the ith observations of the random variable y and p covariates

xi = (1, xi1, · · · , xip)
T associated with fixed effects and a q × 1 vector of covariates

zi associated with random effects. Given a q × 1 vector b of random effects, the

observation yi are assumed to be independent with means E(yi|b) = µb
i and variances

var(yi|b) = φm−1
i v(µb

i), where v(.) is a specified variance function, mi is a prior weight

(e.g. a binomial denominator) and φ is a scale parameter. A generalized additive

model is given by

g(µb
i) = β0 +

p
∑

j=1

fj(xij) + zTi b, (2.3.1)

where g(.) is a monotonic differentiable link function, fj(.) is a centered twice-differentiable

smooth function, the random effects b are assumed to be distributed as N(0, D(θ))

and θ is a c× 1 vector of variance components.

A key feature of the GAMM(2.3.1) is that additive nonparametric functions are

used to model covariates and random effects are used to model correlation between
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observations. If fj(.) is a linear function, the GAMM(2.3.1) reduce to Generalized

Linear Mixed Model (GLMM). In addition if the link function is taking to be identity,

then they will be reduced to additive mixed models.

Model (2.3.1) encompasses various study designs, including clustered, hierarchical

and spatial designs. This is because a flexible covariance structure of the random

effects b can be specified. For longitudinal data, the random effects b can be de-

composed into a random intercept and a stochastic process (Zeger and Diggle, 1994;

Zhang et al., 1998). For hierarchical (multilevel) data, they can be partitioned to

represent different levels of a hierarchy, e.g. a centre, physician and patient in a mul-

ticentre clinical trial (lin and Breslaw, 1996). For spatial data, which is common in

disease mapping and ecological studies, they can be used to model spatial correlation

(Cressie, 1993; Breslaw and Cleton, 1993).

The multiple smoothing parameter estimation by generalized cross validation (mgcv)

package is part of the recommended suite that comes with the default installation of

R and is used by GAMM for the model fitting. It is based on methods described

in Wood (2000). Different packages are available in R for fitting additive model in

general. The gam package allows more choice in the smoothers used while the mgcv

package has an automatic choice in the amount of smoothing as well as wider func-

tionality. The gss package of Gu (2002) takes a spline-based approach. The fitting

algorithm depends on the package used. The penalized smoothing spline approach is

used in the mgcv package and works as follow:

Suppose we represent fj(xj) =
∑

i βijφi(xj) for a family of spline basis functions, φi.

We impose a penalty
∫

[f ”
j (x)]

2dx which can be shown to be of the form βT
j Sjβj , for

a suitable matrix Sj that depends on the choice of basis. The model is fitted by

minimizing,

||y −Xβ||2 +
∑

j

λjβ
T
j Sjβj

with respect to β and the λjs control the amount of smoothing for each variable. The
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problem of estimating the degree of smoothness for the model is now the problem of

estimating the smoothing parameter λjs. Generalized cross-validation method (GCV)

is used to select the λjs.

In GCV, λ is chosen to minimize:

Vg =
n
∑n

i=1(yi − f̂i)
2

[tr(I −A)]2
.

where f̂ is the estimate of f from fitting all the data, and A is the corresponding

influence matrix.

For this special case of PM2.5 speciation data, a possible model can be given by

yis = β0 + f1s(yearis) + f2s(monthis) + f3s(tempis) + f4s(pressis) + Sitei + ǫis

The problem with this model is as the number of site augment, we will pay the price

of having to estimate a lot of parameters for the site effect. Another difficulty in using

this model is that, we can only make statements about stations given in the data and

won’t be able to generalize to a neighboring station in the region. The best approach

is to use a random intercept for the site and the following model is proposed.

yis = β0 + f1s(yearis) + f2s(monthis) + f3s(tempis) + f4s(pressis) + bs + ǫis

where yis is the ith observations of the random variable y and s represent the MSA.

fjs refer to a smooth function for the covariate xj
s of a given metropolitan statistical

area s with ith observation xj
is. bs is the random effect representing sites in a given

MSA s. Within the random effect different correlation structure could be specified. In

our present situation an autoregressive of order one (AR1) is found to be suitable. ǫis

is the noise and is assumed to be independently distributed with mean 0 and variance

σ2.

Metal mixtures is defined as a combination of several metals. A metal will be con-

27



sidered part of a mixture based on several criteria including factor analysis, knowledge

of association with health effect and source origin. All metals coming from the same

leading factors will be grouped together to form a mixture. Metals from significant

factors with high loading coefficients (> 0.05) could also be grouped to constitute a

mixture. Additionally some mixtures are formed based on knowledge of their signifi-

cant association with health outcome such as low birth weight and preterm birth either

during the first trimester of pregnancy or the entire pregnancy period. Summary of

mixtures analyzed in this report are giving in Tables 2.8 and 2.9.

2.4 Results

2.4.1 Individual metals

Aluminum has no trend in Tampa (p=0.13), while the trend is significant in both

Houston (p < 0.0001) and Pittsburgh (p = 0.0009). It is a seasonal metal in Tampa

(p < 0.0001) and Houston (p < 0.0001) but not in Pittsburgh (p = 0.042). Tem-

perature is highly associated with aluminum variation in Houston (p < 0.0001) and

Pittsburgh (p < 0.0001) but that association is not clear in Tampa (p = 0.025).

Barometric pressure has no statistically significant effect on aluminum in Houston

and Pittsburgh (p = 0.06) and (p = 0.29) respectively, see Table 2.6. Table 2.6 shows

that calcium is highly dependent upon temperature and barometric pressure in all

three regions. Calcium also has a clear seasonal pattern in all three regions but the

trend in Pittsburgh is somehow not so clear (p=0.037). Excepts for barometric pres-

sure in Pittsburgh (p = 0.08), sodium has a clear trend, seasonality and is dependent

upon temperature and barometric pressure in all three regions. Iron is highly seasonal,

it has a clear trend except in Tampa (p = 0.82) and depend upon temperature and

pressure in all three regions. Chromium has a statistically significant trend in Tampa,

questionable in Houston and no trend in Pittsburgh. It is also not a seasonal metal

in both Tampa (p = 0.92) and Pittsburgh (p = 0.70). Temperature has no significant
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effect on chromium in both Tampa (p = 0.44) and Houston (p = 0.46) and is highly

dependent upon pressure only in Pittsburgh (p < 0.0001). In Houston lead has a

clear trend, seasonality and dependent upon temperature and pressure. The metal is

not seasonal in both Tampa (p = 0.45) and Pittsburgh (p = 0.07). Pressure is not a

significant predictor of lead in Tampa (p = 0.21). Manganese has highly significant

trend and seasonality in all tree regions. Temperature has no clear significant effect in

Tampa (p = 0.04), while pressure is not statistically significant in Tampa (p = 0.05)

and Houston (p = 0.07). Trend, seasonality and pressure effect are not present on

magnesium in Tampa and Pittsburgh, while temperature is highly significant in all

three regions. Zinc has a highly significant trend in all regions. Seasonality is not

present in Tampa (p = 0.52) and Houston (p = 0.31), while temperature has no effect

in Pittsburgh (p = 0.47). These results are summarized in Table 2.6.

Standard deviations of the fitted random effects gamm models in Tampa, Houston

and Pittsburgh are summarized in Table 2.7. It also gives the order one autoregressive

correlation coefficients fitted to the pollution data. Aluminum, calcium, sodium and

zinc are variable among sites in Tampa. All metals show variation between sites in

Houston with calcium, sodium and iron showing the highest variations. In Pittsburgh

meanwhile, sodium and magnesium show little variation between sites. Table 2.7 also

suggests the presence of spatial variation among sites within a region and between

regions.

Aluminum

Figures 2.5-2.7 show the results of fitting the above gamm models to aluminum in

Tampa, Houston and Pittsburgh respectively. Trend are similar in Tampa and Pitts-

burgh while seasonality are similar in Tampa and Houston with pick in the summer.

Although increasing, trend in Houston is not linear as in the other two regions. Trend

similarity in Tampa and Pittsburgh may suggest similar aluminum sources in these
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Table 2.6: Significance of Year, Month, Temperature and Barometric Pressure on some
selected heavy metals in Tampa, Houston and Pittsburgh.

Aluminum

Year Month temp Pressure

Tampa 0.1310 3.66 ×10−11 0.0254 0.0106

Houston 2.80 ×10−10 < 2× 10−16 7.55 ×10−10 0.0633

Pittsburgh 0.000886 0.041634 5.67 ×10−12 0.289741

Calcium

Tampa 0.000481 9.80 ×10−06 1.07 ×10−06 8.66 ×10−05

Houston 4.55×10−10 < 2× 10−16 < 2× 10−16 1.09×10−06

Pittsburgh 0.037 4.90×10−13 < 2× 10−16 4.89 ×10−07

Sodium

Tampa 0.001394 < 2× 10−16 < 2× 10−16 0.0000459

Houston < 2× 10−16 < 2× 10−16 < 2× 10−16 0.000966

Pittsburgh < 2× 10−16 0.0104 1.33 × 2−11 0.0785

Iron

Tampa 0.820395 3.06× 10−11 0.000187 0.013248

Houston 2.06 × 10−07 < 2× 10−16 1.40 × 10−08 3.00 × 10−05

Pittsburgh 8.98 × 10−05 6.86× 10−07 < 2× 10−16 < 2× 10−16

Chromium

Tampa 0.0108 0.9214 0.4414 0.6051

Houston 0.0214 0.0123 0.4554 0.0331

Pittsburgh 0.81747 0.69980 0.00211 2.02 × 10−06

Lead

Tampa 5.58 × 10−12 0.44955 0.00654 0.20542

Houston 0.002709 0.000127 1.72 × 10−06 1.34 × 10−10

Pittsburgh 0.00253 0.06698 3.63 × 2−06 2.62 × 2−14

Manganese

Tampa 5.48 × 10−14 0.00694 0.04116 0.04987

Houston < 2× 10−16 0.000808 0.000197 0.072555

Pittsburgh 7.85 × 10−08 1.41× 10−07 1.19 × 10−11 9.86 × 10−12

Magnesium

Tampa 0.229674 0.079368 0.000503 0.333945

Houston < 2× 10−16 1.71× 10−11 < 2× 10−16 0.184

Pittsburgh 0.0708 0.6234 4.35 × 10−07 0.3729

Zinc

Tampa 0.010822 0.524571 0.000213 0.005207

Houston 2.72 × 10−11 2.46× 10−09 1.85 × 10−05 0.000312

Pittsburgh 0.000194 0.311186 0.468151 1.44 × 10−06
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Table 2.7: Standard deviation of sites random effects and ρ values for the fitted autoregres-
sive of order one correlation.

Metal Tampa Houston Pittsburgh

Aluminum 0.02(0.091) 0.06 (0.224) 0.02 (0.166)
Calcium 1.2 (0.154) 14.2(0.237) 3.2 (0.160)
Sodium 0.7 (0.056) 19.3 (0.225) 2.57 × 10−5 (0.095)
Iron 9.59 × 10−4 (0.162) 31.5 (0.237) 9.2 (0.0702)
Chromium 6.29 × 10−7 (-0.016) 0.3 (0.295) 0.3 (0.0134)
Lead 6.76 × 10−6 (-0.028) 0.8 (0.063) 4.2 (0.055)
Manganese 5.13 × 10−5 (0.073) 1.0(NA) 0.8 (NA)
Magnesium 1.56 × 10−4 (0.021) 3.3 (0.233) 8.33 × 10−8 (0.065)
Zinc 0.5 (0.008) 5.0 (0.071) 5.5 (0.016)
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Figure 2.5: Non parametric estimates of trend (p=0.131), seasonality (p < 0.001), temper-
ature (p=0.025) and barometric pressure (p=0.0106) effect of aluminum in Tampa
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Figure 2.6: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), temper-
ature (p < 0.001) and barometric pressure (p=0.063) effect of aluminum in Houston
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Figure 2.7: Non parametric estimates of trend (p < 0.001), seasonality (p = 0.041), temper-
ature (p < 0.001) and barometric pressure (p=0.290) effect of aluminum in Pittsburgh
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Figure 2.8: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), temper-
ature (p < 0.001) and barometric pressure (p < 0.001) effect of calcium in Tampa

two geographical areas. Mobile sources might be the most important contributors of

aluminum in these two regions. Both Tampa and Houston see a high elevation of

aluminum in the summer with the reverse situation in Pittsburgh. The reason might

be the high demand of electricity and more importantly an increased traffic in the

summer due to high tourism activity during that period. In all three regions high tem-

peratures are associated with higher aluminum levels, while pressure has effect only

in Houston. It is not clear, what role the steel and oil industries play in aluminum

concentration as they are probably not the major sources.

Calcium

Calcium level is decreasing in Tampa, increasing in Houston and nearly constant in

Pittsburgh (Figures 2.8-2.10). The concentration level may be driven by the type of

industries and not other sources. Except for the industry types, Tampa is very much
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Figure 2.9: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), temper-
ature (p < 0.001) and barometric pressure (p < 0.001) effect of calcium in Houston
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Figure 2.10: Non parametric estimates of trend (p=0.037), seasonality (p < 0.001), temper-
ature (p < 0.001) and barometric pressure (p < 0.001) effect of calcium in Pittsburgh
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Figure 2.11: Non parametric estimates of trend (p = 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of sodium in Tampa

comparable to Houston but yet we see completely different trend of calcium. As

for seasonality, we see similar trend in Tampa and Houston, probably due to similar

summer activities in these two regions. In both regions, calcium concentrations are

high in the summer and low in the winter and have tendency to increase with high level

of temperature. To the contrary, in Pittsburgh summer see the lowest concentrations.

Similar temperature effect as in the previous two regions is observed. Pressure plays

the same role in all these regions having an increasing level of calcium associated with

high level of barometric pressure.

