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Goal Attainment on Long Tail Web Sites:
An Information Foraging Approach

James A. McCart

ABSTRACT

This dissertation sought to explain goal achievement atduhtraffic “long tail” Web sites using
Information Foraging Theory (IFT). The central thesis of liE that individuals are driven by a
metaphorical sense of smell that guides them through patehieformation in their environment.
An information patch is an area of the search environmerit sithilar information. Information
scent is the driving force behind why a person makes a nawitgtselection amongst a group
of competing options. As foragers are assumed to be ratiscaht is a mechanism by which to
reduce search costs by increasing the accuracy on whiabndptids to the information of value.

IFT was originally developed to be used in a “production relevironment, where a user would
perform an action when the conditions of a rule were met. Hewehe use of IFT in clickstream
research required conceptualizing the ideas of informataent and patches in a non-production
rule environment. To meet such an end this dissertationdabkee research questions regarding
(1) how to learn information patches, (2) how to learn traflscent, and finally (3) how to com-
bine both concepts to create a Clickstream Model of Infoimnatoraging (CMIF).

The learning of patches and trails were accomplished bygugintrast sets, which distinguished
between individuals who achieved a goal or not. A user- atedcgintric version of the CMIF,
which extended and operationalized IFT, presented andaeal hypotheses. The user-centric
version had four hypotheses and examined product purahbsimavior from panel data, whereas
the site-centric version had nine hypotheses and predictethct form submission using data

from a Web hosting company.

Xi



In general, the results show that patches and trails exiseweral Web sites, and the majority
of hypotheses were supported in each version of the CMIK digsertation contributed to the lit-
erature by providing a theoretically-grounded model whesied and extended IFT; introducing
a methodology for learning patches and trails; detailingethwdology for preprocessing click-

stream data for long tail Web sites; and focusing on tragiitily under-studied long tail Web sites.
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Chapter 1

Introduction

Understanding the browsing behavior of users at Web sitebéan the objective of much of the
research employing data about users’ Web usage (commoalyrkas “clickstream data”). Es-
pecially salient has been the investigation of factorgiraeto choice behavior, where choice is
typically concerned with the purchase of a product (Bucktial., 2002). Besides having a gen-
eral understanding of why users behave the way they do, sumhil&dge also forms the basis for
developing mechanisms to influence choice. For examplee&s a visitor towards a purchase,
dynamic on-the-fly changes may be made to a Web site in teriis ‘of . pages, link choices, pro-
motional interventions, and prices and product assortsii€Bucklin et al., 2002, pg. 252).

Such a general understanding of factors affecting choimeghker, has been difficult to obtain.
In part, the difficulty arises because conceptual reseamisfng on the theories and ideas which
provide an explanation of a user’s behavior has been linjBedklin et al., 2002). This lack of a
theoretical base negatively impacts the ability of the lkedtom clickstream research to be recon-
ciled, synthesized, and thus provide a clearer pictureagdtiactors.

Finding an appropriate theory to use is challenging in Igftthe type of data available. Click-
stream data provides information on the actions of a usegr, {ghat pages were visited, how much
time was spent at a site), but nothing else. A person’s déguemotions, intentions, and other
such concepts are unknown. However, many theories exagnamnndividual’s behavior in infor-
mation systems research rely on such concepts as attitndestantions (e.g., Theory of Planned
Behavior (Ajzen, 1991)) and thus are not appropriate to Tikerefore, a theory is needed which
can (1) explain behavior based on a user’s action and (2) fr@ppately applied to the click-
stream domain.

Within the last decade, a theory called Information Forgdiheory (IFT) has emerged which
explains the searching behavior of individuals as they famihformation (Pirolli and Card, 1999).

The thesis of IFT is that an individual is driven by a metajdairsense of smell that guides them



through patches of information in their environment basetheir information goal (i.e., what
they are trying to accomplish) (Pirolli, 2007). As they “&ge”, individuals evaluate whether to
continue browsing in their current patch of information @ave to hunt for another one. Central to
this theory are the concepts of information patches andrnmdtion scent. Information patches are
distinct areas of the search environment which differ iminfational content. Information scent

is the driving force of why a person makes a navigationalcsiele amongst a group of competing

options.

IFT itself builds on more established theories such as Cgitiroraging Theory (OFT) (Stephens
and Krebs, 1986) and the Adaptive Control of Thought-Ratidrheory (ACT-R) (Anderson et al.,
2004). OFT is an ecological theory concerned with explairire foraging behavior of animals as
they hunt for food. OFT assumes each animal goes throughrehseacounter—decision process
as they forage, with the goal being to maximize net energyeghi To maximize energy, the ani-
mal is faced with the decision of which prey to eat or how lomdprage in a patch. OFT is used

to explain the behavioral elements of people foraging ftormation.

ACT-R is a psychological theory of the human mind that inelsithe cognitive architecture and
process by which cognition works. IFT uses a production sygem from ACT-R to determine
probabilistically which action is selected based on ithtytivithin the context of a user’s current
goal. For example, an action to click on a hyperlink may besenover backing up to a previ-
ously visited page because following the hyperlink may beetigely to lead to the information

being sought. ACT-R is used to explain at a cognitive leve} attions are performed.

IFT was originally developed to be used in a “production elevironment, where a user would
perform an action when the conditions of a rule were met. Hewehe use of IFT in clickstream
research requires conceptualizing the ideas of IFT in aproduction rule environment. In essence,
this requires utilizing user action to infer the cognitivegess and thus the reasoning behind the
observed behavior. To meet such an end this dissertatiamnildes how information patches and
trails of information scent can be learned from clickstredata. However, the main focus of this
dissertation is to determine how the concepts of IFT can bd tesbuild a clickstream model of
information foraging (CMIF). The model relies on measureswtd from clickstream data repre-
senting IFT concepts to explain goal achievement at “loifg\éeb sites that have limited traffic.

Goal achievement is from the perspective of the online firth@msists of something the firm
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would like to happen at their Web site (i.e., a choice). Tlésektation examines Web sites where

the goal is the purchase of a product or the submission of @coform.

The term “long tail” refers to a Web site that resides in thieda power law distribution (An-
derson, 2006). Figure 1 shows a hypothetical power lawibiigton illustrating Web sites and
their popularity in terms of the number of visits they reeefv The head of the curve (darkly
shaded portion) represents the most popular Web sites sustmazon.com and eBay.com. The

long drawn-out tail of the curve (lightly shaded portionjends to include all other Web sites.

Popularity

ﬁ}

Number of Web Sites

Figure 1.: Power Law Distribution

The decision to analyze a user’s behavior at long tail Weds sitas motivated by the ability of
IFT to guide analysis. Compared to sites in the head, lohd\b sites have significantly smaller
amounts of data, which is precisely where theory can helgeganalysis the most. Lacking the-
ory, analysis would require large amounts of data to work with techniques commonly used
such as data mining. Long tail Web sites by their very natoegoeohibitively sparse in data which

hamper the application of such an exploratory approach.

The remainder of this chapter is organized as follows. Rinstresearch questions guiding this
dissertation are introduced in 81.1. A brief discussiorhefdontributions of this dissertation are

given in 81.2. Finally, 81.3 provides a brief overview of gteucture of this dissertation.

1The power law distribution of Web sites and traffic has beewipusly confirmed through empirical study
(Adamic and Huberman, 2001) and simulation (Kavassalit ,€2@04). Power-law distributions have also been ob-
served in numerous other instances such as the sales oftdéimderson, 2006); frequency of word usage in English
text; number of telephone calls received; frequency of famames in the United States; and citations of academic

papers (Newman, 2005).



1.1 Research Questions

The following subsections describe the research quesgjoiaking this dissertation. The first re-
search question is in relation to the concept of informagiatthes. The second research question
more fully explores the concept of information scent. Hipdhe third research question brings all

the concepts of IFT together to develop a clickstream matdefermation foraging.

1.1.1 Research Question 1 — Learning Patches

An information patch is defined as an area of the search emmient with similar information
(Pirolli, 2007). Within a Web-context, what constitutesaigh is dependent on the level of anal-
ysis being examined. At a high-level of analysis, an entieb\ite can be considered a patch.
When examined from a finer-grained level of analysis, eadlvidual page of a Web site can also
be considered a patch. While such conceptualizations ofch pae straightforward, they are ef-

fectively being defined by the creator of the content rathanthe user.

The Web, however, is a pliable environment where foragere te choice of what material to
view. Effectively, this allows a forager to define their owridrmation patch that is uniquely rel-
evant to their goal. Such patches may consist of a group ofp&gbs, which individually may
mean very little, but when combined provide an area of theckegnvironment that is seen as
valuable to the user. Therefore, the first research queattempted to discover how such patches

can be learned.

Research Question 1How can information patches be learned from a long tail Wedi?si

Although each user is free to define patches of value as ttesfitseertain patterns of patches
may emerge among foragers with similar information goatentthe viewpoint of the online
firm, knowing who values what patch can provide insights theinformation goal of the for-
ager. By categorizing patches as valuable to goal-actieyemon-goal-achievers, the firm may be
able to better explain goal achievement at long tail sitggeddent on what patches were visited
by a user. Therefore, a measure was also developed whiclifegecha user’s visitation of valuable

goal patches



1.1.2 Research Question 2 — Learning Scent Trails

Information scent is the driving force behind why a persorkesaa navigational selection amongst
a group of competing options. As foragers are assumed taibaah scent is a mechanism by
which foragers’ reduce their search costs by increasinig élsceuracy on which option leads to the
information of value (Pirolli, 2007). Based on the inforioatgoal of a forager, each hyperlink on
a Web page gives off a scent. The higher the scent the moie tite page that is being linked to
may contain the information being sought. Similar to a blomthd that follows a scent trail over
distances to find an item of interest, a forager also followsemt trail to find the information they
seek over multiple Web pages. The second research questightgo explain how scent trails

may be learned.
Research Question 2How can information scent trails be learned from a long taéiWite?

Similar to the learning of patches, each user may have thairszent trail. However, patterns
may exist from fragments of scent trails that emerged amoragérs with similar information
goals. These fragments of scent trails are of value to thaeefifm in distinguishing between pos-
sible goal-achievers and non-goal-achievers. When a aews these known fragments of scent
trails it may provide clues into their information goal atti$ help in explaining goal achievement
at long talil sites. Thus, a measure was developed which cadple following ofgoal scent

trails.

1.1.3 Research Question 3 — Clickstream Model of Informatin Foraging

The previous two research questions examined the conceipf®ianation scent and patches indi-
vidually. However, the real value of IFT is its ability to cbime aspects of a user’s search environ-
ment (i.e., patches) and their actions (i.e., scent) tegehus the main focus of this dissertation
and the final research question was how these concepts amalohfbined using clickstream data

to infer goal achievement.

Research Question 3How can information foraging theory and clickstream dataused to ex-

plain the achievement of a goal at a long tail Web site?
To answer the third research question, two versions of &stieam model of information for-
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aging (CMIF) were created which used clickstream metriaggpoesent the concepts of informa-
tion scent and patches. The user-centric (UC) model exgaiser-centric data (Padmanabhan
et al., 2001) about a forager’s entire browsing behavioxfdain goal achievement at a long tail
Web site. This model compared a forager’s behavior acrosgphelVeb sites. However, due to
user-centric data typically being aggregated at the se$ésiel, the model lacked depth at individ-
ual Web sites.

Since data about a user’s entire clickstream over multigds & rarely available to an online
firm, a site-centric (SC) version of the model employing-siatric data (Padmanabhan et al.,
2001) was also developed. Page-level data made the sitiecamodel capable of analyzing patches

at all levels of analysis along with information scent at ab\§ke.

1.2 Contributions

Listed below are the major contributions of this disseotati

First, this dissertation demonstrated how IFT could be aseal theoretical basis for clickstream
research. Through the creation of two versions of a clielestr model of information foraging,
the concepts of IFT were quantified outside of a productida environment. In addition, the
CMIF not only operationalized the core concepts of IFT, bsb &xtended the theory by intro-
ducing memory, forager-independent valuation of patciestails, along with refined definitions
of scent (e.qg., strict and relaxed scent). Once tested, mwiding core concepts of IFT were sup-
ported, as were many of the theoretical extensions. Thissdi$sertation not only demonstrated
the ability of IFT to explain goal achievement, but it alstraguced theoretical extensions which
provided a more in-depth explanation of goal behavior.

This dissertation also presented a methodology on how to [g&ches and scent trails using
not only significant, but also supported contrast sets. Megswere also created which quantified
a forager’s visitation of patches and following of trailhéfmetrics measured the most valuable,
last, and summation of all patches and trails that wereedsit followed. For those Web sites
within the CMIF that discovered patches and trails, the messwere capable of distinguishing
goal from non-goal sessions according to a forager’s vigitaand following behavior.

The third contribution was a methodology that detailed howreprocess datasets with long tail

Web sites. In particular, a separate user- and site-cant#tbodology was presented which high-
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lighted the unique challenges associated with prepratgssich dataset. For example, a process
was provided for the site-centric dataset about how to ébaatl select a single definable goal on
Web sites which have more than one available goal.

Finally, due to the presence of IFT guiding analysis, traddlly under-studied long tail Web
sites were able to be examined even in light of their sparsesdts. As far as can be determined,

this dissertation is the first to empirically study goal aseiment on long tail Web sites.

1.3 Dissertation Structure

The structure of the remaining chapters of this disseridimutlined below. Each item in the list

provides a brief summary of the main purpose of each chapter.

Chapter 2. Literature Review — An overview of prior cliclkstm research along with the datasets

and metrics used in that research.

Chapter 3. Theory — A detailed explanation of informatiorafping theory along with the two

theories IFT draws from: ACT-R and OFT.

Chapter 4. Hypotheses — The hypotheses for both the usesitenckntric versions of the CMIF

(third research question). In addition, an explanatiormhefdxtensions to IFT is provided.

Chapter 5. Methodology — A separate methodology for the- @swt site-centric versions of the
CMIF is presented that covers the data used, how measurescaleulated, and finally how
the hypotheses were tested. The appendix contains a destep how to learn patches and

trails (first two research questions).

Chapter 6. Datasets — A detailed explanation of the seripsepirocessing steps each dataset

went through to obtain a final dataset.

Chapter 7. Results — A listing and discussion of the resalteéch of the three research ques-
tions. Descriptive statistics are provided about learreadhes and trails. In addition, statis-
tical tests and a discussion of each of the hypotheses fahittieresearch question are also

provided.

Chapter 8. Temporal — An alternate time-sensitive reptatien of the site-centric CMIF. The

methodology, results, and discussion are provided foreherstested hypotheses.
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Chapter 9. Conclusion — Summarizes this dissertation amdd®@s limitations, contributions,

and directions for future research.



Chapter 2

Literature Review

This chapter provides a summary of prior research which d@asskd on the behavior of visitors at
Web sites using clickstream data. A brief list of terms comiaised throughout this dissertation
are provided first in 82.1. Then prior research is summargeticlassified by research focus in
82.2. Table 1 lists the general research questions andgedydrior research, while §2.2.1-2.2.4
gives more in-depth descriptions of the literature. Thaskells and metrics used in each study are

then discussed in 82.3 and §2.4, respectively.

2.1 Terminology

In order to be clear and consistent, definitions of terms comynused throughout this disserta-
tion are provided below. Each bolded term is followed by @fimtion. If any synonymous terms

exist they are italicized in parentheses immediately Wailhgy the bolded term.

Path — sequence of Web pages viewed during a session or userrsessio

Sector — a collection of Web sites with products, services, andifarimation which are of a sim-
ilar nature (e.g., food).

Session — a time-contiguous sequence of Web page views at the sameait&dbr the same visi-
tor.

User Session— a time-contiguous sequence of Web page views at any nurhiiéglmsites for
the same visitor.

Visitor (usep — a person making Hypertext Transfer Protocol (HTTP) retpiat a single Web
site or multiple Web sites.

Web page (page — a file written in Hypertext Markup Language (HTML) contiaig information
that is viewable via a Web browser (e.g., index.html).

Web site (site) — a collection of Web pages housed under the same top- anddséevel domain
name (e.g., amazon.com).



2.2 Prior Research

In keeping with prior frameworks, the objective of a visitira site can be classified as brows-
ing or purchasing (Bucklin et al., 2002). A browsing objeetreflects how a visitor may navigate
within a site (Bucklin and Sismeiro, 2003), across multgites (Park and Fader, 2004), or how
site visits evolve over time (Moe and Fader, 2004a). Comhgra purchasing objective is inter-
ested in discovering factors which affect a visitor’s pnogigy to purchase (Sismeiro and Bucklin,
2004). However, the purchasing objective can be seen asdispestance of the more general
goal achievement objective as many sites have purposestb#repurchasing (e.g., filling in a
contact form, posting a message, responding to a survegyeldre, the objective of a visitor can
be classified as browsing, purchasing, achieving a’goakxploring multiple objectives simulta-
neously (Moe, 2003).

Table 1 categorizes past studies by which objective thearelBavas examining and then sum-
marizes the research questions and results obtained. Athmmaugh description of prior research

is provided in the subsections following the table.

Although purchasing is a subset of goal achievement it @metl as a separate objective since numerous studies
specifically examine purchasing behavior.
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Table 1: Prior Literature:

Results

Article

Research Question / Purpose

Results

MULTIPLE OBJECTIVES
Kalczynski et al. (2006)

Moe (2003)

BROWSING
Bucklin and Sismeiro (2003)

How well do
clickstream-complexity
measures predict task
completion?

What visitor behavior can be
uncovered from the pattern and
type of pages viewed?

Two Web site-independent clickstream-complexity
measures representing the linearity and density of a
session were found to perform the best with accura-
cies between 65% and 93% depending on the task
and site.

Four groups of visitors differing in search behav-

ior and purchasing horizon were found, along with

a fifth group of non-serious visitors. The purchase
probability of each group differed depending on how
immediate the purchase was and how directed the
browsing behavior was.

Do visitors change the way theyisitors did dynamically change their browsing be-
browse a Web site at the sessionhavior at both the session and site level. Within a

or site level?

session browsers exhibited lock-in as they browsed
deeper into a Web site. Across sessions a learning
effect was observed which reduced the number of
pages viewed, but not the duration spent on each

page.

Continued on Next Page. ..



A"

Table 1: Prior Literature Results — Continued

Article Research Question / Purpose Results
Danaher et al. (2006) What factors affect visit Age interacted with gender, Web site functionality,
duration? and the graphical content of a site negatively with re-

Johnson et al. (2004)

Moe and Fader (2004a)

Park and Fader (2004)

Zhang et al. (2006)

gards to the duration spent on a Web site. Age inter-
acted positively increasing duration for older visitors
for higher levels of text and advertisements on a Web
site.

Does reduced search cost leadXeerall search levels were low across the three sec-
increased search? tors examined. Browsing behavior was also found to
differ depending on sector and level of activity.

To model individual-level Examining data at an individual-level contradicted
evolving visit patterns over time. aggregated visit patterns. More frequent visits and an
increase in visiting rates increased visitors’ probabil-
ity of purchasing.

Understand cross-site visiting An ability to predict when a visitor will first visit a
behavior at the individual level. Web site given their visiting pattern at another site.

How does search cost, productLower search costs and prior search behavior were
characteristics, previous search positively correlated with search depth. Price and
behavior, and consumer consumer characteristics were positively correlated
characteristics affect search to search depth for only certain product types.
depth?

Continued on Next Page. ..
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Table 1: Prior Literature Results — Continued

Article

Research Question / Purpose

Results

PURCHASING
Moe and Fader (2004b)

Montgomery et al. (2004)

Padmanabhan et al. (2001)

Sismeiro and Bucklin (2004)

Van den Poel and Buckinx
(2005)

To model individual-level
dynamic conversion behavior.

Can the path a visitor takes
through a Web site help predict
purchase?

What are the implications of
using site-centric (i.e.,
incomplete) data versus
user-centric (i.e., complete)
data?

Does viewing the purchasing
process as a series of tasks
increase prediction accuracy?

How well do different types of
metrics predict purchases?

The individual-level model contradicted aggregated
conversion trends. Over time the overall purchase
probability of a visitor decreased, repeat visits had
less of an impact on purchasing, and visitor experi-
ence raised the purchasing threshold.

Future paths were predicted with greater accuracy
by the model using paths and by allowing search be-
havior (i.e., exploratory, directed) to change during a
session. Purchase prediction was 10% and 21% ac-
curate after a visitor viewed one page and six pages,
respectively.

Models using user-centric data outperformed models
using site-centric data by a wide margin. Using site-
centric data can lead to erroneous results since signif-
icant metrics in site-centric models may no longer be
significant in user-centric models.

The multi-task model outperformed the competing
single task models supporting the series of tasks con-
cept. The model metrics differed in effect sign, size,
and significance between tasks indicating some met-
rics were better predictors of some tasks over others.

Detailed clickstream metrics, which were divided
according to the underlying content of the page (e.qg.,
product information, community pages), were found
to be the most important predictors of purchase.

Continued on Next Page. ..
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Table 1: Prior Literature Results — Continued

Article

Research Question / Purpose Results

GOAL ACHIEVEMENT
Chatterjee et al. (2003)

To model a visitor’s probability Advertisements exhibited “wearout” such that mul-
of clicking a banner tiple exposures reduced the probability of a visitor
advertisement. clicking an advertisement. Infrequent visitors were

also more likely to click on a banner advertisement
than frequent visitors.




2.2.1 Multiple Objectives

Moe (2003) created a two-dimensional typology and sougbtscover metrics which helped cat-
egorize the within-session shopping strategies of visitdhe first dimension of the typology,
search behavior, was dichotomized into following a dirdaeexploratory pattefn(Janiszewski,
1998). Directed searching occurs when a visitor has a péatigoal or product in mind (Row-
ley, 2000). Exploratory search, on the other hand, takesdimacted approach where the visitor
may not be attempting to locate a particular product or meekaific goal. The time horizon, in
which the expected purchase is to take place, either imredgliar in the future, was the second
dimension of the typology.

As seen in figure 2, four categories of shopping strategiesyged from the typology: directed
buying; search and deliberation; hedonic browsing (i>@laratory or stimulus-driven browsing);
and knowledge building. Each strategy was expected to hanegae pattern of the type, variety,

and number of repeat viewings of particular types of pages.

Purchasing Horizon Search Behavior
Directed Exploratory

Immediate Directed buying Hedonic browsing
(20.0%) (1.4%)

Future Search/deliberation  Knowledge building
(6.6%) < 0.1%)

Figure 2.: Shopping Strategy Typology (Moe, 2003)

Using seven weeks of data from a nutritional supplemenéestdoe (2003) empirically tested
the typology using cluster analysis and found all four thesat categories were present along with

a fifth category of non-serious visitdtsThe two most important metrics found for discriminating

2Bloch et al. (1986) created a framework for consumer infaionesearch and also delineated between two search
behaviors, pre-purchase and ongoing search. Pre-pursbasgh, which was defined as seeking to facilitate decision
making about a particular goal, maps to the directed seasiehvior. Ongoing search maps to the exploratory search
behavior and was defined as searching that is independegazfi a

SvVisitors in the fifth category, on general, viewed two pages spent a short amount of time on each page. Due to
the limited browsing behavior exhibited on the site by thés#ors before leaving they were not considered as having
a serious interest in the site. Nicholas et al. (2007) terthese non-serious visitors as 'bouncers’ who go from site to
site without deeply penetrating or frequently returninghte Web site of interest.
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between shopping strategies within a session was the nurhiddferent category pages viewed
and the maximum number of times a product page was viewed,(R083). Figure 2 also con-
tains the conversion rate of each category, in parenthegesh was found to range from 0.1%
to 20.0%.

Examining the behavior of visitors performing purchasing anformation-seeking tasks over
five Web sites, Kalczynski et al. (2006) used the navigationmplexity of a visitor's session
to help predict the completion of tasks. The central ideaavfgational complexity is the corre-
spondence with an underlying search behavior (e.g., Md&3)2@here, for example, a less com-
plex session is associated with a directed search behabiereas greater complexity in a session
points toward an exploratory search behavior. Using grapbry, each visitor's session was de-
composed into a clickstream graph which represented thepafgbs and links traversed within a
Web site and allowed for the calculation of navigational ptenxity.

A total of 485 sessions, in a controlled experiment, atteahpd complete three purchasing and
three information-seeking tasks with the overall succatssrfor the tasks varying from 8.8% to
56% (Kalczynski et al., 2006). Two clickstream graph-coeml/ metrics representing the linear-
ity and density of a session were used in binary logisticeggjon models for each task. Overall,
the models correctly classified a session between 64.9% &4éc0f the time depending on the

Web site and tadk(Kalczynski et al., 2006).

2.2.2 Browsing

Moe and Fader (2004a) explored the pattern and evolutiontmue of a visitor's browsing behav-
ior at the individual-level. The authors argued that aggtieg browsing behavior at the site-level
to create general traffic patterns may lead to a false uradetistg of the complete browsing be-
havior occurring at a site (Moe and Fader, 2004a). For igstaaggregated data may indicate an
upward trend in both the number of visitors and rates ofwigita site. The inclusion of new visi-
tors may however, be masking a decline in visiting rates fpedenced visitors (i.e., established
customers).

Moe and Fader (2004a) used eight months of user-centridalaiging on Amazon.com and

“The model with 93.1% accuracy was for the task with only 8.8f4cess. As only the overall accuracy and not
the specificity and sensitivity were provided the practimhefit of the model is unknown, Kalczynski et al. (2006)
acknowledged this limitation.
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CDNow.com to validate a nonstationary evolving visit modéie model took into account an in-
dividual's heterogeneity, visiting rate, and evolutionvisiting rates over time. Compared against
an exponential-gamma timing process, which did not allomcf@nge over time, the evolving
visit model was more accurate in estimating the likelihond when a visitor would return to a
site (5% overprediction versus 37%) (Moe and Fader, 2004addition, the distribution of vis-
iting rates did show a decline in visiting rates for expeti visitors which contradicted the ag-
gregated trends. Furthermore, more frequent visits anda@aase in visiting rates were found to
be significant in terms of a visitor's probability of purchas (16.6% vs. 11.1% and 5.5% versus

2.4%, respectively) (Moe and Fader, 2004a).

Also concerned with aggregated statistics being used ¢ uigitors’ browsing behavior, Buck-
lin and Sismeiro (2003) created an individual-level modddrowsing behavior within a Web site.
The first aspect of the model accounted for a visitor's denisd continue browsing the site or exit
the site. The second aspect was concerned with the durdttonepa visitor spent on each indi-
vidual page. Using a type Il tobit model and one month of dedenfa commercial automotive
Web site, four distinct browsing behaviors were identifiadearning effect, within-site lock-in,

time-constraints, and a cost-benefit view.

The results of the first behavior, learning effect, was cirsi with prior research showing the
overall duration of sessions decreased with each subsesgssion (Johnson et al., 2003). Al-
though the overall session duration and number of pagesde®creased, the duration spent on
each page did not significantly differ from previous sessi@ucklin and Sismeiro, 2003). The
second behavior was based on the concept of lock-in (Johetsan 2003; Zauberman, 2003);
however, in this context the lock-in corresponded to amidiecoming more engrossed as they
continued to browse a Web site within the same session thefeaver time. The results supported
this idea of within-site lock-in since the amount of time speiewing each page increased as the

number of pages viewed in a session increased (Bucklin emde®io, 2003).

Time-constraints, the third behavior, showed the profigihwf a visitor staying on the Web site
decreased as the overall session duration increased. Bhédimavior demonstrated visitors’
likely performed some type of cost-benefit analysis sincagepwith greater amounts of infor-
mation increased a visitor’s probability of staying on the¥gite. However, the probability of a

user leaving the site can also increase with greater le¥@tdasmation. For example, reading all
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the information on a page may result in longer page duratidmish translate into longer session
durations. Due to time-constraints, longer session caatihen leads to a greater probability of a
user leaving the Web site (Bucklin and Sismeiro, 2003).

Echoing the concerns of Padmanabhan et al. (2001) aboyf msiomplete data, Park and
Fader (2004) posited the timing and frequency of futurdwisi a site can be better explained by
examining visiting behavior at other sites. Specificalig browsing behavior in terms of visit tim-
ing and visit rates compared to other sites can be examir@dn$tance, one visitor may have
high visit timing in which a visit to one site is followed shigrby a visit to another site. A differ-
ent visitor may have a high visit rate where the number otwisi each site is similar, regardless
of the coincidence of visit timing. The relationship of botiese concepts to a visitor’s browsing
behavior can be used to predict future visits to a site of@ste

Using a multi-variate timing mixture model with closed+ioanalytic expressions, Park and
Fader (2004) looked at the browsing behavior of visitorgnftevo pairs of sites within the book
and music sectors. Four models were compared, which diffeased on if correlation in visit tim-
ing and rates were accounted for, with the proposed modebLatiag for both correlations. The
proposed model was found to provide the best fit and perfomredidvhen long spaces of time
occurred between visits (Park and Fader, 2004). Howevernwlsits to different sites occurred
on the same day, the proposed model failed to perform as Wedl proposed model also outper-
formed the other three models in identifying zero classasts (i.e., customers who have not
visited the Web site) who become non-zero class customersqustomers who will visit the Web
site) in the future (Park and Fader, 2004).

Since the average duration a visitor spends on a Web siteaspanent of the stickiness of
that site (i.e., ability to attract and keep the interest wisétor) (Bhat et al., 2002), Danaher et al.
(2006) set out to uncover the factors that affect visit daratThe resulting model took into ac-
count two sources of individual-level heterogeneity infinen of demographics and a visitor’'s
situational characteristics for a particular visit to & $&#.g., weekday versus weekend visit, num-
ber of previous visits). Site-level heterogeneity inclddeeasures of the textual, graphical, and
advertising content of a Web site. Measures representmdbkground complexity and overall

Web site functionality were also included in the model.

SFunctionality was measured as the average of 19 binary iietitsating the presence or absence of features on the
Web site such as ”... . online help, search functions, sitesmager registration, e-mail contact availability, chams,
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Using a month of panel data from 1,655 panelists for the 5Q4vieged Web sites in the dataset,
the developed model demonstrated that all three sourcest@fdgeneity were significant in ex-
plaining duration. Although all significant, visitors’ sitional characteristics accounted for al-
most 80% of the variance explained (Danaher et al., 2006jging support that clickstream met-
rics in the absence of demographics and Web site chardierisin explain a substantially part
of visitors’ behavior. In terms of specific metrics, age wasd to interact significantly with al-
most all of the demographic and Web site-specific metricsiritance, the functionality of a Web
site and age interacted such that an increase in functipristreased the duration a visitor spent
on the site the older the visitor was. The opposite relaligne/as found between age and adver-
tising content where visit duration increased for oldeiters when visiting Web sites with more

advertisements.

Due to the relatively costless nature of searching on tregriet, Johnson et al. (2004) sought to
answer the question does reduced search costs lead tosiesliessearch behavior? To answer that
guestion search behavior was operationalized into thregooents consisting of the depth, dy-
namics, and activity of search. The resulting Hierarchgayesian model accounted for a house-
hold’s visitation of multiple sites within the same sectdeth), change in search behavior over

time (dynamics), and amount of overall activity in a sectmtigity).

Focusing on three sectors (books, music, and air traveBeabhech behavior of households at 51
of the most visited Web sites (13 books, 16 music, and 22 arety within the dataset were an-
alyzed. Consistent with prior research, it was found thatal households searched very little
(Zauberman, 2003) in all three sectors, although more Bdsisavior was found within the air
travel sector than the others (Johnson et al., 2004). Hawlewaseholds searching within the air
travel sector were more likely to gravitate toward a preféieb site over time (Johnson et al.,
2004), thus indicating a propensity for less search in theréu Not surprising, a relationship be-
tween activity and depth of search was significant for alt@sdndicating households that were
more active in a sector were more likely to search across gltghnson et al., 2004).

