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Goal Attainment on Long Tail Web Sites:
An Information Foraging Approach

James A. McCart

ABSTRACT

This dissertation sought to explain goal achievement at limited traffic “long tail” Web sites using

Information Foraging Theory (IFT). The central thesis of IFT is that individuals are driven by a

metaphorical sense of smell that guides them through patches of information in their environment.

An information patch is an area of the search environment with similar information. Information

scent is the driving force behind why a person makes a navigational selection amongst a group

of competing options. As foragers are assumed to be rational, scent is a mechanism by which to

reduce search costs by increasing the accuracy on which option leads to the information of value.

IFT was originally developed to be used in a “production rule” environment, where a user would

perform an action when the conditions of a rule were met. However, the use of IFT in clickstream

research required conceptualizing the ideas of information scent and patches in a non-production

rule environment. To meet such an end this dissertation asked three research questions regarding

(1) how to learn information patches, (2) how to learn trailsof scent, and finally (3) how to com-

bine both concepts to create a Clickstream Model of Information Foraging (CMIF).

The learning of patches and trails were accomplished by using contrast sets, which distinguished

between individuals who achieved a goal or not. A user- and site-centric version of the CMIF,

which extended and operationalized IFT, presented and evaluated hypotheses. The user-centric

version had four hypotheses and examined product purchasing behavior from panel data, whereas

the site-centric version had nine hypotheses and predictedcontact form submission using data

from a Web hosting company.
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In general, the results show that patches and trails exist onseveral Web sites, and the majority

of hypotheses were supported in each version of the CMIF. This dissertation contributed to the lit-

erature by providing a theoretically-grounded model whichtested and extended IFT; introducing

a methodology for learning patches and trails; detailing a methodology for preprocessing click-

stream data for long tail Web sites; and focusing on traditionally under-studied long tail Web sites.
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Chapter 1

Introduction

Understanding the browsing behavior of users at Web sites has been the objective of much of the

research employing data about users’ Web usage (commonly known as “clickstream data”). Es-

pecially salient has been the investigation of factors relating to choice behavior, where choice is

typically concerned with the purchase of a product (Bucklinet al., 2002). Besides having a gen-

eral understanding of why users behave the way they do, such knowledge also forms the basis for

developing mechanisms to influence choice. For example, to steer a visitor towards a purchase,

dynamic on-the-fly changes may be made to a Web site in terms ofits “. . . pages, link choices, pro-

motional interventions, and prices and product assortments” (Bucklin et al., 2002, pg. 252).

Such a general understanding of factors affecting choice; however, has been difficult to obtain.

In part, the difficulty arises because conceptual research focusing on the theories and ideas which

provide an explanation of a user’s behavior has been limited(Bucklin et al., 2002). This lack of a

theoretical base negatively impacts the ability of the results from clickstream research to be recon-

ciled, synthesized, and thus provide a clearer picture of those factors.

Finding an appropriate theory to use is challenging in lightof the type of data available. Click-

stream data provides information on the actions of a user (e.g., what pages were visited, how much

time was spent at a site), but nothing else. A person’s attitudes, emotions, intentions, and other

such concepts are unknown. However, many theories examining an individual’s behavior in infor-

mation systems research rely on such concepts as attitudes and intentions (e.g., Theory of Planned

Behavior (Ajzen, 1991)) and thus are not appropriate to use.Therefore, a theory is needed which

can (1) explain behavior based on a user’s action and (2) be appropriately applied to the click-

stream domain.

Within the last decade, a theory called Information Foraging Theory (IFT) has emerged which

explains the searching behavior of individuals as they huntfor information (Pirolli and Card, 1999).

The thesis of IFT is that an individual is driven by a metaphorical sense of smell that guides them
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through patches of information in their environment based on their information goal (i.e., what

they are trying to accomplish) (Pirolli, 2007). As they “forage”, individuals evaluate whether to

continue browsing in their current patch of information or leave to hunt for another one. Central to

this theory are the concepts of information patches and information scent. Information patches are

distinct areas of the search environment which differ in informational content. Information scent

is the driving force of why a person makes a navigational selection amongst a group of competing

options.

IFT itself builds on more established theories such as Optimal Foraging Theory (OFT) (Stephens

and Krebs, 1986) and the Adaptive Control of Thought-Rational Theory (ACT-R) (Anderson et al.,

2004). OFT is an ecological theory concerned with explaining the foraging behavior of animals as

they hunt for food. OFT assumes each animal goes through a search–encounter–decision process

as they forage, with the goal being to maximize net energy gained. To maximize energy, the ani-

mal is faced with the decision of which prey to eat or how long to forage in a patch. OFT is used

to explain the behavioral elements of people foraging for information.

ACT-R is a psychological theory of the human mind that includes the cognitive architecture and

process by which cognition works. IFT uses a production rulesystem from ACT-R to determine

probabilistically which action is selected based on its utility within the context of a user’s current

goal. For example, an action to click on a hyperlink may be chosen over backing up to a previ-

ously visited page because following the hyperlink may be more likely to lead to the information

being sought. ACT-R is used to explain at a cognitive level why actions are performed.

IFT was originally developed to be used in a “production rule” environment, where a user would

perform an action when the conditions of a rule were met. However, the use of IFT in clickstream

research requires conceptualizing the ideas of IFT in a non-production rule environment. In essence,

this requires utilizing user action to infer the cognitive process and thus the reasoning behind the

observed behavior. To meet such an end this dissertation describes how information patches and

trails of information scent can be learned from clickstreamdata. However, the main focus of this

dissertation is to determine how the concepts of IFT can be used to build a clickstream model of

information foraging (CMIF). The model relies on measures derived from clickstream data repre-

senting IFT concepts to explain goal achievement at “long tail” Web sites that have limited traffic.

Goal achievement is from the perspective of the online firm and consists of something the firm
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would like to happen at their Web site (i.e., a choice). This dissertation examines Web sites where

the goal is the purchase of a product or the submission of a contact form.

The term “long tail” refers to a Web site that resides in the tail of a power law distribution (An-

derson, 2006). Figure 1 shows a hypothetical power law distribution illustrating Web sites and

their popularity in terms of the number of visits they received1. The head of the curve (darkly

shaded portion) represents the most popular Web sites such as Amazon.com and eBay.com. The

long drawn-out tail of the curve (lightly shaded portion) extends to include all other Web sites.

Figure 1.: Power Law Distribution

The decision to analyze a user’s behavior at long tail Web sites was motivated by the ability of

IFT to guide analysis. Compared to sites in the head, long tail Web sites have significantly smaller

amounts of data, which is precisely where theory can help guide analysis the most. Lacking the-

ory, analysis would require large amounts of data to work well with techniques commonly used

such as data mining. Long tail Web sites by their very nature are prohibitively sparse in data which

hamper the application of such an exploratory approach.

The remainder of this chapter is organized as follows. First, the research questions guiding this

dissertation are introduced in §1.1. A brief discussion of the contributions of this dissertation are

given in §1.2. Finally, §1.3 provides a brief overview of thestructure of this dissertation.

1The power law distribution of Web sites and traffic has been previously confirmed through empirical study
(Adamic and Huberman, 2001) and simulation (Kavassalis et al., 2004). Power-law distributions have also been ob-
served in numerous other instances such as the sales of products (Anderson, 2006); frequency of word usage in English
text; number of telephone calls received; frequency of family names in the United States; and citations of academic
papers (Newman, 2005).
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1.1 Research Questions

The following subsections describe the research questionsguiding this dissertation. The first re-

search question is in relation to the concept of informationpatches. The second research question

more fully explores the concept of information scent. Finally, the third research question brings all

the concepts of IFT together to develop a clickstream model of information foraging.

1.1.1 Research Question 1 – Learning Patches

An information patch is defined as an area of the search environment with similar information

(Pirolli, 2007). Within a Web-context, what constitutes a patch is dependent on the level of anal-

ysis being examined. At a high-level of analysis, an entire Web site can be considered a patch.

When examined from a finer-grained level of analysis, each individual page of a Web site can also

be considered a patch. While such conceptualizations of a patch are straightforward, they are ef-

fectively being defined by the creator of the content rather than the user.

The Web, however, is a pliable environment where foragers have the choice of what material to

view. Effectively, this allows a forager to define their own information patch that is uniquely rel-

evant to their goal. Such patches may consist of a group of Webpages, which individually may

mean very little, but when combined provide an area of the search environment that is seen as

valuable to the user. Therefore, the first research questionattempted to discover how such patches

can be learned.

Research Question 1:How can information patches be learned from a long tail Web site?

Although each user is free to define patches of value as they see fit, certain patterns of patches

may emerge among foragers with similar information goals. From the viewpoint of the online

firm, knowing who values what patch can provide insights intothe information goal of the for-

ager. By categorizing patches as valuable to goal-achievers or non-goal-achievers, the firm may be

able to better explain goal achievement at long tail sites dependent on what patches were visited

by a user. Therefore, a measure was also developed which quantified a user’s visitation of valuable

goal patches.
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1.1.2 Research Question 2 – Learning Scent Trails

Information scent is the driving force behind why a person makes a navigational selection amongst

a group of competing options. As foragers are assumed to be rational, scent is a mechanism by

which foragers’ reduce their search costs by increasing their accuracy on which option leads to the

information of value (Pirolli, 2007). Based on the information goal of a forager, each hyperlink on

a Web page gives off a scent. The higher the scent the more likely the page that is being linked to

may contain the information being sought. Similar to a bloodhound that follows a scent trail over

distances to find an item of interest, a forager also follows ascent trail to find the information they

seek over multiple Web pages. The second research question sought to explain how scent trails

may be learned.

Research Question 2:How can information scent trails be learned from a long tail Web site?

Similar to the learning of patches, each user may have their own scent trail. However, patterns

may exist from fragments of scent trails that emerged among foragers with similar information

goals. These fragments of scent trails are of value to the online firm in distinguishing between pos-

sible goal-achievers and non-goal-achievers. When a user follows these known fragments of scent

trails it may provide clues into their information goal and thus help in explaining goal achievement

at long tail sites. Thus, a measure was developed which computed the following ofgoal scent

trails.

1.1.3 Research Question 3 – Clickstream Model of Information Foraging

The previous two research questions examined the concepts of information scent and patches indi-

vidually. However, the real value of IFT is its ability to combine aspects of a user’s search environ-

ment (i.e., patches) and their actions (i.e., scent) together. Thus the main focus of this dissertation

and the final research question was how these concepts could be combined using clickstream data

to infer goal achievement.

Research Question 3:How can information foraging theory and clickstream data beused to ex-

plain the achievement of a goal at a long tail Web site?

To answer the third research question, two versions of a clickstream model of information for-
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aging (CMIF) were created which used clickstream metrics torepresent the concepts of informa-

tion scent and patches. The user-centric (UC) model exploited user-centric data (Padmanabhan

et al., 2001) about a forager’s entire browsing behavior to explain goal achievement at a long tail

Web site. This model compared a forager’s behavior across multiple Web sites. However, due to

user-centric data typically being aggregated at the session level, the model lacked depth at individ-

ual Web sites.

Since data about a user’s entire clickstream over multiple sites is rarely available to an online

firm, a site-centric (SC) version of the model employing site-centric data (Padmanabhan et al.,

2001) was also developed. Page-level data made the site-centric model capable of analyzing patches

at all levels of analysis along with information scent at a Web site.

1.2 Contributions

Listed below are the major contributions of this dissertation.

First, this dissertation demonstrated how IFT could be usedas a theoretical basis for clickstream

research. Through the creation of two versions of a clickstream model of information foraging,

the concepts of IFT were quantified outside of a production rule environment. In addition, the

CMIF not only operationalized the core concepts of IFT, but also extended the theory by intro-

ducing memory, forager-independent valuation of patches and trails, along with refined definitions

of scent (e.g., strict and relaxed scent). Once tested, manyof the core concepts of IFT were sup-

ported, as were many of the theoretical extensions. Thus, this dissertation not only demonstrated

the ability of IFT to explain goal achievement, but it also introduced theoretical extensions which

provided a more in-depth explanation of goal behavior.

This dissertation also presented a methodology on how to learn patches and scent trails using

not only significant, but also supported contrast sets. Measures were also created which quantified

a forager’s visitation of patches and following of trails. The metrics measured the most valuable,

last, and summation of all patches and trails that were visited or followed. For those Web sites

within the CMIF that discovered patches and trails, the measures were capable of distinguishing

goal from non-goal sessions according to a forager’s visitation and following behavior.

The third contribution was a methodology that detailed how to preprocess datasets with long tail

Web sites. In particular, a separate user- and site-centricmethodology was presented which high-
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lighted the unique challenges associated with preprocessing each dataset. For example, a process

was provided for the site-centric dataset about how to locate and select a single definable goal on

Web sites which have more than one available goal.

Finally, due to the presence of IFT guiding analysis, traditionally under-studied long tail Web

sites were able to be examined even in light of their sparse datasets. As far as can be determined,

this dissertation is the first to empirically study goal achievement on long tail Web sites.

1.3 Dissertation Structure

The structure of the remaining chapters of this dissertation is outlined below. Each item in the list

provides a brief summary of the main purpose of each chapter.

Chapter 2. Literature Review – An overview of prior clickstream research along with the datasets

and metrics used in that research.

Chapter 3. Theory – A detailed explanation of information foraging theory along with the two

theories IFT draws from: ACT-R and OFT.

Chapter 4. Hypotheses – The hypotheses for both the user- andsite-centric versions of the CMIF

(third research question). In addition, an explanation of the extensions to IFT is provided.

Chapter 5. Methodology – A separate methodology for the user- and site-centric versions of the

CMIF is presented that covers the data used, how measures were calculated, and finally how

the hypotheses were tested. The appendix contains a description of how to learn patches and

trails (first two research questions).

Chapter 6. Datasets – A detailed explanation of the series ofpreprocessing steps each dataset

went through to obtain a final dataset.

Chapter 7. Results – A listing and discussion of the results for each of the three research ques-

tions. Descriptive statistics are provided about learned patches and trails. In addition, statis-

tical tests and a discussion of each of the hypotheses for thethird research question are also

provided.

Chapter 8. Temporal – An alternate time-sensitive representation of the site-centric CMIF. The

methodology, results, and discussion are provided for the seven tested hypotheses.
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Chapter 9. Conclusion – Summarizes this dissertation and provides limitations, contributions,

and directions for future research.
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Chapter 2

Literature Review

This chapter provides a summary of prior research which has focused on the behavior of visitors at

Web sites using clickstream data. A brief list of terms commonly used throughout this dissertation

are provided first in §2.1. Then prior research is summarizedand classified by research focus in

§2.2. Table 1 lists the general research questions and results of prior research, while §2.2.1–2.2.4

gives more in-depth descriptions of the literature. The datasets and metrics used in each study are

then discussed in §2.3 and §2.4, respectively.

2.1 Terminology

In order to be clear and consistent, definitions of terms commonly used throughout this disserta-

tion are provided below. Each bolded term is followed by its definition. If any synonymous terms

exist they are italicized in parentheses immediately following the bolded term.

Path – sequence of Web pages viewed during a session or user session.

Sector – a collection of Web sites with products, services, and/or information which are of a sim-
ilar nature (e.g., food).

Session – a time-contiguous sequence of Web page views at the same Website for the same visi-
tor.

User Session– a time-contiguous sequence of Web page views at any number of Web sites for
the same visitor.

Visitor (user) – a person making Hypertext Transfer Protocol (HTTP) requests at a single Web
site or multiple Web sites.

Web page (page) – a file written in Hypertext Markup Language (HTML) containing information
that is viewable via a Web browser (e.g., index.html).

Web site (site) – a collection of Web pages housed under the same top- and second-level domain
name (e.g., amazon.com).
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2.2 Prior Research

In keeping with prior frameworks, the objective of a visitorat a site can be classified as brows-

ing or purchasing (Bucklin et al., 2002). A browsing objective reflects how a visitor may navigate

within a site (Bucklin and Sismeiro, 2003), across multiplesites (Park and Fader, 2004), or how

site visits evolve over time (Moe and Fader, 2004a). Conversely, a purchasing objective is inter-

ested in discovering factors which affect a visitor’s propensity to purchase (Sismeiro and Bucklin,

2004). However, the purchasing objective can be seen as a specific instance of the more general

goal achievement objective as many sites have purposes other than purchasing (e.g., filling in a

contact form, posting a message, responding to a survey). Therefore, the objective of a visitor can

be classified as browsing, purchasing, achieving a goal1, or exploring multiple objectives simulta-

neously (Moe, 2003).

Table 1 categorizes past studies by which objective the research was examining and then sum-

marizes the research questions and results obtained. A morethorough description of prior research

is provided in the subsections following the table.

1Although purchasing is a subset of goal achievement it is retained as a separate objective since numerous studies
specifically examine purchasing behavior.
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Table 1: Prior Literature: Results

Article Research Question / Purpose Results

MULTIPLE OBJECTIVES

Kalczynski et al. (2006) How well do
clickstream-complexity
measures predict task
completion?

Two Web site-independent clickstream-complexity
measures representing the linearity and density of a
session were found to perform the best with accura-
cies between 65% and 93% depending on the task
and site.

Moe (2003) What visitor behavior can be
uncovered from the pattern and
type of pages viewed?

Four groups of visitors differing in search behav-
ior and purchasing horizon were found, along with
a fifth group of non-serious visitors. The purchase
probability of each group differed depending on how
immediate the purchase was and how directed the
browsing behavior was.

BROWSING

Bucklin and Sismeiro (2003) Do visitors change the way they
browse a Web site at the session
or site level?

Visitors did dynamically change their browsing be-
havior at both the session and site level. Within a
session browsers exhibited lock-in as they browsed
deeper into a Web site. Across sessions a learning
effect was observed which reduced the number of
pages viewed, but not the duration spent on each
page.

Continued on Next Page. . .
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Table 1: Prior Literature Results – Continued

Article Research Question / Purpose Results

Danaher et al. (2006) What factors affect visit
duration?

Age interacted with gender, Web site functionality,
and the graphical content of a site negatively with re-
gards to the duration spent on a Web site. Age inter-
acted positively increasing duration for older visitors
for higher levels of text and advertisements on a Web
site.

Johnson et al. (2004) Does reduced search cost lead to
increased search?

Overall search levels were low across the three sec-
tors examined. Browsing behavior was also found to
differ depending on sector and level of activity.

Moe and Fader (2004a) To model individual-level
evolving visit patterns over time.

Examining data at an individual-level contradicted
aggregated visit patterns. More frequent visits and an
increase in visiting rates increased visitors’ probabil-
ity of purchasing.

Park and Fader (2004) Understand cross-site visiting
behavior at the individual level.

An ability to predict when a visitor will first visit a
Web site given their visiting pattern at another site.

Zhang et al. (2006) How does search cost, product
characteristics, previous search
behavior, and consumer
characteristics affect search
depth?

Lower search costs and prior search behavior were
positively correlated with search depth. Price and
consumer characteristics were positively correlated
to search depth for only certain product types.

Continued on Next Page. . .
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Table 1: Prior Literature Results – Continued

Article Research Question / Purpose Results

PURCHASING

Moe and Fader (2004b) To model individual-level
dynamic conversion behavior.

The individual-level model contradicted aggregated
conversion trends. Over time the overall purchase
probability of a visitor decreased, repeat visits had
less of an impact on purchasing, and visitor experi-
ence raised the purchasing threshold.

Montgomery et al. (2004) Can the path a visitor takes
through a Web site help predict
purchase?

Future paths were predicted with greater accuracy
by the model using paths and by allowing search be-
havior (i.e., exploratory, directed) to change during a
session. Purchase prediction was 10% and 21% ac-
curate after a visitor viewed one page and six pages,
respectively.

Padmanabhan et al. (2001) What are the implications of
using site-centric (i.e.,
incomplete) data versus
user-centric (i.e., complete)
data?

Models using user-centric data outperformed models
using site-centric data by a wide margin. Using site-
centric data can lead to erroneous results since signif-
icant metrics in site-centric models may no longer be
significant in user-centric models.

Sismeiro and Bucklin (2004) Does viewing the purchasing
process as a series of tasks
increase prediction accuracy?

The multi-task model outperformed the competing
single task models supporting the series of tasks con-
cept. The model metrics differed in effect sign, size,
and significance between tasks indicating some met-
rics were better predictors of some tasks over others.

Van den Poel and Buckinx
(2005)

How well do different types of
metrics predict purchases?

Detailed clickstream metrics, which were divided
according to the underlying content of the page (e.g.,
product information, community pages), were found
to be the most important predictors of purchase.

Continued on Next Page. . .
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Table 1: Prior Literature Results – Continued

Article Research Question / Purpose Results

GOAL ACHIEVEMENT

Chatterjee et al. (2003) To model a visitor’s probability
of clicking a banner
advertisement.

Advertisements exhibited “wearout” such that mul-
tiple exposures reduced the probability of a visitor
clicking an advertisement. Infrequent visitors were
also more likely to click on a banner advertisement
than frequent visitors.
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2.2.1 Multiple Objectives

Moe (2003) created a two-dimensional typology and sought todiscover metrics which helped cat-

egorize the within-session shopping strategies of visitors. The first dimension of the typology,

search behavior, was dichotomized into following a directed or exploratory pattern2 (Janiszewski,

1998). Directed searching occurs when a visitor has a particular goal or product in mind (Row-

ley, 2000). Exploratory search, on the other hand, takes an undirected approach where the visitor

may not be attempting to locate a particular product or meet aspecific goal. The time horizon, in

which the expected purchase is to take place, either immediately or in the future, was the second

dimension of the typology.

As seen in figure 2, four categories of shopping strategies emerged from the typology: directed

buying; search and deliberation; hedonic browsing (i.e., exploratory or stimulus-driven browsing);

and knowledge building. Each strategy was expected to have aunique pattern of the type, variety,

and number of repeat viewings of particular types of pages.

Purchasing Horizon Search Behavior

Directed Exploratory

Immediate Directed buying Hedonic browsing

(20.0%) (1.4%)

Future Search/deliberation Knowledge building

(6.6%) (< 0.1%)

Figure 2.: Shopping Strategy Typology (Moe, 2003)

Using seven weeks of data from a nutritional supplement store, Moe (2003) empirically tested

the typology using cluster analysis and found all four theorized categories were present along with

a fifth category of non-serious visitors3. The two most important metrics found for discriminating

2Bloch et al. (1986) created a framework for consumer information search and also delineated between two search
behaviors, pre-purchase and ongoing search. Pre-purchasesearch, which was defined as seeking to facilitate decision
making about a particular goal, maps to the directed search behavior. Ongoing search maps to the exploratory search
behavior and was defined as searching that is independent of agoal.

3Visitors in the fifth category, on general, viewed two pages and spent a short amount of time on each page. Due to
the limited browsing behavior exhibited on the site by thesevisitors before leaving they were not considered as having
a serious interest in the site. Nicholas et al. (2007) termedthose non-serious visitors as ’bouncers’ who go from site to
site without deeply penetrating or frequently returning tothe Web site of interest.
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between shopping strategies within a session was the numberof different category pages viewed

and the maximum number of times a product page was viewed (Moe, 2003). Figure 2 also con-

tains the conversion rate of each category, in parentheses,which was found to range from< 0.1%

to 20.0%.

Examining the behavior of visitors performing purchasing and information-seeking tasks over

five Web sites, Kalczynski et al. (2006) used the navigational complexity of a visitor’s session

to help predict the completion of tasks. The central idea of navigational complexity is the corre-

spondence with an underlying search behavior (e.g., Moe, 2003) where, for example, a less com-

plex session is associated with a directed search behavior whereas greater complexity in a session

points toward an exploratory search behavior. Using graph theory, each visitor’s session was de-

composed into a clickstream graph which represented the Webpages and links traversed within a

Web site and allowed for the calculation of navigational complexity.

A total of 485 sessions, in a controlled experiment, attempted to complete three purchasing and

three information-seeking tasks with the overall success rates for the tasks varying from 8.8% to

56% (Kalczynski et al., 2006). Two clickstream graph-complexity metrics representing the linear-

ity and density of a session were used in binary logistic regression models for each task. Overall,

the models correctly classified a session between 64.9% and 93.1% of the time depending on the

Web site and task4 (Kalczynski et al., 2006).

2.2.2 Browsing

Moe and Fader (2004a) explored the pattern and evolution over time of a visitor’s browsing behav-

ior at the individual-level. The authors argued that aggregating browsing behavior at the site-level

to create general traffic patterns may lead to a false understanding of the complete browsing be-

havior occurring at a site (Moe and Fader, 2004a). For instance, aggregated data may indicate an

upward trend in both the number of visitors and rates of visits to a site. The inclusion of new visi-

tors may however, be masking a decline in visiting rates for experienced visitors (i.e., established

customers).

Moe and Fader (2004a) used eight months of user-centric datafocusing on Amazon.com and

4The model with 93.1% accuracy was for the task with only 8.8% success. As only the overall accuracy and not
the specificity and sensitivity were provided the practicalbenefit of the model is unknown, Kalczynski et al. (2006)
acknowledged this limitation.
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CDNow.com to validate a nonstationary evolving visit model. The model took into account an in-

dividual’s heterogeneity, visiting rate, and evolution ofvisiting rates over time. Compared against

an exponential-gamma timing process, which did not allow for change over time, the evolving

visit model was more accurate in estimating the likelihood and when a visitor would return to a

site (5% overprediction versus 37%) (Moe and Fader, 2004a).In addition, the distribution of vis-

iting rates did show a decline in visiting rates for experienced visitors which contradicted the ag-

gregated trends. Furthermore, more frequent visits and an increase in visiting rates were found to

be significant in terms of a visitor’s probability of purchasing (16.6% vs. 11.1% and 5.5% versus

2.4%, respectively) (Moe and Fader, 2004a).

Also concerned with aggregated statistics being used to infer visitors’ browsing behavior, Buck-

lin and Sismeiro (2003) created an individual-level model of browsing behavior within a Web site.

The first aspect of the model accounted for a visitor’s decision to continue browsing the site or exit

the site. The second aspect was concerned with the duration of time a visitor spent on each indi-

vidual page. Using a type II tobit model and one month of data from a commercial automotive

Web site, four distinct browsing behaviors were identified:a learning effect, within-site lock-in,

time-constraints, and a cost-benefit view.

The results of the first behavior, learning effect, was consistent with prior research showing the

overall duration of sessions decreased with each subsequent session (Johnson et al., 2003). Al-

though the overall session duration and number of pages viewed decreased, the duration spent on

each page did not significantly differ from previous sessions (Bucklin and Sismeiro, 2003). The

second behavior was based on the concept of lock-in (Johnsonet al., 2003; Zauberman, 2003);

however, in this context the lock-in corresponded to a visitor becoming more engrossed as they

continued to browse a Web site within the same session instead of over time. The results supported

this idea of within-site lock-in since the amount of time spent viewing each page increased as the

number of pages viewed in a session increased (Bucklin and Sismeiro, 2003).

Time-constraints, the third behavior, showed the probability of a visitor staying on the Web site

decreased as the overall session duration increased. The final behavior demonstrated visitors’

likely performed some type of cost-benefit analysis since a page with greater amounts of infor-

mation increased a visitor’s probability of staying on the Web site. However, the probability of a

user leaving the site can also increase with greater levels of information. For example, reading all
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the information on a page may result in longer page durationswhich translate into longer session

durations. Due to time-constraints, longer session durations then leads to a greater probability of a

user leaving the Web site (Bucklin and Sismeiro, 2003).

Echoing the concerns of Padmanabhan et al. (2001) about using incomplete data, Park and

Fader (2004) posited the timing and frequency of future visits to a site can be better explained by

examining visiting behavior at other sites. Specifically, the browsing behavior in terms of visit tim-

ing and visit rates compared to other sites can be examined. For instance, one visitor may have

high visit timing in which a visit to one site is followed shortly by a visit to another site. A differ-

ent visitor may have a high visit rate where the number of visits to each site is similar, regardless

of the coincidence of visit timing. The relationship of boththese concepts to a visitor’s browsing

behavior can be used to predict future visits to a site of interest.

Using a multi-variate timing mixture model with closed-form analytic expressions, Park and

Fader (2004) looked at the browsing behavior of visitors from two pairs of sites within the book

and music sectors. Four models were compared, which differed based on if correlation in visit tim-

ing and rates were accounted for, with the proposed model accounting for both correlations. The

proposed model was found to provide the best fit and performedwell when long spaces of time

occurred between visits (Park and Fader, 2004). However, when visits to different sites occurred

on the same day, the proposed model failed to perform as well.The proposed model also outper-

formed the other three models in identifying zero class customers (i.e., customers who have not

visited the Web site) who become non-zero class customers (i.e., customers who will visit the Web

site) in the future (Park and Fader, 2004).

Since the average duration a visitor spends on a Web site is a component of the stickiness of

that site (i.e., ability to attract and keep the interest of avisitor) (Bhat et al., 2002), Danaher et al.

(2006) set out to uncover the factors that affect visit duration. The resulting model took into ac-

count two sources of individual-level heterogeneity in theform of demographics and a visitor’s

situational characteristics for a particular visit to a site (e.g., weekday versus weekend visit, num-

ber of previous visits). Site-level heterogeneity included measures of the textual, graphical, and

advertising content of a Web site. Measures representing the background complexity and overall

Web site functionality5 were also included in the model.

5Functionality was measured as the average of 19 binary itemsindicating the presence or absence of features on the
Web site such as ”. . . online help, search functions, site maps, user registration, e-mail contact availability, chat rooms,
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Using a month of panel data from 1,655 panelists for the 50 most-visited Web sites in the dataset,

the developed model demonstrated that all three sources of heterogeneity were significant in ex-

plaining duration. Although all significant, visitors’ situational characteristics accounted for al-

most 80% of the variance explained (Danaher et al., 2006) providing support that clickstream met-

rics in the absence of demographics and Web site characteristics can explain a substantially part

of visitors’ behavior. In terms of specific metrics, age was found to interact significantly with al-

most all of the demographic and Web site-specific metrics. For instance, the functionality of a Web

site and age interacted such that an increase in functionality decreased the duration a visitor spent

on the site the older the visitor was. The opposite relationship was found between age and adver-

tising content where visit duration increased for older visitors when visiting Web sites with more

advertisements.

Due to the relatively costless nature of searching on the Internet, Johnson et al. (2004) sought to

answer the question does reduced search costs lead to increases in search behavior? To answer that

question search behavior was operationalized into three components consisting of the depth, dy-

namics, and activity of search. The resulting HierarchicalBayesian model accounted for a house-

hold’s visitation of multiple sites within the same sector (depth), change in search behavior over

time (dynamics), and amount of overall activity in a sector (activity).

Focusing on three sectors (books, music, and air travel) thesearch behavior of households at 51

of the most visited Web sites (13 books, 16 music, and 22 air travel) within the dataset were an-

alyzed. Consistent with prior research, it was found that overall households searched very little

(Zauberman, 2003) in all three sectors, although more search behavior was found within the air

travel sector than the others (Johnson et al., 2004). However, households searching within the air

travel sector were more likely to gravitate toward a preferred Web site over time (Johnson et al.,

2004), thus indicating a propensity for less search in the future. Not surprising, a relationship be-

tween activity and depth of search was significant for all sectors indicating households that were

more active in a sector were more likely to search across sites (Johnson et al., 2004).

Following in the footsteps of Johnson et al. (2004), Zhang etal. (2006) also examined the search

behavior of households, albeit using data collected four years later. The time span between the

datasets highlighted the contrasting search behavior of households from the infancy of e-commerce

and message boards“ (Danaher et al., 2006, pgs. 186–187).
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to its relative maturity. Looking at both product price and the quality of the e-commerce store, an

analytical model and propositions of a household’s online search behavior were created. Examin-

ing two of the three same sectors as Johnson et al. (2004) (music and air travel) and one new sector

(computer hardware), linear regression models were used totest hypotheses derived from the ana-

lytical model’s propositions. The hypotheses sought to determine the relationship of search depth

to search cost, product characteristics, previous search behavior, and consumer characteristics.

Compared to prior research, overall search depth increasedand loyalty to a Web site decreased

(Zhang et al., 2006), which is contrary to the belief that households would gravitate towards a

preferred Web site over time (Johnson et al., 2004). It was also found that households took both

the price of the product and the quality of the e-commerce store into consideration (Zhang et al.,

2006). Like Danaher et al. (2006), who found age was an important moderating variable for visit

duration to a site, age was also found to be positively related to search depth, although only within

the air travel sector. All told, the linear regression models accounted for 4.4% to 11.5% of the

adjusted R2 (Zhang et al., 2006), indicating other metrics may also be ofinterest for explaining

search depth.

2.2.3 Purchasing

Montgomery et al. (2004) sought to predict purchase conversion by examining the path a visitor

took as they browsed a Web site. The path was assumed to provide clues into the goals of the vis-

itor and consisted of the sequence and types of pages (e.g., home, product, and category) viewed

throughout a session.

Figure 3 provides an example of two distinct paths from two visitors who eventually arrive at

the same product page. The first visitor appears to have takena direct route to the product of in-

terest, thus exhibiting a deliberate path. In contrast, thesecond visitor appears to be browsing, due

to the number of product and category pages being viewed. These two behaviors are very similar

to the search behavior dimension of the shopping strategy typology from Moe (2003). However,

unlike Moe (2003) which categorized a visitor as having a static search behavior for the entire ses-

sion, the dynamic multinomial probit model by Montgomery etal. (2004) included the ability to

account for changes to a visitor’s search behavior within a session. Therefore, while a visitor may

not have a specific goal at the beginning of a session, they maytransition at some point in the ses-
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sion into having a goal or vice-versa.

Visitor Sessiona

1 〈H,C,P 〉

2 〈H,C,P, P, P,C, P, P,C, P, P,H,C, P 〉

a Types of pages: H = Home; C = Category; P = Product.

Figure 3.: Category of Pages Viewed in a Path

One month of panel data focusing only on visitors to BarnesandNoble.com was used to em-

pirically evaluate the accuracy of the proposed model. First, the general accuracy of the model’s

ability to correctly predict future paths based on prior paths of the same visitor was evaluated. Us-

ing a holdout sample, future paths were predicted with 83.2%accuracy (Montgomery et al., 2004).

Second, it was found that models which allowed for search behavior to change within a session

were more accurate at predicting paths than other models (Montgomery et al., 2004). Lastly, the

accuracy of predicting purchase conversion by the end of a session using path information of that

session was evaluated. As a path is a discrete set of pages viewed, the purchase conversion predic-

tion can be calculated after each page viewed. Using a holdout sample the accuracy after one page

and six pages viewed was 10.4% and 21.2%, respectively, withthe accuracy increasing as more

pages were viewed (Montgomery et al., 2004).

Predicting if a purchase would be made during a visitor’s next visit to a site, Van den Poel and

Buckinx (2005) investigated the importance of four different categories of metrics on purchase

prediction. The first category of metrics aggregated clickstream measures for a particular visitor

regarding all their previous visits to the site. The second category provided detailed clickstream

metrics according to the particular content being visited (e.g., a product page), as opposed to the

entire site in general. The third and fourth categories dealt with demographic and past purchase

metrics, respectively.

An exploratory approach to cull the list of 92 available metrics down to a reasonable set for use

in logit models was done via three competing metric selection methods. Using 10 months of data

from a commercial wine seller, 11 distinct metrics were usedto create the models correspond-

ing to the metric selection method employed. The criteria for judging the models found the best

model using the validation dataset was low in accuracy for both the proportional chance criterion
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(Morrison, 1969) and the area under receiver operating characteristic curve criterion (Fischer et al.,

2003). Although not extremely accurate, Van den Poel and Buckinx (2005) did find the detailed

metrics provided the greatest predictive performance.

Padmanabhan et al. (2001) investigated the implications ofusing incomplete clickstream data

to train models for prediction purposes. Specifically, the purpose was to determine if a purchase

would occur during the remainder of a session or at any point in the future. The potential prob-

lem of using incomplete data is only a visitor’s browsing behavior for the particular site of interest

is observed. For instance, figure 4 provides an example of two-types of data for two visitors. Ex-

amining only the site-centric data, it appears both visitors are similar since they have both visited

three pages at site A. However, if user-centric data is examined instead, the picture of the two visi-

tors’ browsing sessions is much different. Visitor 1 is visiting two other sites in addition to site A,

whereas visitor 2 is only visiting site A.

Visitor User-centrica Site-centricb

1 〈A1, A2, B1, A3, C1, C2〉 〈A1, A2, A3〉

2 〈A1, A2, A3, 〉 〈A1, A2, A3〉

a Notation: Xy indicates the yth page viewed from site X.
b Assumes site-centric data is for site A.

Figure 4.: User-centric Versus Site-centric Data

To explore the effects of using such incomplete data, Padmanabhan et al. (2001) recreated a

site-centric dataset from six months of user-centric data.A linear regression, logistic regression,

classification tree, and neural network were created for each class of problem (i.e., purchase in the

current session or future purchase). The results of each model were compared against the site- and

user-centric datasets. All the models using user-centric data had significantly higher lifts compared

to the models built using site-centric data (Padmanabhan etal., 2001). In addition, some metrics

found to be significant in site-centric models were insignificant in the user-centric models, thus

leading to the possibility that erroneous conclusions may be reached from relying solely on site-

centric data (Padmanabhan et al., 2001). Lastly, some highly significant metrics were only avail-

able in the user-centric dataset (Padmanabhan et al., 2001)highlighting the importance of using a

complete picture of a visitor’s browsing behavior.
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Instead of attempting to predict the probability of purchasing as a discrete purchase or not-

purchase outcome, Sismeiro and Bucklin (2004) viewed the purchasing process as a series of tasks

to be completed. Each task (e.g., find a product, add the product to the shopping cart, checkout) is

sequential in nature and requires prior tasks to already have been completed. Therefore, the prod-

uct of a chain of conditional probabilities can be calculated for a visitor after each task has been

completed (Sismeiro and Bucklin, 2004). For example, the probability can be calculated for a vis-

itor adding a product to their shopping cart given the visitor has already found the product. In ad-

dition to the task-completion aspect of their model, Sismeiro and Bucklin (2004) also allowed for

heterogeneity across visitors at the geographical county level.

In order to evaluate the multi-stage binary choice model, Sismeiro and Bucklin (2004) gathered

70 days of clickstream data from a major commercial Web site in the automotive industry. Three

sequential tasks were defined as critical junctures leadingup to the purchase of an automobile:

completing the configuration of an automobile; inputting personal information; and completing

an order. To determine the effectiveness of the task-completion approach, two single-task hierar-

chical probit models, one with dummy variables representing the completion of the first two tasks

and one without, were compared against the multi-stage binary choice model. The multi-stage

model outperformed both single-task models in hit rate and mean square error (MSE) for predict-

ing vehicle orders (Sismeiro and Bucklin, 2004). In addition, the multi-stage model demonstrated

that some metrics’ effect signs differ depending on the taskand some metrics are valuable for pre-

dicting the completion of some tasks but not for others (Sismeiro and Bucklin, 2004). One stated

limitation of Sismeiro and Bucklin (2004) was the requirement that each task must be performed

in the order specified. The model cannot consider alternate routes a visitor takes at a site that may

also lead to a purchase6.

Recognizing that visitors may have distinct purchasing patterns, Moe and Fader (2004b) inves-

tigated how purchasing probabilities can be improved by taking into account visitor heterogeneity

and visit history. Specifically, they created a conversion model which contained six components.

The first component was a baseline probability of purchasingfor each visitor which was indepen-

dent of the visitor’s past history. The positive effect on purchasing (i.e., visit effects) was the sec-

ond component and assumed that each visit increased, although by varying amounts, the likelihood

6Sismeiro and Bucklin (2004) cite Amazon.com’s “One-Click”checkout service as an example of an alternate
route.
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of a future purchase. The third component, purchasing threshold, allowed for a negative effect on

purchasing which may be caused by the risk-adverseness or reluctance of a visitor to purchase.

A decreasing threshold would indicate less of a negative effect on a visitor’s purchasing proba-

bility. The fourth component permitted heterogeneity across visitors by differing visit effects and

purchasing thresholds for each visitor. The fifth componentallowed for changes and evolutions

in the visit effects and purchasing threshold over time. Lastly, the model included a component

to remove shoppers who were considered “hard-core never-buyers” and had no intention of ever

purchasing (Moe and Fader, 2004b).

Using an eight-month sample of panel data focusing on Amazon.com, visit effects were found

to accumulate over time and increase purchasing probabilities (Moe and Fader, 2004b). However,

the conversion model showed an overall decrease in purchasing probabilities over time. The third

and fifth components showed repeat visits had less of an impact on purchasing over time and pur-

chasing thresholds increased as visitors became more experienced (Moe and Fader, 2004b). These

results mirror Moe and Fader (2004a) indicating the importance of exploring visitor-level data as

the conversion model contradicted the aggregated dataset’s demonstration of increasing purchas-

ing probabilities. Lastly, the conversion model outperformed a logistic regression model, duration

model, beta-binomial, and historical conversion rates by having the lowest relative error in predict-

ing conversion rates (14.7% predicted versus 15.7% actual).

2.2.4 Goal Achievement

Chatterjee et al. (2003) analytically modeled a visitor’s response to banner advertisement exposure

on an ad-sponsored magazine Web site7. The proposed model allowed for heterogeneity of visitors

and their sessions (both within and across) to the Web site. Three benchmark models, with varying

levels of heterogeneity, were used to compare the proposed model.

Using data from 1995, the ability of the model to predict the click-through of banner advertise-

ments of 3,611 visitors for two sponsors was tested. The proposed model obtained a 41% hit rate

compared to the three alternative models obtaining a 2.4%, 24.2%, and 33.3% hit rate, respectively

(Chatterjee et al., 2003). As expected it was found that “wearout” to banner exposure was a factor

7A notable point about this type of goal achievement is it can occur multiple times within the same session (i.e., a
visitor can click multiple banner advertisements during a session). Although multiple purchases or other goals may be
achieved within the same session, it is unlikely to occur with much frequency.
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and thus the probability of clicking on a banner advertisement was higher when a visitor was first

exposed to the advertisement. In addition, the “wearout” concept also extended over sessions such

that infrequent visitors were more likely to click on a banner advertisement than frequent visitors

(Chatterjee et al., 2003).

2.3 Datasets

Table 2 provides information about the dataset used in each study. As clickstream research is typ-

ically data-driven, the results found in prior literature may be specific to particular datasets. Thus,

having knowledge of the datasets used may be helpful in understanding differing results. Each

dataset is broken down by type, sector the site or sites of interest belong to, year when the data was

collected, duration of data collection, and size of the dataset.

2.3.1 Type

The type of dataset used can be categorized as either site-centric or user-centric, terms coined by

Padmanabhan et al. (2001) to refer to the focus of a clickstream dataset. Site-centric data is fo-

cused on the site itself and is defined as “. . . clickstream data collected at a site augmented with

user demographics and cookies to identify users” (Padmanabhan et al., 2001, pg. 154). Although

site-centric data is advantageous in terms of being readilyavailable to site-owners (although they

might not have access to demographics) and including all traffic to a site, it can only provide infor-

mation on a visitor’s browsing behavior on that site. A visitor’s entire browsing session (i.e., user

session), which may include browsing at other sites, cannotbe obtained from site-centric data.

User-centric data overcomes the disadvantage of site-centric data by providing an entire visitor’s

session regardless of the different sites visited. Having complete information, user-centric data

has proven to be more accurate than site-centric data when building models predicting purchasing

probabilities (Padmanabhan et al., 2001). User-centric data is defined as “. . . site-centric data plus

data on where else the user went in the current session” (Padmanabhan et al., 2001, pgs. 154–155).

User-centric data is typically obtained from randomly selected participants who are representative

of the population at large. Unfortunately, some more recentuser-centric datasets lack details of

each page a user visits during their session. This limitation restricts the examination of paths and

other such techniques from being studied using these datasets.
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In addition to the “pure” site- and user-centric datasets, some studies construct site-centric datasets

from user-centric data for a single site or set of sites. These constructed site-centric datasets typi-

cally view the site or sites of interest in isolation withoutregard to where a visitor may browse at

other sites (e.g., Montgomery et al., 2004).

2.3.2 Sector

The sites examined in a study’s dataset can be categorized into a general sector according to the

main purpose of the site or type of products sold. Awareness of the sector may be desirable since

browsing behavior has been found to vary by sector (Johnson et al., 2004). Therefore, the results

obtained from a site in one sector may not be generalizable tosites in another sector. For example,

Van den Poel and Buckinx (2005) looked at an e-commerce site selling wine, which is within the

food sector. The results from such a sector may not generalize well to other sectors as wine is a

perishable good which may require restocking as consumed. Asite within the consumer electron-

ics sector may have drastically different traffic patterns and factors that lead to purchase due to the

non-perishable aspect of the products sold.

Sites were categorized into sectors according to the Open Directory Project (ODP). A search on

a site’s domain was done on ODP and the most relevant categoryreturned was used as the sector.

For studies which did not explicitly mention the sites used,the sector was located according to the

general purpose or type of product sold. As sites may change drastically over time the purpose or

type of product sold at the dataset’s time was used to categorize the site8.

2.3.3 Time, Duration, and Size

As the Internet has seen an evolution of visitors’ behavior to sites (Zhang et al., 2006), the year or

years in which a dataset was collected can have a direct impact on the results obtained (cf. Johnson

et al., 2004; Zhang et al., 2006). The duration of data collection can also have profound results.

For instance, collecting data for one month in a cyclical industry may result in differing conclu-

sions when compared to data collected in the same industry over a longer period of time. Lastly,

the size of the dataset is provided. For site-centric data the number of monthly visitors can be con-

8Amazon.com circa 1998 sold only books (Moe and Fader, 2004b)and thus would be assigned to the Book sector.
Today, however, Amazon.com sells many different categories of products ranging from consumer electronics to bedding
and thus would be assigned to the General sector.
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sidered an accurate, albeit conservative, estimate of actual visitors9. As user-centric data represent

only a sub-sample of all visitors to a site, such datasets cannot accurately represent the size of a

site. However, many studies using user-centric datasets focus on large well-known sites such as

Amazon.com (Moe and Fader, 2004b), BarnesAndNoble.com (Montgomery et al., 2004), and CD-

Now.com (Moe and Fader, 2004a) in order to obtain adequate sized samples and generalizability.

9As part of the preprocessing of clickstream data, sessions consisting of only a single page are typically discarded
(Bucklin and Sismeiro, 2003). Therefore, site-centric data measures of monthly visitors are likely a conservative esti-
mate of actual unique visitors to a site.

27



Table 2: Prior Literature: Datasets

Article Dataset

Monthly

Typea Sector Year Duration Visitorsb

MULTIPLE OBJECTIVES

Kalczynski et al. (2006)f site-centric construction, financial,
government, insurance, & travel

N/A N/A 97

Moe (2003) site-centric nutritional supplements 2000 7 weeks 3,508

BROWSING

Bucklin and Sismeiro (2003) site-centric autos 1999 1 month 164,429

Danaher et al. (2006) user-centric all 2000 1 month 1,665d

Johnson et al. (2004) user-centric books, music, & travel 1997-1998 1 year 893d

Moe and Fader (2004a) site-centric books & music 1998 8 months 741d

Park and Fader (2004) user-centric books & music 1997-1998 8months 1,039d

Zhang et al. (2006) user-centric music, computer hardware,&
travel

2002 6 months 2,277d

PURCHASING

Moe and Fader (2004b) site-centricc books 1998 8 months 536

Montgomery et al. (2004) site-centricc general 2002 1 month 1,160

Padmanabhan et al. (2001) bothc multiple N/A 6 months 3,297

Continued on Next Page. . .
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Table 2: Prior Literature Datasets – Continued

Article Dataset

Monthly

Typea Sector Year Duration Visitorsb

Sismeiro and Bucklin (2004) site-centric autos 2000-2001 70 days 37,597

Van den Poel and Buckinx
(2005)

site-centric food 2001-2002 11 months 126

GOAL ACHIEVEMENT

Chatterjee et al. (2003) site-centric magazine 1995 7 months 479e

aA dataset is considered site-centric if only information about the particular site or sites under study were examined independently of any other sites the visitor may
have visited. Thus, while the data may be user-centric in nature (i.e., panel data) the researchers have taken a site-centric approach by disregarding browsing behavior at
other sites.

bMonthly visitors were calculated as shown in equation 2.1. Traffic patterns were assumed to be constant throughout a dataset’s duration. If the specific dates of the
dataset were not provided approximations were made.

„

total number of visitors
duration of dataset in days

«

× 30 (2.1)

cIndicates a dataset constructed from user-centric data. These datasets only reflect a subset of all monthly visitors to asite.
dIndicates total monthly visitors across all sites analyzedin the dataset.
eIndicates a subset of all monthly visitors to a site that met specified criteria.
fCaptured clickstream data from experimental subjects performing a prespecified task.
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2.4 Metrics

Table 3 provides information about the metrics used in each study. Categorized by the focus of the

research, the metrics used are described in terms of their level of analysis and general type.

2.4.1 Analysis Level

The metrics used for clickstream research can be defined at four basic levels of analysis: session,

site, sector, and user. At the session-level, which is the most detailed, each session of a visitor is

typically treated as an independent datapoint. A session-level metric is based only on information

within the same session (e.g., number of clicks in a session,time spent during a session). When

all sessions at a particular site for a visitor are aggregated together, they represent the site level of

analysis. At the site level of analysis each visitor is considered a datapoint, regardless of the num-

ber of sessions at a site. Metrics at the site-level can provide a historical perspective of a visitor’s

browsing history at that site (e.g., conversion rate for thevisitor).

The sector-level performs another level of aggregation forall sites visited within the same sec-

tor. As more than one site is available, the sector-level canprovide metrics that compare a visitor’s

browsing and purchasing habits across various sites withinthe sector (e.g., percentage of visits to

site A). Finally, the user-level aggregates every sector, which includes all sites and all sessions, of

a visitor’s browsing behavior together. Similar to sector-level metrics, user-level metrics are also

able to compare browsing and purchasing habits, albeit at a higher level of analysis (i.e., the sec-

tor)10.

Figure 5 is an example of the different levels of analysis possible for a single user. The userU1

depicted in figure 5 had ten sessions (S1−10) at four sites (I1−4) within three sectors (C1−3). Tak-

ing a site-centric approach, either session-level or site-level metrics could be used. For instance,

a site-centric approach at siteI1 could examine each of the user’s sessions (S1−3,5) as individual

datapoints; all sessions aggregated to the site-level (I1) as a single datapoint; or a combination of

both where the last session (S5) is used at the session-level and all previous sessions (S1−3) are

aggregated at the site-level for historical metrics.

Taking a user-centric approach, not only can session- and site-level metrics be used, but also

10Catledge and Pitkow (1995) also noted varying levels of analysis. However, they only considered the session and
user level of analysis.

30



User (U) U1={C1−3}

Sector (C) C1={I1−2} C2={I3} C3={I4}

Site (I) I1={S1−3,5} I2={S4,9} I3={S6} I4={S7−8,10}

Session (S) S1, S2, S3, S5 S4, S9 S6 S7, S8, S10

Figure 5.: Example Metric Level of Analysis

sector- and user-level metrics. For instance, continuing the example of userU1 from figure 5, at

sectorC1 all site-level data can be aggregated as a single datapoint for the user. In addition, the

site- and session-level metrics would also be available forboth sites (I1−2) and the corresponding

sessions (S1−5,9). At the most general level, user metrics aggregated from all sectors (C1−3) for

the user would be represented as a single datapoint. Furthermore, all other level-of-analysis met-

rics would be available for all the sectors, sites, and sessions of the user.

Each level of analysis can be further broken down into general and detailed metrics. General

metrics refer to any metrics at a particular level of analysis that includes all relevant behavior,

without regard to the underlying content of the site. Detailed, on the other hand, breaks metrics

down by the type of content being viewed (Van den Poel and Buckinx, 2005). For instance, a gen-

eral session-level metric would be the number of pages viewed in a session whereas a detailed

session-level metric would be the number of product pages viewed in a session. Aggregating all

the detailed metrics for a level of analysis would result in the general metrics for the same level of

analysis.

2.4.2 Metric Categories

Direct marketers have used Recency, Frequency, and Monetary (RFM) metrics to segment cus-

tomers for decades (Shaver, 1996; Stone and Jacobs, 2001) and summarize their prior behavior

(Fader et al., 2005). Recency refers to the amount of time elapsed since a particular action or be-

havior has been observed, frequency is concerned with the number of times the same action or be-

havior is made, and monetary deals with the amount of money spent on current or past purchases.

For example, the amount of time since a visitor last visited aWeb site, the number of pages viewed

during a session, and the total amount spent on a previous purchase, would represent a recency,

frequency, and monetary metric, respectively.
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As the basic underlying goal of identifying valuable customers is common in both direct mar-

keting and clickstream research, the classic RFM metrics can be a logical starting point for catego-

rizing the metrics used in the clickstream literature. However, differences between the online and

offline environment affect the data available and thus the types of metrics which can be used11.

Within the RFM metrics both recency and frequency are well represented in clickstream research,

but monetary metrics have not seen widespread usage since datasets do not explicitly contain pric-

ing information of visitors’ purchases12.

Besides RFM metrics, user characteristics (i.e., demographics) have been used in both direct

marketing and clickstream research with some regularity. Although not available in a user’s click-

stream, user-centric panel data typically obtain demographic data separately which are then mapped

to the appropriate clickstream. Duration and timing are twomeasures more specific to clickstream

research, due to the ease at which they can be obtained. Duration deals with the amount of time

spent doing an action or behavior, whereas timing is the rateat which an action or behavior is

done. The amount of time spent on a Web site and the visitationrate of a visitor to a site are ex-

amples of duration and timing, respectively. Lastly, the structure of the Internet and characteristics

of Web sites and their pages lend themselves to a wide varietyof other metrics which do not fit

into the previously discussed metrics. The referring Web site, number of links on a page, and size

of a page in bytes are all examples of the type of metrics whichbelong in the “other” category.

Table 3 classifies the metrics used in prior literature according to the categories they belong:

demographics, recency, frequency, monetary, duration, timing, and other metrics.

11Take the example of determining the number of products viewed for an online store versus an offline catalog. On-
line a simple count of the number of pages viewed with productinformation would provide the relevant information.
Offline attempting to gain information for such a metric would be prohibitively expensive since some type of observa-
tion would be needed for each viewer of the catalog.

12Monetary metrics can be obtained from secondary sources andhas been examined in Van den Poel and Buckinx
(2005), but it is not a natural byproduct found in server logsand other such sources that clickstream data are typically
gathered from. Some user-centric datasets; however, do provide monetary values for products sold.
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Table 3: Prior Literature: Metrics

Analysis

Article Level Demographics Recency Frequency Monetary Duration Timing Other

MULTIPLE OBJECTIVES

Kalczynski et al. (2006) session Y

Moe (2003) session Y Y Y

BROWSING

Bucklin and Sismeiro (2003) session & site Y Y Y

Danaher et al. (2006) session Y Y Y Y

Johnson et al. (2004) sector Y Y

Moe and Fader (2004a) session Y Y

Park and Fader (2004) sector Y Y

Zhang et al. (2006) site & sector Y Y Y

PURCHASING

Moe and Fader (2004b) session Y

Montgomery et al. (2004) session Y Y

Padmanabhan et al. (2001) site & sector Y Y Y Y

Sismeiro and Bucklin (2004) session & site Y Y Y Y

Van den Poel and Buckinx
(2005)

session & site Y Y Y Y

Continued on Next Page. . .
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Table 3: Prior Literature Metrics – Continued

Analysis

Article Level Demographics Recency Frequency Monetary Duration Timing Other

GOAL ACHIEVEMENT

Chatterjee et al. (2003) session & site Y Y Y
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2.5 Conclusion

The preceding sections in this chapter organized and summarized research using clickstream data

for prediction. All told, the majority of research has focused on the browsing (Johnson et al., 2004)

and purchasing behavior (Padmanabhan et al., 2001) of Web users at e-commerce sites, with little

attention being paid to alternative objectives (i.e., goalachievement) or contexts (e.g., informa-

tional Web sites). As there are many different types of Web sites (Jaillet, 2003), focusing on just

e-commerce sites is done at the expense of understanding visitor behavior at other interesting and

valuable non e-commerce Web sites.

In terms of data, user-centric datasets are commonly used when examining browsing behav-

ior, but with the exception of Padmanabhan et al. (2001) is non-existent for purchasing or goal

achievement behaviors. The sectors examined for browsing behavior generally overlap (e.g., books

and music) allowing comparisons of results. For purchasingand goal achievement, however, there

is little overlap and some of the sectors analyzed differ substantially from one another (e.g., au-

tomobiles versus wine). According to Zhang et al. (2006), who found browsing differs by sector,

such little overlap may make results difficult to compare over studies. Lastly, many of the datasets

are fairly dated. Although beneficial from the standpoint ofcomparing and contrasting changes

over time (cf. Johnson et al., 2004; Zhang et al., 2006), the vast changes in the Internet and Web

users over the past few years may point toward a need for more recent and thus relevant datasets.