Sodium

Sodium in moderately decreasing in Tampa and Pittsburgh but increasing in Houston

(Figures 2.11-2.13). Summer months seem to see the lowest level of sodium in both

Tampa and Houston while the level is closely constant in Pittsburgh. Can the type
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Figure 2.12: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of sodium in Houston
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Figure 2.13: Non parametric estimates of trend (p < 0.001), seasonality (p = 0.010), tem-
perature (p < 0.001) and barometric pressure (p=0.079) effect of sodium in Pittsburgh
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Figure 2.14: Non parametric estimates of trend (p=0.820), seasonality (p < 0.001), temper-
ature (p < 0.001) and barometric pressure (p=0.013) effect of iron in Tampa

of industries be a determinant factor for this metal too? Temperature has opposite

effect by regions. In Tampa and Houston, high level of temperatures are associated

with high levels of sodium while Pittsburgh sees the opposite: with high level of

temperatures associated with low levels of sodium. Probably not only temperature

play a role but rather climate including rain and wind may play a significant role

in these differences. Barometric pressure has also a slightly different contribution

depending on regions. While it has a decreasing effect in Pittsburgh, the pattern is

more complex in Tampa and Houston.

Iron

Trend, seasonality, temperature and pressure effects on iron are similar to aluminum

in all three regions, Figures 2.14-2.16. Iron has no trend in Tampa. We see a nearly

constant iron level during the eight years study period. It varies by season with high
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Figure 2.15: Non parametric estimates of trend (p < 0.001) , seasonality (p < 0.001),
temperature (p < 0.001) and barometric pressure(p < 0.001) effect of iron in Houston
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Figure 2.16: Non parametric estimates of trend (p < 0.001) , seasonality (p < 0.001),
temperature (p < 0.001) and barometric pressure(p < 0.001) effect of iron in Pittsburgh
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concentrations in the summer yielding to a pick in July. Temperatures above 250C are

associated with high elevations of iron in the Tampa bay area. In Houston iron has

an increasing trend with maximum concentrations in 2007. The seasonality is closely

similar to the Tampa bay seasonality which may suggest again a non industries type

pollution source. On road sources rather that non road pollution sources may have

played an important role with heavy summer vacation traffic. Temperature has a

similar effect as in Tampa with high temperatures associated with high iron level.

In all three regions Tampa, Houston and Pittsburgh, pressure has a linear increasing

effect. Pittsburgh meanwhile has a moderate increasing trend of iron. Industries

might be playing a big role in iron level as both regions, Houston and Pittsburgh

with more presence of industries show some trend level of iron while with almost

no industry, Tampa shows a near constant trend of the metal. These findings also

suggest iron origin might not be from road and non road sources alone. Seasonality

in Pittsburgh is more variable. March and November see the highest concentration

levels.

Chromium

Chromium has a convex down shape in Tampa and Houston and is constant in Pitts-

burgh. In Houston it reaches it maximum in 2003 and 2004. The seasonality is

constant in Tampa and Pittsburgh. It is periodic in Houston with maximum in the

summer. June sees the highest maximum concentrations in Houston. The concen-

tration increases linearly with temperature in all three regions. Barometric pressure

has a similar effect in Houston and Pittsburgh while concentrations decrease with

increasing pressures in Tampa (Figures 2.17-2.19).

Lead

Lead, Figures 2.20-2.22 has a highly decreasing trend in Tampa, moderately decreasing
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Figure 2.17: Non parametric estimates of trend (p=0.011), seasonality (p=0.921), temper-
ature (p=0.441) and barometric pressure (p=0.605) effect of chromium in Tampa
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Figure 2.18: Non parametric estimates of trend (p=0.021), seasonality (p=0.012), temper-
ature (p=0.455) and barometric pressure (p=0.033) effect of chromium in Houston
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Figure 2.19: Non parametric estimates of trend (p=0.817), seasonality (p=0.700), temper-
ature (p=0.002) and barometric pressure (p < 0.001) effect of chromium in Pittsburgh
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Figure 2.20: Non parametric estimates of trend (p < 0.001), seasonality (P=0.450), tem-
perature (P=0.007) and barometric pressure (P=0.205) effect of lead in Tampa
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Figure 2.21: Non parametric estimates of trend (p = 0.003), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of lead in Houston
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Figure 2.22: Non parametric estimates of trend (P=0.003), seasonality (P=0.067), temper-
ature (p < 0.001) and barometric pressure (p < 0.001) effect of lead in Pittsburgh
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Figure 2.23: Non parametric estimates of trend (p < 0.001), seasonality (p=0.007), temper-
ature (p=0.041) and barometric pressure (p=0.050) effect of manganese in Tampa

in Houston and almost constant in Pittsburgh. Seasonality is quite different in all

three regions. Linear decreasing in Tampa, convex down in Houston with maximum

in August and convex down in Pittsburgh with minimum in July and August. Lead

concentrations decrease with increasing temperatures in Tampa and have opposite

effect in Pittsburgh. All three regions see increasing concentrations with increasing

barometric pressures.

Manganese

Manganese, Figures 2.23-2.25 has a decreasing trend in Tampa and V-shape form in

Houston with low concentrations in 2002. It is linearly decreasing in Pittsburgh. We

see similar convex up periodicity in Tampa and Houston with maximum in June-July

and opposite figures in Pittsburgh with minimum in June-July. While temperatures

have a mixed effects on manganese concentrations in Houston, we see increasing con-

centrations with increasing temperatures in the other two regions. Pressure shows a

linear increasing effect on manganese in Tampa and Houston with mixed results in
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Figure 2.24: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p=0.073) effect of manganese in Houston
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Figure 2.25: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of manganese in Pittsburgh
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Figure 2.26: Non parametric estimates of trend (p=0.230), seasonality (p=0.079), temper-
ature (p < 0.001) and barometric pressure (p = 0.334) effect of magnesium in Tampa

Pittsburgh.

Magnesium

Magnesium, Figures 2.26-2.28 has a linear increasing trend in Tampa, sinusoidal in

Houston and convex up in Pittsburgh. The high contrast of this metal within the three

regions make it difficult to predict it main sources. Seasonality is similar in Tampa

and Pittsburgh and irregular in Houston with maximum in July and minimum in

September. Increasing temperatures are associated with increasing magnesium levels

in all three regions. Pressure shows a similar effect everywhere.

Zinc

Increasing barometric pressure see increasing zinc concentrations with near constant

seasonality in all three regions. Concentrations decrease with increasing tempera-

tures in Tampa, increase with increasing temperatures in Pittsburgh and variable in

Houston. The trend is mostly increasing almost everywhere Figures 2.29-2.31.
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Figure 2.27: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.184) effect of magnesium in Houston
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Figure 2.28: Non parametric estimates of trend (p=0.071), seasonality (p=0.623), temper-
ature (p < 0.001) and barometric pressure (p = 0.373)effect of magnesium in Pittsburgh
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Figure 2.29: Non parametric estimates of trend (p=0.011), seasonality (p=0.525), temper-
ature (p < 0.001) and barometric pressure (p=0.005) effect of zinc in Tampa
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Figure 2.30: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of zinc in Houston
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Figure 2.31: Non parametric estimates of trend (p < 0.001), seasonality (p=0.311), temper-
ature (p=0.468) and barometric pressure (p < 0.001) effect of zinc in Pittsburgh

2.4.2 Metal mixtures

Table 2.8 presents the first 9 mixtures of metals based on the first three leading

factors from factor analysis. Mixtures 1-3 are from the three leading factors in Tampa,

mixtures 4-6 are from the three leading factors in Houston and mixtures 7-9 are from

the three leading factors in Pittsburgh. As with individual metals, differences in

mixtures from the factor analysis is an evidence of huge spatial variations between

regions. Mixtures 10-18 are presented in Table 2.9. Mixtures 10-12 from Tampa, 13

from Houston and 14-16 from Pittsburgh are based on factor loadings greater or equal

to 0.05. Mixtures 17 and 18 are based on significance with low birth and preterm birth.

Summaries of fitting the above generalized additive mixed models to the mixtures are

presented in tables 2.10 and 2.111. They show the significance of trend, seasonality,

temperature and barometric pressure effects in Tampa, Houston and Pittsburgh.

1
Notation: (I) increasing, (D) decreasing, (N) undecided, (LS) low in September, (HS) high in the

summer, (C) constant, (ID) increasing followed by decreasing

48



Table 2.8: Mixture of Metals, Mixtures 1-3 in Tampa, 4-6 in Houston and 7-9 in Pittsburgh
are based on on the first three leading factors from factor analysis

Metal Mix1 Mix2 Mix3 Mix4 Mix5 Mix6 Mix7 Mix8 Mix9

Aluminum + + + + +
Barium + + + + + +
Cadmium
Calcium + + + + + +
Chromium + + +
Cobalt + + + + + + +
Copper + + + +
Cesium + + +
Gallium + + +
Iron + + + +
Hafnium + + +
Lead + + + + + +
Indium
Manganese + + + + + + + +
Iridium + + +
Molybdenum + + + +
Nickel + + +
Magnesium + + + + +
Mercury +
Gold + +
Lanthanum + + + +
Niobium + + +
Tin + + + +
Titanium + + + + + + +
Scandium + +
Vanadium + + + + + + +
Silver + +
Zinc + + +
Strontium + + + + +
Tantalum + + +
Rubidium + + +
Potassium + + + + + +
Yttrium + + +
Sodium + + + +
Zirconium + +
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Table 2.9: Mixture of Metals, Mixtures 10-12 in Tampa, 13 in Houston and 14-16 in Pitts-
burgh are based on loading greater or equal to 0.05. Mixture 17 and 18 are based on
significance with low birth.

Metal Mix10 Mix11 Mix12 Mix13 Mix14 Mix15 Mix16 Mix17 Mix18

Alum + + +
Barium + +
Cadmium +
Calcium + + +
Chrom
Cobalt
Copper + + +
Cesium
Gallium + +
Iron + + + +
Hafnium + +
Lead
Indium
Manganes + +
Iridium + + +
Molyb +
Nickel + + +
Magnes + +
Mercury + +
Gold + +
Lanthan
Niobium
Tin + +
Titanium + +
Scandium
Vanadium
Silver
Zinc +
Strontium + +
Tantalum + + + +
Rubidium
Potassium + +
Yttrium
Sodium + +
Zirconium
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Table 2.10: Significance of Trend, Seasonality, Temperature and Pressure of some metal
mixtures in Tampa, Houston and Pittsburgh.

Mixture 1

Year Month temp Pressure

Tampa 0.617 (N) < 0.001(HS) 0.701 (N) 0.226(N)

Houston < 0.001(I) < 0.001(HS) < 0.001 (I) 0.003(I)

Pittsburgh 0.004(N) < 0.001(LS) < 0.001 (I) < 0.001 (I)

Mixture 2

Tampa 0.797 (N) < 0.001(HS) < 0.001 (I) 0.004 (I)

Houston < 0.001 (I) < 0.001(HS) < 0.001(I) 0.001(I)

Pittsburgh 0.003(N) < 0.001 (LS) < 0.001 (I) < 0.001(I)

Mixture 3

Tampa < 0.001 (D) < 0.001(N) < 0.001(I) 0.201(N)

Houston < 0.001(D) < 0.001(HS) < 0.001(I) < 0.001(I)

Pittsburgh < 0.001(D) < 0.001(LS) < 0.001(I) < 0.001(I)

Mixture 4

Tampa 0.983 (N) < 0.001(HS) < 0.001(I) 0.197

Houston < 0.001(I) < 0.001(LS) < 0.001(I) 0.013 (I)

Pittsburgh 0.002(D) < 0.001(LS) < 0.001(I) < 0.001(I)

Mixture 5

Tampa 0.124 < 0.001(HS) < 0.001(I) 0.516

Houston < 0.001(I) < 0.001(LS) < 0.001(I) 0.013(I)

Pittsburgh < 0.001(D) < 0.001(LS) < 0.001(I) < 0.001(I)

Mixture 6

Tampa 0.043(D) 0.007(HS) 0.994 0.513

Houston < 0.001(D) < 0.001(HS) < 0.001(I) 0.009(I)

Pittsburgh < 0.001(D) < 0.001(HS) < 0.001(I) < 0.001(I)

Mixture 7

Tampa 0.965(N) < 0.001 (HS) < 0.001(I) 0.197

Houston < 0.001(I) < 0.001(HS) < 0.001(I) 0.005(I)

Pittsburgh 0.002(N) < 0.001(LS) < 0.001(I) < 0.001

Mixture 8

Tampa 0.880 (N) < 0.001(HS) 0.719 0.238

Houston < 0.001(I) < 0.001(HS) < 0.001(I) 0.009(I)

Pittsburgh 0.165 (N) < 0.001(LS) < 0.001(I) < 0.001(I)

Mixture 9

Tampa < 0.001(D) < 0.001(LS) < 0.001(I) 0.006(D)

Houston < 0.001(I) < 0.001(LS) < 0.001(I) 0.056

Pittsburgh < 0.001 (D) < 0.001(LS) < 0.001(N) < 0.001 (I)
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Table 2.11: Significance of Trend, Seasonality, Temperature and Pressure of some metal
mixtures in Tampa, Houston and Pittsburgh.