Following in the footsteps of Johnson et al. (2004), Zharg.€2006) also examined the search
behavior of households, albeit using data collected foarytater. The time span between the

datasets highlighted the contrasting search behaviorugdiwlds from the infancy of e-commerce

and message boards" (Danaher et al., 2006, pgs. 186-187).
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to its relative maturity. Looking at both product price ahd guality of the e-commerce store, an
analytical model and propositions of a household’s onlgerch behavior were created. Examin-
ing two of the three same sectors as Johnson et al. (2004)qanc air travel) and one new sector
(computer hardware), linear regression models were usesthypotheses derived from the ana-
lytical model’'s propositions. The hypotheses sought temeine the relationship of search depth
to search cost, product characteristics, previous sealchviior, and consumer characteristics.
Compared to prior research, overall search depth incressdtbyalty to a Web site decreased
(Zhang et al., 2006), which is contrary to the belief that$eholds would gravitate towards a
preferred Web site over time (Johnson et al., 2004). It wss falund that households took both
the price of the product and the quality of the e-commerce=sitdo consideration (Zhang et al.,
2006). Like Danaher et al. (2006), who found age was an ilmpbrhoderating variable for visit
duration to a site, age was also found to be positively rélaiesearch depth, although only within
the air travel sector. All told, the linear regression medatcounted for 4.4% to 11.5% of the
adjusted R (Zhang et al., 2006), indicating other metrics may also hiatefest for explaining

search depth.

2.2.3 Purchasing

Montgomery et al. (2004) sought to predict purchase coieltsy examining the path a visitor
took as they browsed a Web site. The path was assumed to erduiels into the goals of the vis-
itor and consisted of the sequence and types of pages (emge, product, and category) viewed
throughout a session.

Figure 3 provides an example of two distinct paths from twgiters who eventually arrive at
the same product page. The first visitor appears to have tak@ect route to the product of in-
terest, thus exhibiting a deliberate path. In contrastsdwnd visitor appears to be browsing, due
to the number of product and category pages being viewedseTte behaviors are very similar
to the search behavior dimension of the shopping stratgmptdgy from Moe (2003). However,
unlike Moe (2003) which categorized a visitor as having ficstearch behavior for the entire ses-
sion, the dynamic multinomial probit model by Montgomenakt(2004) included the ability to
account for changes to a visitor’s search behavior withiessisn. Therefore, while a visitor may

not have a specific goal at the beginning of a session, theytraagition at some point in the ses-
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sion into having a goal or vice-versa.

Visitor Sessiof

1 (H,C,P)
2 (H,C,P,P,P,C,P,P,C,P,P,H,C,P)

& Types of pages: H = Home; C = Category; P = Product.

Figure 3.: Category of Pages Viewed in a Path

One month of panel data focusing only on visitors to BarnéSable.com was used to em-
pirically evaluate the accuracy of the proposed modeltRine general accuracy of the model’s
ability to correctly predict future paths based on priotgadf the same visitor was evaluated. Us-
ing a holdout sample, future paths were predicted with 832@&tiracy (Montgomery et al., 2004).
Second, it was found that models which allowed for searcladiehto change within a session
were more accurate at predicting paths than other modelstdmery et al., 2004). Lastly, the
accuracy of predicting purchase conversion by the end odsi@® using path information of that
session was evaluated. As a path is a discrete set of pagesdvithe purchase conversion predic-
tion can be calculated after each page viewed. Using a hosdouple the accuracy after one page
and six pages viewed was 10.4% and 21.2%, respectivelytathccuracy increasing as more
pages were viewed (Montgomery et al., 2004).

Predicting if a purchase would be made during a visitor's nesit to a site, Van den Poel and
Buckinx (2005) investigated the importance of four differeategories of metrics on purchase
prediction. The first category of metrics aggregated ctiekesn measures for a particular visitor
regarding all their previous visits to the site. The secostggory provided detailed clickstream
metrics according to the particular content being visieed.( a product page), as opposed to the
entire site in general. The third and fourth categoriestdeith demographic and past purchase
metrics, respectively.

An exploratory approach to cull the list of 92 available restidown to a reasonable set for use
in logit models was done via three competing metric selaatiethods. Using 10 months of data
from a commercial wine seller, 11 distinct metrics were usecteate the models correspond-
ing to the metric selection method employed. The criterigudging the models found the best

model using the validation dataset was low in accuracy fthn bte proportional chance criterion
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(Morrison, 1969) and the area under receiver operatingacieristic curve criterion (Fischer et al.,
2003). Although not extremely accurate, Van den Poel ankiBu¢2005) did find the detailed
metrics provided the greatest predictive performance.

Padmanabhan et al. (2001) investigated the implicationsiofy incomplete clickstream data
to train models for prediction purposes. Specifically, theppse was to determine if a purchase
would occur during the remainder of a session or at any poitité future. The potential prob-
lem of using incomplete data is only a visitor’'s browsing éabr for the particular site of interest
is observed. For instance, figure 4 provides an example otypes of data for two visitors. Ex-
amining only the site-centric data, it appears both visieme similar since they have both visited
three pages at site A. However, if user-centric data is exadhinstead, the picture of the two visi-
tors’ browsing sessions is much different. Visitor 1 is tig] two other sites in addition to site A,

whereas visitor 2 is only visiting site A.

Visitor User-centrié Site-centrié
1 (A1, A9, By, A3,C1,Ca)  (Ag, Az, Ag)
2 <A17A27A37> <A17A27A3>

2 Notation: X, indicates the ' page viewed from site X.
b Assumes site-centric data is for site A.

Figure 4.: User-centric Versus Site-centric Data

To explore the effects of using such incomplete data, Padbien et al. (2001) recreated a
site-centric dataset from six months of user-centric datinear regression, logistic regression,
classification tree, and neural network were created fdn elass of problem (i.e., purchase in the
current session or future purchase). The results of eackelnaete compared against the site- and
user-centric datasets. All the models using user-cenatia bad significantly higher lifts compared
to the models built using site-centric data (Padmanabhah,&001). In addition, some metrics
found to be significant in site-centric models were insigaifit in the user-centric models, thus
leading to the possibility that erroneous conclusions magelached from relying solely on site-
centric data (Padmanabhan et al., 2001). Lastly, someyhgigphificant metrics were only avail-
able in the user-centric dataset (Padmanabhan et al., Bfflighting the importance of using a

complete picture of a visitor's browsing behavior.
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Instead of attempting to predict the probability of purchgsas a discrete purchase or not-
purchase outcome, Sismeiro and Bucklin (2004) viewed thehasing process as a series of tasks
to be completed. Each task (e.g., find a product, add the praadthe shopping cart, checkout) is
sequential in nature and requires prior tasks to alreadg haen completed. Therefore, the prod-
uct of a chain of conditional probabilities can be calcuddiar a visitor after each task has been
completed (Sismeiro and Bucklin, 2004). For example, tlodalility can be calculated for a vis-
itor adding a product to their shopping cart given the viditas already found the product. In ad-
dition to the task-completion aspect of their model, Sismaind Bucklin (2004) also allowed for
heterogeneity across visitors at the geographical coensi.|

In order to evaluate the multi-stage binary choice modealim®iro and Bucklin (2004) gathered
70 days of clickstream data from a major commercial Web sitee automotive industry. Three
sequential tasks were defined as critical junctures leagjing the purchase of an automobile:
completing the configuration of an automobile; inputtingspaal information; and completing
an order. To determine the effectiveness of the task-cdioplapproach, two single-task hierar-
chical probit models, one with dummy variables representie completion of the first two tasks
and one without, were compared against the multi-stagebeteice model. The multi-stage
model outperformed both single-task models in hit rate ardmsquare error (MSE) for predict-
ing vehicle orders (Sismeiro and Bucklin, 2004). In addifithe multi-stage model demonstrated
that some metrics’ effect signs differ depending on the tagsksome metrics are valuable for pre-
dicting the completion of some tasks but not for others (8isonand Bucklin, 2004). One stated
limitation of Sismeiro and Bucklin (2004) was the requirernthat each task must be performed
in the order specified. The model cannot consider altermat®s a visitor takes at a site that may
also lead to a purchake

Recognizing that visitors may have distinct purchasingepas, Moe and Fader (2004b) inves-
tigated how purchasing probabilities can be improved bintalnto account visitor heterogeneity
and visit history. Specifically, they created a conversiadel which contained six components.
The first component was a baseline probability of purchafingach visitor which was indepen-
dent of the visitor’'s past history. The positive effect omghasing (i.e., visit effects) was the sec-

ond component and assumed that each visit increased, githoyuvarying amounts, the likelihood

6Sismeiro and Bucklin (2004) cite Amazon.com’s “One-Cligkieckout service as an example of an alternate
route.
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of a future purchase. The third component, purchasing hbtdsallowed for a negative effect on
purchasing which may be caused by the risk-adversenestiotaigce of a visitor to purchase.
A decreasing threshold would indicate less of a negativexefin a visitor's purchasing proba-
bility. The fourth component permitted heterogeneity asraisitors by differing visit effects and
purchasing thresholds for each visitor. The fifth compormédintved for changes and evolutions
in the visit effects and purchasing threshold over time tiyathe model included a component
to remove shoppers who were considered “hard-core newars&uand had no intention of ever
purchasing (Moe and Fader, 2004b).

Using an eight-month sample of panel data focusing on Amapam visit effects were found
to accumulate over time and increase purchasing probebil(iioe and Fader, 2004b). However,
the conversion model showed an overall decrease in purchasbbabilities over time. The third
and fifth components showed repeat visits had less of an ingpgaurchasing over time and pur-
chasing thresholds increased as visitors became moreiexped (Moe and Fader, 2004b). These
results mirror Moe and Fader (2004a) indicating the impuangeof exploring visitor-level data as
the conversion model contradicted the aggregated degamtionstration of increasing purchas-
ing probabilities. Lastly, the conversion model outpearied a logistic regression model, duration
model, beta-binomial, and historical conversion ratesdirig the lowest relative error in predict-

ing conversion rates (14.7% predicted versus 15.7% actual)

2.2.4 Goal Achievement

Chatterjee et al. (2003) analytically modeled a visitogsponse to banner advertisement exposure
on an ad-sponsored magazine Web'sifehe proposed model allowed for heterogeneity of visitors
and their sessions (both within and across) to the Web sliteeelbenchmark models, with varying
levels of heterogeneity, were used to compare the propose@im

Using data from 1995, the ability of the model to predict thekethrough of banner advertise-
ments of 3,611 visitors for two sponsors was tested. Thegzexgb model obtained a 41% hit rate
compared to the three alternative models obtaining a 2.492%, and 33.3% hit rate, respectively

(Chatterjee et al., 2003). As expected it was found that feugtd to banner exposure was a factor

A notable point about this type of goal achievement is it cecuo multiple times within the same session (i.e., a
visitor can click multiple banner advertisements duringss$on). Although multiple purchases or other goals may be
achieved within the same session, it is unlikely to occuhwiuch frequency.
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and thus the probability of clicking on a banner advertiseimeas higher when a visitor was first
exposed to the advertisement. In addition, the “wearoutitept also extended over sessions such
that infrequent visitors were more likely to click on a banadvertisement than frequent visitors

(Chatterjee et al., 2003).

2.3 Datasets

Table 2 provides information about the dataset used in dady.sAs clickstream research is typ-
ically data-driven, the results found in prior literaturayrbe specific to particular datasets. Thus,
having knowledge of the datasets used may be helpful in stadeting differing results. Each
dataset is broken down by type, sector the site or sites efdaat belong to, year when the data was

collected, duration of data collection, and size of the skita

2.3.1 Type

The type of dataset used can be categorized as either sitécaar user-centric, terms coined by
Padmanabhan et al. (2001) to refer to the focus of a clickstréataset. Site-centric data is fo-
cused on the site itself and is defined as “... . clickstreara daliected at a site augmented with
user demographics and cookies to identify users” (Padnfemaét al., 2001, pg. 154). Although
site-centric data is advantageous in terms of being readl#jlable to site-owners (although they
might not have access to demographics) and including #ilctta a site, it can only provide infor-
mation on a visitor's browsing behavior on that site. A visi entire browsing session (i.e., user
session), which may include browsing at other sites, cabaabtained from site-centric data.
User-centric data overcomes the disadvantage of siteicelatta by providing an entire visitor’s
session regardless of the different sites visited. Havorgete information, user-centric data
has proven to be more accurate than site-centric data whilelimipgunodels predicting purchasing
probabilities (Padmanabhan et al., 2001). User-centti idadefined as “.. . site-centric data plus
data on where else the user went in the current session” @salrhan et al., 2001, pgs. 154-155).
User-centric data is typically obtained from randomly stdd participants who are representative
of the population at large. Unfortunately, some more reaset-centric datasets lack details of
each page a user visits during their session. This limitatstricts the examination of paths and

other such techniques from being studied using these dstase
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In addition to the “pure” site- and user-centric datasaigjes studies construct site-centric datasets
from user-centric data for a single site or set of sites. @lesnstructed site-centric datasets typi-
cally view the site or sites of interest in isolation with@agard to where a visitor may browse at

other sites (e.g., Montgomery et al., 2004).

2.3.2 Sector

The sites examined in a study’s dataset can be categoritted general sector according to the
main purpose of the site or type of products sold. Awarenétseector may be desirable since
browsing behavior has been found to vary by sector (Johnisaln, €004). Therefore, the results
obtained from a site in one sector may not be generalizaldées in another sector. For example,
Van den Poel and Buckinx (2005) looked at an e-commerceadliiagwine, which is within the
food sector. The results from such a sector may not generaiidl to other sectors as wine is a
perishable good which may require restocking as consumesiteAvithin the consumer electron-
ics sector may have drastically different traffic patternd factors that lead to purchase due to the
non-perishable aspect of the products sold.

Sites were categorized into sectors according to the Opetry Project (ODP). A search on
a site’s domain was done on ODP and the most relevant categfoipned was used as the sector.
For studies which did not explicitly mention the sites udbed,sector was located according to the
general purpose or type of product sold. As sites may charagtichlly over time the purpose or

type of product sold at the dataset’s time was used to camegthe sité.

2.3.3 Time, Duration, and Size

As the Internet has seen an evolution of visitors’ behawaites (Zhang et al., 2006), the year or
years in which a dataset was collected can have a direct tropabe results obtained (cf. Johnson
et al., 2004; Zhang et al., 2006). The duration of data ctiieccan also have profound results.
For instance, collecting data for one month in a cyclicalistdy may result in differing conclu-
sions when compared to data collected in the same industtyaolonger period of time. Lastly,

the size of the dataset is provided. For site-centric daatimber of monthly visitors can be con-

8Amazon.com circa 1998 sold only books (Moe and Fader, 2084t thus would be assigned to the Book sector.
Today, however, Amazon.com sells many different categaferoducts ranging from consumer electronics to bedding
and thus would be assigned to the General sector.
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sidered an accurate, albeit conservative, estimate oflagsitors’. As user-centric data represent
only a sub-sample of all visitors to a site, such datasetsataaccurately represent the size of a
site. However, many studies using user-centric datasets fon large well-known sites such as
Amazon.com (Moe and Fader, 2004b), BarnesAndNoble.corm{®tmnery et al., 2004), and CD-

Now.com (Moe and Fader, 2004a) in order to obtain adequa¢el samples and generalizability.

%As part of the preprocessing of clickstream data, sessiomsisting of only a single page are typically discarded
(Bucklin and Sismeiro, 2003). Therefore, site-centri@daeasures of monthly visitors are likely a conservative est
mate of actual unigue visitors to a site.
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Table 2:

Prior Literature: Datasets

Article Dataset
Monthly
Type* Sector Year Duration  VisitoPs
MULTIPLE OBJECTIVES
Kalczynski et al. (2006) site-centric  construction, financial, N/A N/A 97
government, insurance, & travel
Moe (2003) site-centric  nutritional supplements 2000 Thsee 3,508
BROWSING
Bucklin and Sismeiro (2003) site-centric  autos 1999 1 month 164,429
Danaher et al. (2006) user-centric  all 2000 1 month 11,6654
Johnson et al. (2004) user-centric  books, music, & travel 9711098 1 year 8934
Moe and Fader (2004a) site-centric  books & music 1998 8 nsonth 7414
Park and Fader (2004) user-centric  books & music 1997-1998&018hs 1,0394
Zhang et al. (2006) user-centric  music, computer hardwéare, 2002 6 months 2,2774
travel
PURCHASING
Moe and Fader (2004b) site-centric books 1998 8 months 536
Montgomery et al. (2004) site-centfic general 2002 1 month 1,160
Padmanabhan et al. (2001) both multiple N/A 6 months 3,297

Continued on Next Page. ..
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Table 2: Prior Literature Datasets — Continued

Article Dataset
Monthly

Type* Sector Year Duration  Visitobs
Sismeiro and Bucklin (2004) site-centric  autos 2000-200D d&ys 37,597
Van den Poel and Buckinx site-centric  food 2001-2002 11 months 126
(2005)

GOAL ACHIEVEMENT

Chatterjee et al. (2003) site-centric  magazine 1995 7 nsonth  479°

A dataset is considered site-centric if only informatiooatthe particular site or sites under study were examingedandently of any other sites the visitor may
have visited. Thus, while the data may be user-centric iaredi.e., panel data) the researchers have taken a siteéecgpproach by disregarding browsing behavior at
other sites.

PMonthly visitors were calculated as shown in equation 2raffie patterns were assumed to be constant throughout sefiateuration. If the specific dates of the
dataset were not provided approximations were made.

total number of visitors
x 30

duration of dataset in da (1)

‘Indicates a dataset constructed from user-centric daeséelTatasets only reflect a subset of all monthly visitorssitea
dIndicates total monthly visitors across all sites analyirettie dataset.

Indicates a subset of all monthly visitors to a site that rpet#ied criteria.

fcaptured clickstream data from experimental subjectopmifig a prespecified task.



2.4 Metrics

Table 3 provides information about the metrics used in eagatys Categorized by the focus of the

research, the metrics used are described in terms of thveirdéanalysis and general type.

2.4.1 Analysis Level

The metrics used for clickstream research can be definediab&sic levels of analysis: session,
site, sector, and user. At the session-level, which is thet mhetailed, each session of a visitor is
typically treated as an independent datapoint. A sessiosl-etric is based only on information
within the same session (e.g., number of clicks in a sesir,spent during a session). When

all sessions at a particular site for a visitor are aggretttgether, they represent the site level of
analysis. At the site level of analysis each visitor is cdastd a datapoint, regardless of the num-
ber of sessions at a site. Metrics at the site-level can geozihistorical perspective of a visitor’s
browsing history at that site (e.g., conversion rate foniséor).

The sector-level performs another level of aggregatioralicsites visited within the same sec-
tor. As more than one site is available, the sector-levelpcanide metrics that compare a visitor’s
browsing and purchasing habits across various sites witieiisector (e.g., percentage of visits to
site A). Finally, the user-level aggregates every secthiclwincludes all sites and all sessions, of
a visitor’s browsing behavior together. Similar to sedewel metrics, user-level metrics are also
able to compare browsing and purchasing habits, albeit @freehlevel of analysis (i.e., the sec-
tor),

Figure 5 is an example of the different levels of analysissitas for a single user. The usEg
depicted in figure 5 had ten sessiols (1) at four sites {;_4) within three sectors({; _3). Tak-
ing a site-centric approach, either session-level orlsitel metrics could be used. For instance,
a site-centric approach at sife could examine each of the user’s sessidhs § 5) as individual
datapoints; all sessions aggregated to the site-ldyehé a single datapoint; or a combination of
both where the last sessiofis) is used at the session-level and all previous sessionsg) are
aggregated at the site-level for historical metrics.

Taking a user-centric approach, not only can session- asdesiel metrics be used, but also

catledge and Pitkow (1995) also noted varying levels ofyaigl However, they only considered the session and
user level of analysis.
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User (V) U1={C1-3}
Sector (C) C1={Il1_2} Co={I3} Cs={14}
Site  (I) | L1={S1-35} | [2={Sa9} | I3={Se6} | 14={S7-8,10}
Session  (S) Si, 52,53, 55 | Si, So Se S7, S8, S10

Figure 5.: Example Metric Level of Analysis

sector- and user-level metrics. For instance, contintiegekample of usdy; from figure 5, at
sectorC all site-level data can be aggregated as a single datapoititd user. In addition, the
site- and session-level metrics would also be availablédth sites ;) and the corresponding
sessions{i—s9). At the most general level, user metrics aggregated froseators (' _3) for
the user would be represented as a single datapoint. Fumthher all other level-of-analysis met-
rics would be available for all the sectors, sites, and eassif the user.

Each level of analysis can be further broken down into gémeh detailed metrics. General
metrics refer to any metrics at a particular level of analylsat includes all relevant behavior,
without regard to the underlying content of the site. Detilon the other hand, breaks metrics
down by the type of content being viewed (Van den Poel and BucR005). For instance, a gen-
eral session-level metric would be the number of pages éwa session whereas a detailed
session-level metric would be the number of product pagasad in a session. Aggregating all
the detailed metrics for a level of analysis would resulthi@ general metrics for the same level of

analysis.

2.4.2 Metric Categories

Direct marketers have used Recency, Frequency, and Mgr{&BM) metrics to segment cus-
tomers for decades (Shaver, 1996; Stone and Jacobs, 2@D4yeamarize their prior behavior
(Fader et al., 2005). Recency refers to the amount of timesetasince a particular action or be-
havior has been observed, frequency is concerned with tind@uof times the same action or be-
havior is made, and monetary deals with the amount of moneytgm current or past purchases.
For example, the amount of time since a visitor last visit&dled site, the number of pages viewed
during a session, and the total amount spent on a previoshase, would represent a recency,

frequency, and monetary metric, respectively.
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As the basic underlying goal of identifying valuable custwsnis common in both direct mar-
keting and clickstream research, the classic RFM metrioeaa logical starting point for catego-
rizing the metrics used in the clickstream literature. Hesvedifferences between the online and
offline environment affect the data available and thus tpesyof metrics which can be uséd
Within the RFM metrics both recency and frequency are weltesented in clickstream research,
but monetary metrics have not seen widespread usage sitaset$ado not explicitly contain pric-
ing information of visitors’ purchasé&

Besides RFM metrics, user characteristics (i.e., demdbigaphave been used in both direct
marketing and clickstream research with some regularilihoigh not available in a user’s click-
stream, user-centric panel data typically obtain demdycagata separately which are then mapped
to the appropriate clickstream. Duration and timing are measures more specific to clickstream
research, due to the ease at which they can be obtained.i®@udaals with the amount of time
spent doing an action or behavior, whereas timing is theatatenich an action or behavior is
done. The amount of time spent on a Web site and the visitaitenof a visitor to a site are ex-
amples of duration and timing, respectively. Lastly, thhracure of the Internet and characteristics
of Web sites and their pages lend themselves to a wide varietther metrics which do not fit
into the previously discussed metrics. The referring Wiy siumber of links on a page, and size
of a page in bytes are all examples of the type of metrics wibébng in the “other” category.

Table 3 classifies the metrics used in prior literature atiogrto the categories they belong:

demographics, recency, frequency, monetary, durationing, and other metrics.

UTake the example of determining the number of products \ddimean online store versus an offline catalog. On-
line a simple count of the number of pages viewed with prothformation would provide the relevant information.
Offline attempting to gain information for such a metric webble prohibitively expensive since some type of observa-
tion would be needed for each viewer of the catalog.

2Monetary metrics can be obtained from secondary sourcebasbeen examined in Van den Poel and Buckinx
(2005), but it is not a natural byproduct found in server lagd other such sources that clickstream data are typically
gathered from. Some user-centric datasets; however, dadprmonetary values for products sold.
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Table 3: Prior Literature: Metrics

€€

BROWSING

Bucklin and Sismeiro (2003)

(2005)

Analysis
Article Level Demographics Recency Frequency Monetary abon Timing Other
MULTIPLE OBJECTIVES
Kalczynski et al. (2006) session
Moe (2003) session

session & site

Danaher et al. (2006) session Y

Johnson et al. (2004) sector

Moe and Fader (2004a) session

Park and Fader (2004) sector

Zhang et al. (2006) site & sector Y
PURCHASING

Moe and Fader (2004b) session

Montgomery et al. (2004) session Y

Padmanabhan et al. (2001) site & sector Y

Sismeiro and Bucklin (2004) session & site Y

Van den Poel and Buckinx session & site Y

Continued on Next Page. ..
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Table 3: Prior Literature Metrics — Continued

Avrticle

Analysis
Level Demographics

Recency Frequency Monetary aon

Timing Other

GOAL ACHIEVEMENT
Chatterjee et al. (2003)

session & site




2.5 Conclusion

The preceding sections in this chapter organized and suiredaiesearch using clickstream data
for prediction. All told, the majority of research has foedson the browsing (Johnson et al., 2004)
and purchasing behavior (Padmanabhan et al., 2001) of Web ase-commerce sites, with little
attention being paid to alternative objectives (i.e., gadlievement) or contexts (e.g., informa-
tional Web sites). As there are many different types of WasdqiJaillet, 2003), focusing on just
e-commerce sites is done at the expense of understanditay ishavior at other interesting and
valuable non e-commerce Web sites.

In terms of data, user-centric datasets are commonly used @xamining browsing behav-
ior, but with the exception of Padmanabhan et al. (2001) iserastent for purchasing or goal
achievement behaviors. The sectors examined for browshgvor generally overlap (e.g., books
and music) allowing comparisons of results. For purchaaimgdjgoal achievement, however, there
is little overlap and some of the sectors analyzed diffestaritially from one another (e.g., au-
tomobiles versus wine). According to Zhang et al. (2006)p ¥dund browsing differs by sector,
such little overlap may make results difficult to comparerastadies. Lastly, many of the datasets
are fairly dated. Although beneficial from the standpoint@mparing and contrasting changes
over time (cf. Johnson et al., 2004; Zhang et al., 2006), #st ehanges in the Internet and Web
users over the past few years may point toward a need for recemt and thus relevant datasets.

Although many studies used metrics that did not fit neatly the categories of table 3, general
patterns of the types of metrics used can still be seen. Oveeguency appears to be the most
commonly used type of metric as every single study excegtbczynski et al. (2006) and Mont-
gomery et al. (2004) included some aspect of counting i thedels. Duration metrics were
also commonly used for all types of research. Lastly, tinmmggrics were more heavily used in
browsing while recency was more common in purchasing antagbeevement. Determining how
well these types of metrics do for other objectives and cdstalong with finding a common set
of metrics can provide the basis for better understandisiovibehavior. Furthermore, looking
outside these metric types into the “other” categdan also help provide explanation into the

“whys” of visitor behavior.

13However, these “other” metrics should be readily availablall Web sites and not be an artifact of a particular
site or how it is organized.
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Chapter 3

Theory

Information Foraging Theory (IFT) “. .. aims to explain armegict how people will best shape
themselves for their information environments and howrimfation environments can best be
shaped by people” (Pirolli, 2007, pg. 3). Simply stated oseat of IFT is its ability to explain
the behavior of a person as they search for information wighpliable environment. Central to
the theory of information foraging are the concepts of infation scent and patches. Information
scent is the driving force of why a person makes a navigatselaction amongst a group of com-
peting options. Information patches are distinct areab@ttearch environment which differ in
their informational content. The synthesis of behavia. (information scent) and environment

(i.e., information patches) provides for a rich theory dbnrmation foraging.

IFT has a strong theoretical foundation by drawing upon @atiForaging Theory (OFT) (Stephens
and Krebs, 1986) and the Adaptive Control of Thought-Ratidrheory (ACT-R) (Anderson et al.,
2004), two well-known theories within their respectivedi®l OFT is an ecological theory con-
cerned with explaining the foraging behavior of animalshey thunt for food. ACT-R is a psy-
chological theory of the human mind that includes the cogmirchitecture and process by which
cognition works. Within IFT, OFT is used to explain the belbaal elements of people foraging
for information (i.e., why they go about searching), wher@&T-R’s purpose is to explain the

mechanism of how the behavior is being driven at the cognlével.

The remainder of this chapter is organized as follows. Rindntroduction of OFT and ACT-R
are provided in 83.1 and 83.2 as background informationFdr Then details regarding the two
central concepts of IFT are presented in 83.3, followed ly\tersions of a model that test the

theory.
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3.1 Optimal Foraging Theory

The aim of optimal foraging theory (OFT) is to explain thed&®y behaviors and adaptations

of animals (Stephens and Krebs, 1986). OFT has been useddol#ethe commuting behav-

ior of seabirds to distal feeding grounds (Nevitt, 2000}egs the nutritional ratios of ants’ food
(Kay, 2002); predict the feeding strategies of coyotes (@tacken and Hansen, 1987); and test
the group foraging behaviors of cranes (Alonso et al., 199baddition, OFT has also been ap-
plied to humans by explaining the hunting and gatheringtjies of the Aché of eastern Paraguay
(Hawkes et al., 1982); variability in Amazonian Indiansetselections (Hames and Vickers,
1982} decisions between ambiguous and unambiguous choice @ad., 1999); and appli-
cability of OFT in information seeking behaviors (Sandsird994).

The overarching assumption of OFT is animals have develbpedficial foraging adaptations
and behaviors that increase their net energy. A gain in rexggr{above an animal’s metabolic re-
quirement) allows spare energy to be spent on vital nonxfigeattivities such as fighting, fleeing,
and reproducing (Stephens and Krebs, 1986). As animalshigitter levels of spare energy are
more likely to survive and reproduce, successive genemtne assumed to inherit those benefi-
cial foraging adaptations and behaviors.

Following MacArthur and Pianka (1966), the general corgeged in OFT are that of preda-
tors, prey, and patches (Stephens and Krebs, 1986). Predaéothe animals doing the forag-
ing (i.e., hunting for food) and their behaviors are the f@mant of OFT. Prey refers to any item
of food that a predator may consume such as a rabbit, berpjant root. Each type of prey dif-
fers in their prevalence in the environment along with th@ant of energy the predator expends
and gains from chasing and eating the prey, respectivelyatéhas some area of the environment
which contains prey. Like prey, patches of different typemsdnstrate variability in terms of the
net energy a predator gains from foraging within them.

Predators are assumed to forage for food according to asegusearch—encounter—decision
process (Stephens and Krebs, 1986). While searching, arabnses its sensory abilities to pick
up on cues to help locate prey or patches. For example, dealse their sense of smell to (1) lo-
cate patches over thousands of kilometers from their restitony and (2) find prey within those

patches (Nevitt, 2000). Without sensory guidance, thegier'a probability of encountering prey

1A more complete review of OFT's use in anthropological rese@an be found in Smith (1983).
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or patches is effectively reduced to random chance. Sewydtdops once prey or a patch has been
located (i.e., an encounter has occurred). At the point cbenter the forager makes a decision of
how to proceed.

The two conventional models of OFT agree on the search—at@ewlecision process, but
fundamentally differ in what decision to make once an enteruakes place. The prey model
(Charnov and Orians, 1973) asks the question “attack oirummsearching?” (Stephens and Krebs,
1986, pg. 13) when encountering prey. In the patch modelrf@@va1976) the forager asks the
guestion “how long to stay in a patch?” (Stephens and Kre®36,1pg. 14) when a patch has been
encountered.

As the overarching assumption of OFT is the increase of raggnboth models are concerned
with maximizing the average rate of energy intake. Themfeach model uses a variant of Holling’s
disc equation (equation 3.1) (Holling, 1959). The average of energy intake is representedras
and is what both the prey and patch models are maximizingebdipg on the model usedis ei-
ther the rate of encounter of prey or a patels the average energy gained from each encouster,
is the search cost per unit of time, and findllys the average handling time per encounter. Within
each model the theory assumes predators have perfect mtfiormregarding the characteristics
(e.g.,\, &, h) of its prey or patches (Stephens and Krebs, 1986). Evemythanimals do not pos-
sess perfect information, the theory has still found erogirsupport even when the assumption of

perfect information has been violated (Kay, 2002).
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3.1.1 Prey Model

The prey model determines if an animal should attack andurnasa particular type of prey or
continue searching for other prey types (Charnov and Ori®i&3). The decision is made by
maximizing the average rate of energy intake by prey typenbtfie optimal diet (Stephens and
Krebs, 1986). Within the prey model there ardifferent prey types encountered at random wiith
representing th&” prey type. LetD represent the set of prey types such that {1,2,...,n}.