Although many studies used metrics that did not fit neatly into the categories of table 3, general

patterns of the types of metrics used can still be seen. Overall, frequency appears to be the most

commonly used type of metric as every single study except forKalczynski et al. (2006) and Mont-

gomery et al. (2004) included some aspect of counting in their models. Duration metrics were

also commonly used for all types of research. Lastly, timingmetrics were more heavily used in

browsing while recency was more common in purchasing and goal achievement. Determining how

well these types of metrics do for other objectives and contexts along with finding a common set

of metrics can provide the basis for better understanding visitor behavior. Furthermore, looking

outside these metric types into the “other” category13 can also help provide explanation into the

“whys” of visitor behavior.

13However, these “other” metrics should be readily availableto all Web sites and not be an artifact of a particular
site or how it is organized.
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Chapter 3

Theory

Information Foraging Theory (IFT) “. . . aims to explain and predict how people will best shape

themselves for their information environments and how information environments can best be

shaped by people” (Pirolli, 2007, pg. 3). Simply stated one aspect of IFT is its ability to explain

the behavior of a person as they search for information within a pliable environment. Central to

the theory of information foraging are the concepts of information scent and patches. Information

scent is the driving force of why a person makes a navigational selection amongst a group of com-

peting options. Information patches are distinct areas of the search environment which differ in

their informational content. The synthesis of behavior (i.e., information scent) and environment

(i.e., information patches) provides for a rich theory of information foraging.

IFT has a strong theoretical foundation by drawing upon Optimal Foraging Theory (OFT) (Stephens

and Krebs, 1986) and the Adaptive Control of Thought-Rational Theory (ACT-R) (Anderson et al.,

2004), two well-known theories within their respective fields. OFT is an ecological theory con-

cerned with explaining the foraging behavior of animals as they hunt for food. ACT-R is a psy-

chological theory of the human mind that includes the cognitive architecture and process by which

cognition works. Within IFT, OFT is used to explain the behavioral elements of people foraging

for information (i.e., why they go about searching), whereas ACT-R’s purpose is to explain the

mechanism of how the behavior is being driven at the cognitive level.

The remainder of this chapter is organized as follows. Firstan introduction of OFT and ACT-R

are provided in §3.1 and §3.2 as background information for IFT. Then details regarding the two

central concepts of IFT are presented in §3.3, followed by two versions of a model that test the

theory.
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3.1 Optimal Foraging Theory

The aim of optimal foraging theory (OFT) is to explain the feeding behaviors and adaptations

of animals (Stephens and Krebs, 1986). OFT has been used to describe the commuting behav-

ior of seabirds to distal feeding grounds (Nevitt, 2000); assess the nutritional ratios of ants’ food

(Kay, 2002); predict the feeding strategies of coyotes (MacCracken and Hansen, 1987); and test

the group foraging behaviors of cranes (Alonso et al., 1995). In addition, OFT has also been ap-

plied to humans by explaining the hunting and gathering practices of the Aché of eastern Paraguay

(Hawkes et al., 1982); variability in Amazonian Indians’ diet selections (Hames and Vickers,

1982)1; decisions between ambiguous and unambiguous choices (Rode et al., 1999); and appli-

cability of OFT in information seeking behaviors (Sandstrom, 1994).

The overarching assumption of OFT is animals have developedbeneficial foraging adaptations

and behaviors that increase their net energy. A gain in net energy (above an animal’s metabolic re-

quirement) allows spare energy to be spent on vital non-feeding activities such as fighting, fleeing,

and reproducing (Stephens and Krebs, 1986). As animals withhigher levels of spare energy are

more likely to survive and reproduce, successive generations are assumed to inherit those benefi-

cial foraging adaptations and behaviors.

Following MacArthur and Pianka (1966), the general concepts used in OFT are that of preda-

tors, prey, and patches (Stephens and Krebs, 1986). Predators are the animals doing the forag-

ing (i.e., hunting for food) and their behaviors are the focal point of OFT. Prey refers to any item

of food that a predator may consume such as a rabbit, berry, orplant root. Each type of prey dif-

fers in their prevalence in the environment along with the amount of energy the predator expends

and gains from chasing and eating the prey, respectively. A patch is some area of the environment

which contains prey. Like prey, patches of different types demonstrate variability in terms of the

net energy a predator gains from foraging within them.

Predators are assumed to forage for food according to a sequential search–encounter–decision

process (Stephens and Krebs, 1986). While searching, an animal uses its sensory abilities to pick

up on cues to help locate prey or patches. For example, seabirds use their sense of smell to (1) lo-

cate patches over thousands of kilometers from their nesting colony and (2) find prey within those

patches (Nevitt, 2000). Without sensory guidance, the forager’s probability of encountering prey

1A more complete review of OFT’s use in anthropological research can be found in Smith (1983).
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or patches is effectively reduced to random chance. Searching stops once prey or a patch has been

located (i.e., an encounter has occurred). At the point of encounter the forager makes a decision of

how to proceed.

The two conventional models of OFT agree on the search–encounter–decision process, but

fundamentally differ in what decision to make once an encounter takes place. The prey model

(Charnov and Orians, 1973) asks the question “attack or continue searching?” (Stephens and Krebs,

1986, pg. 13) when encountering prey. In the patch model (Charnov, 1976) the forager asks the

question “how long to stay in a patch?” (Stephens and Krebs, 1986, pg. 14) when a patch has been

encountered.

As the overarching assumption of OFT is the increase of net energy, both models are concerned

with maximizing the average rate of energy intake. Therefore, each model uses a variant of Holling’s

disc equation (equation 3.1) (Holling, 1959). The average rate of energy intake is represented asR

and is what both the prey and patch models are maximizing. Depending on the model usedλ is ei-

ther the rate of encounter of prey or a patch.ē is the average energy gained from each encounter,s

is the search cost per unit of time, and finallyh̄ is the average handling time per encounter. Within

each model the theory assumes predators have perfect information regarding the characteristics

(e.g.,λ, ē, h̄) of its prey or patches (Stephens and Krebs, 1986). Even though animals do not pos-

sess perfect information, the theory has still found empirical support even when the assumption of

perfect information has been violated (Kay, 2002).

R =
λē − s

1 + λh̄
(3.1)

3.1.1 Prey Model

The prey model determines if an animal should attack and consume a particular type of prey or

continue searching for other prey types (Charnov and Orians, 1973). The decision is made by

maximizing the average rate of energy intake by prey type to find the optimal diet (Stephens and

Krebs, 1986). Within the prey model there aren different prey types encountered at random withi

representing theith prey type. LetD represent the set of prey types such thatD = {1, 2, . . . , n}.

Associated with each prey type are the following characteristics2:

2Notations follow Pirolli (2007).
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• tBi = average time between locating prey of typei.

• λi = rate of encounter of prey typei when searching (1/tBi).

• tWi = handling time associated with pursuing, capturing, and consuming prey typei.

• gi = net energy gain from consuming prey typei.

• πi = profitability of prey typei (gi/tWi).

• pi = probability of attacking prey typei upon encounter3.

The long-term average rate of energy intake for all prey types is determined from equation 3.2

(a variant of Holling’s disc equation) (Stephens and Krebs,1986).

R =

∑
i∈D piλigi

1 +
∑

i∈D piλitWi
(3.2)

The inclusion of some prey types into a forager’s diet, when compared to the alternatives, may

never be worth the energy to attack and consume. Determiningwhich prey types should be ex-

cluded from consideration is expressed via the probabilityof attacking a prey type (pi). In order

to maximizeR the prey model follows the zero-one rule which states a prey type is either always

attacked (pi = 1) or always ignored (pi = 0) (Stephens and Krebs, 1986). As expressed in equa-

tion 3.3, prey types are excluded when the profitability of prey typei is less than the average rate

of energy intake of all other prey types4.

pi =





0 if πi <
P

j∈D−{i} λjgj

1+
P

j∈D−{i} λjtWj

1 otherwise
(3.3)

Once the probability of attacking each prey type has been determined, the decision then turns to

selecting which prey types to include for an optimal diet. The two-step prey algorithm makes the

selection based on the profitability of a prey type compared to the current average rate of energy

(R) (Stephens and Krebs, 1986). The first step is to rank thek remaining prey types in order of

decreasing profitability such thatπ1 > π2 > . . . > πk. In the second step each prey type is added

to the forager’s diet until equation 3.4 is true. The last prey type added to the diet is the lowest

3Probability is the only characteristic of a prey type the forager has control over.
4The derivation of equation 3.2 to determine which prey typesshould or should not be attacked when encountered

(i.e., equation 3.3) can be found in Stephens and Krebs (1986).
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ranking prey type in the diet. If the equation is never true then all prey types are included in the

diet.

R(k) =

∑k
i=1 λigi

1 +
∑k

i=1 λitWi

> πk+1 (3.4)

Figure 6 shows a simulated example of ten different prey types available to a predator. The fig-

ure illustrates the relationship between the profitabilityof a prey type (πk) against the average rate

of energy (R(k)). In this example, the average rate of energy is maximized when the five most

profitable prey types are added to the forager’s diet. This maximization is the point at which the

current rate of energy (R(5) = 0.9888) is greater than the profitability of the next prey type

(π6 = 0.9838) (equation 3.4). As illustrated, adding additional prey types or removing any of

the five selected prey types leads to a decrease inR and thus a sub-optimal diet.
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Figure 6.: OFT: Simulated Optimal Diet

Notable about equation 3.4 is that the inclusion of a prey type into a forager’s diet is indepen-

dent of its rate of encounter (Charnov and Orians, 1973). Thedecision to add a prey type is de-

pendent, however, on the rate of encounter for those prey types ranked higher than the current prey

type. For example, in a situation with two prey types the decision to include the second prey type

is only dependent on (1) its profitability (π2) and (2) the rate of encounter, net energy, and han-

dling time of the first prey type (λ1, e1, h1).
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Foraging Example

To illustrate the prey model consider a hypothetical example of a brown bear foraging for food5.

Brown bears are known for their diverse diets (Garshelis, 2007) and therefore the decision of

which prey types to include in their diets is germane to the discussion of the prey model. Assume

that four different prey types are present in the bear’s environment. Each of the four prey types and

their characteristics are listed in table 4.

Table 4: OFT: Example Prey Types for a Brown Bear

Prey Type tB tW g π pa

Deer 3,600 sec 2,580 sec 3,200 kCal 1.2403 kCal/sec 1

Berries 12 sec 180 sec 200 kCal 1.1111 kCal/sec 1

Squirrels 6 sec 600 sec 610 kCal 1.0167 kCal/sec 1

Chipmunks 6 sec 720 sec 500 kCal 0.6944 kCal/sec 0

a As calculated from equation 3.3.

Based on the characteristics of the other prey types, the profitability of chipmunks will never be

high enough to warrant the bear eating them and thereforepchipmunks is set to 0 (equation 3.3).

For the first step of the prey algorithm the remaining prey types are ranked in descending order ac-

cording to their profitability which yieldsπdeer > πberries > πsquirrels. The results of the iterative

second step of the prey algorithm can be seen in table 5. TheR column is the long-term average

rate of energy for the included prey types (left-hand side ofequation 3.4) and theπ column is the

profitability of the next lowest ranking prey type (right-hand side of equation 3.4). The final col-

umnStop?is set to yes if the last added prey type causes the inequalityto be true (i.e.,R > π) and

set to no otherwise6.

As seen in table 5 a diet consisting of deer and berries is optimal for the bear. Eating only deer

or choosing to eat all three prey types would result in a sub-optimal rate of energy as illustrated by

the lower values ofR.

5The foraging example was adapted from Pirolli (2007).
6Although the algorithm would stop after deer and berries areincluded in the diet, the calculation for including

squirrels into the diet was done for illustrative purposes.
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Table 5: OFT: Example Diet for a Brown Bear

Included Prey Types R(k) πk+1 Stop?

Deer 0.5178 kCal/sec 1.1111 kCal/sec No

Deer & Berries 1.0502 kCal/sec 1.0167 kCal/sec Yes

Deer, Berries, & Squirrels 1.0215 kCal/sec n/a n/a

3.1.2 Patch Model

The patch model determines the optimal duration an animal should forage within any number of

patch types (Charnov, 1976). The decision of how long to spend in a patch of a particular type is

determined by maximizing the average rate of energy intake (similar to the prey model) (Stephens

and Krebs, 1986). Within the patch model there aren different patch types withi representing the

ith patch type. LetP represent the set of patch types such thatP = {1, 2, . . . , n}. Associated with

each patch type are the following characteristics7:

• tBi = average time between locating patches of typei.

• λi = rate of encounter of patch typei when searching (1/tBi).

• tWi = the amount of time spent searching within patch typei (i.e., patch residence time)8.

• gi(tWi) = net energy gain from patch typei whentWi time units are spent foraging within the
patch (i.e., gain function).

The long-term average rate of energy intake for all patch types is determined from equation 3.5

(a variant of Holling’s disc equation) (Stephens and Krebs,1986).

R =

∑
i∈P λigi(tWi)

1 +
∑

i∈P λitWi
(3.5)

To better illustrate patches and their characteristics consider a hypothetical example of a seabird

foraging for food in an environment with multiple patches ofa single patch type. Figure 7 details

the environment where the solid line represents the seabird’s path as it forages. The squares are

patches and within the patches are sources of food shown as fish. The horizontal axis represents

time, where the time spent within a patch istW and the time spent between patches istB . As seen

7Notations follow Pirolli (2007).
8Patch residence time is the only characteristic of a patch type the forager has control over.
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in figure 7 the seabird only eats some of the available fish in each of the patches. Since there is a

finite amount of food, each patch demonstrates diminishing returns of energy as a function of time.

Due to this diminishing return it would have been suboptimalfor the seabird to remain in a patch

until total depletion.
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Figure 7.: OFT: Patchy Environment – adapted from Pirolli (2007, pg. 32)

The gain function associated with a patch type,gi(tWi), determines the amount of energy gained

per unit of time spent foraging within a patch. Each gain function is “. . . assumed to be a well-

defined, continuous, deterministic, and negatively accelerated (curving down) function” (Stephens

and Krebs, 1986, pg. 25)9. Figure 8 illustrates a gain function with the horizontal axis represent-

ing time spent foraging in the patch and the vertical axis representing net energy gain. Such a gain

function helps explain the behavior of the seabird. Initially the seabird realized a rapid energy gain

as there were many fish within the patch. However, as fewer fishwere available less energy was

gained per unit of time. Thus at some point it was more worthwhile for the seabird to travel to an-

other patch rather than remain in the current patch.
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Figure 8.: OFT: Example Patch Gain Function

9Stephens and Krebs (1986) acknowledged some gain functionsmay not exhibit an eventual negative acceleration.
When patches are searched systematically their gain functions may exhibit a depletion of resources without any depres-
sion.
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The determination of how much time to spend in each patch types is made on the basis of the

Marginal Value Theorem (Charnov, 1976). For patch types exhibiting a negatively accelerated

gain function (as shown in figure 8), the theorem is capable ofdetermining the optimal allocation

of time across any number of patch types so as to maximize the average rate of energy within the

environment. To obtain optimality the theorem states the predator should continue to forage within

a patch type until the marginal rate (i.e., slope of the gain function) equals the average rate of en-

ergy gain (equation 3.5). Following such a requirement means by definition the marginal rate of

each patch type will be equal to the average rate. Equation 3.6 states the equality condition where

g′(t̂Wi) is the marginal rate of patch typei andR(t̂W1, t̂W2, . . . , t̂Wn) is the average rate of en-

ergy calculated from the optimal vector of times for each patch type.

g′(t̂W1) = R(t̂W1, t̂W2, . . . , t̂Wn)

g′(t̂W2) = R(t̂W1, t̂W2, . . . , t̂Wn)
...

g′(t̂Wn) = R(t̂W1, t̂W2, . . . , t̂Wn)

(3.6)

In situations where only a single patch type exists, the average rate of energy intake can be sim-

plified as shown in equation 3.7.

R(tW ) =
λg(tW )

1 + λtW
(3.7)

The reduction to only a single patch type also simplifies the marginal value theorem as shown in

equation 3.8.

g′(t̂W1) = R(t̂W1) (3.8)

Examples of the patch model being used to find the optimal foraging time when (1) only a sin-

gle patch type exists and (2) when multiple patch types existare presented next10.

10The patch examples were adapted from Charnov (1976); Stephens and Krebs (1986); and Pirolli (2007).
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Single Patch Type Example

Consider an example of a brown bear foraging for berries overa three-year period. Within the

bear’s environment there exist multiple patches of a singletype representing berry bushes. With

each season the characteristics of the patch type changes. Table 6 details the characteristics of the

patch type for each of the three years.

Table 6: OFT: Example Single Patch Type for a Brown Bear

Year tB g(tW ) R tW
a

Y1 10 sec −0.8 ∗ tW
2 + 6.5 ∗ tW 0.9593 kCal/sec 3.4629 sec

Y2 5 sec −0.8 ∗ tW
2 + 6.5 ∗ tW 1.5385 kCal/sec 3.1009 sec

Y3 5 sec −2.5 ∗ tW
2 + 17.5 ∗ tW 3.7702 kCal/sec 2.7460 sec

a As calculated from equation 3.8.

In the first year the optimal time to spend in a patch was3.4629 sec. Illustrated graphically in

figure 9 the optimal point is where the dashed line with its origin attB lies tangential to the gain

function.
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Figure 9.: OFT: Example Year One Patch

In the second year, an area of the environment previously destroyed by wildfire bloomed with

berry bushes. This represents an increase in the number of patches available to the bear and there-

fore a decrease in the time between patches (tB). Figure 10 shows graphically how the decrease in

time between patches leads to a reduction in the time spent within a patch. Although less time is

spent per patch, the average rate of energy gain (Ry2) is higher during the second year. With lower

moving costs, the bear is better served to move to another patch onceRy2 drops too low.
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Figure 10.: OFT: Example Year Two Patch

A bountiful rain during the third year increased the densityof berry bushes within each patch.

A greater density of bushes represents a more valuable patch. Therefore, the gain function for

the patch type is changed to reflect greater energy gains per unit of time spent in a patch. Fig-

ure 11 illustrates the difference when the gain function of apatch type changes. In this situation

the gain function reflected an increase in energy gain and therefore the amount of time spent forag-

ing within a patch is reduced. As a result of the new gain function the average rate of energy gain

(Ry3) is higher than the previous year.
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Figure 11.: OFT: Example Year Three Patch

Multiple Patch Types Example

In the previous example the brown bear’s environment only consisted of a single patch type. How-

ever, as brown bears’ forage over large territories spanning thousands of square miles (Garshelis,

2007); it is likely more than one patch type exists in their environment (e.g., forests, rivers). In this

example there are two patch types available to the brown bear. Table 7 details the characteristics

of each of the patch types. Noticeable is each patch type differs in their time between patches and
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gain function.

Table 7: OFT: Example Multiple Patch Types for a Brown Bear

Patch Type tB g(tW ) R tW
a

1 10 sec −0.8 ∗ tW
2 + 6.5 ∗ tW 3.9061 kCal/sec 1.6212 sec

2 5 sec −2.5 ∗ tW
2 + 17.5 ∗ tW 3.9061 kCal/sec 2.7188 sec

a As calculated from equation 3.6.

When in the specified environment, the bear will spend1.6212 seconds in the first patch type

and2.7188 seconds in the second type. Figure 12 graphically illustrates the optimal time to spend

in each patch type and also the average rate of energy gain. Asthe marginal rates for each patch

is the same as the average rate, the tangential lines all havethe same slope and are thus parallel to

one another.

 0

 5

 10

 15

 20

 25

 30

 35

0 5 10

E
ne

rg
y 

G
ai

n

Within Patch Time

gp1(tW)

Rp1

tWp2

Rp2

tWp1

gp2(tW) R

Figure 12.: OFT: Example Optimal Multi-Patch Time

3.2 Adaptive Control of Thought-Rational Theory

The ACT-R theory aims to explain human cognition by (1) describing an architecture of the hu-

man mind and (2) the process by which cognition occurs withinthe stated architecture (Anderson

et al., 2004). The theoretical foundation for ACT-R is rational analysis which assumes “. . . each

component of the cognitive system is optimized with respectto demands from the environment,

given its computational limitations” (Taatgen and Anderson, 2002, pg. 130). The theory and archi-

tecture of ACT-R has been used in research areas such as perception and attention (Byrne, 2001);

learning and memory (Fu et al., 2006); problem solving and decision making (Gray et al., 2005);
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language processing (Anderson et al., 2001); and other domains relevant to this dissertation, such

as information search (Pirolli and Card, 1999).

Figure 13 illustrates the basic architecture of ACT-R 5.0 (Anderson et al., 2004) which consists

of modules, buffers, and a central production system. Each module within ACT-R is independent

of one another and is responsible for a particular task11. The visual and motor modules are part

of the perceptual-motor system that interacts with the external environment12. The visual module

controls vision; attending and identifying objects in the visual space. The manual module directs

the hands to perform actions (e.g., picking up an object, clicking a mouse button). The intentional

module keeps track of a stack of goals, intentions, and the current state of the problem at hand13.

Finally, the declarative module interacts with declarative memory (i.e., what is known).

�����������	

�����


����������

�����

������

�����


�����

�����

�������	
����������	������

��������	�����

����
������

���������
������

������
������


�����
������

Figure 13.: ACT-R: 5.0 Architecture (Anderson et al., 2004,pg. 1037)

11The ACT-R theory does not state the modules listed are the only valid modules used in human cognition (Ander-
son et al., 2004). Rather, these modules are at the core of thesystem developed thus far.

12Although ACT-R is a foundational theory for IFT, only the higher cognition portion of the theory is used. The
perceptual-motor system is not detailed in IFT and thus thatportion of ACT-R is only briefly described here. For more
information about the perceptual-motor system the reader can refer to Anderson et al. (2004).

13A stack is simply a Last In First Out (LIFO) data structure. Whenever a new item is added to the stack it is
“pushed” onto the top of the stack. When retrieving an item from a stack the topmost item of the stack is “popped”
off the top of the stack.

48



3.2.1 Central Production System

The central production system (CPS) is responsible for coordinating the activities of all the inde-

pendent modules (Anderson et al., 2004). The CPS does not directly interact with each module,

rather buffers (i.e., working memory) act as intermediaries providing an area for information ex-

change14. Each buffer, however, is limited in capacity to a single chunk of information (i.e., unit of

knowledge) (Miller, 1956) at a single time period (Andersonet al., 2004). Such a limitation is to

reflect human’s limited working memory capacity. For example, only memories being focused on

in long-term memory are available at any one time as opposed to having all memories available at

all times.

The CPS represents procedural memory (i.e., how to do things) in the form of productions which

consist of a set of rules known as production rules. Each production rule consists of a condition or

set of conditions and then some action to perform when the condition or conditions are true (i.e.,

when the conditions match the current state). Figure 14 illustrates six production rules (PR1-PR6)

in the formIF < condition(s) > THEN < action >. The CPS uses productions and infor-

mation from the buffers in order to (1) find rules which match the current state, (2) select the most

beneficial rule, and finally (3) execute a rule which results in some action (Anderson et al., 2004).

IF goal is Write-answer
& answer unknown

THEN set and push subgoal
Find-solution
to the goal stack

(a) PR1

IF goal is Write-answer
& answer unknown

THEN quit and pop
the goal from
the goal stack

(b) PR2

IF goal is Write-answer
& answer known

THEN write answer and pop
the goal from
the goal stack

(c) PR3

IF goal is Find-solution
& answer unknown
& operation is addition
& N1 known
& N2 known

THEN set and push subgoal
Add-numbers
to the goal stack

(d) PR4

IF goal is Find-solution
& answer known

THEN pop the goal
from the goal stack

(e) PR5

IF goal is Add-numbers
& N1 known
& N2 known

THEN retrieve answer and pop
the goal from
the goal stack

(f) PR6

Figure 14.: ACT-R: Example Production Rules – adapted from Anderson et al. (2001, pg. 338)

A pattern matching mechanism within the CPS determines if the contents of any of the buffers

match the condition of any of the rules. If a match exists the production rule is selected and then
14Both the modules and the CPS can read from and write to the corresponding buffer.
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fired (i.e., executed). In situations with multiple matching production rules, conflict resolution

is undertaken where a conflict set is formed and the rule with the highest probability (based on

utility) is selected and executed. The utility of a rule is determined from past experiences of the

production rule within the context of the current goal (stored in the goal buffer). The utility of pro-

ductioni is calculated from equation 3.915 asUi (Anderson et al., 2001).Pi is the probability for

achieving the goal using productioni based on past performance.G is the expected gain from suc-

cessfully completing the goal independent of the production used.Ci is the average time previ-

ous attempts using productioni took (i.e., cost) to complete the goal. Finally,ε represents random

noise.

Ui = PiG − Ci + ε (3.9)

The actual selection of a production is dependent on its probability as expressed in equation 3.10.

U represents the utility of a production andt controls the noise in the utilities (Fu et al., 2006).

The actual selection of a production is thus probabilistically-based rather than by absolute utility

values.

Pi =
e(Ui/t)∑n
j e(Uj/t)

(3.10)

Consider an example of a student attempting to solve the following equation on a math test16:

4 + 1. Using the production rules in figure 14, the cognitive process of the student (broken down

at each step in the process) is illustrated in figure 15. The top portion of the figure lists the goals in

the goal stack, with the topmost goal signifying the goal in the goal buffer (i.e., the goal currently

being attended to). The middle section shows the productionrules selected by the CPS to fire. Fi-

nally, the bottom portion represents the contents of the retrieval buffer. The values specified for the

goal stack and retrieval buffer are representative after the corresponding production has fired.

As the student’s overall goal is to write down the answer to the problem the goalWrite-answer

is added to the goal stack. In the first step the CPS performs pattern matching on the current goal

and finds two production rules (PR1 and PR2) are valid rules. Since there are two viable candi-

15Anderson et al. (2001) does not explicitly include the noiseterm (i.e.,ε) in Ui. However, other ACT-R researchers
do (e.g., Fu et al. (2006)) and as the inclusion is more specific the noise term is provided in equation 3.9.

16The arithmetic example was adapted from Anderson et al. (2001).

50



Step 1 2 3 4 5 6

Goal Stack
Write-answer Find-solution Add-numbers Find-solution Write-answer

Write-answer Find-solution Write-answer
Write-answer

Central
Production
System

Conflict Set
{PR1, PR2}

PR1 PR4 PR6 PR5 PR3

Retrieval
Buffer

4 + 1 = 5

Figure 15.: ACT-R: Example Cognitive Problem-Solving Process

dates the utility of each production is then calculated. Assuming the utility of PR1 was higher,

the student will attempt to solve the problem by adding the goal Find-solutionto the goal stack

in step two. However, part of the process of finding a solutionis the summation of the two given

numbers (N1 and N2), which is represented in the addition of goal Add-numbersat step three.

When production PR6 fires in step four, part of the action involves retrieving the chunk represent-

ing the addition of4 and1 from declarative memory. Once in possession of the answer the goal

Add-numbersis removed from the stack since it is no longer needed (i.e., the numbers have been

added). At step five the current goal isFind-solutionand since the answer is known production

PR5 is fired which removes the goal from the stack. Finally at step six, the only remaining goal

is Write-answerand since the answer is known production PR3 will fire which will (1) cause the

student to write the answer down and (2) remove the goal from the stack, thus ending the cognitive

process.

3.2.2 Production Learning

ACT-R is capable of learning new production rules via a mechanism called production compila-

tion (Taatgen and Anderson, 2002). Compilation can occur when two production rules are used in

sequence to request and then retrieve a chunk from declarative memory. A single production rule

is created which aggregates the two production rules and embeds the declarative knowledge into

the rule17. Learning in this context removes the potentially expensive operation of chunk retrieval

from declarative memory.

To illustrate production compilation, consider the previous example (figure 14) where produc-

17When a new production rule is created, the original production rules it was created from are not removed from
procedural memory.
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tion PR4 requested production PR6 to retrieve an answer fromdeclarative memory. In the example

4 and1 were provided as numbers to add with the answer of5 being retrieved from declarative

memory. As learning occurs the production rules PR4 and PR6 can be combined for the special

case of4 + 1 = 5. Therefore, steps three and four from figure 15 are combined,resulting in a

reduction of the overall number of steps from six to five. Figure 16 illustrates the new production

rule PR7 created through production compilation. Now when4 + 1 is encountered the utilities of

productions PR4 and PR7 will be compared to determine which production is fired (equations 3.9

and 3.10). The eventual likely outcome is the utility of production PR7 will be higher as the cost

does not include (1) the firing of another production and (2) the retrieval of chunkfive from declar-

ative memory.

IF goal is Find-solution
& answer unknown
& operation is addition
& N1 is 4
& N2 is 1

THEN set answer to 5 and pop
the goal from
the goal stack

(a) PR7

Figure 16.: ACT-R: Example Production Compilation

3.2.3 Chunk

As mentioned in section 3.2.1 a chunk represents a single unit of knowledge (Miller, 1956). The

unit of knowledge differs by chunk and can refer to a word, digit, color, shape, phrase, or other

such patterns (Simon, 1974). In ACT-R each chunk is of a particular type and associated with slots

which represent another chunk or some other value (Stewart and West, 2007). Figure 17 shows

an example of three different chunks stored in declarative memory (Anderson et al., 2001; Stew-

art and West, 2007). Each of the chunks is given a name (e.g.,four-plus-one, five, large-friendly-

dog) for convenience along with a type (e.g., addition, integer, dog) and some slots. In obtaining

the answer to the previous example of4 + 1, the chunkfour-plus-onewould have been activated

which would have lead to the retrieval of chunkfive(since the sum slot offour-plus-onerefers

to thefivechunk). If a person was trying to recall knowledge about a large, friendly dog instead,

chunklarge-friendly-dogwould be retrieved.
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Chunk: four-plus-one
isa addition
addend1 four
addend2 one
sum five

(a) Four-plus-one

Chunk: five
isa integer
value 5

(b) Five

Chunk: large-friendly-dog
isa dog
size large
manner friendly

(c) Large-friendly-dog

Figure 17.: ACT-R: Example Chunks (Anderson et al., 2001; Stewart and West, 2007)

3.2.4 Declarative Memory

As seen in step four of figure 15, retrieving information fromlong-term memory is an important

process of human cognition. Within ACT-R declarative knowledge is encoded as a network struc-

ture (Anderson and Pirolli, 1984). The network consists of nodes (i.e., chunks) connected via

links (Collins and Loftus, 1975). Links are determined based on the association between nodes.

Strongly associated nodes are located in close proximity toone another, whereas weakly associ-

ated nodes are distal from one another. Nodes may also be indirectly associated via intermedi-

ary nodes. Figure 18 provides an example of the network structure found in declarative memory.

Each ellipse represents a node, while each line is a link and thus represents an association between

nodes.

�

�

�

Figure 18.: ACT-R: Declarative Memory Network Structure

Spreading activation is the process by which chunks relatedto a given source chunk can be

retrieved from memory (Collins and Loftus, 1975). When somecue is attended to (e.g., when a

user reads a particular word) the chunkj representing that cue is activated in memory (Ander-

son and Pirolli, 1984). The activation then spreads from thesource of the activation (i.e., the cue)

throughout the entire network activating any associated nodes. The spreading occurs instanta-

neously throughout the network and the strength of activation at each node decays exponentially

with distance from the source (Anderson and Pirolli, 1984).The end result is more strongly acti-
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vated nodes represent knowledge which is more relevant to the activation source.

The total activation associated with chunki (i.e., a chunk in declarative memory) when chunk

j is the source activation is expressed in equation 3.1118 asAi (Anderson et al., 2004).Bi is the

base-level activation which takes into account the historyof chunki independent of chunkj (An-

derson and Milson, 1989). The base-level activation is dependent on the frequency and recency of

prior activations of chunki (Anderson et al., 2004) and follows a power law of learning and for-

getting where activation strength increases with recent and repeated usage (Anderson et al., 2001).

Wj is a weight representing the amount of attention being paid to the source chunkj. Sji is the

strength of association between chunksj andi. Finally, ε is noise associated with the activation

process.

Ai = Bi +
∑

j

WjSji + ε (3.11)

The manner in which spreading activation applies to information retrieval is based on the strength

of activation for the chunk to be retrieved (chunki) when the source of activation is the proximal

cue chunkj. The strength of a chunk’s activation determines “. . . its probability of being retrieved

and its speed of retrieval” (Anderson et al., 2004, pg. 1042). Therefore, if chunki has weak ac-

tivation it may (1) not be retrieved or (2) take too long to retrieve. However, absolute activation

strength does not guarantee chunk retrieval since each chunk has a retrieval probability as ex-

pressed in equation 3.12 (Anderson et al., 2004). In equation 3.12,Ai is the total activation of

chunki, τ represents a threshold which the activation must be above, and s is related to the vari-

ance of activation noise (Anderson et al., 2004).

Pi =
1

1 + e−(Ai−τ)/s
(3.12)

Assume in figure 18 that nodesA, B, andC represent chunksfour-plus-one, five, andlarge-

friendly-dog, respectively from figure 17. At step four of the student’s process for solving the

equation4+1 (figure 15), the source of activation would have been chunkfour-plus-one. Based on

the given network structure the chunksfour-plus-oneandfiveare directly and closely associated

with one another indicating some degree of similarity. Therefore, the total activation of chunkfive

18Anderson et al. (2004) does not explicitly include the noiseterm (i.e.,ε) in Ai. However, other ACT-R researchers
do (e.g., Fu et al. (2006)) and as the inclusion is more specific the noise term is provided in equation 3.11.
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would likely be high and probably lead to a successful retrieval of the chunk. The same success

would be less likely if thelarge-friendly-dogchunk was to be retrieved given chunkfour-plus-one

as the source of activation. A weaker activation would be likely since the distance between the

chunks is greater and there are no direct associations19.

3.3 Information Foraging Theory

The theory of information foraging is concerned with not only the way a person searches within

their environment, but also how the environment can be shaped to better facilitate foraging. There-

fore, research has used IFT to not only look at navigational patterns of foragers, but also how in-

formation environments can be altered to facilitate foraging. IFT has been used to inform the de-

sign of graphical user interface controls (e.g., checkboxes, list boxes) which provide social activity

visualizations as navigational cues (Willett et al., 2007); highlight ScentTrails on Web pages which

facilitate a user’s search for information (Olston and Chi,2003); find optimal browsing paths for

large pictures displayed in limited viewing areas (Xie et al., 2006); explain navigational choices

within source code during program maintenance tasks (Lawrance et al., 2007); describe the effects

of delay, familiarity, and breadth on users’ performance, attitude, and intentions at Web sites (Gal-

letta et al., 2006); and the role of scent in the decision to browse a menu as opposed to searching a

Web site (Katz and Byrne, 2003).

The foundational theories OFT and ACT-R are used by IFT to explain the behavioral and cog-

nitive aspects of information foraging. Like OFT, the same sequential search–encounter–decision

process is used to explain the basic behaviors of an information forager. Similar to how animals

search for patches using their sense of smell, information foragers use a metaphorical sense of

smell to locate and follow an information scent trail. The mechanism by which this information

scent works is explained via the ACT-R theory. Once an information patch (i.e., an item of inter-

est) has been located the decision turns to answering the question of “how long to stay in a patch?”

from the classical patch model. ACT-R also explains the details of how the decision of when to

19Although the link between an addition problem and a large, friendly dog seems totally unrelated, such associa-
tions may exist within a person’s mind. Thus the activation chunk four-plus-onemay in fact allow retrieval of chunk
large-friendly-dogespecially when taking into account the probabilistic nature of chunk retrieval. For example, the
summation problem may lead to an association with summer. Summer may be associated with summer breaks from
school which in turn is associated with early childhood. Childhood may then be associated with the family pet that was
in turn a large, friendly dog.
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stay or leave a patch is determined by the information forager.

The following sections present an in-depth explanation of the concepts of information scent and

information patches followed by a description of two versions of an IFT model (SNIF-ACT 1.0

and 2.0).

3.3.1 Information Scent

Information scent is “the detection and use of cues, such as World Wide Web (Web) links . . . that

provide users with concise information about content that is not immediately available” (Pirolli,

2007, pg. 68). The concept of information scent correspondsto the search portion of the search–

encounter–decision process from OFT. Just as in the wild, a lack of scent makes the probability

of encountering the item of interest difficult. However, unlike animals hunting for food where one

berry is just as beneficial as another berry, information is not as interchangeable. Rather, infor-

mation of value should be (1) relevant to an information forager’s goal and (2) novel (Sandstrom,

1994).

The two main ways in which information scent is used is to (1) guide users to the information

being sought and (2) provide a general impression of the available content within a patch. In a

Web environment cues are obtained from the text and images associated with a hyperlink. The

predicted utility of a link is based on how the cues from a linkmatch a user’s goal (i.e., the prob-

ability of a link providing a Web page with the desired information20). The link with the highest

predicted utility (i.e., scent) is then selected as the nextnavigational choice.

The scent of a link is based on the goal of a user. The user’s goal G is the desired distal infor-

mation wherei represents each goal feature (i.e., each word of a goal). Each proximal cue (i.e.,

link), L, on the Web page indicates the distal content of the linked page, wherej represents each

cue feature (i.e., each word of the link)21. The features for bothG andL are represented cogni-

tively as chunks (Miller, 1956).

The value of linkL in the context of goalG is expressed in equation 3.13 as the sum activation

(equation 3.11) of each goal feature (Pirolli, 2007).

20Such a relationship between link text and the content of the linked page has been demonstrated empirically by
Davison (2000).

21Common stop words from hyperlinks such asand, the, a, etc. are not included as features of a cue.
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VL|G =
∑

i∈G

Ai (3.13)

The choice of which link to select is based on the link with thehighest utility within the context

of the goalG. Expressed in equation 3.14, the utility is the value of linkL (equation 3.13) along

with a random componentε (Pirolli, 2007). The random component represents user and context

variability.

UL|G = VL|G + εL|G (3.14)

Similar in the way that ACT-R selects which production to fireprobabilistically, IFT determines

which link to select via probability. Equation 3.15 is the probability of selecting a given linkL

from a set of linksC within the context of goalG (Pirolli, 2007).UL|G is the link being evaluated,

Uk|G represents the utility for each link in the set, andµ reflects a scaling parameter for random

noise.

Pr(L|C,G) =
e

UL|G
µ

∑
k∈C e

Uk|G
µ

(3.15)

To illustrate the concept of information scent, consider the following example of a person search-

ing for information on the Web. The goal (G) of the user is to find information regarding “white

lily flowers.” Figure 19 represents the relevant fragment ofthe user’s declarative memory where

each feature chunki of the goal is represented as a black ellipse. On the current Web page the user

is presented with two links “red roses” (L1) and “cherry trees” (L2). The chunk features of links

L1 andL2 are symbolized as light gray and dark gray ellipses in figure 19, respectively. As seen in

figure 19 the features ofL1 are closer thanL2 to the goal chunks and thus more similar and more

likely to strongly activate the features of the goal. Therefore, the scent of linkL1 is stronger (i.e.,

has a higher utility) and the user will select the first link22.

Although based on ACT-R, the concept of information scent inIFT deviates from the ACT-

R theory in three main ways (Pirolli, 2007). First, the source of activation in ACT-R is the goal

chunk. In IFT the chunk representing the feature of a proximal cue is the source and the goal

22This example assumes the noise from equation 3.11 and the random component of equation 3.14 are comparable
across link features and links.
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Figure 19.: ACT-R: Example Memory Schematic – adapted from Collins and Loftus (1975,
pg. 412)

chunk is the destination. Second, the purpose of spreading activation in ACT-R is to retrieve some

chunk from declarative memory. IFT is not interested in the retrieval of a chunk, but rather the to-

tal level of activation on a goal chunk. Lastly, the utility of which link to select is not based on past

successes and failures like productions in ACT-R are. Instead, utility is based on total activation

strength of a link which does not take into account past performance. A lack of history therefore

means knowledge of previously successful associations between links and success are not con-

sidered. For example, the utility of the link “contact us” would be made independent of any prior

successes a user has had when clicking on a similarly named link to find contact information for a

Web site.

3.3.2 Information Patch

An information patch is a grouping of information where “. . .it is easier to navigate and process

information that resides within the same patch than to navigate and process information across

patches” (Pirolli, 2007, pg. 49). Within a Web context what constitutes an information patch can

differ depending on the level of analysis. At a high-level anindividual Web site could be consid-

ered a patch whereas at a lower-level the Web pages within a single Web site could each be consid-

ered a patch. Prior research has not explicitly made distinctions between patches at differing levels

of analysis. In order to be clear, the termssite-patchandpage-patchwill refer to patches which

constitute an entire Web site or Web page within a site, respectively.

Although the definition of what a patch is differs by level of analysis, the relationship of sim-

ilarity within and across patches does not differ. For example, information within a Web page is

more similar than across Web pages of the same site which in turn, is more similar than Web pages

of another site. Likewise, a single Web site will have more coinciding information compared to
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another Web site.

Such a topical patchy structure of the Web has been empirically demonstrated (Davison, 2000)

strengthening the logical argument for a patchy Web. The similarity of content between pages

from the most similar to least were (1) linked pages within the same domain; (2) unlinked pages

within the same domain; (3) linked pages to different domains; and finally (4) random pages23

(Davison, 2000). An increase in link distance (i.e., degrees of separation) within the same domain

has also been associated with decreases in page content similarity (Pirolli, 2007). The aforemen-

tioned research lends support to the assertion of a patchy grouping of information on the Internet

where patches in “close proximity” to one another are more similar than patches farther apart.

As the Internet exhibits a patchy structure, the patch modelfrom OFT (Charnov, 1976) is ap-

propriate to use and can determine the optimal length of stayfor a forager. The decision to stay

in or leave a patch is determined such that a person will “. . . forage in an information patch until

the expected potential of that patch is less than the mean expected value of going to a new patch”

(Pirolli, 2007, pg. 81). The patch leaving rule is mathematically stated in equation 3.16 (Pirolli,

2007) as a variant of the Marginal Value Theorem (Charnov, 1976). U(x) is the utility of a forager

in their current state and̄U is the mean utility of other patches. Thus just like the marginal value

theorem, the visitor will continue to forage in the patch as long as the utility (i.e., marginal value)

is higher than the average of all other patches (i.e., average rate of return). Once the current state

utility is equal to the mean, the forager will leave the patch.

U(x) > Ū (3.16)

3.3.3 SNIF-ACT

Pirolli (2007) implemented two versions of a model based on IFT called SNIF-ACT (Scent-based

Navigation and Information Foraging in the ACT architecture). As the ACT architecture is a ma-

jor component of IFT, a set of production rules were defined for both versions of the SNIF-ACT

models which characterized users’ actions while foraging.Figure 20 lists each of the pertinent

productions showing how a user starts processing a new page;evaluates links on a page; and de-

cides amongst clicking a link, going back to a previous page,or leaving the site.

23Similarity within a single page is not included since by definition no page can be more similar to a page than itself.
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The first four productions of figure 20 (Start-process-page, Process-links-on-a-page, Attend-

to-link, Read-and-evaluate-link) are concerned with the cognitive aspects of reading, attending,

and evaluating links on a page. In terms of OFT, if any of the first four productions fire then that

is a decision by the visitor to continue foraging within the same page-patch. The final three pro-

ductions also relate to the patch-leaving rule of OFT, although their levels of analysis differ. Pro-

ductionClick-link represents either a decision to leave a page-patch or site-patch depending on if

the link was internal to the Web site or external. ProductionLeave-siterelates to the leaving of a

site-patch and productionBackup-a-pageis concerned with going to an already visited page-patch.

In any case, a production representing the leaving of eithera page-patch or site-patch should fire

when the marginal value of the patch drops to the average rateof return for all patches.

IF goal is Start-next-patch
& there is a task description
& there is a browser
& browser on unprocessed page

THEN set and push subgoal
Process-page to the goal stack

(a) Start-process-page

IF goal is Process-page
& there is a task description
& there is a browser
& there is an unprocessed link

THEN set and push subgoal
Process-link to the goal stack

(b) Process-links-on-page

IF goal is Process-link
& there is a task description
& there is a browser
& there is an unattended link

THEN choose an unattended link and
attend to it

(c) Attend-to-link

IF goal is Process-link
& there is a task description
& there is a browser
& the current attention is on a link

THEN read and evaluate the link

(d) Read-and-evaluate-link

IF goal is Process-link
& there is a task description
& there is a browser
& there is an evaluated link
& the link has highest activation

THEN click on the link
(e) Click-link

IF goal is Process-link
& there is a task description
& there is a browser
& there is an evaluated link
& the mean activation on page is low

THEN leave the site and
pop the goal from the goal stack

(f) Leave-site

IF goal is Process-link
& there is a task description
& there is a browser
& there is an evaluated link
& the mean activation on page is low

THEN go back to the previous page

(g) Backup-a-page

Figure 20.: SNIF-ACT: Production Rules (Pirolli, 2007, pg.97)
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Also fundamental to IFT is the concept of information scent which is determined by the level

of activation (equation 3.11) of a goal from a given link. Thebase-level activation of the goal

chunk (Bi) in both versions of SNIF-ACT was assumed to be static (i.e.,the goal did not change)

and thusBi was set to zero (Pirolli, 2007). The amount of attention paidto a link cue (Wj) was

modeled as exponentially decaying with respect to the number of cues in a link as shown in equa-

tion 3.17 (Pirolli, 2007).W andd are scaling factors andn is the number of cues (i.e., words) in a

link.

Wj = We−dn (3.17)

To determine similarity between a cue and goal feature (Sji), a measure from information the-

ory known as pointwise mutual information (PMI) was used (Church and Hanks, 1989). The for-

mula for PMI (equation 3.18) determines the association between two wordsi andj (or in IFT

between a cue and goal feature). The numerator in equation 3.18 is the probability of the two

words occurring together whereas the denominator specifiesthe probability of the words occurring

independently. When normalized, a PMI score of0 indicates no association whereas as a score

of 1 means perfect association between the two words. PMI has been found to be a good proxi-

mal measure of the associations a person may make between chunks within their own declarative

memory. For example, PMI was more accurate on tests of synonymy than typical college appli-

cants taking the Test of English as a Foreign Language (TOEFL) (Turney, 2001).

PMI(i, j) = log

[
Pr(ij)

Pr(i)Pr(j)

]
(3.18)

SNIF-ACT 1.0

The first version of SNIF-ACT assumed foragers evaluated alllinks on a page before deciding

which link to select (Pirolli, 2007). The model was tested against protocol data collected from

Card et al. (2001). Four student subjects were given two experimental information finding Web

tasks. The first task required the subject to obtain the date and a picture of a comedy group per-

forming at a college campus. For the second task, subjects were instructed to find four posters

from the movie Antz. The keystrokes, mouse movements, eye movements, Web pages visited, and

think-aloud comments were captured from each subject.
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The model was evaluated on the ability of information scent to predict link-following and site-

leaving actions. From the eight datasets (four subjects with two tasks a piece), a total of 91 link

clicks were captured. Using the concept of information scent, the SNIF-ACT model’s prediction

of which link would be followed was found to be significantly different from random selection

(χ2(30) = 18,589.45; p < 0.0001) (Pirolli, 2007). Such a result lends credence to the idea of

information scent being an indicator used by people to locate proximal information.

In terms of site-leaving, the SNIF-ACT model was also found to follow the patch-leaving rule

whereas the subjects foraged in a site-patch until the “. . . expected potential of that patch is less

than the mean expected value of going to a new patch” (Pirolli, 2007, pg. 81). Figure 21 illustrates

how a drop in information scent can be a cue for the value of a site-patch. The scent of the last

page visited at a Web site was, on average, lower than the average scent of the first page of a new

Web site. Therefore, this lack of scent was an indicator to the subject that this site-patch does not

contain the sought after goal information.
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Figure 21.: SNIF-ACT: Site-leaving Actions (Pirolli, 2007, pg. 100)

SNIF-ACT 2.0

The second version of SNIF-ACT removed the unrealistic assumption from SNIF-ACT 1.0 that

foragers would attend to and evaluate each link before making a decision of where to go. Instead,

a learning mechanism was used which relied on the concept of satisficing (Simon, 1956). As a

forager has imperfect information and limited computational facilities an optimal decision is un-

likely. However, a decision which satisfies a need at some specified level is probable. Therefore,

with regards to satisficing the forager would continue to evaluate links in SNIF-ACT until a “good

enough” link was found (even though the link might not be optimal). The determination of what is
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“good enough” relies on the ability of the forager to learn asinformation is uncovered while forag-

ing.

In order to implement such a learning mechanism the utilities and probabilities of productions

Attend-to-link, Click-link, andBackup-a-pagewere updated to include the history of links already

attended to and pages already visited24 (Pirolli, 2007). After evaluating a link, the forager is faced

with the decision of whether to attend to the next link, clicka previously evaluated link, or leave

the page. Determined from each production’s utility (equations 3.19-3.21), the forager’s ultimate

decision is based on the probabilities for each production (equations 3.22-3.24) (Pirolli, 2007).

Equation 3.19 is the utility for productionAttend-to-linkwhereUL|G represents the utility of the

current link (equation 3.14) andn is the current number of links already evaluated.

UA(n + 1) =
UA(n) + UL|G

1 + n
(3.19)

The utility for productionClick-link is shown in equation 3.20 wheremax(UL|G) is the maxi-

mum link utility of the links evaluated so far andk is a scaling parameter.

UC(n + 1) =
UC(n) + max(UL|G)

1 + k + n
(3.20)

Taking into account the value of prior pages and the cost of backing up, equation 3.21 repre-

sents the utility for productionBackup-a-page. ŪPage is the average utility of previously visited

pages (within the same Web site),ŪL(n) is the average link utility of links1 to n, andCBack re-

flects the cost of returning to a previous page.

UB(n + 1) = ŪPage − ŪL(n) − CBack (3.21)

The probabilities for each of the three production rules areexpressed in equations 3.22-3.24.

Each equation is the probability of selecting the given production after the evaluation ofn links on

a page. In each equation,µ represents a scaling parameter.

Pr(Attend-to-link, n) =
exp

[
UA(n)

µ

]

exp
[

UA(n)
µ

]
+ exp

[
UB(n)

µ

]
+ exp

[
UC(n)

µ

] (3.22)

24ProductionLeave-sitewas not updated since the experiment using SNIF-ACT 2.0 tookplace on a single Web site.
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Pr(Click-link, n) =
exp

[
UC(n)

µ

]

exp
[

UA(n)
µ

]
+ exp

[
UB(n)

µ

]
+ exp

[
UC(n)

µ

] (3.23)

Pr(Backup-a-page, n) =
exp

[
UB(n)

µ

]

exp
[

UA(n)
µ

]
+ exp

[
UB(n)

µ

]
+ exp

[
UC(n)

µ

] (3.24)

Example

To better visualize the interplay amongst the three production rules, a hypothetical example of

a Web page with 15 links is provided. The distribution of linkutilities (UL|G) is defined by the

function15e−0.7x + 1 and shown graphically in figure 22. Noticeable is the sharp decline in scent

from the first link (UL1|G = 8.4488) to the last link (UL15|G = 1.0004) on the page.
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Figure 22.: SNIF-ACT: Hypothetical Distribution of Link Utilities (Pirolli, 2007)

To simulate the utilities and probabilities for each production the following measures were set

in accordance with Pirolli (2007):k was set to5 (equation 3.20);̄UPage andCBack were set to

10 and5 (equation 3.21); andµ was set to1 (equations 3.22-3.24). The probability of a forager

choosing from each of the three productions given the statedlink utility distribution is illustrated

in figure 23.

In figure 23 the probability of attending to the next link is high when only a couple links have

already been evaluated. This represents the forager learning the value of the current page’s links.

After more links are evaluated (n ≈ 4) the forager is better informed of the existence of any

highly-scented links which may lead to a goal. Therefore, the probability of clicking on a link

rises to its highest level. However, each successive link’sscent (n & 5) drops and begins level-

ing off near the minimum scent value. Considering none of theprevious links were satisfactory
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Figure 23.: SNIF-ACT: Hypothetical Production Probabilities (Pirolli, 2007)

in causing the forager to click on them, the likelihood of anyof the remaining low-scent links

causing a link-following action is low (as evidenced by the decline in the probability of clicking

a link). As the forager reaches the end of the links, the probability of the visitor returning to a pre-

viously visited page continues to increase.

Model Validation

The SNIF-ACT 2.0 model was tested against data from Chi et al.(2003) for fit to both link-

following actions and the decision of foragers to go back a page. 244 subjects were recruited

to complete some portion of a total of 32 information foraging tasks on four different Web sites

(eight tasks per site). To test the SNIF-ACT 2.0 model, Pirolli (2007) included 74 subjects who

completed the tasks at two of the Web sites. The Web sites werechosen due to the static nature of

their Web pages (i.e., the content and links of the pages did not change dynamically). Eight of the

tasks took place on Yahoo!’s help Web site while the remaining eight occurred on ParcWeb’s inter-

nal company intranet. Unlike SNIF-ACT 1.0, which was testedagainst individual clickstreams, the

aggregated statistics of the subjects and the SNIF-ACT 2.0 model were compared.

Using linear regression the fit of the aggregated SNIF-ACT model obtained good fit for both the

ParcWeb tasks (R2 = 0.72) and the Yahoo! tasks (R2 = 0.90) (Pirolli, 2007). The highR2 fur-

ther bolsters the support found in SNIF-ACT 1.0 that information scent is a reliable indicator of

the navigational choices a visitor makes when foraging. To test for subjects returning to a previ-

ous page another linear regression model was created. Similar to the link-following results, good

fit was also found for the ParcWeb tasks (R2 = 0.73) and the Yahoo! tasks (R2 = 0.80) (Pirolli,

2007). Since backing up a page is concerned with leaving a patch at the page-patch level, the re-
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sults do not directly bolster the results found in SNIF-ACT 1.0 (which looked at the site-patch

level). Instead, the results provide initial supporting evidence of the patch-leaving rule at the page-

patch level.

3.4 Conclusion

The preceding sections provided a thorough review of OFT, ACT-R, and IFT. Since IFT draws

quite heavily from both OFT and ACT-R, details of each theorywas included to give a more com-

plete understanding of IFT. Specifically, the basic prey andpatch models from OFT and the archi-

tecture and mechanisms for cognition from ACT-R were described. A discussion of information

scent and patches, in regards to IFT, was then given along with the details of the SNIF-ACT 1.0

and 2.0 models.
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Chapter 4

Hypotheses

Information foraging theory (IFT) is concerned with the information gatheringsearchprocess.

However, investigating goal achievement on long tail Web sites is focused on how information

gathering characteristics can be used to predict action, such as submitting a contact form. In order

for the possibility of action to occur, a visitor must move beyond the information gathering search

stage to a decision-making point where an action may or may not take place. Therefore, the infor-

mation gathering characteristics which are likely to lead to a conversion are those which bring a

visitor closer to meeting their information requirements.

Figure 24 illustrates how IFT is used within the decision making process.
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Figure 24.: Consumer Decision Process Model and Information Foraging Theory

On the left-hand side of figure 24 is the consumer decision-making process (CDP) model (En-

gel et al., 1990). The purpose of the CDP model is to illustrate the basic stages a consumer goes
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through when faced with a decision. Although the stages are depicted linearly in the figure, the

process itself may be an iterative one.

The decision making process begins when a consumer recognizes some need to be met. In order

to fulfill their need, the consumer will then search for information to find possible solutions. In the

next stage, each of the potential alternatives found are evaluated against one another until a single

alternative is selected. In the final stage, the consumer reflects on the outcomes of the process.

On the right-hand side of figure 24 are the main concepts of IFT. In IFT, user goals initiate and

drive the search process. Thus, the goal of the user affects the scent of every cue encountered and

how a patch is judged. In addition, the scent of a link also affects which patches will be selected to

forage within.

The manner in which IFT applies to the CDP model is shown via lines L1 and L2 in figure 24.

Line L1 demonstrates that the need being recognized in CDP isthe user goal in IFT. This need or

goal is the reason for the process or foraging to occur. In addition, the need or goal sets the context

for all subsequent activity. Line L2 illustrates that information scent and patches are concerned

with the information search process. Information scent is used to locate patches of information and

foraging within a patch obtains relevant information.

Noticeable is how IFT only applies to the first two stages of the CPT model. However, the pos-

sibility of a goal being achieved on a Web site can only occur in the fourth stage, once a choice

has been made. In order to get to the fourth stage, enough information must first be gathered and

any alternatives need to be evaluated. The termination of the information search process occurs

at “. . . some point because the person judges that he has enough information to move to the next

stage in the problem-solving or decision-making process” (Browne et al., 2007, pg. 91).

The determination of when enough information has been gathered is via a cognitive stopping

rule (Browne et al., 2007) as illustrated by line L3 in figure 24. The cognitive stopping rule may be

concerned with the fulfillment of a single criterion, list ofitems, amount of information, amount

of new information, or when understanding of the information stabilizes (Browne et al., 2007;

Pitts and Browne, 2004). Regardless of the cognitive stopping rule a visitor uses to judge the suf-

ficiency of their gathered information, some rule must be metbefore there is a chance of a goal

occurring.