Mixture 10

Year Month temp Pressure

Tampa 0.611 0.009 (HS) 0.996 0.469

Houston < 0.001(ID) < 0.001(HS) < 0.001 (I) 0.021(I)

Pittsburgh 0.999 < 0.001(HS) < 0.001(I) < 0.001(I)

Mixture 11

Tampa 0.814 < 0.001(HS) < 0.001 (I) 0.003(I)

Houston < 0.001(I) < 0.001(HS) < 0.001(I) < 0.001(I)

Pittsburgh 0.003(N) < 0.001(LS) < 0.001(I) < 0.001

Mixture 12

Tampa < 0.001 (D) 0.031(N) 0.183 0.067

Houston < 0.001(D) < 0.001(HS) 0.759 0.001(N)

Pittsburgh < 0.001(D) < 0.001(HS) 0.815 0.987

Mixture 13

Tampa 0.989(N) < 0.001(HS) < 0.001 (I) 0.004(I)

Houston < 0.001(I) < 0.001(HS) < 0.001(I) < 0.001 (I)

Pittsburgh < 0.001(I) < 0.001(LS) < 0.001(I) < 0.001 (I)

Mixture 14

Tampa 0.037 (D) < 0.001(HS) < 0.001(I) 0.002(I)

Houston < 0.001(I) < 0.001(HS) < 0.001(I) < 0.001 (I)

Pittsburgh 0.020(D) < 0.001 (LS) < 0.001 (I) < 0.001(I)

Mixture 15

Tampa 0.567(D) 0.007 (HS) 0.846 0.394

Houston 0.029(I) < 0.001(HS) 0.001 (I) 0.004(I)

Pittsburgh < 0.001(I) < 0.001(HS) < 0.001(I) < 0.001(I)

Mixture 16

Tampa < 0.001 (D) 0.068 0.392 0.112

Houston < 0.001(D) < 0.001(HS) 0.026(N) 0.099

Pittsburgh 0.001(D) < 0.001(N) 0.027(N) 0.875

Mixture 17

Tampa 0.137 < 0.001(N) < 0.001(I) 0.032(D)

Houston < 0.001(I) < 0.001(HS) < 0.001(I) 0.105

Pittsburgh < 0.001(D) < 0.001(LS) < 0.001(I) < 0.001(I)

Mixture 18

Tampa < 0.001 (D) < 0.001 (LS) < 0.001 (I) < 0.001 (D)

Houston < 0.001(I) < 0.001(LS) < 0.001 (I) 0.001 (D)

Pittsburgh < 0.001(D) 0.004 (N) < 0.001(D) 0.110
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Table 2.12: Standard deviation of sites random effects and ρ values for the coefficient of the
autoregressive of order one correlation.

Tampa Houston Pittsburgh

Mix1 3.19e−5(0.011) 0.0248(0.173) 0.0151(0.170)
Mix2 4.59e−6(0.138) 0.0395(0.188) 0.010(0.128)
Mix3 1.89e−5(0.130) 0.0223(0.187) 0.009(0.153)
Mix4 1.18e−5(0.047) 0.0509(0.203) 0.0180(0.124)
Mix5 1.69e−5(0.027) 0.0623(0.198) 0.0254(0.068)
Mix6 1.67e−5(0.002) 0.0152(0.117) 0.004(0.146)
Mix7 1.99e−5(0.045) 0.0572(0.203) 0.0293(0.098)
Mix8 NA(0.007) 0.0191(0.175) 0.0075(0.212)
Mix9 0.006(0.103) 0.0349(0.244) 2.84e−5(0.074)
Mix10 4.23e−7(-0.005) 0.0131(0.114) 6.15e−6(0.171)
Mix11 4.27e−6(0.135) 0.0365(0.190) 0.010(0.137)
Mix12 4.41e−8(0.130) 0.0001(0.174) 1.80e−8(0.189)
Mix13 4.79e−6(0.136) 0.0364(0.188) 0.009(0.130)
Mix14 1.18e−6(0.146) 0.0477(0.212) 0.0135(0.084)
Mix15 2.34e−6(-0.009) 0.0106(0.099) 7.14e−6(0.151)
Mix16 4.93e−7(0.075) NA(0.183) 9.35e−11(0.085)
Mix17 6.07e−7(0.130) 0.0311(0.223) 0.0155(0.062)
Mix18 0.007(0.053) 0.0199(0.235) 0.003(0.116)
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Figure 2.32: Non parametric estimates of trend (p = 0.617), seasonality (p < 0.001), tem-
perature (p = 0.701) and barometric pressure (p=226) effect of mixture 1 in Tampa

Trend

Mixtures can be grouped in term of their trend similarity in Tampa, Houston and

Pittsburgh. Mixtures 1, 2, 7, 8 and 11 show no apparent trend in both Tampa and

Pittsburgh but an increasing trend in Houston. A decreasing trend in Tampa and

Pittsburgh with an increasing trend in Houston is observed with mixtures 9, 14 and

18 . Mixture 4, 5 and 17 have no apparent trend in Tampa, increasing in Houston

and decreasing in Pittsburgh. A decreasing trend in all three regions is observed

with mixtures 3, 6, 12 and 16. Mixtures 13 and 15 present no trend in Tampa and

an decreasing trend in both Houston and Pittsburgh. Mixture 10 shows an initial

increase followed by a decrease in trend in Houston and no trend everywhere else.

Seasonality
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Figure 2.33: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p=0.003) effect of mixture 1 in Houston
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Figure 2.34: Non parametric estimates of trend (p = 0.004), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of mixture 1 in Pittsburgh
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Figure 2.35: Non parametric estimates of trend (p = 0.797), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p = 0.004) effect of mixture 2 in Tampa

As it was the case for the trend, several mixtures share the same seasonality. Mixtures

9 is seasonal and see it lowest concentrations around September in all three regions.

Mixtures 1, 2, 7, 8, 11, 13 and 14 are seasonal with highest concentrations observed in

the summer in Tampa and Houston and lowest in September in Pittsburgh. Seasonal

mixtures with high concentrations in the summer in Tampa and low concentrations

around September in both Houston and Pittsburgh are observed with mixtures 4 and

5. Mixtures 6, 10 and 15 are seasonal with high concentrations during summer in all

three regions. Mixtures 12 is seasonal with high concentrations in summer in Houston

and Pittsburgh while mixture 18 sees low concentrations in Tampa and Houston

in September. Seasonal with high concentrations in the summer and either low or

undecided concentrations in September in Pittsburgh are observed with mixtures 3,

16 and 17.

Temperature
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Figure 2.36: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p=0.003) effect of mixture 2 in Houston

Mixtures 2-5, 7, 11, 13, 14, and 17 have increasing concentrations with temperature

in all three regions. Increasing concentrations with temperature in one or two regions

with either non significant or undecided temperature effect in the remaining regions

is observed with mixtures 1, 6, 8-10 and 15. Contrary to other mixtures, differences

between regions in temperature effect is observed with mixture 18 which is increasing

with temperatures in Tampa and Houston but decreasing with temperatures in Pitts-

burgh. Mixture 15 sees no temperature effect in all three regions. Mixtures with no

or unclear temperature effect are mixtures 12 and 16.

BarometricPressure

Barometric pressures have no effect with mixture 16 in all regions. Concentrations are

increasing with barometric pressures in mixtures 2, 11, 13, 14 every where. Mixtures

9 and 17 see decreasing concentrations with barometric pressures in Tampa but not

significant or undecided in the other two regions. Mixtures 1, 3-8, 10 and 15 have
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Figure 2.37: Non parametric estimates of trend (p = 0.003), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of mixture 2 in Pittsburgh
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Figure 2.38: Non parametric estimates of trend (p = 0.037), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p = 0.002) effect of mixture 14 in Tampa
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Figure 2.39: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of mixture 14 in Houston
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Figure 2.40: Non parametric estimates of trend (p = 0.020), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of mixture 14 in Pittsburgh
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Increasing concentrations with barometric pressures in one or two regions with either

non significant or undecided pressure effects in the remaining regions. Concentrations

from mixtures 9 and 17 are decreasing in Tampa and increasing in Pittsburgh with

barometric pressures. Decreasing concentrations with barometric pressures in both

Tampa and Houston are seen with mixture 18 while barometric pressures have no

effects with mixture 16.

Overall we can note that mixtures 1, 2, 4, 5, 8 and 11 have similar trend, season-

ality, temperature and barometric pressure effects in all three regions. They can be

grouped in three categories. mixtures 1 and 8 belong to the first group, while 2, 11

are in the second group with 4 and 5 belonging to the third and last group. Mixture

18 show differences between regions especially on temperature effects. Looking at

it composition we notice the presence of sodium in the mixture which is the most

abundant metal in all regions. The metal also shows the same differences observed

in the mixture. It is increasing with temperature in both Tampa and Houston but

decreasing in Pittsburgh. Proximity with the sea might be the cause. Figures 2.32-

2.43 present some mixtures in Tampa, Houston and Pittsburgh. They also show a

clear spatial and temporal variations between regions. From the standard deviations

of sites random effects and the autoregressive of order one correlation coefficient sum-

marized in Table 2.12, we notice the absence of spatial variation in Tampa MSA. This

is an evidence that spatial variation is mostly driven by emission sources which are

absent is Tampa MSA as there are no industries in the region except maybe power

plants. In Houston and Pittsburgh meanwhile we see the presence of spatial variation

between sites within each region which is mainly due to the presence of industries as

source emissions.

Different metals or mixtures behave differently depending on the regions. This

is due primarily to the metals source origins which vary by regions. According to

the US EPA, in 2005, the main sources of PM in Tampa MSA are variable and are

distributed as follows by counties where PM monitoring stations are located. In Hills-
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Figure 2.41: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p < 0.001) effect of mixture 18 in Tampa
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Figure 2.42: Non parametric estimates of trend (p < 0.001), seasonality (p < 0.001), tem-
perature (p < 0.001) and barometric pressure (p = 0.001) effect of mixture 18 in Houston
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Figure 2.43: Non parametric estimates of trend (p < 0.001), seasonality (p = 0.004), tem-
perature (p < 0.001) and barometric pressure (p = 0.110) effect of mixture 18 in Pittsburgh

borough county, the principal source is electricity generation (52.5%) followed by non

road equipment (13.5%), road dust (9.9%), industrial processes (9.8%) and on road

vehicles (5.1%). In Pinellas county, the main source of PM is fossil fuel combustion

(27.6%), followed by non road equipment (17.6%), industrial processes (16.7%) and

on road vehicles (9.9%). In Pittsburgh MSA the distribution of PM source varies also

by county. In Allegheny county, the major sources are: Industrial processes (39.4%),

fossil fuel combustion (16.6%), non road equipment (15.0%), residential wood com-

bustion (8.4%) and electricity generation (7.8%). In Washington county, the major

source is electricity generation (26.7%), followed by road dust (16.0%) and waste dis-

posal (14.7%). In Westmoreland County, waste disposal (19.7%) is the major source

of PM, followed closely by road dust (19.3%) and industrial processes (15.5%). Hous-

ton MSA also sees different source of PM by county. Harris County has miscellaneous

(24.7%) as the major source, followed closely by industrial processes (23.7%), road

dust (16.7%) and non road equipment (12.2%) while in Montgomery County, road
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Table 2.13: Particulate matter source emission in percentages by counties where monitoring
stations are located in Tampa, Houston and Pittsburgh MSAs, EPA 2005

Sources Type Tampa MSA Houston MSA Pittsburgh MAS
Hills, Pinellas Harris, Montg Alleg, Wash, West

Elect. Generation 52.5 1.1 2.4 1.0 7.8 26.7 0.0
Non Road Equipment 13.5 17.6 12.2 3.5 15.0 6.3 9.4
Road Dust 9.9 9.3 16.7 66.9 2.4 16.0 19.3
Indust. Processes 9.8 16.7 23.7 2.6 39.4 11.2 15.5
On Road Vehicles 5.1 15.3 3.8 1.6 4.3 5.1 6.4
Res. Wood Combustion 2.8 9.9 2.5 1.3 8.4 4.9 8.0
Fossil Fuel Comb. 1.1 27.6 6.4 0.8 16.6 3.4 8.2
Waste Disposal 0.5 0.1 7.3 8.7 0.5 14.7 19.7
Fires 0.2 0.0 0.0 1.3 0.0 0.0 0.0
Solvent Use 0.2 0.0 0.3 0.0 0.3 0.0 0.5
Miscellaneous 4.3 2.5 24.7 12.3 5.3 11.6 12.9

dust (66.9%) is the leading PM source. The other sources are miscellaneous (12.3%),

waste disposal (8.7%) and non road equipment (3.5%). As expected, industrial pro-

cesses are not the major source of PM in Tampa MSA, while it play a major role

in the other two MSAs. Also it is relevant to mention the important role play by

non road equipments in all three regions. All PM sources and their contribution are

summarized in Table 2.13.

2.5 Discussion

Air pollution in general and particulate matter in particular have been found to be as-

sociated with several diseases. A good understanding of their sources and variations

will lead to major regulation by federal agency (EPA) and could help significantly

reduce their health hazard. Several studies have found statistically significant as-

sociation between PM and morbidity and mortality. It is suspected that PM and

especially it metal components are responsible for several cancer disease and several

studies are underway around the country to elucidate the association. Molinelli et

al (2002) exposed a human airway epithelial cell line to aqueous extracts of PM col-
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lected in the Utah Valley. In this study, part of the extract was treated to remove

cations, including transition metals. Cells exposed to the untreated extract showed

a concentration-dependent increase in the inflammatory mediator interleukin (IL)-8

compared to controls; cells incubated with the treated extract showed no such change.

This suggests that the removal of metal cations attenuated cellular response to the

aqueous extract, and supports a role for transition metal involvement in PM toxicity.

Based on their geographic location and more importantly the existing types of

industries, three metropolitan statistical areas (MSA) in the US have been selected

for our study: Pittsburgh MSA belongs to the Ohio valley region dominated by steel

industries. Houston area in addition to being a metropolitan area where traffic is

an important source of particulate matter, is in addition a region dominated by oil

industries. Tampa Bay MSA, the third region is comparable to Houston as for its

traffic and geographic location but yet very different in term of industries composition.

Tampa Bay is extremely poor in industries with power plants for electricity generation

as major industries in the region.

In order to carry out the spatio-temporal analysis of particulate matter metals,

additive mixed models have been used because of the irregular pattern observed with

the data which is unlikely to be captured by the usual parametric time series analysis

models. Additive mixed models provide a good alternative in modeling correlated data

such as the air pollution data. Furthermore, its flexibility allows the combination of

both the parametric and non parametric components during data analysis. These

models also provide a good possibility of handling correlation as various correlation

structure found in longitudinal, hierarchical (multilevel) and spatial data could be

incorporated into the models.