Associated with each prey type are the following charasties:

2Notations follow Pirolli (2007).
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tg; = average time between locating prey of tyipe

A; = rate of encounter of prey typevhen searchingl(/tz;).

tw; = handling time associated with pursuing, capturing, amsaming prey type.

g; = net energy gain from consuming prey tyjpe

m; = profitability of prey typei (g; /tw).

p; = probability of attacking prey typeupon encountér

The long-term average rate of energy intake for all preysypaletermined from equation 3.2

(a variant of Holling’s disc equation) (Stephens and Krél986).

R Y iep PiNigi

= 3.2
L+ Yiep piditwi 32

The inclusion of some prey types into a forager’s diet, whemgared to the alternatives, may
never be worth the energy to attack and consume. Determiviigh prey types should be ex-
cluded from consideration is expressed via the probalilityttacking a prey typen(). In order
to maximizeR the prey model follows the zero-one rule which states a pneg is either always
attacked f; = 1) or always ignoredy; = 0) (Stephens and Krebs, 1986). As expressed in equa-
tion 3.3, prey types are excluded when the profitability efyaypei is less than the average rate
of energy intake of all other prey types

< ZjEDf{i} Ajgj
142 jep—qiy Aitw (3.3)

1 otherwise

0 if Uy
pi =

Once the probability of attacking each prey type has beesrudted, the decision then turns to
selecting which prey types to include for an optimal diete Tlvo-step prey algorithm makes the
selection based on the profitability of a prey type compapdti¢ current average rate of energy
(R) (Stephens and Krebs, 1986). The first step is to rank tlegnaining prey types in order of
decreasing profitability such that > 7w > ... > 7. In the second step each prey type is added

to the forager’s diet until equation 3.4 is true. The lasygype added to the diet is the lowest

3Probability is the only characteristic of a prey type theafggr has control over.
“The derivation of equation 3.2 to determine which prey tygtesuld or should not be attacked when encountered
(i.e., equation 3.3) can be found in Stephens and Krebs 1986
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ranking prey type in the diet. If the equation is never truenthll prey types are included in the

diet.

k
1 Nigi
Rl = = N0 (3.4)
L+ 3000 Nitw

Figure 6 shows a simulated example of ten different preysywailable to a predator. The fig-
ure illustrates the relationship between the profitabiity prey type £) against the average rate
of energy R(k)). In this example, the average rate of energy is maximizeeiwthe five most
profitable prey types are added to the forager's diet. Thismmaation is the point at which the
current rate of energyR(5) = 0.9888) is greater than the profitability of the next prey type
(m¢ = 0.9838) (equation 3.4). As illustrated, adding additional preyes or removing any of

the five selected prey types leads to a decreageand thus a sub-optimal diet.

1
099 4 =t
0.98 -
0.97 -
0.96 - s
0.95 -
0.94 .
0.93 -
0.92 — —

Energy Rate / Profitability
/

Prey Type k

Figure 6.: OFT: Simulated Optimal Diet

Notable about equation 3.4 is that the inclusion of a preg inpo a forager’s diet is indepen-
dent of its rate of encounter (Charnov and Orians, 1973).dBugsion to add a prey type is de-
pendent, however, on the rate of encounter for those pr&stsamked higher than the current prey
type. For example, in a situation with two prey types the sleaito include the second prey type
is only dependent on (1) its profitabilityr{) and (2) the rate of encounter, net energy, and han-

dling time of the first prey typeXi, e1, h1).
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Foraging Example

To illustrate the prey model consider a hypothetical exanopla brown bear foraging for foéd
Brown bears are known for their diverse diets (Garsheli®72@nd therefore the decision of
which prey types to include in their diets is germane to tiseussion of the prey model. Assume
that four different prey types are present in the bear'srenment. Each of the four prey types and

their characteristics are listed in table 4.

Table 4: OFT: Example Prey Types for a Brown Bear

Prey Type tg tw g T p?
Deer 3,600sec  2,580sec 3,200kCal 1.2403kCal/sec 1
Berries 12 sec 180sec ~ 200kCal 1.1111kCal/sec 1
Squirrels 6sec  600sec  610kCal 1.0167kCal/sec 1
Chipmunks 6sec  T720sec  500kCal 0.6944kCal/sec 0

& As calculated from equation 3.3.

Based on the characteristics of the other prey types, tHeghitity of chipmunks will never be
high enough to warrant the bear eating them and theref@gg,,..n.xs is set to 0 (equation 3.3).
For the first step of the prey algorithm the remaining preesypre ranked in descending order ac-
cording to their profitability which yields jee, > Tperries > Tsquirrels- The results of the iterative
second step of the prey algorithm can be seen in table 5 Rl¢t®umn is the long-term average
rate of energy for the included prey types (left-hand sideqefation 3.4) and the column is the
profitability of the next lowest ranking prey type (rightrdthside of equation 3.4). The final col-
umn Stop?is set to yes if the last added prey type causes the ineqoaldg true (i.e.R > 7) and

set to no otherwise

As seen in table 5 a diet consisting of deer and berries isnapfor the bear. Eating only deer
or choosing to eat all three prey types would result in a quiiv@l rate of energy as illustrated by

the lower values ofRR.

The foraging example was adapted from Pirolli (2007).
6Although the algorithm would stop after deer and berriesrastided in the diet, the calculation for including
squirrels into the diet was done for illustrative purposes.
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Table 5: OFT: Example Diet for a Brown Bear

Included Prey Types R(k) Tpr1 Stop?
Deer 0.5178 kCal/sec 1.1111kCal/sec No
Deer & Berries 1.0502kCal/sec  1.0167kCal/sec  Yes
Deer, Berries, & Squirrels 1.0215 kCal/sec n/a nla

3.1.2 Patch Model

The patch model determines the optimal duration an aninmlldforage within any number of
patch types (Charnov, 1976). The decision of how long todpela patch of a particular type is
determined by maximizing the average rate of energy intsikeilar to the prey model) (Stephens
and Krebs, 1986). Within the patch model theresaudifferent patch types with representing the
it patch type. LefP represent the set of patch types such fhat {1,2,...,n}. Associated with

each patch type are the following characterigtics

tg; = average time between locating patches of type

A; = rate of encounter of patch typevhen searchingl(/t ;).

tywi = the amount of time spent searching within patch tyfiee., patch residence tinfe)

gi(twi) = net energy gain from patch typavhenty;; time units are spent foraging within the
patch (i.e., gain function).

The long-term average rate of energy intake for all patckgyip determined from equation 3.5

(a variant of Holling’s disc equation) (Stephens and Krdl986).

R Y iep Nigi(twi)

To better illustrate patches and their characteristicsidan a hypothetical example of a seabird

(3.5)

foraging for food in an environment with multiple patchesadfingle patch type. Figure 7 details
the environment where the solid line represents the séalpiath as it forages. The squares are
patches and within the patches are sources of food showrhad fie horizontal axis represents

time, where the time spent within a patchjg and the time spent between patchessisAs seen

"Notations follow Pirolli (2007).
8patch residence time is the only characteristic of a pafeé tiye forager has control over.
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in figure 7 the seabird only eats some of the available fish¢h eathe patches. Since there is a
finite amount of food, each patch demonstrates diminishiétigrns of energy as a function of time.
Due to this diminishing return it would have been suboptifoathe seabird to remain in a patch
until total depletion.

Environment

Within Between Within
Patch Time Patch Time  Patch Time

Figure 7.: OFT: Patchy Environment — adapted from PiroliqQ2, pg. 32)

The gain function associated with a patch typé€ty;), determines the amount of energy gained
per unit of time spent foraging within a patch. Each gain fiorcis “. . . assumed to be a well-
defined, continuous, deterministic, and negatively acatdd (curving down) function” (Stephens
and Krebs, 1986, pg. 25)Figure 8 illustrates a gain function with the horizontaisacepresent-
ing time spent foraging in the patch and the vertical axisaggnting net energy gain. Such a gain
function helps explain the behavior of the seabird. Ifitihe seabird realized a rapid energy gain
as there were many fish within the patch. However, as fewemnfik available less energy was
gained per unit of time. Thus at some point it was more woriteafor the seabird to travel to an-

other patch rather than remain in the current patch.

Energy Gain

9g(tw)

Time

Figure 8.: OFT: Example Patch Gain Function

Stephens and Krebs (1986) acknowledged some gain functiagsiot exhibit an eventual negative acceleration.
When patches are searched systematically their gain émcthay exhibit a depletion of resources without any depres-
sion.

43



The determination of how much time to spend in each patclstigogmade on the basis of the
Marginal Value Theorem (Charnov, 1976). For patch typesbiiiing a negatively accelerated
gain function (as shown in figure 8), the theorem is capabtietédrmining the optimal allocation
of time across any number of patch types so as to maximizevdrage rate of energy within the
environment. To obtain optimality the theorem states tleglg@tor should continue to forage within
a patch type until the marginal rate (i.e., slope of the gamtfion) equals the average rate of en-
ergy gain (equation 3.5). Following such a requirement raégrdefinition the marginal rate of
each patch type will be equal to the average rate. Equatatates the equality condition where
¢ (tw;) is the marginal rate of patch tyg@nd R(fyy 1, tywa, - - . , tin) i the average rate of en-

ergy calculated from the optimal vector of times for eacltpaype.

g (tw1) = R(tw1, twa, - - -, twn)
g (twa) = R(tw1,twa, ..., twn) (3.6)
¢ (twn) = R(tw1, twa, - - -, twn)

In situations where only a single patch type exists, theamerate of energy intake can be sim-

plified as shown in equation 3.7.

Rtw) = fi(m 3.7)

The reduction to only a single patch type also simplifies tiaegimal value theorem as shown in

equation 3.8.

g (tw1) = R(tw1) (3.8)

Examples of the patch model being used to find the optimagfogatime when (1) only a sin-

gle patch type exists and (2) when multiple patch types exespresented net

19The patch examples were adapted from Charnov (1976); Stegre Krebs (1986); and Pirolli (2007).
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Single Patch Type Example

Consider an example of a brown bear foraging for berries avbree-year period. Within the
bear’s environment there exist multiple patches of a sitygle representing berry bushes. With
each season the characteristics of the patch type charggs. 6ldetails the characteristics of the

patch type for each of the three years.

Table 6: OFT: Example Single Patch Type for a Brown Bear

Year tp g(tw) R tw?

Y1 10sec  —0.8xty2+6.5%ty 0.9593 kCal/sec  3.4629 sec
Y2 5sec  —0.8*tw? +6.5%ty 1.5385 kCal/sec  3.1009 sec
Y3  Bsec —2.5%ty?+17.5%ty  3.7702kCal/sec  2.7460 sec

2 As calculated from equation 3.8.

In the first year the optimal time to spend in a patch &d§29 sec. lllustrated graphically in

figure 9 the optimal point is where the dashed line with itgiorattz lies tangential to the gain

function.
35 4
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c 25 1
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Figure 9.: OFT: Example Year One Patch

In the second year, an area of the environment previouslyayesl by wildfire bloomed with
berry bushes. This represents an increase in the numbetobigsaavailable to the bear and there-
fore a decrease in the time between patchg}. (Figure 10 shows graphically how the decrease in
time between patches leads to a reduction in the time spénitvei patch. Although less time is
spent per patch, the average rate of energy gajp)(is higher during the second year. With lower

moving costs, the bear is better served to move to anotheh patcerz,» drops too low.
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Figure 10.: OFT: Example Year Two Patch

A bountiful rain during the third year increased the densitperry bushes within each patch.
A greater density of bushes represents a more valuable. peitelnefore, the gain function for
the patch type is changed to reflect greater energy gainsgesfuime spent in a patch. Fig-
ure 11 illustrates the difference when the gain function pétch type changes. In this situation
the gain function reflected an increase in energy gain andftire the amount of time spent forag-
ing within a patch is reduced. As a result of the new gain fioncthe average rate of energy gain

(Ry3) is higher than the previous year.
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Figure 11.: OFT: Example Year Three Patch

Multiple Patch Types Example

In the previous example the brown bear’s environment onhsisted of a single patch type. How-
ever, as brown bears’ forage over large territories spanthiousands of square miles (Garshelis,
2007); itis likely more than one patch type exists in thewiemment (e.g., forests, rivers). In this
example there are two patch types available to the brown beble 7 details the characteristics

of each of the patch types. Noticeable is each patch typerdiiih their time between patches and
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gain function.

Table 7: OFT: Example Multiple Patch Types for a Brown Bear

Patch Type tp g(tw) R tw?
1 10sec  —0.8*tw? +6.5xty 3.9061kCal/sec 1.6212sec
2 Ssec —25xty? 4+ 175ty 3.9061kCal/sec  2.7188sec

& As calculated from equation 3.6.

When in the specified environment, the bear will spérid12 seconds in the first patch type
and2.7188 seconds in the second type. Figure 12 graphically illustrates thiénogl time to spend
in each patch type and also the average rate of energy gatheAsarginal rates for each patch
is the same as the average rate, the tangential lines althewame slope and are thus parallel to

one another.

Energy Gain

Within Patch Time

Figure 12.: OFT: Example Optimal Multi-Patch Time

3.2 Adaptive Control of Thought-Rational Theory

The ACT-R theory aims to explain human cognition by (1) dibog an architecture of the hu-
man mind and (2) the process by which cognition occurs withénstated architecture (Anderson
et al., 2004). The theoretical foundation for ACT-R is raibanalysis which assumes “...each
component of the cognitive system is optimized with respediemands from the environment,
given its computational limitations” (Taatgen and Andexs2002, pg. 130). The theory and archi-
tecture of ACT-R has been used in research areas such agtmn@nd attention (Byrne, 2001);

learning and memory (Fu et al., 2006); problem solving aradsiten making (Gray et al., 2005);
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language processing (Anderson et al., 2001); and otheridsmelevant to this dissertation, such

as information search (Pirolli and Card, 1999).

Figure 13 illustrates the basic architecture of ACT-R 5.0dérson et al., 2004) which consists
of modules, buffers, and a central production system. Eamifute within ACT-R is independent
of one another and is responsible for a particulartaskhe visual and motor modules are part
of the perceptual-motor system that interacts with theraateenvironmer. The visual module
controls vision; attending and identifying objects in thewal space. The manual module directs
the hands to perform actions (e.g., picking up an objeatkicig a mouse button). The intentional
module keeps track of a stack of goals, intentions, and therustate of the problem at hasd

Finally, the declarative module interacts with declagtiwemory (i.e., what is known).

Intentional Declarative
Module Module

Goal Retrieval
Buffer Buffer
Central
Production System

Visual Manual
Buffer Buffer

Visual Manual
Module Module

External World

Figure 13.: ACT-R: 5.0 Architecture (Anderson et al., 2004, 1037)

"The ACT-R theory does not state the modules listed are thevatid modules used in human cognition (Ander-
son et al., 2004). Rather, these modules are at the core sys$tem developed thus far.

12Although ACT-R is a foundational theory for IFT, only the higr cognition portion of the theory is used. The
perceptual-motor system is not detailed in IFT and thuspgbeton of ACT-R is only briefly described here. For more
information about the perceptual-motor system the reaalerefer to Anderson et al. (2004).

13A stack is simply a Last In First Out (LIFO) data structure. &dbver a new item is added to the stack it is
“pushed” onto the top of the stack. When retrieving an iteomfra stack the topmost item of the stack is “popped”
off the top of the stack.
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3.2.1 Central Production System

The central production system (CPS) is responsible fordinating the activities of all the inde-
pendent modules (Anderson et al., 2004). The CPS does matlgimteract with each module,
rather buffers (i.e., working memory) act as intermedmpeoviding an area for information ex-
changé®. Each buffer, however, is limited in capacity to a singlerhof information (i.e., unit of
knowledge) (Miller, 1956) at a single time period (Andersdral., 2004). Such a limitation is to
reflect human'’s limited working memory capacity. For exagpinly memories being focused on
in long-term memory are available at any one time as oppashédving all memories available at
all times.

The CPS represents procedural memory (i.e., how to do thindgke form of productions which
consist of a set of rules known as production rules. Eachyatimh rule consists of a condition or
set of conditions and then some action to perform when thditon or conditions are true (i.e.,
when the conditions match the current state). Figure ldtitiies six production rules (PR1-PR6)
in the formIF < condition(s) > THEN < action >. The CPS uses productions and infor-
mation from the buffers in order to (1) find rules which matica turrent state, (2) select the most

beneficial rule, and finally (3) execute a rule which resultsame action (Anderson et al., 2004).

IF goal is Write-answer IF goal is Write-answer IF goal is Write-answer
& answer unknown & answer unknown & answer known
THEN set and push subgoal THEN quit and pop THEN write answer and pop
Find-solution the goal from the goal from
to the goal stack the goal stack the goal stack
(a) PR1 (b) PR2 (c) PR3
IF goal is Find-solution IF goal is Find-solution IF goal is Add-numbers
& answer unknown & answer known & N1 known
& operation is addition THEN pop the goal & N2 known
& N1 known from the goal stack THEN retrieve answer and pop
& N2 known the goal from
THEN set and push subgoal the goal stack

Add-numbers
to the goal stack

(d) PR4 (e) PR5 (f) PR6

Figure 14.: ACT-R: Example Production Rules — adapted framdekson et al. (2001, pg. 338)

A pattern matching mechanism within the CPS determinesittntents of any of the buffers

match the condition of any of the rules. If a match exists tloglpction rule is selected and then

14Both the modules and the CPS can read from and write to thespmonding buffer.
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fired (i.e., executed). In situations with multiple matahproduction rules, conflict resolution

is undertaken where a conflict set is formed and the rule Withighest probability (based on
utility) is selected and executed. The utility of a rule isetenined from past experiences of the
production rule within the context of the current goal (stbm the goal buffer). The utility of pro-
ductioni is calculated from equation 33asU; (Anderson et al., 2001)P; is the probability for
achieving the goal using productiébased on past performandg.is the expected gain from suc-
cessfully completing the goal independent of the prodactised.C; is the average time previ-
ous attempts using productionook (i.e., cost) to complete the goal. Finabyepresents random

noise.

U, =PG-C;+¢ (39)

The actual selection of a production is dependent on itsgimtity as expressed in equation 3.10.
U represents the utility of a production ahdontrols the noise in the utilities (Fu et al., 2006).
The actual selection of a production is thus probabiliiiidaased rather than by absolute utility

values.

e(Ui/t)
225 e(U;/t)

Consider an example of a student attempting to solve theviolg equation on a math tést

P = (3.10)

4 + 1. Using the production rules in figure 14, the cognitive pescef the student (broken down
at each step in the process) is illustrated in figure 15. Tphetution of the figure lists the goals in
the goal stack, with the topmost goal signifying the goahia goal buffer (i.e., the goal currently
being attended to). The middle section shows the productiles selected by the CPS to fire. Fi-
nally, the bottom portion represents the contents of théexet buffer. The values specified for the
goal stack and retrieval buffer are representative afeectresponding production has fired.

As the student’s overall goal is to write down the answer &optoblem the goalvrite-answer
is added to the goal stack. In the first step the CPS perforttasrpanatching on the current goal

and finds two production rules (PR1 and PR2) are valid rulegeShere are two viable candi-

5Anderson et al. (2001) does not explicitly include the naéégen (i.e..c) in U;. However, other ACT-R researchers
do (e.g., Fu et al. (2006)) and as the inclusion is more spebifi noise term is provided in equation 3.9.
18The arithmetic example was adapted from Anderson et al 1(200
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Step 1 2 3 4 5 6
Write-answer | Find-solution | Add-numbers| Find-solution | Write-answer
Goal Stack Write-answer| Find-solution | Write-answer
Write-answer
Central Conflict Set
Production PR1 PR4 PR6 PR5 PR3
Svstem {PR1, PR2
yS
Retrieval
Buffer 4+1=5

Figure 15.: ACT-R: Example Cognitive Problem-Solving Resg

dates the utility of each production is then calculated.ufxsisg the utility of PR1 was higher,

the student will attempt to solve the problem by adding thal §imd-solutionto the goal stack

in step two. However, part of the process of finding a solutsaihie summation of the two given
numbers (N1 and N2), which is represented in the additioroaf §dd-numberst step three.
When production PR6 fires in step four, part of the actionlwve® retrieving the chunk represent-
ing the addition oft and1 from declarative memory. Once in possession of the ansvegydhl
Add-numberss removed from the stack since it is no longer needed (he.ntmbers have been
added). At step five the current goaFmd-solutionand since the answer is known production
PR5 is fired which removes the goal from the stack. Finallyeg six, the only remaining goal

is Write-answerand since the answer is known production PR3 will fire which (&) cause the
student to write the answer down and (2) remove the goal flanstack, thus ending the cognitive

process.

3.2.2 Production Learning

ACT-R is capable of learning new production rules via a maidm called production compila-
tion (Taatgen and Anderson, 2002). Compilation can occuemitvo production rules are used in
sequence to request and then retrieve a chunk from degtaragmory. A single production rule
is created which aggregates the two production rules aneéésiihe declarative knowledge into
the rulé’. Learning in this context removes the potentially expemsigeration of chunk retrieval
from declarative memory.

To illustrate production compilation, consider the prexa@xample (figure 14) where produc-

"When a new production rule is created, the original productiles it was created from are not removed from
procedural memory.
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tion PR4 requested production PR6 to retrieve an answer diegtarative memory. In the example
4 and1 were provided as numbers to add with the answeér lnding retrieved from declarative
memory. As learning occurs the production rules PR4 and RR@e combined for the special
case o4 + 1 = 5. Therefore, steps three and four from figure 15 are combimsd]ting in a
reduction of the overall number of steps from six to five. g6 illustrates the new production
rule PR7 created through production compilation. Now when 1 is encountered the utilities of
productions PR4 and PR7 will be compared to determine whictiyztion is fired (equations 3.9
and 3.10). The eventual likely outcome is the utility of pwotion PR7 will be higher as the cost
does not include (1) the firing of another production andli2)retrieval of chunkivefrom declar-
ative memory.
IF goal is Find-solution
& answer unknown
& operation is addition
&Nlis4
&N2is 1
THEN set answer to 5 and pop

the goal from
the goal stack

(a) PR7

Figure 16.: ACT-R: Example Production Compilation

3.2.3 Chunk

As mentioned in section 3.2.1 a chunk represents a singletikinowledge (Miller, 1956). The
unit of knowledge differs by chunk and can refer to a worditdigplor, shape, phrase, or other
such patterns (Simon, 1974). In ACT-R each chunk is of aqadr type and associated with slots
which represent another chunk or some other value (Stewdri\&est, 2007). Figure 17 shows

an example of three different chunks stored in declaratigenory (Anderson et al., 2001; Stew-
art and West, 2007). Each of the chunks is given a name feuy-plus-onefive large-friendly-

dog) for convenience along with a type (e.qg., addition, intedeg) and some slots. In obtaining
the answer to the previous exampledof 1, the chunkfour-plus-onewould have been activated
which would have lead to the retrieval of chufike (since the sum slot dbur-plus-onerefers

to thefive chunk). If a person was trying to recall knowledge about gdafriendly dog instead,

chunklarge-friendly-dogwould be retrieved.
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Chunk: four-plus-one Chunk: five Chunk: large-friendly-dog

isa addition isa integer isa dog
addendl four value 5 size large
addend2 one manner friendly
sum five

(a) Four-plus-one (b) Five (c) Large-friendly-dog

Figure 17.: ACT-R: Example Chunks (Anderson et al., 200&énatt and West, 2007)

3.2.4 Declarative Memory

As seen in step four of figure 15, retrieving information frtang-term memory is an important
process of human cognition. Within ACT-R declarative knedge is encoded as a network struc-
ture (Anderson and Pirolli, 1984). The network consistsaufes (i.e., chunks) connected via

links (Collins and Loftus, 1975). Links are determined lshse the association between nodes.
Strongly associated nodes are located in close proximibneanother, whereas weakly associ-
ated nodes are distal from one another. Nodes may also bedtigiassociated via intermedi-

ary nodes. Figure 18 provides an example of the networktstreifound in declarative memory.
Each ellipse represents a node, while each line is a linklmslrepresents an association between

nodes.

Figure 18.: ACT-R: Declarative Memory Network Structure

Spreading activation is the process by which chunks relat@dyiven source chunk can be
retrieved from memory (Collins and Loftus, 1975). When same is attended to (e.g., when a
user reads a particular word) the chuynfepresenting that cue is activated in memory (Ander-
son and Pirolli, 1984). The activation then spreads fronsthece of the activation (i.e., the cue)
throughout the entire network activating any associatetbaoThe spreading occurs instanta-
neously throughout the network and the strength of actimedii each node decays exponentially

with distance from the source (Anderson and Pirolli, 1984e end result is more strongly acti-
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vated nodes represent knowledge which is more relevanetadtivation source.

The total activation associated with chunii.e., a chunk in declarative memory) when chunk
j is the source activation is expressed in equation’8.444; (Anderson et al., 2004)B; is the
base-level activation which takes into account the histdrghunki independent of chunk (An-
derson and Milson, 1989). The base-level activation is deégeat on the frequency and recency of
prior activations of chunk (Anderson et al., 2004) and follows a power law of learning -
getting where activation strength increases with recedtrapeated usage (Anderson et al., 2001).
W; is a weight representing the amount of attention being matte source chunk Sj; is the
strength of association between churikandi. Finally, ¢ is noise associated with the activation

process.

A;=B; + Z Wiji +é (3.11)
J

The manner in which spreading activation applies to infdiomaretrieval is based on the strength
of activation for the chunk to be retrieved (chuikvhen the source of activation is the proximal
cue chunkj. The strength of a chunk’s activation determines “.. . itshability of being retrieved
and its speed of retrieval” (Anderson et al., 2004, pg. 104Bgrefore, if chunk has weak ac-
tivation it may (1) not be retrieved or (2) take too long taimte. However, absolute activation
strength does not guarantee chunk retrieval since eaclk ¢tasna retrieval probability as ex-
pressed in equation 3.12 (Anderson et al., 2004). In equétib2, A; is the total activation of
chunki, 7 represents a threshold which the activation must be abade; s related to the vari-

ance of activation noise (Anderson et al., 2004).

1

- (3.12)

[

Assume in figure 18 that nodes B, andC represent chunki®ur-plus-onefive andlarge-
friendly-dog respectively from figure 17. At step four of the student'sqass for solving the
equationd + 1 (figure 15), the source of activation would have been cHonk-plus-one Based on
the given network structure the churfisir-plus-oneandfive are directly and closely associated

with one another indicating some degree of similarity. Effiene, the total activation of churfkve

18anderson et al. (2004) does not explicitly include the nogsen (i.e.c) in A;. However, other ACT-R researchers
do (e.g., Fu et al. (2006)) and as the inclusion is more spebié noise term is provided in equation 3.11.
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would likely be high and probably lead to a successful regief the chunk. The same success
would be less likely if thdarge-friendly-dogchunk was to be retrieved given chufdur-plus-one
as the source of activation. A weaker activation would beljilsince the distance between the

chunks is greater and there are no direct associdfions

3.3 Information Foraging Theory

The theory of information foraging is concerned with notyotile way a person searches within
their environment, but also how the environment can be shapbetter facilitate foraging. There-
fore, research has used IFT to not only look at navigatioatiemns of foragers, but also how in-
formation environments can be altered to facilitate fanggiFT has been used to inform the de-
sign of graphical user interface controls (e.g., checkbphst boxes) which provide social activity
visualizations as navigational cues (Willett et al., 2Q®ighlight ScentTrails on Web pages which
facilitate a user’s search for information (Olston and @0I03); find optimal browsing paths for
large pictures displayed in limited viewing areas (Xie et2006); explain navigational choices
within source code during program maintenance tasks (Lzsrat al., 2007); describe the effects
of delay, familiarity, and breadth on users’ performandttugle, and intentions at Web sites (Gal-
letta et al., 2006); and the role of scent in the decision tsvse a menu as opposed to searching a
Web site (Katz and Byrne, 2003).

The foundational theories OFT and ACT-R are used by IFT téegxphe behavioral and cog-
nitive aspects of information foraging. Like OFT, the saraguential search—encounter—decision
process is used to explain the basic behaviors of an infiemé&drager. Similar to how animals
search for patches using their sense of smell, informaticeglers use a metaphorical sense of
smell to locate and follow an information scent trail. Thecmanism by which this information
scent works is explained via the ACT-R theory. Once an infidiiom patch (i.e., an item of inter-
est) has been located the decision turns to answering tistiguef “how long to stay in a patch?”

from the classical patch model. ACT-R also explains theildetdhow the decision of when to

9Although the link between an addition problem and a largenttly dog seems totally unrelated, such associa-
tions may exist within a person’s mind. Thus the activatibarkfour-plus-onemay in fact allow retrieval of chunk
large-friendly-dogespecially when taking into account the probabilistic ratf chunk retrieval. For example, the
summation problem may lead to an association with summenn@r may be associated with summer breaks from
school which in turn is associated with early childhood. |@mod may then be associated with the family pet that was
in turn a large, friendly dog.
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stay or leave a patch is determined by the information farage
The following sections present an in-depth explanatiorhefdoncepts of information scent and
information patches followed by a description of two vensiof an IFT model (SNIF-ACT 1.0

and 2.0).

3.3.1 Information Scent

Information scent is “the detection and use of cues, suchatdWide Web (Web) links . .. that
provide users with concise information about content thaboit immediately available” (Pirolli,
2007, pg. 68). The concept of information scent correspemdise search portion of the search—
encounter—decision process from OFT. Just as in the wilaladf scent makes the probability
of encountering the item of interest difficult. However,ikalanimals hunting for food where one
berry is just as beneficial as another berry, informatiorotsas interchangeable. Rather, infor-
mation of value should be (1) relevant to an information gerss goal and (2) novel (Sandstrom,

1994).

The two main ways in which information scent is used is to (diflg users to the information
being sought and (2) provide a general impression of théadlaicontent within a patch. In a
Web environment cues are obtained from the text and imagesiated with a hyperlink. The
predicted utility of a link is based on how the cues from a lm&tch a user’s goal (i.e., the prob-
ability of a link providing a Web page with the desired infatior?®). The link with the highest
predicted utility (i.e., scent) is then selected as the naxtgational choice.

The scent of a link is based on the goal of a user. The userls(g@the desired distal infor-
mation where represents each goal feature (i.e., each word of a goalh asimal cue (i.e.,
link), L, on the Web page indicates the distal content of the linkgg paherej represents each
cue feature (i.e., each word of the liRk) The features for botli and L are represented cogni-

tively as chunks (Miller, 1956).

The value of linkL in the context of goad~ is expressed in equation 3.13 as the sum activation

(equation 3.11) of each goal feature (Pirolli, 2007).

203uch a relationship between link text and the content ofitti@d! page has been demonstrated empirically by
Davison (2000).
2lCommon stop words from hyperlinks suchaag] the, a, etc. are not included as features of a cue.
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Vig=>_ A (3.13)
i€eG

The choice of which link to select is based on the link with tifghest utility within the context
of the goalG. Expressed in equation 3.14, the utility is the value of linkequation 3.13) along
with a random component(Pirolli, 2007). The random component represents user ant&gt

variability.

UL\G = VL|G +ere (3.14)

Similar in the way that ACT-R selects which production to firebabilistically, IFT determines
which link to select via probability. Equation 3.15 is th@pability of selecting a given link,
from a set of linksC' within the context of goal+ (Pirolli, 2007). Uy, is the link being evaluated,
Uy|c represents the utility for each link in the set, anceflects a scaling parameter for random

noise.