Once a forager has stopped collecting information, the alternatives are evaluated. The alterna-
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tives may be between multiple products or services; or simply between selecting this product or

service or not. If the choice is made for some product or service then the forager may perform

some action (e.g., submitting contact information); if not, the forager may leave the site looking

for more information and other alternatives.

The remainder of this chapter is outlined as follows: first a brief review is given of the way in

which an information forager browses. Next, the user- and site-centric clickstream models of in-

formation foraging (CMIF) are introduced. The hypotheses generated from the models to help

answer research question 3 (listed below) are then presented in §4.2.1 for the user-centric model

and §4.2.2 for the site-centric model.

Research Question 3:How can information foraging theory and clickstream data beused to ex-

plain the achievement of a goal at a long tail Web site?

4.1 Information Foraging

The basic way in which an information forager evaluates every Web page they are presented with

is explained in the first subsection below. An example session is then shown of a user’s click-

stream as they hunt for information over multiple Web sites.Using the concepts of information

foraging, the rationale behind the user’s browsing behavior is provided.

4.1.1 Page Evaluation

When presented with a page, a forager has four basic actions which can be selected at any partic-

ular time: (1) evaluate or continue to evaluate the links on apage; (2) click on an already evalu-

ated link; (3) go to a previously visited page; or (4) leave the site (Pirolli, 2007). The probability

of what action a forager will choose changes over time. When first presented with a new page, it

is more probable that the user will begin evaluating the pagecompared to the other three actions.

The purpose of evaluation is to get a general sense of the value of the page and its links.

With continued evaluation, it is likely the probability of at least one of the other three actions

becomes higher than the probability for further evaluation. This change in probabilities is due to

the concept of satisficing (Simon, 1956; Pirolli, 2007), where the user will continue to evaluate a

page until a link with a “good enough” scent is found or it is determined the page does not contain
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any “good enough” links. If a highly-scented link is found, it will be clicked. If not, the user will

either backup to a previously visited page or leave the site in search of a Web site with a higher

mean expected value than the current site (Pirolli, 2007).

The rationale behind why scent is beneficial to a user is due tothe costs associated with brows-

ing. Foragers are assumed to be rational and thus try to reduce their search costs while hunting for

information (Pirolli, 2007). As each additional page viewed incurs a search cost, taking meander-

ing, wrong, or already traversed paths is less efficient thantaking a direct path to the information

sought. Information scent is a mechanism by which foragers are able to reduce their search costs

by increasing their accuracy on which option leads to information of value. Therefore, a forager

will click a link if the scent is deemed high enough to efficiently lead to valuable information. If

none of the links provide sufficiently high scent, the forager will perform one of the other three

actions in anticipation the action will lead to higher-scented links.

4.1.2 Sample Session

By definition, long tail Web sites do not generate heavy traffic. Their relative obscurity means it is

unlikely many new visitors will know of the site’s existencelet alone its uniform resource locator

(URL). However, the widespread use of search engines by Internet users (comScore, Inc., 2007a)

provides a gateway to these long tail Web sites. The results from search engines also provide links

to a number of other known and unknown Web sites too. Therefore, an information forager has

easy access to numerous Web sites when hunting for information.

Figure 25 shows an example of the clickstream of a successfulforaging trip by a user search-

ing for information about an upcoming gig for a comedy troupeat a college campus (Card et al.,

2001). The figure is an adaptation of a Web behavior graph (WBG) (Card et al., 2001) which il-

lustrates each Web page visited by a user. The figure is meant to be read left to right and top to

bottom. Each rectangular box represents a Web page and each rounded box represents the results

returned from a search query. The letter in each box is the Website and the number is the Web

page at that site. All the boxes from the same Web site are shaded the same color. Straight arrows

represent the user clicking a link from one Web page to another. Curved arrows at the end of a line

represent a user returning to whatever Web page is listed first on the next row down. Vertical lines

indicate a return to a previously visited Web page. Figure 25is a graphical representation of the
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following clickstream:

< A1, A2, A1, B1, B2, C1,D1,D2,D3,D1, D3,D2,D1, C1,D1, C1, B2, E1, E2, E3, E4 >.
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Figure 25.: User-centric: Example User Clickstream Graph –Adapted from (Card et al., 2001)

The clickstream illustrated in figure 25 is user-centric in nature since it includes the browsing

behavior of the forager across every Web site the user visited (Padmanabhan et al., 2001). A site-

centric version of this clickstream would only include the browsing behavior at a single Web site

without knowledge of what occurred at the other Web sites. The termuser-sessionrefers to a time-

contiguous sequence of Web pages viewed at any Web site from the same user, such as seen in a

user-centric clickstream. In contrast,sessionrepresents a time-contiguous sequence of Web pages

viewed at thesameWeb site by the same user, like in a site-centric clickstream.

Foraging Explanation

In figure 25 the user started their user-session within patchA (i.e., Web site A) at page A1, a

Web page with search capabilities, and entered a search query. After evaluating the results of the

query on A2, none of the resulting links had a high enough scent to warrant clicking on and thus

the user returned to the first page. Re-evaluating the value of the patch in light of page A1 and the

results returned on A2, the user decided to leave the site forpatch B.

Site B also had search capabilities and the user again entered a search query. This time, while

evaluating the results of the query on B2, one of the links hada high enough scent to cause the
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user to click on it. On site C the user found a highly-scented link to site D and clicked that link.

On site D, the user can be seen as having relatively poor scentdue to the inefficient revisiting of a

number of pages (D1, D2, and D3) multiple times.

After determining that the value of patch D had dropped belowwhat could be expected else-

where, the user returned back to the previous patch (site C) and finally back to the results page of

site B. Re-evaluating the links on the results page B2 lead the user to select another link which

lead to site E. The scent throughout site E was strong as the user did not backtrack. In addition, the

user found the information they sought about the comedy troupe on page E4.

The preceding example illustrated how concepts from IFT canbe used to explain users’ brows-

ing behaviors. For example, a lack of highly scented links from any of the results returned on page

A2 explains why the user backtracked to page A1 after executing a search. In addition, the move-

ment from Web site A to B can be deciphered as the user believing information of greater value

could be obtained from another patch. The next section presents a clickstream model developed

from IFT which captures these concepts using clickstream metrics.

4.2 Clickstream Model of Information Foraging

The clickstream model of information foraging uses clickstream metrics to represent the concepts

of information scent and patches. The user-centric (UC) model is presented first which uses infor-

mation about a forager’s entire browsing behavior to determine the overall scent at and the value

of a Web site. Since data about a user’s entire clickstream israrely available, a site-centric (SC)

version of the model is also presented which provides alternative conceptualization of the IFT con-

cepts using only site-centric data.

4.2.1 User-centric

Of the four possible actions a user may take at any point on anypage, only three of those actions

are directly observable via a user’s clickstream: click on alink, return to a previously visited page,

and leave the site. Although the determination of scent is internally represented as the activation

between the features of the links and goal (Pirolli, 2007), the observable actions of a user’s click-

stream can be used as proxies for determining how a user perceived scent and judged the value of

a patch.
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The judgment of information scent or the value of the patch cannot, however, be determined

in absolute terms from a user’s clickstream since there is noabsolute to compare against. Rather,

judgment must be done in relative terms. For example, assumea user is on a page which has one

link that goes to page A and another to page B. If the user’s clickstream shows page A was visited

next then the link to page A had higher scent than the link to page B. The actual scent and thus the

difference in scent between the links are unknown.

Potentially more important than the scent of each individual link, however, is the overall scent

and patch value at a particular Web site in comparison to the other Web sites visited. Such a means

of determining which Web site was of more value to a user provides a clue into which site might

fulfill the goal of the user. For example, in figure 25 the user visited three pages multiple times on

site C which would indicate a poor scent at the site. Contrastthat browsing behavior with site E

where four pages were visited only a single time.

The relative judgment between sites is also important in cases where the user’s information goal

is complex. For such goals it is likely the clickstream of a user will be complex regardless of the

site being visited. If judged in absolute terms, it would seem unlikely the user would find the infor-

mation they sought at any site. However, if judged relatively, it may be found that one site, while

still having an overall low scent, has a higher scent than theother sites and thus was the most use-

ful.

For example, assume a user visited 15 pages at one site, with six of those pages being distinct.

At another site the user also visited 15 pages, with only five of those pages being distinct. In abso-

lute terms, the scent at both Web sites appear to be poor sincea number of previously visited pages

were visited again. However, relative to one another, the first site appears to have a stronger scent

then the second.

The following subsections illustrate manners in which the value of a patch and level of informa-

tion scent can be gleaned from the clickstream of a user. By taking a user-centric viewpoint, many

of the proposed conceptualizations are relative to the user’s browsing behavior at other Web sites.

Table 8 lists the nine hypotheses of the user-centric model.The following subsections provide

the rationale behind each of the hypotheses.
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Table 8: User-centric: Hypotheses

Hypothesis # Hypothesis

INFORMATION PATCH – SITE-PATCH

UC1 Higher total duration spent at this site-patch relativeto other site-patches within
a user-session will be positively associated with achieving a goal on this long tail
Web site.

UC2 Higher number of pages viewed at this site-patch relative to other site-patches
within a user-session will be positively associated with achieving a goal on this
long tail Web site.

UC3 Returning to this site-patch during the same user-session will be positively associ-
ated with achieving a goal on this long tail Web site.

UC4 Returning to this site-patch during a different user-session will be positively asso-
ciated with achieving a goal on this long tail Web site.

INFORMATION PATCH – PAGE-PATCH

UC5 Visitation of more highly valued goal page-patches at this site-patch relative to
other site-patches within a user-session will be positively associated with achiev-
ing a goal on this long tail Web site, where value is defined as the:
(a) maximum value of any visited goal page-patch.
(b) value from the last visited goal page-patch.
(c) summation of values from all visited goal page-patches.

UC6 Higher median total duration spent within visited goal page-patches at this site-
patch relative to other site-patches within a user-sessionwill be positively associ-
ated with achieving a goal on this long tail Web site.

STRICT INFORMATION SCENT

UC7 A lower proportion of repeatedly visited pages at this site-patch relative to other
site-patches within a user-session will be positively associated with achieving a
goal on this long tail Web site.

UC8 A more linear clickstream at this site-patch relative toother site-patches in this
user-session will be positively associated with achievinga goal on this long tail
Web site.

RELAXED INFORMATION SCENT

UC9 Following of more highly valued goal scent trails at thissite-patch relative to
other site-patches within a user-session will be positively associated with achiev-
ing a goal on this long tail Web site, where value is defined as the:
(a) maximum value of any followed goal scent trail.
(b) value from the last followed goal scent trail.
(c) summation of values from all followed scent trails.
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Information Patch

An information patch is a grouping of similar information, like a Web page or Web site (Pirolli,

2007). What a patch represents depends on the level of analysis being examined. At a high level,

an entire Web site can be considered a patch. At a lower level,a Web page or set of Web pages

may be considered a patch. The termsite-patchis used to denote an entire Web site as a patch,

while page-patchrefers to an individual Web page or set of Web pages as a patch.

The first four hypotheses in this section examine how browsing behavior can lead to goal achieve-

ment by considering the Web site as a patch (i.e., site-patch). A benefit of taking a site-patch per-

spective is only coarse data on browsing behavior is required. The last two hypotheses in this sec-

tion, however, take a more detailed viewpoint by focusing onspecific pages or sets of pages being

visited (i.e., page-patches). Although concentrating on page-patches requires finer-grained data,

the lower level of analysis may tease out differences not seen at the site-patch level between goal-

and non-goal-achieving foragers.

Site-patch

Since a forager has imperfect information and limited computational facilities, an optimal deci-

sion of how long to spend in a site-patch is unlikely. Instead, a forager is likely to employ satisfic-

ing (Pirolli, 2007; Simon, 1956), making a decision that satisfies a need (e.g., rate of information

gain) at some specified level. When reading online texts for learning, satisficing is a commonly

used technique (Reader and Payne, 2007). Using satisficing,a forager will continue to spend time

reading pages on a Web site as long as information of value is being obtained. Therefore, a higher

total duration spent at one site-patch relative to other site-patches can be associated with obtaining

more information relevant to a user’s information goal, which leads to Hypothesis UC1.

Hypothesis UC 1:Higher total duration spent at this site-patch relative to other site-patches

within a user-session will be positively associated with achieving a goal on this long tail Web site.

Prior research has found mixed support for the association between absolute total duration and

the achievement of a goal. A positive, negative, and insignificant association was found dependent

on the task on one e-commerce Web site (Sismeiro and Bucklin,2004). A positive and insignifi-

cant association was found using site-centric and user-centric data at another group of e-commerce
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Web sites, respectively (Padmanabhan et al., 2001).

Each additional page visited represents a decision point where the user believed the value of

continuing to browse at this site-patch was higher than whatthey expected to find elsewhere. In a

similar vein as hypothesis UC1, a forager will continue to visit pages within a site-patch as long as

information of interest is still being obtained. Therefore, more pages viewed at one site-patch rel-

ative to others can be associated with obtaining more information relevant to a user’s information

goal, which leads to Hypothesis UC2.

Hypothesis UC 2:Higher number of pages viewed at this site-patch relative toother site-patches

within a user-session will be positively associated with achieving a goal on this long tail Web site.

Empirically, support has also been mixed for the association between absolute number of pages

viewed and conversion. Prior research has found a positive association (Awad et al., 2006; Moe,

2003), no association (Chatterjee et al., 2003), and mixed association depending on the task (Sis-

meiro and Bucklin, 2004) or type of pages viewed (Van den Poeland Buckinx, 2005).

While foraging within a site-patch, a user forms a general opinion of the value of the Web site.

When leaving one site-patch for another, a forager believesgreater value may be found elsewhere.

However, if a user returns shortly after leaving, the forager was unable to find a more valuable

site-patch. Therefore, the site-patch of interest is more likely than other site-patches to contain the

information necessary to fulfill the user’s goal, which leads to Hypotheses UC3.

Hypothesis UC 3:Returning to this site-patch during the same user-session will be positively

associated with achieving a goal on this long tail Web site.

When the span of time between visits is greater, returning toa site-patch demonstrates the pos-

itive evaluation of the site in two manners. First, the act ofreturning to a site indicates the forager

originally valued the site-patch enough to remember its existence. Second, having a general recol-

lection of the site and then returning also indicates the site-patch is expected to contain the infor-

mation needed to fulfill the user’s goal, which leads to Hypotheses UC4.

Hypothesis UC 4:Returning to this site-patch during a different user-session will be positively

associated with achieving a goal on this long tail Web site.

Prior research has found positive, negative, and insignificant support depending on the task for
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the association between returning to a Web site after a session has ended and achieving a goal (Sis-

meiro and Bucklin, 2004). As far as can be determined, the exit and return of a user during a user-

session has not been examined in prior research.

Page-patch

As previously discussed, a page-patch consists of a Web pageor set of Web pages that collec-

tively provide information for an individual. However, certain page-patches may provide more

useful information to a user than others. The identificationof which page-patches are useful is

likely to be similar amongst foragers with comparable goals. Patches predominately useful to

goal-achieving foragers are known asgoal page-patches, whereasnon-goal page-patchesare

patches primarily of use to non-goal-achieving foragers.

A user who visits more highly valued goal page-patches is likely to have a goal similar to the

goal-achieving foragers on that Web site. The value of a patch is considered in three different

ways: maximum, most recent, and summation. Maximum value contends a highly valued patch

visited at any point during a session is needed for the forager to judge the site favorably and thus

consider achieving a goal. The value of the most recent (i.e., last visited patch) conjectures a goal

is more likely to be achieved soon after visiting a highly valued patch. Finally, summation hy-

pothesizes that the overall evaluation of the Web site, in terms of its valuable patches, affects the

decision of a forager to achieve a goal or not.

In comparison to other Web sites visited during a user-session, a user who visits relatively more

valuable goal page-patches at this Web site is more likely toachieve a goal, which leads to Hy-

pothesis UC5.

Hypothesis UC 5:Visitation of more highly valued goal page-patches at this site-patch relative to

other site-patches within a user-session will be positively associated with achieving a goal on this

long tail Web site, where value is defined as the:

(a) maximum value of any visited goal page-patch.

(b) value from the last visited goal page-patch.

(c) summation of values from all visited goal page-patches.
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Positive, negative, and non-significant associations between specific pages and conversion have

been found in prior research (Sismeiro and Bucklin, 2004). Differences between the types of pages

visited and conversion rate have been also found at one e-commerce Web site (Moe, 2003). The

actual relationship between types of pages viewed and conversion was found to be mixed at an-

other e-commerce site (Van den Poel and Buckinx, 2005). As far as can be determined, relation-

ships between groups of pages (of potentially different types) and conversion have not been exam-

ined in prior research.

The simple visitation of goal page-patches; however, does not provide a complete indication of

how a forager actually processes a page or set of pages. For example, if a forager spends a very

short amount of time in a goal page-patch it may signal the user did not fully recognize the value

of the patch. A lack of recognition may be because of a poorly expressed information goal or sim-

ply a different information goal from previous goal-achieving foragers. Regardless, either reason

would unlikely result in goal achievement at this Web site.

Similar to hypothesis UC1, a forager will continue to spend time reading pages within goal

patches as long as information of value is being obtained. However, unlike hypothesis UC1 only

the time spent on pages within already identified valuable goal page-patches is considered. Thus, a

higher median total duration spent within goal page-patches at one site-patch relative to other site-

patches can be associated with obtaining more information relevant to a user’s information goal,

which leads to hypothesis UC61.

Hypothesis UC 6:Higher median total duration spent within visited goal page-patches at this

site-patch relative to other site-patches within a user-session will be positively associated with

achieving a goal on this long tail Web site.

As far as can be determined, prior research has not specifically examined the association be-

tween amount of time spent on goal page-patches and goal achievement.

Information Scent

This section presents three hypotheses dealing with information scent. In the first two hypothe-

ses, information scent is characterized by considering a user’s entire session as a single monolithic

1Goal page-patches are unique to each site.
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piece. In both these hypotheses a fairly strict definition ofinformation scent is considered which

views any inefficiencies in a user’s clickstream (e.g., backtracking) as having poorer scent. The

last hypothesis takes a more detailed viewpoint by looking at information scent among different

fragments of a user’s session. In this hypothesis a more relaxed characterization of information

scent is used which recognizes that complex sessions may still be of high scent even in the pres-

ence of some inefficiencies.

Strict Information Scent

When a forager has a single well-defined goal in mind it would be expected the user would ex-

hibit a focused search pattern (Moe, 2003). With a well-defined goal, the forager is better able to

evaluate the scent of each link and hence make more accurate navigational choices. Viewed as a

whole, such navigational choices for a forager with high levels of scent should result in a directed

clickstream.

A directed path is characterized by few (if any) repeat visitations of pages, since it is assumed

a rational forager would obtain any and all information froma page the first time it was visited.

However, as even well-defined goals may be complex and hence result in less than direct click-

streams, scent relative to other Web sites visited is more appropriate to examine than absolute

scent. Therefore, a goal is more likely to be achieved when a smaller proportion of pages are vis-

ited multiple times at this Web site relative to other sites,which leads to hypothesis UC7.

Hypothesis UC 7:A lower proportion of repeatedly visited pages at this site-patch relative to

other site-patches within a user-session will be positively associated with achieving a goal on this

long tail Web site.

Empirically, the proportion of repeatedly visited pages has differed depending on the type of

page and focus of the browser. For example, Moe (2003) found that directed shoppers at an e-

commerce site viewed mostly unique product brand pages, somewhat unique category pages,

and not very unique product pages. As far as can be determined, the use of proportion of repeated

pages for an entire session has not been examined in prior research.

Taking a finer-grained conceptualization of strict information scent considers the overall com-

plexity of a user’s clickstream, as opposed to just general backtracking behavior. A less complex

clickstream is one which exhibits a linear path through a site (Senecal et al., 2005), which is in-
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dicative of high scent. As path information is used to determine complexity, backtracking behavior

at many different pages rather than a single page may be teased out from a session.

For example, consider a user’s browsing behavior at two Web sites. At one site seven pages

were visited and four of those pages were unique. All of the non-unique pages were the home

page which was used as the main hub for all the other pages being visited. At the other site the

same number of total pages and unique pages were visited. At this Web site, however, each non-

unique page was different from one another. Although the clickstreams from both Web sites have

the same proportion of repeatedly visited pages, the clickstream from the second site is more lin-

ear and thus less complex than the second.

With high scent, a forager will exhibit a less complex and more linear clickstream than with

low scent. However, similar to the previous hypothesis, absolute clickstream complexity is not ap-

propriate to consider in light of potentially complex information goals. Therefore, a less complex

clickstream, in terms of linearity, at this Web site relative to other Web sites is more likely to lead

to goal achievement, which leads to Hypothesis UC8.

Hypothesis UC 8:A more linear clickstream at this site-patch relative to other site-patches in this

user-session will be positively associated with achievinga goal on this long tail Web site.

Session complexity has been used to successfully discriminate users via their clickstream into

high and low scoring groups (McEneaney, 2001); in the use of product recommendation agents

(Senecal et al., 2005); and in predicting the completion of informational and e-commerce tasks

(Kalczynski et al., 2006).

Relaxed Information Scent

The previous two hypotheses considered the session as a whole and assumed two things. First,

inefficiencies in a user’s clickstream were considered indicators of poor scent. However, certain

“inefficiencies” may instead be a part of the natural decision making process of a user. For exam-

ple, Moe (2003) found that when directed shoppers were deciding between products, their click-

streams demonstrated multiple repeated visits to the pagesof the products being considered. Sec-

ond, it was assumed the forager had a single information goalin mind when foraging. However,

Montgomery et al. (2004) demonstrated that models which accounted for changes in visitors’

goals on an e-commerce Web site performed better at predicting conversion than models which
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only allowed for a single goal.

As the information goal of a forager may change during a session (or subgoals may be intro-

duced as information is obtained) the scent of links will change in accordance to the current goal.

Therefore, a link to a page which has already been visited might be selected again because (1) the

link has the highest scent for the new current goal and (2) thescent gives an indication of novel in-

formation on the linked page. So even though the path at the aggregated session level of analysis

may appear undirected due to a non-linear path or repeated viewings of the same page, if a for-

ager’s clickstream were separated by goal, a more directed manner of browsing within the context

of the current information goal would likely be seen.

Figure 26 illustrates an example of an undirected path at thesession level of analysis and a di-

rected path at the goal level. The entire session consists offive page views with 60% of those

pages being unique. Although the session as a whole does not appear to be directed, breaking the

session down by the user’s information goals reveals a different pattern. Within the context of a

particular information goal, the pages viewed were unique as evidenced by the 100% path unique-

ness for each goal’s path subset.

Path Subset Pages Viewed Path Uniqueness

Entire Session A, B, C, B, A 60%

Information Goal 1 A, B, C 100%

Information Goal 2 B, A 100%

Figure 26.: User-centric: Example Forager’s Path

Thus, a finer-grained conceptualization of information scent is needed which is capable of de-

tecting high scent in situations of changing information goals and “inefficient” behavior. To meet

that need,goal scent trailsandnon-goal scent trails2 are used in a similar spirit as goal and non-

goal page-patches from hypothesis UC5. Goal scent trails are path fragments that goal-achieving

foragers predominately follow. Non-goal scent trails are predominately followed by non-goal-

achieving foragers.

2Olston and Chi (2003) introduced the concept of ScentTrailswhich highlighted the path a user should take given
an information goal. ScentTrails differ fromscent trailsin that the former shows a path through a Web site given a
user’s goal, whereas the latter uses past foragers’ behavior to determine goal and non-goal path fragments.

81



By only using portions of users’ paths to derive scent trails, those parts of a session most and

least aligned with goal-achieving can be teased from an entire session. A user who follows more

highly valued goal scent trails is likely to have a goal similar to the goal-achieving foragers on

that Web site. In the same manner as hypothesis UC5, the valueof a scent trail is defined in three

ways: maximum, most recent, and summation. Maximum value contends the most highly valued

scent trail that is followed at any point during a session is needed for the forager to judge the site

favorably and thus consider achieving a goal. The value of the most recent (i.e., last followed scent

trail) conjectures a goal is more likely to be achieved soon after following a highly scented trail.

Finally, summation hypothesizes that the overall evaluation of the Web site, in terms of its valu-

able trails, affects the decision of a forager to achieve a goal or not.

When compared to other Web sites visited during the same user-session, a forager who follows

relatively more valuable goal scent trails at this Web site is more likely to achieve a goal, which

leads to Hypothesis UC9.

Hypothesis UC 9:Following of more highly valued goal scent trails at this site-patch relative to

other site-patches within a user-session will be positively associated with achieving a goal on this

long tail Web site, where value is defined as the:

(a) maximum value of any followed goal scent trail.

(b) value from the last followed goal scent trail.

(c) summation of values from all followed scent trails.

Path information has been used successfully in clickstreamresearch to predict future path se-

lections (Montgomery et al., 2004). Various ways of representing paths have also been tested. The

use of path fragments, which take into account the order, adjacency, and recency of information,

have been found to be more accurate for predicting future paths than other manners of representing

paths (Yang et al., 2004). As far as can be determined, the useof path fragments which distinguish

between groups of a Web site population has not been examinedin prior research.
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Relation of Hypotheses to Information Foraging Theory

For each of the nine hypotheses, table 9 lists whether the hypothesis is testing or extending IFT.

For each IFT-extending hypothesis, a short description is provided below which explains in what

way the theory is being extended.

Table 9: Relation of Hypotheses to Information Forag-
ing Theory

Hypothesis # Hypothesis Extends IFT?

INFORMATION PATCH – SITE-PATCH

UC1 Duration No

UC2 Number of pages No

UC3 Leaving and returning Partially

UC4 Returning back Yes

INFORMATION PATCH – PAGE-PATCH

UC5 Patch visitation Yes

UC6 Patch duration Partially

STRICT INFORMATION SCENT

UC7 Unique pages Yes

UC8 Linear clickstream Yes

RELAXED INFORMATION SCENT

UC9 Trail following Yes

The first two hypotheses (UC1 – UC2) test IFT without extending the theory. Both of the hy-

potheses test the theory’s expectation that users employ the concept of satisficing when foraging

for information (Pirolli, 2007; Simon, 1956). As patches are assumed to exhibit diminishing re-

turns, a visitor should only forage within a patch as long as they are satisfied with the rate of infor-

mation gain they are obtaining.

The third hypothesis (hypothesis UC3) partially extends IFT. The idea is not novel that a forager

would leave a patch when the rate of information gain falls below the mean rate of gain obtain-

able from the environment. However, the Marginal Value Theorem (Charnov, 1976) assumes an

optimal forager with perfect information. Since foragers are known to possess imperfect informa-

tion, the actual judgment on the mean rate of gain obtainablefrom other patches may be incorrect.
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Therefore, a forager may return to the original patch after exploring other parts of the environment

and realizing the original site still provided the highest rate of information gain.

Hypothesis UC4 is considered an extension to IFT because it introduces memory from past

sessions. When searching for information, a forager will use information scent to guide them to

patches of interest (e.g., a Web site). The level of scent recognized by a forager is dependent on

the strength of chunks activated from declarative memory (Pirolli, 2007). It is assumed that when

a forager visits a Web site of value, greater attention will be paid to the cues that represent that

site compared to sites of a lower value. Greater cue attention will in turn more strongly activate

the chunks representing those cues in declarative memory (Anderson et al., 2004). At a later time,

when the forager has an information goal that may be achievedfrom the valuable Web site, those

chunks representing the Web site will have a greater probability of being retrieved (than chunks

representing lower-valued Web sites) from declarative memory due to being previously activated.

The hypotheses dealing with page-patches (UC5 – UC6) are also considered an extension be-

cause IFT does not define patches as being associated with a particular group of foragers (e.g.,

goal versus non-goal sessions). Instead, the patchy structure of the Web is assumed to be indepen-

dent of a forager’s information goal (Pirolli, 2007). Hypothesis UC5 is also an extension to the

theory because patches in IFT are not given value independent of the current forager. Instead, the

value of a patch is determined by an individual’s behavior within that patch3 (e.g., time spent).

The final three hypotheses are seen as an extension to IFT too.Within IFT, scent is viewed as

a real-time mechanism that foragers use to select a navigational option (e.g., selecting which link

to click next). While all three hypotheses still assume scent works by the same mechanism, an

overall level of scent from a forager’saggregatedbehavior is conceptualized instead. In addition,

hypothesis UC9 also extends IFT by introducing the concept of trails of scent that are common

amongst foragers.

4.2.2 Site-centric

The site-centric model is useful when only the clickstream of a forager at a single site is known.

As a result of having incomplete data; however, two ways in which concepts are defined to tap

the main constructs of IFT in the user-centric model cannot to be used in the site-centric model.

3For example, value is equated with duration in hypotheses UC1 and UC6.
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Instead, alternative forms of conceptualizing the constructs are needed.

The first way the definitions differ is in the usage of a forager’s browsing behavior at the site of

interest relative to their browsing behavior at the other sites visited during their user-session. Since

the site-centric model has no knowledge of browsing behavior at other Web sites, comparisons are

instead made relative to a fixed value of zero (i.e., in absolute terms)4. For example, users were as-

sumed to have spent zero minutes and viewed zero pages on other Web sites. Thus, the site-centric

model was reduced to only using a visitor’sabsolutebrowsing behavior at the site of interest.

The second difference between the two models is the ability to determine if the forager left

the site and then came back during the session. Site-centricclickstream data would simply show

a contiguous clickstream, regardless of if the forager leftthe site or not. However, site-centric

datasets typically have access to a referring field which shows which URL a user came from (Field-

ing et al., 1999; Gourley and Totty, 2002). The use of the referring field is not without disadvan-

tages as common browsing behaviors may lead the field to be blank (e.g., typing in a URL, using

a bookmark). Despite these limitations, the use of referring information does provide a means that

site-centric datasets may use to determine if foragers haveleft and returned to the site of interest

within a session.

For example, figure 27 illustrates a site-centric view of theclickstream data available from a

user. By looking at the user’s entire clickstream (figure 25), it is known that the user left the site

and returned after visiting page D1 the third time. But, the fact that the user left the site and re-

turned cannot be determined from simply examining the site-centric clickstream as shown in fig-

ure 27. However, assuming the user followed links, the referring field would indicate page C1 was

visited after the third D1 page and thus the forager left the site and returned.

With those two differences in mind, the hypotheses are restated for the site-centric clickstream

model of information foraging in table 10.

4Chapter 8 provides a comparison of browsing behavior relative to users who had previously achieved a goal at the
site of interest. The temporal version of the site-centric model assumes deviations from known goal-achieving browsing
behavior indicates lower levels of scent or patch value and thus a lower probability of a goal being achieved.

85



Table 10: Site-centric: Hypotheses

Hypothesis # Hypothesis

INFORMATION PATCH – SITE-PATCH

SC1 Higher total duration spent at this site-patch will be positively associated with
achieving a goal on this long tail Web site.

SC2 Higher number of pages viewed at this site-patch will be positively associated
with achieving a goal on this long tail Web site.

SC3 Returning to this site-patch during the same session will be positively associated
with achieving a goal on this long tail Web site.

SC4 Returning to this site-patch during a different sessionwill be positively associated
with achieving a goal on this long tail Web site.

INFORMATION PATCH – PAGE-PATCH

SC5 Visitation of more highly valued goal page-patches willbe positively associated
with achieving a goal on this long tail Web site, where value is defined as the:
(a) maximum value of any visited goal page-patch.
(b) value from the last visited goal page-patch.
(c) summation of values from all visited goal page-patches.

SC6 Higher median total duration spent within visited goal page-patches at this site-
patch will be positively associated with achieving a goal onthis long tail Web site.

STRICT INFORMATION SCENT

SC7 A lower proportion of repeatedly visited pages at this site-patch will be positively
associated with achieving a goal on this long tail Web site.

SC8 A more linear clickstream at this site-patch will be positively associated with
achieving a goal on this long tail Web site.

RELAXED INFORMATION SCENT

SC9 Following of more highly valued goal scent trails will bepositively associated
with achieving a goal on this long tail Web site, where value is defined as the:
(a) maximum value of any followed goal scent trail.
(b) value from the last followed goal scent trail.
(c) summation of values from all followed scent trails.

The site-centric hypotheses have the same theoretical relation to IFT as the user-centric hypotheses. §4.2.1 provides
an explanation of which hypotheses extend IFT and how the theory was extended.
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Figure 27.: Site-centric: Example User Clickstream Graph –Adapted from (Card et al., 2001)

4.3 Conclusion

This chapter provided an explanation on how IFT, a theory concerned with information search,

can be used to help predict action. In addition, a brief overview was given of how an information

forager processes a page and an example of the process using user-centric data. The user- and site-

centric clickstream models of information foraging were then introduced. Finally, hypotheses gen-

erated from the user- and site-centric models were presented.
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Chapter 5

Methodology

This chapter outlines the steps taken to test the hypothesesfor both the user-centric (UC) and site-

centric (SC) clickstream models of information foraging. The methodology for the user-centric

model is presented first in §5.1, followed by the site-centric model in §5.2. For each model a de-

scription is given about the data sample and how to calculateeach hypothesis’ measure. Finally,

§5.3 outlines the statistical tests used to test each hypothesis.

5.1 User-centric Clickstream Model of Information Foraging

The first subsection below describes how the user-centric dataset was processed to create user-

sessions1. In the final subsection, details are given on how measures for the model’s hypotheses

were calculated. However, since only session-level information about a forager was available

in the data, only measures which were calculable from the given data are presented (hypotheses

UC1- UC4).

5.1.1 Dataset Sample

The user-centric dataset consists of a set ofn sessionsS (S0, S1, . . . ,SN−1), whereSi represents

a single session tuple. Each tuple consists of eight pieces of information: a unique identifier for the

user, session, Web site, and referring domain; date and timethe session started; number of pages

viewed; how much time was spent on the site; and if the sessionresulted in a purchase being made

(i.e., a goal). Table 11 illustrates a set of session tuples.

1Summary statistics about the user-centric dataset can be found in chapter 6.
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Table 11: User-centric: Example Sessions

User Session Web site Referring Domain Date and Time Pages Duration Goal?

U5 S1 W7 R3 5/25/08 15:39:07 12 17min Yes

U5 S2 W8 n/a 5/25/08 15:40:58 2 3min No

U6 S3 W5 n/a 5/25/08 15:53:02 5 9min No

U7 S4 W6 R1 5/25/08 16:02:34 3 4min No

User-sessions

The user-centric model is based on the idea ofuser-sessionswhich allow for an examination of a

forager’s behavior at one site relative to their behavior atother sites. A user-sessionU contains a

target sessionT and a set ofn other sessionsS, whereS = {S0, S1, . . . ,Sn−1}. T andSi are both

tuples that represents information about a particular session (as illustrated in table 11).

The target sessionT is a session that occurred at a long tail e-commerce site. In the dataset, a

Web site was flagged as an e-commerce site if at least one purchase was made at the site by any

user at any point during the dataset’s time period. Web sitesthat made up the lowest 20% of all

goals achieved were considered long tail e-commerce sites.A random sample of 20% of those

long tail e-commerce Web sites with at least 50 goal sessionswere selected for analysis2. Each

session taking place at one of the selected long tail e-commerce sites became a target session for a

potentially valid user-session.

To become a valid user-session, there must have been at leastone other session at an e-commerce

site by the user during the time the target session was active3. A session was considered active

during the target session if it ended 30 minutes or less before the start of the target session4. In

addition, the session must have also ended by the end of the target session5. At least one other ses-

sion was required for a valid user-session in order to calculate relative behavior from the target

2Further details about the selection of long tail e-commercesites may be found in §6.1.1.
3The other session could take place onanye-commerce site from the dataset.
4A 30 minute window before the beginning of the session was used because prior research has used a timeout pe-

riod of 30 minutes for defining sessions (Bucklin and Sismeiro, 2003; Sismeiro and Bucklin, 2004; Van den Poel and
Buckinx, 2005).

5The purpose of this research was to predict goal achievementat a particular instant in time (i.e., when the target
session ended). Including sessions that ended after the target session would rely on data from the future. An entire ses-
sion was removed from a user-session because the comScore dataset only included session-level information. Therefore,
a session’s browsing behavior could only be determined after a session had ended. If page-level information was avail-
able instead, the session’s information known up to the target session’s end would have been used.
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session. Target sessions which did not have any other sessions during the window of time were not

considered valid user-sessions and hence were not used in the analysis.

ThecreateUserSessionsalgorithm in figure 28 illustrates the basic steps followed to create the

user-sessions. The algorithm requires a set of long tail e-commerce Web sites and the number of

minutes to use for a time window to be passed to the method whenit is called. For each Web site,

a set of sessions which visited the site were returned (line 19). These sessions were target sessions

for potential user-sessions. For each target session, all other sessions by the user which (1) visited

an e-commerce Web site and (2) ended between the specified number of minutes before the start of

the target session or by the end of the target session were returned (line 22)6. If at least one other

session was returned from line 22, then a user-session was created and added to the set of valid

user-sessions (line 25). This process continued for each potential target session from each of the

long tail e-commerce Web sites. After all processing was complete, a set of valid user-sessions

was returned from the algorithm (line 29).

Table 12 illustrates how thecreateUserSessionsalgorithm operates. The table lists a subsample

of sessions from the same user at e-commerce sites sorted by session date and time. The “Long

Tail?” column specifies whether the site visited was a long tail e-commerce Web site. The final

column, “Target?”, specifies which long tail Web site was thefocus of the user-session. The target

column is provided to be clear which Web site would be used to compare against, especially in the

situation of multiple long tail sites existing within the same user-session.

Assuming Web siteW5 was currently being processed, then sessionS4 would have been re-

turned from line 17 of the algorithm. Each of the returned sessions from the Web site would have

then been iterated through. When sessionS4 was processed, sessionsS3 andS5 would have been

returned from line 20 of the algorithm. SessionS3 would have been returned because the end of

the session was within 30 minutes of the start of target session S4 (11:35:00 - 11:33:00 = 2:00).

SessionS2 would not have been included because the end of the session was more than 30 min-

utes from the start of the target session (11:35:00 - 11:04:00 = 31:00). Although sessionS5 started

after the target session, it would still be included becausethe end of the session was equal to or

less than the end of the target session (11:44:00 for both sessions).

Since two other sessions were found for the target session, avalid user-session would have been

6The target session was not returned in the set of other sessions in line 22 of thecreateUserSessionsalgorithm.
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1 / * *
2 * Parameters : ( a ) S e t o f long t a i l Web s i t e s :
3 * W = {W0 , W1 , . . . , Wn−1}
4 * ( b ) Time window d u r a t i o n i n m inu tes : t imeWindow
5 * Re tu rns : S e t o f v a l i d user−s e s s i o n s :
6 * U = {U0 , U1 , . . . , Um−1}
7 * where Ui i s a t u p l e :
8 * <T , {S0 , S1 , . . . , SN−1}>
9 * Methods : ( a ) g e t S e s s i o n s (w) : r e t u r n s s e t o f s e s s i o n s f rom Web s i t e w

10 * ( b ) g e t O t h e r S e s s i o n s ( s , t ime ) : r e t u r n s s e t o f
11 * s e s s i o n f o r t h i s use r f rom any e−commerce Web s i t e
12 * w i t h i n t h e s p e c i f i e d window o f t ime
13 * ( c ) c r e a t e U s e r S e s s i o n ( s , O) : r e t u r n s a v a l i d user−s e s s i o n
14 * /
15 c r e a t e U s e r S e s s i o n s (W, timeWindow ){
16 U = {} ;
17
18 f o r each (w∈ W) {
19 S = g e t S e s s i o n s (w) ;
20
21 f o r each ( s∈ S ) {
22 O = g e t O t h e r S e s s i o n s ( s , timeWindow ) ;
23
24 i f (‖O‖ > 0) {
25 U += c r e a t e U s e r S e s s i o n ( s , O) ;
26 }
27 }
28 }
29 r e t u r n U;
30 }

Figure 28.: User-centric: createUserSessions Algorithm

Table 12: User-centric: Example User-Sessions

User-session Session Web site Date and Time Duration Long Tail? Target?

S1 W8 5/25/08 10:00:00 17min No –

S2 W4 5/25/08 11:00:00 4min No –

U1 S3 W7 5/25/08 11:30:00 3min No –

U1, U2 S4 W5 5/25/08 11:35:00 9min Yes U1

U1, U2 S5 W6 5/25/08 11:40:00 4min Yes U2

S6 W2 5/25/08 13:00:00 19min No –

U3 S7 W1 5/25/08 15:00:00 23min No –

U3 S8 W3 5/25/08 15:30:00 31min Yes U3

S9 W2 5/25/08 18:05:00 23min Yes U4
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created on line 23 of the algorithm. The valid user-session would have included target sessionS4

and other sessionsS3 andS5.

Table 12 also illustrates three other potential user-sessions. Both user-sessionsU2 andU3 would

have been valid because they both included other sessions beyond their target sessions (sessionS4

for U2 andS7 for U3). User-sessionU4 would not have been valid because there were not any

other sessions within the time window of sessionS9. User-sessionU4 would not have been in-

cluded in the analysis.

5.1.2 Metrics

Table 13 summarizes the metrics used to test the hypotheses for the user-centric clickstream model.

The name of each metric along with a description of how it was calculated is provided. In addi-

tion, the hypothesis which corresponds to the metric is alsoprovided in the table. A more in-depth

description of the metrics is given in the following subsections.

Table 13: User-centric: Model Metrics

Hypothesis # Metric Description

INFORMATION PATCH – SITE-PATCH

UC1 RELDUR Duration in minutes spent on a Web site relative to me-
dian time spent during other sessions.

UC2 RELPGS Number of pages viewed on a Web site relative to median
number of pages from other sessions.

UC3 RETURN If visitor left the Web site and returned during the same
session.

UC4 VISITED If visitor had previously visited the Web site before.

OTHER

n/a GOAL Whether a goal occurred during the session.

To help clarify the notation being used below for the metrics, each user-sessionU contains a

target sessionT and a set ofn other sessionsS, whereS = {S0, S1, . . . ,Sn−1}. T andSi are both

tuples that represents information about a particular session (see §5.1.1 for more details).
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Information Patch – Site-Patch

RELDUR is the total duration in minutes a visitor spent at the targetWeb site relative to the median

time spent at other sites within the same user-session. The relative duration of the user-session

U is calculated from equation 5.1, whereduration(i) is the duration spent during sessioni. To

acquireRELDUR, the median duration of all sessions in the user-sessionU is subtracted from the

total duration of the target sessionT .

RELDUR = duration(T ) − median (for eachi∈S [duration(i)]) (5.1)

RELPGSis the number of pages viewed at the target Web site relative to the median number of

pages viewed at other sites within the same user-session. The relative number of pages for the

target sessionT is calculated as shown in equation 5.2, wherepages(i) is the number of pages

viewed during sessioni. To obtainRELPGS, the median number of pages viewed at the other Web

sites is subtracted from the number of pages viewed during the target session.

RELPGS= pages(T ) − median (for eachi∈S [pages(i)]) (5.2)

RETURN is a binomial variable which istrue if the user left and returned to the target Web site

during the user-session andfalseotherwise. A user is designated as leaving and returning to the

target Web site if another session is active during some partof the target session. This can occur

if a new session is started while time is still being spent at the target Web site. Another situation

where this can occur is if a session was started before the target session and continues to be active

during some portion of the target session.

For example,RETURN would betrue if sessionS4 from user-sessionU1 (table 12) was the tar-

get session. This is because sessionS5 started (11:40:00) during the time sessionS4 was still ac-

tive (11:35:00 to 11:44:00).RETURN would befalse, however, if sessionS8 from user-sessionU3

was the target session. Since sessionS7 was finished (15:00:00 to 15:23:00) before sessionS8

began (15:30:00), the forager could not have left and returned to the Web site fromS8.

VISITED is a binomial variable which istrue if the forager had visited the target Web site during

another session at some point in the past andfalseotherwise.VISITED is calculated by examining

the prior sessions of a forager and determining if the user had ever visited the Web site of interest
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before.

Other

The mutually exclusive binomially distributed metricGOAL specifies whether a purchase was

made during the session. If a goal was achieved during the session,GOAL would have the value

of true. Otherwise,GOAL would have a value offalse.

5.2 Site-centric Clickstream Model of Information Foraging

In the first subsection below, the methodology is presented on how the data was used to test the

site-centric model7. The final subsection details how the measures for the site-centric hypotheses

were calculated. Unlike the user-centric dataset, the site-centric dataset was at the page-level and

thus each of the measures for the site-centric hypotheses was able to be calculated.

5.2.1 Dataset Sample

The supplied data contained a set ofn sessionsS (S0, S1, . . . ,Sn−1), whereSi represents a single

session. Each session (Si) contained a set ofm page information tuplesP (Pi0, Pi1, . . . ,Pim−1),

wherePij represents information about a particular page viewed during a session. Each page in-

formation tuple was made up of seven pieces of information: aunique identifier for the session,

Web site, referring domain, and page viewed; date and time the page was viewed; how much time

was spent on the page; and if the page represented a contact goal being achieved.

Table 14 illustrates a set of page tuples for sessionS9 at Web siteW4. Of note is the right-

censored nature of the site-centric data. The duration on the final page of the session is missing

because it is not known when the next page was visited by this user (at this site or another).

Table 15 provides some basic statistics on the number of pages viewed and total duration of

sessionS9. The first row of the table shows statistics using the entire session. However, only

those parts of a session occurringbeforethe achievement of a contact goal were used in the anal-

ysis. This truncation was done because the problem being investigated was the prediction of goal

achievement during theremainderof a session. Thus, prediction was done from a point right be-

fore a form submission occurred.
7Summary statistics about the site-centric dataset can be found in chapter 6.
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Table 14: Site-centric: Example Session Tuples

Session Web site Referrer Page Date and Time Duration Contact Goal

S9 W4 W6 A 5/25/08 15:37:02 32s n/a

S9 W4 W4 B 5/25/08 15:37:34 93s n/a

S9 W4 W9 C 5/25/08 15:39:07 111s n/a

S9 W4 W4 D 5/25/08 15:40:58 95s CG1

S9 W4 W4 A 5/25/08 15:42:33 9s n/a

S9 W4 W4 E 5/25/08 15:42:42 n/a n/a

Table 15: Site-centric: Example Ses-
sion Statistics by Contact Goal

Pages Duration

Entire session 6 340s

Contact Goal 1 3 236s

Contact Goal 2 6 340s

To illustrate the truncation of a session, assume contact goal CG1 was being examined (repre-

sented as pageD). For sessionS9, only activity on pagesA, B, andC would be used (as illus-

trated in the second row of table 15). If contact goalCG2 were being examined instead (repre-

sented as pageR), then the activity from the entire session would be used. This is because session

S9 never visited the page representing the submission of a contact form for contact goalCG2.

Thus, all pages of sessionS9 were usable since they occurred before the non-existent submission.

5.2.2 Metrics

Table 16 summarizes the metrics used to test the hypotheses for the site-centric clickstream model.

The name of each metric along with a description of how it was calculated is provided. In addi-

tion, the hypothesis which corresponds to the metric is alsoprovided in the table. A more in-depth

description of the metrics is given in the following subsections.

To help clarify the notation being used below for the metrics, each session contains a set ofm

page information tuplesP , whereP =< P0, P1, . . . ,Pm−1 >. Pj represents information about
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Table 16: Site-centric: Model Metrics

Hypothesis # Metric Description

INFORMATION PATCH – SITE-PATCH

SC1 SITEDUR Duration in seconds spent on a Web site.

SC2 SITEPGS Number of pages viewed on a Web site.

SC3 RETURN If visitor left the Web site and returned during the same
session.

SC4 VISITED If user had previously visited the Web site before.

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX Maximum value of any goal page-patch visited.

SC5b PATCHLAST Value of last goal page-patch visited.

SC5c PATCHSUM Total value of all goal page-patches visited.

SC6 PATCHDUR Median duration in seconds spent in all goal page-
patches.

STRICT INFORMATION SCENT

SC7 UNIQUE Percentage of unique pages viewed.

SC8 LINEAR Linearity of clickstream.

RELAXED INFORMATION SCENT

SC9a TRAILMAX Maximum value of any goal trail followed.

SC9b TRAILLAST Value of last goal trail followed.

SC9c TRAILSUM Total value of all goal trails followed.

OTHER

n/a GOAL Whether a goal occurred during the session.
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a particular page viewed during the session (see §5.2.1 for more details).P only contains pages

which occurredbeforethe contact form was submitted for the contact goal of interest.

Information Patch – Site-Patch

SITEDUR is the total duration in seconds a visitor has spent at a Web site. The total duration for the

current visitor is calculated according to equation 5.3, wheretime(i) is the time spent on theith

page.

SITEDUR =
∑

i∈P

time(i) (5.3)

SITEPGSis the number of pages viewed during a session. The number of pages viewed during

the current user’s session is simply‖P‖ (equation 5.4).

SITEPGS= ‖P‖ (5.4)

RETURN is a binomial metric which istrue if the user left and returned to the Web site during

the session andfalseotherwise. Since the dataset is site-centric, the determination of leaving and

returning to a Web site cannot always be definitively determined. However, in many cases however

the HTTP referer [sic] field (Fielding et al., 1999) contains information on what URL a forager

was on before arriving at the current page. Thus, if the referring URL from any page viewed in

a session (except for the first page viewed) is from a domain other than the current Web site, it

can be concluded the user left the site and returned. The preceding rule does not apply to the first

viewed page of a session since a forager cannot leave a Web site and return before a session has

actually started.

To illustrate, in table 14 (§5.2.1) the referrer of the thirdpage viewed (P3) was from a different

domain than the current Web site (W9 versus W4). Therefore, the forager would have aRETURN

value oftrue since the user left site W4, visited W9, and then returned to site W4. The fact that the

first page viewed (P1) had a referring URL of a different Web site (W6 versus W4) has no bearing

on the value ofRETURN.

VISITED is a binomial metric which istrue if the forager had visited the Web page during an-

other session at some point in the past andfalseotherwise.VISITED is calculated by examining the
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prior sessions of a forager and determining if the user ever visited the Web site of interest before.

Information Patch – Page-Patch

Patches at a Web site must already be known in order to calculate the fourPATCH visitation met-

rics: PATCHMAX, PATCHLAST, PATCHSUM, andPATCHDUR. The methodology for learning patches

is described in detail in appendix 5.B. In general, learningpatches requires a set of goal and non-

goal sessions to determine which parts of a Web site (i.e., pages) are better able to distinguish be-

tween the two groups. Patches are specific to a single Web site.

As the fourPATCH metrics require patches to be learned first in order to quantify a session’s

patch visitation, the sessions for each Web site were split into two groups: training and testing

sets. The training set was used to discover goal patches at a Web site. The sessions in the testing

set each calculated thePATCH metrics for their individual session from the learned goal patches.

However, a session from the testing set would only calculatethePATCH metricsif and only if goal

patches were found at the Web site. In addition, thePATCHDUR metric would only be calculated

for a session from the testing setif and only if that session visited at least one of the Web site’s

discovered goal patches.

Training and Testing Set

Each Web site contained sessions where either a goal was achieved during a session or not.

Sessions were separated according to their achievement andplaced into a Web site’s goal dataset

(DG) or non-goal dataset (DN )8. To create a Web site’s training set (R), the sessions from both the

goal and non-goal datasets were sorted in ascending order bytheir session start date. Then the first

70% of sessions from the goal dataset (DG) were placed into the training set (R). The date of the

last goal session added toR was noted. Sessions from the non-goal dataset (DN ) which occurred

at or before the noted date of the last goal session fromR were also added to the training set. All

sessions fromDG andDN not added to the training set were put into the testing set (E).

Learning Patches

Patches were learned for a Web site using the training dataset (R) according to the methodology

outlined in appendix 5.B. Patches were learned atα levels of 0.05 and 0.01 and supported levels of

8To simplify notation,DG andDN are used to refer to the current Web site being examined.
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0.25 to 1.50 (in 0.25 increments)9.

Specifically, a set ofn valuable patchesA (A0, A1, . . . ,An−1) were discovered, whereAi rep-

resents a single valuable patch10. Ai consists of a set ofm unordered and distinct pagesU (U0,

U1, . . . ,Um−1).

Each patch (Ai) was also given a value according to equation 5.5 (Yang and Padmanabhan,

2003).SGi andSNi represent the number of goal and non-goal sessions from the training dataset

that visited patchAi, respectively.RG andRN is the total number of goal and non-goal sessions

from the training dataset. The value of patchAi could range from zero to two, with higher num-

bers representing a greater difference in support of the patch in distinguishing between goal and

non-goal sessions (i.e., being more valuable).

value(Ai) =

∣∣∣SGi

RG
− SNi

RN

∣∣∣
1
2

(
SGi

RG
+ SNi

RN

) (5.5)

Table 17 provides an example of three valuable patches foundat a Web site. Each patch is made

up of a set of unique and distinct pages. In addition, the value (as calculated from equation 5.5) is

provided for each patch.

Table 17: Site-centric: Ex-
ample Valuable Patches

Patch Pages Value

A1 {A, C} 0.75

A2 {B, C} 1.15

A3 {B, C, E} 1.35

Calculating PATCH Metrics

To calculate thePATCH metrics for a given session from the testing set (E), two steps were re-

quired. First, it was determined what patches the session visited from the set of valuable patches

(A). Each session had a set ofl visited patchesV (V0, V1, . . . ,Vl−1), whereVj was an individual

9The results of the sensitivity analysis can be found in §7.2.3.
10Ai is a simplified form of notation which assumes a fixed Web site and significance or support level.
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patch visited by the current session11. A session was considered to have visited a patch if all pages

of the patch (U ) were visited at least once (in any order) by the current session (as determined by

the set of pagesP from the session). Formally,Ai was added toV if U ⊆ P . Once it was known

what patches were visited, then the four measures were calculated.

Table 18 provides an example of two patches visited by a session with three page views (< A,

B, C >). V 1 andV 2 are simply patchesA1 andA2 from table 17 that were visited by the session.

A3 was not included because the session never visited pageE. Table 18 is also used to calculate

examples for each of the measures in this subsection.

Table 18: Site-centric:
Example Visited Patches

Patch Pages Value

V1 {A, C} 0.75

V2 {B, C} 1.15

PATCHMAX is the value of the most valuable patch visited by the currentuser. The maximum

value is determined by iterating over every visited patch tofind the one with the highest value

(equation 5.6). If the user did not visit any patches then thevalue ofPATCHMAX would be zero.

PATCHMAX =





max (for eachj∈V (value(Vj))) if ‖V ‖ > 0

0 else
(5.6)

To illustrate equation 5.6,PATCHMAX would be 1.15 (max(0.75, 1.15)) assuming a user visited

the patches in table 18.

PATCHLAST is the value of the last patch visited by the user. A four step heuristic was used to

determine which patch was visited last during a user’s session.

(1) For each patch visited, the position within the user’s session when the foragerlast visited a

page from that patch was noted12. PATCHLAST then equaled the value of the patch with the

highest ending position. If more than one patch had the same highest ending position then the

process continued to the second step.
11Vj is a simplified form of notation which assumes a valuable visited patch from a fixed Web site and significance

or support level.
12If a user visited a page more than once, then the last time the page was visited was used.
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(2) PATCHLAST equaled the value of the largest patch from the tied patches in the first step. Largest

was defined as the patch with the highest number of pages (i.e., ‖U‖). If more than one patch

tied for the largest patch then the process continued to the third step.

(3) For each of the remaining tied patches from step two, the position within the user’s session

when the foragerfirst visited a page from that patch was noted13. PATCHLAST then equaled

the value of the patch with the highest starting position (i.e., started exploring the patch last).

If more than one patch had the same highest starting positionthen the process continued to the

fourth step.

(4) PATCHLAST equaled the median value of all tied patches from step three.

Table 19 illustrates the values obtained from following theheuristic on the visited patches from

table 18. In this example,PATCHLAST would be 1.15. The steps for the heuristic for this example

are provided after the table.

Table 19: Site-centric: Example Last Visited Patches

Patch Pages Value Ending Position Size Starting Position

V1 {A, C} 0.75 3 (max (1, 3)) 2 1 (min (1, 3))

V2 {B, C} 1.15 3 (max (2, 3)) 2 2 (min (2, 3))

(1) The highest ending position for both patches was three. Since more than one patch was tied

with the maximal value, a single patch could not be considered last, and thus the process con-

tinued to step two.

(2) Both patches also had a patch size of two. Therefore, the patches were tied again since neither

of the patches was larger than the other patch.

(3) PatchesV 1 andV 2 were first visited during the first and second page of the user’s session,

respectively. Since patchV 2 had a later starting position it was deemed the last patch. There-

fore, the value ofPATCHLAST was the value of patchV 2 (1.15).