It is widely believe that in the natural environment, we are exposed to several

chemicals at the same time, which constitute a mixture. To date we lack clear sta-

tistical methods of how to define mixtures. Little is known about chemical mixtures,

their interaction and how they affect human health. In this study we investigated
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mixture of metals derived based on mathematical concept of factor analysis.

Results of the analysis show difference in variation depending on metal types and

regions with respect to trend, seasonality and weather conditions. Aluminum, cal-

cium, sodium, iron, chromium, lead, manganese, magnesium and zinc show different

trend, seasonality, temperature and pressure effect depending on regions. Tampa,

Houston and Pittsburgh are three different regions as for their industries composition

and geographic locations. Houston area is reach in oil industries, Pittsburgh is reach

is still industries while Tampa dominant industries are power plant for electricity

generation. Aluminum, iron and magnesium show no trend in Tampa. Chromium,

lead, magnesium, zinc show no seasonality in both Tampa and Pittsburgh. This is an

indication that they are not driven by seasonal sources. Temperature has no effect on

chromium in Tampa and Houston, no effect on zinc in Pittsburgh. Pressure has no

effect on magnesium in all three regions, no effect on aluminum in Houston and Pitts-

burgh, no effect on sodium in Pittsburgh, manganese in Houston and both chromium

and lead in Tampa. These differences are explained by the differences in emission

sources. Overall there is an improvement in air quality in all three regions. Following

our analysis we may conclude that steel industries may not be a significant source of

aluminum. High demand of electricity in Tampa and Houston in the summer could

explain the seasonality of aluminum. Oil industries maybe a good source of particu-

late matter calcium and magnesium. Steel industries might not be a significant source

of chromium and both oil and steel industries are significant sources of iron. Lead is

decreasing everywhere but we still see a heavy presence in steel industries area. This

is probably due to it usage by those industries.
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3 Exposure to PM2.5 speciation chemicals during pregnancy and Risk

of Low Birth Weight

3.1 Introduction

Low Birth weight (LBW) or infants weighing less than < 2500g is one of the major

health issues in public health. Epidemiologic studies commencing in the 1990s to date

have shown that exposure to ambient air pollution during the gestational or prenatal

period could intensify the risk of low birth weight (LBW), small-for-gestational age

(SGA) and preterm infants (Hwang et al. 2011, Lacasana et al. 2005, Maisonet et al.

2004, Ritz et al. 1999, Ritz et al. 2007). Studies done in different geographic regions

have reported associations between air pollution and birth outcomes such as LBW,

SGA and preterm delivery and increased infant morbidity and mortality (Rogers et

al. 2006, Sram et al. 2005). Exposure to higher concentrations of carbon monoxise

(CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), total suspended particles (TSP)

(Ha et al. 2001) and PM10 (Le et al. 2010) during the first trimester to mid preg-

nancy periods were associated with an increased risk of LBW. Several PM2.5 chemicals

such as aluminum, elemental carbon, nickel and titanium were found to be associated

with LBW (Ebisu and Bell, 2012). Darrow et al. (2011) found that exposure to

various concentrations of air pollutants in the later stages of pregnancy causes slight

decreases in the birth weights of full term infants. There has been a strong association

between PM and its subsequent effects on LBW and preterm birth. However, there

is yet to be an agreement on the causative pollutants (Wilhelm et al. 2011). The
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pathophysiological mechanisms that may contribute to effects of air pollution on birth

outcomes remain uncertain even though various hypotheses exist. Particulate matter

of aero-dynamic diameter less than 2.5 micrometers is a complex mixture of several

chemicals, including metals of varying toxicity to humans. This requires relating the

level of exposure to the particular chemical characteristics of PM2.5 to individual

health outcomes in the same locale, to identify which components are hazardous and

which are not. Several epidemiologic studies have identified metals as PM chemicals

associated with birth outcomes (Ebisu and Bell, 2012, Ibrahimou et al. 2014) and

additionally it is believe that our environmental exposure is in form of mixtures. Our

study examines the connection between level of exposure to PM2.5 Mixture specia-

tion metals during pregnancy and the risk of having LBW in offspring, by relating

individual exposure to individual maternal outcome for each pregnant woman in our

study.

3.2 Methods

Our data sources include the linked de-identified Hospital Inpatient Discharge (HID)

data and the Florida vital statistics birth data file for Hillsborough and Pinellas Coun-

ties for the years 2004 to 2007, together with the Air Quality System (AQS) speciation

data collected by the USEPA covering the same pregnancy period. The HID data were

obtained from the Florida Agency for Health Care Administration (AHCA), and vi-

tal records were acquired from the Florida Department of Health (FDOH). The birth

data contained birth-related variables together with antenatal information and any

medical or labor complications experienced by the mother. Each observation in the

birth data contained variables for the birth location by county, maternal characteris-

tics (marital status, education, age, race, and maternal smoking during pregnancy),

infant sex, gestational age in weeks, pre-pregnancy body mass index (BMI), and pre-

natal care. Our main outcome of interest was birth weight. The study population
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included all singleton live births in Hillsborough and Pinellas counties, Florida. AQS

speciation data covering the period 2003-2007, which include 35 different metals, was

used to estimate the average daily exposure to speciation chemicals for each woman.

Estimation of exposure assessment was made based on PM2.5 speciation chemical

concentrations collected from three stationary monitoring stations located in Hills-

borough and Pinellas counties. Two exposure metrics were used. First, we allotted

each mother’s residential zip code to one of the three monitoring sites based on the

site closest to her residential area. We relied on estimations of exposure assessment

by the use of distances from residential areas to the monitor sites within an area, since

assessing exposure per pollutant for each individual is difficult at the population level

(Sagiv et al., 2005; Salihu et al., 2011). The distance between maternal residence at

delivery and the three monitoring sites was calculated using the corresponding longi-

tudes and latitudes (Parker et al., 2005). Using the closest station, residential average

daily concentrations were calculated for each mother. Based on the gestational age

and the date of birth, we generated average exposure estimates for the first trimester

of pregnancy and the entire pregnancy period. Second we use the following personal

exposure model to estimate mother exposure

Einh =
[Cd

outToutVout + Cd
inTinVin + Cd

inTslVsl]×R

W × (Tout + Tin + Tsl)
(3.2.1)

where

• Tout, Tin, Tsl are durations in which the mother stayed outdoors, indoors (awake)

and indoor (sleeping)

• Vout, Vin, Vsl are the corresponding ventilation rates

• Cd
out and Cd

in are zip code level daily average concentration outside and inside

• W weight of the mother

• R the particulate matter absorption rate
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Average estimates of all the parameters in (3.2.1) are obtained from the Consoli-

dated Human Activity Database (CHAD). For an adult woman for example, CHAD

estimates national daily outdoor time to be approximately 1.8 hours (7.6%). Because

we lack the indoor concentration exposure estimates, we assume that the indoor con-

centrations are a fraction of the outdoor concentrations, that Cd
in = αCd

out where

0 < α < 1. We assign to each mother daily averages of PM2.5 speciation metal

mixtures for both the first trimester of pregnancy and the entire pregnancy period.

We fit a logistic regression model to the combined data to estimates the adjusted

odds of low birth weight after exposure to PM2.5 speciation metals during pregnancy.

3.3 Results

Metal mixtures were fitted one at the time to the model after controlling for known

risk factors (giving in Table 3.1) such as preeclamsia and tobacco use. The results of

the overall association between mixtures (Table 3.2) and the risk of low birth weight

for exposure during the first trimester and the entire pregnancy period are presented

in Table 3.3.

It shows that Mixture 6 (OR=5.08, p=0.006 and OR=3.22, p=0.001) and Mixture

7 (OR=2.04, p=0.012 and OR=4.69, p=0.003) are significantly associated with higher

odds of having low birth weight babies when exposure happen both during the first

trimester and the entire pregnancy period. We note that mixture 7 contains all the

metals that are present in mixture 6. When exposure happen only during the first

trimester, we see that mixture 1 (OR=3.51, p=0.001) and Mixture 8 (3.45, p=0.001)

are associated with higher odds of having a low birth weight infant. No association is

found when exposure happen during the entire pregnancy period (OR=2.99, p=0.095

and 2.63, p=0.156) respectively. In contrast mixture 4 (OR=3.17, p=0.043) and

Mixture 9 (OR=3.07, p= 0.051) are associated with higher odds of having a low birth

weight baby for exposure during the entire pregnancy but no association is found for
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Table 3.1: Adjusted Odds Ratios and Confidence Interval for Low birth weight

Outcome Variables OR(95% CI)

Education 0.750 (0.689-0.817)
Married 0.759 (0.705-0.812)
Pre-pregnancy BMI 0.958 (0.952-0.964)
Male 0.668 (0.625-0.714)
Gestation in weeks 0.445 (0.435-0.453)
Tobacco 1.941(1.749-2.154)
Abuse 1.709(1.202- 2.431)
Previa 1.667(1.251-2.223)
Abruption 2.547(2.028-3.199)
Preeclampsia 2.980(2.663-3.338)
Eclampsia 3.777(1.703-8.373)
G.Hypertention 1.642(1.442-1.870)
C.Hypertention 1.399(1.146-1.708)
Gestational Diabetes 0.734(0.630-0.854)
Diabetes Mellitus 0.751(0.550-1.026)
Infarction 2.138(1.474-3.100)
Black 1.887(1.740-2.046)
Anemia 0.794(0.709-0.889)

the first trimester exposure (OR=1.04, p=0.885 and OR=1.03, p=0.908) respectively.

We also note that mixture 8 contains all the metals of mixture 1. None of mixtures

4 and 9 contains all the chemicals of the other but they share in common calcium,

magnesium and titanium. Mixtures 2, 3, 5 and 10 are not associated with any risk

of low birth weight both for the first trimester or the entire pregnancy period. We

note that mixture 3 formed of tantalum and iridium is contains in mixture 10 and

mixtures 2 and 5 share several metals together.

3.4 Discussion

Low birth weight is a serious health issue that could lead to severe morbidity and

mortality. Several studies have shown association between PM2.5 total mass and low

birth weight. As PM is a complex mixture of several chemicals and not all of them

being toxic to human health, it is important to separate between harmful and not
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Table 3.2: PM2.5 speciation metals mixtures

Metals/Mixtures 1 2 3 4 5 6 7 8 9 10

Aluminum + + + + +
Barium + + + +
Cadmium +
Calcium + + + + + +
Chromium + +
Cobalt + + + +
Copper + + + + +
Cesium +
Gallium + +
Iron + + + + + +
Hafnium + +
Lead + + +
Indium
Manganese + + + + +
Iridium + + +
Molybdenum + + + +
Nickel + + + +
Magnesium + + + + +
Mercury +
Gold + +
Lanthanum +
Niobium +
Tin + + +
Titanium + + + + +
Scandium
Vanadium + + + +
Silver +
Zinc + + +
Strontium + + +
Tantalum + + +
Rubidium
Potassium + + + +
Yttrium +
Sodium + + + +
Zirconium +
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Table 3.3: Odds ratios and p-value of low birth weight for selected mixtures of metals for
the entire pregnancy and the first trimester pregnancy.

Entire Pregnancy First Trimester
Mixtures OR P-value OR P-value

Mixture 1 2.99 0.095 3.51 0.001

Mixture 2 2.35 0.083 1.04 0.866
Mixture 3 4.60 0.099 1.01 0.980
Mixture 4 3.17 0.043 1.04 0.885
Mixture 5 2.35 0.085 1.04 0.865
Mixture 6 5.08 0.006 3.22 0.001

Mixture 7 4.69 0.003 2.04 0.012

Mixture 8 2.63 0.156 3.45 0.001

Mixture 9 3.07 0.051 1.03 0.908
Mixture 10 5.25 0.065 1.06 0.891

harmful chemicals. Some metals such as lead, nickel and manganese for example

are known to be harmful and because our exposure always happen in mixtures, we

attempt to find out mixtures of metals that could be associated with low birth weight.

Our findings show that most of the mixtures that are associated with low birth weight

contains calcium, iron, aluminum, copper, manganese, magnesium and titanium.
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4 Bayesian Factor Analysis for Temporally Correlated PM2.5

Speciation Mixture Data

4.1 Introduction

Air pollution in general and particulate matter of aerodynamic less than 2.5 microm-

eter of diameter (PM2.5) in particular had been found to be harmful to human health

(Glinianaia et al., 2004, Donaldson and MacNee W., 2001, Gilboa et al. 2005, Dad-

vand et al. 2013). PM2.5 is a complex mixture of extremely small particles and liquid

droplets. They comes from many different sources including stationary sources such

as factories, power plants, dry cleaners, mobile sources such as cars, buses, trucks, and

trains and naturally occuring sources such as windblown dust, wildfires, and volcanic

eruptions and even indoor combustion of cooking and heating. Particle pollution is

made up of a number of components, including metals, acids (e.g. nitrates and sul-

fates), organic chemicals, and soil or dust particles. These different components are

measured in some select monitoring stations around the country which formed the

particulate matter speciation data collection network.

Given the complex composition of pollutants such as PM2.5 in the environment, it

is believed that our exposure is not limited to one chemical at the time but possibly

to infinitely many possible mixtures with varying composition and mix ratio. These

mixtures could be formed because they are emitted at the same time from the same

source origin. It is suspected that these chemicals can be characterized by certain

mixtures corresponding to emission source such as power plants, fixed or moving
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vehicles, or ecological and environmental conditions. As a result, human are more

susceptible to exposure to these mixtures as characterized by these latent factors.

One statistical tool that could be used to characterize mixtures in the environment,

is factor analysis.

Factor analysis is generally defined as statistical method used to describe variabil-

ity among observed variables in terms of a potentially lower number of unobserved

variables called factors. It is performed by examining the pattern of correlations (or

covariances) between the observed measures. Measures that are highly correlated

(either positively or negatively) are likely influenced by the same factors and can be

therefore grouped together under that factor(DeCoster, 1998).