ULia
e M

Ukla
> kec€ ¥

To illustrate the concept of information scent, considerftiilowing example of a person search-

Pr(L|C,G) = (3.15)

ing for information on the Web. The goal§ of the user is to find information regarding “white
lily flowers.” Figure 19 represents the relevant fragmerthefuser’s declarative memory where
each feature chunkof the goal is represented as a black ellipse. On the currebtpige the user
is presented with two links “red rosesl{) and “cherry trees”{). The chunk features of links
L, and L, are symbolized as light gray and dark gray ellipses in fig@adspectively. As seen in
figure 19 the features df, are closer thard, to the goal chunks and thus more similar and more
likely to strongly activate the features of the goal. Theref the scent of linld,; is stronger (i.e.,
has a higher utility) and the user will select the first fifik

Although based on ACT-R, the concept of information scetFihdeviates from the ACT-
R theory in three main ways (Pirolli, 2007). First, the s@uof activation in ACT-R is the goal

chunk. In IFT the chunk representing the feature of a proksua is the source and the goal

22This example assumes the noise from equation 3.11 and tHemacomponent of equation 3.14 are comparable
across link features and links.
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g

Flowers

Figure 19.: ACT-R: Example Memory Schematic — adapted fratits and Loftus (1975,
pg. 412)

chunk is the destination. Second, the purpose of spreadih@gton in ACT-R is to retrieve some
chunk from declarative memory. IFT is not interested in @teieval of a chunk, but rather the to-
tal level of activation on a goal chunk. Lastly, the utilitiwhich link to select is not based on past
successes and failures like productions in ACT-R are. &astatility is based on total activation
strength of a link which does not take into account past perdmce. A lack of history therefore
means knowledge of previously successful associationgdeet links and success are not con-
sidered. For example, the utility of the link “contact us”wd be made independent of any prior
successes a user has had when clicking on a similarly namietblfind contact information for a

Web site.

3.3.2 Information Patch

An information patch is a grouping of information where ‘it.is easier to navigate and process
information that resides within the same patch than to rsaeignd process information across
patches” (Pirolli, 2007, pg. 49). Within a Web context whanstitutes an information patch can
differ depending on the level of analysis. At a high-leveirahividual Web site could be consid-
ered a patch whereas at a lower-level the Web pages withimgbesiVeb site could each be consid-
ered a patch. Prior research has not explicitly made digtime between patches at differing levels
of analysis. In order to be clear, the tersite-patchandpage-patchwill refer to patches which
constitute an entire Web site or Web page within a site, ctsmdy.

Although the definition of what a patch is differs by level oigdysis, the relationship of sim-
ilarity within and across patches does not differ. For examipformation within a Web page is
more similar than across Web pages of the same site whichripisumore similar than Web pages

of another site. Likewise, a single Web site will have morimcidling information compared to
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another Web site.

Such a topical patchy structure of the Web has been emyridamonstrated (Davison, 2000)
strengthening the logical argument for a patchy Web. Thdaniity of content between pages
from the most similar to least were (1) linked pages withiemshhme domain; (2) unlinked pages
within the same domain; (3) linked pages to different domsiaamd finally (4) random pages
(Davison, 2000). An increase in link distance (i.e., degm@eseparation) within the same domain
has also been associated with decreases in page contdarigin(Pirolli, 2007). The aforemen-
tioned research lends support to the assertion of a patclupigrg of information on the Internet
where patches in “close proximity” to one another are marelar than patches farther apart.

As the Internet exhibits a patchy structure, the patch mivded OFT (Charnov, 1976) is ap-
propriate to use and can determine the optimal length offetag forager. The decision to stay
in or leave a patch is determined such that a person will bradge in an information patch until
the expected potential of that patch is less than the meagttghvalue of going to a new patch”
(Pirolli, 2007, pg. 81). The patch leaving rule is mathecally stated in equation 3.16 (Pirolli,
2007) as a variant of the Marginal Value Theorem (Charnovgl9J (z) is the utility of a forager
in their current state and is the mean utility of other patches. Thus just like the mazabvalue
theorem, the visitor will continue to forage in the patch@asg as the utility (i.e., marginal value)
is higher than the average of all other patches (i.e., averag of return). Once the current state

utility is equal to the mean, the forager will leave the patch

Uz) > U (3.16)

3.3.3 SNIF-ACT

Pirolli (2007) implemented two versions of a model basedhdalled SNIF-ACT (Scent-based
Navigation and Information Foraging in the ACT architeefurAs the ACT architecture is a ma-
jor component of IFT, a set of production rules were definedfih versions of the SNIF-ACT
models which characterized users’ actions while foragkigure 20 lists each of the pertinent
productions showing how a user starts processing a new paglerates links on a page; and de-

cides amongst clicking a link, going back to a previous pagéesaving the site.

Zgimilarity within a single page is not included since by digiim no page can be more similar to a page than itself.
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The first four productions of figure 2&{art-process-pagd’rocess-links-on-a-pagéttend-
to-link, Read-and-evaluate-linkare concerned with the cognitive aspects of reading, ditign
and evaluating links on a page. In terms of OFT, if any of the& fisur productions fire then that
is a decision by the visitor to continue foraging within tizere page-patch. The final three pro-
ductions also relate to the patch-leaving rule of OFT, altirotheir levels of analysis differ. Pro-
ductionClick-link represents either a decision to leave a page-patch oraite-depending on if
the link was internal to the Web site or external. Productieave-siteelates to the leaving of a
site-patch and productioBackup-a-pagés concerned with going to an already visited page-patch.
In any case, a production representing the leaving of eélmEge-patch or site-patch should fire

when the marginal value of the patch drops to the averagefa&turn for all patches.

IF goal is Start-next-patch
& there is a task description
& there is a browser
& browser on unprocessed page
THEN set and push subgoal
Process-page to the goal stack

(a) Start-process-page

IF goal is Process-page IF goal is Process-link

& there is a task description & there is a task description

& there is a browser & there is a browser

& there is an unprocessed link & there is an unattended link
THEN set and push subgoal THEN choose an unattended link and

Process-link to the goal stack attend to it

(b) Process-links-on-page (c) Attend-to-link

IF goal is Process-link IF goal is Process-link

& there is a task description & there is a task description

& there is a browser & there is a browser

& the current attention is on a link & there is an evaluated link
THEN read and evaluate the link & the link has highest activation

THEN click on the link
(d) Read-and-evaluate-link (e) Click-link

IF goal is Process-link IF goal is Process-link

& there is a task description & there is a task description

& there is a browser & there is a browser

& there is an evaluated link & there is an evaluated link

& the mean activation on page is low & the mean activation on page is low
THEN leave the site and THEN go back to the previous page

pop the goal from the goal stack

(f) Leave-site (9) Backup-a-page

Figure 20.: SNIF-ACT: Production Rules (Pirolli, 2007, 83
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Also fundamental to IFT is the concept of information scehtal is determined by the level
of activation (equation 3.11) of a goal from a given link. Tase-level activation of the goal
chunk (B;) in both versions of SNIF-ACT was assumed to be static the.goal did not change)
and thusB; was set to zero (Pirolli, 2007). The amount of attention paid link cue {V;) was
modeled as exponentially decaying with respect to the namibeues in a link as shown in equa-
tion 3.17 (Pirolli, 2007).W andd are scaling factors andis the number of cues (i.e., words) in a

link.

W; = We™n (3.17)

To determine similarity between a cue and goal featdrg) (a measure from information the-
ory known as pointwise mutual information (PMI) was usedyfch and Hanks, 1989). The for-
mula for PMI (equation 3.18) determines the associatiowdeh two wordg andj (or in IFT
between a cue and goal feature). The numerator in equatl@is3the probability of the two
words occurring together whereas the denominator spettifiegrobability of the words occurring
independently. When normalized, a PMI scord @fidicates no association whereas as a score
of 1 means perfect association between the two words. PMI hasfoerd to be a good proxi-
mal measure of the associations a person may make betweeksohithin their own declarative
memory. For example, PMI was more accurate on tests of synptiyan typical college appli-

cants taking the Test of English as a Foreign Language (TQERLney, 2001).

PMI(i,j) = log [%} (3.18)

SNIF-ACT 1.0

The first version of SNIF-ACT assumed foragers evaluatelindds on a page before deciding
which link to select (Pirolli, 2007). The model was testediagt protocol data collected from
Card et al. (2001). Four student subjects were given tworerpatal information finding Web
tasks. The first task required the subject to obtain the date@gicture of a comedy group per-
forming at a college campus. For the second task, subjectsingtructed to find four posters
from the movie Antz. The keystrokes, mouse movements, eyements, Web pages visited, and

think-aloud comments were captured from each subject.
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The model was evaluated on the ability of information scemtredict link-following and site-
leaving actions. From the eight datasets (four subjects twib tasks a piece), a total of 91 link
clicks were captured. Using the concept of information sake SNIF-ACT model’s prediction
of which link would be followed was found to be significantliffdrent from random selection
(x%(30) = 18,589.45; p < 0.0001) (Pirolli, 2007). Such a result lends credence to the idea of
information scent being an indicator used by people to ®pabximal information.

In terms of site-leaving, the SNIF-ACT model was also foumdbtlow the patch-leaving rule
whereas the subjects foraged in a site-patch until the Xpe&ted potential of that patch is less
than the mean expected value of going to a new patch” (Rigtld7, pg. 81). Figure 21 illustrates
how a drop in information scent can be a cue for the value dkaggtch. The scent of the last
page visited at a Web site was, on average, lower than thagercent of the first page of a new
Web site. Therefore, this lack of scent was an indicator ¢cstlibject that this site-patch does not

contain the sought after goal information.

S

Average for first page
of next website

T T 1
Last-3 Last -2 Last-1 Last

Page Visit Prior to Leaving Website

Information Scent

Figure 21.: SNIF-ACT: Site-leaving Actions (Pirolli, 2003g. 100)

SNIF-ACT 2.0

The second version of SNIF-ACT removed the unrealisticmgsion from SNIF-ACT 1.0 that
foragers would attend to and evaluate each link before nyakidecision of where to go. Instead,
a learning mechanism was used which relied on the conceptisfising (Simon, 1956). As a
forager has imperfect information and limited computagidiacilities an optimal decision is un-
likely. However, a decision which satisfies a need at someifspe level is probable. Therefore,
with regards to satisficing the forager would continue tdweai links in SNIF-ACT until a “good

enough” link was found (even though the link might not be matl). The determination of what is
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“good enough” relies on the ability of the forager to learnrdsrmation is uncovered while forag-
ing.

In order to implement such a learning mechanism the usligied probabilities of productions
Attend-to-link Click-link, andBackup-a-pagevere updated to include the history of links already
attended to and pages already visife@irolli, 2007). After evaluating a link, the forager is &t
with the decision of whether to attend to the next link, clickreviously evaluated link, or leave
the page. Determined from each production’s utility (eaunat 3.19-3.21), the forager’'s ultimate
decision is based on the probabilities for each productguudtions 3.22-3.24) (Pirolli, 2007).

Equation 3.19 is the utility for productiottend-to-linkwhereU7,  represents the utility of the

current link (equation 3.14) andis the current number of links already evaluated.

Ua(n) + UL|G

Ua(n+1) = T

(3.19)

The utility for productionClick-link is shown in equation 3.20 whereaz (Uy¢;) is the maxi-

mum link utility of the links evaluated so far aridis a scaling parameter.

Uc(n) + mazx(Urc)

Uon+1) = 1+k+n

(3.20)

Taking into account the value of prior pages and the cost cifibg up, equation 3.21 repre-
sents the utility for productioBackup-a-pageU p,,. is the average utility of previously visited
pages (within the same Web sité), (n) is the average link utility of linkd to n, andCp, re-

flects the cost of returning to a previous page.

UB("I”L + 1) = ﬁPage - gL(n) - CBack (321)

The probabilities for each of the three production ruleseai@ressed in equations 3.22-3.24.
Each equation is the probability of selecting the given poidn after the evaluation of links on

a page. In each equation represents a scaling parameter.

oo 242

Ua(n) Us(n) Uc(n)

Pr(Attend-to-link n) = o [T] P [T] + exp [T]

(3.22)

24production_eave-sitavas not updated since the experiment using SNIF-ACT 2.0 jiexée on a single Web site.
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o Uc(")]
Pr(Click-link,n) = o [UAH(n)] o [UB#(n)] o {Uc;n)] (3.23)
Kk exp |21
PriBackup-a-pagen) = exp [UAT(N)] + exp [UBM(n)} + exp [Ucu(n)] (3.24)

Example

To better visualize the interplay amongst the three pradacules, a hypothetical example of
a Web page with 15 links is provided. The distribution of lutKities (U, ;) is defined by the
function 15e~%7* + 1 and shown graphically in figure 22. Noticeable is the shagtimein scent

from the first link Uz, | = 8.4488) to the last link U/, | = 1.0004) on the page.

10 q

2]
1

Scent-based utility Uy g

0 T T 1
0 5 10 15
Sequential position of link L

Figure 22.: SNIF-ACT: Hypothetical Distribution of Link Uities (Pirolli, 2007)

To simulate the utilities and probabilities for each prdauctthe following measures were set
in accordance with Pirolli (2007): was set td (equation 3.20){/ pgge andCpqe, Were set to
10 and5 (equation 3.21); angd was set tdl (equations 3.22-3.24). The probability of a forager
choosing from each of the three productions given the statkditility distribution is illustrated
in figure 23.

In figure 23 the probability of attending to the next link igjhiwhen only a couple links have
already been evaluated. This represents the forager ihggitme value of the current page’s links.
After more links are evaluatedh( ~ 4) the forager is better informed of the existence of any
highly-scented links which may lead to a goal. Therefore,gtobability of clicking on a link
rises to its highest level. However, each successive Isgent ¢ = 5) drops and begins level-

ing off near the minimum scent value. Considering none oftlesious links were satisfactory
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Probability of choice

Number of links evaluated (n)

Figure 23.: SNIF-ACT: Hypothetical Production Probakakt (Pirolli, 2007)

in causing the forager to click on them, the likelihood of afiyhe remaining low-scent links
causing a link-following action is low (as evidenced by tleelthe in the probability of clicking
a link). As the forager reaches the end of the links, the pitibaof the visitor returning to a pre-

viously visited page continues to increase.

Model Validation

The SNIF-ACT 2.0 model was tested against data from Chi ¢2@03) for fit to both link-
following actions and the decision of foragers to go backgep&44 subjects were recruited
to complete some portion of a total of 32 information foragiasks on four different Web sites
(eight tasks per site). To test the SNIF-ACT 2.0 model, Ri{dD07) included 74 subjects who
completed the tasks at two of the Web sites. The Web sitesehesen due to the static nature of
their Web pages (i.e., the content and links of the pagesatidlmange dynamically). Eight of the
tasks took place on Yahoo!'s help Web site while the remagiiight occurred on ParcWeb's inter-
nal company intranet. Unlike SNIF-ACT 1.0, which was testgdinst individual clickstreams, the
aggregated statistics of the subjects and the SNIF-ACT 2dkfrwere compared.

Using linear regression the fit of the aggregated SNIF-ACTehobtained good fit for both the
ParcWeb tasksK? = 0.72) and the Yahoo! tasks® = 0.90) (Pirolli, 2007). The highRk? fur-
ther bolsters the support found in SNIF-ACT 1.0 that infotiorascent is a reliable indicator of
the navigational choices a visitor makes when foraging.eSvfor subjects returning to a previ-
ous page another linear regression model was created.a8imihe link-following results, good
fit was also found for the ParcWeb task#’(= 0.73) and the Yahoo! tasksd® = 0.80) (Pirolli,
2007). Since backing up a page is concerned with leavingch fzditthe page-patch level, the re-
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sults do not directly bolster the results found in SNIF-ACT (which looked at the site-patch
level). Instead, the results provide initial supportingdewnce of the patch-leaving rule at the page-

patch level.

3.4 Conclusion

The preceding sections provided a thorough review of OFT[-RCand IFT. Since IFT draws
quite heavily from both OFT and ACT-R, details of each thewas included to give a more com-
plete understanding of IFT. Specifically, the basic prey gatth models from OFT and the archi-
tecture and mechanisms for cognition from ACT-R were dbsdki A discussion of information
scent and patches, in regards to IFT, was then given alomgthtdetails of the SNIF-ACT 1.0

and 2.0 models.
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Chapter 4
Hypotheses

Information foraging theory (IFT) is concerned with thearrhation gatheringearchprocess.

However, investigating goal achievement on long tail Wedssis focused on how information

gathering characteristics can be used to predict actiam gs submitting a contact form. In order

for the possibility of action to occur, a visitor must moveybed the information gathering search

stage to a decision-making point where an action may or matake place. Therefore, the infor-

mation gathering characteristics which are likely to lead tonversion are those which bring a

visitor closer to meeting their information requirements.

Figure 24 illustrates how IFT is used within the decision mgkprocess.

Consumer Decision
Process Model

Need
Recognition

i

Information
Search

L2 ]

Alternative
Evaluation

i

Choice

i

Outcomes

Information Foraging
Theory

L1

User Goal

Information| ™,
Patches | .-

Iynformation
L Scent

liu Cognitive Stopping Rule

Figure 24.: Consumer Decision Process Model and Informd&mraging Theory

On the left-hand side of figure 24 is the consumer decisiokimygprocess (CDP) model (En-

gel et al., 1990). The purpose of the CDP model is to illustthé basic stages a consumer goes

67



through when faced with a decision. Although the stages epe&ted linearly in the figure, the

process itself may be an iterative one.

The decision making process begins when a consumer reesgsizme need to be met. In order
to fulfill their need, the consumer will then search for imf@tion to find possible solutions. In the
next stage, each of the potential alternatives found ale&tea against one another until a single

alternative is selected. In the final stage, the consumectefon the outcomes of the process.

On the right-hand side of figure 24 are the main concepts of IFFIFT, user goals initiate and
drive the search process. Thus, the goal of the user affeetscent of every cue encountered and
how a patch is judged. In addition, the scent of a link alseciff which patches will be selected to

forage within.

The manner in which IFT applies to the CDP model is shown viediL1 and L2 in figure 24.
Line L1 demonstrates that the need being recognized in Ciie igser goal in IFT. This need or
goal is the reason for the process or foraging to occur. litiaddthe need or goal sets the context
for all subsequent activity. Line L2 illustrates that infoation scent and patches are concerned
with the information search process. Information scenseduo locate patches of information and

foraging within a patch obtains relevant information.

Noticeable is how IFT only applies to the first two stages ef@PT model. However, the pos-
sibility of a goal being achieved on a Web site can only ocnuhé fourth stage, once a choice
has been made. In order to get to the fourth stage, enougtmafmn must first be gathered and
any alternatives need to be evaluated. The terminationeafiflormation search process occurs
at “...some point because the person judges that he hastemdagnation to move to the next

stage in the problem-solving or decision-making proceBsd\ne et al., 2007, pg. 91).

The determination of when enough information has been gadhie via a cognitive stopping
rule (Browne et al., 2007) as illustrated by line L3 in figuke Zhe cognitive stopping rule may be
concerned with the fulfillment of a single criterion, listitgGms, amount of information, amount
of new information, or when understanding of the informatstabilizes (Browne et al., 2007;
Pitts and Browne, 2004). Regardless of the cognitive stappile a visitor uses to judge the suf-
ficiency of their gathered information, some rule must be Ineédre there is a chance of a goal

occurring.

Once a forager has stopped collecting information, therateves are evaluated. The alterna-
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tives may be between multiple products or services; or sirhptween selecting this product or
service or not. If the choice is made for some product or serthien the forager may perform
some action (e.g., submitting contact information); if,rtbe forager may leave the site looking
for more information and other alternatives.

The remainder of this chapter is outlined as follows: firstiaftreview is given of the way in
which an information forager browses. Next, the user- atedntric clickstream models of in-
formation foraging (CMIF) are introduced. The hypothesesagated from the models to help
answer research question 3 (listed below) are then prasenf.2.1 for the user-centric model

and 84.2.2 for the site-centric model.

Research Question 3How can information foraging theory and clickstream dataused to ex-

plain the achievement of a goal at a long tail Web site?

4.1 Information Foraging

The basic way in which an information forager evaluatesyeVéeb page they are presented with
is explained in the first subsection below. An example sadsithen shown of a user’s click-
stream as they hunt for information over multiple Web sitésing the concepts of information

foraging, the rationale behind the user’s browsing behdsiprovided.

4.1.1 Page Evaluation

When presented with a page, a forager has four basic actibith wan be selected at any partic-
ular time: (1) evaluate or continue to evaluate the links page; (2) click on an already evalu-
ated link; (3) go to a previously visited page; or (4) leave $kie (Pirolli, 2007). The probability
of what action a forager will choose changes over time. Whshgresented with a new page, it
is more probable that the user will begin evaluating the magepared to the other three actions.
The purpose of evaluation is to get a general sense of the @dfilne page and its links.

With continued evaluation, it is likely the probability of l@ast one of the other three actions
becomes higher than the probability for further evaluatibnis change in probabilities is due to
the concept of satisficing (Simon, 1956; Pirolli, 2007), vehlne user will continue to evaluate a

page until a link with a “good enough” scent is found or it isedenined the page does not contain
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any “good enough” links. If a highly-scented link is fountwill be clicked. If not, the user will
either backup to a previously visited page or leave the sismarch of a Web site with a higher
mean expected value than the current site (Pirolli, 2007).

The rationale behind why scent is beneficial to a user is dtlgetoosts associated with brows-
ing. Foragers are assumed to be rational and thus try toegtiead search costs while hunting for
information (Pirolli, 2007). As each additional page vigecurs a search cost, taking meander-
ing, wrong, or already traversed paths is less efficient thkimg a direct path to the information
sought. Information scent is a mechanism by which foragershble to reduce their search costs
by increasing their accuracy on which option leads to infation of value. Therefore, a forager
will click a link if the scent is deemed high enough to effidlgdead to valuable information. If
none of the links provide sufficiently high scent, the foragél perform one of the other three

actions in anticipation the action will lead to higher-sieghlinks.

4.1.2 Sample Session

By definition, long tail Web sites do not generate heavy taffiheir relative obscurity means it is
unlikely many new visitors will know of the site’s existented alone its uniform resource locator
(URL). However, the widespread use of search engines bynieiteisers (comScore, Inc., 2007a)
provides a gateway to these long tail Web sites. The regwoits $earch engines also provide links
to a number of other known and unknown Web sites too. Thezetor information forager has
easy access to numerous Web sites when hunting for infaymati

Figure 25 shows an example of the clickstream of a succefsshding trip by a user search-
ing for information about an upcoming gig for a comedy troapa college campus (Card et al.,
2001). The figure is an adaptation of a Web behavior graph (\(B@rd et al., 2001) which il-
lustrates each Web page visited by a user. The figure is meaetread left to right and top to
bottom. Each rectangular box represents a Web page andaaudted box represents the results
returned from a search query. The letter in each box is thed¥eland the number is the Web
page at that site. All the boxes from the same Web site areeghthé same color. Straight arrows
represent the user clicking a link from one Web page to ano@rved arrows at the end of a line
represent a user returning to whatever Web page is listesfirhe next row down. Vertical lines

indicate a return to a previously visited Web page. Figures2bgraphical representation of the
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following clickstream:

< A1, A2, A1, B1,B2,C1,D1,D2, D3, D1, D3, D2,D1,C1,D1,C1, B2, E1, E2, E3, E4 >.

e

A1*B1*[B2}>C1*D1*D2*D3)

D2)

D1)

e s
C1 » D1
. -

C1 )
(o] -El- = -IE-E

Figure 25.: User-centric: Example User Clickstream Graptuapted from (Card et al., 2001)

The clickstream illustrated in figure 25 is user-centric &tune since it includes the browsing
behavior of the forager across every Web site the user difRadmanabhan et al., 2001). A site-
centric version of this clickstream would only include thewsing behavior at a single Web site
without knowledge of what occurred at the other Web site® tErmuser-sessiomefers to a time-
contiguous sequence of Web pages viewed at any Web site fresame user, such as seenin a
user-centric clickstream. In contrasgssiorrepresents a time-contiguous sequence of Web pages

viewed at thesameWeb site by the same user, like in a site-centric clickstream

Foraging Explanation

In figure 25 the user started their user-session within patgte., Web site A) at page Al, a
Web page with search capabilities, and entered a searci difegr evaluating the results of the
qguery on A2, none of the resulting links had a high enoughtgoamarrant clicking on and thus
the user returned to the first page. Re-evaluating the vdltiegatch in light of page Al and the
results returned on A2, the user decided to leave the sitedfich B.

Site B also had search capabilities and the user again draesearch query. This time, while

evaluating the results of the query on B2, one of the linksdhiijh enough scent to cause the
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user to click on it. On site C the user found a highly-scenitgkitb site D and clicked that link.
On site D, the user can be seen as having relatively poor doertb the inefficient revisiting of a
number of pages (D1, D2, and D3) multiple times.

After determining that the value of patch D had dropped beildwat could be expected else-
where, the user returned back to the previous patch (siteCimally back to the results page of
site B. Re-evaluating the links on the results page B2 leadiier to select another link which
lead to site E. The scent throughout site E was strong as #radigsnot backtrack. In addition, the
user found the information they sought about the comedyptan page E4.

The preceding example illustrated how concepts from IFThEansed to explain users’ brows-
ing behaviors. For example, a lack of highly scented linksiflany of the results returned on page
A2 explains why the user backtracked to page Al after exaguatisearch. In addition, the move-
ment from Web site A to B can be deciphered as the user baljénformation of greater value
could be obtained from another patch. The next section pteseclickstream model developed

from IFT which captures these concepts using clickstrearnicse

4.2 Clickstream Model of Information Foraging

The clickstream model of information foraging uses clickatn metrics to represent the concepts
of information scent and patches. The user-centric (UC)ahisdoresented first which uses infor-
mation about a forager’s entire browsing behavior to deraerthe overall scent at and the value
of a Web site. Since data about a user’s entire clickstreaarédy available, a site-centric (SC)
version of the model is also presented which provides atam conceptualization of the IFT con-

cepts using only site-centric data.

4.2.1 User-centric

Of the four possible actions a user may take at any point orpagg, only three of those actions
are directly observable via a user’s clickstream: click dimlg return to a previously visited page,
and leave the site. Although the determination of scent@irally represented as the activation
between the features of the links and goal (Pirolli, 2007@,dbservable actions of a user’s click-
stream can be used as proxies for determining how a usern@eent and judged the value of

a patch.
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The judgment of information scent or the value of the patainos however, be determined
in absolute terms from a user’s clickstream since there ssolute to compare against. Rather,
judgment must be done in relative terms. For example, assumser is on a page which has one
link that goes to page A and another to page B. If the useckstieam shows page A was visited
next then the link to page A had higher scent than the link e The actual scent and thus the

difference in scent between the links are unknown.

Potentially more important than the scent of each individink, however, is the overall scent
and patch value at a particular Web site in comparison totter ®eb sites visited. Such a means
of determining which Web site was of more value to a user pies/ia clue into which site might
fulfill the goal of the user. For example, in figure 25 the ugsited three pages multiple times on
site C which would indicate a poor scent at the site. Conthedtbrowsing behavior with site E

where four pages were visited only a single time.

The relative judgment between sites is also important ircagere the user’s information goal
is complex. For such goals it is likely the clickstream of arusill be complex regardless of the
site being visited. If judged in absolute terms, it wouldrealikely the user would find the infor-
mation they sought at any site. However, if judged relagivieimay be found that one site, while
still having an overall low scent, has a higher scent tharother sites and thus was the most use-

ful.

For example, assume a user visited 15 pages at one site,ixithteose pages being distinct.
At another site the user also visited 15 pages, with only fite@se pages being distinct. In abso-
lute terms, the scent at both Web sites appear to be pooraingmber of previously visited pages
were visited again. However, relative to one another, tiseé dite appears to have a stronger scent

then the second.

The following subsections illustrate manners in which thiig of a patch and level of informa-
tion scent can be gleaned from the clickstream of a user. IBygda user-centric viewpoint, many

of the proposed conceptualizations are relative to thésusmwsing behavior at other Web sites.

Table 8 lists the nine hypotheses of the user-centric mddw.following subsections provide

the rationale behind each of the hypotheses.
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Table 8: User-centric: Hypotheses

Hypothesis # Hypothesis

INFORMATION PATCH — SITE-PATCH

uCi

ucz2

UC3

uc4

Higher total duration spent at this site-patch relativether site-patches within
a user-session will be positively associated with achgpailgoal on this long tail
Web site.

Higher number of pages viewed at this site-patch reddtwother site-patches
within a user-session will be positively associated withieging a goal on this
long tail Web site.

Returning to this site-patch during the same useraessill be positively associ-
ated with achieving a goal on this long tail Web site.

Returning to this site-patch during a different usessgmn will be positively asso-
ciated with achieving a goal on this long tail Web site.

INFORMATION PATCH — PAGE-PATCH

ucC5

ucCe

Visitation of more highly valued goal page-patches it $fite-patch relative to
other site-patches within a user-session will be positiesisociated with achiev-
ing a goal on this long tail Web site, where value is definedas t

(a) maximum value of any visited goal page-patch.

(b) value from the last visited goal page-patch.

(c) summation of values from all visited goal page-patches.

Higher median total duration spent within visited goadj@-patches at this site-
patch relative to other site-patches within a user-sessithlbe positively associ-
ated with achieving a goal on this long tail Web site.

STRICT INFORMATION SCENT

ucv

ucs

A lower proportion of repeatedly visited pages at this-piatch relative to other
site-patches within a user-session will be positively eisded with achieving a
goal on this long tail Web site.

A more linear clickstream at this site-patch relativetizer site-patches in this
user-session will be positively associated with achiewrngpal on this long talil
Web site.

RELAXED INFORMATION SCENT

uco

Following of more highly valued goal scent trails at thite-patch relative to
other site-patches within a user-session will be positiasisociated with achiev-
ing a goal on this long tail Web site, where value is definedas t

(a) maximum value of any followed goal scent trail.

(b) value from the last followed goal scent trail.

(c) summation of values from all followed scent trails.
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Information Patch

An information patch is a grouping of similar informatioikd a Web page or Web site (Pirolli,
2007). What a patch represents depends on the level of ahbbisag examined. At a high level,
an entire Web site can be considered a patch. At a lower lawskb page or set of Web pages
may be considered a patch. The tesite-patchis used to denote an entire Web site as a patch,
while page-patchrefers to an individual Web page or set of Web pages as a patch.

The first four hypotheses in this section examine how brogvbhavior can lead to goal achieve-
ment by considering the Web site as a patch (i.e., site-patchenefit of taking a site-patch per-
spective is only coarse data on browsing behavior is requirae last two hypotheses in this sec-
tion, however, take a more detailed viewpoint by focusingpecific pages or sets of pages being
visited (i.e., page-patches). Although concentrating ageppatches requires finer-grained data,
the lower level of analysis may tease out differences nat aéthe site-patch level between goal-

and non-goal-achieving foragers.

Site-patch

Since a forager has imperfect information and limited cotational facilities, an optimal deci-
sion of how long to spend in a site-patch is unlikely. Insteatbrager is likely to employ satisfic-
ing (Pirolli, 2007; Simon, 1956), making a decision thatseds a need (e.g., rate of information
gain) at some specified level. When reading online textsgaming, satisficing is a commonly
used technique (Reader and Payne, 2007). Using satisfeciogager will continue to spend time
reading pages on a Web site as long as information of valueingtmbtained. Therefore, a higher
total duration spent at one site-patch relative to othersittches can be associated with obtaining

more information relevant to a user’s information goal, ethieads to Hypothesis UC1.

Hypothesis UC 1:Higher total duration spent at this site-patch relative ther site-patches

within a user-session will be positively associated withiaging a goal on this long tail Web site.

Prior research has found mixed support for the associattbmden absolute total duration and
the achievement of a goal. A positive, negative, and infiitant association was found dependent
on the task on one e-commerce Web site (Sismeiro and Bu@kli¥). A positive and insignifi-

cant association was found using site-centric and usdric@fata at another group of e-commerce
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Web sites, respectively (Padmanabhan et al., 2001).

Each additional page visited represents a decision poieteviihe user believed the value of
continuing to browse at this site-patch was higher than wiet expected to find elsewhere. In a
similar vein as hypothesis UC1, a forager will continue tsitypages within a site-patch as long as
information of interest is still being obtained. Therefamore pages viewed at one site-patch rel-
ative to others can be associated with obtaining more irdtion relevant to a user’s information

goal, which leads to Hypothesis UC2.