13If a user visited a page more than once, then the first time the page was visited was used.
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PATCHSUM adds up the value of every patch visited by the current user (equation 5.7). A value

of zero is given to any user that did not visit any patches.

PATCHSUM =





∑
j∈V (value(Vj)) if ‖V ‖ > 0

0 else
(5.7)

PATCHSUM would be 1.90 (0.75 + 1.15) using the patches visited in table 18.

PATCHDUR is the median duration a user spent in all their visited patches. Only sessions which

visited at least one patch (i.e.,‖V ‖ > 0) would have a value forPATCHDUR. The calculation for

PATCHDUR is shown in equation 5.8.totalT ime(k, P ) returns the total time a session with pages

P spent on pagek. If a session visited pagek more than once inP , then the sum duration from all

k page visitations was returned.

PATCHDUR = median

[
for eachj∈V

(∑

k∈G

totalT ime(k, P )

)]
(5.8)

PATCHDUR would be 164.50s (median(125, 204)) for visited patchesV 1 andV 2 (table 18)

and sessionS9 (table 14).

Strict Information Scent

UNIQUE is the percentage of unique pages viewed during a session. The percentage of unique

pages viewed for the current visitor is calculated according to equation 5.9, wheredistinct(P )

is the number of distinct pages viewed in the set of page information tuplesP .

UNIQUE =

(
distinct(P )

‖P‖

)
∗ 100 (5.9)

LINEAR is the complexity of a session as calculated via the stratum measure. Complexity is

determined via the straightness (i.e., absence of visitingpages repeatedly) of a user’s browsing

behavior, where higher linearity equates to less complexity. Stratum is a measure of linearity from

graph theory (McEneaney, 2001) and details on its calculation may be found in appendix 5.A.
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Relaxed Information Scent

The threeTRAIL metrics for the relaxed information scent were calculated in a very similar man-

ner as thePATCH metrics. The same training set used to discover patches was used to learn trails.

Sessions from the testing set then used those learned trailsto calculate their values for the three

TRAIL metrics.

Specifically, a set ofn valuable trailsT (T0, T1, . . . ,Tn−1) were discovered from the training

set, whereTi represents a single valuable trail14. Ti consists of a set ofm orderedpagesO (O0,

O1, . . . ,Om−1), where the pages may repeat themselves in the ordered set (e.g.,< A, B, B, A,

C >). Once discovered, trails were given a value like patches using equation 5.5 (withTi being

used instead ofAi). Table 20 provides an example of three discovered trails.

Table 20: Site-centric: Exam-
ple Valuable Trails

Trail Pages Value

T1 < A,C > 0.35

T2 < A,A,C > 1.25

T3 < B,C,D > 1.15

Once the trails were discovered, each session in the testingset (E) required two steps to cal-

culate theTRAIL measures. First, it was determined what trails were followed by the session of

interest from the set of valuable trails (T ). Each session had a set ofl followed trailsF (F0, F1,

. . . ,Fl−1), whereFj was an individual trail followed by the current session15. A session was con-

sidered to have followed a trail if all pages of the trail (O) were followed in order by the current

session (as determined by the set of pagesP from the session). Although all pages must have been

followed in order, repeat visitation and gaps between pageswere allowed (i.e., other pages may be

visited in between pages from the trail). More specifically,Ti was added toF if O ⊆ P and the

pages ofO were found in the same order inP . Once it was known what trails were followed, then

the three measures were calculated.

Table 21 provides an example of two trails followed by a session with six page views (< A,

14Ti is a simplified form of notation which assumes a fixed Web site and significance or support level.
15Fj is a simplified form of notation which assumes a valuable followed trail from a fixed Web site and significance

or support level.
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A, B, A, D, C >). F1 andF2 are simply trailsT1 andT2 from table 20 that were followed by

the session.T3 was not included because pageC was not visited before pageD in the session.

Table 21 is also used to calculate examples for each of the measures in this subsection.

Table 21: Site-centric: Exam-
ple Follwed Trails

Trail Pages Value

F1 < A,C > 0.35

F2 < A,A,C > 1.25

TRAILMAX is the value of the most valuable followed trail by the current user. The maximum

value is determined by iterating over every followed trail to find the one with the highest value

(equation 5.10). If the user did not visit any trails then thevalue ofTRAILMAX would be zero.

TRAILMAX =





max (for eachj∈F (value(Fj))) if ‖F‖ > 0

0 else
(5.10)

To illustrate equation 5.10,TRAILMAX would be 1.25 (max(0.35, 1.25)) assuming a user fol-

lowed the trails in table 21.

TRAILLAST is the value of the last trail followed by the user. A four stepheuristic was used to

determine which trail was followed last during a user’s session.

(1) For each trail followed, the position within the user’s session when the foragerlast visited

the final page of the trail was noted16. TRAILLAST then equaled the value of the trail with the

highest ending position. If more than one trail had the same highest ending position then the

process continued to the second step.

(2) TRAILLAST equaled the value of the longest trail from the tied trails inthe first step. Longest

was defined as the trail with the highest number of pages (i.e., ‖O‖). If more than one trail tied

for the longest trail then the process continued to the thirdstep.

(3) For each of the remaining tied trails from step two, the position within the user’s session when

16If a user visited the final page of the trail more than once, then the last time the page was visited was used.
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the foragerfirst visited the first page of the trail was noted17. TRAILLAST then equaled the

value of the trail with the highest starting position (i.e.,started following the trail last). If more

than one trail had the same highest starting position then the process continued to the fourth

step.

(4) TRAILLAST equaled the median value of all tied trails from step three.

Table 22 illustrates the values obtained from following theheuristic on the followed trails from

table 21. In this example,TRAILLAST would be 1.25. The steps for the heuristic for this example

are provided after the table.

Table 22: Site-centric: Example Last Followed Trails

Trail Pages Value Ending Position Length Starting Position

F1 < A,C > 0.35 6 2 1

F2 < A,A,C > 1.25 6 3 1

(1) The highest ending position for both trails was six. Since more than one trail was tied with the

maximal value, a single trail could not be considered last, and thus the process continued to

step two.

(2) Trail F2 had a length of three pages, whileF1 only had two pages in its trail. Therefore, the

value ofTRAILLAST was the value of trailF2 (1.25).

TRAILSUM adds up the value of every followed trail by the current user (equation 5.11). A value

of zero is given to any user that did not visit any trails.

TRAILSUM =





∑
j∈F (value(Fj)) if ‖F‖ > 0

0 else
(5.11)

TRAILSUM would be 1.60 (0.35 + 1.25) using the trails visited in table 20.

17If a user visited the first page of the trail more than once, then the first time the page was visited was used.
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Other

The mutually exclusive binomially distributed metricGOAL specifies whether at some point during

the remainder of a session a contact form was submitted for the contact goal of interest. If a goal

will be achieved during the session,GOAL will have the value oftrue. Otherwise,GOAL will have

a value offalse.

5.3 Metric Testing

Each of the metrics was tested individually to determine if they were able to distinguish between

goal and non-goal sessions atany long tail Web site. The metrics were tested at the Web site unit

of analysis since the goal was to find metrics which were significant overmultiple long tail sites.

Since each Web site had numerous goal and non-goal sessions,the median value was separately

taken for each group18. The median values for the goal and non-goal sessions were then used as

each Web site’s paired data points.

The binomial metricsRETURN andVISITED did not use median values since the metrics were

only flags indicating if someone left the site or had visited the site before. Therefore, each Web

site was compared according to the probability of a goal occurring given if the user left and re-

turned to the site or stayed at the site the entire session19.

Table 23 illustrates the contingency table constructed foreach Web site that was used to cal-

culate the probabilities20. Counts of sessions at the Web site were categorized according to two

dimensions: goal or non-goal session; and if the session left and returned or stayed on the site.

Equations 5.12 and 5.13 detail how each of the probabilitieswere calculated for each Web site.

The probabilities were then used as each Web site’s paired data points.

P (Goal|Return) =
a

a + b
(5.12)

P (Goal|Stayed) =
c

c + d
(5.13)

18Median values were used instead of mean values to reduce the impact of outliers on the dataset.
19For theVISITED metric the probabilities being compared were for a goal occurring given if the user had visited the

site before or if this was the user’s first visit to the site.
20All notations are stated for theRETURNmetric. To be applicable to theVISITED metric, the notation “return”

becomes “visited” and “stayed” changes to “new”.
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Table 23: Contingency Table forRETURN and
VISITED

Goal Non-goal N

Return a b a + b

Stayed c d c + d

N a + c b + d a + b + c + d

A total of three different statistical tests were performedon each metric: paired t-test, exact

Wilcoxon signed rank test, and dependent-samples sign-test. The paired t-test is a parametric test

which assumes the data came from a normal distribution (Conover, 1999). The exact Wilcoxon

signed rank test and the dependent-samples sign test are both non-parametric tests which do not

make any assumption about the type of underlying distribution (Conover, 1999). The reason three

tests were performed is due to each test’s differing levels of assumption stringency. When met-

rics deviate from the assumptions of a test, the other less stringent tests can provide a “worst-case”

baseline for the significance of the metric.

Each of the three tests is described in greater detail below,starting with the most stringent test.

An example of each test is also provided which illustrates the test statistic being calculated.

Paired t-test

The paired t-test is a parametric test to determine if the mean difference between groups is zero

(Conover, 1999). The difference of each pair’s measures arecalculated and then used to determine

the test statistict. The significance oft is then determined based on the assumption of an underly-

ing normal distribution.

In the data there aren pairs ofX andY observations(X0, Y0), (X1, Y1), . . . ,(Xn, Yn) (Conover,

1999). For each observation pair, the differenceDi is calculated betweenXi andYi, whereDi =

Yi − Xi.

The test statistict is calculated according to equation 5.14 (Conover, 1999), whereD̄ is the

mean of allDis.
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t =
D̄√

1
n(n−1)

∑n
i=1

(
Di − D̄

)2 (5.14)

Assumptions

The five assumptions for the paired t-test are provided below. The most stringent assumption for

the test is the requirement of normally distributed random variables.

(1) “TheDis are identically distributed normal random variables.” (Conover, 1999, pg. 363)

(2) “The distribution of eachDi is symmetric.

(3) TheDis are mutually independent.

(4) TheDis all have the same mean.

(5) The measurement scale of theDis is at least interval.” (Conover, 1999, pg. 353)

Example

To illustrate the paired t-test, table 24 provides an example of data from five Web sites (A-E).

Within each Web site the median value for the metric being investigated is provided separately for

the goal (Xi) and non-goal sessions (Yi). In addition, the final column shows the difference (Di)

between the non-goal and goal sessions (i.e.,Yi − Xi).

Table 24: Example T-test Metric Testing Dataset

Web site Goal Sessions (Xi) Non-goal Sessions (Yi) Di

A 3.75 2.15 1.60

B 7.15 4.35 2.80

C 12.20 13.40 −1.20

D 4.75 4.75 0.00

E 7.50 5.90 1.60

Using equation 5.14, the t-statistic for the given data is 1.3720 (with four degrees of freedom),

and a p-value of 0.121 (assuming a hypothesis thatX is greater thanY ).
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Exact Wilcoxon Signed Rank Test

The exact Wilcoxon Signed Rank Test (Wilcoxon, 1945) is a non-parametric test that determines if

paired observations have the same mean as one another (Conover, 1999). Each Web site is ranked

according to its absolute difference between the median values of all goal and non-goal sessions

for the given metric. The ranks of all Web sites with a positive difference are then added up to ob-

tain the test statisticV (Dalgaard, 2008).

In the data there arem pairs ofX andY observations(X0, Y0), (X1, Y1), . . . ,(Xm, Ym) (Conover,

1999). For each observation pair, the differenceDi is calculated betweenXi andYi, whereDi =

Yi − Xi. Any observation pair with a difference of zero is removed from the analysis (i.e., when

Di = 0). A total of n observation pairs then remain, wheren ≤ m.

Then remaining observation pairs are then ranked from 1 ton, whereRi is the rank of theith

observation pair. Observations pairs are ranked from the smallest to the largest value ofabsolute

difference (i.e.,|Di|). In cases where more than one observation pair shares the sameabsolute

difference, then the assigned rank is averaged amongst all tied pairs. For example, assume the rank

being assigned was three and four observation pairs shared the next smallest absolute difference.

The rank for all four pairs would then be 4.5 (3+4+5+6
4 ).

After ranking,Ri takes the same sign asDi (e.g., ifDi is negative thenRi is also negative). The

ranks of all positiveRis are then summed to obtain the test statisticV (Dalgaard, 2008). An exact

p-value is then computed fromV using the Shift-Algorithm (Streitberg and Röhmel, 1986) in R (R

Development Core Team, 2008).

Assumptions

The exact Wilcoxon signed rank test has the same assumptionsas the t-test, except it does not

require identically distributed normal random variables.The four assumptions for the Wilcoxon

test are listed below.

(1) “The distribution of eachDi is symmetric.

(2) TheDis are mutually independent.

(3) TheDis all have the same mean.

(4) The measurement scale of theDis is at least interval.” (Conover, 1999, pg. 353)
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Example

To illustrate the exact Wilcoxon signed rank test, table 25 provides an example of data from five

Web sites (A-E). Within each Web site the median value for themetric being investigated is pro-

vided separately for the goal (Xi) and non-goal sessions (Yi). The fourth column is the calculated

difference (Di) between the non-goal and goal sessions (i.e.,Yi − Xi). Since Web site D had a

difference of 0.00, it was removed from any further analysis.

Table 25: Example Wilcoxon Metric Testing Dataset

Web site Goal Sessions (Xi) Non-goal Sessions (Yi) Di |Ri| Ri

A 3.75 2.15 1.60 2.50 2.50

B 7.15 4.35 2.80 4.00 4.00

C 12.20 13.40 −1.20 1.00 −1.00

D 4.75 4.75 0.00 — —

E 7.50 5.90 1.60 2.50 2.50

The fifth column shows the rankings of the four remaining Web sites according to the absolute

value ofDi. Web site C was ranked first because it had the smallest value of |Di| (1.20). The next

smallest value of|Di| was tied between Web site A and E (1.60). Both Web sites were given a

rank of 2.50 (2+3
2 ). Finally, Web site B was given a rank of 4.00 since it had the largest value of

|Di|.

The final column displays the rankings of each Web site after taking into account the sign of

Di. Web site C’s sign forRi was switched to negative sinceDi had a value less than zero. After

adding all positively ranked Web sites, the test statistic (V ) for this example was 9.00, with a p-

value of 0.125 (assuming a hypothesis thatX is greater thanY ).

Dependent-samples Sign Test

The dependent-samples sign test is a non-parametric test that can also be used to test if there are

differences between observations. Since the sign test has less stringent assumptions than many

other non-parametric tests, it can be used it many more situations. For example, if the differences

(Dis) between observations were not symmetrical in the exact Wilcoxon signed rank test, the sign

test could be used as an alternative. However, the sign test is generally less powerful than other
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non-parametric tests (Conover, 1999).

In the data there arem pairs ofX andY observations(X0, Y0), (X1, Y1), . . . ,(Xm, Ym) (Conover,

1999). For each observation pair, a comparison is made. Assuming the purpose of the test is to de-

termine ifX > Y , then a pair is classified as “+” ifXi > Yi, “-” if Xi < Yi, or “0” if Xi = Yi. All

tied observation pairs (i.e., classified as “0”) are discarded from further analysis, leaving a total of

n observation pairs.

The test statisticS is calculated by counting the number of observation pairs classified as “+”.

The p-value is then computed fromS using R (R Development Core Team, 2008).

Assumptions

The sign test has the least stringent assumptions of any of the tests discussed in this section.

Thus, this test is useful in providing a way of testing metrics that can not meet the assumptions of

the other tests. The sign test has the following three assumptions.

(1) “The bivariate random variables (Xi, Yi) . . . are mutually independent.

(2) The measurement scale is at least ordinal within each pair.

(3) The pairs (Xi, Yi) are internally consistent, in that if P(+)> P(-) for one pair (Xi, Yi), then

P(+)> P(-) for all pairs.” (Conover, 1999, pgs. 157-158)

Example

To illustrate the sign test, table 26 provides an example of data from five Web sites (A-E). Within

each Web site the median value for the metric being investigated is provided separately for the

goal (Xi) and non-goal sessions (Yi). The final columns provides the classification for each Web

site (e.g., “+”, “-”, “0”). Since Web site D was classified as “0”, it was removed from any further

analysis.

After counting all the Web sites classified as “+”, the test statistic (S) for this example was 3.00,

with a p-value of 0.3125 (assuming a hypothesis thatX is greater thanY ).
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Table 26: Example Sign Test Metric Testing Dataset

Web site Goal Sessions (Xi) Non-goal Sessions (Yi) Classified

A 3.75 2.15 +

B 7.15 4.35 +

C 12.20 13.40 -

D 4.75 4.75 0

E 7.50 5.90 +

5.4 Conclusion

The preceding subsections presented the methodology for both the user- and site-centric click-

stream models of information foraging. First, a description was provided for each model’s data

sample and how the measures for each hypothesis were calculated. Finally, the three statistical

tests used to test each hypothesis were presented.

5.A Clickstream Complexity Appendix

The clickstream complexity metrics compactness and stratum were originally developed by Botafogo

et al. (1992) to assist in the design of hypertext document collections (i.e., Web sites). The metrics

were meant to quantify the complexity and connectedness of Web pages within a Web site. Com-

pactness dealt with how well connected Web pages were to one another, where high compactness

meant most pages had links to most other pages. Stratum was concerned with the degree of linear-

ity in which Web pages must be read. High stratum occurred if astructured order existed in which

Web pages must be read one after another.

McEneaney (2001) extended the work of Botafogo et al. (1992)by adapting the compactness

and stratum metrics to be useful for quantifying users’ paths. This section details how compact-

ness and stratum can be calculated from a user’s clickstream. Although only the stratum metric

is used in this research, the compactness metric is explained for completeness. First, an example

clickstream for two users is presented. Then the steps to convert a user’s clickstream to a directed

graph, path matrix, distance matrix, and finally converted distance matrix are explained. Finally,

equations are presented to calculate compactness and stratum from the converted distance matrix.
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5.A.1 Example Clickstreams

Figure 29 illustrates clickstreams for two separate visitors, V1 and V2, using a Web behavior

graph. Both foragers visited seven pages with four of those pages being distinct. The path of the

first visitor (V1) is< P1, P2, P2, P3, P2, P4, P2 > whereas the path for the second visitor (V2)

is < P1, P2, P3, P4, P2, P3, P1 >.
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(a) Visitor V1
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(b) Visitor V2

Figure 29.: Site-centric: Example Clickstream Web Graphs

Table 27 lists the compactness and stratum values for each ofthe visitors. Visitor V1 shows a

moderately connected clickstream (compactness) because page P2 links to two distinct page and is

linked from three distinct pages. The linearity of V1’s clickstream (stratum) is moderate since the

path taken does not end where it began. The second visitor (V2) has an even more densely con-

nected clickstream than V1 since many of the pages are linkedto more than one other page. In

contrast to the first visitor, however, V2 has a much less linear clickstream. Although V2 appears

to do very little backtracking to a single page, stratum is low since the path finished where it be-

gan21.

Table 27: Site-centric: Example
Visitor Clickstream Complexity
Metrics

Visitor Compactness Stratum

V1 0.6389 0.6250

V2 0.7500 0.1250

21The value for stratum would change dramatically if visitor V2 would have visited page P4 instead of P1 as the last
page of the path. With a path of< P1, P2, P3, P4, P2, P3, P4 >, the compactness and stratum values would be
0.5833 and 0.7500, respectively.
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5.A.2 Graph Theory

Compactness and stratum are calculated by using concepts from graph theory (McEneaney, 2001).

To graphically depict a clickstream, it can be converted into a directed graph. A directed graph

consists of a set of nodes and directed links between the nodes. The nodes of a graph are the dis-

tinct Web pages viewed by a forager, while the links between nodes represent the transitions of a

user from one page to another.

For example, figure 30a is a directed graph created from the first visitor’s clickstream. The fig-

ure has four nodes representing each of the distinct pages visited. A single-headed arrow means

the forager traveled from one node to another. A double-headed arrow represents a user traveling

from one page to another and then back again. Of note is the sequence of the clickstream along

with multiple traversals of the same path is lost when converting a clickstream to a directed graph.

P 2P1

P4

P3

(a) Directed Graph

To / From P1 P2 P3 P4

P1 0 1 0 0

P2 0 1 1 1

P3 0 1 0 0

P4 0 1 0 0

(b) Path Matrix

To / From P1 P2 P3 P4

P1 0 1 2 2

P2 ∞ 0 1 1

P3 ∞ 1 0 2

P4 ∞ 1 2 0

(c) Distance Matrix

To / From P1 P2 P3 P4

P1 0 1 2 2

P2 4 0 1 1

P3 4 1 0 2

P4 4 1 2 0

(d) Converted Distance Matrix

Figure 30.: Site-centric: Example Clickstream Graph and Matrices

A way to represent the same information as the directed graphand allow for calculations is via

a path matrix. A path matrix has each of the nodes as column androw headings. Each of the ele-

ments of a path matrix represents the number of transitions from one node to another. Initially, all

elements in the matrix have values of zero. For each pair of nodes visited, the count at the intersec-

tion of those nodes in the matrix is increased. After processing all node pairs, any elements in the

matrix with values greater than one are then set to one in order to create a “path adjacency matrix”

(McEneaney, 2001, pg. 770).
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Figure 30b illustrates the path matrix generated from the first visitor’s clickstream. The value

of one in the first row and second column represents the forager traveling from node P1 to node

P2. In the next column over, the zero element means the user never went from node P3 to node P1.

Figures 30a and 30b convey the same information in two different formats.

Using the path matrix, a distance matrix can then be created.The elements of a distance matrix

represent the minimum distance (in terms of hops) between two nodes. The minimum distance

between nodes is determined by using the shortest path algorithm by Floyd (1962). Unreachable

paths between nodes are represented by the infinity symbol.

An example of a distance matrix from the first visitor’s clickstream is shown in figure 30c.

When going from node P1 to P3 there are two hops which must takeplace (P1 to P2 and P2 to

P3), and thus the element has a value of two. Going from node P2to P1 is set to infinity because

only a path from node P1 to P2 exists, not one from node P2 to P1.

Since it is inconvenient to calculate the complexity metrics using infinite values, the distance

matrix must be converted (Botafogo et al., 1992). FollowingBotafogo et al. (1992), all infinite val-

ues are replaced with the number of distinct nodes from the path matrix. In figure 30d the infinite

element values are all replaced with the number four.

5.A.3 Compactness

Compactness is calculated according to equation 5.15 (McEneaney, 2001).‖N‖ is the number of

distinct nodes in the user’s clickstream.C is the converted distance matrix andCij refers to the el-

ement in theith row andjth column.
∑

i

∑
j Cij simply sums all the elements from the converted

distance matrix. The value of compactness ranges from zero to one, with values closer to one indi-

cating a more densely connected and thus more complex clickstream (McEneaney, 2001).

COMPACTNESS=
‖N‖2 ∗ (‖N‖ − 1) −

∑
i

∑
j Cij

‖N‖ ∗ (‖N‖ − 1)2
(5.15)

5.A.4 Stratum

Stratum is calculated according to equation 5.16 (Botafogoet al., 1992). AP and LAP both refer to

equations more fully explained below. Values for stratum can range from zero to one, with values

close to one indicating a more linear path and thus a less complex clickstream (McEneaney, 2001).
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STRATUM =
AP

LAP
(5.16)

Absolute prestige (AP) is the net status of a node within a hypertext network and is calculated

according to equation 5.17 (Botafogo et al., 1992).Si andCSi refer to the status and contrasta-

tus of a node. Status and contrastatus were originally developed for use in social network theory

(SNT) (Harary, 1959). In SNT, status referred to the number of subordinates assigned to a person,

whereas contrastatus was the number of superiors a person had. The same basic idea of status and

contrastatus were adopted by Botafogo et al. (1992) for the stratum metric.

AP =
∑

i

|Si − CSi| (5.17)

The status of a node (S) shown in equation 5.18 is the number ofother nodes which link from

the node of interest (Senecal et al., 2005). Status is the sumof all non-infinite elements (e.g.,Cij <

‖N‖) in a node’s row from the converted distance matrixC.

Si =
∑

i





‖N‖ if Cij < ‖N‖

0 otherwise

(5.18)

Contrastatus (CS) is the number of nodes which link to the node of interest and is calculated ac-

cording to equation 5.19 (Senecal et al., 2005). Contrastatus is the sum of all non-infinite elements

(e.g.,Cij < ‖N‖) in a node’s column from the converted distance matrixC.

CSj =
∑

j





‖N‖ if Cij < ‖N‖

0 otherwise

(5.19)

Finally, equation 5.20 contains the formula for calculating the linear absolute prestige (LAN),

which normalizes the size of the network for the stratum metric (Botafogo et al., 1992).

LAP =





‖N‖3

4 if ‖N‖ is even

‖N‖3−‖N‖
4 if ‖N‖ is odd

(5.20)
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5.B Learning Patches and Scent Trails Appendix

This appendix is concerned with answering the first two research questions about how to learn

information patches and scent trails22. Since the methodology for learning patches and scent trails

is very similar to one another, the entire methodology is written in §5.B.1 from the viewpoint of

learning patches. §5.B.2 provides a discussion of how the methodology differs for learning scent

trails.

Research Question 1:How can information patches be learned from a long tail Web site?

Research Question 2:How can information scent trails be learned from a long tail Web site?

5.B.1 Information Patches

An information patch is defined as an area of the search environment with similar information

(Pirolli, 2007). Within a Web-context, what constitutes a patch is dependent on the level of anal-

ysis being examined. At a high-level of analysis, an entire Web site can be considered a patch.

When examined from a lower level of analysis, each individual page of a Web site can also be con-

sidered a patch. While such conceptualizations of a patch are straightforward, they are effectively

being defined by the creator of the content rather than the user.

The Web, however, is a pliable environment where foragers have the choice of what material to

view. Effectively, this allows a forager to define their own information patch that is uniquely rel-

evant to their goal. Such patches may consist of a group of Webpages, which individually may

mean very little, but when combined provide an area of the search environment that is seen as

valuable to the user.

Although each user is free to define patches as they see fit, certain patterns of patches may emerge

among foragers with similar information goals. From the viewpoint of the online firm, knowing

who values what patch can provide insights into the information goal of the forager. By catego-

rizing a patch as valuable to goal-achievers or non-goal-achievers, the firm may be able to better

explain goal achievement at long tail sites dependent on what patches are visited by a user.

22Although mentioned together, the learning of information patches and scent trails are done separately from one
another.
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Learning Information Patches

An information patch is either a single Web page or a set of Webpages that collectively provide

information for an individual23. From the perspective of the online firm, a patch is defined as valu-

able if it can distinguish between visitor sessions which result in a goal being achieved for the firm

(e.g., a user purchases, or fills out a contact form), versus those that do not.

This section details how valuable information patches are learned. The first subsection provides

the definition of a contrast set, which is used to discover patches. The methodology of learning

patches using clickstream data and contrast sets is then outlined in the next subsection. The third

subsection describes how patches are deemed to be valuable or not depending on their ability to

significantly distinguish between goal-achievers and non-goal-achievers. Finally, an alternative

definition of contrast sets is given, which does not require patches to be statistically significant

between groups to be considered valuable.

Contrast Sets

From the data mining literature, contrast sets are a way to find differences between groups (Bay

and Pazzani, 1999). A contrast set is a combination of attributes and their values which differ in

support amongst separate groups (Bay and Pazzani, 1999). Let there bek attributesA (A1, A2,

. . . ,Ak), whereAi can have one ofm values (Vi1, Vi2, . . . ,Vim). A contrast set is a conjunction of

attributes defined forn groups (G1, G2, . . . ,Gn) (Bay and Pazzani, 1999). For example, a contrast

set may be(PageA = 1)∧ (PageC = 1), where the attributes represent Web pages and a value of

“1” signifies a page was visited. Support in a group is defined as the percentage of instances where

the contrast set is true within the group (Bay and Pazzani, 1999). The support from the previous

example may be 5% for goal sessions and 17% for non-goal sessions.

A potential contrast set (PCS) is one where the contrast set (cset) is sufficiently large in at least

one of the groups, where largeness is having a support greater than or equal to a specified mini-

mum support (minSup). Formally, a PCS between two groups is one that satisfies thecondition:

max(support(cset,G1), support(cset,G2)) ≥ minSup (adapted from Satsangi and Zaiane

(2007)). A significant contrast set (SCS) is a PCS that also meets the significance condition. For-

mally, a contrast set is significant between two groups ifP (cset|G1) 6= P (cset|G2) at a specified

23This appendix does not examine an entire Web site as a patch and thus the general term “patch” only refers to a
single Web page or a group of Web pages.
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alpha level (adapted from Bay and Pazzani (1999)). A SCS is hence a valuable information patch

since it represents the fact that the set of pages tends to be visited more in one group than another.

Therefore, the presence or absence of a visitor within such apatch may signal an expected goal

outcome for the firm.

Discovering Patches

To discover valuable patches, contrast sets were found where the attributes of the set consisted

of the distinct pages visited by a user during their session at a Web site. Certain pages, however,

were not included in the analysis since their visitation wasa requirement for or consequence of

achieving a goal (e.g., contact form, form submission, and thank you pages). In addition, only

pages occurringbeforea form submission were included in the analysis.

Each Web site contained sessions where either a goal was achieved during a session or not.

Sessions were separated according to their achievement andplaced into Web sitei’s goal dataset

(DGi) or non-goal dataset (DNi). Each Web site hadNi sessions.NGi andNNi are denoted to

correspond to the sizes of datasetsDGi andDNi for Web sitei, respectively.

Frequent itemsets were discovered from each Web site’s datasets using the MAFIA (Maximal

FrequentI temsetsAlgorithm) (Burdick et al., 2001) algorithm24. The algorithm was run sepa-

rately onDGi andDNi for each Web site and resulted in a set of frequent itemsetsIGi andINi
25.

The minimum support was set to 0.10. A frequent itemset is a potential contrast set.

Figure 31 is an example of frequent itemsets mined from a Web site with three Web pages (A,

B, and C) (assuming aminSup of 10%). On the left-hand side of the figure are the itemsets dis-

covered from the goal dataset (DGi), whereas the itemsets from the non-goal dataset (DNi) are on

the right-hand side. The itemsets are arranged in a lattice by level according to their size (i.e., how

many pages are in the itemset). Lines are drawn between itemsets to show their relation to other

itemsets. To the right of each itemset in parentheses is the count of support for the itemset. The

empty itemset at level 0 represents the entire dataset.

24An implementation of the algorithm can be found at http://himalaya-tools.sourceforge.net/Mafia/. Version 1.4 was
used in this research.

25The discovery of frequent itemsets in datasets separated bygoal is similar to discovering rules following the form
{pages} → G as done in Satsangi and Zaiane (2007), where{pages} is a set of distinct pages and G is the group goal
or non-goal. However, when the size between groups is imbalanced, finding frequent itemsets in the minority group
may become impossible using a combined dataset. For example, the minority group would not be able to find any fre-
quent itemsets (at a minimum support of 10%) if the majority group had 10 times more records than the minority group.
Mining frequent itemsets separately does not suffer from this class imbalance limitation.
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Goal Dataset Level Non-goal Dataset
{}(53) 0 {}(1,784)

{A}(47) {B}(28) {C}(34) 1 {A}(1,109) {B}(987) {C}(687)

{A,B}(25) {A,C}(32) 2 {A,B}(378) {B,C}(597)

{A,B,C}(17) 3

Figure 31.: Site-centric: Example Itemsets by Dataset

Potential contrast sets were formed starting with the lowest-level frequent itemsets found in

either dataset and then continuing on to higher-level itemsets. To evaluate a PCS, a contingency

table was needed that was populated with the amount of support and non-support for the PCS’s

itemset from each dataset. When the itemset for a PCS was found in bothIGi andINi, then the

contingency table was created according to table 28, whereSGij (SNij) is the count of support for

itemsetj from Web sitei in the goal (non-goal) dataset.

Table 28: Site-centric: Example Contingency Table for a Potential Contrast
Set

Support Count for Itemsetj Non Support Count for Itemsetj

DGi SGij ¬SGij = NGi − SGij

DNi SNij ¬SNij = NNi − SNij

When the itemset was missing from one of the datasets (i.e., it was not frequent), then the count

of support and non-support was unknown. In such a case the support frequency for the contin-

gency table (SGij or SNij) was calculated (Satsangi and Zaiane, 2007) according to the supCount

formula: supCount = round(N ∗ minSup), whereN is NGi or NNi andminSup is minimum
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support.

supCount represents a generous count of support for an itemset, whichresults in a PCS be-

ing conservatively evaluated. When an itemset is not frequent it is unknown how much less than

minSup its support really is. Using a support count of zero in place of supCount would under-

estimate the importance of an itemset, which may lead to a Type I error when evaluating the PCS.

Therefore, a support count equivalent tominSup is used which over-estimates the importance

of an itemset and hence lowers the chance of a Type I error occurring when the PCS is evaluated.

However, this method does increase the probability of a TypeII error occurring.

To illustrate, assumeminSup was 10% and the support for a PCS’s itemset was 9.9% in the

goal dataset and 45.0% in the non-goal dataset. Since minimum support for the itemset from the

goal dataset was not met, the true support would be unknown. If a support of zero were used when

populating the contingency table for the PCS, the importance of the itemset in the goal dataset

would be understated by 9.9%. In other words the difference in support between datasets would be

9.9% morethan it was actually was (45.0% versus 35.1%). Setting the support tominSup would

instead over-estimate the importance of the itemset by 0.1%. Here the difference in support would

be 0.1% less than it actually was (35.0% versus 35.1%).

Table 29 presents three examples of potential contrast setsfrom the second level of figure 31.

The first column shows the itemset used for the PCS (i.e., the Web pages that make up the patch).

Columns two through five are in reference to the goal dataset and list if the itemset was found to

be frequent, number of goal sessions, support for the itemset (with support percentage in paren-

theses), and non-support for the itemset. Columns six through nine have the same meaning as

columns two through five except they refer to the non-goal dataset.

Table 29: Site-centric: Example Potential Contrast Sets

Goal Non-Goal

PCS Found? NGi SGij ¬SGij Found? NNi SNij ¬SNij

{A,B} Yes 53 25 (47.2%) 28 Yes 1,784 378 (21.2%) 1,406

{A,C} Yes 53 32 (60.4%) 21 No 1,784 178 (10.0%) 1,606

{B,C} No 53 5 (9.4%) 48 Yes 1,784 597 (33.5%) 1,187

The first example shows a PCS for itemset{A,B}. Since the itemset was found in both datasets
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the support from each dataset is known. The second PCS (itemset {A,C}) illustrates an example

where the itemset of interest is found in the goal dataset butnot in the non-goal dataset. Therefore,

thesupCount formula was used (with aminSup of 10%) to calculate the support count (SNij).

The final PCS (itemset{B,C}) shows the opposite situation where the itemset was not frequent

in the goal dataset but it was in the non-goal dataset.SGij would therefore be calculated using the

supCount formula26.

Determining Patch Value

The significance of each potential contrast set was then calculated using Fisher’s exact test

(Conover, 1999). Although prior research has used the chi-square test for independence to deter-

mine significance (Bay and Pazzani, 1999), the approximation of α may suffer when the expected

value of at least 20% of the cells in the contingency table arebelow five or any one expected value

is less than one (Cochran, 1954). When considering goal achievement on long tail Web sites, the

counts in the contingency table are often too small or too imbalanced in their distribution for the

chi-square test to adequately approximateα. Thus, Fisher’s exact test, which makes no such ap-

proximation, was used instead.

When testing multiple hypotheses, such as in the situation of testing each potential contrast set,

the familywise error rate (FWER) should be controlled. The FWER is a measure in statistics that

refers to the probability of committing at least one Type I error. A common method of dealing

with the FWER is to fix the alpha across all tests.

For example, with an expected familywise error rate ofα, the alpha level for each individual

potential contrast set (αind) would be fixed using a Bonferroni procedure:αind = α/NC, where

NC is the number of PCSs being tested. The disadvantage of such an approach is the same alpha-

level is used regardless of the PCS’s itemset size. This results in a loss of power and ability to de-

tect differences in even the most general PCSs which use lower-level itemsets (Bay and Pazzani,

1999).

To combat such a loss of power, a different alpha level was used for each level of the itemset

lattice. The purpose of such a change inα was to distribute “. . . 1/2 of the totalα to tests at level 1,

1/4 to tests at level 2, and so on” (Bay and Pazzani, 1999, pg. 304). This results in greater power

being available to test the most general PCSs (i.e., those with itemsets from the lowest levels).

26The support percentage is 9.4% instead of 10.0% due to rounding in thesupCount formula.
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Equation 5.21 (Bay and Pazzani, 1999) was used to determine the alpha level (αl) for testing

all PCSs at a specified level. In the equation,α is the expected familywise error rate,l is the level,

andCl is the number of candidate PCSs being tested at levell. The purpose of themin function

was to ensure thatα becomes more stringent with each subsequent level. Using anα of 0.01, a

potential contrast set was deemed significant if its p-valuefrom Fisher’s exact test was less than or

equal toαl.

αl = min

( α
2l

Cl
, αl−1

)
(5.21)

If a PCS was found to be significant, then the patch it represents (i.e., itemset) was deemed valu-

able. A valuable patch which was predominately visited by users from the goal group was known

as agoal patchand placed in the setPGi, whereas visitation mostly from the non-goal group re-

sulted in a patch being labeled as anon-goal patchand being placed in the setPNi. Formally, a

patch was deemed agoal patchif SGij

NGi
>

SNij

NNi
, and anon-goal patchotherwise27. By classifying

patches in such a manner, a visitor may signal expected goal outcome to the firm via the presence

or absence of patch visitation.

Supported Contrast Sets

As an alternative to significant contrast sets, a supported contrast set was a potential contrast set

that had a difference in support above a user-defined threshold (thresh). Formally, a supported

contrast set between two groups was one that satisfies the condition:

difference(support(cset,G1), support(cset,G2)) ≥ thresh, wheredifference(SGij, SNij)

is defined in equation 5.22 (Yang and Padmanabhan, 2003). If aPCS met or exceeded the thresh-

old support condition then the patch was considered valuable. The classification as either a goal or

non-goal patch was done in the same manner as with significantcontrast sets.

difference(SGij, SNij) =

∣∣∣SGij

NGi
−

SNij

NNi

∣∣∣
1
2

(
SGij

NGi
+

SNij

NNi

) (5.22)

The purpose of defining a supported contrast set was because finding statistical significance

may be difficult when many PCSs exist. For example, assume 100potential contrast sets existed

27Only goal patches were used in the analysis of this dissertation.
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on level 1 and the expected familywise error rate was set to 0.01. In order for a potential contrast

set to be significant, its p-value would need to be lower than 0.00005. Therefore, the supported

definition of a contrast set was used to discover contrast sets which may be important, but fail to

reach significance.

5.B.2 Scent Trails

Information scent is the driving force behind why a person makes a navigational selection amongst

a group of competing options. As foragers are assumed to be rational, scent is a mechanism by

which foragers’ reduce their search costs by increasing their accuracy on which option leads to the

information of value (Pirolli, 2007). Based on the information goal of a forager, each hyperlink on

a Web page gives off a scent. The higher the scent the more likely the page that is being linked to

may contain the information being sought. Similar to a bloodhound that follows a scent trail over

distances to find an item of interest, a forager also follows ascent trail to find the information they

seek over multiple Web pages.

Although each user follows a scent trail that fits with their information goal, patterns from frag-

ments of scent trails may exist that emerge among foragers with similar information goals. Like

patches, these fragments of scent trails are of value to the online firm in distinguishing between

possible goal-achievers and non-goal-achievers. When a user follows these known fragments

of scent trails it may provide clues into their information goal and thus help in explaining goal

achievement at long tail sites.

Learning Scent Trails

A scent trail is the path a forager travels upon by following the information scent of links. More

specifically, a scent trail is a set of pages in a specified order. To discover valuable scent trails,

contrast sets were found where the attributes of the set consisted of an ordered set of pages (i.e., a

sequential pattern) visited by a user during their session at a Web site.

Frequent sequential patterns were discovered from each Website’s datasets using the SPAM

(SequentialPAtternM ining) algorithm (Ayres et al., 2002)28. The algorithm was run separately on

28An implementation of the algorithm can be found at http://himalaya-tools.sourceforge.net/Spam/. Version 1.3.3
was used in this research.
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DGi andDNi for each Web site and resulted in a set of frequent sequentialpatternsPGi andPNi.

A frequent sequential pattern is a potential contrast set.

Figure 32 is an example of frequent sequential patterns mined from a Web site with two Web

pages (A and B) (assuming aminSup of 10%). The figure only shows patterns found frequent

starting with Web page A. On the top part of the figure are the patterns discovered from the goal

dataset (DGi), whereas the patterns from the non-goal dataset (DNi) are on the bottom part of the

figure. The patterns are arranged in a lattice by level according to their size (i.e., how many Web

pages are in the pattern). Lines are drawn between patterns to show their relation to other patterns.

To the right of each pattern in parentheses is the count of support for the pattern. The empty pat-

tern at level 0 represents the entire dataset.

An example of a potential contrast set with a sequential pattern from the third level of figure 32

is < A,A,B >. This pattern means pageA was visited two times before pageB was visited. How-

ever, the visitation of these pages need not be right after one another. There may be many other

pages that were visited in between each page. For example, a session with the following seven

page views< C,A,C,D,E,A,B > visited pagesC, D, andE before visiting pageA again and

then pageB.

If a PCS was found to be significant, then the scent trail it represented (i.e., sequential pattern)

was deemed valuable. A valuable scent trail which was predominately followed by users from the

goal group was known as agoal scent trailand placed in the setTGi, whereas following mostly

from the non-goal group resulted in a scent trail being labeled as anon-goal scent trailand being

placed in the setTNi. Formally, a scent trail was deemed agoal scent trailif SGij

NGi
>

SNij

NNi
, and a

non-goal scent trailotherwise29.

For a scent trail to be considered valuable by way of support (i.e., a supported contrast set), then

the PCS must have met or exceeded the threshold support condition. The classification as either a

goal or non-goal scent trail was done in the same manner as with significant contrast sets.

29Only goal scent trails were used in the analysis of this dissertation.
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Goal Dataset Level
<>(53) 0

< A >(47) 1

< A,A >(34) < A,B >(28) 2

< A,A,A >(25) < A,A,B >(17) < A,B,A >(8) 3

(a) Frequent Sequential Patterns from Goal Dataset

Non-goal Dataset Level
<>(1,784) 0

< A >(1,109) 1

< A,A >(378) < A,B >(597) 2

< A,A,A >(255) < A,B,A >(421) < A,B,B >(189) 3

(b) Frequent Sequential Patterns from Non-Goal Dataset

Figure 32.: Site-centric: Example Patterns by Dataset – adapted from Ayres et al. (2002)
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Chapter 6

Datasets

The datasets used to test the user- and site-centric clickstream models of information foraging are

presented in this chapter. In particular, details of the preprocessing steps undertaken to arrive at

the final dataset used to test each model are shown. After all the preprocessing steps, descriptive

statistics of each final dataset are also provided. §6.1 contains information about the user-centric

dataset, while §6.2 details the data from the site-centric dataset.

6.1 User-centric Dataset

The data used for the user-centric clickstream model of information foraging was provided by

comScore, Inc., a marketing research company. The domain-level data was captured for 100,000

United States-based panelists1 over a one year period from January 1, 2006 to December 31, 20062

(comScore, Inc., 2007b). Each panelist was randomly selected from comScore’s pool of more than

two million global Internet users.

Data was collected from panelists using a proprietary methodology that “. . . enable[d] com-

Score to passively observe the full details of panelists’ Internet activity, including every Web site

visited and item purchased” (comScore, Inc., 2005, pg. 1). Apanelist’s session was defined as

any sequence of Web pages on the same Web site by the same visitor with less than a 30 minute

time period between page viewings. A 30 minute session timeout has also been used in previous

clickstream research (Bucklin and Sismeiro, 2003; Sismeiro and Bucklin, 2004; Van den Poel and

Buckinx, 2005).

The remainder of this section provides information regarding the steps taken to arrive at the fi-

nal dataset used to test the user-centric model, along with general descriptive statistics about the

1The actual dataset contained a total of 88,814 panelists. The documentation by comScore did not provide an ex-
planation for the 11,186 missing panelists.

2Not all panelists were active during the entire data collection period.
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data. The preprocessing steps applied to the data are described in the next section. Descriptive

statistics are then provided in the following section.

6.1.1 Preprocessing of Original Dataset

The data obtained from comScore, Inc. included many data elements not applicable to the current

research. Therefore, a number of processing steps were performed to obtain a final dataset usable

for testing the user-centric clickstream model of information foraging. Table 30 lists each step of

the process along with the total number of Web sites, sessions, and goal sessions; and how many

Web sites, sessions, and goal sessions were removed at that step (if applicable). Table 31 lists the

parameters used in each preprocessing step. A discussion ofeach step and its parameters are pro-

vided below.
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Table 30: User-centric: Preprocessing of Original DatasetStatistics

Step Description Web Sites Sessionsa Goalsb △ in Web Sites △ in Sessionsa △ in Goals

Original dataset 1,417,745 548,428,562 354,985 n/a n/a n/a

1 Remove non e-commerce sites 625 106,686,274 354,985−1,417,120 −441,742,288 n/a

2 Remove sites not randomly selected
from long tail

58 798,306 13,872 −567 −105,887,968 −341,113

3 Remove single page sessions 58 616,607 13,870 0 −181,699 −2

4 Identify user-sessions 58 511,397 11,100 n/a −105,210 −2,770

5 Remove sites with< 50 goal
user-sessions

52 502,131 10,834 −6 −9,266 −266

6 Remove outliers 52 496,343 10,714 n/a −5,788 −120

7 Remove sites with< 50 goal
user-sessions

52 496,343 10,714 0 0 0

a Starting at step 4, the “Sessions” and “△ in Sessions” columns refer to user-sessions.
b The original dataset contained a total of 355,064 goals. However, 79 of those goals (0.02%) did not have any session details associated with the purchase. There-

fore, the total number of goals for this dataset was listed as354,985.
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Table 31: User-centric: Preprocessing Parameters

Step Description Parameters

Original dataset n/a

1 Remove non e-commerce sites goalsAtWebsite == 0

2 Remove sites not randomly shortHeadWebsites == 80/20 rule

selected from long tail minGoalsInLongTail == 50

randomPercent = 20%

3 Remove single page sessions sessionLength == 1

4 Identify user-sessions sessionsInWindow ≥ 1

5 Remove sites with< 50 goal
user-sessions

userSessionGoalsAtWebsite < 50

6 Remove outliers MinPts = 4

Eps = 0.0266 (goal sessions)

Eps = 0.0536 (non-goal sessions)

sample% = 100% (goal sessions)

sample% = 15% (non-goal sessions)

7 Remove sites with< 50 goal
user-sessions

userSessionGoalsAtWebsite < 50

Step 1. Remove Non e-Commerce Web sites

The first step of the process removed any non e-commerce sites. An e-commerce Web site was

defined as any site in which a purchase was made by any user at any point within the dataset’s

time period. A total of 625 Web sites were found where a purchase was made3. The remaining

1,417,120 non e-commerce Web sites were removed along with the 441,742,288 corresponding

sessions that took place on those sites.

Step 2. Remove Web sites Not Randomly Selected from the Long Tail

The second step of the process selected a sample of long tail e-commerce Web sites to analyze.

Sites within the dataset were defined according to the 80/20 rule (Newman, 2005) as either parts

3The methodology by which comScore recognizes and records a purchase was not available. Considering only a
total of 625 out of 1,417,745 Web sites had purchases on them,it is likely the dataset did not include all purchases made
at all Web sites.
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of the short head or long tail of a power law distribution. In general, the 80/20 rule states 80% of

some quantifiable object (e.g., wealth) should be held by 20%of the population. Within the con-

text of goal achievement, 80% of achieved goals should have taken place on 20% (125) of the 625

e-commerce Web sites. Short head Web sites were those sites included in the 80/20 group, while

all other sites were considered long tail Web sites.

Figures 33a – 33b illustrate the separation between short head and long tail Web sites. Fig-

ure 33a shows the number of goals achieved at each Web site, while figure 33b shows the cumu-

lative number of goals achieved. The vertical dashed line onthe left of each figure represents the

boundary between short head and long tail Web sites. The Web sites to the left of the first dashed

line represent 79.89% of all goal sessions, while making up 17.12% of the Web site population.
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Figure 33.: User-centric: Goal Sessions by Web Sites

The second vertical dashed line in each figure represents a separation between Web sites in the

long tail and those in the very long tail. A Web sites was considered too far down the long tail to

analyze if there were fewer than 50 goal sessions at the Web site.

A total of 107 Web sites (17.12%) in the short head were removed along with the 41,708,093

corresponding sessions (283,609 goals) at those Web sites.In addition, 228 Web sites (36.48%) in

the very long tail were removed along with the 38,947,086 corresponding sessions (3,693 goals) at

those Web sites.

290 Web sites (46.40%) in the long tail region remained with 26,031,095 sessions (67,683 goals).

Since processing over 26 million sessions would be too computationally expensive, a random sam-

ple of 20% of the 290 Web sites was taken. 58 Web sites were randomly selected which had a total

of 798,306 sessions (3.07%) (13,872 goal (20.50%)).
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Step 3. Remove Single Page Sessions

The third step followed Bucklin and Sismeiro (2003) and removed all sessions which consisted of

only a single page-view. A single page-view does not represent “browsing” behavior on a Web site

(Bucklin and Sismeiro, 2003) and thus is unlikely to provideinteresting visitor patterns. 181,699

single-page sessions were removed.

Step 4. Identify User-sessions

The fourth step of the process identified user-sessions fromthe remaining 616,607 sessions. A

user-sessionencapsulates the session being analyzed (i.e., the “target”) and all other sessions that

met two requirements.

(1) The other session must have taken place at an e-commerce Web site.

(2) The other session must have ended between 30 minutes before the start of the target session

and the end of the target session.

A valid user-session was needed to calculate relative measures for the user-centric clickstream

model of information foraging. To be considered valid, a user-session must have had at least one

session in addition to the target session4.

Each of the 616,607 sessions from the third step was analyzedto determine if they were part of

a valid user-session5. A total of 511,397 valid user-sessions (82.94%) were found and retained.

The remaining 105,210 sessions (17.06%) did not have a valid user-session and were removed.

Step 5. Remove Sites with< 50 Goal User-sessions

For the fifth step of the process, Web sites without at least 50goal user-sessions were removed.

Although step two initially checked for Web sites having at least 50 goal sessions, the number of

goal user-sessions may have been reduced because a goal session may not have represented a valid

user-session if no “other” sessions were associated with the target session.

A total of six Web sites (10.34%) were removed from the dataset because they had fewer than

50 goal user-sessions. The 9,266 user-sessions (1.81%) at those six Web sites were also removed.
4Specifying at least two sessions for a valid user-session issimilar to requiring at least two page views for a valid

session (Bucklin and Sismeiro, 2003).
5Further detail about how user-sessions were determined canbe found in §5.1.1.

132



Step 6. Remove Outliers

The dataset was then examined for outliers in the sixth step of the process. An outlier was defined

as “an observation (or subset of observations) which appears to be inconsistent with the remainder

of that set of data” (Barnett and Lewis, 1994, pg. 7). Since the clickstream model of information

foraging relies on relative behavior to other sessions, inconsistent sessions were removed from the

dataset. Consistency was compared via the combination of the total number of pages viewed and

the duration of a session.

An unsupervised density-based clustering algorithm called DBSCAN6 (Ester et al., 1996) was

used to locate outlying sessions7. DBSCAN identifies clusters of arbitrary shape, where the num-

ber of clusters is automatically determined via the algorithm. A cluster is formed by having a min-

imum number of neighbor points8 (MinPts), or density, within a specified radius (Eps). Points

not classified to a cluster are labeled as “noise” (i.e., outliers).

DBSCAN requires two user-specified parameters:MinPts andEps.

MinPts – the minimum number of points within a neighborhood of radiusEps. For two-dimensional

datasets,MinPts is commonly set to four (Ester et al., 1996; Hodge and Austin,2004).

Eps – the Eps-neighborhood or radius of a cluster. The value of Eps is determined visually via a

sorted k-dist graph (see point three below) (Ester et al., 1996).

To perform the outlier analysis using DBSCAN, four steps were followed.

(1) Goal and non-goal sessions were separated into two separate datasets. Each of the remaining

three steps was performed independently on each dataset.

(a) For the user-centric model the goal and non-goal datasets also included the “other” ses-

sions associated with a user session. All other sessions that also achieved a goal were

included in the goal dataset, while the remaining sessions were placed in the non-goal

dataset.
6The average runtime complexity of DBSCAN isO(n ∗ log(n)) (Ester et al., 1996).
7DBSCAN was chosen over common statistical techniques for removing outliers, such as removing values greater

than three standard deviations away, for two reasons: (1) DBSCAN does not require knowledge of an underlying distri-
bution and (2) DBSCAN is capable of finding outliers in multiple dimensions.

8The term points will be used to refer to sessions with a uniquecombination of pages viewed and session duration
during the remainder of this subsection.
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The goal dataset consisted of 20,121 goal sessions9. 10,834 of those sessions (53.84%)

were target sessions, while the other 9,287 (46.16%) were other sessions. The non-goal

dataset consisted of 1,589,407 non-goal sessions10. 491,297 of those sessions (30.91%)

were target sessions, while the other 1,098,110 (69.09%) were other sessions.

(2) Values from each dimension were normalized between 0 and1 according to equation 6.1,

wherex is a set of distinct values for a dimension,xi is theith element of the set, andmin(x)

andmax(x) are the minimum and maximum values found in setx, respectively.

norm(xi) =
xi − min(x)

max(x) − min(x)
(6.1)

Normalization was done because distance calculations wereused for generating both the sorted

k-dist graph and for determining which points belonged within the same neighborhood. The

Euclidean distance (equation 6.2) was used to calculate thedistance between two pointsP and

Q with n dimensions, such thatP = (p1, p2, . . . , pn) andQ = (q1, q2, . . . , qn).

Euclidean distance =

√√√√
n−1∑

i=0

(pi − qi)
2 (6.2)

If values were not normalized, then distances may differ or not differ simply due to the scale

of one dimension. For example, figure 34 illustrates the positions of three points: A, B, and

C. Table 32 displays the non-normalized and normalized values for each of the point’s two di-

mensions: number of pages viewed and session duration. Table 33 lists the Euclidean distance

between pairs of points using each point’s non-normalized and normalized values for both di-

mensions.

Using the non-normalized values from table 32, the distance(as seen in table 33) from A to

C (45.00) is the same as the distance from B to C (45.00). However, looking at figure 34 it

is apparent that an increase of 45 pages viewed represents a larger change in distance than a

decrease of 45 minutes in session duration. The normalized distances for A to C (0.12) and B

to C (0.45) better reflect the actual distance between points.

9A goal session may be present in more than one user-session.
10A non-goal session may be present in more than one user-session.
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Figure 34.: Example Outlier Points

Table 32: Example Outlier Points

Non-normalized Normalized

Point Pages Viewed Session Duration (min) Pages Vieweda Session Duration (min)b

A 5 170 0.05 0.47

B 50 125 0.50 0.35

C 5 125 0.05 0.35
a Assumes minimum and maximum values of 0 and 100 for pages viewed, respectively.
b Assumes minimum and maximum values of 0 and 360 for session duration, respectively.

Table 33: Example Outlier Distances

Points Non-normalized Distance Normalized Distance

A to B 63.64 0.47

A to C 45.00 0.12

B to C 45.00 0.45
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(a) A random sample of 15.00% of the non-goal dataset’s normalized points were selected

for processing by DBSCAN. A sample was used because the time required to compute

clusters from the original dataset using DBSCAN would have been prohibitively high11.

The sample was used to find the boundary between non-outlyingand outlying points.

Points not included in the random sample that fell outside the non-outlying region were

classified as outliers.

The entire non-goal dataset consisted of 1,589,407 non-goal sessions. A random sample

of 238,411 sessions (15.00%) was selected and used in the remaining two steps.

(3) The parameters for DBSCAN were set to define the “thinnest” cluster in the dataset by follow-

ing a three-step heuristic outlined by Ester et al. (1996). The “thinnest” cluster is the smallest

or least dense grouping of points that are not considered noise.

(a) MinPts was set to four since each dataset only had two dimensions (Ester et al., 1996)12.

(b) The threshold distance, which distinguishes between noise and clusterable points, was

located. Points farther away than the threshold distance (i.e., to the left) were considered

“noise”, while points closer than the threshold distance (i.e., to the right) were cluster-

able. To determine the threshold, a sorted k-dist graph was created (k = MinPts),

where the distance of each point to itskth neighbor is found, sorted in descending order,

and then graphed. The purpose of the sorted-k-dist graph wasto visually locate the first

“valley” in distance values, which represents the threshold distance.