Most proposals in the factor analysis literature assume that the data represent

random, independent samples from a multivariate distribution (lawley, 1940). This

cannot apply necessarily for all type of multivariate data, such as time series data

where observations appear in certain order that cannot be changed without funda-

mentally changing the outcome. Air pollution data is an example of one such data.

The US EPA particulate matter speciation data are large datasets containing more

than 100 different chemicals measured daily or measured every three to six days from

the environment with different source origins. Because concentrations are measured

daily (or every 3 to 6 days), PM speciation data is a typical example of a temporally

correlated data which are likely to be correlated as compared to independent data for

which the traditional factor analysis were developed.

To the best of our knowledge factor analysis is so far only developed under some

conditions such as stationarity for temporally correlated (time series) data as an ex-

tension of the traditional factor analysis which was developed for cross-sectional data

where the assumptions are reasonable. Most notably the traditional factor analysis

assumes observations are independent and identically distributed (i.i.d.). Pena and

Box extended the traditional factor analysis to time series data where they discussed

methods of identifying a simplifying structure in time series under the assumption of
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stationarity (Pena & Box, 1987). Gilbert, in his turn developed a theory where there

is no need of stationarity condition as long as difference data satisfied some weak sta-

tionarity condition that he called weak boundedness condition (Gilbert, 2005). Our

objective in this work are two-folds. First, to extend the traditional factor analysis

for independent data to (spatio-)temporally correlated air pollution PM2.5 chemicals

speciation data via Bayesian statistics with no stationarity assumption. Second, mak-

ing use of the source apportionment models and factor loadings obtained from the

previous analysis, to convert latent factors into mixtures. This is done by utilizing

loadings to develop mixture coefficients. This is the first time source apportionment

models and factor analysis are combined to define chemical mixtures. The Bayesian

approach allows the introduction of a temporal factor model within the covariance

matrix by using Kronecker product (Rowe 1998). First we begin by introducing the

factor analysis model.

4.2 Factor Analysis

Suppose there are p continuous variables (x) that are manifestation of m latent con-

structs or factors (f); f are difficult to observe but x are observable; m << p. Let

(x1, · · · , xi, · · ·xN) (i = 1, · · · , N) be a sample of x. A factor analysis model is given

by

(xi|µ,Λ, fi, m) = µ + Λ fi + ǫi

(p× 1) (p× 1) (p×m) (m× 1) (p× 1)
(4.2.1)

where

µ is a p - dimension vector of unobserved population mean,

fi is an m - dimension vector of unobservable ”common” factor scores at the ith oc-

casion,

Λ is a p×mmatrix of unobserved constants called the factor loadings; Λ = (λ′
1, · · · , λ

′
p)

′;
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and

ǫi is a p - dimension vector of errors or disturbance for the ith measurement, and it is

independent of fi.

Factor analysis is commonly used for dimension reduction of data when we assume

the p - vector x are surrogates of f , or f represent certain common characteristics

among x. When the assumption is reasonable, the factors f explain the underlying

covariation seen in the observed values of x. Thus the goal of factor analysis is to

determine and quantify the extent to which a set of m distinct underlying factors f

can describe the covariation among x. Within the context of PM2.5 x are individual

metal constituents, and the factors f could be distinct emission sources such as traffic,

industries, power plants etc, because each emission source tends to release distinct

mixtures of pollutants at a given point in time.

Without loss of generality we assume fi follows a distribution with mean 0 and

variance matrix R. The covariance between fi and the observable data xi is given by

cov(xi, fi) = E(xif
′
i)−E(xi)E(f ′

i)

= ΛE(fif
′
i)

= ΛR.

Ortho-normalization of f makes R = Im, and the factor loading matrix Λ can be

interpreted as a matrix of covariances (correlations) between the variables x and

factors f .

After stacking the observation vectors x1, · · · , xN into a single Np × 1 vector x∗,
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model (4.2.1) can be written as

(x∗|µ,Λ, f ∗, m) = 1⊗ µ + (IN ⊗ Λ) f ∗ + ǫ

(Np× 1) (Np× 1) (N ×N ⊗ pm) (Nm× 1) (Np× 1)

(4.2.2)

where ⊗ is the Kronecker product, and

x∗ ≡ (x′
1, · · · , x

′
N)

′;

1 = N - dimension 1-vector;

f ∗ ≡ (f ′
1, · · · , f

′
N)

′ an Nm vector of unobserved ”common” factor scores;

and ǫ ≡ (ǫ′1, · · · , ǫ
′
N)

′ is an Np vector of ”specific” error.

Assuming the data can be centered around its mean (or detrended, after removing

the trend from the data by applying loess smoothing for example), we can remove the

mean parameter µ from the model:

(x∗|Λ, f ∗, m) = (IN ⊗ Λ) f ∗ + ǫ.

(Np× 1) (N ×N ⊗ pm) (Nm× 1) (Np× 1)
(4.2.3)

In the classic setting of factor analysis, we assume the sample x1, . . . , xN are inde-

pendent conditioning on the unobservable factor scores. That is under normality

ǫ = [(x∗|Λ, f ∗, m)− (IN ⊗ Λ)f ∗] ∼ N(0, IN ⊗Ψ).

where Ψ > 0 is the variance-covariance of ǫi.

The likelihood function given the latent factors is of the form

p(x∗|f ∗,Λ,Ψ, m) ∝ |IN ⊗Ψ|−
1
2 e−

1
2
[x∗−(IN⊗Λ)f∗]′(IN⊗Ψ)−1[x∗−(IN⊗Λ)f∗]. (4.2.4)

In matrix notation X ≡ (x1, · · · , xN ) and F ≡ (f1, · · · , fN), the likelihood can
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also be written as

p(X|F,Λ,Ψ, m) ∝ |Ψ|−
N
2 e−

1
2
trΨ−1(X−Λ′F )′(X−Λ′F ), Ψ > 0 (4.2.5)

We will use this matrix notation in the remainder of this paper because it makes

computation easier.

4.3 Bayesian Factor Analysis

While likelihood-based inference has been the main stream for factor analysis models

(Lawley, 1940, Pena & Box, 1987, Gilbert, 2005), Bayesian inference has also been

developed (Press and Shigemasu, 1989). Following Press and Shigemasu (1989), we

use generalized natural conjugate families of prior distributions for the parameters

F,Λ,Ψ. The number of latent factors m is an important parameter especially in

exploratory factor analysis where m cannot be predetermined. We will consider m

as fixed in the present paper. As in Rowe (1998) the factor scores F are assumed to

be independent of the factor loadings Λ and the disturbance covariance matrix Ψ; Λ

depends on Ψ. This leads to the following joint prior distribution for F , Λ, and Ψ:

p(F,Λ,Ψ|m) = p(Λ|Ψ, m)p(Ψ)p(F |m) (4.3.1)

where we may assume

p(Λ|Ψ, m) ∝ |Ψ|−
m
2 e−

1
2
trΨ−1(Λ−Λ0)H(Λ−Λ0)′ , (4.3.2)

p(Ψ) ∝ |Ψ|−
ν
2 e−

1
2
trΨ−1B, ν > 2p (4.3.3)

p(F |m) ∝ e−
1
2
trF ′F (4.3.4)

with H(m × m) > 0, B(p × p) > 0, and Λ0(p × m) are hyperparameters associ-

ated with the prior distribution, and need to be estimated. In particular, B can be
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made a diagonal matrix. Conditioning on Ψ, the elements of Λ are jointly normally

distributed; Ψ−1 follows a Wishart distribution, with the hyperparameters (ν, B) to

be estimated; The factor scores fis are independent and normally distributed under

ortho-normalization.

Under the Bayes rule, the posterior distribution of the factor scores F given the

factor loadings Λ, the disturbance covariance matrix Ψ and the data are normally

distributed:

p(F |Λ,Ψ, X,m) ∝ e−
1
2
tr((F−F̃ )′(Im+Λ′Ψ−1Λ)(F−F̃ )) (4.3.5)

where F̃ ′ = X ′Ψ−1Λ(Im + Λ′Ψ−1Λ)−1. The conditional posterior distribution of the

factor loadings Λ, given the factor scores F and the disturbance covariance matrix Ψ

is also multivariate normal:

p(Λ|F,Ψ, X,m) ∝ e−
1
2
tr(Ψ−1(Λ−Λ̃)(H+FF ′)(Λ−Λ̃)′) (4.3.6)

where Λ̃ = (XF ′+Λ0H)(H+FF ′)−1. Given the factor scores, the factor loadings, and

the data, the conditional posterior distribution of the disturbance covariance matrix

is that of an inverted Wishart:

p(Ψ|F,Λ, X,m) ∝ |Ψ|−
N+m+ν

2 e−
1
2
tr(Ψ−1U) (4.3.7)

where U = (X − ΛF̃ )(X − ΛF̃ )′ + (Λ− Λ0)H(Λ− Λ0)
′ +B.

Note that the preceding Bayes FA model also assumes independent observations.

However, serial PM2.5 data violate the data independence assumption. Ignoring the

serial correlation can result in misleading results from the factor analysis models.

Therefore as in Rowe (1998) we propose to incorporate serial correlation into the

Bayesian factor analysis model for the analysis of temporal PM2.5 data.
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4.4 Bayesian Models for Temporally Correlated Data

4.4.1 Model

We start with model as in (4.2.2), and considered centered data and the residuals of

the detrended data after applying loess smoothing to remove the time trend. Rowe

(1998) extended the work of Press and Shigemasu (1989) of Bayes factor analysis to

allow for correlated observations. A key innovation in his work was the introduction of

variance components of within- and between-observation covariances. Our approach

here follows Rowe’s idea of separating the between- and within-measurement covari-

ance seen in the PM2.5 speciation data.

Instead of using the error covariance matrix IN⊗Ψ as in (4.2.2), consider the more

general form

ǫ ∼ N(0,Ω),

where we can let Ω = Φ⊗Ψ, Φ > 0, Ψ > 0, where Ψ remains the within-observation

covariance of xi, and Φ is covariance matrix between xi and xj . This special form is

possible only if we assume a constant correlation between any pair of elements one

from each vector. Specifically Ω can be expressed as

Ω = Φ⊗Ψ ≡

















φ11Ψ φ12Ψ · · · φ1NΨ

φ22Ψ

. . .
...

φNNΨ

















(4.4.1)

from which we see that

var(xi|Φ,Ψ, m, f, λ) = φiiΨ = Ψ
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and the covariance between any two observation vectors is

cov(xi, xj |Φ,Ψ, m, f, λ) = φijΨ,

and φij is the common correlation between any pair of elements, one from xi and one

from xj . Letting Φ be the identity matrix result in the classic case of independent

data. Letting φij = φ leads to a constant correlation between any pair of vectors.

Other forms such as auto-regressive correlation φij = φ|j−i| may also be considered.

Under this serial correlation structure, Ω = Φ⊗Ψ, the likelihood function becomes

p(X|F,Λ,Φ,Ψ, m) ∝ |Φ|−
p

2 |Ψ|−
N
2 e−

1
2
tr(Ψ−1(X−Λ′F )′Φ−1(X−Λ′F )). (4.4.2)

Natural conjugate families of prior distributions for Φ, Ψ, Λ and F are developed

similarly:

p(Φ,Ψ, F,Λ|m) = p(Ψ)p(Φ)p(F |Φ, m)p(Λ|Ψ, m),

where

p(Λ|Ψ, m) ∝ |Ψ|−
m
2 e−

1
2
tr(Ψ−1(Λ−Λ0)H(Λ−Λ0)′), (4.4.3)

p(Ψ) ∝ |Ψ|−
ν
2 e−

1
2
trΨ−1B ν > 2p, (4.4.4)

p(F |Φ, m) ∝ |Φ|−
m
2 e−

1
2
trΦ−1F ′F . (4.4.5)

where H(m ×m) > 0, and B(p × p) > 0 are as defined before. Note that the prior

distributions for Λ and Ψ remain the same as in (4.3.2) and (4.3.3). This indicates that

the dependance among observations xi does not alter prior knowledge about factor

loadings and within-observation covariance. What’s new is that the prior distribution

on F has changed from (4.3.4) to the one that depends on the between-observation

covariances Φ. This reflects the belief that the between-observation dependence is in

part resulted from the dependence of the latent factor scores F .
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We have not yet discussed the prior distribution for Φ, but will discuss it in the

following section. Postponing the discussion is because we may be able to utilize

highly structural serial correlation to simplify subsequent computation.

The joint posterior distribution for the unknown parameters of interest is concep-

tually simple to obtain as given below:

p(F,Λ,Ψ,Φ|X,m) ∝ p(Φ)|Φ|−
p+m

2 |Ψ|−
N+m+ν

2 |H|
p

2 e−
1
2
tr(Ψ−1U1)e−

1
2
tr(Φ−1F ′F ),(4.4.6)

where

U1 = (X − ΛF )Φ−1(X − ΛF )′ + (Λ− Λ0)H(Λ− Λ0)
′ +B.

The conditional posterior density of the factor loadings given the factor scores, the

disturbance covariance matrix, and the data is again normally distributed and given

by

p(Λ|F,Ψ,Φ, X,m) ∝ e−
1
2
tr(Ψ−1(Λ−Λ̃)′(H+FΦ−1F ′)(Λ−Λ̃)) (4.4.7)

where Λ̃ = (XΦ−1F ′ + Λ0H)(H + FΦ−1F ′)−1. The difference between (4.4.7) and

(4.3.6) reveals the effect of incorporating the dependance between observations into

the analysis on the factor loadings. The introduction of the temporal correlation does

affect the posterior distribution of factor loadings as Φ is incorporated in both the

covariance matrix and its central tendency.

The conditional posterior density of the disturbance covariance matrix given the

factor scores, the factor loadings, and the data is an inverted Wishart density

p(Ψ|F,Λ,Φ, X,m) ∝ |Ψ|−
N+m+ν

2 e−
1
2
tr(Ψ−1U1) (4.4.8)

where U1 is given above.