Hypothesis UC 2:Higher number of pages viewed at this site-patch relativetier site-patches

within a user-session will be positively associated withiaging a goal on this long tail Web site.

Empirically, support has also been mixed for the associdigtween absolute number of pages
viewed and conversion. Prior research has found a pos#isecaation (Awad et al., 2006; Moe,
2003), no association (Chatterjee et al., 2003), and migedaation depending on the task (Sis-
meiro and Bucklin, 2004) or type of pages viewed (Van den BodlBuckinx, 2005).

While foraging within a site-patch, a user forms a generatiop of the value of the Web site.
When leaving one site-patch for another, a forager beligveater value may be found elsewhere.
However, if a user returns shortly after leaving, the foragas unable to find a more valuable
site-patch. Therefore, the site-patch of interest is mikedyl than other site-patches to contain the

information necessary to fulfill the user’s goal, which le&d Hypotheses UC3.

Hypothesis UC 3:Returning to this site-patch during the same user-sessibtevpositively

associated with achieving a goal on this long tail Web site.

When the span of time between visits is greater, returniragsite-patch demonstrates the pos-
itive evaluation of the site in two manners. First, the aatedirning to a site indicates the forager
originally valued the site-patch enough to remember itsterice. Second, having a general recol-
lection of the site and then returning also indicates thesdtch is expected to contain the infor-

mation needed to fulfill the user’s goal, which leads to Hjpeses UC4.

Hypothesis UC 4:Returning to this site-patch during a different user-saisswvill be positively

associated with achieving a goal on this long tail Web site.
Prior research has found positive, negative, and insigmifisupport depending on the task for
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the association between returning to a Web site after assebas ended and achieving a goal (Sis-
meiro and Bucklin, 2004). As far as can be determined, thieaexd return of a user during a user-

session has not been examined in prior research.

Page-patch

As previously discussed, a page-patch consists of a Webgrasg of Web pages that collec-
tively provide information for an individual. However, ¢ain page-patches may provide more
useful information to a user than others. The identificabbwhich page-patches are useful is
likely to be similar amongst foragers with comparable goBEtches predominately useful to
goal-achieving foragers are knowngsal page-patchesvhereasion-goal page-patchesre
patches primarily of use to non-goal-achieving foragers.

A user who visits more highly valued goal page-patches &\liko have a goal similar to the
goal-achieving foragers on that Web site. The value of aypiatconsidered in three different
ways: maximum, most recent, and summation. Maximum valuéetals a highly valued patch
visited at any point during a session is needed for the foraggdge the site favorably and thus
consider achieving a goal. The value of the most recenf lg&t. visited patch) conjectures a goal
is more likely to be achieved soon after visiting a highlywad patch. Finally, summation hy-
pothesizes that the overall evaluation of the Web site,rmgeof its valuable patches, affects the
decision of a forager to achieve a goal or not.

In comparison to other Web sites visited during a user-saessi user who visits relatively more
valuable goal page-patches at this Web site is more likeictoeve a goal, which leads to Hy-

pothesis UC5.

Hypothesis UC 5: Visitation of more highly valued goal page-patches at this-gatch relative to
other site-patches within a user-session will be posiiessociated with achieving a goal on this

long tail Web site, where value is defined as the:

(a) maximum value of any visited goal page-patch.

(b) value from the last visited goal page-patch.

(c) summation of values from all visited goal page-patches.
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Positive, negative, and non-significant associations éetvspecific pages and conversion have
been found in prior research (Sismeiro and Bucklin, 2004ffef2nces between the types of pages
visited and conversion rate have been also found at one eieore Web site (Moe, 2003). The
actual relationship between types of pages viewed and csiovewas found to be mixed at an-
other e-commerce site (Van den Poel and Buckinx, 2005). Aafaan be determined, relation-
ships between groups of pages (of potentially differené$y@mnd conversion have not been exam-
ined in prior research.

The simple visitation of goal page-patches; however, doéprovide a complete indication of
how a forager actually processes a page or set of pages. &opéx, if a forager spends a very
short amount of time in a goal page-patch it may signal the digenot fully recognize the value
of the patch. A lack of recognition may be because of a poogyessed information goal or sim-
ply a different information goal from previous goal-achimey foragers. Regardless, either reason
would unlikely result in goal achievement at this Web site.

Similar to hypothesis UC1, a forager will continue to spentktreading pages within goal
patches as long as information of value is being obtainedveder, unlike hypothesis UC1 only
the time spent on pages within already identified valuab page-patches is considered. Thus, a
higher median total duration spent within goal page-paditene site-patch relative to other site-
patches can be associated with obtaining more informaéilmvaint to a user’s information goal,

which leads to hypothesis U&6

Hypothesis UC 6:Higher median total duration spent within visited goal pgggches at this
site-patch relative to other site-patches within a usesssan will be positively associated with

achieving a goal on this long tail Web site.

As far as can be determined, prior research has not spelgifecalmined the association be-

tween amount of time spent on goal page-patches and goavachént.

Information Scent

This section presents three hypotheses dealing with irgtiom scent. In the first two hypothe-

ses, information scent is characterized by consideringegsusntire session as a single monolithic

1Goal page-patches are unique to each site.
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piece. In both these hypotheses a fairly strict definitiomfifrmation scent is considered which
views any inefficiencies in a user’s clickstream (e.qg., br@dking) as having poorer scent. The
last hypothesis takes a more detailed viewpoint by lookirigfarmation scent among different
fragments of a user’s session. In this hypothesis a morgagleharacterization of information
scent is used which recognizes that complex sessions nildyestif high scent even in the pres-

ence of some inefficiencies.

Strict Information Scent

When a forager has a single well-defined goal in mind it wo@ekpected the user would ex-
hibit a focused search pattern (Moe, 2003). With a well-aefigoal, the forager is better able to
evaluate the scent of each link and hence make more accaétational choices. Viewed as a
whole, such navigational choices for a forager with higlelswf scent should result in a directed
clickstream.

A directed path is characterized by few (if any) repeat atgins of pages, since it is assumed
a rational forager would obtain any and all information frarpage the first time it was visited.
However, as even well-defined goals may be complex and hesaé in less than direct click-
streams, scent relative to other Web sites visited is mgpeogpiate to examine than absolute
scent. Therefore, a goal is more likely to be achieved whenaler proportion of pages are vis-

ited multiple times at this Web site relative to other sitebich leads to hypothesis UC7.

Hypothesis UC 7: A lower proportion of repeatedly visited pages at this gitdeh relative to
other site-patches within a user-session will be posiiwssociated with achieving a goal on this

long tail Web site.

Empirically, the proportion of repeatedly visited pages Hdfered depending on the type of
page and focus of the browser. For example, Moe (2003) fauaicdirected shoppers at an e-
commerce site viewed mostly unique product brand pagesswbat unique category pages,
and not very unigue product pages. As far as can be deterritndse of proportion of repeated
pages for an entire session has not been examined in prearcks

Taking a finer-grained conceptualization of strict infotioa scent considers the overall com-
plexity of a user’s clickstream, as opposed to just genexekipacking behavior. A less complex

clickstream is one which exhibits a linear path through @& @enecal et al., 2005), which is in-
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dicative of high scent. As path information is used to deteentomplexity, backtracking behavior
at many different pages rather than a single page may belteasérom a session.

For example, consider a user’s browsing behavior at two \Web. At one site seven pages
were visited and four of those pages were unique. All of themoique pages were the home
page which was used as the main hub for all the other pageg Wisited. At the other site the
same number of total pages and unique pages were visitetisAMeb site, however, each non-
unique page was different from one another. Although thekstreams from both Web sites have
the same proportion of repeatedly visited pages, the tligamn from the second site is more lin-
ear and thus less complex than the second.

With high scent, a forager will exhibit a less complex and enlarear clickstream than with
low scent. However, similar to the previous hypothesisphlts clickstream complexity is not ap-
propriate to consider in light of potentially complex infeation goals. Therefore, a less complex
clickstream, in terms of linearity, at this Web site relatto other Web sites is more likely to lead

to goal achievement, which leads to Hypothesis UCS8.

Hypothesis UC 8: A more linear clickstream at this site-patch relative toetkite-patches in this

user-session will be positively associated with achiegmgpal on this long tail Web site.

Session complexity has been used to successfully disatmumsers via their clickstream into
high and low scoring groups (McEneaney, 2001); in the useadyct recommendation agents
(Senecal et al., 2005); and in predicting the completiomfafrmational and e-commerce tasks

(Kalczynski et al., 2006).

Relaxed Information Scent

The previous two hypotheses considered the session as a amblassumed two things. First,
inefficiencies in a user’s clickstream were consideredcitwirs of poor scent. However, certain
“inefficiencies” may instead be a part of the natural decisitaking process of a user. For exam-
ple, Moe (2003) found that when directed shoppers were theclietween products, their click-
streams demonstrated multiple repeated visits to the p#Edghe products being considered. Sec-
ond, it was assumed the forager had a single informationigaalnd when foraging. However,
Montgomery et al. (2004) demonstrated that models whicbwatted for changes in visitors’

goals on an e-commerce Web site performed better at preglictinversion than models which
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only allowed for a single goal.

As the information goal of a forager may change during a eagsir subgoals may be intro-
duced as information is obtained) the scent of links willradp@in accordance to the current goal.
Therefore, a link to a page which has already been visitedhinig selected again because (1) the
link has the highest scent for the new current goal and (23¢kat gives an indication of novel in-
formation on the linked page. So even though the path at theeggted session level of analysis
may appear undirected due to a non-linear path or repeatedngs of the same page, if a for-
ager’s clickstream were separated by goal, a more direcggther of browsing within the context
of the current information goal would likely be seen.

Figure 26 illustrates an example of an undirected path ad¢Beion level of analysis and a di-
rected path at the goal level. The entire session consisigegbage views with 60% of those
pages being unique. Although the session as a whole doeppeaato be directed, breaking the
session down by the user’s information goals reveals ardiftepattern. Within the context of a
particular information goal, the pages viewed were unicgievédenced by the 100% path unique-

ness for each goal’s path subset.

Path Subset Pages Viewed Path Uniqueness
Entire Session A B,C,B, A 60%
Information Goal 1 A, B, C 100%
Information Goal 2 B, A 100%

Figure 26.: User-centric: Example Forager's Path

Thus, a finer-grained conceptualization of informatiom$ée needed which is capable of de-
tecting high scent in situations of changing informatiomigand “inefficient” behavior. To meet
that needgoal scent trailsandnon-goal scent traisare used in a similar spirit as goal and non-
goal page-patches from hypothesis UC5. Goal scent tralpath fragments that goal-achieving
foragers predominately follow. Non-goal scent trails amdpminately followed by non-goal-

achieving foragers.

20lston and Chi (2003) introduced the concept of ScentTwiish highlighted the path a user should take given
an information goal. ScentTrails differ frostent trailsin that the former shows a path through a Web site given a
user’s goal, whereas the latter uses past foragers’ battaMitetermine goal and non-goal path fragments.
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By only using portions of users’ paths to derive scent tr#élilese parts of a session most and
least aligned with goal-achieving can be teased from amneesgission. A user who follows more
highly valued goal scent trails is likely to have a goal sanib the goal-achieving foragers on
that Web site. In the same manner as hypothesis UC5, the eaduscent trail is defined in three
ways: maximum, most recent, and summation. Maximum valuéeoals the most highly valued
scent trail that is followed at any point during a sessioreisded for the forager to judge the site
favorably and thus consider achieving a goal. The valueehibst recent (i.e., last followed scent
trail) conjectures a goal is more likely to be achieved sdter #ollowing a highly scented trail.
Finally, summation hypothesizes that the overall evatuatif the Web site, in terms of its valu-

able trails, affects the decision of a forager to achievea gonot.

When compared to other Web sites visited during the samesassion, a forager who follows
relatively more valuable goal scent trails at this Web sitmore likely to achieve a goal, which

leads to Hypothesis UC9.

Hypothesis UC 9: Following of more highly valued goal scent trails at thisesgiatch relative to
other site-patches within a user-session will be posiiessociated with achieving a goal on this

long tail Web site, where value is defined as the:

(a) maximum value of any followed goal scent trail.

(b) value from the last followed goal scent trail.

(c) summation of values from all followed scent trails.

Path information has been used successfully in clickstrem®arch to predict future path se-
lections (Montgomery et al., 2004). Various ways of repnéigg paths have also been tested. The
use of path fragments, which take into account the ordeacadgy, and recency of information,
have been found to be more accurate for predicting fututespghtin other manners of representing
paths (Yang et al., 2004). As far as can be determined, thefyssh fragments which distinguish

between groups of a Web site population has not been exarmnetbr research.
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Relation of Hypotheses to Information Foraging Theory

For each of the nine hypotheses, table 9 lists whether thethgpis is testing or extending IFT.
For each IFT-extending hypothesis, a short descriptiomagiged below which explains in what

way the theory is being extended.

Table 9: Relation of Hypotheses to Information Forag-

ing Theory
Hypothesis # Hypothesis Extends IFT?
INFORMATION PATCH — SITE-PATCH
uCi Duration No
uc2 Number of pages No
UC3 Leaving and returning Partially
uc4 Returning back Yes
INFORMATION PATCH — PAGE-PATCH
UC5 Patch visitation Yes
ucCe6 Patch duration Partially
STRICT INFORMATION SCENT
ucv Unique pages Yes
ucCs Linear clickstream Yes

RELAXED INFORMATION SCENT
uco Trail following Yes

The first two hypotheses (UC1 — UC2) test IFT without extegdhre theory. Both of the hy-
potheses test the theory’s expectation that users empogotficept of satisficing when foraging
for information (Pirolli, 2007; Simon, 1956). As patcheg assumed to exhibit diminishing re-
turns, a visitor should only forage within a patch as longhey tare satisfied with the rate of infor-
mation gain they are obtaining.

The third hypothesis (hypothesis UC3) partially extendg [Fhe idea is not novel that a forager
would leave a patch when the rate of information gain fallewdhe mean rate of gain obtain-
able from the environment. However, the Marginal Value Theo(Charnov, 1976) assumes an
optimal forager with perfect information. Since foragers known to possess imperfect informa-

tion, the actual judgment on the mean rate of gain obtairfabie other patches may be incorrect.
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Therefore, a forager may return to the original patch aftpiaring other parts of the environment
and realizing the original site still provided the highesterof information gain.

Hypothesis UC4 is considered an extension to IFT becaus&didiuces memory from past
sessions. When searching for information, a forager wélinormation scent to guide them to
patches of interest (e.g., a Web site). The level of scenigrized by a forager is dependent on
the strength of chunks activated from declarative memoingpR 2007). It is assumed that when
a forager visits a Web site of value, greater attention vélplaid to the cues that represent that
site compared to sites of a lower value. Greater cue attentitbin turn more strongly activate
the chunks representing those cues in declarative memaorggion et al., 2004). At a later time,
when the forager has an information goal that may be achigeedthe valuable Web site, those
chunks representing the Web site will have a greater prétyabf being retrieved (than chunks
representing lower-valued Web sites) from declarative orgrdue to being previously activated.

The hypotheses dealing with page-patches (UC5 — UC6) asecaissidered an extension be-
cause IFT does not define patches as being associated witticallpa group of foragers (e.g.,
goal versus non-goal sessions). Instead, the patchywteust the Web is assumed to be indepen-
dent of a forager’s information goal (Pirolli, 2007). Hypesis UC5 is also an extension to the
theory because patches in IFT are not given value indepéndéme current forager. Instead, the
value of a patch is determined by an individual's behavidhimithat patch (e.g., time spent).

The final three hypotheses are seen as an extension to IFWiton IFT, scent is viewed as
a real-time mechanism that foragers use to select a namigatbption (e.g., selecting which link
to click next). While all three hypotheses still assume searks by the same mechanism, an
overall level of scent from a forageraggregatedbehavior is conceptualized instead. In addition,
hypothesis UC9 also extends IFT by introducing the concepaits of scent that are common

amongst foragers.

4.2.2 Site-centric

The site-centric model is useful when only the clickstredra fmrager at a single site is known.
As a result of having incomplete data; however, two ways iictvisoncepts are defined to tap

the main constructs of IFT in the user-centric model canmbietused in the site-centric model.

3For example, value is equated with duration in hypotheses$ at@ UC6.
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Instead, alternative forms of conceptualizing the comssrare needed.

The first way the definitions differ is in the usage of a for&gbrowsing behavior at the site of
interest relative to their browsing behavior at the othtrssvisited during their user-session. Since
the site-centric model has no knowledge of browsing bematiother Web sites, comparisons are
instead made relative to a fixed value of zero (i.e., in allsdkrms}. For example, users were as-
sumed to have spent zero minutes and viewed zero pages anNghesites. Thus, the site-centric
model was reduced to only using a visitoabsolutebrowsing behavior at the site of interest.

The second difference between the two models is the aldlitietermine if the forager left
the site and then came back during the session. Site-cehtkstream data would simply show
a contiguous clickstream, regardless of if the foragerthedtsite or not. However, site-centric
datasets typically have access to a referring field whiclwshehich URL a user came from (Field-
ing et al., 1999; Gourley and Totty, 2002). The use of therrigfg field is not without disadvan-
tages as common browsing behaviors may lead the field to bk fag., typing in a URL, using
a bookmark). Despite these limitations, the use of refgriifiormation does provide a means that
site-centric datasets may use to determine if foragers leétvend returned to the site of interest
within a session.

For example, figure 27 illustrates a site-centric view ofc¢lekstream data available from a
user. By looking at the user’s entire clickstream (figure #5% known that the user left the site
and returned after visiting page D1 the third time. But, the that the user left the site and re-
turned cannot be determined from simply examining thecgigric clickstream as shown in fig-
ure 27. However, assuming the user followed links, the riefgifield would indicate page C1 was
visited after the third D1 page and thus the forager left tteeasd returned.

With those two differences in mind, the hypotheses are textar the site-centric clickstream

model of information foraging in table 10.

4Chapter 8 provides a comparison of browsing behavior k&lati users who had previously achieved a goal at the
site of interest. The temporal version of the site-centriclel assumes deviations from known goal-achieving bragvsin
behavior indicates lower levels of scent or patch value hod & lower probability of a goal being achieved.
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Table 10: Site-centric: Hypotheses

Hypothesis # Hypothesis

INFORMATION PATCH — SITE-PATCH

SC1 Higher total duration spent at this site-patch will beitiely associated with
achieving a goal on this long tail Web site.

SC2 Higher number of pages viewed at this site-patch willdmtiwvely associated
with achieving a goal on this long tail Web site.

SC3 Returning to this site-patch during the same sessidavjositively associated
with achieving a goal on this long tail Web site.

SC4 Returning to this site-patch during a different sesgiibirbe positively associated

with achieving a goal on this long tail Web site.
INFORMATION PATCH — PAGE-PATCH

SC5 Visitation of more highly valued goal page-patches bdllpositively associated
with achieving a goal on this long tail Web site, where vakidefined as the:
(a) maximum value of any visited goal page-patch.
(b) value from the last visited goal page-patch.
(c) summation of values from all visited goal page-patches.

SC6 Higher median total duration spent within visited gaaigrpatches at this site-
patch will be positively associated with achieving a goattua long tail Web site.

STRICT INFORMATION SCENT

SC7 A lower proportion of repeatedly visited pages at ttiss-gatch will be positively
associated with achieving a goal on this long tail Web site.

SC8 A more linear clickstream at this site-patch will be pesly associated with
achieving a goal on this long tail Web site.

RELAXED INFORMATION SCENT

SC9 Following of more highly valued goal scent trails will jpesitively associated
with achieving a goal on this long tail Web site, where vakidefined as the:
(a) maximum value of any followed goal scent trail.
(b) value from the last followed goal scent trail.
(c) summation of values from all followed scent trails.

The site-centric hypotheses have the same theoretictibreta IFT as the user-centric hypotheses. 84.2.1 provides
an explanation of which hypotheses extend IFT and how tharyheas extended.
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Figure 27.: Site-centric.: Example User Clickstream Graptdapted from (Card et al., 2001)

4.3 Conclusion

This chapter provided an explanation on how IFT, a theoryceomed with information search,

can be used to help predict action. In addition, a brief aearwas given of how an information
forager processes a page and an example of the process asimcpatric data. The user- and site-
centric clickstream models of information foraging wererttintroduced. Finally, hypotheses gen-

erated from the user- and site-centric models were pregente
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Chapter 5

Methodology

This chapter outlines the steps taken to test the hypottiesbsth the user-centric (UC) and site-
centric (SC) clickstream models of information foragindieTmethodology for the user-centric
model is presented first in 85.1, followed by the site-cemrodel in 85.2. For each model a de-
scription is given about the data sample and how to calcelatd hypothesis’ measure. Finally,

85.3 outlines the statistical tests used to test each hgpigth

5.1 User-centric Clickstream Model of Information Foraging

The first subsection below describes how the user-centtasdbwas processed to create user-
sessions In the final subsection, details are given on how measurdakdéanodel’s hypotheses
were calculated. However, since only session-level infdiom about a forager was available

in the data, only measures which were calculable from therpdata are presented (hypotheses
UC1- UC4).

5.1.1 Dataset Sample

The user-centric dataset consists of a set séssionss (Sg, S1, ...,Snv_1), whereS; represents

a single session tuple. Each tuple consists of eight picfdaesoomation: a unique identifier for the
user, session, Web site, and referring domain; date andtiengession started; number of pages
viewed; how much time was spent on the site; and if the sesemiited in a purchase being made

(i.e., agoal). Table 11 illustrates a set of session tuples.

ISummary statistics about the user-centric dataset caruine io chapter 6.
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Table 11: User-centric: Example Sessions

User Session Web site Referring Domain Date and Time Pagesatibu Goal?

us S1 W7 R3 5/25/08 15:39:07 12 tvin  Yes
us S2 w8 n/a 5/25/08 15:40:58 2 ndn No
ueé S3 W5 n/a 5/25/08 15:53:02 5 n¥in  No
urz S4 W6 R1 5/25/08 16:02:34 3 mdin  No

User-sessions

The user-centric model is based on the ideas#r-sessiong/hich allow for an examination of a
forager’s behavior at one site relative to their behaviather sites. A user-sessi@hcontains a
target sessioff’ and a set of: other session§, whereS = {Sy, S1, ...,S,—1}. T andsS; are both
tuples that represents information about a particulari@egas illustrated in table 11).

The target sessidh is a session that occurred at a long tail e-commerce sit@eldataset, a
Web site was flagged as an e-commerce site if at least onega@&retas made at the site by any
user at any point during the dataset’s time period. Web #itsmade up the lowest 200f all
goals achieved were considered long tail e-commerce gitemadom sample of 28 of those
long tail e-commerce Web sites with at least 50 goal sessi@ns selected for analysisEach
session taking place at one of the selected long tail e-canesites became a target session for a
potentially valid user-session.

To become a valid user-session, there must have been abfeasther session at an e-commerce
site by the user during the time the target session was &ctveession was considered active
during the target session if it ended 30 minutes or less befar start of the target sesstomn
addition, the session must have also ended by the end ofrtiet tessioh At least one other ses-

sion was required for a valid user-session in order to cateutkelative behavior from the target

2Further details about the selection of long tail e-commsites may be found in §6.1.1.

3The other session could take placeamye-commerce site from the dataset.

4A 30 minute window before the beginning of the session wad beeause prior research has used a timeout pe-
riod of 30 minutes for defining sessions (Bucklin and Sisme2003; Sismeiro and Bucklin, 2004; Van den Poel and
Buckinx, 2005).

The purpose of this research was to predict goal achieveatenparticular instant in time (i.e., when the target
session ended). Including sessions that ended after tpet sssion would rely on data from the future. An entire ses-
sion was removed from a user-session because the comStasetdanly included session-level information. Therefore
a session’s browsing behavior could only be determined afsession had ended. If page-level information was avail-
able instead, the session’s information known up to theetasgssion’s end would have been used.
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session. Target sessions which did not have any other segiming the window of time were not

considered valid user-sessions and hence were not uses am#ifysis.

ThecreateUserSessioradgorithm in figure 28 illustrates the basic steps follonedreate the
user-sessions. The algorithm requires a set of long tadneaterce Web sites and the number of
minutes to use for a time window to be passed to the method wisecalled. For each Web site,

a set of sessions which visited the site were returned (f)eThese sessions were target sessions
for potential user-sessions. For each target sessiorthalt eessions by the user which (1) visited
an e-commerce Web site and (2) ended between the specifidgenafminutes before the start of
the target session or by the end of the target session weraeet(line 22. If at least one other
session was returned from line 22, then a user-session watedrand added to the set of valid
user-sessions (line 25). This process continued for eatempal target session from each of the
long tail e-commerce Web sites. After all processing waspiete, a set of valid user-sessions

was returned from the algorithm (line 29).

Table 12 illustrates how thereateUserSessioragorithm operates. The table lists a subsample
of sessions from the same user at e-commerce sites sortesdsiprs date and time. The “Long
Tail?” column specifies whether the site visited was a lofigetaommerce Web site. The final
column, “Target?”, specifies which long tail Web site wasftirus of the user-session. The target
column is provided to be clear which Web site would be usediopare against, especially in the

situation of multiple long tail sites existing within thersa user-session.

Assuming Web sitéV'5 was currently being processed, then sessi¢nvould have been re-
turned from line 17 of the algorithm. Each of the returnedmes from the Web site would have
then been iterated through. When sessidnwas processed, sessiafi3 and.S5 would have been
returned from line 20 of the algorithm. Sessif®would have been returned because the end of
the session was within 30 minutes of the start of target@essi (11:35:00 - 11:33:00 = 2:00).
SessionS2 would not have been included because the end of the sessomara than 30 min-
utes from the start of the target session (11:35:00 - 11604:81:00). Although sessiafi5 started
after the target session, it would still be included becdhsend of the session was equal to or

less than the end of the target session (11:44:00 for bofiioges3.

Since two other sessions were found for the target sessi@lidauser-session would have been

The target session was not returned in the set of other sesisidine 22 of thecreateUserSessiordgorithm.
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Parameters: (a) Set of long tail Web sites:

W:{Wo, Wl, ey anl}
(b) Time window duration in minutes: timeWindow
Returns: Set of valid usersessions:
U = {UO, U1, ey Umfl}
where U; is a tuple:
<T, {So, Si, ..., Snv-1}>
Methods: (a) getSessions (w): returns set of sessions froeb Wite w

(b) getOtherSessions(s, time): returns set of
session for this user from any—eommerce Web site
within the specified window of time

(c) createUserSession (s, O): returns a valid useression

15 createUserSessions (W, timeWindow)

17
18
19
20
21
22
23
24
25
26
27
28
29
30 }

u={}h

for each (we W) {
S = getSessions (w);

for each (se S) {
O = getOtherSessions(s, timeWindow);

it (o] > 0) {
U += createUserSession(s, O);
}

}
}

return U;

Figure 28.: User-centric: createUserSessions Algorithm

Table 12: User-centric: Example User-Sessions

User-session Session Web site Date and Time Duration Loilgy Taarget?

S1 w8 5/25/08 10:00:00 Ifin No -
S2 w4 5/25/08 11:00:00 #hin No -
Ul S3 W7 5/25/08 11:30:00 Bin No -
U1, U2 S4 W5 5/25/08 11:35:00 1Bin Yes ul
U1, U2 S5 W6 5/25/08 11:40:00 din Yes uz2
S6 w2 5/25/08 13:00:00 18in No -
u3 S7 wi 5/25/08 15:00:00 28in No -
U3 S8 W3 5/25/08 15:30:00 3ihin Yes U3
S9 w2 5/25/08 18:05:00 28in Yes u4
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created on line 23 of the algorithm. The valid user-sessiounl@vhave included target sessiSn

and other sessions3 and.S5.

Table 12 also illustrates three other potential user-sassiBoth user-sessiob& andU'3 would
have been valid because they both included other sessignadéheir target sessions (sessiHh
for U2 andS7 for U3). User-sessio/4 would not have been valid because there were not any
other sessions within the time window of sesskfh User-sessiof/4 would not have been in-

cluded in the analysis.

5.1.2 Metrics

Table 13 summarizes the metrics used to test the hypothessttefuser-centric clickstream model.
The name of each metric along with a description of how it vadsidated is provided. In addi-
tion, the hypothesis which corresponds to the metric is jtegided in the table. A more in-depth

description of the metrics is given in the following subsmts.

Table 13: User-centric: Model Metrics

Hypothesis # Metric Description

INFORMATION PATCH — SITE-PATCH

UCl RELDUR Duration in minutes spent on a Web site relative to me-
dian time spent during other sessions.

uc2 RELPGS Number of pages viewed on a Web site relative to median
number of pages from other sessions.

uc3 RETURN If visitor left the Web site and returned during the same
session.

UcC4 VvISITED If visitor had previously visited the Web site before.

OTHER
n/a GOAL Whether a goal occurred during the session.

To help clarify the notation being used below for the metra&sch user-sessidih contains a
target sessioff’ and a set of. other sessions§, whereS = {Sy, S1, ...,Sn,—1}. T ands; are both

tuples that represents information about a particulai@e$see 85.1.1 for more details).
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Information Patch — Site-Patch

RELDUR is the total duration in minutes a visitor spent at the taWjeb site relative to the median
time spent at other sites within the same user-session. €l&@/e duration of the user-session

U is calculated from equation 5.1, wheteration(i) is the duration spent during sessiorfo
acquireRELDUR, the median duration of all sessions in the user-sedsgiasubtracted from the

total duration of the target sessit@h

RELDUR = duration(T) — median (for each;cs [duration(i)]) (5.1)

RELPGSIs the number of pages viewed at the target Web site relatitteet median number of
pages viewed at other sites within the same user-sessi@eldtive number of pages for the
target sessioff’ is calculated as shown in equation 5.2, whetges(i) is the number of pages
viewed during session To obtainRELPGS the median number of pages viewed at the other Web

sites is subtracted from the number of pages viewed duriggitget session.

RELPGS= pages(T') — median (for eachics [pages(i)]) (5.2)

RETURN s a binomial variable which isue if the user left and returned to the target Web site
during the user-session afalseotherwise. A user is designated as leaving and returninigeto t
target Web site if another session is active during somegpdine target session. This can occur
if a new session is started while time is still being spenbattarget Web site. Another situation
where this can occur is if a session was started before thettsession and continues to be active
during some portion of the target session.

For exampleRETURN would betrue if sessionS4 from user-sessiofvV1 (table 12) was the tar-
get session. This is because sessi6rstarted (11:40:00) during the time sessidhwas still ac-
tive (11:35:00 to 11:44:00RETURN would befalse however, if sessiol'8 from user-sessioly 3
was the target session. Since sessi@rwas finished (15:00:00 to 15:23:00) before sessi8n
began (15:30:00), the forager could not have left and retlito the Web site fron§s.

VISITED is a binomial variable which igue if the forager had visited the target Web site during
another session at some point in the pastfaigotherwise.vISITED is calculated by examining

the prior sessions of a forager and determining if the userelar visited the Web site of interest
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before.

Other

The mutually exclusive binomially distributed metgoAL specifies whether a purchase was
made during the session. If a goal was achieved during tlsgsgs OAL would have the value

of true. OtherwiseGoAL would have a value dalse

5.2 Site-centric Clickstream Model of Information Foraging

In the first subsection below, the methodology is presentelosv the data was used to test the
site-centric modél The final subsection details how the measures for the sit&ic hypotheses
were calculated. Unlike the user-centric dataset, theceitgric dataset was at the page-level and

thus each of the measures for the site-centric hypothesesbia to be calculated.

5.2.1 Dataset Sample

The supplied data contained a setadessionss (Sg, S1, - - .,S5,—1), wheresS; represents a single
session. Each sessiaofi;) contained a set oh page information tuple® (P, Pi1, ..., Pim—1):
whereP;; represents information about a particular page viewedduaisession. Each page in-
formation tuple was made up of seven pieces of informatiamigque identifier for the session,
Web site, referring domain, and page viewed; date and tim@alge was viewed; how much time
was spent on the page; and if the page represented a conghttajiog achieved.