The Approximate Nearest Neighbor (ANN) search library version 1.1.1 (Mount and

Arya, 2006) was used to calculate the distance of each point to its fourth nearest neigh-

bor13. Figures 35a and 35b show the sorted 4-dist graphs of the first100 values for the

goal and non-goal sessions. Each figure was manually inspected to find the first “valley”,

which is shown at the intersection of dashed lines.

(c) Eps was set to the threshold distance found in step (b).

Table 34 lists the parameter values used for each of the datasets.MinPts was set to four

11All points from the goal dataset were used.
12In a survey of outlier detection methodologies, Hodge and Austin (2004) also statedMinPts is commonly set to

four for DBSCAN.
13ANN is available at http://www.cs.umd.edu/˜mount/ANN/.
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Figure 35.: User-centric: Sorted 4-Dist Graphs: Goal and Non-Goal

according to Ester et al. (1996) andEps was determined from visually examining the k-dist

graph for each dataset (figures 35a and 35b).

Table 34: User-centric:
Parameter Values for DB-
SCAN

Sessions MinPts Eps

Goal 4 0.0266

Non-goal 4 0.0536

(4) The DBSCAN algorithm was run using RapidMiner CommunityEdition version 4.414 with

the specified parameter values from table 34.

DBSCAN labeled 22 goal sessions (0.11%) as noise (i.e., outliers). Of the 22 goal outliers, four

(18.18%) were from target sessions and the other 18 (81.82%) were from other sessions15. The

non-outlying points all had durations of less than 500 minutes (8.33 hours) and viewed fewer than

800 pages.

A total of 7 non-goal outliers (< 0.01%) were also found by DBSCAN in the random sample16.

None of the outliers were from target sessions. The outliersfound in the random sample were go-

ing to be used as boundary points to classify sessions from the entire non-goal dataset. However,

14RapidMiner is available at http://www.rapidminer.com. RapidMiner was previously named YALE (Yet Another
Learning Environment).

15The 22 goal outlier sessions were represented by 22 distinctcombinations of points.
16The 7 non-goal outlier sessions were represented by 7 distinct combinations of points.
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after examining the results of the DBSCAN run, a number of sessions not flagged as outliers had

extremely high values for either session duration or numberof pages viewed. For example, a ses-

sion in the random sample with a duration of 1,980 minutes (33hours) was not flagged as an out-

lier, nor was a session with 10,000 pages viewed17.

Although there were not a large number of sessions with extreme values, there were enough

points within the same area to be considered a neighborhood by DBSCAN. In addition, there were

enough of these small groups that were within a short distance of one another that they chained to-

gether to become part of the non-outlying cluster. Due to thedifficulty in finding a clear separation

between outlying and non-outlying points in the non-goal dataset, the boundaries found in the goal

dataset were used for the non-goal dataset.

Using the cutoff values from the goal dataset (≥ 800 pages viewed or≥ an 800 minute session

duration), 13,799 non-goal sessions (0.87%) were labeled as outliers. Of the 13,799 non-goal out-

liers, 89 (0.65%) were from target sessions and the other 13,710 (99.36%) were from other ses-

sions18.

Figures 36a and 36b show plots of thedistinctoutlier and non-outliers points for both the goal

and non-goal sessions, respectively. Since onlydistinctpoints are shown in the figures, an accurate

representation of the density of points in an area is difficult to determine.

To illustrate density within an area, figures 36c and 36d present heat maps for the goal and non-

goal datasets, respectively. The darkness in shade of each point in the heat map illustrates how

many other sessions exist within the same area. A black pointrepresents 10 or more sessions in

the goal dataset, while 100 or more sessions are representedby the same shade in the non-goal

dataset.

Noticeable within the non-goal heat map (figure 36d) is that even though figure 36b shows ses-

sions with durations close to 2,000 minutes, the heat map demonstrates the density of points in

those areas is practically non-existent. In addition, the figure also illustrates the use of the goal

boundaries on the non-goal dataset retained the densest area of points as non-outlying sessions.

After removing all outliers, a total of 5,788 user-sessions(1.15%) were removed from the dataset.

17One possible explanation for sessions with extremely high values may be due to automated programs browsing the
Web. For example, a program which resides as a background process may make a connection to a Web site to refresh
its local cache of information every few minutes. If a user has an always-on Internet connection and does not turn off
their computer, then it is feasible a session may last many hours. A similar argument can also be made for spidering
programs that visit a large number of pages at a Web site.

18The 13,799 goal outlier sessions were represented by 12,642distinct combinations of points (91.62%).
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Figure 36.: User-centric: Outlier Points Plot
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93 of those 5,788 user-sessions (1.61%) were removed because the target session was classified as

an outlier. The remaining 5,695 user-sessions (98.39%) were removed because there was not at

least one other session within the user-session (i.e., all the other sessions were classified as out-

liers and removed). A total of 496,343 user-sessions (10,714 goals) remained after processing all

outliers.

Step 7. Remove Sites with< 50 Goal User-sessions

For the final step of the process, Web sites without at least 50goal user-sessions were removed.

Although step five also checked for Web sites having at least 50 goal user-sessions, the number of

goal user-sessions may have been further reduced due to the outlier analysis. If a user-session’s

target session, all “other” sessions, or both were flagged asoutliers, then the user-session would

become invalid.

No Web sites were removed, as all sites retained at least 50 goal user-sessions.

6.1.2 Final Dataset

The following subsections provide general statistics about the final dataset, along with characteris-

tics of the Web sites and user-sessions in the dataset.

General Statistics

Table 35 displays general statistics for the final dataset. The first row of the table lists the total

number of sessions in the dataset19. Each row after the first lists the total count for the metric

and also its percentage compared to the total number of sessions. The overall conversion rate of

the dataset was 2.16%, which is similar to the two percent conversion rate typically found at e-

commerce Web sites (Moe, 2003; Sismeiro and Bucklin, 2004).Unique visitors accounted for

11.12% of the sessions whereas 88.88% of the sessions were from repeat visitors. Lastly, 7,366,442

pages were viewed over all 496,343 sessions from the 52 Web sites in the dataset.

19Unless otherwise specified all statistics are about the target session of each user-session. The term “session” will
be used in place of “target session” for readability purposes.
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Table 35: User-centric: Final Dataset Statis-
tics

n %

Sessions 496,343 n/a

Goal sessions 10,714 2.16%

Non-goal sessions 485,629 97.84%

Unique visitors 55,195 11.12%

Repeat visits 441,148 88.88%

Pages viewed 7,366,442 n/a

Web sites 52 n/a

Web Site Characteristics

Table 36 provides the mean, standard deviation, minimum, and maximum values from all 52 Web

sites for the number of goal, non-goal, and total sessions visiting each site and the conversion rate

from each site.

Table 36: User-centric: Web Site Characteristic Statistics

Mean St. Dev. Minimum Maximum

SESSIONS

Total sessions 9,545.06 14,078.48 406 76,138

Goal sessions 206.04 154.91 51 597

Non-goal sessions 9,339.02 14,064.45 290 76,041

OTHER

Conversion 6.70% 7.17% 0.12% 28.57%

On average, each Web site had 9,545.06 sessions visiting theWeb site, with more than 45 times

as many non-goal sessions as goal sessions. Each Web site had, on average, 206.04 goal sessions

(2.16%) and 9,339.02 non-goal sessions (97.84%).
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Figures 37a – 37c illustrate the distribution of the number of total, goal, and non-goal sessions

for each Web site, respectively. The majority of Web sites (32 out of 52 (61.54%)) had fairly light

traffic, having less than 8,000 total sessions (figure 37a). However, there were 20 Web sites (38.46%)

with more than 8,000 total sessions, with the most heavily-visited site having 76,138 total ses-

sions. In terms of goal sessions (figure 37b), 40 Web sites (76.92%) had between 50 and 249 goal

sessions, with the remaining 12 Web sites (23.08%) having more than 250 goal sessions.
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Figure 37.: User-centric: Web site Sessions Histograms

The average conversion rate for the 52 Web sites was 6.70%, with one Web site having the high-

est rate of 28.57%. Figure 38 illustrates the distribution of conversion rates for each Web site. 22

of the 52 Web sites (42.31%) had less than a 3% conversion rate. 15 of the Web sites (28.85%) had

between a 3% and 8% conversion rate. The remaining 15 Web sites (28.85%) had a conversion

rate higher than 8%.
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Figure 38.: User-centric: Web site Conversion Histogram

Session Characteristics

Table 37 provides the mean, standard deviation, minimum, and maximum values for the number

of pages viewed and duration from all 496,343 sessions in thedataset. For each metric, values are

provided for three sets of sessions: goal, non-goal, and allsessions.

Table 37: User-centric: Session Characteristic Statistics

Mean St. Dev. Minimum Maximum

PAGES V IEWED

All sessions 14.84 26.07 2 794

Goal sessions 42.33 48.70 2 791

Non-goal sessions 14.24 25.01 2 794

SESSIONDURATION (MIN )

All sessions 10.17 16.88 1 495

Goal sessions 27.31 26.56 1 367

Non-goal sessions 9.79 16.40 1 495

Each session consisted, on average, of less than 15 page views (14.84), with a maximum of 794

pages viewed by one session. Goal sessions viewed almost three times as many pages per session,

on average, compared to non-goal sessions (42.33 versus 14.24). Figures 39a – 39c show the dis-

tribution of pages viewed by number of sessions.

The average duration from all 496,343 sessions was 10.17 minutes, with one session spending

over 495 minutes (8.25 hours) on a site. Goal sessions spent almost three times as many minutes
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Figure 39.: User-centric: Session Pages Viewed Histograms
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on a site compared to non-goal sessions (27.31min versus 9.79min). Figures 40a – 40c illustrate

the distribution of session duration in minutes by number ofsessions.
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Figure 40.: User-centric: Session Duration Histograms

User-session Characteristics

Table 38 provides the mean, standard deviation, minimum, and maximum values for the number of

total, goal, and non-goal other sessions for all 496,343 user-sessions in the dataset.

Table 38: User-centric: User-session Characteristic Statistics

Mean St. Dev. Minimum Maximum

NUMBER OF OTHER SESSIONS

All sessions 2.37 1.70 1 32

Goal sessions 0.02 0.15 0 4

Non-goal sessions 2.35 1.69 0 32
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Each user-session consisted, on average, of less than threeother sessions (2.37), with a maxi-

mum of 32 other sessions by one user-session. Other sessionswere mostly comprised of non-goal

sessions (2.35 versus 0.02). However, one user-session hadfour other sessions that were goals.

Figures 41a – 41c show the distribution of other sessions by number of user-sessions.
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Figure 41.: User-centric: User-session Sessions Histograms

6.2 Site-centric Dataset

The data used for the site-centric clickstream model of information foraging was provided by a

Web hosting company. The data was captured over a year periodfrom September 12, 2007 to

September 23, 2008. The web hosting company was unique sinceit provided a common platform

for Web sites of a similar nature. For example, their Web sites all used the same platform that al-

lowed the site owners to add content to their Web site withoutknowledge of HTML. A beneficial

byproduct of having sites on the same platform was a common structure to each Web site. For ex-

ample, those Web sites with a contact form all submitted their contact information to the same

146



common platform URL. The contents of the contact form were then saved and a result page was

displayed to the user20. Therefore, it could be determined that a goal was achieved (i.e., a visitor

filled out a contact form and submitted it) if a visitor’s session “viewed” the contact form submis-

sion page.

Since the data provider hosted thousands of Web sites, they created a mechanism to capture traf-

fic from all their sites without relying on the individual traffic logs of each Web site. Whenever a

user visited a Web page of a participating Web site a small transparent image was downloaded via

a JavaScript script. The image had parameters unique to the user along with information such as

the Web site and Web page being visited, timestamp of visit, and other miscellaneous information.

Once the script was deployed on the platform, it was integrated into Web sites once site owners

updated their site in some way (e.g., a page was edited). Therefore, even though the script was de-

ployed on September 12, 2007, data collection at a particular Web site only started once the site

was changed in some way.

Each piece of data was stored in a data warehouse and linked tothe user, Web site, and Web

page it referenced. A visitor’s session was defined as any sequence of Web pages on the same

Web site by the same visitor with less than a 30 minute time period between page viewings. A 30

minute session timeout has also been used in previous clickstream research (Bucklin and Sismeiro,

2003; Sismeiro and Bucklin, 2004; Van den Poel and Buckinx, 2005).

The remainder of this section provides information regarding the steps taken to arrive at the fi-

nal dataset, along with general descriptive statistics about the data. The preprocessing steps ap-

plied to the data are described in the next section. Descriptive statistics are then provided in the

following section.

6.2.1 Preprocessing of Original Dataset

The data obtained from the data provider included many data elements not applicable to the cur-

rent research. Therefore, a number of processing steps wereperformed to obtain a final dataset

usable for testing the site-centric clickstream model of information foraging. Table 39 lists each

step of the process along with the total number of Web sites, sessions, and goal sessions; and how

many Web sites, sessions, and goal sessions were removed at that step (if applicable). Table 40

20The result page may be a return to the contact form that was submitted, a page thanking the user for submitting
their information, or any other page on the Web site (e.g., the index page).
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lists the parameters used in each preprocessing step. A discussion of each step and its parameters

are provided below.
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Table 39: Site-centric: Preprocessing of Original DatasetStatistics

Step Description Web Sites Sessions Goals△ in Web Sites △ in Sessions △ in Goals

Original dataset 6,003 1,968,491 n/a n/a n/a n/a

1 Map valid pages 6,003 1,968,491 n/a n/a n/a n/a

2 Remove other Web sites 1,710 1,692,275 n/a −4,293 −276,216 n/a

3 Remove spam sessions 1,504 1,689,159 n/a −206 −3,116 n/a

4 Remove single page sessions 1,483 900,677 n/a −21 −788,482 n/a

5 Determine goal sessions 1,483 900,677 12,441 n/a n/a n/a

6 Remove no goal Web sites 918 790,691 12,441 −565 −109,986 n/a

7 Remove Web sites with< 50 goal
sessions

57 278,463 5,982 −861 −512,228 −6,459

8 Remove outliers 57 278,437 5,975 n/a −26 −7

9 Identify contact goals 57 278,437 5,975 n/a n/a n/a

10 Classify goal sessions 57 278,437 5,827 n/a n/a −148

11 Remove Web sites without any contact
goals having≥ 50 goal sessions

47 250,162 5,302 −10 −28,275 −525

12 Classify other contact goal sessions as
non-goal sessions

47 250,162 4,979 n/a n/a −323
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Table 40: Site-centric: Preprocessing Parameters

Step Description Parameters

Original dataset n/a

1 Map valid pages n/a

2 Remove other Web sites platform 6= informational

3 Remove spam sessions sessions == spam

4 Remove single page sessions sessionLength == 1

5 Determine goal sessions formSubmissionPage 6= visited

6 Remove no goal Web sites goalsAtWebsite == 0

7 Remove Web sites with< 50 goal
sessions

goalsAtWebsite < 50

8 Remove outliers MinPts = 4

Eps = 0.0636 (goal sessions)

Eps = 0.0597 (non-goal sessions)

9 Identify contact goals countedSupport = 5

patternSize = 3

pattern = AXA or AXB

directMatches = 5

10 Classify goal sessions 0 ≤ gap < sessionLength− 1

11 Remove Web sites without any contact
goals having≥ 50 goal sessions

goalsAtContactGoal < 50

12 Classify other contact goal sessions as
non-goal sessions

n/a

Step 1. Mapping Valid Web pages

The first step of the process removed “invalid pages” from thedataset and mapped “valid” pages

together. Since the data provider relied on a JavaScript script to provide information on which

page was visited, there were instances where the actual pagevisited could not be determined. For

example, if a user visited http://www.domain.com/mypage.html then it would be recorded that do-

main.com/mypage.html was visited (i.e., a valid page). However, if the user viewed mypage.html

through a service such as Google’s cache, then the URL recorded for the user might be something

like 30.186.56/search/cache. Since there was no way to determine what page was actually viewed
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in Google’s cache, such pages were eliminated from the dataset (i.e., an invalid page).

Instead of examining each page to determine if it was valid orinvalid, the domains for each

page were examined instead. First, any page from a domain which was present in more than one

Web site was considered invalid21. Second, pages from many search engine caches are recorded

with an IP address rather than a domain name. Therefore, any pages from a numerical IP address

were considered invalid. Finally, a manual inspection of the remaining domains was done to re-

move known outside services (e.g., Web-based mail domains).

In addition to removing invalid pages, valid pages needed tobe mapped together on the same

Web site. Web sites with multiple domain names pointing to the same Web site would only show a

fragmented picture of the pages being visited. For example,assume domainA.com and domainB.com

both point to the same Web site. In the data, domainA.com/mypage.html and domainB.com/mypage.html

would be seen as totally separate pages from one another. Instead, a visit to mypage.html should

be counted as the same page, as long as the domain was valid. Thus, pages of the same name were

mapped to a single valid page.

A total of 43,544 unique pages were present in the entire dataset. 5,702 of those pages (13.09%)

were flagged as invalid. Of the remaining 37,842 unique pages, 4,102 of those (10.84%) were

mapped to other existing pages (e.g., domain.com/ mapped todomain.com/index.html). After all

processing was done, a total of 33,740 unique valid pages remained.

Step 2. Remove Other Web sites

After completing the first step, the dataset still retained the original 6,003 Web sites and 1,968,491

sessions. However, the dataset included data from other platforms the data provider hosted (e.g.,

social networking Web sites) which were not the focus of thisresearch. Therefore, the second step

of the process removed all Web sites not using the data provider’s informational platform. A total

of 4,293 Web sites were removed along with 276,216 corresponding sessions.

21The data provider offered a number of services that used the same domain on multiple Web sites. Those domains
were flagged as “invalid” even though the origin of the domainwas known. However, this did not affect the analysis
since Web sites using those shared domains were from other platforms (e.g., social networking) and were not being
investigated in this research.
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Step 3. Remove Spam Sessions

The third step removed any sessions designated as spam. The data provider flagged any sessions

from robots, spiders, or any other automated browsing mechanisms as spam (e.g., Google’s in-

dexing spider). A total of 3,116 sessions and 206 Web sites (which only had spam sessions) were

removed.

Step 4. Remove Single-page Sessions

The fourth step followed Bucklin and Sismeiro (2003) and removed all sessions which consisted

of only a single page-view22. A single page-view does not represent “browsing” behavioron a

Web site (Bucklin and Sismeiro, 2003) and thus is unlikely toprovide interesting visitor patterns.

788,482 single-page sessions were removed along with 21 Websites which only had single page

sessions.

Step 5. Determine Goal Sessions

For the fifth step of the process, sessions were classified as either “goal” or “non-goal” sessions.

Within the data, any contact form submission was represented as a visit to a specific URL (e.g.,

formSubmission.html). A total of 12,441 sessions (1.38%) visited the Web site-unique form sub-

mission URL, and thus were classified as goal sessions.

1,857 of the goal sessions (14.93%) visited the form submission URL more than once during

a session (i.e., a repeat goal session). 1,563 of the repeat goal sessions (84.17%) were instances

where the form submission page was visited multiple times ina row. A potential explanation for

this behavior is the user clicked the submit button on a form multiple times.

The remaining 294 repeat goal sessions (15.83%) submitted a form and then visited at least one

other page before submitting a form again (i.e., distinct form submissions)23. Such repeat behavior

may be the result of a user submitting different contact forms on a Web site (e.g., request for in-

formation and signing up for a newsletter), or may be a personsimply resubmitted the same form

(for whatever reason) after going somewhere else on the site. Figure 42 shows a histogram of the

22Only sessions with more than onevalid page viewed were retained.
23The 294 sessions with distinct form submissions were retained in the analysis. Only browsing behavior occurring

before thefirst form submission was considered in the analysis, and thus having extra form submissions did not impact
the analysis for this research.
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Figure 42.: Site-centric: Distinct Form Submissions Histogram

number of distinct form submissions by number of repeat goalsessions. The maximum number of

distinct form submissions was 14.

Step 6. Remove No-goal Web sites

The sixth step removed Web sites which did not have any goals achieved during the data collection

period. A total of 565 Web sites were removed along with the 109,986 sessions which occurred on

those Web sites.

Step 7. Remove Web sites with Fewer Than 50 Goal Sessions

In order to ensure a large enough sample size of goal sessionsfor analysis, the seventh step re-

moved Web sites which had fewer than 50 goal sessions. 861 Websites were removed along with

the 512,228 corresponding sessions at those sites.

Prior to the removal of Web sites in this step, a cutoff point was determined by examining a

histogram of the number of Web sites according to the number of goal sessions at their site (fig-

ure 43). 98 Web sites (10.68%) with 30 goal sessions or more are displayed in the figure24. Of

those 98 Web sites shown, 41 of them (41.84%) had fewer than 50 goal sessions. 31 of those 41

sites (75.61%) only had between 30 and 39 goal sessions. Thus, the selection of 50 goal sessions

as a cutoff point appears to be a good selection for includingthe maximum number of Web sites

while ensuring a large enough goal session sample size within each site for the analysis.

24To provide a reasonable scale for the y-axis, the figure does not show the 820 Web sites (89.32%) with fewer than
30 goal sessions.
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Figure 43.: Site-centric: Goal Sessions by Web site Histogram

Step 8. Remove Outliers

The dataset was then examined for outliers in the eighth stepof the process. An outlier was de-

fined as “an observation (or subset of observations) which appears to be inconsistent with the re-

mainder of that set of data” (Barnett and Lewis, 1994, pg. 7).Inconsistent sessions were removed

from the dataset. Consistency was compared via the combination of the total number of pages

viewed and the duration of a session.

An unsupervised density-based clustering algorithm called DBSCAN25 (Ester et al., 1996) was

used to locate outlying sessions26. DBSCAN identifies clusters of arbitrary shape, where the num-

ber of clusters is automatically determined via the algorithm. A cluster is formed by having a min-

imum number of neighbor points27 (MinPts), or density, within a specified radius (Eps). Points

not classified to a cluster are labeled as “noise” (i.e., outliers).

DBSCAN requires two user-specified parameters:MinPts andEps.

MinPts – the minimum number of points within a neighborhood of radiusEps. For two-dimensional

datasets,MinPts is commonly set to four (Ester et al., 1996; Hodge and Austin,2004).

Eps – the Eps-neighborhood or radius of a cluster. The value of Eps is determined visually via a

sorted k-dist graph (see point three below) (Ester et al., 1996).

To perform the outlier analysis using DBSCAN, four steps were performed. The process is very

25The average runtime complexity of DBSCAN isO(n ∗ log(n)) (Ester et al., 1996).
26DBSCAN was chosen over common statistical techniques for removing outliers, such as removing values greater

than three standard deviations away, for two reasons: (1) DBSCAN does not require knowledge of an underlying distri-
bution and (2) DBSCAN is capable of finding outliers in multiple dimensions.

27The term points will be used to refer to sessions with a uniquecombination of pages viewed and session duration
during the remainder of this subsection.
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similar to the user-centric process except user-sessions were not used for the site-centric dataset

and thus “other” sessions were not included in the datasets.In addition, random sampling of the

non-goal dataset was not used because of the smaller-sized site-centric dataset.

(1) Goal and non-goal sessions were separated into two separate datasets. Each of the remaining

three steps was performed independently on each dataset.

(2) Values from each dimension were normalized between 0 and1 according to equation 6.3,

wherex is a set of distinct values for a dimension,xi is theith element of the set, andmin(x)

andmax(x) are the minimum and maximum values found in setx, respectively.

norm(xi) =
xi − min(x)

max(x) − min(x)
(6.3)

(3) The parameters for DBSCAN were set to define the “thinnest” cluster in the dataset by follow-

ing a three-step heuristic outlined by Ester et al. (1996). The “thinnest” cluster is the smallest

or least dense grouping of points that are not considered noise.

(a) MinPts was set to four since each dataset only had two dimensions (Ester et al., 1996)28.

(b) The threshold distance, which distinguishes between noise and clusterable points, was

located. To determine the threshold, a sorted k-dist graph was created (k = MinPts),

where the distance of each point to itskth neighbor is found, sorted in descending order,

and then graphed. The purpose of the sorted-k-dist graph wasto visually locate the first

“valley” in distance values, which represents the threshold distance.

The Approximate Nearest Neighbor (ANN) search library version 1.1.1 (Mount and

Arya, 2006) was used to calculate the distance of each point to its fourth nearest neigh-

bor29. Figures 44a and 44b show the sorted 4-dist graphs of the first100 values for the

goal and non-goal sessions. Each figure was manually inspected to find the first “valley”,

which is shown at the intersection of dashed lines.

(c) SetEps to the threshold distance found in step (b).

28In a survey of outlier detection methodologies, Hodge and Austin (2004) also statedMinPts is commonly set to
four for DBSCAN.

29ANN is available at http://www.cs.umd.edu/˜mount/ANN/.

155



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0  10  20  30  40  50  60  70  80  90  100

N
or

m
al

iz
ed

 D
is

ta
nc

e

Session

(a) Goal Sessions

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0  10  20  30  40  50  60  70  80  90  100

N
or

m
al

iz
ed

 D
is

ta
nc

e

Session

(b) Non-goal Sessions

Figure 44.: Site-centric: Sorted 4-Dist Graphs: Goal and Non-Goal

Table 41 lists the parameter values used for each of the datasets.MinPts was set to four

according to Ester et al. (1996) andEps was determined from visually examining the k-dist

graph for each dataset (figures 44a and 44b).

Table 41: Site-centric:
Parameter Values for DB-
SCAN

Sessions MinPts Eps

Goal 4 0.0636

Non-goal 4 0.0597

(4) The DBSCAN algorithm was run using RapidMiner CommunityEdition version 4.430 with

the specified parameter values from table 41.

DBSCAN labeled seven goal sessions (0.12%) and 19 non-goal sessions (0.01%) as noise (i.e.,

outliers). Figures 45a and 45b show plots of distinct outlier and non-outliers points for both the

goal and non-goal sessions, respectively. Roughly speaking, goal sessions with over 100 pages

viewed or a duration of 145 minutes or more were considered outliers. For the non-goal sessions,

there was not a clear separation between outliers and non-outliers for global values of pages viewed

or session duration. Instead, figure 45b illustrates how different combinations of pages viewed and

session duration categorized sessions as outliers or not.

30RapidMiner is available at http://www.rapidminer.com. RapidMiner was previously named YALE (Yet Another
Learning Environment).
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Figure 45.: Site-centric: Outlier Points Plot

Step 9. Identify Contact Goals

For the ninth step of preprocessing, contact goals at each Web site were identified. A contact goal

is the submission of a particular contact form on a Web site. AWeb site may have more than one

contact goal. For example, a Web site may have one contact form for general inquiries (contact

goal A) and another contact form to request quotes (contact goal B). As a forager’s information

goal may differ drastically depending on the contact form being submitted, simply grouping all

goal sessions together may introduce noise into the analysis. Classifying goal sessions by contact

goal attempts to reduce noise by only grouping foragers together with similar information goals.

The eventual observable outcomes of this preprocessing step were three-fold:

(1) Identify contact goals having at least 50 goal sessions.The selection of 50 goals sessions was

made to balance the need for sufficient sample size of goal sessions within a single contact

goal and to include as many Web sites as possible. The actual selection of a single contact

goal for a Web site is discussed in preprocessing step 12.

(2) Identify pages which were necessary conditions for the submission of a contact goal (e.g.,

contact form page, thank you page). Once identified, these necessary condition pages were

then excluded from future mining of patches and trails.

(3) Classify goal sessions to an identified contact goal (discussed further in preprocessing step

10)31.
31Not all goal sessions would be classifiable to a contact goal.This preprocessing process was only concerned with

discovering moderately-visited contact goals. Thus, goalsessions which submitted forms for non-discovered contact
goals would not be classified.
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Within the data, any contact form submission was represented as a visit to a specific URL (e.g.,

formSubmission.html). Therefore, a forager submitting from either contact goal A or contact goal

B would both show a visit to page formSubmission.html withintheir session. The limitation of

this approach is not being able to directly classify goal sessions according to their contact goal.

Therefore, an indirect manner of discovering contact goalsvia browsing patterns was used.

The general pattern of a form submission consisted of three pages in sequence: (1) a contact

form page, (2) a page representing a form submission, and (3)a thank you page or the same con-

tact form page from (1). To discover these sequences, frequent sequential patterns were mined

using the Sequential Pattern Mining (SPAM) algorithm (Ayres et al., 2002)32.

Potential Contact Goal To be considered a potential contact goal, a mined sequential pattern

must have met five criteria.

(1) Have a counted support of at least five goal sessions. Although the interest in this processing

was on contact goals with at least 50 goal sessions, the counted support was set to five for two

reasons.

(a) The first reason was to account for valid, but non-standard browsing behavior. For exam-

ple, although the general submission pattern consists of three pages, there are occasions

where a forager will only complete the first two pages of the sequence. This is because

after the form submission, the system automatically forwarded a forager (after a short

delay) to the third page. However, due to the delay some foragers may browse elsewhere

or leave the site before being automatically forwarded.

(b) The second reason was to discover as many contact goals aspossible so that goal ses-

sions were not incorrectly classified to the wrong contact goal. The browsing patterns

of a forager may match, to differing degrees, multiple contact goals. If only highly-

visited contact goals were discovered, a session may be classified to that contact goal

32Another method of discovering contact goals would be to use the referrer field of the form submission page to
discover all contact form pages. However, the data providerlimited the referrer field in this dataset to the domain-level.
In addition, after submitting a form, a forager is automatically forwarded to the third page. This forwarding is done
server-side and thus the referrer field would not be populated. Therefore, the pages shown as a result of a submitted
contact form (e.g., a thank you page) could not be discoveredby searching for the URL of the form submission page in
the third page’s referrer field. Due to these data and mechanism limitations, sequential pattern mining was used.
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even though a less-visited contact goal was a better match. Classifying sessions to con-

tact goals is discussed further in preprocessing step 11.

(2) Have a three-page sequence length.

(3) The first page of the sequence mustnot have been an index page or a form submission page.

(4) The second page of the sequencemusthave been a form submission page.

(5) The third page of the sequence mustnot have been a form submission page.

Confirmed Contact Goal A potential contact goal becomes a confirmed contact goal if it met

the requirements listed above plus one additional requirement.

(1) A minimum of five goal sessions must directly match the pattern. A direct match means a goal

session visited the exact same three pages, in order, and without any additional pages in be-

tween any of the pages of the sequence. The selection of a value less than 50 was again due

to valid, but non-standard browsing behavior. For example,assume a contact goal consists of

the pattern: pageA pageF pageA. A forager may visit the contact form page (pageA), open

a new tab for the index page (pageI), and then return to the first tab and submit the contact

form page. The session of the forager would be recorded as pageA pageI pageF pageA. Even

though this session does not exactly match the pattern for the contact goal, it would still be

considered a submission for the contact goal.

Conflicting Contact Goals During the process of discovering contact goals, four Web sites were

flagged as having conflicting contact goals. A conflicting contact goal is where the same page ei-

ther before or after the form submission is shared by anothercontact goal on the same Web site.

For example, a conflict would occur if two contact goals on thesame Web site have the same third

page (e.g., contact.html) but different first pages (e.g., contact.html and product.html).

Table 42 provides information about the four Web sites and their conflicting contact goals. The

first three Web sites (A-C) each had two conflicting contact goals while the fourth Web site (D)

had three conflicts. For each conflicted contact goal the table lists the contact goal id, sequential

pattern for the contact goal, and the number of direct sessions matched to the contact goal. The

final column of the table describes the action taken to resolve the conflict for the Web site.
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Table 42: Site-centric: Conflicting Contact Goals

Web site Contact Goal Page Pattern Direct Matches Action

A

CG-1

1. contactus.html

267

Remove CG-2

2. submission.html

3. contactus.html

CG-2

1. productABC.html

132. submission.html

3. contactus.html

B

CG-1

1. contactus.html

104

Remove CG-2

2. submission.html

3. contactus.html

CG-2

1. products.html

52. submission.html

3. contactus.html

C

CG-1

1. contactus.html

550

Remove CG-2

2. submission.html

3. contactus.html

CG-2

1. productABC.html

72. submission.html

3. contactus.html

D

CG-1

1. signup.html

70

Combine all

2. submission.html

3. thanks.html

CG-2

1. signup1.html

992. submission.html

3. thanks.html

CG-3

1. signup1.html

882. submission.html

3. signup1.html
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The conflict between the contact goals on the first three Web sites shared three common charac-

teristics.

(1) A highly-visited contact goal with a symmetrical page pattern (e.g., contactus.html, submis-

sion.html, and then contactus.html again).

(2) A rarely-visited contact goal with an asymmetrical pagepattern (e.g., products.html, submis-

sion.html, and then contactus.html).

(3) The third page of the sequential pattern was shared between both contact goals.

To resolve the conflict between the contact goals at the first three Web sites, the highly-visited

contact goals were retained and the rarely-visited contactgoals were flagged as “invalid” and re-

moved. The decision to remove the rarely-visited contact goals was made for two reasons.

(1) Symmetric patterns were the most common pattern found amongst contact goals. This is be-

cause the default behavior for Web sites on the informational platform was to return a user

back to the original contact form after a form was submitted.Therefore, if one contact goal is

symmetric, the other is asymmetric, and they both share the same third page, it is more likely

the symmetric contact goal is valid.

(2) The rarely-visited contact goals likely represent indirect matches of the highly-visited con-

tact goal. In other words, the sessions with a direct match tothe rarely-visited contact goal

were really indirect matches to the highly-visited contactgoal. However, enough sessions vis-

ited the same page after the contact page, but before submitting the contact form (e.g., con-

tactus.html, products.html, submission.html, and then contactus.html), to be discovered as a

contact goal. This rationale is plausible because (1) therewere so few direct matches for each

rarely-visited contact goal and (2) of the 25 direct matchesfor rarely-visited contact goals, 24

of them (96.00%) were indirect matches for the highly-visited contact goal33.

For the final Web site (D), none of the conflicting contact goals fully met the two reasons listed

above to be considered “invalid” contact goals. In regards to the first point listed, although CG-1

and CG-2 shared the same third page (thanks.html), neither of the contact goals had a symmetric

33The single non-match did not visit any other pages except forthe pattern for Web site A contact goal CG-2.

161



pattern. In addition, unlike the second point mentioned, all three contact goals had a substantial

number of direct matches and no indirect matches were found between CG-1 and CG-234. There-

fore, the conflicting contact goals were examined to determine if they represented the evolution of

a single contact goal’s structure (e.g., changing names of forms, thank you behavior).

Informally, the site was hypothesized to contain a single contact goal (CG-A) for signing people

up for activities that evolved from CG-1 to CG-2, and then to CG-3. Table 43 illustrates the first

and third pages used for each contact goal (columns two through four). Initially, CG-A was be-

lieved to contain the pages signup.html and thanks.html (CG-1). However, at some point the page

signup.html was replaced or renamed on CG-A with signup1.html (CG-2). Later on, CG-A was

changed a third time when the thank you page (thanks.html) was dropped and the first page was

also used as the thank you page (CG-3).

For the hypothesis to hold there should be no overlap in the dates sessions submitted forms for

CG-1, CG-2, and CG-3. In addition, the pages signup.html andthanks.html should not be visited

by sessions after CG-2 and CG-3 were active, respectively. In support of the hypothesis, the final

column of table 43 shows a clear separation in the dates sessions submitted forms for each of the

contact goals35. In addition, table 44 illustrates the date ranges when eachpage was visited by any

session only falls within the time period the contact goal was active. Therefore, it was believed

that all three contact goals represented an evolution of thesame contact goal, and thus they were

combined into one contact goal.

34Indirect matches were not examined for CG-1 versus CG-3 since they do not share any common pages. Indirect
matches were also not done for CG-2 versus CG-3 since the third page differed.

35Sessions were classified to the three contact goals according to preprocessing step 11.
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Table 43: Site-centric: Conflicting Contact Goal Pages – Website D

Contact Goal signup.html signup1.html thanks.html Classified Sessions

CG-1 1 3 9/12/07 5:50 PM – 1/28/08 7:28 PM

CG-2 1 3 1/30/08 7:44 PM – 5/15/08 9:47 PM

CG-3 1 & 3 5/19/08 3:12 PM – 9/23/08 10:52 PM

Table 44: Site-centric: Web site D Page Visitations

Page Active Visitation Range

signup.html 9/12/07 2:47 PM – 1/30/08 7:19 PM

signup1.html 1/30/08 7:22 PM – 9/23/08 11:05 PM

thanks.html 9/12/07 6:03 PM – 5/15/08 10:23 PMa

a There were two additional visits to thanks.html after 5/15/08 on
7/12/08 and 9/16/08. However, since there were only two views
during a four-month period, the page was considered inactive
after 5/15/08.
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Figure 46.: Site-centric: Contact Goals Per Web site

Contact Goal Statistics A total of 77 contact goals were found on the 57 remaining Web sites

in the dataset. Figure 46 illustrates how many contact goalswere discovered at each Web site. The

vast majority of Web sites (46) only had a single contact goal. On average, each Web site had 1.35

contact goals (0.99 standard deviation), with one site having 7 contact goals (the maximum num-

ber found on a Web site).

Step 10. Classify Goal Sessions

After discovering all the contact goals for a Web site, all goal sessions were then classified. A goal

session was classified to a contact goal according to the heuristic outlined below.

Direct match – an exact pattern match without any gaps between pages. The goal session is clas-

sified to the contact goal. If no direct matches exist for any contact goal, then continue on to

indirect match.

Indirect match – a pattern match of at least the first two pages, with gaps between pages allowed.

The goal session is classified to the contact goal with the smallest gap (i.e., number of other

pages present) between (1) the second and third page and then(2) the first and second page.

This method assumed that because an automatic transfer takes place from the second to third

page it is less likely another page would be visited in between that transfer. If no indirect

matches exist for any contact goal, then continue on to no match.

No match – a pattern match of at least the first two pages (with or without gaps) is not found for

any of the contact goals. The goal session is not classified toany contact goal36.

36A session without a match is not classified to any contact goal, even on Web sites with only a single discovered
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Figure 47.: Site-centric: Goals Per Contact Goal

Following the heuristic outlined above, 5,827 of the 5,975 goal sessions (97.52%) were classi-

fied to a contact goal. Of the 148 unclassified goal sessions, 124 of them (83.78%) were not classi-

fiable because the first page of their session was the form submission page. The remaining 24 goal

sessions (16.22%) may have been unclassifiable due to being a match for an undiscovered con-

tact goal, or the user may have visited the first page of the contact goal sequence during a previous

session.

Figure 47 illustrates the number of goal sessions per contact goal. Out of the 77 contact goals,

49 of them (63.64%) had 50 or more goal sessions. Table 45 displays the mean, standard devia-

tion, minimum, and maximum number of goal sessions for all 77contact goals.

Table 45: Site-centric: All Contact Goals Stats

Mean St. Dev. Minimum Maximum

Goals per contact goal 75.68 80.57 5 587

Step 11. Remove Web sites without any contact goals having≥ 50 goal sessions

For the eleventh step, Web sites without any contact goals having at least 50 goal sessions were

removed. A total of 10 Web sites were removed along with the 17corresponding contact goals for

those sites. In addition, 28,275 sessions were removed, with 525 of those being goal sessions.

Figure 48 displays the number of goal sessions per contact goal for the remaining 60 contact

goals. 49 of the 60 contact goals (81.67%) had 50 or more goal sessions. Table 46 displays the

contact goal. This is because the Web site may contain other contact goals that were simply too small to detect during
the previous preprocessing step.
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Figure 48.: Site-centric: Web sites with≥ 50 Goal Sessions Per Contact Goal

mean, standard deviation, minimum, and maximum number of goal sessions for the remaining 60

contact goals.

Table 46: Site-centric: Web sites with≥ 50 Goal Sessions – Contact
Goals Stats

Mean St. Dev. Minimum Maximum

Goals per contact goal 88.37 86.89 5 587

Step 12. Classify other contact goal sessions as non-goal sessions

For the twelfth and final step of the process, the contact goalwith the highest number of goal ses-

sions was selected for each Web site as the contact goal to be analyzed. The selection of a single

contact goal per Web site was done to simplify the analysis. Goal sessions from any other contact

goal at the Web site were classified as non-goal sessions37.

As there were 47 Web sites, a total of 47 contact goals were selected to be analyzed. The goal

sessions at the remaining 13 contact goals were classified asnon-goal sessions. 4,979 goals were

achieved on the 47 selected contact goals (93.91%), while the remaining 323 goals from the 13

not-selected contact goals (6.09%) were classified as non-goal sessions.

37Even though it is known these other goal sessions did achievea goal, the goal was for a different contact form, and
thus not the goal being focused on at the Web site being analyzed.
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6.2.2 Final Dataset

The following subsections provide general statistics about the final dataset, along with characteris-

tics of the Web sites38 and sessions in the dataset.

General Statistics

Table 47 displays general statistics for the final dataset. The first row of the table lists the total

number of sessions in the dataset. Each row after the first lists the total count for the metric and

also its percentage compared to the total number of sessions. The overall conversion rate of the

dataset was 1.99%, which is similar to conversion rates found at e-commerce Web sites (Moe,

2003; Sismeiro and Bucklin, 2004). Unique visitors accounted for 80.69% of the sessions whereas

19.31% of the sessions were from repeat visitors. Lastly, 1,229,190 pages were viewed over all

250,162 sessions from the 47 Web sites in the dataset.

Table 47: Site-centric: Final Dataset Statis-
tics

n %

Sessions 250,162 n/a

Goals sessions 4,979 1.99%

Non-goal sessions 245,183 98.01%

Unique visitors 201,845 80.69%

Repeat visits 48,317 19.31%

Pages viewed 1,229,190 n/a

Web sites 47 n/a

Web Site Characteristics

Table 48 provides the mean, standard deviation, minimum, and maximum values from all 47 Web

sites for the number of days a site was active in the dataset; the number of valid and excluded Web

38Since there is only a single contact goal at a Web site, the terms “Web site” and “contact goal” will be used inter-
changeably.
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pages on a site; the number of goal, non-goal, and total sessions visiting each site; and the con-

version rate from each site. Valid pages included all pages flagged as valid from step number two

in the preprocessing section. Excluded Web pages were thosepages flagged as necessary condi-

tions for achieving a goal. Excluded pages were removed froma session when mining patches and

trails.

Table 48: Site-centric: Web Site Characteristic Statistics

Mean St. Dev. Minimum Maximum

WEB SITE ACTIVITY

Days Active 308.36 104.37 46 377

PAGES

Valid pages 16.36 13.00 5 79

Excluded pages 2.04 0.29 2 4

SESSIONS

Total sessions 5,322.60 7,473.76 245 44,405

Goal sessions 105.94 90.13 51 587

Non-goal sessions 5,216.66 7,427.53 192 44,111

OTHER

Conversion 5.26% 5.70% 0.51% 24.25%

The entire dataset was collected over a 377 day period (09/12/2007 to 09/23/2008). On average,

the 47 Web sites in the final dataset were active for 308.36 days (81.79%)39. One Web site was

only available for roughly a month and a half (46 days), whilea number of Web sites were present

during the greater than one-year data collection process (377 days). The actual dates in which a

Web site was active is shown in figure 49a40, where the dashed lines indicate the beginning and

ending dates of the data collection period. Figure 49b is a histogram illustrating the number of

Web sites with a specified number of active days.

39Activity is determined by finding the first and last session visited at each Web site. There may be periods of time
between the first and last session visit dates in which no activity occurred on the Web site.

40The Web sites were sorted in ascending order by first session date and then descending order by last session date.
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Of the 47 Web sites, 27 of them (57.45%) were active from the first day of data collection. 24

of those 27 Web sites (51.06%) remained active by the last day of data collection. For the 20 Web

sites (42.55%), which were not present at the beginning of data collection, 14 of them (70.00%)

were still active by the end of the data collection period.
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Figure 49.: Site-centric: Web sites’ Activity

Figures 50a and 50b illustrate the distribution of number ofvalid and excluded Web pages for

each Web site, respectively. As seen in figure 50a, most of theWeb sites (31 out of 47 (70.21%))

were fairly small in size having fewer than 17 valid Web sites(16.36 Web pages on average), with

the largest site having 79 pages. In terms of excluded Web pages (figure 50b), 46 of the 47 Web

sites (97.87%) excluded only two Web pages. This means that the vast majority of Web sites had

symmetrical contact goal patterns (e.g., contact form, form submission, contact form). The Web

site which combined three contact goals together (from preprocessing step nine) was the only Web

site with more than two excluded pages (the site had the maximum of four excluded pages).
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Figure 50.: Site-centric: Web site Pages Histograms
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On average, each Web site had 5,322.60 total sessions visiting the Web site, with almost 50

times as many non-goal sessions as goal sessions. Each Web site had, on average, 105.94 goal

sessions (1.99%) and 5,216.66 non-goal sessions (98.01%). Figures 51a – 51c illustrate the dis-

tribution of the number of total, goal, and non-goal sessions for each Web site, respectively. The

majority of Web sites (37 out of 47 (78.72%)) had fairly light traffic, having less than 8,000 to-

tal sessions (figure 51a). However, there were 10 Web sites (21.28%) with more than 8,000 total

sessions, with the most heavily-visited site having 44,405total sessions. In terms of goal sessions

(figure 51b), 41 Web sites (87.23%) had between 50 and 150 goal sessions, with 32 of those 41

(78.05%) having 50 to 100 goal sessions.
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Figure 51.: Site-centric: Web site Sessions Histograms

The average conversion rate for the 47 Web sites was 5.26%, with one site having the highest

rate of 24.25%. Figure 52 illustrates the distribution of conversion rates for each Web site. 25 of

the 47 Web sites (53.19%) had less than a 3% conversion rate. 14 of the Web sites (29.79%) had

between a 3% and 8% conversion rate. The remaining eight Web sites (17.02%) had a conversion

rate higher than 8%.
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Figure 52.: Site-centric: Web site Conversion Histogram

Session Characteristics

Table 49 provides the mean, standard deviation, minimum, and maximum values for the number

of pages viewed and duration from all 250,162 sessions in thedataset. For each metric, values are

provided for three sets of sessions: goal, non-goal, and allsessions. Since the site-centric click-

stream model of information foraging uses measures calculated prior to the submission of a con-

tact form to predict a goal, the number of pages viewed and session duration are also provided for

goal sessions at the point rightbeforethey submitted a contact form.

Each session consisted, on average, of less than five page views (4.91), with a maximum of 152

pages viewed by one session. Goal sessions viewed over twiceas many pages per session, on aver-

age, compared to non-goal sessions (10.34 versus 4.80). Even when only the pages viewed before

a form submission were considered, goal sessions still viewed almost one additional page, on aver-

age, than non-goal sessions (5.60 versus 4.80). Goal sessions also viewed a little more than half of

all their pages (54.16% more pages) before submitting a contact form. Figures 53a – 53d show the

distribution of pages viewed by number of sessions.

The average duration from all 250,162 sessions was 3.78 minutes, with one session spending

over 134 minutes on a site. The difference between goal and non-goal session duration was even

more pronounced than the number of pages viewed. Goal sessions spent over three times as many

minutes on a site compared to non-goal sessions (11.46min versus 3.62min). Before submitting

a goal, goal sessions spent over two times as much time as the average non-goal session (8.80min

versus 3.62min). In addition, goal sessions spent more than three-quarters of their time (76.79%

of their time) browsing the site before submitting a contactform. Figures 54a – 54d illustrate the

distribution of session duration in minutes by number of sessions.
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Figure 53.: Site-centric: Session Pages Viewed Histograms
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Table 49: Site-centric: Session Characteristic Statistics

Mean St. Dev. Minimum Maximum

PAGES V IEWED

All sessions 4.91 5.05 2 152

Goal sessions 10.34 7.17 2 87

Before goal 5.60 5.26 1a 84

Non-goal sessions 4.80 4.94 2 152

SESSIONDURATION (MIN )

All sessions 3.78 6.99 0.00 134.75

Goal sessions 11.46 11.96 0.17 120.15

Before goal 8.80 9.21 0.08 94.17

Non-goal sessions 3.62 6.76 0.00 134.75
a A minimum of one page viewed is valid (when sessions are restricted to at

least two pages) because only those pages viewedbeforethe form submission
were included. In this situation the contact form page was viewed first and
then the form was submitted.

6.3 Conclusion

This chapter provided an overview of the datasets used to test the user- and site-centric clickstream

models of information foraging. An explanation was given regarding the process by which the

data was captured, along with the preprocessing steps undertaken to arrive at the final dataset for

each model. General statistics were then shown for each dataset, along with the Web site and ses-

sion characteristics from each dataset. Graphical representations of many metrics were also shown

to illustrate the distributions of values within the datasets.
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Chapter 7

Results

Presented in this chapter are the results for both the user- and site-centric clickstream models of

information foraging. Descriptive statistics, checks of the assumptions for the statistical tests used

to test the model’s hypotheses, and the results for each hypothesis are described individually for

both of the models. In addition, the site-centric section provides a sensitivity analysis of eight dif-

ferent mining significance and support levels used to calculate measures for the seven hypotheses

that relied on learned patches and trails.

7.1 User-centric Clickstream Model of Information Foraging

The user-centric model consisted of four hypotheses regarding the value of an entire site as a patch.

The descriptive statistics of the dataset, metric statistics for each hypothesis, and checks of as-

sumptions for the three statistical tests used to test the hypotheses are presented in §7.1.1. The re-

sults from each of the statistical tests performed for all four hypotheses are then detailed in §7.1.2.

7.1.1 Descriptive Statistics

Table 50 details the mean, standard deviation, median, minimum, and maximum number of user-

sessions by Web site. Statistics for goal and non-goal user-sessions at each Web site are also shown1.

On average, each Web site had 9,545.06 user-sessions with more than 45 as many non-goal

user-sessions as goal user-sessions (9,339.02 versus 206.04). The average conversion rate for each

Web site (2.21%) was similar to the two percent conversion rate typically found at e-commerce

sites (Moe, 2003; Sismeiro and Bucklin, 2004)2.

Table 51 presents the mean, standard deviation, median, minimum, and maximum values of all

52 Web sites for each of the four metrics in the user-centric model. The statistics for the first two
1Further descriptive statistics for the dataset can be foundin §6.1.2.
2The average conversion rate when taking the average from each Web site was 6.70% (see §6.1.2).
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Table 50: User-centric: User-sessions by Site

Mean St. Dev. Median Min Max

All 9,545.06 14,078.48 4,214.50 406 76,138

Goal 206.04 154.91 141.00 51 597

Non-goal 9,339.02 14,064.45 3,989.00 290 76,041

metrics are displayed in three groups of user-sessions: all, goal, and non-goal. The statistics for the

last two metrics are also displayed for all user-sessions, but were also split to show the conversion

rate within two groups of sessions: those users that returned during the same session and those

foragers who stayed on the Web site during the entire session3.

The average relative duration of users spent 1.27 more minutes at each target Web site than on

other sites. The goal target sessions spent, on average, 7.44 more minutes on the target Web site

than at other e-commerce sites within their respective user-sessions. The non-goal target sessions

spent 4.89fewerminutes on the target Web site compared to the median time spent on other Web

sites. A similar distinction between goal and non-goal target sessions was also seen in the relative

number of pages visited. Over 20 more pages (20.27) were visited by goal sessions at their target

Web site, while non-goal sessions visited roughly one fewerpage (−1.07) on their target site com-

pared to other Web sites within a user-session.

The final two measures demonstrated the conversion rates from two groups of sessions. On av-

erage, a 0.91% increase in conversion rate was found for sessions that stayed on a Web site the

entire session versus those that left and returned during the same session (7.32% versus 6.41%). A

similar difference was also found between the two groups within theREPEATmeasure. A 0.62%

increase in conversion rate, on average, was found for sessions that were previous visitors of the

Web site versus new visitors (6.97% versus 6.35%).

3For REPEAT, the groups demonstrated the conversion rate of sessions that had visited the Web site before and those
sessions that were new visitors to the Web site.
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Table 51: User-centric: Metric Statistics

N Mean St. Dev. Median Min Max

INFORMATION PATCH – SITE-PATCH

RELDUR (in minutes)

All 52 1.27 9.28 −2.00 −11.00 43.50

Goal 7.44 9.59 6.00 −10.75 43.50

Non-goal −4.89 2.09 −5.00 −11.00 0.00

RELPGS

All 52 9.60 15.57 2.00 −6.00 77.00

Goal 20.27 15.79 17.25 1.00 77.00

Non-goal −1.07 2.77 −1.25 −6.00 12.00

RETURN

All 52 6.87% 7.51% 3.88% 0.05% 41.04%

P (Goal|Return) 6.41% 6.68% 3.78% 0.13% 24.33%

P (Goal|Stayed) 7.32% 8.30% 4.11% 0.05% 41.04%

REPEAT

All 52 6.66% 7.78% 3.64% 0.10% 46.63%

P (Goal|Repeat) 6.97% 6.84% 4.33% 0.10% 28.72%

P (Goal|New) 6.35% 8.68% 2.83% 0.20% 46.63%

Note: all values are based on the median values from each Web site’s goal and non-goal sessions.
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Assumptions of Statistical Tests

Table 52 lists the assumptions for each of the three statistical tests used to test the model’s hy-

potheses4. A 2� symbol indicates the assumption was met for the statisticaltest, while a2 sym-

bol means the assumption was not met. If both a2� and a2 symbol are shown then the assump-

tion held for some metrics, but not for all of the metrics. There were a total of five assumptions for

the paired t-test (assumptions three through seven); four for the exact Wilcoxon signed rank test

(assumptions three through six); and three for the dependent-samples sign test (assumptions one,

two, and five).

Table 52: User-centric: Assumptions of Statistical Tests

# Assumption t-Test Wilcoxon Sign Test

1 The pairs (Xi, Yi) are internally consistent, in that if P(+)>
P(-) for one pair (Xi, Yi), then P(+)> P(-) for all pairs.

2�

2 The measurement scale is at least ordinal within each pair. 2�

3 The measurement scale of theDis is at least interval. 2� 2�

4 TheDis all have the same mean. 2� 2�

5 TheDis (or bivariate random variables (Xi, Yi)) are mutually
independent.

2� 2� 2�

6 The distribution of eachDi is symmetric. 2�2 2�2

7 TheDis are identically distributed normal random variables. 2

(Conover, 1999, pg. 157-158, 353, 363)

Further details about whether assumptions were met or not for each of the statistical tests are

provided below. The tests are presented in order of which test had the least to most stringent as-

sumptions: sign test, Wilcoxon test, and t-test.

Dependent-samples Sign Test

All three assumptions of the sign test were fully met.

Assumption 1 – Each observation pair was internally consistent. If P(+)> P(-), P(+)< P(-), or

P(+) = P(-) for a single observation pair, then P(+)> P(-), P(+)< P(-), or P(+) = P(-) was the

same across all observation pairs, respectively.
4Assume within the data there aren pairs ofX andY observations(X0, Y0), (X1, Y1), . . . , (Xn, Yn). For each

observation pair, the differenceDi is calculated betweenXi andYi, whereDi = Yi − Xi.
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Assumption 2 – Each metric used in this research was a quantitative variable measured on at least

an interval scale.

Assumption 5 – Each pair of bivariate random variables (Xi, Yi) was taken from a different and

independent Web site.

Exact Wilcoxon Signed Rank Test

Three of the four assumptions for the exact Wilcoxon signed rank test were met. The fourth

assumption dealing with symmetry of theDis was met for some of the metrics, but not for all of

the metrics.

Assumption 3 – Each metric used in this research was a quantitative variable measured on at least

an interval scale.

Assumption 4 – Each of the differences (Di) was taken from a Web site within the same popula-

tion. Therefore, the mean of each difference was expected tobe the same.

Assumption 5 – Each of the differences (Di) was taken from a different and independent Web

site.

Assumption 6 – The last four columns from table 53 show two different measures of skewness

for the four metrics: coefficient of skewness and quartile skew coefficient. Since the Wilcoxon

test only considers data points with non-zero differences,only the skew values from the “No

zeros” columns were analyzed5.