Finally, the conditional posterior distribution for the factor scores given the cor-
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relation matrix Φ, the disturbance covariance matrix Ψ, the number of factors, the

factor loadings and the data is normally distributed as given below

p(F |Λ,Ψ,Φ, X,m) ∝ e−
1
2
tr(Φ−1(F−F̃ )′(Im+Λ′Ψ−1Λ)(F−F̃ )), (4.4.9)

where F̃ ′ = X ′Ψ−1Λ(Im +Λ′Ψ−1Λ)−1 remains the same as in (4.3.5), but the density

function differs from (4.3.5) with the leading Φ−1 in the trace function.

We now consider the posterior distributions for Φ. Common serial correlation

structures may be utilized to capture the between-measurement correlation. For in-

stance, the first order autoregressive correlation

Φ =































1 ρ ρ2 ρ3 · · · ρN−1

ρ 1 ρ ρ2 · · · ρN−2

ρ2 ρ 1 ρ · · · ρN−3

ρ3 ρ2 ρ 1 · · · ρN−4

...
...

...
...

...
...

ρN−1 ρN−2 ρN−3 ρN−4 · · · 1































(4.4.10)

is relatively simple to use, which is somewhat implicated from our preliminary data

analysis. In this case Φ reduces to a single correlation parameter ρ that is to be

computed. A natural choice of prior distribution is a beta distribution (Rowe, 1998):

p(ρ) =
Γ(α + β)

Γ(α)Γ(β)
ρα−1(1− ρ)β−1, (4.4.11)

where Γ(·) is the gamma function and α, β > 0 and 0 ≤ ρ ≤ 1.

The conditional posterior density for ρ is then

p(ρ|Ψ, m, F,Λ, X) ∝ |Ψ|−
(p+m)

2 ρα−1(1− ρ)β−1e−trΦ−1C (4.4.12)
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where

C = (X − ΛF )′Ψ−1(X − ΛF ) + F ′F.

Because

|Φ| = (1− ρ2)N−1 (4.4.13)

and the fact

Φ−1 =

























1 −ρ 0

−ρ (1 + ρ2) −ρ

. . .
. . .

. . .

(1 + ρ2) −ρ

0 −ρ 1

























(4.4.14)

equation (4.4.12) becomes

p(ρ|Ψ, m, F,Λ, X) ∝ p(ρ)(1− ρ2)−
(N−1)(p+m)

2 e
−

(k1−k3ρ+k2ρ
2)

2(1−ρ2) (4.4.15)

where k1 = tr(C), k2 = tr(M2C) and K3 = tr(M3C) with M2 and M3 given as follows

M2 =

























0 0

1

. . .

1

0 0

























and

M3 =

























0 1 0

1 0 1

. . .
. . .

. . .

0 1

0 1 0
























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4.4.2 Computation

Hyperparameters

To define the hyperparameters, H , B, Λ0 as well as α and β from equations (4.3.2)-

(4.3.4) and (4.4.11), we follow the process described in Rowe (2000, 2002, 2003ab). H

is by definition a positive definite matrix, it assumes the form H = nHIm for simplic-

ity and ease of computation, where nH is assessed below using the method attributed

to Hayashi (Hayashi, 1997). The maximum likelihood (regular factor analysis) es-

timates Λ̂ and Ψ̂ of Λ and Ψ and their variance V ar(Λ̂) and V ar(Ψ̂) will be used.

We will choose the values of hyperparameters by equalling the moments (means and

variances) of the prior distributions with their corresponding estimates obtained from

the regular factor analysis using training data, which is the first half of the data.

Estimation of Λ0 and H

The choice of Λ0 is straightforward and is chosen to be Λ̂. Letting λ = vec(Λ) =

(λ11, λ21, · · · , λp1, · · · , λ1m, λ2m, · · · , λpm) we have

V ar(λ|Ψ) = Ψ⊗H−1

and

V ar(λ) = E(Ψ)⊗H−1 (4.4.16)

In equation (4.4.16), we replace E(Ψ) by Ψ̂ to get

V ar(λ) = Ψ̂⊗H−1, (4.4.17)

and equate to Hayashi’s approximation

V ar(λ) = c−1V ar(λ̂) (4.4.18)
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where the constant c is to be estimated below. From (4.4.17) and (4.4.18), we obtain

c−1V ar(λ̂) = Ψ̂⊗H−1. (4.4.19)

Let H = (hj) be a diagonal matrix. Applying trace to each non-zero block diagonal

matrix involving hj we obtain

tr(Ψ̂)h−1
j =

p
∑

i=1

c−1V ar(λ̂ij), j = 1, · · · , m (4.4.20)

or

hj =
c× tr(Ψ̂)

∑p

i=1 V ar(λ̂ij)
, j = 1, · · · , m (4.4.21)

Following Hayashi (1997), using A optimality (use of trace operator)(Shah & Sinha,

1989), he showed that the constant c can be expressed as

c =
n

N
tr(F̂ ′F̂ )(tr(Ψ̂))−1

(

m
∑

j=1

(

p
∑

i=1

V ar(λ̂ij))
−1
)−1

where n and N are the training and the actual data sample size respectively. Now

replacing c above, we get the estimator of the diagonal hyperparameter matrix Ĥ

whose jth diagonal element is

ĥj = (n)
{ 1

m
tr(

F̂ ′F̂

N
)
} (1

p

∑p

i=1 V̂ ar(λ̂ij))
−1

1
m

∑m

j=1(
1
p

∑p

i=1 V̂ ar(λ̂ij))−1
j = 1, ..., m.

To eliminate the terms involving V ar(λij) in ĥj we also assume that

p
∑

i=1

V ar(λ̂ij) =

p
∑

i=1

V ar(λ̂ik), j 6= k

along with the large sample approximation under the ortho-normal condition of the
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factors,
FF ′

n
≈ Im,

and ĥj reduced simply to n, the sample size of the training data. As a result, we

assess the hyperparameter nH = n as in Hayashi (Hayashi, 1997).

Estimation of B and ν

Following Rowe (Rowe, 2000) B = b0Ip. Therefore the mean of any diagonal element

of the disturbance matrix Ψij under the prior distribution given in (4.4.4) is

E(Ψii) =
b0

ν − 2p− 2
, i = 1, · · · , p. (4.4.22)

From the classical factor analysis model we have Σ = ΛΛ′+Ψ where Σ is the covariance

matrix for the observations. Substituting the training sample covariance matric Σ̂ and

the priori mean for the factor loadings into the above equation we have Ψ0 = Σ̂−Λ0Λ
′
0.

Then we take the average of the diagonal elements

1

p
tr(Ψ0) =

1

p
tr(Σ̂− Λ0Λ

′
0) (4.4.23)

as our prior mean for the diagonal element E(Ψii) of the disturbance covariance

matrix. Equaling (4.4.22) and (4.4.23) we have

b0
ν − 2p− 2

=
1

p
tr(Σ̂− Λ0Λ

′
0)

thus b0 =
ν−2p−2

p
tr(Σ̂− Λ0Λ

′
0) and Σ̂ is the training data covariance matrix.

For the hyperparameter ν we follow Rowe (2003) using the method due to Hayashi

(Hayashi 1997). Starting with the Bayes estimator for the disturbance covariance

matrix

Ψ̂ =
Û

N +m+ ν − 2p− 2
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where

Û = (X − Λ̂F̂ )(X − Λ̂F̂ )′ + (Λ̂− Λ0)
′H(Λ̂− Λ0) + B̂.

we can consider Ψ̂ as a weighted average of the three terms in Û . The scalar values

associated with the terms are n, m, and ν − 2p − 2 respectively. Because we con-

sider first and third terms as representing the current and training data, we equate

ν − 2p− 2 with n to obtain ν = n + 2p+ 2.

Estimation of α and β

For parameters α and β, if no priors belief is assumed, then an uninformative prior

which correspond to α = β = 1 could be chosen. If the structure is assumed to be

the first order Markov as above then α and β are chosen such that the prior mean

α

α + β

is made equal to the estimated correlation value from the training data. We may also

assess that by pure subjective prior belief of the correlation parameter (Rowe, 1998).

Gibbs sampling

For Gibbs estimation of the posteriors, we start with initial values for the parameters

Λ, ρ, Ψ and F say Λ0, ρ(0), Ψ(0) and F (0).

Then for a given m, we cycle through

Λ(i+1) ≡ a random sample from p(Λ|ρ(i), F (i),Ψ(i), m,X)

Ψ(i+1) ≡ a random sample from p(Ψ|ρ(i), F (i),Λ(i+1), m,X)

F (i+1) ≡ a random sample from p(F |ρ(i),Ψ(i+1),Λ(i+1), m,X)

ρ(i+1) ≡ a random sample from p(ρ|Ψ(i+1), F (i+1),Λ(i+1), m,X)
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to have a sequence

(ρ(1),Ψ(1), F (1),Λ(1))

...

(ρ(s),Ψ(s), F (s),Λ(s))

(ρ(s+1),Ψ(s+1), F (s+1),Λ(s+1))

...

(ρ(s+t),Ψ(s+t), F (s+t),Λ(s+t)).

During preliminary analysis, an autoregressive correlation of order 1 with ρ = 0.05

have been observed and this value serve as initial value ρ0 for ρ. We choose the initial

values Λ0 and F0 to be respectively the factor loadings and factor scores obtained

from the regular factor analysis of the data. As discussed in subsection (4.4.2), the

initial value for Ψ is chosen to be Ψ0 = Σ − Λ0Λ
′
0 where Σ is the data covariance

matrix.

We run 100000 iteration with 50000 burn. The first s random samples called

”burn” (here s = 50000) are discarded and the remaining t samples are used for the

posterior estimates which will be given by their means as follow:

F = 1
t

∑t

k=1 F s+k

Λ = 1
t

∑t

k=1Λs+k

Ψ = 1
t

∑t

k=1Ψs+k

ρ = 1
t

∑t

k=1 ρs+k.

In the following section we consider an application to Air pollution data where we

will discuss mixtures of air pollutants.
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Table 4.1: Average daily concentration in nanogram per cubic meter (standard error),
autocorrelation, percentage of undetectable values (USEPA, 1998), 75th and 95th percentiles
of PM2.5 speciation metals measured from February, 2000 to December, 2007 in Tampa
MSA.

metal mean (SE) auto-corr % undetect 75th percentile 90th percentile

Al 44.33(0.086) 0.141 35.52 31.30 95.16
Ba 32.84(0.028) 0.289 15.01 50.30 73.87
Cd 1.95(0.003) -0.051 53.06 02.90 05.97
Ca 62.51(0.031) 0.182 00.21 76.50 105.92
Cr 1.52(0.003) 0.051 22.62 01.87 03.23
Co 0.15(0.000) 0.001 74.84 00.04 00.61
Cu 3.90(0.010) 0.052 11.62 03.85 08.69
Cs 5.14(0.008) -0.101 51.79 07.91 17.52
Ga 0.84(0.001) 0.464 48.41 01.27 02.68
Fe 66.22(0.055) 0.241 00.00 71.30 123.00
Hf 3.38(0.004) 0.051 63.42 03.76 12.24
Pf 3.76(0.003) 0.027 15.43 04.83 06.75
In 2.54(0.003) 0.110 50.52 03.63 07.37
Mn 1.64(0.001) 0.157 20.93 02.44 03.72
Ir 0.67(0.001) -0.001 42.70 02.74 05.11
Mo 1.15(0.001) -0.024 55.18 01.74 03.77
Ni 4.83(0.017) 0.005 11.21 02.80 05.00
Mg 9.93(0.030) -0.007 59.83 13.16 29.78
Hg 1.32(0.002) 0.142 41.22 02.23 04.08
Au 1.62(0.001) 0.073 42.07 02.53 04.77
La 11.02(0.012) 0.066 50.53 14.30 39.00
Nb 0.63(0.001) 0.167 58.56 00.93 02.33
Sn 11.19(0.007) 0.317 16.28 17.80 22.89
Ti 6.93(0.007) 0.217 03.59 07.53 13.33
Sc 0.26(0.000) -0.037 72.73 00.11 01.08
V 2.79(0.002) 0.275 12.68 03.77 05.80
Ag 2.75(0.002) 0.015 36.15 04.55 07.60
Zn 4.71(0.005) 0.056 07.82 06.53 09.55
Sr 1.05(0.004) -0.006 44.40 01.28 02.49
Ta 11.92(0.007) 0.345 22.83 20.30 30.98
Rb 0.34(0.001) 0.102 57.08 00.47 01.14
K 89.11(0.282) 0.010 00.00 80.81 121.24
Y 0.43(0.001) -0.005 65.75 00.47 01.64
Na 124.00(0.113) 0.137 28.75 194.00 312.20
Zr 1.05(0.003) -0.006 58.77 00.89 02.34
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4.5 Applications

4.5.1 Data

PM2.5 is a complex mixtures of extremely small particles and liquid droplets. It is

made up of a number of different components, including metals, acids and organic

chemicals which form the PM2.5 chemicals speciation. PM2.5 chemicals speciation

data and other air quality data such as Carbon Monoxide (CO), Lead (pb), Nitogen

Dioxide (NO2), Ozone (O3), Sulfur Dioxide (SO2), Particulate Matter (PM10, PM2.5)

are housed in the US EPA Air Quality System (AQS) data base. AQS is divided into

several groups around the continental US called Metropolitan Statistical Area (MSA)

with each MSA containing several stations. To protect people and the environment,

the Clean Air Act, which was last amended in 1990, requires EPA to set National

Ambient Air Quality Standards (NAAQS) for pollutants considered harmful to public

health and the environment. EPA has set NAAQS for six principal pollutants, which

are called ”criteria” pollutants: CO, pb, NO2, O3, SO2 and PM . Chemicals specia-

tion data from Tampa MSA will be used in this analysis to identify metal mixtures.