Table 14 illustrates a set of page tuples for sessipat Web siteli’ 4. Of note is the right-
censored nature of the site-centric data. The durationefirihl page of the session is missing
because it is not known when the next page was visited by s (at this site or another).

Table 15 provides some basic statistics on the number ofspageed and total duration of
sessionS9. The first row of the table shows statistics using the en#@ssi®n. However, only
those parts of a session occurringforethe achievement of a contact goal were used in the anal-
ysis. This truncation was done because the problem beirgtigated was the prediction of goal
achievement during themainderof a session. Thus, prediction was done from a point right be-

fore a form submission occurred.

"Summary statistics about the site-centric dataset canuvelfm chapter 6.
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Table 14: Site-centric: Example Session Tuples

Session Web site Referrer Page Date and Time Duration Qdbtad

S9 W4 W6 A 5/25/08 15:37:02 32 n/a
S9 w4 w4 B 5/25/08 15:37:34 93 n/a
S9 w4 w9 C 5/25/08 15:39:07 1%1 n/a
S9 W4 w4 D 5/25/08 15:40:58 35 CG1
S9 w4 w4 A 5/25/08 15:42:33 9 n/a
S9 W4 w4 E 5/25/08 15:42:42 n/a n/a

Table 15: Site-centric: Example Ses-
sion Statistics by Contact Goal

Pages Duration

Entire session 6 340
Contact Goal 1 3 236
Contact Goal 2 6 340

To illustrate the truncation of a session, assume contadt@@'1 was being examined (repre-
sented as pagP). For sessiorb9, only activity on pages!, B, andC would be used (as illus-
trated in the second row of table 15). If contact g6&F2 were being examined instead (repre-
sented as pagR), then the activity from the entire session would be useds iBrbecause session
S9 never visited the page representing the submission of acofarm for contact goal’ G2.

Thus, all pages of sessidid were usable since they occurred before the non-existemisaton.

5.2.2 Metrics

Table 16 summarizes the metrics used to test the hypothessteefsite-centric clickstream model.
The name of each metric along with a description of how it vadsidated is provided. In addi-
tion, the hypothesis which corresponds to the metric is jtegided in the table. A more in-depth
description of the metrics is given in the following subsmts.

To help clarify the notation being used below for the metreach session contains a sethof

page information tuple®, whereP =< P, Pi, ...,P,_1 >. P; represents information about
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Table 16: Site-centric: Model Metrics

Hypothesis # Metric

Description

INFORMATION PATCH — SITE-PATCH

SC1
SC2
SC3

SC4

SITEDUR
SITEPGS
RETURN

VISITED

Duration in seconds spent on a Web site.
Number of pages viewed on a Web site.

If visitor left the Web site and returned during the same
session.

If user had previously visited the Web site before.

INFORMATION PATCH — PAGE-PATCH

SCbha
SC5b
SCbc
SC6

STRICT INFORMATION SCENT

SC7
SC8

PATCHMAX

PATCHLAST

PATCHSUM
PATCHDUR

UNIQUE
LINEAR

Maximum value of any goal page-patch visited.
Value of last goal page-patch visited.
Total value of all goal page-patches visited.

Median duration in seconds spent in all goal page-
patches.

Percentage of unique pages viewed.
Linearity of clickstream.

RELAXED INFORMATION SCENT

SC9a
SC9b
SC9c
OTHER
n/a

TRAILMAX
TRAILLAST
TRAILSUM

GOAL

Maximum value of any goal trail followed.
Value of last goal trail followed.
Total value of all goal trails followed.

Whether a goal occurred during the session.
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a particular page viewed during the session (see §85.2.1doe netails).P only contains pages

which occurredeforethe contact form was submitted for the contact goal of irstiere

Information Patch — Site-Patch

SITEDUR is the total duration in seconds a visitor has spent at a WebEhe total duration for the

current visitor is calculated according to equation 5.3gkelime(i) is the time spent on thé”

page.

SITEDUR= Y _ time(i) (5.3)
iep

SITEPGSIs the number of pages viewed during a session. The numberespviewed during

the current user’s session is simfjli?|| (equation 5.4).

SITEPGS= || P|| (5.4)

RETURN is a binomial metric which isrue if the user left and returned to the Web site during
the session anfhlseotherwise. Since the dataset is site-centric, the deteatiom of leaving and
returning to a Web site cannot always be definitively deteedi However, in many cases however
the HTTP referergic] field (Fielding et al., 1999) contains information on whaUa forager
was on before arriving at the current page. Thus, if the riefgtURL from any page viewed in
a session (except for the first page viewed) is from a domé&ierdghan the current Web site, it
can be concluded the user left the site and returned. Thedirecrule does not apply to the first
viewed page of a session since a forager cannot leave a Viéedmsitreturn before a session has
actually started.

To illustrate, in table 14 (85.2.1) the referrer of the thiabe viewed (P3) was from a different
domain than the current Web site (W9 versus W4). Therefoeefdrager would have RETURN
value oftrue since the user left site W4, visited W9, and then returnedtéd/¥4. The fact that the
first page viewed (P1) had a referring URL of a different Wetb 8iV6 versus W4) has no bearing
on the value oRETURN.

VISITED is a binomial metric which igrue if the forager had visited the Web page during an-

other session at some point in the past faiskotherwise.vISITED is calculated by examining the
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prior sessions of a forager and determining if the user esggied the Web site of interest before.

Information Patch — Page-Patch

Patches at a Web site must already be known in order to ctddle fourPATCH visitation met-
rics: PATCHMAX, PATCHLAST, PATCHSUM, andPATCHDUR. The methodology for learning patches
is described in detail in appendix 5.B. In general, leargiatches requires a set of goal and non-
goal sessions to determine which parts of a Web site (i.gegaare better able to distinguish be-
tween the two groups. Patches are specific to a single Web site

As the fourPATCH metrics require patches to be learned first in order to giyaatsession’s
patch visitation, the sessions for each Web site were slittivo groups: training and testing
sets. The training set was used to discover goal patches abaié. The sessions in the testing
set each calculated tlmaTCH metrics for their individual session from the learned gaskthes.
However, a session from the testing set would only calcute®ATcH metricsif and only if goal
patches were found at the Web site. In addition,RlNECHDUR metric would only be calculated
for a session from the testing seand only if that session visited at least one of the Web site’s

discovered goal patches.

Training and Testing Set

Each Web site contained sessions where either a goal waadhiuring a session or not.
Sessions were separated according to their achievemeplaoet into a Web site’s goal dataset
(D¢) or non-goal datasef{y)8. To create a Web site’s training set); the sessions from both the
goal and non-goal datasets were sorted in ascending ordbeinysession start date. Then the first
70% of sessions from the goal dataséi{) were placed into the training se®). The date of the
last goal session added fbwas noted. Sessions from the non-goal dataBegt)(which occurred
at or before the noted date of the last goal session fRowere also added to the training set. All

sessions fronDg and D not added to the training set were put into the testing Bt (

Learning Patches
Patches were learned for a Web site using the training dgt&s@according to the methodology

outlined in appendix 5.B. Patches were learned kvels of 0.05 and 0.01 and supported levels of

8To simplify notation,De and D are used to refer to the current Web site being examined.
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0.25 to 1.50 (in 0.25 increments)

Specifically, a set of valuable patched (Ay, 41, ..., A,_1) were discovered, wherd; rep-
resents a single valuable pathA; consists of a set of: unordered and distinct pages(Uy,
Ui, .o Un—1).

Each patch 4;) was also given a value according to equation 5.5 (Yang adchBaabhan,
2003). S¢; andSy; represent the number of goal and non-goal sessions fromaiming dataset
that visited patchi;, respectively.Rs and Ry is the total number of goal and non-goal sessions
from the training dataset. The value of patéhcould range from zero to two, with higher num-
bers representing a greater difference in support of thehpatdistinguishing between goal and

non-goal sessions (i.e., being more valuable).

Sai Sni

value(A;) = SECHEE (5.5)

1 (Sci 4 Swni
2 (RG + RN>

Table 17 provides an example of three valuable patches fatadVeb site. Each patch is made

up of a set of unique and distinct pages. In addition, theevédig calculated from equation 5.5) is

provided for each patch.

Table 17: Site-centric: Ex-
ample Valuable Patches

Patch Pages Value

Al {AC} 0.75
A2  {B,C} 1.15
A3 {B,C,E} 135

Calculating PATCH Metrics
To calculate theeATCH metrics for a given session from the testing 46}, fwo steps were re-
quired. First, it was determined what patches the sess#itedifrom the set of valuable patches

(A). Each session had a setlofisited patched” (1, V1, ...,V;—1), whereV; was an individual

The results of the sensitivity analysis can be found in §7.2.
104, is a simplified form of notation which assumes a fixed Web sitksignificance or support level.
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patch visited by the current sessténA session was considered to have visited a patch if all pages
of the patch {/) were visited at least once (in any order) by the currentigegas determined by
the set of page® from the session). Formally; was added td” if U C P. Once it was known
what patches were visited, then the four measures werelatddu

Table 18 provides an example of two patches visited by a@esgth three page views{( A,
B, C >). V1 andV2 are simply patchegl1 and A2 from table 17 that were visited by the session.
A3 was not included because the session never visited padable 18 is also used to calculate

examples for each of the measures in this subsection.

Table 18: Site-centric:
Example Visited Patches

Patch Pages Value

Vi {AC} 075
V2 {B,C} 115

PATCHMAX is the value of the most valuable patch visited by the cumeat. The maximum
value is determined by iterating over every visited patcfirtd the one with the highest value

(equation 5.6). If the user did not visit any patches thenvttee ofPATCHMAX would be zero.

max (for each;cy (value(V; if ||V >0
PATCHMAX — ( JEV( ( J))) ” H (5.6)

0 else

To illustrate equation 5.8ATCHMAX would be 1.15%ax(0.75,1.15)) assuming a user visited
the patches in table 18.
PATCHLAST is the value of the last patch visited by the user. A four seyristic was used to

determine which patch was visited last during a user’s sBssi

(1) For each patch visited, the position within the usersssm when the foragéast visited a
page from that patch was nof€dPATCHLAST then equaled the value of the patch with the
highest ending position. If more than one patch had the saghest ending position then the

process continued to the second step.

1y is a simplified form of notation which assumes a valuableetispatch from a fixed Web site and significance
or support level.
12If a user visited a page more than once, then the last timeabe was visited was used.
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(2) PATCHLAST equaled the value of the largest patch from the tied patechétifirst step. Largest
was defined as the patch with the highest number of paged|{i’g). If more than one patch
tied for the largest patch then the process continued tdireb dtep.

(3) For each of the remaining tied patches from step two, tisgtipn within the user’s session
when the foragefirst visited a page from that patch was ndtedPATCHLAST then equaled
the value of the patch with the highest starting positios (started exploring the patch last).
If more than one patch had the same highest starting posii@mthe process continued to the

fourth step.

(4) PATCHLAST equaled the median value of all tied patches from step three.

Table 19 illustrates the values obtained from following lierristic on the visited patches from
table 18. In this exampl®@ATCHLAST would be 1.15. The steps for the heuristic for this example

are provided after the table.

Table 19: Site-centric: Example Last Visited Patches

Patch Pages Value Ending Position Size Starting Position

Vi {A,C} 075 3 (nax(1,3)) 2 1 (min (1,3))
V2 {B,C} 1.15 3maz(2,3)) 2 2 (min (2,3))

(1) The highest ending position for both patches was thremeSnore than one patch was tied
with the maximal value, a single patch could not be consaitast, and thus the process con-

tinued to step two.

(2) Both patches also had a patch size of two. Therefore,atanps were tied again since neither

of the patches was larger than the other patch.

(3) Patched/1 andV'2 were first visited during the first and second page of the sisession,
respectively. Since patdi2 had a later starting position it was deemed the last patcéreFh

fore, the value oPATCHLAST was the value of patch2 (1.15).

131f a user visited a page more than once, then the first timeabe was visited was used.
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PATCHSUM adds up the value of every patch visited by the current usgrateon 5.7). A value

of zero is given to any user that did not visit any patches.

> jev (value(V;)) if [V >0

0 else

PATCHSUM = (5.7)

PATCHSUMwould be 1.90(.75 + 1.15) using the patches visited in table 18.

PATCHDUR is the median duration a user spent in all their visited pegclonly sessions which
visited at least one patch (i.¢|| > 0) would have a value foPATCHDUR. The calculation for
PATCHDUR is shown in equation 5.8otalTime(k, P) returns the total time a session with pages
P spent on pagé. If a session visited pagemore than once i, then the sum duration from all

k page visitations was returned.

PATCHDUR = median [for each;cy (Z totalTime(k, P)> (5.8)

keG

PATCHDUR would be 164.50 (median(125,204)) for visited patched’1 andV'2 (table 18)
and sessioy9 (table 14).

Strict Information Scent

UNIQUE is the percentage of unique pages viewed during a sessiepdraentage of unique
pages viewed for the current visitor is calculated accgrdinequation 5.9, wheréistinct(P)

is the number of distinct pages viewed in the set of page rimfdion tuplesP.

UNIQUE = (%?) * 100 (5.9

LINEAR is the complexity of a session as calculated via the strat@asore. Complexity is
determined via the straightness (i.e., absence of visitages repeatedly) of a user’s browsing
behavior, where higher linearity equates to less compleSitratum is a measure of linearity from

graph theory (McEneaney, 2001) and details on its calaulatiay be found in appendix 5.A.
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Relaxed Information Scent

The threeTrRAIL metrics for the relaxed information scent were calculated very similar man-
ner as thePATCH metrics. The same training set used to discover patches seasto learn trails.
Sessions from the testing set then used those learnedttradculate their values for the three
TRAIL metrics.

Specifically, a set of valuable trailsl” (1y, 11, .. .,T,_1) were discovered from the training
set, wherel; represents a single valuable ttilT; consists of a set af, orderedpagesO (O,
01, ...,0,-1), Where the pages may repeat themselves in the orderedget(ed, B, B, A,

C >). Once discovered, trails were given a value like patchewmwejuation 5.5 (witl; being

used instead ofi;). Table 20 provides an example of three discovered trails.

Table 20: Site-centric: Exam-
ple Valuable Trails

Trail Pages Value

T1 <AC> 0.35
T2 <A AC > 1.25
T3 <B,C;D> 115

Once the trails were discovered, each session in the tes#ing) required two steps to cal-
culate theTRAIL measures. First, it was determined what trails were foltbimgthe session of
interest from the set of valuable trail§’Y, Each session had a setldbllowed trails ' (Fy, F,

..., F1_1), whereF; was an individual trail followed by the current sessturA session was con-
sidered to have followed a trail if all pages of the tr@i)(were followed in order by the current
session (as determined by the set of pafdésom the session). Although all pages must have been
followed in order, repeat visitation and gaps between pagee allowed (i.e., other pages may be
visited in between pages from the trail). More specificallyvas added td&' if O C P and the

pages oD were found in the same order iA Once it was known what trails were followed, then
the three measures were calculated.

Table 21 provides an example of two trails followed by a sesgiith six page views<{ A,

14T is a simplified form of notation which assumes a fixed Web sitbsignificance or support level.
15F; is a simplified form of notation which assumes a valuableofedid trail from a fixed Web site and significance
or support level.
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A, B, A, D,C >). F1andF2 are simply trails'l and7'2 from table 20 that were followed by
the sessionT'3 was not included because pagevas not visited before page in the session.

Table 21 is also used to calculate examples for each of theure=in this subsection.

Table 21: Site-centric: Exam-
ple Follwed Trails

Trail Pages Value

F1 <AC> 0.35
F2 <AAC> 125

TRAILMAX is the value of the most valuable followed trail by the cutneser. The maximum
value is determined by iterating over every followed traifind the one with the highest value

(equation 5.10). If the user did not visit any trails thenvhtie of TRAILMAX would be zero.

for each; lue(F; if ||F|| >0
TRAILMAX — maz ( jer (value(Fy))) [l (5.10)

0 else

To illustrate equation 5.1@G,RAILMAX would be 1.25%a2(0.35,1.25)) assuming a user fol-
lowed the trails in table 21.
TRAILLAST is the value of the last trail followed by the user. A four skequristic was used to

determine which trail was followed last during a user’s &#ss

(1) For each trail followed, the position within the userssion when the foragéast visited
the final page of the trail was not€d TRAILLAST then equaled the value of the trail with the
highest ending position. If more than one trail had the saigiegst ending position then the

process continued to the second step.

(2) TRAILLAST equaled the value of the longest trail from the tied trailthm first step. Longest
was defined as the trail with the highest number of pages|(CH]). If more than one trail tied

for the longest trail then the process continued to the ttieg.

(3) For each of the remaining tied trails from step two, thsijan within the user’s session when

181f a user visited the final page of the trail more than once; the last time the page was visited was used.
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the forageffirst visited the first page of the trail was notédTRAILLAST then equaled the
value of the trail with the highest starting position (istarted following the trail last). If more
than one trail had the same highest starting position thepithcess continued to the fourth

step.

(4) TRAILLAST equaled the median value of all tied trails from step three.
Table 22 illustrates the values obtained from following lieiristic on the followed trails from
table 21. In this examplag,RAILLAST would be 1.25. The steps for the heuristic for this example

are provided after the table.

Table 22: Site-centric: Example Last Followed Trails

Trail Pages Value Ending Position Length Starting Position
F1 <A C> 0.35 6 2
F2 <AAC> 125 6 3

(1) The highest ending position for both trails was six. 8inwre than one trail was tied with the
maximal value, a single trail could not be considered lasd, taus the process continued to

step two.

(2) Trail F2 had a length of three pages, whitd only had two pages in its trail. Therefore, the

value of TRAILLAST was the value of traiF'2 (1.25).

TRAILSUM adds up the value of every followed trail by the current usguétion 5.11). A value

of zero is given to any user that did not visit any trails.

- (value(F; if ||[F||>0
TRAILSUM = 2jer (£3)) 11 (5.11)

0 else

TRAILSUM would be 1.60({.35 + 1.25) using the trails visited in table 20.

It a user visited the first page of the trail more than oncen the first time the page was visited was used.
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Other

The mutually exclusive binomially distributed metgoAL specifies whether at some point during
the remainder of a session a contact form was submitted éozdhtact goal of interest. If a goal
will be achieved during the sessiaapAL will have the value ofrue. Otherwise GoAL will have

a value offalse

5.3 Metric Testing

Each of the metrics was tested individually to determin@éfytwere able to distinguish between
goal and non-goal sessionsaaty long tail Web site. The metrics were tested at the Web site uni
of analysis since the goal was to find metrics which were Sgnt overmultiple long tail sites.
Since each Web site had numerous goal and non-goal sedsiemsedian value was separately
taken for each grodf. The median values for the goal and non-goal sessions weneued as
each Web site’s paired data points.

The binomial metricRETURN andVvISITED did not use median values since the metrics were
only flags indicating if someone left the site or had visited site before. Therefore, each Web
site was compared according to the probability of a goal wowygiven if the user left and re-
turned to the site or stayed at the site the entire seSsion

Table 23 illustrates the contingency table constructedémh Web site that was used to cal-
culate the probabiliti€8. Counts of sessions at the Web site were categorized angaliwo
dimensions: goal or non-goal session; and if the sessibanefreturned or stayed on the site.

Equations 5.12 and 5.13 detail how each of the probabiltiese calculated for each Web site.
The probabilities were then used as each Web site’s paitadodints.

a

5.12
a+b ( )

P (Goal|Return) =

C

P (Goal|Stayed) = T d

(5.13)

8Median values were used instead of mean values to reducenpizei of outliers on the dataset.

1For theviSITED metric the probabilities being compared were for a goal maoy given if the user had visited the
site before or if this was the user’s first visit to the site.

20| notations are stated for theETURNmetric. To be applicable to thasITED metric, the notation “return”
becomes “visited” and “stayed” changes to “new”.
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Table 23: Contingency Table f&’ETURN and

VISITED
‘ Goal ‘ Non-goal N
Return a b a+b
Stayed| ¢ d c+d
N |a+e b+d a+b+c+d

A total of three different statistical tests were perforneedeach metric: paired t-test, exact
Wilcoxon signed rank test, and dependent-samples signitbe paired t-test is a parametric test
which assumes the data came from a normal distribution (@Gn@999). The exact Wilcoxon
signed rank test and the dependent-samples sign test &radisiparametric tests which do not
make any assumption about the type of underlying distwlbbu¢Conover, 1999). The reason three
tests were performed is due to each test’s differing leviedssumption stringency. When met-
rics deviate from the assumptions of a test, the other leisgent tests can provide a “worst-case”

baseline for the significance of the metric.

Each of the three tests is described in greater detail baskanting with the most stringent test.

An example of each test is also provided which illustratestéist statistic being calculated.

Paired t-test

The paired t-test is a parametric test to determine if themdéféerence between groups is zero
(Conover, 1999). The difference of each pair's measuresacalated and then used to determine
the test statisti¢. The significance of is then determined based on the assumption of an underly-

ing normal distribution.

In the data there are pairs of X andY observationg Xy, Yp), (X1,Y1), ..., (Xn,Ys) (Conover,
1999). For each observation pair, the differeigds calculated betweeX; andY;, whereD; =
Y; - X;.

The test statisti¢ is calculated according to equation 5.14 (Conover, 1998greD is the

mean of allD;s.
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‘ D (5.14)

Ve Sy (D - D)

Assumptions

The five assumptions for the paired t-test are provided béeldw@ most stringent assumption for

the test is the requirement of normally distributed rand@mables.

(1) “The D;s are identically distributed normal random variables.bii@ver, 1999, pg. 363)
(2) “The distribution of eactlD; is symmetric.

(3) TheD;s are mutually independent.

(4) TheD;s all have the same mean.

(5) The measurement scale of thes is at least interval.” (Conover, 1999, pg. 353)

Example

To illustrate the paired t-test, table 24 provides an exaropbata from five Web sites (A-E).
Within each Web site the median value for the metric beingstigated is provided separately for
the goal (X;) and non-goal session¥;]. In addition, the final column shows the differende;)

between the non-goal and goal sessions e X;).

Table 24: Example T-test Metric Testing Dataset

Web site  Goal Sessiong{) Non-goal Sessiongf) D;

A 3.75 2.15 1.60

7.15 4.35 2.80
C 12.20 13.40 —1.20
D 4.75 4.75 0.00
E 7.50 5.90 1.60

Using equation 5.14, the t-statistic for the given data3320 (with four degrees of freedom),

and a p-value of 0.121 (assuming a hypothesis ¥h# greater thary’).
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Exact Wilcoxon Signed Rank Test

The exact Wilcoxon Signed Rank Test (Wilcoxon, 1945) is aparametric test that determines if
paired observations have the same mean as one another E£,01@89). Each Web site is ranked
according to its absolute difference between the mediaresabf all goal and non-goal sessions
for the given metric. The ranks of all Web sites with a positilifference are then added up to ob-
tain the test statisti¢” (Dalgaard, 2008).

In the data there are pairs of X andY observationg Xy, Yp), (X1,Y1), ..., (Xm, Yn) (Conover,
1999). For each observation pair, the differeigds calculated betweeX; andY;, whereD; =
Y; — X;. Any observation pair with a difference of zero is removemhirthe analysis (i.e., when
D; = 0). Atotal of n observation pairs then remain, where< m.

Then remaining observation pairs are then ranked from i, twhereR; is the rank of the?”
observation pair. Observations pairs are ranked from tradlest to the largest value absolute
difference (i.e.|D;|). In cases where more than one observation pair sharesrttesasasolute
difference, then the assigned rank is averaged among&dpairs. For example, assume the rank
being assigned was three and four observation pairs shaeatekt smallest absolute difference.
The rank for all four pairs would then be 4.8-+5+6),

After ranking, R; takes the same sign &% (e.q., if D; is negative therR; is also negative). The
ranks of all positiveR;s are then summed to obtain the test statigti®algaard, 2008). An exact
p-value is then computed frofi using the Shift-Algorithm (Streitberg and Rohmel, 1986Ri (R

Development Core Team, 2008).

Assumptions
The exact Wilcoxon signed rank test has the same assumpisaihe t-test, except it does not
require identically distributed normal random variabl€ke four assumptions for the Wilcoxon

test are listed below.

(1) “The distribution of eactD; is symmetric.
(2) TheD;s are mutually independent.

(3) TheD;s all have the same mean.

(4) The measurement scale of thes is at least interval.” (Conover, 1999, pg. 353)
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Example

To illustrate the exact Wilcoxon signed rank test, table fvioles an example of data from five
Web sites (A-E). Within each Web site the median value fomtle¢ric being investigated is pro-
vided separately for the goak() and non-goal session¥;}. The fourth column is the calculated
difference ;) between the non-goal and goal sessions e+ X;). Since Web site D had a

difference of 0.00, it was removed from any further analysis

Table 25: Example Wilcoxon Metric Testing Dataset

Web site  Goal SessionX() Non-goal Sessiongf) D; |Ry R;
A 3.75 2.15 1.60 250 2.50
B 7.15 4.35 2.80 4.00 4.00
C 12.20 13.40 —-1.20 1.00 -1.00
D 4.75 475 000 — —
E 7.50 5.90 1.60 250 2.50

The fifth column shows the rankings of the four remaining Wedssaccording to the absolute
value of D;. Web site C was ranked first because it had the smallest valug; o(1.20). The next
smallest value ofD;| was tied between Web site A and E (1.60). Both Web sites wesngi
rank of 2.50 @). Finally, Web site B was given a rank of 4.00 since it had #rgést value of
| Di.

The final column displays the rankings of each Web site adii@ng into account the sign of
D;. Web site C’s sign folR; was switched to negative sindg had a value less than zero. After
adding all positively ranked Web sites, the test statidtipfor this example was 9.00, with a p-
value of 0.125 (assuming a hypothesis tKats greater thary).

Dependent-samples Sign Test

The dependent-samples sign test is a non-parametric &stah also be used to test if there are
differences between observations. Since the sign tesebastringent assumptions than many

other non-parametric tests, it can be used it many moretisihga For example, if the differences
(D;s) between observations were not symmetrical in the exalcoWén signed rank test, the sign

test could be used as an alternative. However, the sigrstgshierally less powerful than other
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non-parametric tests (Conover, 1999).

In the data there are pairs of X andY observationg Xy, Yp), (X1,Y1), ..., (Xm, Yn) (Conover,
1999). For each observation pair, a comparison is made.miaguthe purpose of the test is to de-
termine if X > Y, then a pair is classified as “+" X; > Y;, “-"if X; <Y;, or“0”if X; =Y;. All
tied observation pairs (i.e., classified as “0”) are disedrfiom further analysis, leaving a total of
n observation pairs.

The test statistic is calculated by counting the number of observation paassified as “+”.

The p-value is then computed frofhusing R (R Development Core Team, 2008).

Assumptions
The sign test has the least stringent assumptions of any dé#its discussed in this section.
Thus, this test is useful in providing a way of testing metittat can not meet the assumptions of

the other tests. The sign test has the following three astongp
(1) “The bivariate random variableX(, Y;) ...are mutually independent.
(2) The measurement scale is at least ordinal within each pai

(3) The pairs {;, Y;) are internally consistent, in that if P(3) P(-) for one pair &, Y;), then
P(+) > P(-) for all pairs.” (Conover, 1999, pgs. 157-158)

Example

To illustrate the sign test, table 26 provides an exampleatd tfom five Web sites (A-E). Within
each Web site the median value for the metric being invesiiges provided separately for the
goal (X;) and non-goal session¥;]. The final columns provides the classification for each Web
site (e.g., “+”, “-", “0"). Since Web site D was classified a3’; it was removed from any further
analysis.

After counting all the Web sites classified as “+”, the teatistic (S) for this example was 3.00,

with a p-value of 0.3125 (assuming a hypothesis tKias greater thary’).
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Table 26: Example Sign Test Metric Testing Dataset

Web site  Goal SessionX{) Non-goal Sessiongf) Classified

A 3.75 2.15 +
B 7.15 4.35 +
C 12.20 13.40 -
D 4.75 4.75
E 7.50 5.90

5.4 Conclusion

The preceding subsections presented the methodology floith® user- and site-centric click-
stream models of information foraging. First, a descripticas provided for each model's data
sample and how the measures for each hypothesis were ¢attukdnally, the three statistical

tests used to test each hypothesis were presented.

5.A Clickstream Complexity Appendix

The clickstream complexity metrics compactness and stratare originally developed by Botafogo
et al. (1992) to assist in the design of hypertext documelfgatmns (i.e., Web sites). The metrics
were meant to quantify the complexity and connectednessetif Mages within a Web site. Com-
pactness dealt with how well connected Web pages were tormibex, where high compactness
meant most pages had links to most other pages. Stratum wesroed with the degree of linear-
ity in which Web pages must be read. High stratum occurredifuctured order existed in which
Web pages must be read one after another.

McEneaney (2001) extended the work of Botafogo et al. (1892dapting the compactness
and stratum metrics to be useful for quantifying users’ palthis section details how compact-
ness and stratum can be calculated from a user’s clickstralihough only the stratum metric
is used in this research, the compactness metric is exdlfdmeompleteness. First, an example
clickstream for two users is presented. Then the steps t@ecoa user’s clickstream to a directed
graph, path matrix, distance matrix, and finally convertistitice matrix are explained. Finally,

equations are presented to calculate compactness andvsfrain the converted distance matrix.
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5.A.1 Example Clickstreams

Figure 29 illustrates clickstreams for two separate Misjtt'l and V2, using a Web behavior
graph. Both foragers visited seven pages with four of theggg being distinct. The path of the
first visitor (V1) is< P1, P2, P2, P3, P2, P4, P2 > whereas the path for the second visitor (V2)
is< P1, P2, P3, P4, P2, P3, P1 >.

It
i o folra o

P2 P4 o
P1
ﬂ (b) Visitor V2

(a) Visitor V1

Figure 29.: Site-centric: Example Clickstream Web Graphs

Table 27 lists the compactness and stratum values for edtle efsitors. Visitor V1 shows a
moderately connected clickstream (compactness) becagseR? links to two distinct page and is
linked from three distinct pages. The linearity of V1's &ktream (stratum) is moderate since the
path taken does not end where it began. The second visitgr@&an even more densely con-
nected clickstream than V1 since many of the pages are littketbre than one other page. In
contrast to the first visitor, however, V2 has a much lesalimtickstream. Although V2 appears

to do very little backtracking to a single page, stratum vg ince the path finished where it be-
gartl.

Table 27: Site-centric: Example
Visitor Clickstream Complexity
Metrics

Visitor Compactness Stratum

V1 0.6389 0.6250
V2 0.7500 0.1250

2IThe value for stratum would change dramatically if visitd® Would have visited page P4 instead of P1 as the last
page of the path. With a path ef P1, P2, P3, P4, P2, P3, P4 >, the compactness and stratum values would be
0.5833 and 0.7500, respectively.
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5.A.2 Graph Theory

Compactness and stratum are calculated by using concepigyfiaph theory (McEneaney, 2001).
To graphically depict a clickstream, it can be converted atlirected graph. A directed graph
consists of a set of nodes and directed links between thesnddhe nodes of a graph are the dis-
tinct Web pages viewed by a forager, while the links betwemdtes represent the transitions of a
user from one page to another.

For example, figure 30a is a directed graph created from ttevigitor's clickstream. The fig-
ure has four nodes representing each of the distinct pagisd:i A single-headed arrow means
the forager traveled from one node to another. A doubledwadrow represents a user traveling
from one page to another and then back again. Of note is thiseg of the clickstream along

with multiple traversals of the same path is lost when cdivgma clickstream to a directed graph.