5None of the 52 Web sites had the same median value for goal and non-goal sessions for any of the four measures.
Therefore, all 52 Web sites were included when calculating skew for both the “All” and “No Zeros” columns.
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Table 53: User-centric: Metric Normality and Skew

N Lilliefors Shapiro Skew Quartile Skew

Hyp. Metric Total No Zeros D p-Value W p-Value All No Zeros AllNo Zeros

INFORMATION PATCH – SITE-PATCH

SC1 RELDUR 52 52 0.22 < 0.0001*** 0.75 < 0.0001*** −2.23 −2.23 0.00 0.00

SC2 RELPGS 52 52 0.18 0.0002*** 0.83 < 0.0001*** −1.79 −1.79 0.11 0.11

SC3 RETURN 52 52 0.21 < 0.0001*** 0.69 < 0.0001*** 2.40 2.40 0.93 0.93

SC4 REPEAT 52 52 0.29 < 0.0001*** 0.65 < 0.0001*** 3.32 3.32 −0.29 −0.29

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
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The first two of the skew columns provide the commonly used coefficient of skewness (g), as

shown in equation 7.1 (Helsel and Hirsch, 1992). In equation7.1,n is the number of elements,

xi is the value of theith element,X̄ is the sample mean, ands is the sample standard devia-

tion. Although widely used, when using the coefficient of skewness “. . . an otherwise symmet-

ric distribution having one outlier will produce a large (and possibly misleading) measure of

skewness” (Helsel and Hirsch, 1992, pg. 10).

g =
n

(n − 1) ∗ (n − 2)

n∑

i=1

(
xi − X̄

)3

s3
(7.1)

Due to the sensitivity of the coefficient of skewness to outlying points, a more robust and re-

silient measure of skew which is not affected by outliers wasused (last two columns of ta-

ble 53). The formula for the quartile skew coefficient is shown in equation 7.2 (Helsel and

Hirsch, 1992), whereP0.25, P0.50, andP0.75 refer to the lower quartile, median, and upper

quartile of the data, respectively. The quartile skew coefficient can range from negative one

to one. Since the quartile skew measure only considers the difference between the upper and

lower quartiles and the median, outlying points (such as themaximum and minimum) do not

impact the value of the skew measure.

qs =
(P0.75 − P0.50) − (P0.50 − P0.25)

P0.75 − P0.25
(7.2)

Besides statistics on skew as shown in table 53, figure 55 is also provided to graphically show

the distribution of points for each measure.

RELDUR andRELPGSwere both negatively skewed (−2.23 and−1.79), having a long tail be-

low the median. However, between the lower and upper quartiles, the distribution of points ap-

pears to be mostly symmetric around the median. Examining the quartile skew coefficient val-

ues,RELDUR did not demonstrate any skew (0.00), whileRELPGShad a slight positive skew

(0.11).

RETURN andREPEAThad a skew opposite of the first two measures and were positively skewed

(2.40 and 3.32). Both measures had a long tail above the median. The quartile skew coefficient

demonstrated a severe positive skew forRETURN (0.93) and a moderate negative skew forRE-
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Figure 55.: User-centric: Difference Plots
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PEAT (−0.29).

RELDUR was the only metric which met the assumption of no skew (usingthe quartile skew

coefficient).RELPGSandREPEATboth had slight to moderate amounts of skew and thus did

not fully meet the assumption. Lastly,RETURN was found to have a severe skew and did not

meet the assumption of symmetry.

Paired t-Test

Three of the five assumptions for the paired t-test were met. The fourth assumption dealing with

symmetry of theDis was met for some of the metrics, but not for all of the metrics. The fifth as-

sumption of normality was not formally met for any of the metrics.

Assumption 3 – Each metric used in this research was a quantitative variable measured on at least

an interval scale.

Assumption 4 – Each of the differences (Di) was taken from a Web site from the same popula-

tion. Therefore, the mean of each difference was expected tobe the same.

Assumption 5 – Each of the differences (Di) was taken from a different and independent Web

site.

Assumption 6 – The symmetry for each measure was determined in the same manner as for the

exact Wilcoxon signed rank test6. Of the four measures, three of the measures had between

zero and moderate amounts of skew:RELDUR did not have any skew,RELPGShad slight skew,

andREPEAThad moderate skew.RETURN had severe skew and did not meet the assumption of

symmetry.

Assumption 7 – Two formal statistical tests of normality were performed on the differences (Dis)

for each of the metrics7: Lilliefors (Kolmogorov-Smirnov) and Shapiro-Wilk normality tests

(Conover, 1999)8. Each test has a null hypothesis that the data follows a normal distribution

6The “All” column for values of skew was used (table 53) to determine skew for the t-test because the t-test uses all
differences (non-zero and zero). Since all Web sites had a difference between goal and non-goal sessions, the “All” and
“No Zeros” columns are identical.

7Symmetry is a necessary, but not sufficient, condition for normality. AlthoughRETURNwas severely skewed and
thus not symmetrical, the tests of normality were still performed on the measure for purposes of completeness.

8Although presented, formal tests of normality (such as Lilliefors and Shapiro-Wilk) are known to be sensitive to
even slight departures from normality (Mendenhall and Sincich, 2003).
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with an unspecified mean and variance. Lilliefors is a non-parametric normality test, whereas

Shapiro-Wilk has been found to have greater power than othertests (such as Lilliefors) in

many situations (Conover, 1999).

All four measures rejected the null hypothesis of a normal distribution using both the Lil-

liefors and Shapiro-Wilks tests. In addition to the tests ofnormality, the skew values from

table 53 and the graphical depiction of each metric’s points(figure 55) provided further evi-

dence that the measures did not follow a normal distribution.

Overall, only the assumptions for the dependent-samples sign test were fully met. Therefore,

the sign test was used to test the hypotheses of the user-centric model9. The assumptions for the

Wilcoxon test and t-test were not completely met and are provided only for comparison purposes.

The lack of symmetry (and normality) for some of the measuresmeans the results from the Wilcoxon

and t-test must be interpreted with caution.

7.1.2 Hypotheses Testing

Table 54 presents the results for the four user-centric hypotheses. The first two columns of the

table list the hypothesis number and name of the metric beingtested. The third and fourth columns

list the total number of Web sites and the number of sites witha non-zero difference (i.e.,Di 6= 0),

respectively. The total number of Web sites was used in the t-test, while only Web sites with non-

zero differences were used for the Wilcoxon and sign tests10. Columns five through seven list the

t statistic, degrees of freedom (df), and p-value for the t-test. The eighth and ninth columns display

the V statistic and p-value for the Wilcoxon test. The final two columns list the S statistic and p-

value for the sign test11.

9The sign test is generally the least powerful of the three tests (Conover, 1999). However, as all of the sign test’s
assumptions were met, greater confidence can be given to the results of the sign test compared to the other two tests.

10Within the user-centric dataset all of the Web sites had non-zero differences.
11Results of the sign test are presented below since all three assumptions for the test were met. The results of the

t-test and Wilcoxon test are provided in footnotes. Since neither the t-test nor the Wilcoxon test met all of their assump-
tions, the results of those tests should be interpreted withcaution.

184



Table 54: User-centric: Results

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – SITE-PATCH

UC1 RELDUR 52 52 9.71 51 < 0.0001*** 1,376 < 0.0001*** 51 < 0.0001***

UC2 RELPGS 52 52 10.37 51 < 0.0001*** 1,378 < 0.0001*** 52 < 0.0001***

UC3 RETURN 52 52 −1.96 51 0.9724 445 0.9874 22 0.8942

UC3 (opp)a 52 52 1.96 51 0.0276** 933 0.0129** 30 0.1659

UC4 REPEAT 52 52 0.82 51 0.2075 1,021 0.0010*** 36 0.0039***

a Hypothesis tested in opposite direction as original – i.e.,leaving and returning will benegativelyassociated with achieving a goal on
this long tail Web site.
*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
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UC1 – RELDUR

The first hypothesis conjectured that goal achieving foragers would spend relatively more time

on the Web site where a purchase was made than on any other sitethey visited. The rationale be-

hind the hypothesis was because foragers are assumed to be rational and thus are looking to reduce

their search costs (Pirolli, 2007), they will only spend time on a site as long as they are obtain-

ing value from that site (i.e., satisficing on rate of information gain (Pirolli, 2007; Simon, 1956)).

Thus, more information can be assumed to be gathered on a Web site where more time is spent

than other Web sites, which brings a forager one step closer to being at a point to make a decision

to purchase or not.

The results of the sign test provide support for the hypothesis atα = 0.01 (S = 51; p-value =

< 0.0001)12. Of the 52 Web sites in the dataset, 51 of them had a higher median relative duration

amongst goal sessions than non-goal sessions. Compared to other sites in their user-sessions, goal

sessions spent over seven additional minutes on the target Web site while non-goal sessions spent

almost five minutes less.

The use of duration to explain choice behavior has not found consistent results in prior liter-

ature. The role of absolute duration in predicting choice behavior has found mixed associations

(Sismeiro and Bucklin, 2004) and also differences in significance (Padmanabhan et al., 2001) de-

pending on the task examined and data used. The results of hypothesis UC1 provide additional

support for a positive association between duration and goal achievement. However, the hypothe-

sis only supports the notion of a positive association forrelative rather than absolute duration.

UC2 – RELPGS

The second hypothesis was similar to the first hypothesis because it also relied on the concept of

satisficing (Pirolli, 2007; Simon, 1956). However, the number of pages viewed by a forager was

examined instead of the duration spent at the site. Whenevera forager clicked on a link at a site

that was an implicit signal the user believed other information of value would be obtained from the

site. Therefore, more pages (relative to other sites) should be an indication of a greater wealth of

information being obtained.

12Hypothesis UC1 was also significant atα = 0.01 for both the t-test (t = 9.71; df = 51; p-value =< 0.0001) and
Wilcoxon test (V = 1,376; p-value =< 0.0001).
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The results from the sign test supported the hypothesis atα = 0.01 (S = 52; p-value =< 0.0001)13.

All 52 Web sites in the dataset had a higher median relative number of pages viewed for goal ses-

sions versus non-goal sessions. Goal sessions viewed, on average, over twenty additional pages on

the target Web site compared to other sites, whereas non-goal sessions viewed one fewer page than

at other Web sites.

Support has been mixed in prior literature for the role number of pages viewed has on choice

behavior. Absolute number of pages viewed has found positive association (Awad et al., 2006;

Moe, 2003), no association (Chatterjee et al., 2003), and mixed association depending on the task

(Sismeiro and Bucklin, 2004) or type of pages viewed (Van denPoel and Buckinx, 2005). Like

duration, the result of this hypothesis also lends additional support to the notion of a positive asso-

ciation between number of pages viewed and goal achievement. However, the support is restricted

to arelativeexamination of pages viewed rather than the absolute value commonly used in prior

research.

Although both UC1 and UC2 were supported atα = 0.01,RELPGSwas slightly better at distin-

guishing between the two groups of sessions (S = 52 versus 51). However, part or all of the dif-

ference between the two hypotheses may have been an artifactof measurement constraints, since

RELDUR was only measured at the minute-level. Thus, a finer-grainedmeasurement may be better

able to tease out differences in duration between sessions than what was shown in the user-centric

model14.

UC3 – RETURN

The third hypothesis examined the returning behavior of a forager. In particular, it was hypothe-

sized that foragers who returned during the same session would be more likely to achieve a goal

than foragers that did not. The rationale was that users initially left a site because they expected to

find another Web site with a higher rate of information gain (i.e., they followed the patch-leaving

rule from the marginal value theorem (Pirolli, 2007; Charnov, 1976)). However, after the forager

13Hypothesis UC2 was also significant atα = 0.01 for both the t-test (t = 10.37; df = 51; p-value =< 0.0001) and
Wilcoxon test (V = 1,378; p-value =< 0.0001).

14The site-centric model does indicate duration is a better manner of distinguishing between types of sessions than
pages viewed (see §7.2.2). However, considering a different dataset was used, the results are not directly compara-
ble. For example, the Web sites in the site-centric dataset may have had fewer pages and thus number of pages viewed
would be less able to distinguish between groups of sessions. In addition, the site-centric model does not take into ac-
count behavior relative to other Web sites.
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explored other aspects of their environment, they better recognized the value of the site they ini-

tially left. Therefore, a forager that returned to the site they left not only had knowledge of what

was on the site, but also an expectation that the Web site would result in additional information

gain, which was hypothesized to indicate greater likelihood of goal achieving behavior.

The sign test failed to support the hypothesis at any of the testedα levels (S = 22; p-value =

0.8942)15. Only 22 of the 52 Web sites found a greater incidence of goal achievement among ses-

sions that left and returned as opposed to those sessions that stayed on the site for the entire ses-

sion. Not only was UC3 not supported, but the expected association of returning behavior to goal

achievement appeared to be incorrect. Instead of being a positive association, the results pointed

toward a strong (but non-significant) negative association, i.e., a forager waslesslikely to achieve

a goal if the user left a Web site and then returned within the same session (the opposite of hypoth-

esis UC3)16.

Although the results of UC3 were not expected, they did provide additional support highlighting

the efficacy of a forager’s ability to search with only imperfect information and limited compu-

tational resources. For example, foragers appeared to be capable of judging the rate of informa-

tion gain and value of a Web site relatively well, according to their need. The efficacy of foragers’

search behavior was informally backed up because more userswho purchased a product from their

target Web site did not feel the need to visit other Web sites during their session17.

As far as can be determined, prior literature has not examined the returning behavior of a user

during the same session. Therefore, the results of this hypothesis provide an initial (but non-significant)

clue into the relationship between returning behavior during the same session and goal achieve-

ment.

15Hypothesis UC3 was also not supported at any of the testedα levels for both the t-test (t =−1.96; df = 51; p-value
= 0.9724) and Wilcoxon test (V = 445; p-value = 0.9874).

16The opposite of hypothesis UC3 was also not supported at any of the testedα levels (S = 30; p-value = 0.1659).
However, the opposite of hypothesis UC3wassupported atα = 0.05 for both the t-test (t = 1.96; df = 51; p-value =
0.0276) and Wilcoxon test (V = 933; p-value = 0.0129). The discrepancy of findings may be a symptom of the sign
test’s lack of power (the rank or actual differences betweendata points are not used in the sign test). However, another
possibility may be the t-test and Wilcoxon test are providing inaccurate results, especially when considering the extreme
skew of theRETURNmeasure (quartile skew of 0.93).

17This assumes the action of purchasing a product from the target Web site was a “good” decision.
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UC4 – REPEAT

The final hypothesis also examined returning behavior, but did so by looking at how past visita-

tions of a Web site affected the propensity of foragers to achieve a goal. The expectation was prior

visitation of valuable sites would stand out more in a person’s memory (i.e., be more easily ac-

cessible) than less valuable sites. Thus, a repeat visitor would be more likely to achieve a goal be-

cause of the expectation that the user was familiar with the site and had an understanding of the

available information from the site.

Using the sign test, the final hypothesis was supported atα = 0.01 (S = 36; p-value = 0.0039)18.

36 of the 52 Web sites had a higher median probability of a purchase amongst goal sessions when

a user had visited the site before.

Prior literature has found mixed associations (dependent on the task) between users returning

during different sessions and completing a task (Sismeiro and Bucklin, 2004). The results of hy-

pothesis UC4 lends additional support of a positive association between repeat visitation behavior

and goal achievement.

Summary of Results

Table 55 summarizes the results of the hypotheses testing. Of the four hypotheses, UC1, UC2, and

UC4 were all supported atα = 0.01. Hypothesis UC3 was not supported in either its original or

opposite form at any of the tested alpha levels (0.01, 0.05, or 0.10).

18Hypothesis UC4 was not significant atα = 0.10 for the t-test (t = 0.82; df = 51; p-value = 0.2075), but was signifi-
cant atα = 0.01 for the Wilcoxon test (V = 1,021; p-value = 0.0010). Thet-test may have failed to reach significance
because the actual difference between the goal and non-goalsessions was only 0.62% (6.97% versus 6.35%). The
Wilcoxon and sign tests do not consider the absolute difference, but rather the relative difference (i.e., rank) or if one
group was higher than the other.
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Table 55: User-centric: Hypotheses Results
Summary

Hyp. Metric Hypothesis Supported?

INFORMATION PATCH – SITE-PATCH

UC1 RELDUR Yes***

UC2 RELPGS Yes***

UC3 RETURN No

UC3 (opp)a No

UC4 REPEAT Yes***

a Hypothesis tested in opposite direction as original –
i.e., leaving and returning will benegativelyassoci-
ated with achieving a goal on this long tail Web site.
*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01

7.2 Site-centric Clickstream Model of Information Foraging

The site-centric model consisted of nine hypotheses that were concerned with both information

scent and patches. Descriptive statistics of the dataset and each measure along with checks of as-

sumptions for the three statistical tests used to test the hypotheses are presented in §7.2.1. The

results of all nine hypotheses are then detailed in §7.2.2. As three of the hypotheses (seven total

measures) used metrics derived from learning patches and trails, a sensitivity analysis was per-

formed at eight different mining levels of significance and support. The descriptive statistics and

results of the sensitivity analysis are provided in §7.2.3.

7.2.1 Descriptive Statistics

Table 56 details the mean, standard deviation, median, minimum, and maximum number of ses-

sions by Web site. Statistics for goal and non-goal sessionsat each Web site are also shown19. The

data is separated in table 56 into three groups: the entire dataset, training set, and testing set.

The entire dataset was used to test the six hypotheses which did not rely on mining patches or

trails (SC1–SC4, and SC7–SC8). The training dataset was used to discover patches and trails that

would eventually be used to calculate measures for hypotheses SC5a-c, SC6, and SC9a-c20. The

19Further descriptive statistics for the dataset can be foundin §6.2.2.
20The training set consisted of the first 70% of goal sessions (and all non-goal sessions occurring before the last goal
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Table 56: Site-centric: Sessions by Site

Mean St. Dev. Median Min Max

ENTIRE DATASET

All 5,322.60 7,473.76 2,637.00 245 44,405

Goal 105.94 90.13 79.00 51 587

Non-goal 5,216.66 7,427.53 2,566.00 192 44,111

TRAINING SET

All 3,744.23 5,418.42 1,696.00 168 31,730

Goal 74.28 63.07 56.00 36 411

Non-goal 3,669.96 5,386.00 1,656.00 130 31,525

TESTING SET

All 1,578.36 2,156.26 901.00 48 12,675

Goal 31.66 27.07 23.00 15 176

Non-goal 1,546.70 2,143.14 884.00 29 12,586

actual calculation of the measures for hypotheses SC5a-c, SC6, and SC9a-c were done using ses-

sions from the testing set of data.

On average, each Web site had a total of 5,322.60 sessions with more than 49 as many non-goal

sessions as goal sessions (5,216.66 versus 105.94). The average conversion rate for each Web site

(1.99%) was similar to the two percent conversion rate typically found at e-commerce Web sites

(Moe, 2003; Sismeiro and Bucklin, 2004)21.

Overall, the training set of data represented 70.35% of all sessions. For mining purposes, each

Web site had an average of 3,744.23 sessions. The training set had a similar ratio of goal versus

non-goal sessions (49 times more non-goal than goal sessions) and a slightly lower conversion rate

than what was seen in the entire dataset (1.98% versus 1.99%).

The testing set was also very similar in makeup to the entire dataset. Each Web site had an aver-

age of 1,578.36 sessions, with almost 49 as many non-goal sessions as goal sessions (1,546.70 ver-

sus 31.66). The conversion rate was also very similar to the entire dataset (2.01% versus 1.99%).

As seen in table 56, the makeup of the training and testing sets do not appear to differ drasti-

session added to the training set).
21The average conversion rate when taking the average from each Web site was 5.26% (see §6.2.2).
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cally from the entire dataset. Therefore, the results of mining patches and trails and the calculation

of measures using the testing and training datasets are assumed to be generalizable to the entire

dataset (i.e., the results are not an artifact of the manner in which the data was split).

Table 57 presents the mean, standard deviation, median, minimum, and maximum values from

all 47 Web sites for each of the six metrics that did not rely onmining patches and trails. The

statistics for the first and last two metrics are displayed inthree groups of sessions: all, goal, and

non-goal. The statistics for the middle two metrics are alsodisplayed for all sessions, but were

split to show the conversion rate within two groups of sessions: those foragers that returned during

the same session and those users who stayed on the Web site during the entire session22.

The average duration of users at each Web site was 3.69 minutes. The goal sessions spent, on

average, 4.60 more minutes on a Web site compared to the non-goal sessions (5.99 minutes versus

1.39 minutes). A similar, but less large, of a difference wasalso seen between the number of pages

viewed between goal and non-goal sessions. On average, goalsessions viewed 0.43 more page

than non-goal sessions did (4.28 versus 3.85)23.

The middle two measures (RETURN andREPEAT) demonstrate the conversion rates from two

groups of sessions. On average, a 5.53% increase in conversion rate was found for sessions that

stayed on a Web site the entire session versus those that leftand returned during the same session

(7.24% versus 1.71%). A similar, but not as severe, difference was also found between the two

groups within theREPEATmeasure. A 1.02% increase in conversion rate, on average, was found

for sessions that were previous visitors of the Web site versus new visitors (6.09% versus 5.07%).

The percentage of unique pages viewed, on average, was 79.42%. Goal sessions had a 20.22%

increase in unique pages viewed over non-goal sessions (89.53% versus 69.31%). The difference

in clickstream linearity was also similar to the percentageof unique pages viewed in both direction

and difference. A 0.23 increase in clickstream linearity was seen between the goal and non-goal

sessions (0.86 versus 0.75).

Table 58 lists the mean, standard deviation, median, minimum, and maximum values for the

seven metrics (hypotheses SC5a-c, SC6, and SC9a-c) that were calculated from mined patches and

trails at the 0.05 significance level24. The statistics for the metrics are displayed in three groups of

22For REPEAT, the groups demonstrated the conversion rate of sessions that had visited the Web site before and those
sessions that were new visitors to the site.

23The duration and number of pages viewed for goal sessions only includes activitybeforeany form submission.
24The use ofα = 0.05 for learning patches and trails was motivated by priorresearch on contrast sets (Bay and Paz-
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Table 57: Site-centric: Metric Statistics

N Mean St. Dev. Median Min Max

INFORMATION PATCH – SITE-PATCH

SITEDUR (in minutes)

All 47 3.69 2.87 2.89 0.33 13.32

Goal 5.99 2.32 5.90 1.39 13.32

Non-goal 1.39 0.66 1.23 0.33 3.15

SITEPGS

All 47 4.06 1.26 4.00 2 9

Goal 4.28 1.46 4.00 2 9

Non-goal 3.85 1.00 4.00 2 7

RETURN

All 47 4.47% 6.04% 2.16% 0.00% 31.72%

P (Goal|Return) 1.71% 2.68% 0.81% 0.00% 14.02%

P (Goal|Stayed) 7.24% 7.14% 4.71% 0.65% 31.72%

REPEAT

All 47 5.58% 5.99% 3.20% 0.35% 27.27%

P (Goal|Repeat) 6.09% 6.33% 3.55% 0.35% 27.27%

P (Goal|New) 5.07% 5.66% 2.96% 0.46% 24.89%

STRICT INFORMATION SCENT

UNIQUE

All 47 79.42% 15.23% 77.50% 50.00% 100.00%

Goal 89.53% 11.94% 100.00% 58.33% 100.00%

Non-goal 69.31% 10.85% 66.67% 50.00% 100.00%

LINEAR

All 47 0.86 0.29 1.00 0.00 1.00

Goal 0.98 0.08 1.00 0.60 1.00

Non-goal 0.75 0.37 1.00 0.00 1.00

Note: all values are based on the median values from each Web site’s goal and non-goal sessions.
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sessions: all, goal, and non-goal. The statistics for the four metrics regarding page-patches were

calculated from the 14 Web sites that discovered patches, while the three trail measures were cal-

culated from the 10 Web sites that discovered trails.

The first three patch measures (PATCHMAX, PATCHLAST, andPATCHSUM) had average patch

values of 0.32, 0.29, and 0.79 among all sessions, respectively. The difference between goal and

non-goal sessions was similar forPATCHMAX andPATCHLAST. PATCHMAX had a difference of

0.44 (0.54 versus 0.10) and the difference forPATCHLAST was 0.37 (0.47 versus 0.10).PATCH-

SUM had the largest difference of the three measures with a valueof 1.23 (1.40 versus 0.17), al-

most three times as great of a difference as eitherPATCHMAX or PATCHLAST.

The average duration users spent within patches was a littleover one minute (68.28 seconds).

Considering the average user spent 3.69 minutes on an entiresite, foragers spent almost a third of

their time (30.84%) within patches. Goal sessions foraged within patches, on average, 42.41 more

seconds compared to non-goal sessions (89.48 seconds versus 47.07 seconds).

Unlike the patch visitation measures, the trail following measures all had similar means: 0.27,

0.26, and 0.33. Likewise, the difference between goal and non-goal sessions was also relatively

similar between the three measures. The difference forTRAILMAX was 0.45 (0.50 versus 0.05),

TRAILLAST was 0.43 (0.48 versus 0.05), andTRAILSUM had the largest difference of 0.56 (0.61

versus 0.05).

Patch and Trail Descriptive Statistics

Table 59 provides the mean, standard deviation, median, minimum, and maximum values for a

number of descriptive measures about the learned patches and trails: number, size, coverage and

value. In addition, statistics are also provided about how many patches were visited and trails were

followed by foragers.

An average of 11.93 patches was discovered on 14 Web sites using the 0.05 significance mining

level. Although almost 12 patches were discovered on average, there was a fairly large spread of

discovered patches, with one Web site only finding a single patch and another site discovering 111

patches. In general, discovered patches were fairly small in size, consisting of only 1.82 pages.

The small patch size indicates a number of valuable patches were simply individual pages on a

zani, 1999).
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Table 58: Site-centric: Metric Statistics (Significant – 0.05)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX

All 14 0.32 0.40 0.00 0.00 1.31

Goal 0.54 0.43 0.60 0.00 1.31

Non-goal 0.10 0.21 0.00 0.00 0.57

PATCHLAST

All 14 0.29 0.34 0.00 0.00 1.03

Goal 0.47 0.36 0.47 0.00 1.03

Non-goal 0.10 0.20 0.00 0.00 0.51

PATCHSUM

All 14 0.79 1.25 0.00 0.00 4.53

Goal 1.40 1.52 1.06 0.00 4.53

Non-goal 0.17 0.36 0.00 0.00 1.04

PATCHDUR (in seconds)

All 14 68.28 47.02 51.38 19.00 178.00

Goal 89.48 53.06 76.63 19.00 178.00

Non-goal 47.07 28.43 38.88 20.00 134.00

RELAXED INFORMATION SCENT

TRAILMAX

All 10 0.27 0.37 0.00 0.00 1.04

Goal 0.50 0.40 0.52 0.00 1.04

Non-goal 0.05 0.16 0.00 0.00 0.50

TRAILLAST

All 10 0.26 0.35 0.00 0.00 1.04

Goal 0.48 0.37 0.52 0.00 1.04

Non-goal 0.05 0.16 0.00 0.00 0.50

TRAILSUM

All 10 0.33 0.50 0.00 0.00 1.80

Goal 0.61 0.58 0.52 0.00 1.80

Non-goal 0.05 0.16 0.00 0.00 0.50

Note: all values are based on the median values from each Web site’s goal and non-
goal sessions.
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Table 59: Site-centric: Patch and Trail Metric Statistics (Significant – 0.05)

N Mean St. Dev. Median Min Max

PATCHES

Number of patches 14 11.93 28.74 3.50 1 111

Patch size 14 1.82 0.64 2.00 1.00 3.00

Patch coverage 14 28.63% 13.85% 26.79% 10.00% 50.00%

Patch value 14 0.67 0.16 0.67 0.28 0.88

Patch visitation

All 14 2.75 2.25 2.00 1.00 11.00

Goal 3.50 2.93 2.00 1.00 11.00

Non-goal 2.00 0.88 2.00 1.00 4.00

TRAILS

Number of trails 10 4.70 8.04 1.50 1 27

Trail size 10 2.15 0.34 2.00 2.00 3.00

Trail coverage 10 26.47% 14.80% 27.44% 6.90% 50.00%

Trail value 10 0.79 0.19 0.82 0.46 1.05

Trail following

All 10 1.60 1.14 1.00 1.00 5.00

Goal 1.80 1.48 1.00 1.00 5.00

Non-goal 1.40 0.70 1.00 1.00 3.00

Note: all values are based on the median values from each Web site’s goal and non-goal ses-
sions.
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Web site. However, even though patches were small in size, they represented over a quarter of all

Web pages on a Web site (28.63%).

The average value of a patch was relatively high at 0.67, indicating patches were reasonably

capable of separating areas predominately visited by goal sessions versus non-goal sessions. How-

ever, the value of patches had a moderately large 0.60 point spread between the minimum (0.28)

and maximum (0.88) valued patches.

Foragers visited, on average, 2.75 patches during a session, which represented 23.05% of all

available patches on a site. Goal sessions visited 1.50 morepatches than non-goal sessions did

during a session (3.50 versus 2.00). Although non-goal sessions appeared to visit a number of

patches, the statistics in table 59 only include sessions that visitedat leastone patch. Therefore,

when considering all sessions, less than half of all non-goal sessions visited patches while over

half of the goal sessions did visit patches (see median values for PATCHMAX, PATCHLAST, or

PATCHSUM in table 58).

Valuable trails were more difficult to discover than patches, as evidenced by both the lower

number of Web sites with trails (10 versus 14) and the mean number of trails discovered at each

Web site (4.70 versus 11.93). Discovered trails consisted of either two- or three-page sequences

(average of 2.15), which represented 26.47% of all Web pages on a Web site25.

Although more difficult to find, trails were 0.12 points more valuable on average than patches

(0.79 versus 0.67). The value of trails had a 0.59 point spread between the minimum (0.46) and

the maximum (1.05) valued trails, which was only one tenth ofa point lower than patches.

In terms of usage of valuable trails, foragers followed an average of 1.60 trails during a ses-

sion, which represented 34.04% of all available trails on a Web site. Like patches, goal sessions

also followed more trails than non-goal sessions (1.80 versus 1.40). Although fewer trails were

followed in absolute terms compared to the number of patchesvisited, percentage-wise goal ses-

sions followed a greater proportion of available trails on aWeb site than patches (38.30% versus

29.34%).

Examples of Patches and Trails

25Trails may contain the same page being visited multiple times unlike patches which only represent unique pages.
Thus, the percentage of trail coverage (26.47%) can still be lower than patch coverage (28.63%) even when the mean
trail size (2.15) is higher than the average patch size (1.82). The preceding explanation assumed the difference in cover-
age was not due to dissimilar Web sites with different numberof Web pages being included in the calculation.
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Table 60 and 61 each present three examples of discovered patches and trails, respectively. Each

table lists an identifier for the Web site along with a short description of what the purpose of the

Web site was. The value of the example patch or trail along with the pages that make up the patch

or trail is also provided. For patches, the order in which thepages are displayed in table 60 does

not matter. For trails, the order of pages in table 61doesmatter.

Table 60: Site-centric: Example Patches

Web site

Id Description Support Patch Pagesa

1 Sell and service light-weight outboard motors 0.31 Index

Outboard motor products

Accessories

Warrenties

2 Hair and make-up services for weddings 0.70 Hair prices

Hair style examples

Services offered

Makeup prices

3 Small dog breeder 0.61 Index

Photo album of puppies

Available puppies

Examples are from a variety of different significance / support levels
a Order of pages doesnot matter

The first Web site from table 60 demonstrates a four-page patch of relatively low value. The

patch may be of interest to a forager who had a question about the warranty coverage of outboard

motors and their accessories. The second example represented a higher-valued patch than the first

example. The four-page patch dealt with wedding hair and make-up services and may have been

visited by an individual interested in booking the Web site owner for their wedding. Finally, the

third example illustrates a patch that a forager may visit ifthey were interested in adopting puppies

from a small dog breeder.

The first trail shown from table 61 demonstrates a moderately-valued three-page sequence. The

example illustrates a trail followed when foragers are interested in learning how to deal cards. First

198



Table 61: Site-centric: Example Trails

Web site

Id Description Support Trail Pagesa

4 Teaches professional card dealing 0.41 Index

Testimonials

Calendar of classes

5 Cosmetology school 0.54 General information

Financial assistance

Courses offered

6 Small financial company 0.31 Index

Getting loans with poor credit

Index

Testimonials

Examples are from a variety of different significance / support levels
a Order of pagesdoesmatter

the user visited the index page, then read the posted testimonials, and finally viewed when classes

were held. The second example demonstrates a likely path a potential student may follow when

interested in enrolling in cosmetology school. General information about the school was read first,

followed by information about available financial assistance, and finally what courses were offered

at the school. The final example shows a trail where a forager retraced their steps. The index page

was visited first and then again after the forager read information on how to obtain a loan with

poor credit. The reason for the backtracking is not known, although it may be the navigation on

the site followed a hub and spoke topology that required backtracking (i.e., all pages linked from

the index page, but not to one another).

Assumptions of Statistical Tests

Table 62 lists the assumptions for each of the three statistical tests used to test the site-centric hy-

potheses26. A 2� symbol indicates the assumption was met for the statisticaltest, while a2 sym-

26Assume within the data there aren pairs ofX andY observations(X0, Y0), (X1, Y1), . . . , (Xn, Yn). For each
observation pair, the differenceDi is calculated betweenXi andYi, whereDi = Yi − Xi.
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bol means the assumption was not met. If both a2� and a2 symbol are shown then the assump-

tion held for some metrics, but not for all of the metrics. There were a total of five assumptions for

the paired t-test (assumptions three through seven); four for the exact Wilcoxon signed rank test

(assumptions three through six); and three for the dependent-samples sign test (assumptions one,

two, and five).

Table 62: Site-centric: Assumptions of Statistical Tests

# Assumption t-Test Wilcoxon Sign Test

1 The pairs (Xi, Yi) are internally consistent, in that if P(+)>
P(-) for one pair (Xi, Yi), then P(+)> P(-) for all pairs.

2�

2 The measurement scale is at least ordinal within each pair. 2�

3 The measurement scale of theDis is at least interval. 2� 2�

4 TheDis all have the same mean. 2� 2�

5 TheDis (or bivariate random variables (Xi, Yi)) are mutually
independent.

2� 2� 2�

6 The distribution of eachDi is symmetric. 2�2 2�2

7 TheDis are identically distributed normal random variables. 2�2

(Conover, 1999, pg. 157-158, 353, 363)

Further details about whether assumptions were met or not for each of the statistical tests are

provided below. The tests are presented in order of which test had the least to most stringent as-

sumptions: sign test, Wilcoxon test, and t-test.

Dependent-samples Sign Test

All three assumptions of the sign test were fully met.

Assumption 1 – Each observation pair was internally consistent. If P(+)> P(-), P(+)< P(-), or

P(+) = P(-) for a single observation pair, then P(+)> P(-), P(+)< P(-), or P(+) = P(-) was the

same across all observation pairs, respectively.

Assumption 2 – Each metric used in this research was a quantitative variable measured on at least

an interval scale.

Assumption 5 – Each pair of bivariate random variables (Xi, Yi) was taken from a different and

independent Web site.
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Exact Wilcoxon Signed Rank Test

Three of the four assumptions for the exact Wilcoxon signed rank test were met. The fourth

assumption dealing with symmetry of theDis was met for some of the metrics, but not for all of

the metrics.

Assumption 3 – Each metric used in this research was a quantitative variable measured on at least

an interval scale.

Assumption 4 – Each of the differences (Di) was taken from a Web site from the same popula-

tion. Therefore, the mean of each difference was expected tobe the same.

Assumption 5 – Each of the differences (Di) was taken from a different and independent Web

site.

Assumption 6 – The last two columns from tables 63 and 64 show the quartile skew coefficient27

for all 13 metrics28. Since the Wilcoxon test only considers non-zero differences, only the

skew values from the “No zeros” columns were analyzed.

27A description of quartile skew coefficient and why it was analyzed over the traditionally used coefficient of skew-
ness can be found in §7.1.1. The values for the coefficient of skewness are provided in tables 63 and 64 for reference
purposes.

28The six measures that did not require mining for their calculation are shown in table 63. The remaining seven
metrics that were calculated from mined patches and trails are displayed in table 64.
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Table 63: Site-centric: Metric Normality and Skew

N Lilliefors Shapiro Skew Quartile Skew

Hyp. Metric Total No Zeros D p-Value W p-Value All No Zeros AllNo Zeros

INFORMATION PATCH – SITE-PATCH

SC1 SITEDUR 47 47 0.14 0.0184** 0.92 0.0035*** −1.15 −1.15 0.15 0.15

SC2 SITEPGS 47 28 0.23 < 0.0001*** 0.93 0.0076*** −0.34 0.27 −1.00 0.33

SC3 RETURN 47 47 0.22 < 0.0001*** 0.75 < 0.0001*** 2.10 2.10 0.18 0.18

SC4 REPEAT 47 47 0.16 0.0035*** 0.87 < 0.0001*** −1.30 −1.30 −0.18 −0.18

STRICT INFORMATION SCENT

SC7 UNIQUE 47 44 0.09 0.3986 0.96 0.1368 −0.34 −0.37 −0.43 −0.26

SC8 LINEAR 47 18 0.36 < 0.0001*** 0.67 < 0.0001*** −1.26 0.21 −1.00 0.07

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
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Table 64: Site-centric: Metric Normality and Skew (Significant – 0.05)

N Lilliefors Shapiro Skew Quartile Skew

Hyp. Metric Total No Zeros D p-Value W p-Value All No Zeros AllNo Zeros

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX 14 9 0.19 0.1596 0.88 0.0595* −0.64 −0.43 −0.15 0.26

SC5b PATCHLAST 14 9 0.21 0.0966* 0.89 0.0822* −0.48 −0.56 0.06 −0.53

SC5c PATCHSUM 14 9 0.21 0.0795* 0.79 0.0033*** −1.41 −1.09 0.11 −0.37

SC6 PATCHDUR 14 14 0.15 0.5374 0.96 0.6601 −0.50 −0.50 −0.02 −0.02

RELAXED INFORMATION SCENT

SC9a TRAILMAX 10 6 0.25 0.0671* 0.85 0.0581* −0.09 0.19 0.08 0.20

SC9b TRAILLAST 10 6 0.26 0.0616* 0.86 0.0775* −0.08 −0.31 0.22 0.46

SC9c TRAILSUM 10 6 0.22 0.1860 0.87 0.0977* −0.91 −1.05 −0.08 0.07

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
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Besides statistics on skew as shown in tables 63 and 64, figures 56 and 57 are also provided to

graphically show the distribution of points for each measure.
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Figure 56.: Site-centric: Difference Plots

None of the measures exactly met the assumption of no skew (using the quartile skew coef-

ficient). However,PATCHDUR had a very slight negative skew of−0.02 and was considered

symmetrical.LINEAR andTRAILSUM also had a slight positive skew values of 0.07 and were

considered mostly symmetrical.PATCHLAST had a high amount of skew (−0.53) and did not
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Figure 57.: Site-centric: Patch and Trail Difference Plots(Significant – 0.05)
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meet the assumption of symmetry. All the other measures did not fully meet the assumption of

symmetry since they had slight to moderate amounts of skew (|0.15| to |0.46|).

Paired t-Test

Three of the five assumptions for the paired t-test were met. The fourth assumption dealing with

symmetry of theDis was met for some of the metrics, but not for all of the metrics. The fifth as-

sumption of normality was met for only a couple of measures.

Assumption 3 – Each metric used in this research was a quantitative variable measured on at least

an interval scale.

Assumption 4 – Each of the differences (Di) was taken from a Web site from the same popula-

tion. Therefore, the mean of each difference was expected tobe the same.

Assumption 5 – Each of the differences (Di) was taken from a different and independent Web

site.

Assumption 6 – The symmetry for each measure was determined in the same manner as for the

exact Wilcoxon signed rank test, except the “All” columns were used to determine skew since

the t-test uses points with either a difference or no difference (i.e., bothDi = 0 andDi 6= 0)

in its calculation. Of the 13 measures, four of the measures had a very slight to slight amount

of skew:PATCHLAST (0.06),PATCHDUR (−0.02),TRAILMAX (0.08), andTRAILSUM (−0.08).

Two of the measures had a severe skew of−1.00 (SITEPGSandLINEAR) and did not meet the

assumption of symmetry. The other seven measures had a slight to moderate amount of skew

(|0.11| to | − 0.43|).

Assumption 7 – Two formal statistical tests of normality were performed on the differences (Dis)

for each of the metrics29: Lilliefors (Kolmogorov-Smirnov) and Shapiro-Wilk normality tests

(Conover, 1999)30. Each test has a null hypothesis that the data follows a normal distribution

with an unspecified mean and variance. Lilliefors is a non-parametric normality test, whereas

29Symmetry is a necessary, but not sufficient, condition for normality. AlthoughSITEPGSandLINEAR were severely
skewed and thus not symmetrical, the tests of normality werestill performed on the measures for purposes of complete-
ness.

30Although presented, formal tests of normality (such as Lilliefors and Shapiro-Wilk) are known to be sensitive to
even slight departures from normality (Mendenhall and Sincich, 2003).
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Shapiro-Wilk has been found to have greater power than othertests (such as Lilliefors) in

many situations (Conover, 1999).

Two of the measures failed to reject the null hypothesis of a normal distribution for both of the

Lilliefors and Shapiro-Wilks tests at anα level of 0.15 or lower (UNIQUE andPATCHDUR).

PATCHMAX andTRAILSUM also failed to reject the null hypothesis using the Lilliefors test,

but did reject the null hypothesis using the more powerful Shapiro-Wilks test at the 0.10 sig-

nificance level. The remaining nine measures rejected the null hypothesis using both tests with

at least anα level of 0.10. Thus, only two of the measures met the assumption of normality,

while the distributions of the other 11 metrics were considered non-normal.

In addition to the tests of normality, the skew values from tables 63 and 64 and the graphical

depiction of each metric’s points (figures 56 and 57) provided further evidence that most of the

measures did not follow a normal distribution.

Overall, only the assumptions for the dependent-samples sign test were fully met. Therefore,

the sign test was used to test the hypotheses of the site-centric model31. The assumptions for the

Wilcoxon test and t-test were not completely met and are provided only for comparison purposes.

The lack of symmetry (and normality) for some of the measuresmeans the results from the Wilcoxon

and t-test must be interpreted with caution.

7.2.2 Hypotheses Testing

Tables 65 and 66 present the results for the nine site-centric hypotheses. Table 65 provides results

from the six hypotheses whose measure did not rely on mining patches and trails. Table 66 lists

the results for the three hypotheses that required mining patches and trails.

The first two columns of each table list the hypothesis numberand name of the metric being

tested. The third and fourth columns list the total number ofWeb sites and the number of sites

with a non-zero difference (i.e.,Di 6= 0), respectively. The total number of Web sites was used

in the t-test, while only Web sites with non-zero differences were used for the Wilcoxon and sign

tests. Columns five through seven list the t statistic, degrees of freedom (df), and p-value for the

31The sign test is generally the least powerful of the three tests (Conover, 1999). However, as all of the sign test’s
assumptions were met, greater confidence can be given to the results of the sign test compared to the other two tests.
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t-test. The eighth and ninth columns display the V statisticand p-value for the Wilcoxon test. The

final two columns list the S statistic and p-value for the signtest32.

32Results of the sign test are presented below since all three assumptions for the test were met. The results of the
t-test and Wilcoxon test are provided in footnotes. Since neither the t-test nor the Wilcoxon test met all of their assump-
tions, the results of those tests should be interpreted withcaution.
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Table 65: Site-centric: Results

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – SITE-PATCH

SC1 SITEDUR 47 47 14.85 46 < 0.0001*** 1,128 < 0.0001*** 47 < 0.0001***

SC2 SITEPGS 47 28 2.27 46 0.0140** 295 0.0166** 19 0.0436**

SC3 RETURN 47 47 −6.66 46 1.0000 0 1.0000 0 1.0000

SC3 (opp)a 47 47 6.66 46 < 0.0001*** 1,128 < 0.0001*** 47 < 0.0001***

SC4 REPEAT 47 47 1.74 46 0.0447** 736 0.0346** 29 0.0719*

STRICT INFORMATION SCENT

SC7 UNIQUE 47 44 10.19 46 < 0.0001*** 986 < 0.0001*** 42 < 0.0001***

SC8 LINEAR 47 18 4.41 46 < 0.0001*** 171 < 0.0001*** 18 < 0.0001***

a Hypothesis tested in opposite direction as original – i.e.,leaving and returning will benegativelyassociated with achieving a goal on
this long tail Web site.
*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
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Table 66: Site-centric: Results (Significant – 0.05)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX 14 9 3.68 13 0.0014*** 45 0.0020*** 9 0.0020***

SC5b PATCHLAST 14 9 3.92 13 0.0009*** 45 0.0020*** 9 0.0020***

SC5c PATCHSUM 14 9 3.00 13 0.0051** 45 0.0020*** 9 0.0020***

SC6 PATCHDUR 14 14 4.11 13 0.0006*** 100 0.0006*** 13 0.0009***

RELAXED INFORMATION SCENT

SC9a TRAILMAX 10 6 3.33 9 0.0044** 21 0.0156** 6 0.0156**

SC9b TRAILLAST 10 6 3.36 9 0.0042** 21 0.0156** 6 0.0156**

SC9c TRAILSUM 10 6 2.89 9 0.0089** 21 0.0156** 6 0.0156**

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).
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SC1 –SITEDUR

Similar to UC1, the first hypothesis of the site-centric model also expected goal achieving for-

agers would spend more time on a Web site than non-goal achieving foragers33. However, the site-

centric model did not compare the relative behavior of a forager from one site to another. Instead,

all comparisons were done relative to an absolute value of zero. Regardless of how comparisons

were determined, the rationale for the hypothesis does not change from one model to another: an

expectation of higher durations for goal sessions due to greater information gain from the site of

interest.

The results of the sign test supported SC1 atα = 0.01 (S = 47; p-value =< 0.0001)34. All 47

Web sites had a higher median duration amongst goal sessionsthan non-goal sessions. Goal ses-

sions spent roughly six minutes on a site, while non-goal sessions foraged for fewer than two min-

utes.

The use ofabsoluteduration, as used in this hypothesis, provides additional support to prior

research regarding the positive association between duration and goal achievement. In addition,

although the results between the user- and site-centric models are not directly comparable due to

the relative nature of the user-centric model, the significant support for both hypotheses generally

reinforces one another regarding the value of duration to predict goal achievement.

SC2 –SITEPGS

Both the first and second hypotheses were similar to one another because they both focused on

the concept of satisficing (Pirolli, 2007; Simon, 1956). However, SC2 examined the importance of

greater pages viewed at a Web site rather than duration. The belief was that every additional page

signaled the continued interest of the forager to stay on thesite because information of value could

still be obtained from the Web site. Thus, greater pages equated to more information of value be-

ing obtained which further lead to a greater probability of achieving a goal by the forager.

The second hypothesis was found to be significant atα = 0.05 (S = 19; p-value = 0.0436)35,

33The rationale for the first four site-centric hypothesis areexplained in greater detail in the user-centric results
(§7.1.2).

34Hypothesis SC1 was also significant atα = 0.01 for both the t-test (t = 14.85; df = 46; p-value =< 0.0001) and
Wilcoxon test (V = 1,128; p-value =< 0.0001).

35Hypothesis SC2 was also significant atα = 0.05 for both the t-test (t = 2.27; df = 46; p-value = 0.0140) and
Wilcoxon test (V = 295; p-value = 0.0166).
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supporting hypothesis SC2. 19 out of the 28 non-tied Web sites had a higher median number of

pages viewed for goal sessions versus non-goal sessions. Goal sessions viewed 4.28 pages on aver-

age, whereas non-goal sessions viewed only 3.85 pages.

Hypothesis SC2 provides additional support to prior literature about the positive association be-

tween number of pages viewed and goal achievement. When compared to the user-centric model,

however; the results for this hypothesis were less significant. One possible reason for the differ-

ence may be due to the use of absolute rather than relative comparisons of foragers’ behavior.

However, another likely reason may be due to the structure ofthe Web sites used in the site-centric

dataset.

In general, site-centric Web sites had relatively few pages(16.36 pages on average). While the

number of pages on the user-centric Web sites was unknown, the sites may have had more pages

than the site-centric Web sites36. Therefore, there would be more pages that could have been vis-

ited on a Web site from the user-centric dataset, leading to agreater gap between page visitation

behavior of goal and non-goal sessions, and hence a more significant result.

SC3 –RETURN

Hypothesis SC3 conjectured that foragers who left a Web siteand returned during the same ses-

sion would be more likely to achieve a goal. The hypothesis was not supported at any of the tested

α levels (S = 0; p-value = 1.0000)37. None of the 47 Web sites had a higher percentage of goals

achieved amongst foragers who left the site and returned during the same session than visitors

that stayed on the site during their entire session. The results indicated a forager waslesslikely

to achieve a goal if the user left a Web site and returned within the same session (the opposite of

hypothesis SC3), which was significant atα = 0.01 (S = 47; p-value =< 0.0001)38. All 47 Web

sites found a higher proportion of goal sessions that stayedrather than left and returned during

their session.

36On average, foragers from the Web sites in the user-centric dataset viewed 14.84 pages during a session, while vis-
itors to site-centric sites only viewed 4.06 pages. While not definitive proof that user-centric sites had more pages than
site-centric Web sites, the higher average number of pages viewed for user-centric foragers does give some indication
that those Web sites might have had more pages.

37Hypothesis SC3 was also not supported at any of the testedα levels for both the t-test (t =−6.66; df = 46; p-value
= 1.0000) and Wilcoxon test (V = 0; p-value = 1.0000).

38The opposite of hypothesis SC3 was also supported atα = 0.01 for both the t-test (t = 6.66; df = 46; p-value =
< 0.0001) and Wilcoxon test (V = 1,128; p-value =< 0.0001).
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Since prior research has not examined returning behavior ofa user during the same session, this

hypothesis (in opposite form) provides an initial result ofa negative association between returning

behavior during the same session and goal achievement. In comparison to the user-centric model,

the result of this hypothesis was also not supported. However, unlike the user-centric model, the

opposite of the original hypothesis was supported atα = 0.01. The difference in support and not

support between the two models may have been due to the methodology of determining when

leaving and returning behavior occurred.

In general, the user-centric model was conservative while the site-centric model was liberal

when classifying leaving and returning behavior. For example, the user-centric model only counted

visits of at least two pages to other known e-commerce Web sites as valid leaving behavior. Such

a precise manner of determining leaving behavior was not possible in the site-centric data. There-

fore, a more simplistic manner of determining leaving behavior was used which examined the re-

ferring field for each page viewed. A limitation of using the referring field was it was not known if

true browsing behavior (i.e., more than one page was viewed)took place at the referred Web site.

Thus situations in which a forager left the site of interest,viewed one page on another site, and

then returned would still be marked as leaving and returningin the site-centric model39. In addi-

tion, the referring field was also limited because it was unable to capture if a forager left to view

another Web site in a new Web browser window or tab.

SC4 –REPEAT

The final hypothesis which examined the value of the entire Web site as a patch looked at how

prior visitation behavior would affect goal achievement. Hypothesis SC4 expected prior visita-

tion of a Web site would provide a forager with intimate knowledge of what the site had to offer.

Therefore, when the forager has some need to be met at a futuredate, they would more likely re-

turn to the Web site of interest if they believed it would satisfy their information goal. Thus, repeat

visitation would signal greater likelihood of achieving a goal at the Web site of interest.

The results of the sign test demonstrated the fourth hypothesis was significant atα = 0.10 (S =

29; p-value = 0.0719)40, supporting hypothesis SC4. 29 of the 47 Web sites had a higher median

39Another example would be a forager that clicked the back button of their browser one too many times and ended
up on the search engine page that initially brought them to the site of interest, and then clicked a link to return back to
the site of interest.

40Hypothesis SC4 was significant atα = 0.05 for both the t-test (t = 1.74; df = 46; p-value = 0.0447) and Wilcoxon
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probability of a form submission amongst goal sessions whena user had visited the site before.

The slightly significant result was due to the small difference between the proportion of goal ses-

sions that had and had not visited before (0.62% difference between groups).

Prior literature has found mixed associations (dependent on the task) between users returning

during different sessions and completing a task (Sismeiro and Bucklin, 2004). The result of this

hypothesis lends additional support of a slight positive association between repeat visitation be-

havior and goal achievement. When compared to the user-centric model, there was a large differ-

ence in significance between the two models (α = 0.01 user-centric versus 0.10 site-centric). The

difference in significance may be partially explained in twoways.

First, the nature of the goal being examined in the user-centric dataset may better lend itself to

repeat visitation than the goal in the site-centric dataset. For example, the user-centric dataset ex-

amined product purchases, which may need to be replenished from time to time. In contrast, there

is likely little need to resubmit contact information on oneof the site-centric Web sites. From an-

other standpoint, a purchase has a defined cost associated with it. Therefore, a forager may return

to a site multiple times as they contemplate purchasing a product. Leaving contact information

on a Web site has no real monetary cost associated with the action. Therefore, the submission of

a contact form may not require the same degree of thought and comparison that purchasing does,

which may lower the need for repeat visitations to a site.

The second reason a difference between the hypotheses of thetwo models was seen may be

due to the mechanism by which site-centric foragers were identified in the dataset. Cookies were

used to identify and track users across sessions. If a user deleted their cookie then they would be

seen as a new visitor on any subsequent visit. Thus, repeat visitation of foragers may be under-

represented in the site-centric dataset.

SC5 –PATCHMAX , PATCHLAST , and PATCHSUM

The fifth hypothesis expected that visitation of goal patches would be positively associated with

goal achievement. The hypothesis operated under the assumption that certain areas of a Web site

were more valuable to goal achieving foragers than other areas of the site. Thus, users that visited

those same areas of the Web site were assumed to have similar information goals and should be

test (V = 736; p-value = 0.0346). The reason the t-test and Wilcoxon test found SC4 significant at a lower alpha level
than the sign test may be due to the lower power of the sign test.
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more likely to achieve a goal. The actual value from a forager’s visitation of patches was specified

in slightly different ways in three sub-hypotheses: maximum value of a patch, value of last patch

visited, and total value of all patches visited.

The three sub-hypotheses of SC5 were all found to be significant atα = 0.01 (S = 9; p-value =

0.0020 for all three measures)41, supporting hypotheses SC5a-c (table 66). 14 Web sites out of the

47 total Web sites discovered patches at the 0.05 significance level, with only nine of those 14 sites

having a non-zero difference. All nine of the non-zero Web sites had goal sessions with higher

median values for the most valuable patch visited, last patch visited, and sum of all patches visited.

On average, foragers visited 2.75 patches per session. Withso few patches being visited it was

possible that some of the measures did not differ from one another by a great deal. For example,

sessions that only visited a single patch would have the samevalue for all three measures. How-

ever, as foragers visited almost three patches per session,the average value ofPATCHSUM was

at least 0.42 points higher than either of the other measures, making it unlikely thePATCHSUM

measure only included the same patches as the other two measures. For the other two measures

though, the average difference betweenPATCHMAX andPATCHLAST was only 0.03 points, indicat-

ing many sessions may have had the same patch be the most valuable and last patch visited. There-

fore, even though both sub-hypotheses were supported, the similarity of each measure means the

actual impact of the most valuable and last visited patch on goal achievement cannot be reliably

separated from one another.

Since prior research has not examined the impact groups of pages (that may be of different

types (e.g., product pages, informational pages)), this hypothesis provides an initial result of a pos-

itive association between visitation of patches and goal achievement.

SC6 –PATCHDUR

The sixth hypothesis expected that mere visitation alone ofvaluable patches would not necessarily

mean foragers were obtaining value from those patches. Therefore, similar to hypothesis SC1,

this hypothesis also relied on the concept of satisficing (Pirolli, 2007; Simon, 1956); contending

41Using the t-test, hypotheses SC5a and SC5b were both significant atα = 0.01 (PATCHMAX (t = 3.68; df = 13; p-
value = 0.0014);PATCHLAST (t = 3.92; df = 13; p-value = 0.0009)), while SC5c was significant atα = 0.05 (t = 3.00;
df = 13; p-value = 0.0051). Using the Wilcoxon test, all threehypotheses were significant atα = 0.01 (V = 45; p-value
= 0.0020 for all three measures). The discrepancy between the significance ofPATCHSUM from the t-test versus the
Wilcoxon and sign test may be due to a lack of normality of the measure. Without normality, the t-test may not have
enough power to detect as significant of a difference as the other two tests.
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higher amounts of time spent within patches related to more information gained and thus a greater

likelihood of goal achievement.

Hypothesis SC6 found a higher median duration within patches for goal sessions than non-goal

sessions atα = 0.01 (S = 13; p-value = 0.0009)42, supporting the hypothesis. 13 of the 14 non-

zero Web sites with discovered patches had goal sessions spend a higher median duration of time

within patches than non-goal sessions spent in patches. On average, goal sessions spent almost

three-quarters of a minute more in patches than non-goal sessions.

The use of duration on an entire site has been used in prior literature to explain choice behav-

ior, with mixed results. Duration has had mixed associations with purchasing for different tasks

(Sismeiro and Bucklin, 2004) along with differences in significance among different datasets (Pad-

manabhan et al., 2001). However, as prior literature has notexamined the concept of patches be-

fore, this hypothesis provides an initial result of a positive association between duration within

patches and goal achievement.

SC7 –UNIQUE

Hypothesis SC7 was the first of two hypotheses that defined information scent in a strict manner.