Unlike other air pollutants such as CO, pb and PM which are collected daily from

the environment, chemicals speciation data, a large dataset containing more than 100

different chemicals including 35 metals are measured every three to six days from the

environment with different source origins. This data is a typical example of a time

series data which are likely to be temporally correlated as compared to independent

data for which the traditional factor analysis were developed. There are three stations

in Tampa MSA and data from one station will be used in this application. Table 4.1

presents average daily concentration, standard error in nanogram per cubic meter, au-

tocorrelation of PM speciation metals from the selected station in Tampa MSA, the

proportion of non detectable concentration values and the 75th and 90th percentiles

of all speciation metals. Aluminum, calcium, iron, potassium and sodium are the

most abundant metals, while cobalt, niobium and rubidium are the least abundant in
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the area. We also note a strong autocorrelation with some metals such as: barium,

gallium, iron, tin, titanium, vanadium and tantalum while the remaining metals show

moderate autocorrelation.

4.5.2 Preliminary Analysis

Computations have been carried out using R statistical software version 3.1.0. We

use data from one station in Tampa MSA for application. From Table 4.1, we note

that 17 (48.57%) of metals have less than 40% of proportion of undetectable values.

Correlation coefficients between PM2.5 speciation metals shows a strong positive cor-

relations between certain metals such as aluminum and iron, titanium, calcium or

manganese. Calcium is highly correlated with iron. Copper is strongly correlated

with lead, magnesium, strontium and potassum. Titanium is highly correlated with

aluminum, iron, calcium and potassium.

Without taking into account the temporal correlation between observations, the

traditional factor scores are given in Table 4.2. We see from Table 4.2 that factor 1

is dominated with barium, copper, lead, magnesium, titanium, vanadium, strontium

and potassium. Factor 2 is mainly composed of aluminum, calcium, iron, manganese,

and titanium. Factor 3 has tantalum, iridium, nickel and tin as dominant elements.

Cadmium, hafnium, indium, titanium, tin and sodium are leading Factor 4. Not

taking into account the serial correlation when one exist could lead to misleading factor

estimates. As seen in Table 4.1, autocorrelation do exist among metals. Therefore

there is a need to account for those correlations and the Bayesian correlated factor

analysis will play an important role in that direction. Additionally there is a lack

of consistent criteria of how to determine factors and its components especially in

the context of mixture of chemicals. Defining mixtures by selecting metals with high

loadings as in Table 4.5 may not account well for all chemicals contribution. Instead

Factor analysis in conjunction with source apportionment to be introduced below will
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be used.

4.5.3 Bayesian Correlated Factors

To account for correlation, we apply the Bayesian correlated factor analysis model

developed above to the residuals data after removing the trend through smoothing and

to the raw data (without smoothing). The results of the loadings after the smoothing

are presented in Table 4.3 and the one for the raw data are in Table 4.4. No major

difference in loadings was observed between the two loadings results. This means that,

removing trend has no much effect on the factor loadings. But compared to Table

4.2 and after addition of the temporal correlation, we observe different results. Table

4.3 shows factor loadings together with their 95% credibility intervals after applying

the Bayesian correlated factor theory on the residuals. From Table 4.3, choosing

metals with loading of at least 0.10 in absolute value, we see that the first factor is

mostly determined by aluminum, barium, cesium, iron, niobium, tin, titanium and

tantalum. The second factor is constituted mostly by cadmium, calcium, copper,

cesium, gallium, hafnium and strontium. The third factor is determined by nickel,

gold, lead, iridium, molybdenum and aluminum, while the fourth factor is associated

mostly with aluminum, cobalt, cesium, lead, molybdenum, mercury, scandium, zinc

and zirconium. The difference observed between Tables 4.2 and 4.3 highlight the

importance of appropriately identifying and taking into account the data correlation.

4.5.4 Source Apportionment

Determining mixture of chemicals is one of the main goal of this study. As we have

said earlier, there is a lack of consistent criteria of how to determine factors and

its components especially in the context of mixture of chemicals. Choosing chemicals

based on hypothetical high loadings might not be appropriate (see Table 4.5). Instead

we will use source apportionment methods in conjunction with factor analysis. We
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Table 4.2: Regular Factor Loadings ignoring Serial Correlation

Factor1 Factor2 Factor3 Factor4

aluminum .14 .81 .12 -.22
barium .84 -.00 .23 -.10
cadmium -.00 .02 -.05 .37
calcium -.06 .87 .08 .11
chromium -.02 .10 .08 .21
cobalt -.07 -.07 -.21 -.00
copper .83 -.01 -.01 .23
cesium .15 -.04 .09 -.07
gallium -.06 -.02 .26 -.22
iron .03 .99 .12 -.03
hafnium .02 -.07 .02 .38
lead .71 .01 .12 .13
indium -.00 -.02 -.09 .36
manganese .24 .52 -.00 -.14
iridium -.02 .01 .47 -.11
molybdenum -.00 -.04 -.04 .27
nickel -.00 -.01 .36 .05
magnesium .87 .00 -.05 -.19
mercury -.03 -.12 .12 -.02
gold -.03 -.11 .03 .21
lanthanum .10 -.06 .30 -.24
niobium -.02 .09 .01 -.08
tin .04 .02 .37 .35
titanium .60 .71 .06 -.11
scandium -.05 -.04 -.12 -.10
vanadium .55 .04 .05 -.08
silver -.02 -.00 -.11 .13
zinc .41 .14 -.13 .17
strontium .97 .08 -.10 -.00
tantalum .01 .05 .77 -.09
rubidium .16 .09 .04 .08
potassium .99 .05 -.10 -.10
yttrium -.04 .09 -.05 .05
sodium .01 -.05 .19 -.38
zirconium -.01 -.01 .00 .08
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Table 4.3: Temporally Correlated Factor Loadings and 95% credibility intervals of the
residuals after smoothing

Factor1 Factor2 Factor3 Factor4

aluminum .73(.61,.85) .02(-.07,.11) -.11(-.20,-.02) .58(.47,.69)
barium .10(.03,.18) -.05(-.12,.02) .08(.00,.15) -.02(-.09,.05)
cadmium .04(-.06,.14) .76(.64,.88) -.06(-.15,.04) -.01(-.12,.09)
calcium -.01(-.10,.09) .45(.35,.56) .03(-.07,.13) .05(-.05,.15)
chromium .03(-.03,.10) .02(-.04,.09) -.05(-.12,.01) -.05(-.11,.02)
cobalt -.02(-.11,.07) -.02(-.11,.07) -.02(-.11,.07) .71(.58,.82)
copper .01(-.09,.10) .16(.07,.26) .03(-.06,.12) .04(-.06,.14)
cesium .11(.03,.18) .11(.04,.18) .06(-.01,.12) .10(.02,.18)
gallium .03(-.06,.11) -.18(-.25,-.08) .03(-.06,.12) .06(-.03,.15)
iron .21(.11,.30) -.03(-.11,.06) .00(-.09,.09) -.01(-.10,.07)
hafnium -.02(-.09,.04) .11(.04,.19) .01(-.06,.07) .03(-.04,.10)
lead .04(-.06,.13) -.03(-.12,.05) .28(.18,.37) .10(.01,.19)
indium .09(.02,.16) .00(-.07,.07) .07(.00,.13) -.01(-.07,.06)
manganese .02(-.06,.10) .01(-.07,.08) -.01(-.09,.07) -.01(-.09,.07)
iridium -.03(-.12,.05) .03(-.05,.11) .21(.12,.30) -.03(-.12,.05)
molybd .04(-.05,.13) -.01(-.09,.07) .23(.14,.32) .60(.47,.71)
nickel -.02(-.11,.07) -.03(-.12,.05) .70(.55,.82) -.05(-.14,.04)
magnesium -.09(-.16,-.02) -.01(-.08,.05) .04(-.03,.11) .01(-.06,.08)
mercury -.09(-.16,-.02) -.05(-.12,.02) -.01(-.08,.06) -.19(-.26,-.12)
gold -.00(-.09,.08) .06(-.02,.14) .54(.43,.64) .00(-.08,.09)
lanthanum -.01(-.07,.06) -.03(-.09,.04) .05(-.01,.12) -.05(-.12,.02)
niobium .65(.52,.76) .01(-.08,.09) -.00(-.09,.08) -.06(-.15,.02)
tin .20(.13,.28) -.00(-.07,.06) .05(-.02,.12) .05(-.02,.12)
titanium .13(.04,.22) .03(-.06,.12) -.04(-.13,.04) -.05(-.14,.04)
scandium -.04(-.12,.05) -.07(-.15,.01) .05(-.04,.14) .53(.42,.63)
vanadium -.01(-.08,.06) .01(-.07,.09) .08(.01,.15) .00(-.07,.07)
silver -.06(-.13,.00) -.02(-.09,.05) .01(-.06,.08) .07(.00,.13)
zinc .01(-.09,.11) .02(-.06,.11) -.01(-.10,.08) .76(.62,.87)
strontium -.01(-.11,.09) -.11(-.21,-.02) .00(-.10,.11) .03(-.07,.13)
tantalum .53(.41,.63) .01(-.08,.09) .04(-.05,.13) -.05(-.14,.05)
rubidium .02(-.05,.08) -.02(-.09,.04) -.02(-.08,.05) -.04(-.10,.03)
potassium .05(-.06,.16) -.05(-.16,.06) -.07(-.18,.04) .05(-.06,.16)
yttrium -.01(-.08,.07) -.05(-.11,.01) .03(-.03,.10) -.05(-.11,.02)
sodium .06(-.01,.13) .08(.00,.15) -.05(-.13,.02) -.05(-.12,.02)
zirconium .08(.00,.16) .09(.03,.15) -.06(-.12,.01) .11(.05,.18)
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Table 4.4: Temporally Correlated Factor Loadings of the raw data without smoothing

Factor1 Factor2 Factor3 Factor4

aluminum .72 .03 -.10 .57
barium .11 -.05 .08 -.03
cadmium .04 .75 -.05 -.00
calcium -.01 .45 .02 .04
chromium .04 .01 -.06 -.05
cobalt -.02 -.01 -.00 .69
copper .01 .19 .02 .04
cesium .11 .11 .06 .10
gallium .01 -.15 .00 .05
iron .20 -.03 .00 -.02
hafnium -.03 .14 .01 .03
lead .03 -.03 .29 .10
indium .10 .01 .06 -.01
manganese .01 .01 -.00 -.01
iridium -.04 .03 .20 -.03
molybdenum .04 -.01 .23 .60
nickel -.01 -.04 .70 -.05
magnesium -.09 -.04 .04 .09
mercury -.11 .01 -.02 -.30
gold .07 .12 .45 .02
lanthanum .11 .07 .04 -.10
niobium .50 -.01 .05 -.05
tin .17 -.03 .05 .05
titanium .29 .06 -.07 -.07
scandium -.07 -.08 .02 .63
vanadium -.06 .02 .04 .05
silver -.06 -.05 -.01 .08
zinc -.00 .02 .03 .75
strontium -.01 -.14 -.02 .02
tantalum .50 .00 .03 -.10
rubidium .01 -.03 -.02 -.05
potassium .07 -.05 -.08 .01
yttrium -.04 -.04 .07 -.03
sodium .06 .04 -.18 -.05
zirconium .04 .09 -.05 .11
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would like to compute a mixture of metals by converting a latent factor to an explicit

mixture in which we do not have to decide which metal to keep and which to omit.

To better understand and control PM emission in the atmosphere, major sources of

PM need to be identified and understood. Source apportionment methods have thus

been developed to serve that purpose. Several methods that include positive matrix

factorization (PMF) (Oh et al., 2011; Gugamsetty et al., 2012), principal component

analysis (PCA) (Lee and Hieu, 2011), chemical mass balance (CMB) (Ni et al., 2012),

UNMIX (Murillo et al., 2012) have been developed. Below we introduce PMF model

developed by US EPA and which is one of the most widely used model for source

apportionment.

Giving any (N×p) data matrix X , it can be factorized into two matrices F (N×m)

and Λ′(m× p), and the residual matrix, E as follows:

X = FΛ′ + E (4.5.1)

or

xij =

m
∑

k=1

fikλ
′
kj + eij

where F is an N ×m matrix of source contributions that describe the temporal varia-

tion of the source strengths and Λ′ an m× p matrix of source chemical compositions,

or source profiles (Yu et al., 2013). The process is carried out by minimizing the

expression

R =
n

∑

i=1

p
∑

j=1

e2ij
s2ij

where eij are the residuals and sij are the error estimates of the data point.

Solving for F in (4.5.1) we define the mixture of chemicals as

F = (X − E)Λ(Λ′Λ)−1. (4.5.2)
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From equation (4.5.2) we see that a latent factor F has been converted to an explicit

mixture. This is expressed as a product of (X−E) and a mixture coefficients obtained

from the utilization of the loadings as

α = Λ(Λ′Λ)−1. (4.5.3)

For computing mixture coefficients α, we use the following two criteria to simplify the

loading coefficients Λ,

• We keep all significant loadings and all non significant loadings bigger than 0.15.

• If a loading is not significant and is between 0.10 and 0.15, it will be kept if the

75th percentile value is bigger than 200% of the corresponding metal detection

limit (Table 4.9). Otherwise it is replaced by 0.

Application of the above simplification on Table 4.3 of loadings, yielded the simplified

loadings matrix giving in Table 4.6. Additionally we also apply equation (4.5.3)

directly on the obtained loadings from Table 4.3 and set very small coefficients of

the obtained mixture coefficients α to zero. The two approaches yielded very similar

results and those obtained after application of the former method is presented in Table

4.7.

From Table 4.7, we see that mixture 1 is composed of aluminum, iron, tin and

tantalum. It is not surprising to see that this mixture contains both tantalum and

niobium as they are generally found together (Mineral Information Institute, 2011).