To/From P1 P2 P3 P4

P2 O 1 1 1
P3| O 1 0 0
0 P4| 0O 1 0 0

(a) Directed Graph X
(b) Path Matrix

To/From P1 P2 P3 P4 To/From P1 P2 P3 P4
P1| O 112 2 P1| O 1] 2 2
P2| oo | O 1 1 P21 4| 0| 1 1
P3| oco| 1| 0| 2 P3| 4| 1| 0] 2
P4l oo | 1| 2]0 P4 4 | 1| 2|0
(c) Distance Matrix (d) Converted Distance Matrix

Figure 30.: Site-centric: Example Clickstream Graph andridies

A way to represent the same information as the directed gaagtallow for calculations is via
a path matrix. A path matrix has each of the nodes as colummcanteadings. Each of the ele-
ments of a path matrix represents the number of transitimms éne node to another. Initially, all
elements in the matrix have values of zero. For each pair déswisited, the count at the intersec-
tion of those nodes in the matrix is increased. After praogsall node pairs, any elements in the
matrix with values greater than one are then set to one irr todgeate a “path adjacency matrix”

(McEneaney, 2001, pg. 770).
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Figure 30b illustrates the path matrix generated from ttst ¥isitor’s clickstream. The value
of one in the first row and second column represents the foteaeling from node P1 to node
P2. In the next column over, the zero element means the uger went from node P3 to node P1.
Figures 30a and 30b convey the same information in two eiffeformats.

Using the path matrix, a distance matrix can then be credteel elements of a distance matrix
represent the minimum distance (in terms of hops) betweemtwles. The minimum distance
between nodes is determined by using the shortest paththlgdsy Floyd (1962). Unreachable
paths between nodes are represented by the infinity symbol.

An example of a distance matrix from the first visitor's citteam is shown in figure 30c.
When going from node P1 to P3 there are two hops which musipiake (P1 to P2 and P2 to
P3), and thus the element has a value of two. Going from node P2 is set to infinity because
only a path from node P1 to P2 exists, not one from node P2 to P1.

Since it is inconvenient to calculate the complexity metusing infinite values, the distance
matrix must be converted (Botafogo et al., 1992). FollowBagafogo et al. (1992), all infinite val-
ues are replaced with the number of distinct nodes from thtempatrix. In figure 30d the infinite

element values are all replaced with the number four.

5.A.3 Compactness

Compactness is calculated according to equation 5.15 (Efey, 2001)|| V|| is the number of
distinct nodes in the user’s clickstreail.is the converted distance matrix a@g refers to the el-
ement in the®” row and;** column. > Zj C;; simply sums all the elements from the converted
distance matrix. The value of compactness ranges from eeypnd, with values closer to one indi-

cating a more densely connected and thus more complex tcbéeks (McEneaney, 2001).

IVIZ = (N =1) = 35,325 Gy

COMPACTNESS= :
[N ([N = 1)

(5.15)

5.A.4 Stratum

Stratum is calculated according to equation 5.16 (Botafetgad., 1992). AP and LAP both refer to
equations more fully explained below. Values for stratum i@age from zero to one, with values

close to one indicating a more linear path and thus a less learmafickstream (McEneaney, 2001).
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STRATUM = (5.16)

LAP

Absolute prestige (AP) is the net status of a node within aehgat network and is calculated
according to equation 5.17 (Botafogo et al., 1992)andC'S; refer to the status and contrasta-
tus of a node. Status and contrastatus were originally dpeelfor use in social network theory
(SNT) (Harary, 1959). In SNT, status referred to the numlbsubordinates assigned to a person,
whereas contrastatus was the number of superiors a perdoitii@same basic idea of status and

contrastatus were adopted by Botafogo et al. (1992) fortthgusn metric.

AP =) "|S; - CSi (5.17)

The status of a node (S) shown in equation 5.18 is the numhehef nodes which link from
the node of interest (Senecal et al., 2005). Status is theo$athnon-infinite elements (e.gl;; <

||N||) in a node’s row from the converted distance magrix

INIif Cyy < [IN]]
=% (5.18)

)

0 otherwise

Contrastatus (CS) is the number of nodes which link to theeraddnterest and is calculated ac-
cording to equation 5.19 (Senecal et al., 2005). Contrasiatthe sum of all non-infinite elements

(e.9.,C;; < ||N|)) in a node’s column from the converted distance mattix

NI i Cyy < |Vl
CS; = Z (5.19)

’ 0 otherwise

Finally, equation 5.20 contains the formula for calculgtihe linear absolute prestige (LAN),

which normalizes the size of the network for the stratum iméBotafogo et al., 1992).

w if ||V is even
LAP = (5.20)

w if || V|| is odd
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5.B Learning Patches and Scent Trails Appendix

This appendix is concerned with answering the first two nesequestions about how to learn
information patches and scent tréflsSince the methodology for learning patches and scens trail
is very similar to one another, the entire methodology igtemiin 85.B.1 from the viewpoint of
learning patches. 85.B.2 provides a discussion of how thtbaedelogy differs for learning scent

trails.

Research Question 1How can information patches be learned from a long tail Wedy?si

Research Question 2How can information scent trails be learned from a long ta@diWite?

5.B.1 Information Patches

An information patch is defined as an area of the search emmieot with similar information
(Pirolli, 2007). Within a Web-context, what constitutesaiqgh is dependent on the level of anal-
ysis being examined. At a high-level of analysis, an entieb\ite can be considered a patch.
When examined from a lower level of analysis, each indivighaae of a Web site can also be con-
sidered a patch. While such conceptualizations of a patekteaaightforward, they are effectively
being defined by the creator of the content rather than the use

The Web, however, is a pliable environment where foragere tg choice of what material to
view. Effectively, this allows a forager to define their omnfiarmation patch that is uniquely rel-
evant to their goal. Such patches may consist of a group ofpgbs, which individually may
mean very little, but when combined provide an area of theckeanvironment that is seen as
valuable to the user.

Although each user is free to define patches as they see fiircpatterns of patches may emerge
among foragers with similar information goals. From thempeint of the online firm, knowing
who values what patch can provide insights into the infoiomagoal of the forager. By catego-
rizing a patch as valuable to goal-achievers or non-gdaikesers, the firm may be able to better

explain goal achievement at long tail sites dependent ort pdtahes are visited by a user.

2Although mentioned together, the learning of informati@tohes and scent trails are done separately from one
another.
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Learning Information Patches

An information patch is either a single Web page or a set of Yéafes that collectively provide
information for an individu&®. From the perspective of the online firm, a patch is definedaas v
able if it can distinguish between visitor sessions whicultein a goal being achieved for the firm
(e.g., a user purchases, or fills out a contact form), velgusetthat do not.

This section details how valuable information patches eaerled. The first subsection provides
the definition of a contrast set, which is used to discoverhmsd. The methodology of learning
patches using clickstream data and contrast sets is thiéneoliin the next subsection. The third
subsection describes how patches are deemed to be valuatdedepending on their ability to
significantly distinguish between goal-achievers and goal-achievers. Finally, an alternative
definition of contrast sets is given, which does not requatelpes to be statistically significant

between groups to be considered valuable.

Contrast Sets

From the data mining literature, contrast sets are a way dodififerences between groups (Bay
and Pazzani, 1999). A contrast set is a combination of ategand their values which differ in
support amongst separate groups (Bay and Pazzani, 1999hele bek attributesA (A4, As,
..., Ax), whereA,; can have one af, values V1, Vi2, ..., Vin). A contrast set is a conjunction of
attributes defined fon groups (51, Go, ...,G,) (Bay and Pazzani, 1999). For example, a contrast
set may b& PageA = 1) A (PageC = 1), where the attributes represent Web pages and a value of
“1” signifies a page was visited. Support in a group is defireetha percentage of instances where
the contrast set is true within the group (Bay and PazzafQJ19he support from the previous
example may be 5% for goal sessions and 17% for non-goabsassi

A potential contrast set (PCS) is one where the contrastse) (s sufficiently large in at least
one of the groups, where largeness is having a support gtbateor equal to a specified mini-
mum support{rinSup). Formally, a PCS between two groups is one that satisfiesahéition:
max(support(cset, G1), support(cset, G2)) > minSup (adapted from Satsangi and Zaiane
(2007)). A significant contrast set (SCS) is a PCS that alsetsrtbe significance condition. For-

mally, a contrast set is significant between two grou3(ifset|G1) # P(cset|G2) at a specified

ZThis appendix does not examine an entire Web site as a paticthas the general term “patch” only refers to a
single Web page or a group of Web pages.
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alpha level (adapted from Bay and Pazzani (1999)). A SCSnisdha valuable information patch
since it represents the fact that the set of pages tends tisibeivmore in one group than another.
Therefore, the presence or absence of a visitor within sysetia may signal an expected goal

outcome for the firm.

Discovering Patches

To discover valuable patches, contrast sets were foundetherattributes of the set consisted
of the distinct pages visited by a user during their sesdienvéeb site. Certain pages, however,
were not included in the analysis since their visitation wasquirement for or consequence of
achieving a goal (e.g., contact form, form submission, &adk you pages). In addition, only
pages occurringpeforea form submission were included in the analysis.

Each Web site contained sessions where either a goal wassadhduring a session or not.
Sessions were separated according to their achievemeplaoet into Web sité's goal dataset
(Dg;) or non-goal datasef{y;). Each Web site had/; sessions/Ng; and Ny; are denoted to
correspond to the sizes of datasBtg; and D y; for Web sitei, respectively.

Frequent itemsets were discovered from each Web site’'setatasing the MAFIANIaximal
Frequent temsetsAlgorithm) (Burdick et al., 2001) algorithfA. The algorithm was run sepa-
rately onDg; and D y; for each Web site and resulted in a set of frequent itenfggtand I ;2°.
The minimum support was set to 0.10. A frequent itemset ist@rpial contrast set.

Figure 31 is an example of frequent itemsets mined from a \Welwith three Web pages (A,
B, and C) (assuming ainSup of 10%). On the left-hand side of the figure are the itemsets dis-
covered from the goal datasdd{;), whereas the itemsets from the non-goal dataBet; ] are on
the right-hand side. The itemsets are arranged in a latyideMel according to their size (i.e., how
many pages are in the itemset). Lines are drawn betweendtenwsshow their relation to other
itemsets. To the right of each itemset in parentheses isailnet ©f support for the itemset. The

empty itemset at level O represents the entire dataset.

2*An implementation of the algorithm can be found at httpoifhlaya-tools.sourceforge.net/Mafia/. Version 1.4 was
used in this research.

The discovery of frequent itemsets in datasets separatgdddyis similar to discovering rules following the form
{pages} — G as done in Satsangi and Zaiane (2007), wHexgyes} is a set of distinct pages and G is the group goal
or non-goal. However, when the size between groups is imbath finding frequent itemsets in the minority group
may become impossible using a combined dataset. For exathelminority group would not be able to find any fre-
guent itemsets (at a minimum support ofA)0f the majority group had 10 times more records than the nity\group.
Mining frequent itemsets separately does not suffer framdlass imbalance limitation.
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Goal Dataset Level Non-goal Dataset
{}®3) 0 {}@,784)

SN N

{A}@7) {B}@s) {C}@34 1 {A}@,1090 {B}esny {C}@e87)

XN

{A,B}@5) {A,C}32) 2 {A, B}@) {B, C}s97)
{A,B,C}ar 3

Figure 31.: Site-centric: Example Itemsets by Dataset

Potential contrast sets were formed starting with the Itvee®l| frequent itemsets found in
either dataset and then continuing on to higher-level iegmslo evaluate a PCS, a contingency
table was needed that was populated with the amount of suapdmon-support for the PCS’s
itemset from each dataset. When the itemset for a PCS wad foloth I; andy;, then the
contingency table was created according to table 28, whiere(Sny;;) is the count of support for

itemset; from Web sitei in the goal (non-goal) dataset.

Table 28: Site-centric: Example Contingency Table for @Rl Contrast

Set
Support Count for Itemsgt Non Support Count for Itemsgt
Dg; Saij =Saij = Nai — Saij
D Snij "SNij = NNi — Snij

When the itemset was missing from one of the datasets {iveas not frequent), then the count
of support and non-support was unknown. In such a case tip=upequency for the contin-
gency table §;; or Sy;;) was calculated (Satsangi and Zaiane, 2007) accordingtsupCount

formula: supCount = round(N x minSup), whereN is Ng; or Ny; andminSup is minimum
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support.

supCount represents a generous count of support for an itemset, widclits in a PCS be-
ing conservatively evaluated. When an itemset is not fretjiiés unknown how much less than
manSup its support really is. Using a support count of zero in platceupCount would under-
estimate the importance of an itemset, which may lead to @ Tg@pror when evaluating the PCS.
Therefore, a support count equivalentiténSup is used which over-estimates the importance
of an itemset and hence lowers the chance of a Type | errormegwhen the PCS is evaluated.
However, this method does increase the probability of a Typeor occurring.

To illustrate, assumewinSup was 104 and the support for a PCS’s itemset was/®ifi the
goal dataset and 43/0in the non-goal dataset. Since minimum support for the ietrftem the
goal dataset was not met, the true support would be unkndvarsupport of zero were used when
populating the contingency table for the PCS, the impodarithe itemset in the goal dataset
would be understated by 929 In other words the difference in support between datasetsddibe
9.9% morethan it was actually was (43®versus 35.%). Setting the support tavin.Sup would
instead over-estimate the importance of the itemset b OHere the difference in support would
be 0.7% less than it actually was (390versus 35.%).

Table 29 presents three examples of potential contrastreetghe second level of figure 31.
The first column shows the itemset used for the PCS (i.e., thie fges that make up the patch).
Columns two through five are in reference to the goal datasktist if the itemset was found to
be frequent, number of goal sessions, support for the itefwith support percentage in paren-
theses), and non-support for the itemset. Columns six tjirmine have the same meaning as

columns two through five except they refer to the non-goad izt

Table 29: Site-centric: Example Potential Contrast Sets

Goal Non-Goal
PCS Found? NGi SGij _'SGij ‘ Found? Np; SNz'j _'SNz'j
{AB} Yes 53 25 (47.%) 28 | Yes 1,784 378 (21%2) 1,406
{AC} Yes 53 32 (60.%) 21| No 1,784 178 (109) 1,606
{B,C} No 53 5 (9.4%) 48 | Yes 1,784 597 (33%) 1,187

The first example shows a PCS for itemédt B}. Since the itemset was found in both datasets
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the support from each dataset is known. The second PCS étémsC'}) illustrates an example
where the itemset of interest is found in the goal datasehdibin the non-goal dataset. Therefore,
the supCount formula was used (with &in.Sup of 10%) to calculate the support courfi;;).

The final PCS (itemsetB, C'}) shows the opposite situation where the itemset was notéreq

in the goal dataset but it was in the non-goal dataSe}; would therefore be calculated using the

supCount formulae®.

Determining Patch Value

The significance of each potential contrast set was thenledéel using Fisher’s exact test
(Conover, 1999). Although prior research has used thequmu® test for independence to deter-
mine significance (Bay and Pazzani, 1999), the approximatfex may suffer when the expected
value of at least 20% of the cells in the contingency tablébatew five or any one expected value
is less than one (Cochran, 1954). When considering goatamimient on long tail Web sites, the
counts in the contingency table are often too small or tocianticed in their distribution for the
chi-square test to adequately approximaté hus, Fisher’'s exact test, which makes no such ap-
proximation, was used instead.

When testing multiple hypotheses, such as in the situafitesting each potential contrast set,
the familywise error rate (FWER) should be controlled. TNEER is a measure in statistics that
refers to the probability of committing at least one TyperberA common method of dealing
with the FWER is to fix the alpha across all tests.

For example, with an expected familywise error ratexpthe alpha level for each individual
potential contrast sety,,;) would be fixed using a Bonferroni procedure;,; = «/NC, where
NC'is the number of PCSs being tested. The disadvantage of sumbpaoach is the same alpha-
level is used regardless of the PCS’s itemset size. Thistsaawa loss of power and ability to de-
tect differences in even the most general PCSs which use-lewe itemsets (Bay and Pazzani,
1999).

To combat such a loss of power, a different alpha level wad fgeeach level of the itemset
lattice. The purpose of such a changeviwvas to distribute “. .. 1/2 of the total to tests at level 1,
1/4 to tests at level 2, and so on” (Bay and Pazzani, 1999,(3. Jhis results in greater power

being available to test the most general PCSs (i.e., thaseitemsets from the lowest levels).

%The support percentage is %4nstead of 10.% due to rounding in theupCount formula.
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Equation 5.21 (Bay and Pazzani, 1999) was used to deterimerapha leveld;) for testing
all PCSs at a specified level. In the equatiars the expected familywise error rafds the level,
and( is the number of candidate PCSs being tested at levdie purpose of thexin function
was to ensure that becomes more stringent with each subsequent level. Usingad®9.01, a
potential contrast set was deemed significant if its p-vidom Fisher's exact test was less than or

equal toy;.

ap = min (é:ll,al_1> (5.21)

If a PCS was found to be significant, then the patch it repteges., itemset) was deemed valu-
able. A valuable patch which was predominately visited Brsisrom the goal group was known
as agoal patchand placed in the sdty;, whereas visitation mostly from the non-goal group re-
sulted in a patch being labeled as@n-goal patctand being placed in the sé&%y;. Formally, a

patch was deemedgoal patchif i,GGJ > fvf\]’vl , and anon-goal patchotherwisé’. By classifying

patches in such a manner, a visitor may signal expected gtabme to the firm via the presence

or absence of patch visitation.

Supported Contrast Sets

As an alternative to significant contrast sets, a suppoattast set was a potential contrast set
that had a difference in support above a user-defined tHiegtio-esh). Formally, a supported
contrast set between two groups was one that satisfies tlgioon

dif ference(support(cset, G1), support(cset, G2)) > thresh, wheredi f ference(Sqij, Snij)
is defined in equation 5.22 (Yang and Padmanabhan, 2003P@%met or exceeded the thresh-
old support condition then the patch was considered vadudiiie classification as either a goal or

non-goal patch was done in the same manner as with significaritast sets.

Scij  Snij

Ng; Ny

dif ference(Sqij, Snij) = I (SGM N SMJ->
2 \ Nai Nn;

The purpose of defining a supported contrast set was becadssgfstatistical significance

(5.22)

may be difficult when many PCSs exist. For example, assum@df@htial contrast sets existed

270nly goal patches were used in the analysis of this dissemtat
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on level 1 and the expected familywise error rate was seldtb. 0n order for a potential contrast
set to be significant, its p-value would need to be lower th@A@5. Therefore, the supported
definition of a contrast set was used to discover contrastvaeich may be important, but fail to

reach significance.

5.B.2 Scent Trails

Information scent is the driving force behind why a persork@saa navigational selection amongst
a group of competing options. As foragers are assumed tdibeal scent is a mechanism by
which foragers’ reduce their search costs by increasinig dlceuracy on which option leads to the
information of value (Pirolli, 2007). Based on the informoatgoal of a forager, each hyperlink on
a Web page gives off a scent. The higher the scent the moig the page that is being linked to
may contain the information being sought. Similar to a blumehd that follows a scent trail over
distances to find an item of interest, a forager also followsemt trail to find the information they
seek over multiple Web pages.

Although each user follows a scent trail that fits with thaefiormation goal, patterns from frag-
ments of scent trails may exist that emerge among foragessimilar information goals. Like
patches, these fragments of scent trails are of value tortlirediirm in distinguishing between
possible goal-achievers and non-goal-achievers. Wheardalfows these known fragments
of scent trails it may provide clues into their informatiooadjand thus help in explaining goal

achievement at long tail sites.

Learning Scent Trails

A scent trail is the path a forager travels upon by followihg information scent of links. More
specifically, a scent trail is a set of pages in a specifiedrofiiediscover valuable scent trails,
contrast sets were found where the attributes of the setstedsf an ordered set of pages (i.e., a
sequential pattern) visited by a user during their sesdiarVéeb site.

Frequent sequential patterns were discovered from eaclsif¢ebdatasets using the SPAM

(SequentialPAttern Mining) algorithm (Ayres et al., 20025. The algorithm was run separately on

2An implementation of the algorithm can be found at httpnfhlaya-tools.sourceforge.net/Spam/. Version 1.3.3
was used in this research.
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D¢; and Dyy; for each Web site and resulted in a set of frequent sequeraitdrnsP; and Py;.
A frequent sequential pattern is a potential contrast set.

Figure 32 is an example of frequent sequential patternsdrfnoen a Web site with two Web
pages (A and B) (assumingminSup of 10%). The figure only shows patterns found frequent
starting with Web page A. On the top part of the figure are thepss discovered from the goal
dataset Dg;), whereas the patterns from the non-goal dataSet;J are on the bottom part of the
figure. The patterns are arranged in a lattice by level acugito their size (i.e., how many Web
pages are in the pattern). Lines are drawn between pattestwotv their relation to other patterns.
To the right of each pattern in parentheses is the count gfatifor the pattern. The empty pat-
tern at level O represents the entire dataset.

An example of a potential contrast set with a sequentiabpafrom the third level of figure 32
is < A,A,B >. This pattern means pagewas visited two times before padewas visited. How-
ever, the visitation of these pages need not be right afteraonther. There may be many other
pages that were visited in between each page. For exampss@as with the following seven
page views< C,A,C,D,E,A,B > visited page¥’, D, andFE before visiting paged again and
then pageB.

If a PCS was found to be significant, then the scent trail itespnted (i.e., sequential pattern)
was deemed valuable. A valuable scent trail which was prédely followed by users from the
goal group was known asgoal scent trailand placed in the séf;;, whereas following mostly
from the non-goal group resulted in a scent trail being kdbels anon-goal scent traiand being

S,

placed in the sefy;. Formally, a scent trail was deemed@al scent trailif ]\iﬂ > SNij

N and a

non-goal scent traibtherwisé®.
For a scent trail to be considered valuable by way of suppert & supported contrast set), then
the PCS must have met or exceeded the threshold supportioandihe classification as either a

goal or non-goal scent trail was done in the same manner hssigiificant contrast sets.

2%0nly goal scent trails were used in the analysis of this diatien.
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Goal Dataset Level

<>(53) 0
< A >@47) 1
/ \
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/ \
<AAA>es <A A B>un <A B,A>® 3

(a) Frequent Sequential Patterns from Goal Dataset

Non-goal Dataset Level
<>(1,784) 0
< A >(1,100) 1
/ \
< A, A >(@379) < A, B >(597) 2
/ \
< A, A, A >(255) <A B,A>@21) <A B,B>@189) 3

(b) Frequent Sequential Patterns from Non-Goal Dataset

Figure 32.: Site-centric: Example Patterns by Dataset ptaddrom Ayres et al. (2002)
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Chapter 6

Datasets

The datasets used to test the user- and site-centric cielkstmodels of information foraging are
presented in this chapter. In particular, details of theppmreessing steps undertaken to arrive at
the final dataset used to test each model are shown. Aftdregfireprocessing steps, descriptive
statistics of each final dataset are also provided. 86.kagminformation about the user-centric

dataset, while §6.2 details the data from the site-centriagkt.

6.1 User-centric Dataset

The data used for the user-centric clickstream model ofinéion foraging was provided by
comsScore, Inc., a marketing research company. The dorea@h-dlata was captured for 100,000
United States-based panelista/er a one year period from January 1, 2006 to December 362200
(comScore, Inc., 2007b). Each panelist was randomly ssldodm comScore’s pool of more than
two million global Internet users.

Data was collected from panelists using a proprietary nugtogy that “. . . enable[d] com-
Score to passively observe the full details of panelist€rimet activity, including every Web site
visited and item purchased” (comScore, Inc., 2005, pg. Jarelist’'s session was defined as
any sequence of Web pages on the same Web site by the samewitlitless than a 30 minute
time period between page viewings. A 30 minute session titnieas also been used in previous
clickstream research (Bucklin and Sismeiro, 2003; Sisoresird Bucklin, 2004; Van den Poel and
Buckinx, 2005).

The remainder of this section provides information regagdhe steps taken to arrive at the fi-

nal dataset used to test the user-centric model, along witbrgl descriptive statistics about the

1The actual dataset contained a total of 88,814 panelises dbbumentation by comScore did not provide an ex-
planation for the 11,186 missing panelists.
2Not all panelists were active during the entire data catecperiod.
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data. The preprocessing steps applied to the data arelgkxbanithe next section. Descriptive

statistics are then provided in the following section.

6.1.1 Preprocessing of Original Dataset

The data obtained from comScore, Inc. included many dataeries not applicable to the current
research. Therefore, a number of processing steps wemed to obtain a final dataset usable
for testing the user-centric clickstream model of inforimatfforaging. Table 30 lists each step of
the process along with the total number of Web sites, sessaml goal sessions; and how many
Web sites, sessions, and goal sessions were removed aeihéif applicable). Table 31 lists the
parameters used in each preprocessing step. A discusseatiofstep and its parameters are pro-

vided below.
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Table 30: User-centric: Preprocessing of Original Dat&satistics

Step Description Web Sites Sessidns Goal® A in Web Sites A in Sessiond A in Goals
Original dataset 1,417,745 548,428,562 354,985 n/a n/a
Remove non e-commerce sites 625 106,686,274 354,985-1,417,120 —441,742,288 n/a
Remove sites not randomly selected 58 798,306 13,872 —567 -105,887,968 —341,113
from long talil

3 Remove single page sessions 58 616,607 13,870 0 —181,699 -2
Identify user-sessions 58 511,397 11,100 nfa —105,210 —-2,770
5 Remove sites witk: 50 goal 52 502,131 10,834 —6 —9,266 —266
user-sessions
Remove outliers 52 496,343 10,714 n/a —5,788 —120
Remove sites with: 50 goall 52 496,343 10,714 0 0 0

user-sessions

& Starting at step 4, the “Sessions” andl th Sessions” columns refer to user-sessions.

® The original dataset contained a total of 355,064 goals. d¥ew 79 of those goals (0.%9 did not have any session details associated with the psechinere-

fore, the total number of goals for this dataset was liste85ds985.



Table 31: User-centric: Preprocessing Parameters

Step Description Parameters
Original dataset n/a
Remove non e-commerce sites goals AtW ebsite ==

Remove sites not randomly
selected from long tail

3 Remove single page sessions
Identify user-sessions

5 Remove sites with: 50 goal
user-sessions

6 Remove outliers

7  Remove sites witk: 50 goal
user-sessions

shortHeadW ebsites == 80/20 rule
minGoalsInLongTail == 50
randomPercent = 20%
sessionLength ==
sessionsInWindow > 1

userSessionGoals AtW ebsite < 50

MinPts =4

Eps = 0.0266 (goal sessions)

Eps = 0.0536 (non-goal sessions)
sample% = 100% (goal sessions)
sample% = 15% (non-goal sessions)
userSessionGoals AtW ebsite < 50

Step 1. Remove Non e-Commerce Web sites

The first step of the process removed any non e-commerce Aites-commerce Web site was

defined as any site in which a purchase was made by any usey pbi within the dataset’s

time period. A total of 625 Web sites were found where a puwsehaas made The remaining

1,417,120 non e-commerce Web sites were removed alonghetidl,742,288 corresponding

sessions that took place on those sites.

Step 2. Remove Web sites Not Randomly Selected from the Longil’

The second step of the process selected a sample of longa@ihmerce Web sites to analyze.

Sites within the dataset were defined according to the 8@t20(Newman, 2005) as either parts

*The methodology by which comScore recognizes and recordsch@se was not available. Considering only a
total of 625 out of 1,417,745 Web sites had purchases on tinéikely the dataset did not include all purchases made
at all Web sites.
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of the short head or long tail of a power law distribution. Bngral, the 80/20 rule states 80% of
some quantifiable object (e.g., wealth) should be held by @bfte population. Within the con-
text of goal achievement, 80% of achieved goals should tekentplace on 20% (125) of the 625
e-commerce Web sites. Short head Web sites were thosersitedad in the 80/20 group, while
all other sites were considered long tail Web sites.

Figures 33a — 33b illustrate the separation between shad &ed long tail Web sites. Fig-
ure 33a shows the number of goals achieved at each Web site fighre 33b shows the cumu-
lative number of goals achieved. The vertical dashed linthereft of each figure represents the
boundary between short head and long tail Web sites. The itéehts the left of the first dashed

line represent 79.89 of all goal sessions, while making up 17%.2f the Web site population.

30000 - 400000 A
25000 4 . 350000
g g 300000 1
g 20000 7 250000 -
2 15000 Long Tail Region £ 200000 - |
% 10000 - g 150000 - i Long Tail Regiol
3 3 100000 -
5000 1 50000 | |
O T T T T T 1 O I1 T T T T 1
0 & Y B B S G 0 & R B S G
P % P Y D v P % Y Y P D
Website Website
(a) Goal Sessions by Web Sites (b) Cumulative Goal Sessions by Web Sites

Figure 33.: User-centric: Goal Sessions by Web Sites

The second vertical dashed line in each figure represenisasasimn between Web sites in the
long tail and those in the very long tail. A Web sites was coased too far down the long tail to
analyze if there were fewer than 50 goal sessions at the Wb si

A total of 107 Web sites (17.22) in the short head were removed along with the 41,708,093
corresponding sessions (283,609 goals) at those Web Isitaddition, 228 Web sites (36.%48 in
the very long tail were removed along with the 38,947,086ezponding sessions (3,693 goals) at
those Web sites.

290 Web sites (46.40) in the long tail region remained with 26,031,095 sessi@71s683 goals).
Since processing over 26 million sessions would be too ceatipually expensive, a random sam-
ple of 20% of the 290 Web sites was taken. 58 Web sites were randomlgtedle/hich had a total
of 798,306 sessions (3.9 (13,872 goal (20.5%)).
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Step 3. Remove Single Page Sessions

The third step followed Bucklin and Sismeiro (2003) and reetball sessions which consisted of
only a single page-view. A single page-view does not repite$gowsing” behavior on a Web site
(Bucklin and Sismeiro, 2003) and thus is unlikely to proviigresting visitor patterns. 181,699

single-page sessions were removed.

Step 4. Identify User-sessions

The fourth step of the process identified user-sessions tihememaining 616,607 sessions. A
user-sessioencapsulates the session being analyzed (i.e., the “theget all other sessions that

met two requirements.
(1) The other session must have taken place at an e-commetzaité.

(2) The other session must have ended between 30 minute® bleéostart of the target session

and the end of the target session.

A valid user-session was needed to calculate relative mesor the user-centric clickstream
model of information foraging. To be considered valid, artsmssion must have had at least one
session in addition to the target ses$ion

Each of the 616,607 sessions from the third step was anatgzdetermine if they were part of
a valid user-sessionA total of 511,397 valid user-sessions (8284were found and retained.

The remaining 105,210 sessions (174)&lid not have a valid user-session and were removed.

Step 5. Remove Sites withc 50 Goal User-sessions

For the fifth step of the process, Web sites without at leagida) user-sessions were removed.
Although step two initially checked for Web sites havingeddt 50 goal sessions, the number of
goal user-sessions may have been reduced because a gimal s&sBg not have represented a valid
user-session if no “other” sessions were associated watheatiget session.

A total of six Web sites (10.34) were removed from the dataset because they had fewer than

50 goal user-sessions. The 9,266 user-sessions/{l &lthose six Web sites were also removed.

“Specifying at least two sessions for a valid user-sessisimisar to requiring at least two page views for a valid
session (Bucklin and Sismeiro, 2003).
SFurther detail about how user-sessions were determinetecéound in §5.1.1.
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Step 6. Remove Outliers

The dataset was then examined for outliers in the sixth dtépegrocess. An outlier was defined
as “an observation (or subset of observations) which apgedre inconsistent with the remainder
of that set of data” (Barnett and Lewis, 1994, pg. 7). Sineeditkstream model of information
foraging relies on relative behavior to other sessiongnsistent sessions were removed from the
dataset. Consistency was compared via the combinatioredbtal number of pages viewed and
the duration of a session.

An unsupervised density-based clustering algorithm ¢dlIBSCAN (Ester et al., 1996) was
used to locate outlying sessidn®BSCAN identifies clusters of arbitrary shape, where th@nu
ber of clusters is automatically determined via the alganit A cluster is formed by having a min-
imum number of neighbor poirit§)/inPts), or density, within a specified radiugps). Points
not classified to a cluster are labeled as “noise” (i.e. jensi).