In addition, the hypothesis also viewed a forager’s sessionas a single monolithic piece, and as-

sumed any repeat page viewings (regardless of location) were indicative of poor scent. In turn,

the cause of lackluster information scent was believed to beeither a poorly defined information

goal or a less than optimal Web site design, both of which wereless likely to result in a goal being

achieved. Stated in a positive direction, the hypothesis proposed that the lower the percentage of

duplicate pages viewed, the more likely a goal would be achieved.

Hypothesis SC7 (table 65) was significant atα = 0.01 (S = 42; p-value =< 0.0001)43, support-

ing the hypothesis that goal achieving sessions would visitfewer duplicate pages than non-goal

sessions. 42 of the 44 non-zero Web sites had goal sessions with a higher median percentage of

unique pages viewed than non-goal sessions, with goal sessions viewing almost 90% unique pages

and non-goal sessions only viewing about 70%.

Prior research has examined the relationship between the proportion of unique pages visited and

42Hypothesis SC6 was also significant atα = 0.01 for both the t-test (t = 4.11; df = 13; p-value = 0.0006) and
Wilcoxon test (V = 100; p-value = 0.0006).

43Hypothesis SC7 was also significant atα = 0.01 for both the t-test (t = 10.19; df = 46; p-value =< 0.0001) and
Wilcoxon test (V = 986; p-value =< 0.0001).
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purchasing behavior. Moe (2003) found that the proportion of unique pages differed depending

on the type of pages being viewed (e.g., brand pages, productpages, category pages). However,

this hypothesis examined proportion of unique pages acrossall page types. Therefore, hypothe-

sis SC7 provides support for the general positive association between proportion of unique pages

viewed and goal achievement.

SC8 –LINEAR

Hypothesis SC8 was the second of the two hypotheses that defined information scent in a strict

manner, where repeat visitations were viewed as indications of poor scent. However, this hypoth-

esis took a finer-grained conceptualization of scent than the previous hypothesis by examining the

complexity of a user’s session. Complexity was determined by not only what pages were viewed,

but also the order in which they were viewed. Hypothesis SC8 proposed that less complex (i.e.,

more linear) clickstreams were indicative of higher levelsof scent, and thus a greater likelihood of

achieving a goal.

The hypothesis was found to be significant atα = 0.01 (S = 18; p-value =< 0.0001)44, support-

ing hypothesis SC8. All 18 of the non-zero Web sites had higher median linear clickstream values

for goal sessions compared to non-goal sessions. The average goal sessions had a linear click-

stream value of 0.98 compared to the average value of 0.75 fornon-goal sessions.

Prior research has found success in using the measure of session complexity to distinguish be-

tween groups (McEneaney, 2001), in the use of product recommendation agents (Senecal et al.,

2005), and in predicting the completion of information and e-commerce tasks (Kalczynski et al.,

2006). This hypothesis strengthens the use of session complexity to distinguish between goal and

non-goal sessions within the context of goal achievement.

Both of the two strict information scent hypotheses were found to be supported at the sameα

level. Using the results of the sign test, one measure was notable to be definitively considered

better than the other, since the number of non-zero Web siteswas different for each hypothesis45.

In addition, even though theLINEAR measure had a greater percentage of its non-zero Web sites in

44Hypothesis SC8 was also significant atα = 0.01 for both the t-test (t = 4.41; df = 46; p-value =< 0.0001) and
Wilcoxon test (V = 171; p-value =< 0.0001).

45Examining the t-test shows a clear preference for theUNIQUE measure in being better able to distinguish between
goal and non-goal sessions (t value of 10.19 versus 4.41). However, as the assumptions of the t-test were not fully met,
the results of the t-test should be interpreted with caution.
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the positive direction (100% versus 95.45%), the loss of two Web sites in the negative direction for

theUNIQUE measure was not enough to raise the p-value precipitously.

SC9 –TRAILMAX , TRAILLAST , and TRAILSUM

The final hypothesis examined information scent from a relaxed viewpoint. The hypothesis as-

sumed that foragers who followed trails predominately traversed by prior goal sessions would be

positively associated with goal achievement. The hypothesis operated under the assumption that

certain paths throughout a Web site (with or without “inefficiencies”) were indicators of high scent

relevant to a goal-achieving information goal. The value obtained from a forager following a trail

was specified in three slightly different sub-hypotheses: maximum value of a trail, value of last

trail followed, and total value of all trails followed.

The three sub-hypotheses of SC9 (table 66) regarding the following of valuable trails as a means

to explain goal achievement were all found to be significant at α = 0.05 (S = 6; p-value = 0.0156

for all three measures)46, supporting hypotheses SC9a-c. 10 Web sites out of the 47 total sites

discovered trails at the 0.05 significance level, with only six of those 10 sites having a non-zero

difference. All six of the non-zero Web sites had goal sessions with higher median values for the

most valuable trail followed, last trail followed, and sum of all trails followed.

On average, foragers followed 1.60 trails per session. As many foragers only followed a sin-

gle trail per session, it was likely the measures did not differ from one another by a great deal. For

example, sessions that only followed a single trail would have the same value for all three mea-

sures. Examining the difference in value between the three measures (0.26 to 0.33) failed to re-

veal a clear and distinct difference between them. Therefore, even though all three sub-hypotheses

were supported, the similarity of each measure means the actual impact of the most valuable, last

followed, and total value of all trails followed on goal achievement cannot be reliably separated

from one another.

Prior research has examined the use of paths and portions of paths to predict future patch selec-

tions (Montgomery et al., 2004; Yang et al., 2004). However,the use of path fragments to segment

groups of a Web site population has not been examined in priorliterature. Thus, this hypothesis

46Hypotheses SC9a-c were significant atα = 0.05 for both the t-test (TRAILMAX (t = 3.33; df = 9; p-value =
0.0044);TRAILLAST (t = 3.36; df = 9; p-value = 0.0042);TRAILSUM (t = 2.89; df = 9; p-value = 0.0089)) and Wilcoxon
test (V = 21; p-value = 0.0156 for all three measures).
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provides an initial result of a positive association between following of trails and goal achieve-

ment.

Summary of Results

Table 67 summarizes the results of the hypotheses testing. Of the 13 hypotheses and sub-hypotheses,

seven were supported atα = 0.01, four atα = 0.05, and one atα = 0.10. Hypothesis SC3 was not

supported in its original form, but the opposite of SC3 was supported atα = 0.01.

Table 67: Site-centric: Hypotheses Results Sum-
mary

Hyp. Metric Hypothesis Supported?

INFORMATION PATCH – SITE-PATCH

SC1 SITEDUR Yes***

SC2 SITEPGS Yes**

SC3 RETURN No

SC3 (opp)a Yes***

SC4 REPEAT Yes*

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX Yes***

SC5b PATCHLAST Yes***

SC5c PATCHSUM Yes***

SC6 PATCHDUR Yes***

RELAXED INFORMATION SCENT

SC7 UNIQUE Yes***

SC8 LINEAR Yes***

RELAXED INFORMATION SCENT

SC9a TRAILMAX Yes**

SC9b TRAILLAST Yes**

SC9c TRAILSUM Yes**

a Hypothesis tested in opposite direction as original – i.e.,
leaving and returning will benegativelyassociated with
achieving a goal on this long tail Web site.
*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
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7.2.3 Sensitivity Analysis

The previous section tested hypotheses SC5a-c, SC6, and SC9a-c from patches and trails mined

at the 0.05 significance level. The use ofα = 0.05 for learning patches and trails was motivated by

prior research that used the sameα level when discovering contrast sets (Bay and Pazzani, 1999).

However, other significance levels and different means of detecting contrast sets may be used (e.g.,

support). Therefore, a sensitivity analysis was done to seehow the selection of mining criteria

used for learning patches and trails may affect the results of the hypotheses.

This section provides descriptive statistics and results for hypotheses SC5a-c, SC6, and SC9a-c

at two different significance levels (0.01 and 0.05) and six distinct support levels (0.25 – 1.50 in

0.25 increments).

Descriptive Statistics

Figure 58 illustrates the number of Web sites that discovered patches (figure 58a) and trails (fig-

ure 58b) from all eight mined significance and support levelsused47. Each figure also displays the

number of Web sites which did not have a zero difference for the tested measures48.
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Figure 58.: Site-centric: Patch and Trail Sample Size by Significance / Support Levels

Between the two mined significance levels, there was very little change in the number of Web

sites for either patches or trails. An increase of only two Web sites for patches (16.67%) and one

47The actual number of Web sites may be found in tables 69 – 76, which are introduced later in this subsection.
48The number of non-zero Web sites was determined by finding theaverage number of “no zero” Web sites from

hypotheses SC5a-c for patches and SC9a-c for trails.
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Web site for trails (11.11%) was seen when moving from the more stringentα = 0.01 to the less

stringentα = 0.05.

The difference in sample size between mined support levels was much more dramatic than be-

tween mined significance levels. Higher support levels greatly reduced the number of Web sites

which discovered patches and trails of the specified value. At the 0.25 support level, 32 Web sites

found patches and 35 sites discovered trails. An increase tothe 0.50 support level saw a 25.00%

drop in patch Web sites (to 24 sites) and a 31.43% decrease in trail Web sites (to 24 sites). An even

greater percentage drop in Web sites was seen using the 0.75 support level: 58.33% decrease in

Web sites for both patches and trails (to 10 sites). At the higher support levels there were very few

Web sites discovering patches or trails. Only two and five Websites, and one and zero Web sites

for patches and trails were found at the 1.00 and 1.25 supportlevels, respectively.

Figure 59 displays the average value of all sessions for the three patch visitation (figure 59a)

and trail following (figure 59b) measures across all eight mining significance and support levels

used49. In addition, figure 59 also shows the average number of seconds spent within patches for

all sessions (figure 59c).

In general, the average values for each of the measures appeared to stay within a relatively nar-

row range of one another from the 0.01 significance level to the 0.75 support level. Table 68 fur-

ther reinforces the relative stability of these measures bylisting the mean, standard deviation,

median, minimum, and maximum values from the average of the first six significance and sup-

port levels. The standard deviation for the three patch visitation and three trail following measures

ranged from 0.07 to 0.13.

The highest values ofPATCHMAX andPATCHLAST were found at the 0.01 significance level

(0.36 and 0.34), whileTRAILMAX andTRAILLAST were at their highest average values at the 0.05

significance level (0.37 and 0.35). Not surprisingly, both of the sum measures (PATCHSUM and

TRAILSUM) had their highest values (0.90 and 0.60) when the support was 0.25 (when the most

number of patches and trails were discovered50).

ThePATCHDUR measure was the only metric that continued to increase through all the signifi-

49The results from the 1.00 support level and above should be interpreted with caution as the averages were calcu-
lated from very few Web sites. In addition, the averages displayed in the figures were calculated by including sessions
which did not visit a patch or trail. Therefore, the average metric may be lower than should otherwise be possible. For
example, the lowest average of patches learned at the 0.50 support level should be 0.50. However, the averagePATCH-
MAX value was 0.17 for all sessions.

50See tables 77 and 78 for more details.
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Figure 59.: Site-centric: All Patch and Trail Metrics by Significance / Support Levels
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cance and support mining levels51. The increase may have been due to three inter-related reasons.

First, the average number of patches per site increased fromthe 0.01 significance level to the

0.25 support level. An increased number of patches generally meant greater coverage of the Web

site (e.g., 23.37% to 42.22% coverage between the 0.01 significance level and 0.25 support level)52.

Therefore, the duration spent in patches may have more closely aligned with the amount of time a

forager spent on the Web site as a whole.

The second reason may be due to the increase in average patch size. For example, the average

size of patches went from 1.67 to 2.25 pages when going from the 0.01 significance level to the

0.50 support level. When the size of a patch was increased then the total duration within the patch

included the duration of more pages. Therefore, an increased total duration within a patch may

then lead to higher median patch durations.

The final reason may have been because the average value of a patch increased. For example,

between the 0.25 to 0.75 support levels the average patch value increased from 0.42 to 0.88. The

assumption was foragers would spend more time within the more valuable patches. Therefore,

when a site only had valuable patches (e.g., at support level0.75), then (1) more time should have

been spent within those patches and (2) the median patch duration of the forager was not reduced

by the visitation of less valuable patches (where less time within the patch would be expected).

Table 68: Site-centric: Sensitivity Analysis Metric Statistics

Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX 0.28 0.07 0.28 0.17 0.36

PATCHLAST 0.24 0.08 0.24 0.12 0.34

PATCHSUM 0.77 0.09 0.78 0.64 0.90

PATCHDUR (in seconds) 82.75 20.35 81.35 58.46 107.71

RELAXED INFORMATION SCENT

TRAILMAX 0.24 0.09 0.21 0.14 0.37

TRAILLAST 0.21 0.10 0.19 0.11 0.35

TRAILSUM 0.42 0.13 0.36 0.31 0.60

51The measure was calculated by finding the median amount of time spent in all patches by a forager.
52Statistics about patch characteristics may be found in § 7.2.3.
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Figure 60 expands upon figure 59 by illustrating the average value of the seven measures against

three groups of sessions: all, goal, and non-goal53.

Tables 69 – 76 list the mean, standard deviation, median, minimum, and maximum values for

the seven metrics that were calculated from mined patches and trails at the eight different signif-

icance and support levels. The statistics for the metrics are displayed in three groups of sessions:

all, goal, and non-goal.

Patch and Trail Descriptive Statistics

Figure 61 illustrates the differences between the significance and support levels for four differ-

ent statistics54: number of patches and trails (figure 61a), size of patches and trails (figure 61b),

percentage of coverage of patches and trails (figure 61c), and the value of patches and trails (fig-

ure 61d). Each figure displays the statistic of patches and trails for each of the metrics. Figure 61

also displays the number of patches visited (figure 61e) and trails followed (figure 61f) from three

groups of sessions: all, goal, and non-goal.

Tables 77 – 86 list the mean, standard deviation, median, minimum, and maximum values for

the metrics displayed in figure 61 across all eight significance and support mining levels.

The average number of patches and trails found on a Web site followed a similar pattern for the

first five levels, with more patches being discovered than trails. Not surprisingly, the greatest num-

ber of average patches (50.16) and trails (39.60) were foundusing the least stringent support level

(0.25). In comparing the significance and support levels, there was not a direct equivalent of either

significance level found within the selected support levels. For example, in order to obtain a sim-

ilar number of patches and trails as found atα = 0.05 (11.93 patches and 4.70 trails), the support

level would need to have been between 0.75 and 1.00 (8.00 – 20.20 patches and 1.60 – 7.20 trails).

The average size of patches and trails roughly followed a∩ shape over the significance and

support levels, with trails being larger in size than patches for all but the 0.50 support level (2.63

pages per patch versus 2.56 pages per trail)55. Patches and trails discovered using significance

were smaller in size than those patches and trails found fromthe first three support levels. For

example, patches were 1.82 pages in size and trails were 2.15pages long atα = 0.05. The first

53The actual values used in the figures may be found in tables 69 –76, which are introduced later in this subsection.
54The analysis of patch and trail descriptive statistics do not include support levels greater than 0.75, as a limited

number of Web sites found patches and trails at those supportlevels to provide reliable metric averages.
55Trails were restricted to a minimum of two pages in sequence,whereas patches could be one page in size.
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Figure 60.: Site-centric: Patch and Trail Metrics by Significance / Support Levels
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Table 69: Site-centric: Metric Statistics (Significant – 0.01)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX

All 12 0.36 0.41 0.20 0.00 1.31

Goal 0.60 0.43 0.74 0.00 1.31

Non-goal 0.12 0.21 0.00 0.00 0.53

PATCHLAST

All 12 0.34 0.37 0.20 0.00 1.03

Goal 0.56 0.37 0.70 0.00 1.03

Non-goal 0.12 0.21 0.00 0.00 0.53

PATCHSUM

All 12 0.78 1.18 0.20 0.00 4.53

Goal 1.40 1.41 1.06 0.00 4.53

Non-goal 0.16 0.31 0.00 0.00 0.95

PATCHDUR (in seconds)

All 12 58.46 40.41 47.75 13.00 162.75

Goal 80.23 46.75 71.25 17.00 162.75

Non-goal 36.69 13.97 37.88 13.00 62.50

RELAXED INFORMATION SCENT

TRAILMAX

All 9 0.28 0.38 0.00 0.00 1.04

Goal 0.50 0.42 0.50 0.00 1.04

Non-goal 0.06 0.17 0.00 0.00 0.50

TRAILLAST

All 9 0.27 0.37 0.00 0.00 1.04

Goal 0.48 0.40 0.50 0.00 1.04

Non-goal 0.06 0.17 0.00 0.00 0.50

TRAILSUM

All 9 0.33 0.51 0.00 0.00 1.80

Goal 0.60 0.60 0.50 0.00 1.80

Non-goal 0.06 0.17 0.00 0.00 0.50

Note: all values are based on the median values from each Web site’s goal and non-
goal sessions.
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Table 70: Site-centric: Metric Statistics (Significant – 0.05)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX

All 14 0.32 0.40 0.00 0.00 1.31

Goal 0.54 0.43 0.60 0.00 1.31

Non-goal 0.10 0.21 0.00 0.00 0.57

PATCHLAST

All 14 0.29 0.34 0.00 0.00 1.03

Goal 0.47 0.36 0.47 0.00 1.03

Non-goal 0.10 0.20 0.00 0.00 0.51

PATCHSUM

All 14 0.79 1.25 0.00 0.00 4.53

Goal 1.40 1.52 1.06 0.00 4.53

Non-goal 0.17 0.36 0.00 0.00 1.04

PATCHDUR (in seconds)

All 14 68.28 47.02 51.38 19.00 178.00

Goal 89.48 53.06 76.63 19.00 178.00

Non-goal 47.07 28.43 38.88 20.00 134.00

RELAXED INFORMATION SCENT

TRAILMAX

All 10 0.27 0.37 0.00 0.00 1.04

Goal 0.50 0.40 0.52 0.00 1.04

Non-goal 0.05 0.16 0.00 0.00 0.50

TRAILLAST

All 10 0.26 0.35 0.00 0.00 1.04

Goal 0.48 0.37 0.52 0.00 1.04

Non-goal 0.05 0.16 0.00 0.00 0.50

TRAILSUM

All 10 0.33 0.50 0.00 0.00 1.80

Goal 0.61 0.58 0.52 0.00 1.80

Non-goal 0.05 0.16 0.00 0.00 0.50

Note: all values are based on the median values from each Web site’s goal and non-
goal sessions.
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Table 71: Site-centric: Metric Statistics (Supported – 0.25)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX

All 32 0.27 0.31 0.26 0.00 1.31

Goal 0.37 0.36 0.32 0.00 1.31

Non-goal 0.17 0.21 0.00 0.00 0.57

PATCHLAST

All 32 0.20 0.20 0.26 0.00 0.68

Goal 0.26 0.22 0.28 0.00 0.68

Non-goal 0.15 0.18 0.00 0.00 0.48

PATCHSUM

All 32 0.90 1.68 0.27 0.00 6.99

Goal 1.44 2.20 0.60 0.00 6.99

Non-goal 0.37 0.56 0.00 0.00 2.05

PATCHDUR (in seconds)

All 31 81.35 51.13 71.13 16.50 274.00

Goal 98.89 59.29 89.00 26.00 274.00

Non-goal 63.82 34.13 51.75 16.50 130.00

RELAXED INFORMATION SCENT

TRAILMAX

All 35 0.21 0.27 0.00 0.00 1.04

Goal 0.28 0.32 0.25 0.00 1.04

Non-goal 0.14 0.20 0.00 0.00 0.58

TRAILLAST

All 35 0.15 0.19 0.00 0.00 0.63

Goal 0.19 0.20 0.25 0.00 0.63

Non-goal 0.11 0.16 0.00 0.00 0.50

TRAILSUM

All 35 0.60 1.57 0.00 0.00 10.72

Goal 1.00 2.14 0.25 0.00 10.72

Non-goal 0.21 0.33 0.00 0.00 1.13

Note: all values are based on the median values from each Web site’s goal and non-
goal sessions.
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Table 72: Site-centric: Metric Statistics (Supported – 0.50)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX

All 24 0.17 0.35 0.00 0.00 1.31

Goal 0.32 0.44 0.00 0.00 1.31

Non-goal 0.02 0.12 0.00 0.00 0.57

PATCHLAST

All 24 0.12 0.25 0.00 0.00 0.79

Goal 0.23 0.31 0.00 0.00 0.79

Non-goal 0.02 0.10 0.00 0.00 0.51

PATCHSUM

All 24 0.64 1.62 0.00 0.00 6.35

Goal 1.22 2.14 0.00 0.00 6.35

Non-goal 0.07 0.32 0.00 0.00 1.58

PATCHDUR (in seconds)

All 24 97.97 60.06 84.00 13.00 348.25

Goal 112.55 67.35 95.25 17.00 348.25

Non-goal 83.40 48.90 70.75 13.00 171.75

RELAXED INFORMATION SCENT

TRAILMAX

All 24 0.14 0.30 0.00 0.00 1.04

Goal 0.24 0.37 0.00 0.00 1.04

Non-goal 0.05 0.16 0.00 0.00 0.58

TRAILLAST

All 24 0.11 0.22 0.00 0.00 0.68

Goal 0.17 0.25 0.00 0.00 0.68

Non-goal 0.05 0.16 0.00 0.00 0.58

TRAILSUM

All 24 0.36 1.01 0.00 0.00 5.55

Goal 0.67 1.35 0.00 0.00 5.55

Non-goal 0.05 0.16 0.00 0.00 0.58

Note: all values are based on the median values from each Web site’s goal and non-goal
sessions.
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Table 73: Site-centric: Metric Statistics (Supported – 0.75)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX

All 10 0.28 0.45 0.00 0.00 1.31

Goal 0.56 0.50 0.76 0.00 1.31

Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHLAST

All 10 0.24 0.39 0.00 0.00 1.03

Goal 0.49 0.43 0.76 0.00 1.03

Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHSUM

All 10 0.75 1.43 0.00 0.00 4.33

Goal 1.49 1.75 0.76 0.00 4.33

Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHDUR (in seconds)

All 10 107.71 90.64 89.38 13.00 398.25

Goal 130.60 109.67 105.88 17.00 398.25

Non-goal 84.83 64.42 71.00 13.00 240.75

RELAXED INFORMATION SCENT

TRAILMAX

All 10 0.21 0.38 0.00 0.00 1.04

Goal 0.41 0.46 0.22 0.00 1.04

Non-goal 0.00 0.00 0.00 0.00 0.00

TRAILLAST

All 10 0.19 0.36 0.00 0.00 1.04

Goal 0.38 0.43 0.20 0.00 1.04

Non-goal 0.00 0.00 0.00 0.00 0.00

TRAILSUM

All 10 0.31 0.61 0.00 0.00 1.81

Goal 0.62 0.76 0.22 0.00 1.81

Non-goal 0.00 0.00 0.00 0.00 0.00

Note: all values are based on the median values from each Web site’s goal and non-goal
sessions.
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Table 74: Site-centric: Metric Statistics (Significant – 1.00)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX

All 2 0.33 0.65 0.00 0.00 1.31

Goal 0.65 0.92 0.65 0.00 1.31

Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHLAST

All 2 0.26 0.52 0.00 0.00 1.03

Goal 0.52 0.73 0.52 0.00 1.03

Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHSUM

All 2 0.58 1.17 0.00 0.00 2.34

Goal 1.17 1.65 1.17 0.00 2.34

Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHDUR (in seconds)

All 2 105.88 54.06 102.88 43.00 174.75

Goal 136.25 54.45 136.25 97.75 174.75

Non-goal 75.50 45.96 75.50 43.00 108.00

RELAXED INFORMATION SCENT

TRAILMAX

All 5 0.10 0.33 0.00 0.00 1.04

Goal 0.21 0.47 0.00 0.00 1.04

Non-goal 0.00 0.00 0.00 0.00 0.00

TRAILLAST

All 5 0.10 0.33 0.00 0.00 1.04

Goal 0.21 0.47 0.00 0.00 1.04

Non-goal 0.00 0.00 0.00 0.00 0.00

TRAILSUM

All 5 0.10 0.33 0.00 0.00 1.04

Goal 0.21 0.47 0.00 0.00 1.04

Non-goal 0.00 0.00 0.00 0.00 0.00

Note: all values are based on the median values from each Web site’s goal and non-
goal sessions.
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Table 75: Site-centric: Metric Statistics (Supported – 1.25)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX

All 1 0.65 0.92 0.65 0.00 1.31

Goal 1.31 0.00 1.31 1.31 1.31

Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHLAST

All 1 0.65 0.92 0.65 0.00 1.31

Goal 1.31 0.00 1.31 1.31 1.31

Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHSUM

All 1 0.65 0.92 0.65 0.00 1.31

Goal 1.31 0.00 1.31 1.31 1.31

Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHDUR (in seconds)

All 1 39.25 21.57 39.25 24.00 54.50

Goal 54.50 0.00 54.50 54.50 54.50

Non-goal 24.00 0.00 24.00 24.00 24.00

RELAXED INFORMATION SCENT

TRAILMAX

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

TRAILLAST

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

TRAILSUM

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

Note: all values are based on the median values from each Web site’s goal and non-
goal sessions.
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Table 76: Site-centric: Metric Statistics (Supported – 1.50)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

PATCHMAX

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

PATCHLAST

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

PATCHSUM

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

PATCHDUR (in seconds)

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

RELAXED INFORMATION SCENT

TRAILMAX

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

TRAILLAST

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

TRAILSUM

All 0 n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

Note: all values are based on the median values from each Web site’s goal and
non-goal sessions.
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Figure 61.: Site-centric: Average Patch and Trail Statistics Per Site
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three support levels had patches ranging in size from 2.25 to2.63 pages and trails from 2.45 to

2.63 pages.

The percentage of coverage for both patches and trails were nearly identical for the first five

significance and support levels. The pattern of coverage roughly mirrored that of the number of

patches and trails found from figure 61a. As the number of available patches and trails increased,

the likelihood that more pages from a Web site may be includedin a patch also increased. Thus,

the increase and decrease in Web site coverage changed in a similar direction and degree as the

change in discovered patches and trails. For example, the lowest number of patches and trails

found along with the smallest coverage percentage was atα = 0.01 (10.58 patches with 23.37%

coverage and 3.44 trails with 20.25% coverage). In contrast, the highest number of patches, trails,

and coverage percentage was at support level 0.25 (50.16 patches with 42.22% coverage and 39.60

trails with 40.00% coverage).

The average value of patches and trails were relatively constant across the significance levels,

but increased steadily with each support level56. A noticeable difference between patches and

trails was only present for the two significance levels (e.g., 0.70 patch value versus 0.83 trail value

atα = 0.01). In comparing the significance and support levels, there was not a direct equivalent of

either significance level found within the selected supportlevels. For example, in order to obtain a

similar value for patches and trails as found atα = 0.05 (0.67 patch value and 0.79 trail value), the

support level would need to have been between 0.50 and 0.75 (0.60 – 0.83 patch value and 0.61

– 0.88 trail value). However, a support level between 0.50 and 0.75 would still not be equivalent

since the value of significant patches were as low as 0.27 and 0.28 forα = 0.01 and 0.05, respec-

tively.

The last measure (figures 61e and 61f) illustrated the numberof patches visited and trails fol-

lowed by foragers. Goal sessions visited more patches and followed more trails across all the dif-

ferent significance and support levels than non-goal sessions. In addition, the general shape of

both figures followed the number of patches and trails found on a site. For example, the highest

numbers of patches found and visited were both seen at support level 0.25 (50.16 patches discov-

ered with 7.74 patches followed by goal sessions).

56The increase of value for each support level was not surprising since the support level created a minimum allow-
able value for any included patches or trails.
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Table 77: Site-centric: Number of Patches by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01 12 10.58 26.35 2.00 1 94

0.05 14 11.93 28.74 3.50 1 111

SUPPORTED

0.25 32 50.16 132.79 14.50 2 748

0.50 24 31.04 83.50 6.50 1 412

0.75 10 20.20 47.69 2.00 1 155

1.00 2 8.00 8.49 8.00 2 14

1.25 1 1.00 0.00 1.00 1 1

1.50 0 n/a n/a n/a n/a n/a

Table 78: Site-centric: Number of Trails by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01 9 3.44 6.29 1.00 1 20

0.05 10 4.70 8.04 1.50 1 27

SUPPORTED

0.25 35 39.60 97.97 12.00 1 491

0.50 24 18.21 40.69 5.00 1 188

0.75 10 7.20 11.60 3.00 1 39

1.00 5 1.60 0.89 1.00 1 3

1.25 0 n/a n/a n/a n/a n/a

1.50 0 n/a n/a n/a n/a n/a
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Table 79: Site-centric: Patch Size by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01 12 1.67 0.54 1.50 1.00 3.00

0.05 14 1.82 0.64 2.00 1.00 3.00

SUPPORTED

0.25 32 2.42 0.72 2.25 1.00 4.00

0.50 24 2.63 0.89 2.75 1.00 4.00

0.75 10 2.25 0.75 2.25 1.00 3.00

1.00 2 1.75 0.35 1.75 1.50 2.00

1.25 1 1.00 0.00 1.00 1.00 1.00

1.50 0 n/a n/a n/a n/a n/a

Table 80: Site-centric: Trail Size by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01 9 2.00 0.00 2.00 2.00 2.00

0.05 10 2.15 0.34 2.00 2.00 3.00

SUPPORTED

0.25 35 2.63 0.65 3.00 2.00 5.00

0.50 24 2.56 0.74 2.50 2.00 5.00

0.75 10 2.45 0.50 2.25 2.00 3.00

1.00 5 2.30 0.67 2.00 2.00 3.50

1.25 0 n/a n/a n/a n/a n/a

1.50 0 n/a n/a n/a n/a n/a
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Table 81: Site-centric: Patch Coverage by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01 12 23.37% 13.88% 19.62% 7.14% 50.00%

0.05 14 28.63% 13.85% 26.79% 10.00% 50.00%

SUPPORTED

0.25 32 42.22% 16.79% 43.65% 7.89% 70.00%

0.50 24 36.39% 16.04% 35.92% 5.26% 70.00%

0.75 10 28.95% 11.66% 30.08% 12.50% 47.62%

1.00 2 32.90% 20.82% 32.90% 18.18% 47.62%

1.25 1 9.09% 0.00% 9.09% 9.09% 9.09%

1.50 0 n/a n/a n/a n/a n/a

Table 82: Site-centric: Trail Coverage by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01 9 20.25% 12.78% 18.18% 3.45% 47.62%

0.05 10 26.47% 14.80% 27.44% 6.90% 50.00%

SUPPORTED

0.25 35 40.00% 17.18% 42.11% 2.53% 70.00%

0.50 24 33.44% 13.43% 33.33% 6.90% 55.56%

0.75 10 29.40% 14.58% 27.44% 8.33% 50.00%

1.00 5 23.02% 15.30% 18.18% 12.50% 50.00%

1.25 0 n/a n/a n/a n/a n/a

1.50 0 n/a n/a n/a n/a n/a
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Table 83: Site-centric: Patch Value by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01 12 0.70 0.23 0.71 0.27 1.17

0.05 14 0.67 0.16 0.67 0.28 0.88

SUPPORTED

0.25 32 0.44 0.11 0.43 0.28 0.67

0.50 24 0.60 0.06 0.58 0.52 0.75

0.75 10 0.83 0.12 0.78 0.75 1.17

1.00 2 1.13 0.05 1.13 1.09 1.17

1.25 1 1.31 0.00 1.31 1.31 1.31

1.50 0 n/a n/a n/a n/a n/a

Table 84: Site-centric: Trail Value by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01 9 0.83 0.21 0.86 0.50 1.06

0.05 10 0.79 0.19 0.82 0.46 1.05

SUPPORTED

0.25 35 0.42 0.10 0.41 0.27 0.78

0.50 24 0.61 0.06 0.60 0.53 0.78

0.75 10 0.88 0.10 0.83 0.80 1.05

1.00 5 1.06 0.04 1.05 1.00 1.12

1.25 0 n/a n/a n/a n/a n/a

1.50 0 n/a n/a n/a n/a n/a
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Table 85: Site-centric: Patch Visitation by Site

Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01

All 2.54 1.89 2.00 1.00 10.00

Goal 3.17 2.44 2.00 1.00 10.00

Non-goal 1.92 0.79 2.00 1.00 4.00

0.05

All 2.75 2.25 2.00 1.00 11.00

Goal 3.50 2.93 2.00 1.00 11.00

Non-goal 2.00 0.88 2.00 1.00 4.00

SUPPORTED

0.25

All 5.81 5.88 4.00 1.00 26.00

Goal 7.74 7.58 4.00 1.00 26.00

Non-goal 3.87 2.23 4.00 1.00 9.00

0.50

All 4.70 4.49 3.00 1.00 21.00

Goal 5.56 5.68 3.00 1.00 21.00

Non-goal 3.83 2.73 3.00 1.00 11.00

0.75

All 3.65 3.59 2.00 1.00 14.00

Goal 4.50 4.60 2.00 1.00 14.00

Non-goal 2.80 2.10 2.00 1.00 7.00

1.00

All 3.38 1.70 3.00 2.00 5.50

Goal 3.75 2.47 3.75 2.00 5.50

Non-goal 3.00 1.41 3.00 2.00 4.00

1.25

All 1.00 n/a 1.00 1.00 1.00

Goal 1.00 n/a 1.00 1.00 1.00

Non-goal 1.00 n/a 1.00 1.00 1.00

1.50

All n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a
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Table 86: Site-centric: Trail Following by Site

Mean St. Dev. Median Min Max

SIGNIFICANCE

0.01

All 1.36 0.94 1.00 1.00 4.50

Goal 1.61 1.27 1.00 1.00 4.50

Non-goal 1.11 0.33 1.00 1.00 2.00

0.05

All 1.60 1.14 1.00 1.00 5.00

Goal 1.80 1.48 1.00 1.00 5.00

Non-goal 1.40 0.70 1.00 1.00 3.00

SUPPORTED

0.25

All 4.23 5.24 3.00 1.00 34.00

Goal 5.32 6.86 3.00 1.00 34.00

Non-goal 3.13 2.49 3.00 1.00 10.00

0.50

All 3.18 3.05 2.00 1.00 14.00

Goal 3.77 3.68 2.00 1.00 14.00

Non-goal 2.58 2.17 2.00 1.00 11.00

0.75

All 2.56 1.62 2.50 1.00 6.00

Goal 2.78 1.86 3.00 1.00 6.00

Non-goal 2.33 1.41 2.00 1.00 4.00

1.00

All 1.50 0.71 1.00 1.00 3.00

Goal 1.60 0.89 1.00 1.00 3.00

Non-goal 1.40 0.55 1.00 1.00 2.00

1.25

All n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a

1.50

All n/a n/a n/a n/a n/a

Goal n/a n/a n/a n/a n/a

Non-goal n/a n/a n/a n/a n/a
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Hypotheses Testing

Table 87 presents a summary of the results from each of the different significance and support

mining levels57. The table lists the hypothesis number and metric being tested in the first two

columns. Columns three and four present the results when patches and trails were mined using a

significance value of 0.01 and 0.05. The final six columns provide the results when the specified

support level (0.25 to 1.50 in 0.25 increments) was used to learn patches and trails58.

Table 87: Site-centric: Patches and Trails Hypotheses Results Summary

Hypothesis Supported?

Significance Support

Hyp. Metric 0.01 0.05 0.25 0.50 0.75 1.00 1.25 1.50

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX Yes** Yes*** Yes*** Yes*** Yes** No No n/a

SC5b PATCHLAST Yes** Yes*** Yes*** Yes*** Yes** No No n/a

SC5c PATCHSUM Yes** Yes*** Yes** Yes*** Yes** No No n/a

SC6 PATCHDUR Yes*** Yes*** Yes*** Yes*** Yes** No No n/a

RELAXED INFORMATION SCENT

SC9a TRAILMAX Yes* Yes** Yes* Yes* Yes* No n/a n/a

SC9b TRAILLAST Yes* Yes** Yes** Yes* Yes* No n/a n/a

SC9c TRAILSUM Yes* Yes** Yes* Yes* Yes* No n/a n/a

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01

In general, the results for all seven measures appeared to hold fairly steady across the first five

significance and support mining levels. ThePATCHMAX andPATCHLAST measures both had the

same pattern of significant findings. The metrics were significant atα = 0.01 for all but the most

stringent significance (0.01) and support mining levels (0.75), where the measures were both sig-

nificant atα = 0.05.PATCHSUM followed a similar pattern as the other two patch visitationmea-

sures. However, unlikePATCHMAX andPATCHLAST, PATCHSUM was only significant atα = 0.05

for patches mined at the 0.25 support level. The drop in significance may be a symptom of the

57The results were determined from the sign test. As the data used for the sensitivity analysis was from the same
data set that was used to test the site-centric model, the assumptions of the sign test still held.

58The analysis of results does not include supported levels greater than 0.75. There were too few Web sites at those
mined support levels to possibly obtain statistically significant results.
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patches found at the 0.25 support mining level covering too much of a Web site (42.22% average

coverage) to be as effective at distinguishing between goaland non-goal sessions.

ThePATCHDUR metric was significant atα = 0.01 for all levels except the 0.75 support mining

level, where the measure was significant atα = 0.05. The decrease in significance may be due to

the sign test’s lack of power in detecting differences atα = 0.01 with a sample size of only 10 Web

sites.

TRAILMAX , TRAILLAST , andTRAILSUM were all significant atα = 0.10 except for trails mined

at the 0.05 significance level, where all three measures weresignificant atα = 0.05. In addition,

theTRAILLAST measure was also significant atα = 0.05 at the 0.25 support mining level. A lack

of power by the sign test to adequately detect a difference insuch small sample sizes (e.g., five to

nine Web sites) was the primary suspect for many of the measures only reaching a significance of

α = 0.10.

Tables 88 – 95 present the results of all eight significance and support mining levels for all three

statistical tests. Following the tables, figure 62 illustrates the p-values obtained from the statistical

tests for each of the seven measures. The graphs show the results of the three tests over the first

five significance and support mining levels (0.01 – 0.75).
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Table 88: Site-centric: Results (Significant – 0.01)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX 12 8 3.72 11 0.0017*** 36 0.0039** 8 0.0039**

SC5b PATCHLAST 12 8 3.90 11 0.0012*** 36 0.0039** 8 0.0039**

SC5c PATCHSUM 12 8 2.92 11 0.0070** 36 0.0039** 8 0.0039**

SC6 PATCHDUR 12 12 3.93 11 0.0012*** 78 0.0002*** 12 0.0002***

RELAXED INFORMATION SCENT

SC9a TRAILMAX 9 5 2.92 8 0.0096** 15 0.0313* 5 0.0313*

SC9b TRAILLAST 9 5 2.94 8 0.0094** 15 0.0313* 5 0.0313*

SC9c TRAILSUM 9 5 2.57 8 0.0165** 15 0.0313* 5 0.0313*

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).
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Table 89: Site-centric: Results (Significant – 0.05)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX 14 9 3.68 13 0.0014*** 45 0.0020*** 9 0.0020***

SC5b PATCHLAST 14 9 3.92 13 0.0009*** 45 0.0020*** 9 0.0020***

SC5c PATCHSUM 14 9 3.00 13 0.0051** 45 0.0020*** 9 0.0020***

SC6 PATCHDUR 14 14 4.11 13 0.0006*** 100 0.0006*** 13 0.0009***

RELAXED INFORMATION SCENT

SC9a TRAILMAX 10 6 3.33 9 0.0044** 21 0.0156** 6 0.0156**

SC9b TRAILLAST 10 6 3.36 9 0.0042** 21 0.0156** 6 0.0156**

SC9c TRAILSUM 10 6 2.89 9 0.0089** 21 0.0156** 6 0.0156**

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).
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Table 90: Site-centric: Results (Supported – 0.25)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX 32 20 3.49 31 0.0007*** 191 0.0003*** 17 0.0013***

SC5b PATCHLAST 32 17 3.36 31 0.0011*** 141 0.0005*** 15 0.0012***

SC5c PATCHSUM 32 21 3.04 31 0.0024*** 210 0.0002*** 17 0.0036**

SC6 PATCHDURa 31 31 4.20 30 0.0001*** 450 < 0.0001*** 27 < 0.0001***

RELAXED INFORMATION SCENT

SC9a TRAILMAX 35 20 2.49 34 0.0089** 167 0.0096** 15 0.0207*

SC9b TRAILLAST 35 19 2.23 34 0.0162** 153 0.0090** 15 0.0096**

SC9c TRAILSUM 35 20 2.33 34 0.0128** 181 0.0016***** 15 0.0207*

a PATCHDURonly had a total of 31 Web sites (versus the 32 sites inPATCHES) because there were not any sessions which visited dis-
covered goal patches at one Web site. All five discovered goalpatches at the site of interest contained a page that was no longer
available to sessions within the testing set. More specifically, the training set consisted of sessions which existed onor before
05/23/2008 8:29:38 PM. The page in question was last visitedby any session on 03/20/2008 8:13:05 PM.
*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).
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Table 91: Site-centric: Results (Supported – 0.50)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX 24 9 3.40 23 0.0012*** 45 0.0020*** 9 0.0020***

SC5b PATCHLAST 24 9 3.36 23 0.0014*** 45 0.0020*** 9 0.0020***

SC5c PATCHSUM 24 9 2.84 23 0.0047** 45 0.0020*** 9 0.0020***

SC6 PATCHDUR 24 23 2.80 23 0.0050*** 227 0.0027*** 18 0.0053***

RELAXED INFORMATION SCENT

SC9a TRAILMAX 24 9 2.45 23 0.0112** 41 0.0137** 8 0.0195*

SC9b TRAILLAST 24 9 2.12 23 0.0226* 39 0.0273* 8 0.0195*

SC9c TRAILSUM 24 9 2.29 23 0.0159** 42 0.0098** 8 0.0195*

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).
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Table 92: Site-centric: Results (Supported – 0.75)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX 10 6 3.50 9 0.0034** 21 0.0156** 6 0.0156**

SC5b PATCHLAST 10 6 3.61 9 0.0028*** 21 0.0156** 6 0.0156**

SC5c PATCHSUM 10 6 2.70 9 0.0123** 21 0.0156** 6 0.0156**

SC6 PATCHDUR 10 10 2.62 9 0.0138** 50 0.0098*** 9 0.0107**

RELAXED INFORMATION SCENT

SC9a TRAILMAX 10 5 2.83 9 0.0099** 15 0.0313* 5 0.0313*

SC9b TRAILLAST 10 5 2.80 9 0.0104** 15 0.0313* 5 0.0313*

SC9c TRAILSUM 10 5 2.58 9 0.0148** 15 0.0313* 5 0.0313*

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).

248



Table 93: Site-centric: Results (Supported – 1.00)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX 2 1 1.00 1 0.2500 1 0.5000 1 0.5000

SC5b PATCHLAST 2 1 1.00 1 0.2500 1 0.5000 1 0.5000

SC5c PATCHSUM 2 1 1.00 1 0.2500 1 0.5000 1 0.5000

SC6 PATCHDUR 2 2 10.13 1 0.0313** 3 0.2500 2 0.2500

RELAXED INFORMATION SCENT

SC9a TRAILMAX 5 1 1.00 4 0.1870 1 0.5000 1 0.5000

SC9b TRAILLAST 5 1 1.00 4 0.1870 1 0.5000 1 0.5000

SC9c TRAILSUM 5 1 1.00 4 0.1870 1 0.5000 1 0.5000

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).
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Table 94: Site-centric: Results (Supported – 1.25)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX 1 1 n/a n/a n/a 1 0.5000 1 0.5000

SC5b PATCHLAST 1 1 n/a n/a n/a 1 0.5000 1 0.5000

SC5c PATCHSUM 1 1 n/a n/a n/a 1 0.5000 1 0.5000

SC6 PATCHDUR 1 1 n/a n/a n/a 1 0.5000 1 0.5000

RELAXED INFORMATION SCENT

SC9a TRAILMAX n/a n/a n/a n/a n/a n/a n/a n/a n/a

SC9b TRAILLAST n/a n/a n/a n/a n/a n/a n/a n/a n/a

SC9c TRAILSUM n/a n/a n/a n/a n/a n/a n/a n/a n/a

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).
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Table 95: Site-centric: Results (Supported – 1.50)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

SC5a PATCHMAX n/a n/a n/a n/a n/a n/a n/a n/a n/a

SC5b PATCHLAST n/a n/a n/a n/a n/a n/a n/a n/a n/a

SC5c PATCHSUM n/a n/a n/a n/a n/a n/a n/a n/a n/a

SC6 PATCHDUR n/a n/a n/a n/a n/a n/a n/a n/a n/a

RELAXED INFORMATION SCENT

SC9a TRAILMAX n/a n/a n/a n/a n/a n/a n/a n/a n/a

SC9b TRAILLAST n/a n/a n/a n/a n/a n/a n/a n/a n/a

SC9c TRAILSUM n/a n/a n/a n/a n/a n/a n/a n/a n/a

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).
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Figure 62.: Site-centric: Trail and Patch p-values by Significance / Support Levels
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7.3 Conclusion

This chapter provided the results of both the user- and site-centric models of information forag-

ing. Descriptive statistics, assumption checks of statistical tests, and results from each model’s hy-

potheses were provided. In addition, a sensitivity analysis was done on the seven hypotheses of the

site-centric model that relied on mining patches and trails. Overall, three of the four user-centric

hypotheses were supported atα = 0.01. Of the 13 site-centric hypotheses and sub-hypotheses,

seven were supported atα = 0.01, four atα = 0.05, one atα = 0.10, and one atα = 0.01 in the op-

posite direction as expected.
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Chapter 8

Temporal Aspects of Information Foraging

The site-centric clickstream model of information foraging made an implicit assumption that the

structure of the Web sites being examined did not change overthe course of the analysis. Thus,

it was expected that browsing patterns of goal and non-goal sessions would be roughly constant

over time, for both the calculated measures (e.g., duration, number of pages viewed) and learned

patches and trails. However, the Web is a dynamic and evolving environment (Warren et al., 1999;

Chi et al., 1998) where Web sites add, modify, and remove content (Pitkow and Pirolli, 1997) on a

regular basis1. In addition, like traditional software, Web sites may alsoundergo structural mainte-

nance to improve the quality of the browsing experience for visitors (Ricca and Tonella, 2001).

As Web sites can be dynamic, assuming a static representation may not be appropriate when

testing the site-centric model2. Therefore, this chapter presents a second test of the site-centric

hypotheses using temporal aspects to determine if time makes a difference in the results. Instead

of comparing browsing behavior to an absolute point of zero,all behavior was compared relative

to prior goal sessions at the site of interest. Thus, if content or structural changes occurred, they

would be reflected in the relative value of the current session.

Methodologically, relative measures were determined by progressively calculating sessions in

order of their session start time. Thus, the currently processed session would be compared rela-

tive to all goal sessions that occurred before it. Although the comparison was relatively simple in

definition (i.e., all prior goal sessions were used as opposed to a sliding window), the computa-

tional complexity of the methodology was still much higher than for the static site-centric version.

Therefore, the results of this chapter may also shed light onto the value of undertaking the extra

complexity of this methodology.
1For example, Ricca and Tonella (2000) analyzed 15 Web sites over a three month period and found that each Web

site had, on average, 3.4 significant structural changes within that time frame.
2The same concern over static Web sites was not an issue in the tested portions of the user-centric model. Compar-

isons were made relative to browsing behavior at other Web sites within the limited time of the user’s session. Thus, the
only expectation was that the Web site would remain static while the user was on the site of interest.
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The first section of this chapter details the methodology used to test the temporal version of the

site-centric model. In particular, the data used to test themodel is explained first, followed by the

algorithm used to progressively calculate measures, and then finally the formulas used to deter-

mine the relative value for each session’s measures. The second section presents the results of the

temporal version and compares against the results of the static version of the model. Finally, the

conclusion summarizes the usefulness of the temporal methodology given the results obtained.

8.1 Methodology

In the first subsection below, a description of the data elements available in the data are described3.

The second subsection details the progressive manner in which the dataset was processed. The

processing was done in order to create measures that were relative to prior sessions. Finally, the

last subsection illustrates the equations used to calculate each of the measures for the temporal

version of the site-centric model.

8.1.1 Dataset Sample

The data used in the static and temporal versions of site-centric model were exactly the same. The

data contained a set ofn sessionsS (S0, S1, . . . ,Sn−1), whereSi represents a single session. Each

session (Si) contained a set ofm page information tuplesP (Pi0, Pi1, . . . ,Pim−1), wherePij rep-

resents information about a particular page viewed during asession. Each page information tuple

was made up of seven pieces of information: a unique identifier for the session, Web site, referring

domain, and page viewed; date and time the page was viewed; how much time was spent on the

page; and if the page represented a contact goal being achieved.

The calculation of metrics for each session was only done on those parts of a session occurring

beforethe achievement of a contact goal4. This truncation was done because the problem being in-

vestigated was the prediction of goal achievement during the remainderof a session. Thus, predic-

tion was done from a point right before a form submission occurred, i.e.,P only contained pages

which occurredbeforethe contact form was submitted for the contact goal of interest.

3Summary statistics about the site-centric dataset can be found in chapter 6.
4If a session did not submit a contact form then the entire session was used.
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8.1.2 Progressive Calculations

The measures in the temporal version of the site-centric model compared the browsing behavior

of the current forager against what previous goal-achieving foragers had done5. For calculating

the measures, previous was defined as any session that started before the current forager’s session

began. For example, a session which took place a month after data collection began would have

had that entire month’s worth of goal sessions to compare against. For a session that took place six

months after the start of data collection, there would have been even more goal sessions to com-

pare against.

The process used to compare prior sessions against is outlined in theprocessDatasetalgorithm

(figure 63). The algorithm requires two arguments: a set of sessions for a particular Web site and

the minimum percentage of goal sessions to bank before the calculation of sessions’ measures

should begin. TheprocessDatasetalgorithm operates in six basic steps.

The first step of theprocessDatasetalgorithm sorted sessions in ascending order by their start

date and time (line 23). The second step (line 25) determinedthe total number of goal sessions in

the entire set of sessions. After setting up the environmentin the first two steps, each session was

then iterated over (lines 27-45) for the next three steps.

The third step (line 29) determined if the minimum percentage of goal sessions had been added

to the set of banked goal sessions. If the minimum percentagehad been met, then the measures

for the current session were calculated and added to the dataset (line 30). Calculations were per-

formed using all banked goal sessions along with valuable goal patches and trails. The fourth step

then added the current session into the appropriate set of banked sessions in lines 34-38. A session

was banked regardless of if measures were calculated for that session or not.

The sixth step handled the mining of goal patches and trails (lines 41-44). Since long tail sites

have limited data and an additional goal session may have an impact on the formation of patches

or trails, mining was done after each goal session was added to the bank (once the minimum per-

centage was met)6. The final step occurred after all sessions had been processed. In the last step,

5Previous non-goal sessions were also used, but only for learning patches and trails. See §8.1.3 for more details.
6Patches and trails were not mined after every non-goal session because there were generally many more non-goal

sessions than goal sessions. Thus, the addition of one additional non-goal session, when finding frequent itemsets or
sequential patterns, was unlikely to cause drastic differences in patch and trail formation, unlike what may occur with
goal sessions. In addition, the computational effort required to mine after every session would be very high at some
Web sites (e.g., a site with 40,000 sessions).
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1 / * *
2 * Parameters : ( a ) S e t o f use r s e s s i o n s : S ={S0 , S1 , . . . , SN−1}
3 * where Si = s e t o f page i n f o r m a t i o n t u p l e s , P .
4 * ( b ) Minimum p e r c e n t a g e o f goa l s e s s i o n s
5 * t o base c a l c u l a t i o n s on : minPercent
6 * Re tu rns : S e t o f r e s u l t r e c o r d s : R ={R0 , R1 , . . . , RX−1}
7 * Methods : ( a ) c a l c u l a t e M e a s u r e s (Si , G, A , T ) : c a l c u l a t e s
8 * a l l t h e n e c e s s a r y measures f o r s e s s i o nSi us ing
9 * a l l goa l s e s s i o n s f rom s e t G, goa l p a t c h e s f rom s e t A ,

10 * and goal t r a i l s f rom s e t T
11 * ( b ) g e n e r a t e P a t c h e s (G, N) : r e t u r n s a s e t o f v a l u a b l e goa l p at c h e s
12 * ( c ) g e n e r a t e T r a i l s (G, N) : r e t u r n s a s e t o f v a l u a b l e goa l t r ai l s
13 * ( d ) getGoalCount ( S ) : r e t u r n s number o f goa l s e s s i o n s i n S
14 * ( e ) i sGoa l (Si ) : t r u e i f s e s s i o n ach ieved goal
15 * ( f ) s o r t ( S ) : s o r t s s e s s i o n s i n ascend ing orde r by s e s s i o n
16 * s t a r t da te
17 * /
18 p r o c e s s D a t a s e t ( S , m inP ercen t ){
19 / / R = result records; G = banked goal sessions; N = banked non-goal sessions
20 / / A = valuable goal patches; T = valuable goal trails
21 R = {} ; G = {} ; N = {} ; A = {} ; T = {} ;
22
23 s o r t ( S ) ; / / sort sessions in ascending order by session start date
24
25 goa lCount = getGoalCount ( S ) ;/ / determine how many total goal sessions in entire set
26
27 f o r each ( i ∈ S ) {
28 / / Only calculate once minimum percentage of goal sessions is met
29 i f (‖G‖ / goa lCount >= minP ercen t ) {
30 R += c a l c u l a t e M e a s u r e s ( i , G, A, T) ;
31 }
32
33 / / Add session to banked goal or non-goal set
34 i f ( i s G o a l ( i ) ) {
35 G += i ;
36 } e l s e {
37 N += i ;
38 }
39
40 / / Mine patches and trails for each new goal session (if enough goal sessions are banked)
41 i f ( i s G o a l ( i ) && ‖G‖ / goa lCount >= minP ercen t ) {
42 A = g e n e r a t e P a t c h e s (G, N) ;
43 T = g e n e r a t e T r a i l s (G, N) ;
44 }
45 }
46 r e t u r n R;
47 }

Figure 63.: Temporal Site-centric: processDataset Algorithm
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the set of result data records which contained the calculated measures for each session were re-

turned. Of note is the algorithm did not include those sessions in the returned results that occurred

before the minimum percentage of sessions was met.

Example

Table 96 presents an example of how the algorithm processed adataset. The table shows the

first 11 sessions from the dataset sorted by session start time. Five of the sessions resulted in a

goal being achieved. All of the sessions were passed to the algorithm. In addition, the minimum

percentage of goal sessions required before calculating measures was set to 80%. Therefore, ses-

sions were not considered part of the result dataset until four goal sessions (80%) were banked.

Table 96: Temporal Site-centric: Example Sessions

Session Start Date and Time Goal Achieved?

S1 7/09/08 11:04:07 No

S2 7/09/08 17:35:12 Yes

S3 7/11/08 10:10:56 No

S4 7/15/08 11:36:18 Yes

S5 7/15/08 11:37:08 Yes

S6 7/15/08 14:43:23 No

S7 7/22/08 12:11:10 No

S8 7/23/08 19:44:39 Yes

S9 7/23/08 20:23:21 No

S10 7/25/08 14:05:09 Yes

S11 7/26/08 16:07:25 No
...

Table 97 illustrates the process using the sessions from table 96. The contents of which sessions

were in the result set, goal set, and non-goal set are provided at theendof every iteration of the al-

gorithm (i.e., line 45). Calculations for a session were done beforethe session was added to either

the goal or non-goal set.

After processing the first session the result and goal set remained empty whileS1 was added to
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the non-goal set. After the eighth session was processed theminimum percentage of goal sessions

was met for the goal set. SessionsS2, S4, S5, andS8 were included in the goal set while sessions

S1, S3, S6, andS7 were in the non-goal set. Up to the eighth session, no sessions had been added

to the result data set yet (i.e., no calculations had been performed).

Table 97: Temporal Site-centric: Example Dataset Processing

Step Result Set Goal Set Non-Goal Set

1 S1

2 S2 S1

3 S2 S1, S3

4 S2, S4 S1, S3

5 S2, S4, S5 S1, S3

6 S2, S4, S5 S1, S3, S6

7 S2, S4, S5 S1, S3, S6, S7

8 S2, S4, S5, S8 S1, S3, S6, S7

9 S9 S2, S4, S5, S8 S1, S3, S6, S7, S9

10 S9, S10 S2, S4, S5, S8, S10 S1, S3, S6, S7, S9

11 S9, S10, S11 S2, S4, S5, S8, S10 S1, S3, S6, S7, S9, S11
...

After the eighth step; however, the minimum percentage of goal sessions had been met. There-

fore, all remaining sessions would have their measures calculated and added to the result data set.

SessionS9 used the patches and trails mined from the four banked goal (S2, S4, S5, S8) and

non-goal sessions (S1, S3, S6, S7), along with just the banked goal sessions to calculate its rel-

ative measures. For sessionS10, the previous session (S9) was added to the non-goal set, but the

patches and trails were not re-mined. For the final session, new patches and trails were mined, be-

causeS10 was a goal session. If more than eleven sessions existed, then this progressive manner

of mining patches and trails and calculating measures wouldhave continued until the final session

was processed.