This mixture may comes from traffic as aluminum and iron are traffic emitted metals

(Lough et al. 2005). The second mixture which contains the associated metals of

cadmium and copper (ATSDR, 2012) also contain calcium and hafnium. This may

comes from miscellaneous sources. The third mixture composed of lead, iridium,

molybdenum, nickel, gold may comes from power plants as it contained nickel, one of

the main power plant emitted metals (Wang et al. 2010). Mixture 4, which contains
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Table 4.5: Correlated metals at four different correlation levels

Loadings Factor 1 Factor 2 Factor 3 Factor 4

0.1 aluminum cadmium aluminum aluminum
barium calcium lead cobalt
cesium copper iridium cesium
iron cesium molybdenum lead

niobium gallium nickel molybdenum
tin hafnium gold mercury

titanium strontium lead scandium
tantalum zinc, zirconium

0.2 aluminum cadmium lead aluminum
iron calcium iridium cobalt

niobium molybdenum molybdenum
tin nickel scandium

tantalum gold zinc

0.3 aluminum cadmium nickel aluminum
tantalum calcium gold cobalt
niobium molybdenum

scandium
zinc

0.4 aluminum cadmium nickel aluminum
tantalum calcium gold cobalt
niobium molybdenum

scandium
zinc

aluminum, cobalt, molybdenum, scandium and zinc may originates from industrial

plants as the main sources of atmospheric pollution for cobalt (one of the main metal

of the mixture) are industrial plants such as incinerators and chemical plants. It

could also come from the burning of fossil fuels (Vouk and Piver, 1983; EIP, 2013,

Wang et al. 2010) and agriculture. Figure 4.1 shows the time series plots of the

four mixtures. Mixture 1(black) and mixture 2(red) show a common variability while

mixture 3(green) seems to vary similarly as mixture 4(blue).
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Table 4.6: Simplified correlated loading Matrix to be used for computing mixture coeffi-
cients.

Factor1 Factor2 Factor3 Factor4

aluminum .73↑ .00 -.11↓ .58↑
barium .10↑ .00 .00 .00
cadmium .00 .76↑ .00 .00
calcium .00 .45↑ .00 .00
chromium .00 .00 .00 .00
cobalt .00 .00 .00 .71↑
copper .00 .16↑ .00 .00
cesium .11↑ .11↑ .00 .10↑
gallium .00 -.18↓ .00 .00
iron .21↑ .00 .00 .00
hafnium .00 .11↑ .00 .00
lead .00 .00 .28↑ .10↑
indium .09↑ .00 .07↑ .00
manganese .00 .00 .00 .00
iridium .00 .00 .21↑ .00
molybdenum .00 .00 .23↑ .60
nickel .00 .00 .70↑ .00
magnesium -.09↓ .00 .00 .00
mercury -.09↓ .00 .00 -.19↓
gold .00 .00 .54↑ .00
lanthanum .00 .00 .00 .00
niobium .65↑ .00 .00 .00
tin .20↑ .00 .00 .00
titanium .13↑ .00 .00 .00
scandium .00 .00 .00 .53↑
vanadium .00 .00 .08 .00
silver -.06↓ .00 0.00 .07↑
zinc .00 .00 .00 .76↑
strontium .00 -.11↓ .00 .00
tantalum .53↑ .00 .00 .00
rubidium .00 .00 .00 .00
potassium .00 .00 .00 .00
yttrium .00 .00 .00 .00
sodium .00 .08↑ .00 .00
zirconium .08↑ .09↑ .00 .11↑
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Table 4.7: Mixture coefficients.

Mixture1 Mixture2 Mixture3 Mixture4

aluminum .46 -.02 -.09 .19
barium .09 -.05 .08 -.03
cadmium -.01 .83 -.02 -.01
calcium -.03 .50 .05 .03
chromium .03 .02 -.05 -.02
cobalt -.11 -.02 -.05 .35
copper -.01 .18 .04 .02
cesium .06 .12 .06 .03
gallium .02 -.18 .02 .02
iron .16 -.04 .01 -.04
hafnium -.03 .13 .01 .02
lead .03 -.03 .27 .03
indium .07 .00 .07 -.02
manganese .01 .00 -.01 -.01
iridium -.01 .04 .21 -.02
molybdenum -.04 .00 .20 .28
nickel .03 -.01 .69 -.05
magnesium -.07 -.01 .03 .02
mercury -.04 -.05 -.01 -.08
gold .02 .08 .54 -.02
lanthanum .01 -.03 .05 -.03
niobium .50 -.03 .03 -.12
tin .15 -.01 .06 -.01
titanium .10 .02 -.03 -.04
scandium -.10 -.07 .02 .26
vanadium -.01 .02 .08 .00
silver -.05 -.02 .00 .04
zinc -.10 .03 -.04 .37
strontium -.00 -.12 -.00 .02
tantalum .40 -.02 .07 -.10
rubidium .02 -.03 -.01 -.02
potassium .03 -.06 -.07 .02
yttrium .01 -.05 .03 -.02
sodium .05 .08 -.04 -.03
zirconium .04 .09 -.05 .05
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Figure 4.1: Plots of Mixtures 1(black), 2(red), 3(green) and 4(blue)

4.6 Extension to Spatially and Temporally Correlated Data

Particulate matter speciation data are generally collected from several stations within

a given metropolitan statistical area (MSA). In addition to the temporal correlation

within each station, data from adjacent stations might also be spatially correlated.

This additional correlation structure needs also to be taken into account when using

factor analysis to avoid inaccurate estimates. In this section, we extend the Bayesian

factor analysis for temporally correlated data discussed in previous section to cover

data that are both spatially and temporally correlated.

We start with the more general covariance matrix form

ǫ ∼ N(0,∆)

as in (4.4.1), where we can let ∆ = Θ ⊗ Ψ, Θ > 0, Ψ > 0. We maintain the

same separation structure introduced earlier. But here Θ is assume to be of the form

Θ = ΦT ⊗ ΦS where ΦT is the temporal correlation matrix as above and ΦS is the
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matrix accounting for the spatial correlation. If we let ΦS be identity IS and especially

when s = 1, then Θ = ΦT and we have the Bayesian factor analysis for temporally

correlated data described above.

as before the temporal correlation ΦT could be assumed to be an auto regressive

of order 1 giving by

ΦT =































1 ρ ρ2 ρ3 · · · ρns−1

ρ 1 ρ ρ2 · · · ρns−2

ρ2 ρ 1 ρ · · · ρns−3

ρ3 ρ2 ρ 1 · · · ρns−4

...
...

...
...

...
...

ρns−1 ρns−2 ρns−3 ρns−4 · · · 1































(4.6.1)

where ns is the station sample size.

We may also assume that ΦS the between station correlation is a fix matrix and

the correlation between stations could be an autoregressive of order 1 or inversely

proportional to the distance between stations. For simplification and considering

three stations for application purpose, we assume that ΦS is also giving by

ΦS =

















1 η η2 η3

η 1 η η2

η2 η 1 η

η3 η2 η 1

















.

Table 4.8, shows the factor loadings without accounting for spatial correlation (left)

and with account of partial correlation (right) between three stations in Tampa MSA.

We can note some differences between the loadings which highlight the importance of

properly taking into account the data correlation.
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Table 4.8: Loadings without spatial correlation (left) and with spatial correlation (right).

Factor1 Factor2 Factor3 Factor4 Factor1 Factor2 Factor3 Factor4

Al 0.768 0.025 -0.082 0.430 0.777 0.026 -0.082 0.430
Ba 0.009 0.012 0.030 -0.069 0.008 0.011 0.031 -0.072
Cd -0.242 0.808 -0.065 0.067 -0.241 0.819 -0.067 0.069
Ca -0.152 0.428 -0.250 -0.077 -0.154 0.431 -0.252 -0.079
Cr 0.032 0.221 -0.024 -0.104 0.033 0.222 -0.026 -0.106
Co 0.365 -0.231 -0.154 0.531 0.365 -0.230 -0.157 0.536
Cu -0.135 -0.010 0.094 0.102 -0.135 -0.009 0.096 0.106
Cs 0.049 -0.235 0.331 0.064 0.046 -0.236 0.337 0.06
Ga -0.012 -0.230 -0.109 0.117 -0.018 -0.239 -0.108 0.112
Fe 0.429 -0.0432 -0.043 -0.060 0.437 -0.045 -0.044 -0.059
Hf -0.025 0.174 0.076 0.014 -0.021 0.177 0.077 0.015
Pd -0.018 -0.110 0.376 0.263 -0.019 -0.110 0.382 0.270
In 0.197 0.049 0.196 0.039 0.198 0.047 0.198 0.041
Mn -0.021 0.118 0.026 -0.023 -0.019 0.122 0.029 -0.022
Ir -0.112 -0.012 0.525 -0.055 -0.116 -0.015 0.538 -0.063
Mo 0.131 0.049 0.347 0.776 0.133 0.052 0.358 0.794
Ni -0.014 -0.091 0.779 -0.062 -0.011 -0.094 0.796 -0.059
Mg -0.136 -0.077 0.115 -0.073 -0.136 -0.077 0.119 -0.074
Hg -0.267 0.033 0.015 -0.234 -0.271 0.031 0.016 -0.239
Au -0.206 0.100 0.766 0.142 -0.204 0.104 0.774 0.145
La -0.056 -0.175 0.169 -0.037 -0.056 -0.176 0.171 -0.034
Nb 0.672 -0.000 0.024 -0.046 0.671 -0.005 0.019 -0.047
Sn 0.238 -0.298 -0.053 0.172 0.236 -0.302 -0.053 0.174
Ti 0.038 0.084 0.050 -0.148 0.041 0.084 0.053 -0.149
Sc -0.072 0.110 0.121 0.680 -0.072 0.113 0.121 0.688

V 0.028 0.061 0.125 -0.223 0.030 0.060 0.128 -0.218
Ag -0.220 0.045 -0.119 -0.006 -0.222 0.045 -0.122 -0.004
Zn 0.692 0.130 -0.030 -0.014 0.697 0.127 -0.032 -0.013
Sr 0.168 0.135 0.119 -0.007 0.168 0.134 0.121 -0.008
Ta -0.020 -0.011 -0.190 0.006 -0.025 -0.014 -0.192 0.000
Rb 0.054 0.634 0.014 -0.064 0.059 0.645 0.013 -0.061
K 0.044 0.139 -0.046 0.110 0.046 0.139 -0.044 0.109
Y 0.018 -0.107 -0.038 -0.081 0.017 -0.104 -0.038 -0.080
Na 0.102 -0.097 0.143 -0.140 0.100 -0.099 0.140 -0.137
Zr -0.070 -0.106 0.368 -0.031 -0.068 -0.102 0.370 -0.032
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4.7 Discussion

Factor analysis is a powerful tool that could be used in order to group temporally

correlated air pollution data in general and PM2.5 speciation metals in particular

according to theirs source origins. As pollution data is correlated, the traditional

factor model is not adequate for their analysis. Omitting to account for the correlation

if it exists could lead to a serious misclassification and inadequate estimates. In

our development above, we illustrate the use of autoregressive correlation, but any

other correlation as dictated by available data could be used just my modifying the

correlation matrix Φ. As introduced in section 6, the theory could easily be extended

to several correlated or uncorrelated stations. Φ will then be written as Φ = ΦT ⊗ΦS,

where S will represent the number of stations. Although we consider ΦS to be fixed

here, a more probabilistic approach could be taken. In the case that an autoregressive

is assumed a distribution of η similar to the one for ρ need to be found.

Many possible extension of the temporal and spatial correlation could be consid-

ered. For spatial correlation for example we could consider the correlation between

stations to be inversely proportional to the distance between them. For both temporal

and spatial correlation, uniform correlation model such as (1 − ρ)I + ρJ where I is

the identity matrix and J a matrix where all the elements are 1. Also an exponen-

tial correlation model giving by σ2ρ|j−k| where ρ = exp(−φd) and d is the difference

between two time points, to name a few could be considered.

An important issue to be faced is the number of factors. We select the number

of factors by previous believe that four main pollution sources: traffic, power point,

industries and miscellaneous are the main sources. A probabilistic approach could

be taken. Defining p(m), a prior on m, by Bayes’ Rule it can be computed that the

probability of each of the number of factors given the parameters is given by

p(m|µ,Λ, F,Ψ, X) ∼ p(m)p(µ)p(Λ|Ψ, m)p(F |m)p(Ψ)p(X|Λ, F,Ψ, m)
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and we can then determine the most probable number of factors. As this is not our

main goal in this paper, we did not elaborate further.



Table 4.9: Minimum detection Limit of Air Filter Samples for Different Analytical Methods
in ng/m3

Species INAA XRF PIXE Flame AAS Flame AAS

Ag 0.14 7 NA 5 0.006
Al 26 6 14 36 0.01
As 0.2 1.0 1 120 0.2
Au NA 2 NA 25 0.1
Ba 7 30 NA 10 0.05
Be NA) NA NA 2 0.06
Br 0.5 0.6 1 NA NA
Ca 113 2 5 1 0.06
Cd 5 7 NA 1 0.004
Ce 0.07) NA NA NA NA
Cl 6 6 10 NA NA
Co 0.02 0.5 NA 7 0.02
Cr 0.2 1 2 2 0.01
Cs 0.04 NA NA NA NA
Cu 36 0.6 1 5 0.02
Eu 0.007 NA NA 25 NA
Fe 5 0.8 2 5 0.02
Ga 0.6 1.1 1 62 NA
Hf 0.01 NA NA 2,400 NA
Hg NA 1 NA 600 25
In 0.007 7 NA 37 NA
K 29 4 6 2 0.02
La 0.06 36 NA 2,400 NA
Mg 360) NA 24 0.4 0.005
Mn 0.14 1.0 2 1 0.01
Mo NA 1 6 37 0.02
Na 2 NA 72 0.2 < 0.06
Ni NA 0.5 1 6 0.1
Pb NA 1 4 12 0.06
Rb 7 0.6 2 NA NA
Sc 0.001 NA NA 60 NA
Sn NA 10 NA 37 0.2
Sn 22 0.6 2 5 0.2
Ta 0.02 NA NA 2,400 NA
Ti 78 2 4 114 NA
V 0.7) 1 4 62 0.2
Y NA 0.7 NA 360 NA
Zn 4 0.6 1 1 0.001
Zr NA 1.0 4 1,200 NA
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