In this research theprocessDatasetalgorithm was run with the minimum percentage of goal

sessions set to 70%. Thus, measures were only calculated when at least 70% of all goal sessions

were banked.
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8.1.3 Metrics

Table 98 summarizes the metrics used to test the temporally-positioned hypotheses for the site-

centric clickstream model (TSC). The name of each metric along with a description of how it was

calculated is provided. In addition, the hypothesis which corresponds to the metric is also provided

in the table. A more in-depth description of the metrics is given in the following subsections.

Table 98 does not contain theRETURN andVISITED metrics (hypotheses SC3 and SC4) because

they were calculated at a Web site as opposed to an individuallevel of analysis. The temporal ver-

sion of the model examines relative behavior of auserversus previous sessions. Therefore, mea-

sures at a higher level of analysis were not analyzed.

To help clarify the notation being used below for the metrics, C represents the current session

being analyzed,G is the set of banked past goal sessions thatC will be compared against, and

median() is a function that returns the median from a set of values.

Information Patch – Site-Patch

RELDUR is the total duration in seconds a visitor has spent at a Web site relative to the median

time prior goal sessions have spent at the same Web site. The relative duration is calculated from

equation 8.1, whereduration(i) is the duration spent during sessioni. To obtainRELDUR, the

median duration of all banked goal sessions in the goal setG is subtracted from the total duration

of the current sessionC.

RELDUR = duration(C) − median (for eachi∈G [duration(i)]) (8.1)

RELPGSis the number of pages a visitor has viewed at a Web site relative to the median num-

ber of pages viewed by prior goal sessions at the same Web site. The relative number of pages is

calculated as shown in equation 8.2, wherepages(i) is the number of pages viewed during session

i. To acquireRELPGS, the median number of pages viewed from all goal sessions in goal setG is

subtracted from the number of pages viewed during the current sessionC.

RELPGS= pages(C) − median (for eachi∈G [pages(i)]) (8.2)
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Table 98: Temporal Site-centric: Model Metrics

Hypothesis # Metric Description

INFORMATION PATCH – SITE-PATCH

TSC1 RELDUR Duration in seconds spent on a Web site relative to past
goal sessions.

TSC2 RELPGS Number of pages viewed on a Web site relative to past
goal sessions.

INFORMATION PATCH – PAGE-PATCH

TSC5a RELPTCMAX Maximum value of any goal page-patch visited relative to
past goal sessions.

TSC5b RELPTCLAST Value of last goal page-patch visited relative to past goal
sessions.

TSC5c RELPTCSUM Total value of all goal page-patches visited relative to
past goal sessions.

TSC6 RELPTCDUR Median duration in seconds spent in all goal page-
patches relative to past goal sessions.

STRICT INFORMATION SCENT

TSC7 RELUNQ Percentage of unique pages viewed relative to past goal
sessions.

TSC8 RELLNR Linearity of clickstream relative to past goal sessions.

RELAXED INFORMATION SCENT

TSC9a RELTRLMAX Maximum value of any goal trail followed relative to past
goal sessions.

TSC9b RELTRLLAST Value of last goal trail followed relative to past goal ses-
sions.

TSC9c RELTRLSUM Total value of all goal trails followed relative to past goal
sessions.

OTHER

n/a GOAL Whether a goal occurred during the session.
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Information Patch – Page-Patch

Patches at a Web site must already be known in order to calculate the fourRELPTC visitation

metrics:RELPTCMAX, RELPTCLAST, RELPTCSUM, andRELPTCDUR. The methodology for learn-

ing patches is described in detail in appendix 5.B. In general, learning patches requires a set of

goal and non-goal sessions to determine which parts of a Web site (i.e., pages) are better able to

distinguish between the two groups. Patches are specific to asingle Web site.

As the fourRELPTC metrics require patches to be learned first in order to quantify a session’s

patch visitation, the banked goal and non-goal sessions (G andN ) were used to discover goal

patches at a Web site. The current session then calculated the RELPTC metrics from the learned

goal patches. However, the current session would only calculate theRELPTC metricsif and only if

goal patches were found at the Web site. In addition, theRELPTCDURmetric would only be calcu-

lated for the current sessionif and only if that session visited at least one of the goal patches dis-

covered at the Web site of interest. Furthermore, since the measures for the temporal site-centric

model are all relative to prior goal sessions, the same goal sessions used to learn the patches also

calculated theRELPTC metrics for their own respective sessions so that relative comparisons could

be made.

Learning Patches

Patches were learned for a Web site using the training dataset (R), which consisted of banked

goal (G) and non-goal (N ) sessions, according to the methodology outlined in appendix 5.B.

Patches were learned at anα level of 0.057.

Specifically, a set ofn valuable patchesA (A0, A1, . . . ,An−1) were discovered, whereAi rep-

resents a single valuable patch.Ai consists of a set ofm unordered and distinct pagesU (U0, U1,

. . . ,Um−1).

Each patch (Ai) was also given a value according to equation 8.3 (Yang and Padmanabhan,

2003).SGi andSNi represent the number of goal and non-goal sessions from the training dataset

that visited patchAi, respectively.RG andRN is the total number of goal and non-goal sessions

from the training dataset. The value of patchAi could range from zero to two, with higher num-

7A more in-depth description of learning patches may be foundin §5.2.2.
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bers representing a greater difference in support of the patch in distinguishing between goal and

non-goal sessions (i.e., being more valuable).

value(Ai) =

∣∣∣SGi

RG
− SNi

RN

∣∣∣
1
2

(
SGi

RG
+ SNi

RN

) (8.3)

Calculating RELPTC Metrics

To calculate theRELPTC metrics for a given session, two steps were required. First,it was deter-

mined what patches the session visited from the set of valuable patches (A). Each session had a set

of l visited patchesV (V0, V1, . . . ,Vl−1), whereVj was an individual patch visited by the current

session. A session was considered to have visited a patch if all pages of the patch (U ) were visited

at least once (in any order) by the current session (as determined by the set of pagesP from the

session). Formally,Ai was added toV if U ⊆ P . Once it was known what patches were visited,

then the four measures were calculated.

PATCHMAX is the value of the most valuable patch visited by the currentuser. The maximum

value is determined by iterating over every visited patch tofind the one with the highest value

(equation 8.4). If the user did not visit any patches then thevalue ofPATCHMAX would be zero.

PATCHMAX =





max (for eachj∈V (value(Vj))) if ‖V ‖ > 0

0 else
(8.4)

RELPTCMAX was calculated as shown in equation 8.5. The medianPATCHMAX value of all

banked goal sessions in the goal setG was subtracted from the current session’s (C) value of

PATCHMAX in order to calculateRELPTCMAX.

RELPTCMAX = PATCHMAX(C) − median (for eachi∈G [PATCHMAX(i)]) (8.5)

PATCHLAST is the value of the last patch visited by the user8. Equation 8.6 illustrates howRELPT-

CLAST was calculated. The medianPATCHLAST value of all banked goal sessions from the goal

setG is subtracted from the current session’s (C) value ofPATCHLAST to arrive atRELPTCLAST.

8Details on the four-step heuristic used to determine which patch was visited last during a user’s sessions may be
found in §5.2.2.
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RELPTCLAST = PATCHLAST(C) − median (for eachi∈G [PATCHLAST(i)]) (8.6)

PATCHSUM adds up the value of every patch visited by the current user (equation 8.7). A value

of zero is given to any user that did not visit any patches.

PATCHSUM =





∑
j∈V (value(Vj)) if ‖V ‖ > 0

0 else
(8.7)

Equation 8.8 illustrates howRELPTCSUMwas calculated. The metric was determined by sub-

tractingPATCHSUM for the current sessionC from the medianPATCHSUM value of all banked goal

sessions in the goal setG.

RELPTCSUM= PATCHSUM(C) − median (for eachi∈G [PATCHSUM(i)]) (8.8)

PATCHDUR is the median duration a user spent in all their visited patches. Only sessions which

visited at least one patch (i.e.,‖V ‖ > 0) would have a value forPATCHDUR. The calculation for

PATCHDUR is shown in equation 8.9.totalT ime(k, P ) returns the total time a session with pages

P spent on pagek. If a session visited pagek more than once inP , then the sum duration from all

k page visitations was returned.

PATCHDUR = median

[
for eachj∈V

(∑

k∈G

totalT ime(k, P )

)]
(8.9)

The manner in whichRELPTCDURwas calculated is shown in equation 8.10. To obtainRELPTC-

DUR, the medianPATCHDUR value of all banked goal sessions in the goal setG was subtracted

from the current session’s (C) value ofPATCHDUR.

RELPTCDUR= PATCHDUR(C) − median (for eachi∈G [PATCHDUR(i)]) (8.10)

Strict Information Scent

UNIQUE is the percentage of unique pages viewed during a session. The percentage of unique

pages viewed for the current visitor is calculated according to equation 8.11, wheredistinct(P ) is
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the number of distinct pages viewed in the set of page information tuplesP .

UNIQUE =

(
distinct(P )

‖P‖

)
∗ 100 (8.11)

The relative percentage of unique pagesRELUNQ is determined by subtracting the medianUNIQUE

value of all banked goal sessions (G) from the value of the current session’sUNIQUE (equation 8.12).

RELUNQ = UNIQUE(C) − median (for eachi∈G [UNIQUE(i)]) (8.12)

LINEAR is the complexity of a session as calculated via the stratum measure. Complexity is

determined via the straightness (i.e., absence of visitingpages repeatedly) of a user’s browsing be-

havior, where higher linearity equates to less complexity.Stratum is a measure of linearity from

graph theory (McEneaney, 2001) and details on its calculation may be found in appendix 5.A.

RELLNR was calculated according to equation 8.13, where the medianLINEAR value from the

banked goal set (G) was subtracted from the current session’s value ofLINEAR.

RELLNR = LINEAR(C) − median (for eachi∈G [RELLNR(i)]) (8.13)

Relaxed Information Scent

The threeRELTRL metrics for the relaxed information scent were calculated in a very similar

manner as theRELPTC metrics. The same training set used to discover patches was used to learn

trails. Both the current session and the goal sessions from the training set then used those learned

trails to calculate their values for the threeRELTRL metrics.

Specifically, a set ofn valuable trailsT (T0, T1, . . . ,Tn−1) were discovered from the training

set, whereTi represents a single valuable trail.Ti consists of a set ofm orderedpagesO (O0,

O1, . . . ,Om−1), where the pages may repeat themselves in the ordered set (e.g.,〈A,B,B,A,C〉).

Once discovered, trails were given a value like patches using equation 8.3 (withTi being used in-

stead ofAi).

Once the trails were discovered, each session required two steps to calculate theRELTRL mea-

sures. First, it was determined what trails were followed bythe session of interest from the set of
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valuable trails (T ). Each session had a set ofl followed trailsF (F0, F1, . . . ,Fl−1), whereFj was

an individual trail followed by the current session. A session was considered to have followed a

trail if all pages of the trail (O) were followed in order by the current session (as determined by

the set of pagesP from the session). Although all pages must have been followed in order, repeat

visitation and gaps between pages were allowed (i.e., otherpages may be visited in between pages

from the trail). More specifically,Ti was added toF if O ⊆ P and the pages ofO were found in

the same order inP . Once it was known what trails were followed, then the three measures were

calculated.

TRAILMAX is the value of the most valuable followed trail by the current user. The maximum

value is determined by iterating over every followed trail to find the one with the highest value

(equation 8.14). If the user did not visit any trails then thevalue ofTRAILMAX would be zero.

TRAILMAX =





max (for eachj∈F (value(Fj))) if ‖F‖ > 0

0 else
(8.14)

RELTRLMAX was calculated as shown in equation 8.15, where the medianTRAILMAX value of

all banked goal sessions in the goal setG was subtracted from the current session’s (C) value of

TRAILMAX .

RELTRLMAX = TRAILMAX (C) − median (for eachi∈G [TRAILMAX (i)]) (8.15)

TRAILLAST is the value of the last trail followed by the user9. Equation 8.16 illustrates how

RELTRLLAST was calculated. The medianTRAILLAST value of all banked goal sessions from the

goal setG is subtracted from the current session’s (C) value ofTRAILLAST to arrive atRELTRL-

LAST.

RELTRLLAST = TRAILLAST (C) − median (for eachi∈G [TRAILLAST (i)]) (8.16)

TRAILSUM adds up the value of every followed trail by the current user (equation 8.17). A value

of zero is given to any user that did not visit any trails.

9Details on the four-step heuristic used to determine which trail was followed last during a user’s sessions may be
found in §5.2.2.
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TRAILSUM =





∑
j∈F (value(Fj)) if ‖F‖ > 0

0 else
(8.17)

Equation 8.18 illustrates howRELTRLSUM was calculated. The metric was determined by sub-

tractingTRAILSUM for the current sessionC from the medianTRAILSUM value of all banked goal

sessions in the goal setG.

RELTRLSUM = TRAILSUM(C) − median (for eachi∈G [TRAILSUM(i)]) (8.18)

Other

The mutually exclusive binomially distributed metricGOAL specifies whether at some point

during the remainder of a session a contact form was submitted for the contact goal of interest. If a

goal will be achieved during the session,GOAL will have the value oftrue. Otherwise,GOAL will

have a value offalse.

8.2 Results

The temporal site-centric model consisted of seven hypotheses about information scent and trails.

Descriptive statistics of the dataset and each measure are provided in the first subsection below.

The results for each of the seven hypotheses are then provided in the next subsection.

8.2.1 Descriptive Statistics

Table 99 presents the mean, standard deviation, median, minimum, and maximum number of ses-

sions per Web site in three categories: all, goal, and non-goal sessions. Statistics for the entire

dataset are shown first, followed by the number of sessions initially used in the training set. The

training set first contained all sessions occurring before the first 70% of goal sessions. However,

since measures were calculated in a progressive manner, thetraining set increased in size after

each processed session.

The training set (or set of banked sessions), was used to calculate the measures for each session

after the minimum percent of goal sessions was reached. A total of 3,744.24 sessions (70.35%)
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Table 99: Temporal Site-centric: Sessions by Site

Mean St. Dev. Median Min Max

ENTIRE DATASET

All 5,322.60 7,473.76 2,637.00 245 44,405

Goal 105.94 90.13 79.00 51 587

Non-goal 5,216.66 7,427.53 2,566.00 192 44,111

M INIMUM TRAINING SET

All 3,744.23 5,418.42 1,696.00 168 31,730

Goal 74.28 63.07 56.00 36 411

Non-goal 3,669.96 5,386.00 1,656.00 130 31,525

per Web site, on average, had their measures calculated in a progressive manner from prior goal

sessions. New patches and trails were learned on each Web site over thirty different times (30.66).

Each addition mining procedure also meant that all previousgoal sessions had to recalculate their

RELPTC andRELTRL measures against the new patches and trails.

Table 100 displays the mean, standard deviation, median, minimum, and maximum values for

each of the four measures that did not require mining of patches and trails. The statistics are bro-

ken down into three groups of sessions: all, goal, and non-goal. The same 47 Web sites used in the

site-centric version were also used in the temporal version.

The average relative duration of all users was 2.10 fewer minutes on a site than previous goal

sessions. Goal sessions spent 0.27 more minutes than past goal sessions on a site, while non-goal

sessions spent 4.46 fewer minutes. A pattern similar to the relative duration of time between the

three groups was also seen for the relative number of pages. Amongst all foragers, 0.15 fewer

pages were viewed on average compared to prior goal sessions. Goal sessions viewed relatively

more pages than non-goal sessions did (0.12 versus−0.41) when compared to prior goal sessions.

All three groups viewed a lower percentage of unique pages, on average, than past goal ses-

sions:−11.67% for all, −2.33% for goal, and−21.02% for non-goal. Although the average was

negative for goal sessions, the median value shows goal sessions had exactly the same percentage

of unique pages viewed as past sessions (i.e., 0.00%)10.

10The negative relative value for percentage of unique pages may have also been a symptom of the evolution of Web
sites. For example, information on a Web site may have been consolidated to only a few pages which caused foragers to
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Table 100: Temporal Site-centric: Metric Statistics

N Mean St. Dev. Median Min Max

INFORMATION PATCH – SITE-PATCH

RELDUR (in minutes)

All 47 −2.10 3.07 −1.75 −11.98 4.45

Goal 0.27 1.58 0.23 −3.54 4.45

Non-goal −4.46 2.27 −4.43 −11.98 0.18

RELPGS

All 47 −0.15 1.25 0.00 −4.00 2.00

Goal 0.12 1.13 0.00 −3.00 2.00

Non-goal −0.41 1.33 0.00 −4.00 2.00

STRICT INFORMATION SCENT

RELUNQ

All 47 −11.67% 15.72% −8.33% −50.00% 20.00%

Goal −2.33% 11.03% 0.00% −33.33% 20.00%

Non-goal −21.02% 14.12% −20.00% −50.00% 8.93%

RELLNR

All 47 −0.14 0.31 0.00 −1.00 0.46

Goal 0.00 0.09 0.00 −0.17 0.46

Non-goal −0.28 0.38 0.00 −1.00 0.23

Note: all values are based on the median values from each Web site’s goal and non-goal sessions.
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Relative clickstream linearity followed the same basic pattern as both the relative duration and

number of pages viewed: values for goal sessions were positive while they were negative for non-

goal sessions. On average, goal sessions had exactly the same value of clickstream linearity (0.00)

as the previous goal sessions. Non-goal sessions had more than a quarter-of-a-point lower value

(−0.28) for clickstream linearity than past goal sessions.

Table 101 lists the mean, standard deviation, median, minimum, and maximum values for the

seven measures derived from patches and trails. The patchesand trails were learned at the 0.05

significance level from prior goal and non-goal sessions. Each statistic is broken down for all,

goal, and non-goal sessions. Each measure also lists the total number of Web sites that found

patches or trails at any point during the processing procedure. The number of Web sites differ

from the site-centric version (17 versus 14 patch Web sites and 15 versus 10 trail sites11) because

of the multiple times patches and trails were mined at each Web site. For example, patches may

have been found on a Web site when using 80% of goal sessions, but not when only 70% of goal

sessions were used.

The first three patch measures (RELPTCMAX, RELPTCLAST, andRELPTCSUM) had average rel-

ative patch values of−0.17,−0.15, and−0.82 among all sessions, respectively. The relative patch

values forRELPTCMAX andRELPTCLAST both had the same positive value (0.02).RELPTCMAX,

however, was negative by almost a third of a point (−0.29). All three of the non-patch values

shared negative values of−0.36,−0.31, and−1.36 forRELPTCMAX, RELPTCLAST, andRELPTC-

SUM, respectively.

Users spent, on average, 8.03 fewer seconds within patches relative to prior goal sessions. Cur-

rent goal sessions spent 13.95 more seconds in patches relative to past goal sessions, whereas non-

goal sessions spent 30.01 fewer seconds in patches.

Unlike the patch visitation measures, the trail following measures had negative values for all

three groups of sessions. The average mean forRELTRLMAX , RELTRLLAST, andRELTRLSUM

was−0.10,−0.09, and−0.22, respectively. All three measures for the goal sessions were also

negative, but were close to having the same values as past goal sessions (−0.01 forRELTRLMAX

andRELTRLLAST and−0.04 forRELTRLSUM). The non-goal sessions were much further away

from zero than the goal sessions, with values ranging from−0.16 to−0.40.

switch back and forth between the pages.
11See table 58 in §7.2.1 for statistics on the site-centric version of the model.
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Table 101: Temporal Site-centric: Metric Statistics (Significant – 0.05)

N Mean St. Dev. Median Min Max

INFORMATION PATCH – PAGE-PATCH

RELPTCMAX

All 17 −0.17 0.36 0.00 −1.30 0.30

Goal 0.02 0.08 0.00 −0.10 0.30

Non-goal −0.36 0.43 −0.19 −1.30 0.00

RELPTCLAST

All 17 −0.15 0.30 0.00 −1.02 0.30

Goal 0.02 0.07 0.00 −0.01 0.30

Non-goal −0.31 0.35 −0.19 −1.02 0.00

RELPTCSUM

All 17 −0.82 2.44 0.00 −11.44 1.62

Goal −0.29 2.03 0.00 −7.99 1.62

Non-goal −1.36 2.75 −0.43 −11.44 0.00

RELPTCDUR(in seconds)

All 17 −8.03 39.61 −2.75 −118.00 102.75

Goal 13.95 33.62 5.88 −36.75 102.75

Non-goal −30.01 32.85 −21.00 −118.00 4.63

RELAXED INFORMATION SCENT

RELTRLMAX

All 15 −0.10 0.27 0.00 −0.89 0.35

Goal −0.01 0.17 0.00 −0.51 0.35

Non-goal −0.18 0.33 0.00 −0.89 0.00

RELTRLLAST

All 15 −0.09 0.24 0.00 −0.70 0.35

Goal −0.01 0.17 0.00 −0.51 0.35

Non-goal −0.16 0.28 0.00 −0.70 0.00

RELTRLSUM

All 15 −0.22 0.92 0.00 −3.97 1.02

Goal −0.04 0.80 0.00 −2.57 1.02

Non-goal −0.40 1.03 0.00 −3.97 0.00

Note: all values are based on the median values from each Web site’s goal and non-goal
sessions.
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8.2.2 Hypotheses Testing

Tables 102 and 103 present the results for the seven temporally-focused site-centric hypotheses.

Table 102 provides results from the four hypotheses whose measure were not dependent on knowl-

edge of mined patched and trails. Table 103 lists the resultsfor the three hypotheses that relied on

mined patches and trails.

The first two columns of each table list the hypothesis numberand name of the metric being

tested. The third and fourth columns list the total number ofWeb sites and the number of Web

sites with a non-zero difference (i.e.,Di 6= 0), respectively. The total number of Web sites was

used in the t-test, while only Web sites with non-zero differences were used for the Wilcoxon and

sign tests. Columns five through seven list the t statistic, degrees of freedom (df), and p-value for

the t-test. The eighth and ninth columns display the V statistic and p-value for the Wilcoxon test.

The final two columns list the S statistic and p-value for the sign test12.

12All three assumptions of the sign test were met. Therefore, the results from the sign test are focused on in the
following paragraphs. Unlike the sign test, some assumptions of the Wilcoxon test (symmetry ofDis) and t-test (sym-
metry and normality ofDis) were not believed to have been met. Since the same data was used for both the temporal
and non-temporal versions of the model, the same general unsymmetrical and non-normal distributions ofDis were ex-
pected. Thus, while results of the Wilcoxon test and t-test are provided in footnotes, the results of those tests should be
interpreted with caution.
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Table 102: Temporal Site-centric: Results

N T-test Wilcoxon Sign Test

Hyp. Metric Total No Ties t df p-Value V p-Value S p-Value

INFORMATION PATCH – SITE-PATCH

TSC1 RELDUR 47 47 13.87 46 < 0.0001*** 1,128 < 0.0001*** 47 < 0.0001***

TSC2 RELPGS 47 30 2.22 46 0.0155** 328 0.0243** 20 0.0494**

STRICT INFORMATION SCENT

TSC7 RELUNQ 47 46 9.34 46 < 0.0001*** 1,049 < 0.0001*** 43 < 0.0001***

TSC8 RELLNR 47 24 5.15 46 < 0.0001*** 295 < 0.0001*** 22 < 0.0001***

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
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Table 103: Temporal Site-centric: Results (Significant – 0.05)

N T-test Wilcoxon Sign Test

Hyp. Metric Total No Ties t df p-Value V p-Value S p-Value

INFORMATION PATCH – PAGE-PATCH

TSC5a RELPTCMAX 17 10 3.74 16 0.0009*** 55 0.0010*** 10 0.0010***

TSC5b RELPTCLAST 17 10 3.95 16 0.0006*** 55 0.0010*** 10 0.0010***

TSC5c RELPTCSUM 17 10 3.32 16 0.0022*** 55 0.0010*** 10 0.0010***

TSC6 RELPTCDUR 17 17 3.54 16 0.0014*** 142 0.0004*** 16 0.0001***

RELAXED INFORMATION SCENT

TSC9a RELTRLMAX 15 6 2.13 14 0.0255* 21 0.0156** 6 0.0156**

TSC9b RELTRLLAST 15 5 2.21 14 0.0219* 15 0.0313* 5 0.0313*

TSC9c RELTRLSUM 15 6 2.37 14 0.0165** 21 0.0156** 6 0.0156**

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
Hypotheses SC5a-c and SC9a-c are each significant atα

3
(e.g., 0.10

3
= 0.0333, 0.05

3
= 0.0167, and 0.01

3
= 0.0033).
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TSC1 –RELDUR

The first hypothesis expected that goal achieving foragers would spend more time on a site, rela-

tive to prior goal sessions, than non-goal sessions would spend13. The results of the sign test sup-

ported hypothesis TSC1 atα = 0.01 (S = 47; p-value =< 0.0001)14. All 47 Web sites had a higher

median relative duration amongst goal sessions than non-goal sessions. Relative to prior goal ses-

sions, current goal sessions spent roughly 15 additional seconds on a site, while non-goal sessions

spent almost five fewer minutes.

The results for this first hypothesis were identical betweenthe two site-centric versions of the

model (S = 47; p-value =< 0.0001 for both versions). For each of the versions, all of the tested

Web sites had goal sessions with a higher median duration than non-goal sessions. Therefore, the

use of duration, in either an absolute or relative manner, appears to be consistently useful in distin-

guishing between goal and non-goal sessions.

TSC2 –RELPGS

The second hypothesis also examined how foragers judged thevalue of a Web site, but did so by

looking at the relative number of pages viewed. The hypothesis that goal sessions would have

a higher relative median number of pages viewed than non-goal sessions was supported atα =

0.05 (S = 20; p-value = 0.0436)15. 20 out of the 30 non-tied Web sites had a higher median rel-

ative number of pages viewed for goal sessions versus non-goal sessions. On average, goal ses-

sions viewed 0.12 more pages relative to past goal sessions,whereas non-goal sessions viewed

0.41 fewer pages.

The second hypothesis had practically identical results between the two site-centric versions

of the model: static (S = 19; p-value = 0.0436) and temporal (S= 20; p-value = 0.0436). Roughly

two-thirds of all the non-zero Web sites found a higher median number of pages viewed for goal

sessions than non-goal sessions (67.86% of Web sites for static and 66.67% for temporal). This

hypothesis also demonstrated that either an absolute or relative manner of determining number of

pages viewed was useful in distinguishing between goal and non-goal sessions.

13A more in-depth discussion of each of the hypotheses may be found in §4.2.1 and §7.2.2.
14Hypothesis TSC1 was also significant atα = 0.01 for both the t-test (t = 13.87; df = 46; p-value =< 0.0001) and

Wilcoxon test (V = 1,128; p-value =< 0.0001).
15Hypothesis TSC2 was also significant atα = 0.05 for both the t-test (t = 2.22; df = 46; p-value = 0.0155) and

Wilcoxon test (V = 328; p-value = 0.0243).
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TSC5 –RELPTCMAX , RELPTCLAST , and RELPTCSUM

The three sub-hypotheses of TSC5 (table 103) explored how the visitation of valuable patches

could help explain goal achievement. All three sub-hypotheses were significant atα = 0.01 (S =

10; p-value = 0.0010 for all three measures)16, supporting the hypothesized positive association of

relative patch value and goal achievement. All 10 of the non-zero Web sites had goal sessions with

higher relative patch visitation values than the non-goal sessions, for all three patch measures.

The results for hypothesis TSC5 were found to be significant at the sameα level for both ver-

sions of the site-centric model: static (S = 9; p-value = 0.0020 for all three measures) and temporal

(S = 10; p-value = 0.0010 for all three measures). Both versions of the model had all non-zero

Web sites find a higher median patch value amongst goal ratherthan non-goal sessions. However,

the temporal version had more Web sites find patches than the static version (17 versus 14 total

Web sites). Thus, the temporal version was better able to utilize the available, but sparse, amount

of data to learn patches. Furthermore, as the structure of a Web site may evolve, the temporal ver-

sion’s use of the most recent data would better reflect the changing nature of a site17.

TSC6 –RELPTCDUR

Hypothesis TSC6 expected that mere visitation of valuable patches did not wholly indicate a for-

ager obtained value from a patch. Thus, the hypothesis conjectured that relatively higher amounts

of time within patches were associated with greater information gain and thus were more likely

to achieve a goal. The results of the sign test supported the hypothesis atα = 0.01 (S = 16; p-

value = 0.0001)18, finding a higher relative duration within patches for goal sessions than non-goal

sessions. 16 of the 17 non-zero Web sites with discovered patches had goal sessions that spent a

higher relative duration of time within patches than non-goal sessions. On average, goal sessions

spent almost 14 additional seconds within patches and non-goal sessions spent 30 seconds less.

Like many of the other hypotheses, the results between the two versions of the site-centric model

for hypothesis TSC6 were also almost the same: static (S = 13;p-value = 0.0009) and temporal (S

16All three sub-hypotheses of hypothesis TSC5 were also significant atα = 0.01 for both the t-test (RELPTCMAX (t
= 3.74; df = 16; p-value = 0.0009);RELPTCLAST(t = 3.95; df = 16; p-value = 0.0006); andRELPTCSUM(t = 3.32; df =
16; p-value = 0.0022)) and Wilcoxon test (V = 55; p-value = 0.0010 for all three measures).

17For a discussion of the limitations of the current incarnation of the temporal model refer to §9.1.
18Hypothesis TSC6 was also significant atα = 0.01 for both the t-test (t = 3.54; df = 16; p-value = 0.0014) and

Wilcoxon test (V = 142; p-value = 0.0004).
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= 16; p-value = 0.0001). Each version only had one Web site which found a higher median amount

of time spent within patches for non-goal sessions than goalsessions (92.86% of positive Web

sites for static and 94.12% for temporal). Therefore, the use of duration within patches appears

useful in discriminating between groups of sessions, regardless of the measure being absolute or

relative.

TSC7 –RELUNQ

The seventh hypothesis (TSC7) examined information scent in a strict manner where any ineffi-

ciency was viewed as poor indicators of scent. A positive association between the relative propor-

tion of unique pages viewed and goal achievement was expected and supported atα = 0.01 (S =

43; p-value =< 0.0001)19. 43 of the 46 non-zero Web sites had goal sessions with a higher rela-

tive percentages of unique pages viewed than non-goal sessions. Both goal and non-goal sessions

viewed a lower percentage of unique pages than past goal sessions (−2.33% versus−21.02%), but

goal sessions still visited a greater proportion of unique pages than the non-goal sessions.

For this hypothesis, both the static and temporal versions of the site-centric model were sup-

ported at the sameα level: static (S = 42; p-value =< 0.0001) and temporal (S = 43; p-value =

< 0.0001). 95.45% and 93.48% of the non-zero static and temporal Web sites found goal sessions

with a higher percentage of unique pages, respectively. Between the two versions, the unique per-

centage of pages viewed was equally successful in differentiating between the two groups of ses-

sions.

TSC8 –RELLNR

The second hypothesis about strict information scent (TSC8) also examined information scent in a

strict manner. However, overall scent was determined in a finer-grained manner by using the pages

and the order in which those pages were visited. The belief was that less complex (i.e., more lin-

ear) clickstreams were indicative of higher levels of scent, and thus a greater likelihood of achiev-

ing a goal was expected and supported atα = 0.01 (S = 22; p-value =< 0.0001)20. 22 of the 24

19Hypothesis TSC7 was also significant atα = 0.01 for both the t-test (t = 9.34; df = 46; p-value =< 0.0001) and
Wilcoxon test (V = 1,049; p-value =< 0.0001).

20Hypothesis TSC8 was also significant atα = 0.01 for both the t-test (t = 5.15; df = 46; p-value =< 0.0001) and
Wilcoxon test (V = 295; p-value =< 0.0001).
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non-zero Web sites had higher relative linear clickstream values for goal sessions compared to

non-goal sessions, with goal sessions having, on average, the exact same clickstream complexity

as prior goal sessions. Non-goal sessions were over a quarter of a point lower in clickstream com-

plexity (−0.28) than past goal sessions.

The results of the static and temporal versions of the model were almost identical: static (S =

18; p-value =< 0.0001) and temporal (S = 22; p-value =< 0.0001). None of the non-zero static

Web sites (0.00%) and only two of the temporal Web sites (8.33%) had any sites with non-goal

sessions having a higher median clickstream complexity. Thus, like many of the other measures,

both versions were equally capable of separating goal from non-goal sessions using the linearity of

a user’s session.

TSC9 –RELTRLMAX , RELTRLLAST , and RELTRLSUM

The final three sub-hypotheses of TSC9 (table 103) examined the efficacy that following valuable

trails had in explaining goal achievement. Hypothesis TSC9a and TSC9c were both supported atα

= 0.05 (S = 6; p-value = 0.0156 for both measures), while hypothesis TSC9b was only supported

atα = 0.10 (S = 5; p-value = 0.0313)21. The difference in significance between the measures was

due to sample size. BothRELTRLMAX andRELTRLSUM had six non-zero Web sites, whileREL-

TRLLAST only had five (all of which supported the hypothesis in a positive direction). Thus, there

were simply not enough Web sites forRELTRLLAST to reach significance atα = 0.05.

The results for hypothesis TSC9 were found to be significant at the sameα level for all but one

measure (RELTRLLAST) in the temporal version of the site-centric model: static (S = 6; p-value =

0.0156 for all three measures), and temporal (S = 6; p-value =0.0156 forRELTRLMAX andREL-

TRLSUM and S = 5; p-value = 0.0313 forRELTRLLAST). Similar between the versions was all

non-zero Web sites found higher median trail values within their goal sessions. However, just as

21Hypotheses TSC9a-c were significant at eitherα = 0.05 or 0.10, depending on the test. For the t-test, two of the
three measures were significant atα = 0.10 (RELTRLMAX (t = 2.13; df = 14; p-value = 0.0255) andRELTRLLAST (t =
2.21; df = 14; p-value = 0.0219)), while the third was significant atα = 0.05 (RELTRLSUM (t = 2.37; df = 14; p-value =
0.0165)). For the Wilcoxon test, two of the measures were significant atα = 0.05 (V = 21; p-value = 0.0156 forREL-
TRLMAX andRELTRLSUM), while the third was only significant atα = 0.10 (V = 15; p-value = 0.0313). The less sig-
nificantRELTRLMAX measure from the t-test may be due to the degree of differencebetween the goal and non-goal
sessions. For example, both of the measures that were significant at 0.10 had less of an average difference between
sessions (RELTRLMAX = −0.17;RELTRLLAST = −0.15) than the measure that was significant at 0.05 (RELTRLSUM=
−0.35). The difference in significance between the measures of the Wilcoxon test was due to the same reason as found
with the sign test: smaller sample size and thus less power todetect differences between the sessions.
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with learning patches, the temporal version also had more Web sites find valuable trails than the

static version (15 versus 10 total Web sites), highlightingthe ability of the temporal version to use

the extra available data to learn additional trails.

Summary of Results

Table 104 summarizes the results of the hypotheses testing.Of the 11 hypotheses and sub-hypotheses,

seven were supported atα = 0.01, three atα = 0.05, and one atα = 0.10. The table also lists the

results obtained from the static version of the site-centric CMIF.

Table 104: Temporal Site-centric: Hypotheses Results
Summary

Hypothesis Supported?

Hyp. Metric Temporal Static

INFORMATION PATCH – SITE-PATCH

TSC1 RELDUR Yes*** Yes***

TSC2 RELPGS Yes** Yes**

INFORMATION PATCH – PAGE-PATCH

TSC5a RELPTCMAX Yes*** Yes***

TSC5b RELPTCLAST Yes*** Yes***

TSC5c RELPTCSUM Yes*** Yes***

TSC6 RELPTCDUR Yes*** Yes***

RELAXED INFORMATION SCENT

TSC7 RELUNQ Yes*** Yes***

TSC8 RELLNR Yes*** Yes***

RELAXED INFORMATION SCENT

TSC9a RELTRLMAX Yes** Yes**

TSC9b RELTRLLAST Yes* Yes**

TSC9c RELTRLSUM Yes** Yes**

*p ≤ 0.10; **p ≤ 0.05; ***p ≤ 0.01
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8.3 Conclusion

Overall, the results between the two versions of the site-centric model did not differ in significant

ways. Although the results were not significantly better, they were also not worse. Thus, the use of

the temporal version provides additional evidence in the efficacy of the selected measures and in

the ability of relative measures to distinguish between goal and non-goal sessions. In addition, the

temporal version did see an increase in the number of Web sites which were able to learn patches

and trails, although the significance of the results did not increase with the larger sample size.

At the surface, the lack of significantly better results thanthe static version would discourage

the undertaking of the temporal model, especially given thecomputational cost and complexity

associated with its methodology. However, the Web sites used to test the model may not have

changed dramatically enough over the course of the data collection period to warrant the need

for the temporal methodology. Warren et al. (1999) found within their limited examination of

Web sites that “. . . the overall rate of change of a site increased with the size of the site” (pg. 182).

Thus, the temporal version may be more appropriate for larger Web sites that are evolving at a

faster rate than those seen within the site-centric dataset22.

22On average, Web sites within the site-centric dataset were small with only 16.36 pages.
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Chapter 9

Conclusion

This dissertation sought to explain goal achievement (i.e., choice behavior) at limited traffic long

tail Web sites using Information Foraging Theory (IFT) (Pirolli, 2007; Pirolli and Card, 1999).

The thesis of IFT was that individuals are driven by a metaphorical sense of smell that guides them

through patches of information in their environment. Having a foundation in both psychology and

ecology, IFT drew from both disciplines to explain the mechanisms and the resulting behavior of

information foragers.

IFT used a production rule system from the psychological adaptive control of thought-rational

(ACT-R) theory to describe the cognitive process of individuals foraging for information (Ander-

son et al., 2004). The rationalization of why a person would move from one area of their envi-

ronment to another was explained according to the ecological patch model from optimal foraging

theory (OFT) (Stephens and Krebs, 1986).

From ACT-R and OFT, the concepts of information scent and patches were defined for IFT. In-

formation scent was the driving force behind why a person made a navigational selection amongst

a group of competing options. As foragers were assumed to be rational, scent was a mechanism

by which foragers could reduce their search costs by increasing their accuracy on which option

lead to the information of value (Pirolli, 2007). An information patch was defined as an area of

the search environment with similar information (e.g., single Web page, multiple Web pages, Web

site) (Pirolli, 2007).

IFT was originally developed to be used in a “production rule” environment, where a user would

perform an action when the conditions of a rule were met. However, the use of IFT in clickstream

research required conceptualizing the ideas of IFT in a non-production rule environment. To meet

such an end this dissertation asked three research questions regarding how to learn (1) information

patches, (2) trails of scent, and finally (3) how to combine both concepts to create a Clickstream

Model of Information Foraging (CMIF).
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The first two research questions were similar in both conceptand execution. In regards to patches,

each user was free to define what a patch was as they saw fit. However, certain patterns of patches

emerged on a Web site amongst those foragers with similar information goals. Likewise, scent

trails were also defined by each user. When combined with other users, patterns from fragments

of scent trails also emerged on a site between users with similar information goals. For the online

firm, categorizing patches or trails as valuable to goal-achieving or non-goal-achieving foragers

helped give an indication of the intent of users according towhich patches or trails were visited or

followed.

Research Question 1:How can information patches be learned from a long tail Web site?

Research Question 2:How can information scent trails be learned from a long tail Web site?

For research question 1 and 2, frequent itemsets and sequential patterns were learned on each

Web site from goal and non-goal sessions to create contrast sets (Bay and Pazzani, 1999). Contrast

sets which were able to significantly distinguish between the two groups of sessions atα = 0.05

were deemed valuable patches or trails. Once discovered, patches and trails were given a value

according to how well the patch or trail distinguished between the goal and non-goal sessions.

In general, finding valuable patches and trails was successful on roughly a quarter of all tested

Web sites (29.79% of sites for patches and 21.28% for trails). On those Web sites which did dis-

cover patches and trails, there were multiple instances of patches and trails being found (average

of 11.93 patches and 4.70 trails per site).

The previous two research questions examined the concepts of information scent and patches

individually. However, the real value of IFT was its abilityto combine the search environment

(i.e., patches) with the actions of a forager (i.e., scent).Thus the main focus of this dissertation

and the final research question was on how these concepts could be combined using clickstream

data to infer goal achievement.

Research Question 3:How can information foraging theory and clickstream data beused to ex-

plain the achievement of a goal at a long tail Web site?

Two versions of a clickstream model of information foragingwere proposed which used click-

stream metrics to represent the concepts of information scent and patches. In addition, the mod-
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els also included measures which extended IFT. For example,hypotheses were introduced which

tested the role of memory about a site and how patch value, specific to a group of foragers, could

be used to predict goal achievement. The user-centric (UC) model exploited user-centric data

(Padmanabhan et al., 2001) about a forager’s entire browsing behavior to explain goal achieve-

ment at a long tail Web site. This model compared a forager’s behavior across multiple Web sites.

However, due to user-centric data being aggregated at the session level, the model lacked depth at

individual Web sites.

In light of the rarity with which a user’s entire clickstreamover multiple sites is commonly

available to an online firm, a site-centric (SC) version of the model employing site-centric data

(Padmanabhan et al., 2001) was also developed. Having access to page-level data made the site-

centric model capable of analyzing patches at all levels of analysis along with information scent at

a Web site. However, since a forager’s behavior across siteswas unknown with site-centric data,

the site-centric model compared a forager’s behavior relative to an absolute value of zero1.

The user-centric model proposed four hypotheses that examined the behavior of a forager within

a site-patch (i.e., Web site). Three of the four hypotheses were supported at anα level of 0.01,

while the fourth was not supported at any of the tested alpha levels. The site-centric model pro-

posed the same four site-patch hypotheses as the user-centric model, plus the addition of two page-

patch hypotheses, and three information scent hypotheses (nine hypotheses total). Five of the hy-

potheses were supported at anα level of 0.01, two atα = 0.05, and one atα = 0.10. The remaining

hypothesis was found to be highly significant (α = 0.01) in theoppositedirection of what was hy-

pothesized.

Overall, both models were able to find measures which successfully distinguished between goal

and non-goal sessions. Furthermore, the measures were grounded on a theoretical base that not

only guided their selection (or creation), but also provided a reasoning for their existence that

helped to explain why users behaved in the manners in which they did. In general, the two con-

cepts of IFT were well supported using both versions of the clickstream model of information for-

aging.

The remainder of this chapter is organized as follows. First, the limitations of this research are

discussed in §9.1. A discussion of the contributions of thisdissertation are given in §9.2. Finally,

1Chapter 8 contains a temporal version of the site-centric model which compared each session relative to prior goal
sessions.
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§9.3 provides a brief overview of future research which expands upon this dissertation.

9.1 Limitations

As with any research, there were a number of limitations which should be recognized so that fu-

ture research may improve upon this work. Listed below are nine limitations of this dissertation.

(1) Since IFT is a relatively new and not widely tested theory, basing this entire dissertation on its

usage may be considered a limitation. However, even though the theory has not seen widespread

usage like other theories commonly used in IS (e.g., Theory of Planned Behavior (Ajzen,

1991)), prior research has successfully used the theory. For example, elements of IFT have

been used to inform the design of user-interfaces (Willett et al., 2007; Xie et al., 2006; Ol-

ston and Chi, 2003) and to help explain the browsing behaviorof foragers (Lawrance et al.,

2007; Galletta et al., 2006; Katz and Byrne, 2003). Furthermore, IFT is itself heavily based

upon two theories that are well established within their respective disciplines: Optimal Forag-

ing Theory (OFT) (Stephens and Krebs, 1986) and the AdaptiveControl of Thought-Rational

Theory (ACT-R) (Anderson et al., 2004). Therefore, while IFT is relatively new, its usefulness

as a theory should not be discounted on that basis alone. Instead, this dissertation and other

research like it are needed to determine, through evaluation, the worth of IFT.

(2) The prediction problem being examined between the user-and site-centric models were dif-

ferent. The site-centric model predicted if a goal would be achieved during the remainder of a

session. To meet that task, only information that occurredbeforea form submission was used

to calculate the measures and learn patches and trails. Thisforward-looking prediction was

possible because the site-centric dataset contained page-level information, which allowed a

session to be segmented such that only browsing behavior before the form submission was

used. In contrast, the user-centric model predicted if a goal would have occurred given all in-

formation about a session (i.e., backward-looking prediction). The user-centric data was at

the site-level and thus constrained the problem that could be analyzed. Since it was unknown

where in the session a purchase took place, there was no reliable means with which to segment

sessions.

The use of all browsing behavior within the user-centric model introduced two limitations.
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First, the measures reflected the browsing behavior of foragers before and after their purchase.

While the data only allowed the first four measures to be tested, the change in information

goal after the purchase may have introduced a greater amountof noise into some of the other

measures (e.g., those dealing with page-patches and scent). The second limitation is that goal

sessions by default would likely have higher number of pagesviewed and session duration as

a direct consequence of purchasing a product. For example, every goal session would have an

increased number of pages viewed and session duration over non-goal sessions simply because

they went through the checkout process. Thus, some of the differences seen between the mea-

sures of the first two hypotheses may be biased because all behavior from a session was used.

(3) Within the site-centric version of the clickstream model, the Web sites were assumed to re-

main relatively constant over the course of the data collection period. If the assumption of

constant structure or content on a site was not met, then the browsing behavior of sessions

may differ depending on when the sessions took place. For example, at one point in time goal

sessions at a Web site may have visited 10 pages per session, on average. However, after reor-

ganizing and streamlining the Web site, goal sessions then only viewed five pages on average.

Comparing against an absolute value of zero would make distinguishing goal from non-goal

sessions difficult because of the drastic change in browsingbehavior.

To combat this limitation a temporal version of the site-centric model was introduced in chap-

ter 8. The temporal version compared all browsing behavior relative to all goal sessions which

had taken place before the current session. Thus, the relative measures would be better able to

reflect changes in the structure or content of a site. Comparing the results of the two versions

of the site-centric model failed to find any large differences between the models, indicating the

Web sites used in the site-centric dataset were mostly static. However, other datasets which

contain Web sites which evolve at a much more rapid pace, may find better results using the

temporal version of the model. Future research will more closely examine the affect time has

on explaining goal achievement.

(4) The user-centric dataset contained Web sites of all popularity, but this dissertation was only

interested in examining long tail Web sites. The limitationwas a rigorous and quantifiable def-

inition of what constituted a long tail Web site was not known. Thus, the 80/20 rule (Newman,
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2005) was used to classify sites as either parts of the short head or long tail of a power law

distribution. While the use of the 80/20 rule appears to be reasonable, future research should

better explore how to define the long tail.

The user-centric dataset also restricted Web sites that were too far down the long tail. For

example, sites with few achieved goals (< 50 purchases) were removed as they were sus-

pected of being abandoned, too new, or representing failed business models. Due to their lack

of traffic, these “very long tail” sites were considered too sparse to be usable for the intended

analysis (e.g., mining may result in no or spurious patches and trails being found). While the

selection of 50 goal sessions appears to be reasonable, the selection was specific to the user-

centric dataset. Thus, future research may be better able tosegment the long tail by defining

generally-applicable rules.

(5) A common limitation faced when dealing with real-world datasets is the element of “noise”

in the data. Although both datasets were preprocessed extensively, some elements of noise

inevitably remained within the datasets. For example, within the site-centric dataset robots,

spiders, and other automated programs may have been presentin the data. To deal with these

robots, the data provider had initially scrubbed the data for any self-identified robots. Then

the outlier analysis was performed during preprocessing toremove any other out-of-place ses-

sions.

The actual effect of such noise on the results of the model is unknown. However, it was be-

lieved the noise had a minimal impact because the results of both versions of the model gener-

ally came out as expected. Thus, the model demonstrates somelevel of robustness in the face

of noisy data. Future work may be better able to quantify the impact noise has on the model

by using more in-depth (e.g., categories of sites for the user-centric data) and focused data

(e.g., browsing behavior from experimental participants).

(6) The determination of leaving and returning behavior within the same session differed between

the two models, making comparisons of their results difficult. The user-centric model was

stricter than the site-centric model in determining whether a session left and returned dur-

ing a session. The user-centric model required a visitationof at least two pages at another e-

commerce Web site, whereas the site-centric model counted visitations of any length at any
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site. Thus, the site-centric model may have inadvertently introduced noise into the analysis by

counting Web sites which were not related to the informationgoal of the forager at the site of

interest2. Future research using more detailed user-centric datasets may be better able to de-

termine if the distinction between the types of sites being left for makes a difference. For ex-

ample, a site-centric dataset may be created from a detaileduser-centric dataset3 to determine

if viewing more than one page at a similar type of Web site really matters when considering

leaving and returning behavior.

(7) The site-centric version of the clickstream model used the first 70% of sessions to calculate

patches and trails4. The rationale behind the usage of 70% was to have a large enough num-

ber of sessions to mine from in order to find valuable patches and trails, without introducing

noise into the analysis by discovering spurious patches andtrails (e.g., a patch that only one

other session visited). Future research should perform a sensitivity analysis to determine if the

results of the model change dramatically with different percentages.

(8) The temporal site-centric version of the model used the same set of sessions to perform two

tasks. First, a set of goal and non-goal sessions were used tolearn patches and trails. Second,

the goal sessions from that same set of sessions were then used to calculate measures for patch

visitation and trail following. The median value of those measures was then used to determine

the relative value of patch visitation and trail following for the current session. The reason this

approach was taken was due to the limited sample size at each Web site. Ideally, the mining of

patches and trails should have used one group of sessions, while the calculation of measures

should have used another. Future research that uses Web sites not so far down the long tail

may be better capable of having independent groups of sessions accomplish each task.

(9) The path stratum measure was based on concepts from graphtheory (McEneaney, 2001).

When used to quantify the linearity of a user’s clickstream two main limitations came to the

surface. First, the path stratum measure would be much lowerif the user started and ended

2Within the user-centric model, noise could have been further reduced by restricting e-commerce sites to those
within the same product category as the target session. Unfortunately, the Web sites within the user-centric dataset were
not categorized.

3See Padmanabhan et al. (2001) for an example of creating a site-centric dataset from a user-centric dataset.
4To be precise, the first 70% of goal sessions were used. In addition, all non-goal sessions which occurred before

the last of the 70% of goal sessions were also used.
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their session on the same page (e.g., the index page), as opposed to different pages (e.g., in-

dex and contact page). This is because the path the user took was a closed walk. Within the

context of measuring scent, however; such a closed walk may not necessarily indicate such an

extreme drop in scent. For example, a forager may return to the index page at the end of their

session to make sure they investigated all links of interest.

The second limitation of the metric is that repeating sequential page views and multiple traver-

sals of the same path are lost when transforming a clickstream to the converted distance matrix

that is needed to calculate the measure. Since repeated behavior is lost, the overall scent of

a user may be marked as high by the measure even in situations where multiple cycles occur

within the clickstream. Given these limitations, future research may further explore if these

situations unique to measuring information scent may be incorporated into the path stratum

measure.

9.2 Contributions

In light of the limitations mentioned in the previous section, it is believed this dissertation still

makes a number of worthwhile contributions. Listed below are the major contributions of this dis-

sertation.

(1) First, this dissertation demonstrated how IFT could be used as a theoretical basis for click-

stream research. Through the creation of two versions of a clickstream model of information

foraging, the concepts of IFT were quantified outside of a production rule environment. In ad-

dition, the CMIF not only operationalized the core conceptsof IFT, but also extended the the-

ory by introducing memory, forager-independent valuationof patches and trails, along with re-

fined definitions of scent (e.g., strict and relaxed scent). Once tested, many of the core aspects

of IFT and the theoretical extensions introduced in this dissertation were supported. Thus, this

dissertation not only demonstrated the ability of IFT to explain goal achievement, but it also

introduced theoretical extensions which provided a more in-depth explanation of goal behav-

ior.

(2) This dissertation also presented a methodology on how tolearn patches and scent trails using

not only significant, but also supported contrast sets. Measures were also created which quan-
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tified a forager’s visitation of patches and following of trails. The metrics measured the most

valuable, last, and summation of all patches and trails thatwere visited or followed. For those

Web sites within the CMIF that discovered patches and trails, the measures were capable of

distinguishing goal from non-goal sessions according to a forager’s visitation and following

behavior.

(3) The third contribution was a methodology that detailed how to preprocess datasets with long

tail Web sites. In particular, a separate user- and site-centric methodology was presented which

highlighted the unique challenges associated with preprocessing each dataset. For example, a

process was provided for the site-centric dataset about howto locate and select a single defin-

able goal on Web sites which have more than one available goal.

(4) Finally, due to the presence of IFT guiding analysis, traditionally understudied long tail Web

sites were able to be examined even in light of their sparse datasets.

9.3 Future Research

This dissertation was meant to provide a well-defined channel through which a stream of future

research may flow. Thus, listed below are four future research projects that continue and extend

upon the work in this dissertation.

(1) The first research project deals with attempting to answer the question “What is the long tail?”.

In this dissertation the long tail was defined as those Web sites which only accounted for 20%

of achieved goals. A natural extension would be to more precisely define the separation be-

tween long tail and short-head Web sites. However, such a distinction may still be too sim-

plistic in light of how much area the long tail portion of a curve may cover. Therefore, further

segmentation within the long tail (e.g., the “very long tail”) may also need to be defined.

In addition, there may be other means with which to define longtail Web sites, in general. For

example, should sites be defined according to their total amount of traffic or by the number

of goals achieved? If the goal being examined is purchases, can a site be a long tail Web site

for one type of product, yet reside within the short-head forother product categories? If so,

how do browsing patterns of foragers differ in regards to thelong tailedness of the Web site’s

product categories?
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The largest contributions of this research would be a clear definition of what “long tail” really

means.

(2) The second research project is also a natural extension of this dissertation5: “How does the

evolution of long tail Web sites affect browsing patterns?”. The temporal version of the site-

centric model provided an initial, yet somewhat simplistic, glimpse into a time-sensitive rel-

ative analysis. In essence, the temporal version used a window consisting of all previous ses-

sions. However, including all previous sessions may be a liability on Web sites that commonly

change, since “old” data would limit the ability of new patches and trails to be learned from

the newly changed site. Thus this research project would examine how sliding windows may

be defined to better meet the needs of long tail sites. For example, windows may be of a cer-

tain size (number or percentage), for a particular time period, of a size necessary to stabilize

measures, or some combination of the three.

In addition, the burn-in period may also be defined such that measures are not calculated until

patch and trail discovery has stabilized6. The use of stabilization may also have the added ben-

efit of not “throwing” away extra banked sessions just because the bank had not met the pre-

scribed number (or percentage) of sessions in it. Furthermore, the computationally expensive

task of re-learning patches and trails may be restricted to only after those times of destabiliza-

tion.

The largest contribution of this research would be a thorough analysis of how time impacts

the analysis of foraging behavior on long tail Web sites. In addition, a methodology would be

introduced that would make the most of the sparseness of datafrom long tail sites, while still

allowing relative comparisons of foraging behavior.

(3) The third research project would provide a test of information foraging theory using a produc-

tion rule system. In particular, IFT would be examined at long tail Web sites to determine how

well the production rules, as specified by Pirolli (2007), are able to explain foraging behavior

on long tail Web sites. In addition, production rules which take into account the theoretical

5A dataset which consists of Web sites that evolve at a more rapid pace than those seen in the site-centric dataset
would be used.

6Measure calculation would also cease following Web site changes until patch and trail discovery had stabilized
again.

290



extensions tested in this dissertation (e.g., memory, value of page-patches) would also be cre-

ated and tested. The main contributions of this research would be two-fold. First, IFT would

be tested in its original form on a sample of Web sites different from those sites used to create

and test the theory. The second contribution would examine the ability and importance of the

theoretical extensions outlined in this dissertation to explain goal achievement using IFT.

(4) The final research project would not be as direct of an extension of this dissertation as the

other three projects, however; it would still employ IFT as atheoretical base to examine search-

ing behavior. In particular, the purpose of this research piece would be to determine how search

queries, used to arrive at a Web site, can predict the probability of a goal being achieved. The

belief is that search queries are an observable manifestation of the information goal of a for-

ager. Thus, information within a search query may provide clues into not only the goal of

the forager, but also how well-defined the goal is. For example, assume one visitor submit-

ted “flat-panel TV” for their search query, while another submitted “Sony Bravia 52”. The first

query appears to be more general in nature and thus may be moresuited for browsing behavior

that occurs during the information gathering stage. In contrast, the second query looks to be

much more refined and pointing toward a specific product, which a forager may be interested

in purchasing.

Semantic similarity, which is the likeness of concepts between two sets of words (Li et al.,

2003), would be used to quantify the textual nature of searchqueries and then group similar

search queries (and their resulting sessions) together. Clustering search queries, which are

semantically similar to one another, may uncover groups of sessions which are more likely

to achieve a goal during a session. The expected contributions of this research would be the

introduction of semantic similarity to clickstream research and the creation of a methodology

on how semantic similarity may be used to predict goal achievement.
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