DBSCAN requires two user-specified parametéi&n Pts and Eps.

MinPts — the minimum number of points within a neighborhoddadlius Eps. For two-dimensional

datasets)MinPts is commonly set to four (Ester et al., 1996; Hodge and Augi®4).

Eps -—the Eps-neighborhood or radius of a cluster. The vdldgpe is determined visually via a

sorted k-dist graph (see point three below) (Ester et a@61.9
To perform the outlier analysis using DBSCAN, four stepsenetlowed.

(1) Goal and non-goal sessions were separated into twoategiatasets. Each of the remaining

three steps was performed independently on each dataset.

(a) For the user-centric model the goal and non-goal datadsd included the “other” ses-
sions associated with a user session. All other sessiohalfftaachieved a goal were
included in the goal dataset, while the remaining sessi@re placed in the non-goal

dataset.

®The average runtime complexity of DBSCANGKn * log(n)) (Ester et al., 1996).

"DBSCAN was chosen over common statistical techniques fapwing outliers, such as removing values greater
than three standard deviations away, for two reasons: (B@EN does not require knowledge of an underlying distri-
bution and (2) DBSCAN is capable of finding outliers in mukipglimensions.

8The term points will be used to refer to sessions with a un@pmebination of pages viewed and session duration
during the remainder of this subsection.
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The goal dataset consisted of 20,121 goal ses&idi5834 of those sessions (53784
were target sessions, while the other 9,287 (4% )1@ere other sessions. The non-goal
dataset consisted of 1,589,407 non-goal ses¥ion81,297 of those sessions (30781

were target sessions, while the other 1,098,110 (69)Q%ere other sessions.

(2) Values from each dimension were normalized between Qawtording to equation 6.1,
wherez is a set of distinct values for a dimensian,is the:*" element of the set, angin ()

andmazx(z) are the minimum and maximum values found insetespectively.

 z; —min(z)
norm(z;) = maz(x) — min(z) 1)

Normalization was done because distance calculations use for generating both the sorted
k-dist graph and for determining which points belonged imithe same neighborhood. The
Euclidean distance (equation 6.2) was used to calculatdistence between two poinf3and

Q@ with n dimensions, such thd = (p1,p2,...,p,) andQ = (¢1,4G2, - -, qn)-

Euclidean distance = (6.2)

If values were not normalized, then distances may differabrdiffer simply due to the scale
of one dimension. For example, figure 34 illustrates thetjpos of three points: A, B, and

C. Table 32 displays the non-normalized and normalizedegalar each of the point’s two di-
mensions: number of pages viewed and session duratiore 3ahists the Euclidean distance
between pairs of points using each point's non-normalizetireormalized values for both di-

mensions.

Using the non-normalized values from table 32, the distdaseseen in table 33) from A to
C (45.00) is the same as the distance from B to C (45.00). Hexvoking at figure 34 it

is apparent that an increase of 45 pages viewed represeamtgea thange in distance than a
decrease of 45 minutes in session duration. The normaliatahdes for Ato C (0.12) and B

to C (0.45) better reflect the actual distance between points

%A goal session may be present in more than one user-session.
10A non-goal session may be present in more than one usessessi
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Figure 34.: Example Outlier Points

Table 32: Example Outlier Points

Non-normalized Normalized

Point Pages Viewed Session Duration (min) Pages Viéw8dssion Duration (mif)

A 5 170 0.05 0.47
B 50 125 0.50 0.35
C 5 125 0.05 0.35

& Assumes minimum and maximum values of 0 and 100 for pagesdgetgspectively.
b Assumes minimum and maximum values of 0 and 360 for sessiatidn, respectively.

Table 33: Example Outlier Distances

Points Non-normalized Distance Normalized Distance

AtoB 63.64 0.47
AtoC 45.00 0.12
BtoC 45.00 0.45
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(a) Arandom sample of 15.000f the non-goal dataset’s normalized points were selected
for processing by DBSCAN. A sample was used because the &mered to compute
clusters from the original dataset using DBSCAN would haserbprohibitively hight.
The sample was used to find the boundary between non-oudyidgutlying points.
Points not included in the random sample that fell outsigentbn-outlying region were
classified as outliers.

The entire non-goal dataset consisted of 1,589,407 nohsgsaions. A random sample

of 238,411 sessions (15.%0 was selected and used in the remaining two steps.

(3) The parameters for DBSCAN were set to define the “thiriredgster in the dataset by follow-
ing a three-step heuristic outlined by Ester et al. (1996 Thinnest” cluster is the smallest

or least dense grouping of points that are not consideresnoi

(@) MinPts was set to four since each dataset only had two dimensioter(&sal., 1996¥.

(b) The threshold distance, which distinguishes betweéserand clusterable points, was
located. Points farther away than the threshold distanee {0 the left) were considered
“noise”, while points closer than the threshold distance. (to the right) were cluster-
able. To determine the threshold, a sorted k-dist graph vesger § = MinPts),
where the distance of each point to/fé neighbor is found, sorted in descending order,
and then graphed. The purpose of the sorted-k-dist graptionasually locate the first
“valley” in distance values, which represents the thredhstance.

The Approximate Nearest Neighbor (ANN) search library i@rd.1.1 (Mount and
Arya, 2006) was used to calculate the distance of each pwitg fourth nearest neigh-
bor3. Figures 35a and 35b show the sorted 4-dist graphs of thd @ifsvalues for the
goal and non-goal sessions. Each figure was manually irexp&zfind the first “valley”,

which is shown at the intersection of dashed lines.

(c) Epswas set to the threshold distance found in step (b).

Table 34 lists the parameter values used for each of thealatdgin Pts was set to four

HA|l points from the goal dataset were used.

2In a survey of outlier detection methodologies, Hodge anstiti(2004) also statedl/in.Pts is commonly set to
four for DBSCAN.

13ANN is available at http://www.cs.umd.edu/"mount/ANN/.
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Figure 35.: User-centric: Sorted 4-Dist Graphs: Goal and-Soal

according to Ester et al. (1996) aiiths was determined from visually examining the k-dist

graph for each dataset (figures 35a and 35b).

Table 34: User-centric:
Parameter Values for DB-

SCAN
Sessions  MinPts Eps
Goal 4 0.0266
Non-goal 4 0.0536

(4) The DBSCAN algorithm was run using RapidMiner Commuitjition version 4.4* with

the specified parameter values from table 34.

DBSCAN labeled 22 goal sessions (0Z0)las noise (i.e., outliers). Of the 22 goal outliers, four
(18.18%) were from target sessions and the other 18 (8%)8&ere from other sessiohs The
non-outlying points all had durations of less than 500 neayB.33 hours) and viewed fewer than
800 pages.

A total of 7 non-goal outliers< 0.01%) were also found by DBSCAN in the random samiple
None of the outliers were from target sessions. The outl@rsd in the random sample were go-

ing to be used as boundary points to classify sessions freraritire non-goal dataset. However,

14RapidMiner is available at http://www.rapidminer.com.pRiMiner was previously named YALE (Yet Another
Learning Environment).

15The 22 goal outlier sessions were represented by 22 distimsbinations of points.

18The 7 non-goal outlier sessions were represented by 7 distimbinations of points.
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after examining the results of the DBSCAN run, a number ofises not flagged as outliers had
extremely high values for either session duration or nurobpages viewed. For example, a ses-
sion in the random sample with a duration of 1,980 minutesh(38's) was not flagged as an out-
lier, nor was a session with 10,000 pages vietled

Although there were not a large number of sessions with exdrealues, there were enough
points within the same area to be considered a neighborhp@BISCAN. In addition, there were
enough of these small groups that were within a short distahone another that they chained to-
gether to become part of the non-outlying cluster. Due tddtfiigulty in finding a clear separation
between outlying and non-outlying points in the non-goahset, the boundaries found in the goal
dataset were used for the non-goal dataset.

Using the cutoff values from the goal dataset§00 pages viewed g¢ an 800 minute session
duration), 13,799 non-goal sessions (0@ Tvere labeled as outliers. Of the 13,799 non-goal out-
liers, 89 (0.650) were from target sessions and the other 13,710 (99)3¢ere from other ses-
siong?,

Figures 36a and 36b show plots of #listinct outlier and non-outliers points for both the goal
and non-goal sessions, respectively. Since dig{inct points are shown in the figures, an accurate
representation of the density of points in an area is diffimutietermine.

To illustrate density within an area, figures 36¢ and 36dgmtekeat maps for the goal and non-
goal datasets, respectively. The darkness in shade of eadhipthe heat map illustrates how
many other sessions exist within the same area. A black pgimésents 10 or more sessions in
the goal dataset, while 100 or more sessions are repredeytbd same shade in the non-goal
dataset.

Noticeable within the non-goal heat map (figure 36d) is thahg¢hough figure 36b shows ses-
sions with durations close to 2,000 minutes, the heat mamdstrates the density of points in
those areas is practically non-existent. In addition, theré also illustrates the use of the goal
boundaries on the non-goal dataset retained the densagifgeints as non-outlying sessions.

After removing all outliers, a total of 5,788 user-sessiihd5%) were removed from the dataset.

"One possible explanation for sessions with extremely highes may be due to automated programs browsing the
Web. For example, a program which resides as a backgrourégsonay make a connection to a Web site to refresh
its local cache of information every few minutes. If a uses ha always-on Internet connection and does not turn off
their computer, then it is feasible a session may last manysh@ similar argument can also be made for spidering
programs that visit a large number of pages at a Web site.

18The 13,799 goal outlier sessions were represented by 18j§dact combinations of points (91.62).
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93 of those 5,788 user-sessions (Y lvere removed because the target session was classified as
an outlier. The remaining 5,695 user-sessions (98)38ere removed because there was not at
least one other session within the user-session (i.ehabther sessions were classified as out-
liers and removed). A total of 496,343 user-sessions (¥0gohls) remained after processing all

outliers.

Step 7. Remove Sites withk< 50 Goal User-sessions

For the final step of the process, Web sites without at leagbabuser-sessions were removed.
Although step five also checked for Web sites having at le@gfdal user-sessions, the number of
goal user-sessions may have been further reduced due tatthes analysis. If a user-session’s
target session, all “other” sessions, or both were flaggeditiers, then the user-session would

become invalid.

No Web sites were removed, as all sites retained at least&lQuger-sessions.

6.1.2 Final Dataset

The following subsections provide general statistics abfmaifinal dataset, along with characteris-

tics of the Web sites and user-sessions in the dataset.

General Statistics

Table 35 displays general statistics for the final datadee. fiFst row of the table lists the total
number of sessions in the datdSeEach row after the first lists the total count for the metric

and also its percentage compared to the total number obssssihe overall conversion rate of

the dataset was 2.%§ which is similar to the two percent conversion rate typicidund at e-
commerce Web sites (Moe, 2003; Sismeiro and Bucklin, 2004)que visitors accounted for
11.12% of the sessions whereas 88788f the sessions were from repeat visitors. Lastly, 7,365,44

pages were viewed over all 496,343 sessions from the 52 Wxbimithe dataset.

%Unless otherwise specified all statistics are about thetaggssion of each user-session. The term “session” will
be used in place of “target session” for readability purgose
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Table 35: User-centric: Final Dataset Statis-

tics
n %
Sessions 496,343 n/a
Goal sessions 10,714 2%6

Non-goal sessions 485,629 9784

Unique visitors 55,195 11.12

Repeat visits 441,148 88.88
Pages viewed 7,366,442 n/a
Web sites 52 n/a

Web Site Characteristics

Table 36 provides the mean, standard deviation, minimuchn@aximum values from all 52 Web
sites for the number of goal, non-goal, and total sessiaisng each site and the conversion rate

from each site.

Table 36: User-centric: Web Site Characteristic Stagistic

Mean St. Dev. Minimum Maximum

SESSIONS
Total sessions 9,545.06 14,078.48 406 76,138
Goal sessions 206.04 154.91 51 597
Non-goal sessions 9,339.02 14,064.45 290 76,041
OTHER
Conversion 6.7% 7.17% 0.12% 28.5%

On average, each Web site had 9,545.06 sessions visitingdhesite, with more than 45 times
as many non-goal sessions as goal sessions. Each Web sitnleadrage, 206.04 goal sessions

(2.16%) and 9,339.02 non-goal sessions (9734
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Figures 37a — 37c illustrate the distribution of the numbdotal, goal, and non-goal sessions
for each Web site, respectively. The majority of Web sitesdBt of 52 (61.5%)) had fairly light
traffic, having less than 8,000 total sessions (figure 37ayvever, there were 20 Web sites (3846
with more than 8,000 total sessions, with the most heavsgited site having 76,138 total ses-
sions. In terms of goal sessions (figure 37b), 40 Web site927§ had between 50 and 249 goal

sessions, with the remaining 12 Web sites (2%p8aving more than 250 goal sessions.
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Figure 37.: User-centric: Web site Sessions Histograms

The average conversion rate for the 52 Web sites wa¥$/g.%@th one Web site having the high-
est rate of 28.5%. Figure 38 illustrates the distribution of conversion sdfier each Web site. 22
of the 52 Web sites (42.34) had less than a’3 conversion rate. 15 of the Web sites (28@%ad
between a % and 8% conversion rate. The remaining 15 Web sites (2&B8Bad a conversion

rate higher than .
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Figure 38.: User-centric: Web site Conversion Histogram

Session Characteristics

Table 37 provides the mean, standard deviation, minimuhn@ximum values for the number
of pages viewed and duration from all 496,343 sessions iddkaset. For each metric, values are

provided for three sets of sessions: goal, non-goal, arekaflions.

Table 37: User-centric: Session Characteristic Stagistic

Mean St. Dev. Minimum Maximum

PAGES VIEWED

All sessions 14.84 26.07 2 794
Goal sessions 42.33 48.70 2 791
Non-goal sessions 14.24 25.01 2 794

SESSIONDURATION (MIN)

All sessions 10.17 16.88 1 495
Goal sessions 27.31 26.56 1 367
Non-goal sessions  9.79 16.40 1 495

Each session consisted, on average, of less than 15 page(1ié\84), with a maximum of 794
pages viewed by one session. Goal sessions viewed almesttihmes as many pages per session,
on average, compared to non-goal sessions (42.33 vers2#) 1Bigures 39a — 39¢ show the dis-
tribution of pages viewed by number of sessions.

The average duration from all 496,343 sessions was 10.lutesnwith one session spending

over 495 minutes (8.25 hours) on a site. Goal sessions slpeosithree times as many minutes
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Figure 39.: User-centric: Session Pages Viewed Histograms
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on a site compared to non-goal sessions (2ih3ilversus 9.7%nin). Figures 40a — 40c illustrate

the distribution of session duration in minutes by numbesesfsions.
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Figure 40.: User-centric: Session Duration Histograms

User-session Characteristics

Table 38 provides the mean, standard deviation, minimuhn@ximum values for the number of

total, goal, and non-goal other sessions for all 496,348 ss&sions in the dataset.

Table 38: User-centric: User-session CharacteristiasHts

Mean St. Dev. Minimum Maximum

NUMBER OF OTHER SESSIONS

All sessions 2.37 1.70 1 32
Goal sessions 0.02 0.15 0 4
Non-goal sessions  2.35 1.69 0 32
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Each user-session consisted, on average, of less tharotheresessions (2.37), with a maxi-

mum of 32 other sessions by one user-session. Other sessoasnostly comprised of non-goal

sessions (2.35 versus 0.02). However, one user-sessidouraother sessions that were goals.

Figures 41a — 41c show the distribution of other sessionsubyber of user-sessions.
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Figure 41.: User-centric: User-session Sessions Histogra

6.2 Site-centric Dataset

The data used for the site-centric clickstream model ofrinfdion foraging was provided by a

Web hosting company. The data was captured over a year desiodSeptember 12, 2007 to

September 23, 2008. The web hosting company was uniqueisimowided a common platform

for Web sites of a similar nature. For example, their Welssiléused the same platform that al-

lowed the site owners to add content to their Web site witkootvledge of HTML. A beneficial

byproduct of having sites on the same platform was a comnrantate to each Web site. For ex-

ample, those Web sites with a contact form all submitted tm@itact information to the same
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common platform URL. The contents of the contact form weentsaved and a result page was
displayed to the usét. Therefore, it could be determined that a goal was achieved & visitor
filled out a contact form and submitted it) if a visitor's sess‘viewed” the contact form submis-
sion page.

Since the data provider hosted thousands of Web sites, thajed a mechanism to capture traf-
fic from all their sites without relying on the individual ffig logs of each Web site. Whenever a
user visited a Web page of a participating Web site a smalsparent image was downloaded via
a JavaScript script. The image had parameters unique tas#raalong with information such as
the Web site and Web page being visited, timestamp of visit,ather miscellaneous information.
Once the script was deployed on the platform, it was integratto Web sites once site owners
updated their site in some way (e.g., a page was edited)efidrer even though the script was de-
ployed on September 12, 2007, data collection at a parti®\éb site only started once the site
was changed in some way.

Each piece of data was stored in a data warehouse and linkied tser, Web site, and Web
page it referenced. A visitor's session was defined as anyeseg of Web pages on the same
Web site by the same visitor with less than a 30 minute timeogddretween page viewings. A 30
minute session timeout has also been used in previous tteeks research (Bucklin and Sismeiro,
2003; Sismeiro and Bucklin, 2004; Van den Poel and Buckif®52.

The remainder of this section provides information regagdhe steps taken to arrive at the fi-
nal dataset, along with general descriptive statisticaibthe data. The preprocessing steps ap-
plied to the data are described in the next section. Desgiptatistics are then provided in the

following section.

6.2.1 Preprocessing of Original Dataset

The data obtained from the data provider included many dataents not applicable to the cur-
rent research. Therefore, a number of processing stepspsgieemed to obtain a final dataset
usable for testing the site-centric clickstream model &@dnmation foraging. Table 39 lists each
step of the process along with the total number of Web sitssigns, and goal sessions; and how

many Web sites, sessions, and goal sessions were removed stefp (if applicable). Table 40

2The result page may be a return to the contact form that wasisted, a page thanking the user for submitting
their information, or any other page on the Web site (e.g.jtdex page).
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lists the parameters used in each preprocessing step. ésdisa of each step and its parameters

are provided below.
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Table 39: Site-centric: Preprocessing of Original Dat&tatistics

Step Description

Web Sites Sessions

Goalsin Web Sites A in Sessions A in Goals

N o o A~ 0N PP

10
11

12

Original dataset

Map valid pages

Remove other Web sites
Remove spam sessions
Remove single page sessions
Determine goal sessions
Remove no goal Web sites

Remove Web sites witk 50 goall
sessions

Remove outliers
Identify contact goals
Classify goal sessions

Remove Web sites without any contact
goals having> 50 goal sessions

Classify other contact goal sessions as
non-goal sessions

6,003 1,968,491 n/a

6,003 1,968,491 n/a
1,710 1,692,275 n/a
1,504 1,689,159 n/a

1,483 900,677 n/a
1,483 900,677 12,441
918 790,691 12,441
57 278,463 5,982
57 278,437 5,975
57 278,437 5,975
57 278,437 5,827
47 250,162 5,302
47 250,162 4,979

n/a n/a n/a
n/a n/a n/a
—4,293 —276,216 n/a
—206 -3,116 n/a
-21 —788,482 n/a
n/a n/a n/a
—565 —109,986 n/a
—-861 —-512,228 —6,459
n/a —26 -7
n/a n/a n/a
n/a nfa —148
-10 —28,275 —525
n/a n/a —323




Table 40: Site-centric: Preprocessing Parameters

Step Description Parameters
Original dataset n/a
Map valid pages n/a

Remove other Web sites
Remove spam sessions
Remove single page sessions
Determine goal sessions
Remove no goal Web sites

~N o o0~ 0N PP

Remove Web sites witkt 50 goal
sessions

8 Remove outliers

9 Identify contact goals

10 Classify goal sessions

plat form # in formational
sessions == spam
sesstonLength ==
formSubmissionPage # visited
goals AtW ebsite == (
goals AtW ebsite < 50

MinPts =4

Eps = 0.0636 (goal sessions)
Eps = 0.0597 (non-goal sessions)
countedSupport =5

patternSize = 3

pattern = AXAorAXB
directMatches =5

0 < gap < sessionLength — 1

11  Remove Web sites without any contact goalsAtContactGoal < 50

goals having> 50 goal sessions

12  Classify other contact goal sessions as n/a

non-goal sessions

Step 1. Mapping Valid Web pages

The first step of the process removed “invalid pages” fromdidaset and mapped “valid” pages
together. Since the data provider relied on a JavaScrijgtgorprovide information on which
page was visited, there were instances where the actuaMpige could not be determined. For
example, if a user visited http://www.domain.com/mypagel then it would be recorded that do-
main.com/mypage.html was visited (i.e., a valid page). e\, if the user viewed mypage.html
through a service such as Google’s cache, then the URL reddod the user might be something

like 30.186.56/search/cache. Since there was no way tondi@i what page was actually viewed
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in Google’s cache, such pages were eliminated from the elafias., an invalid page).

Instead of examining each page to determine if it was valid\alid, the domains for each
page were examined instead. First, any page from a domathwias present in more than one
Web site was considered invalfd Second, pages from many search engine caches are recorded
with an IP address rather than a domain name. Therefore,aggsgdrom a numerical IP address
were considered invalid. Finally, a manual inspection efriéimaining domains was done to re-

move known outside services (e.g., Web-based mail domains)

In addition to removing invalid pages, valid pages needdmktmapped together on the same
Web site. Web sites with multiple domain hames pointing todhme Web site would only show a
fragmented picture of the pages being visited. For exanagkyme domainA.com and domainB.com
both point to the same Web site. In the data, domainA.coméaggmtm| and domainB.com/mypage.html|
would be seen as totally separate pages from one anoth&radhs visit to mypage.html should
be counted as the same page, as long as the domain was valg].pHges of the same name were

mapped to a single valid page.

A total of 43,544 unique pages were present in the entiresdat&,702 of those pages (13709
were flagged as invalid. Of the remaining 37,842 unique pay&82 of those (10.84) were
mapped to other existing pages (e.g., domain.com/ mappgahtain.com/index.html). After all

processing was done, a total of 33,740 unique valid pageaineh

Step 2. Remove Other Web sites

After completing the first step, the dataset still retair@eldriginal 6,003 Web sites and 1,968,491
sessions. However, the dataset included data from othioiptes the data provider hosted (e.g.,
social networking Web sites) which were not the focus of tegearch. Therefore, the second step
of the process removed all Web sites not using the data mrosichformational platform. A total

of 4,293 Web sites were removed along with 276,216 corrafipgrsessions.

21The data provider offered a number of services that usedsiine slomain on multiple Web sites. Those domains
were flagged as “invalid” even though the origin of the doma&s known. However, this did not affect the analysis
since Web sites using those shared domains were from otonphs (e.g., social networking) and were not being
investigated in this research.
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Step 3. Remove Spam Sessions

The third step removed any sessions designated as spamaieherdvider flagged any sessions
from robots, spiders, or any other automated browsing nrésims as spam (e.g., Google’s in-
dexing spider). A total of 3,116 sessions and 206 Web sitbégcfwonly had spam sessions) were

removed.

Step 4. Remove Single-page Sessions

The fourth step followed Bucklin and Sismeiro (2003) andoeed all sessions which consisted
of only a single page-viet¥. A single page-view does not represent “browsing” behaviva

Web site (Bucklin and Sismeiro, 2003) and thus is unlikelprtovide interesting visitor patterns.
788,482 single-page sessions were removed along with 21siéeswhich only had single page

sessions.

Step 5. Determine Goal Sessions

For the fifth step of the process, sessions were classifieithes &oal” or “non-goal” sessions.
Within the data, any contact form submission was repredesde visit to a specific URL (e.g.,
formSubmission.html). A total of 12,441 sessions (%3&isited the Web site-unique form sub-
mission URL, and thus were classified as goal sessions.

1,857 of the goal sessions (14%Bvisited the form submission URL more than once during
a session (i.e., a repeat goal session). 1,563 of the repabsessions (84.Y7) were instances
where the form submission page was visited multiple timesriow. A potential explanation for
this behavior is the user clicked the submit button on a forltipie times.

The remaining 294 repeat goal sessions (1%)88ubmitted a form and then visited at least one
other page before submitting a form again (i.e., distinoinfsubmissions¥. Such repeat behavior
may be the result of a user submitting different contact oom a Web site (e.g., request for in-
formation and signing up for a newsletter), or may be a pesgoply resubmitted the same form

(for whatever reason) after going somewhere else on theFSgare 42 shows a histogram of the

220nly sessions with more than owalid page viewed were retained.

The 294 sessions with distinct form submissions were rethin the analysis. Only browsing behavior occurring
before thdfirst form submission was considered in the analysis, and thusdyaxtra form submissions did not impact
the analysis for this research.
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Figure 42.: Site-centric: Distinct Form Submissions Hiséom

number of distinct form submissions by number of repeat geasions. The maximum number of

distinct form submissions was 14.

Step 6. Remove No-goal Web sites

The sixth step removed Web sites which did not have any gahiseed during the data collection
period. A total of 565 Web sites were removed along with th@ 386 sessions which occurred on

those Web sites.

Step 7. Remove Web sites with Fewer Than 50 Goal Sessions

In order to ensure a large enough sample size of goal sedsioaisalysis, the seventh step re-
moved Web sites which had fewer than 50 goal sessions. 861siésbwere removed along with
the 512,228 corresponding sessions at those sites.

Prior to the removal of Web sites in this step, a cutoff poiaswletermined by examining a
histogram of the number of Web sites according to the numbgoal sessions at their site (fig-
ure 43). 98 Web sites (10.69 with 30 goal sessions or more are displayed in the frfu@f
those 98 Web sites shown, 41 of them (4¥%84ad fewer than 50 goal sessions. 31 of those 41
sites (75.6%) only had between 30 and 39 goal sessions. Thus, the sel@ft&) goal sessions
as a cutoff point appears to be a good selection for inclutiegnaximum number of Web sites

while ensuring a large enough goal session sample sizervatth site for the analysis.

24To provide a reasonable scale for the y-axis, the figure doeshow the 820 Web sites (89 %32 with fewer than
30 goal sessions.
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Figure 43.: Site-centric: Goal Sessions by Web site Histiogr

Step 8. Remove Outliers

The dataset was then examined for outliers in the eighthadtée process. An outlier was de-
fined as “an observation (or subset of observations) whipleans to be inconsistent with the re-
mainder of that set of data” (Barnett and Lewis, 1994, pglin€onsistent sessions were removed
from the dataset. Consistency was compared via the connnattthe total number of pages
viewed and the duration of a session.

An unsupervised density-based clustering algorithm ddBSCAN?® (Ester et al., 1996) was
used to locate outlying sessidAsDBSCAN identifies clusters of arbitrary shape, where th@nu
ber of clusters is automatically determined via the alganit A cluster is formed by having a min-
imum number of neighbor poirt§(MinPts), or density, within a specified radiugs). Points
not classified to a cluster are labeled as “noise” (i.e. jensi.

DBSCAN requires two user-specified parametéi&n Pts and Eps.

MinPts — the minimum number of points within a neighborhoddadlius Eps. For two-dimensional

datasets)Min Pts is commonly set to four (Ester et al., 1996; Hodge and Augi4).

Eps —the Eps-neighborhood or radius of a cluster. The vdldgpe is determined visually via a

sorted k-dist graph (see point three below) (Ester et a@61.9

To perform the outlier analysis using DBSCAN, four stepseygerformed. The process is very

*The average runtime complexity of DBSCANGKn * log(n)) (Ester et al., 1996).

28DBSCAN was chosen over common statistical techniques foowing outliers, such as removing values greater
than three standard deviations away, for two reasons: (§@EN does not require knowledge of an underlying distri-
bution and (2) DBSCAN is capable of finding outliers in mukipglimensions.

2The term points will be used to refer to sessions with a unimmbination of pages viewed and session duration
during the remainder of this subsection.
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similar to the user-centric process except user-sessiens mot used for the site-centric dataset
and thus “other” sessions were not included in the datasetidition, random sampling of the

non-goal dataset was not used because of the smaller-sieembstric dataset.

(1) Goal and non-goal sessions were separated into twoateptatasets. Each of the remaining

three steps was performed independently on each dataset.

(2) Values from each dimension were normalized between A awatording to equation 6.3,
wherez is a set of distinct values for a dimensian,is thei'" element of the set, andin(z)

andmax(z) are the minimum and maximum values found in:setespectively.

norm(z;) = 2 — min(z) (6.3)

maz(z) — min(z)

(3) The parameters for DBSCAN were set to define the “thiriredgster in the dataset by follow-
ing a three-step heuristic outlined by Ester et al. (1996 Thinnest” cluster is the smallest

or least dense grouping of points that are not consideresknoi

(@) MinPts was set to four since each dataset only had two dimensioter(&sal., 1996¥F.

(b) The threshold distance, which distinguishes betweéserand clusterable points, was
located. To determine the threshold, a sorted k-dist gregghareatedi = MinPts),
where the distance of each point to/fé neighbor is found, sorted in descending order,
and then graphed. The purpose of the sorted-k-dist graphonasually locate the first

“valley” in distance values, which represents the threditigtance.

The Approximate Nearest Neighbor (ANN) search library imrd.1.1 (Mount and
Arya, 2006) was used to calculate the distance of each pwitd fourth nearest neigh-
bor?®. Figures 44a and 44b show the sorted 4-dist graphs of the @iésvalues for the
goal and non-goal sessions. Each figure was manually iregpszfind the first “valley”,

which is shown at the intersection of dashed lines.

(c) SetEps to the threshold distance found in step (b).

28In a survey of outlier detection methodologies, Hodge anstifi(2004) also statedl/inPts is commonly set to
four for DBSCAN.
2ANN is available at http://www.cs.umd.edu/"mount/ANN/.

155



Normalized Distance
Normalized Distance

0 ﬁ T T T T T T T T 1

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Session Session
(a) Goal Sessions (b) Non-goal Sessions

Figure 44.: Site-centric: Sorted 4-Dist Graphs: Goal andJSmal

Table 41 lists the parameter values used for each of thealatdgin Pts was set to four
according to Ester et al. (1996) aiths was determined from visually examining the k-dist

graph for each dataset (figures 44a and 44b).

Table 41: Site-centric:
Parameter Values for DB-

SCAN
Sessions  MinPts Eps
Goal 4 0.0636
Non-goal 4 0.0597

(4) The DBSCAN algorithm was run using RapidMiner Commuitjition version 4.2° with

the specified parameter values from table 41.

DBSCAN labeled seven goal sessions (0:)2nd 19 non-goal sessions (0%)Las noise (i.e.,
outliers). Figures 45a and 45b show plots of distinct oudigd non-outliers points for both the
goal and non-goal sessions, respectively. Roughly spgagal sessions with over 100 pages
viewed or a duration of 145 minutes or more were considerditeosl For the non-goal sessions,
there was not a clear separation between outliers and ntieredfor global values of pages viewed
or session duration. Instead, figure 45b illustrates hofemiht combinations of pages viewed and

session duration categorized sessions as outliers or not.

30RapidMiner is available at http://www.rapidminer.com.pgiRiMiner was previously named YALE (Yet Another
Learning Environment).
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Step 9. Identify Contact Goals

For the ninth step of preprocessing, contact goals at eathsitéewere identified. A contact goal
is the submission of a particular contact form on a Web sit&/eb site may have more than one
contact goal. For example, a Web site may have one contantftargeneral inquiries (contact
goal A) and another contact form to request quotes (contzdt®). As a forager’s information
goal may differ drastically depending on the contact fornmgpesubmitted, simply grouping all
goal sessions together may introduce noise into the asal@&issifying goal sessions by contact
goal attempts to reduce noise by only grouping foragersthegevith similar information goals.

The eventual observable outcomes of this preprocessipgivsee three-fold:

(1) Identify contact goals having at least 50 goal sessi®hs.selection of 50 goals sessions was
made to balance the need for sufficient sample size of gosibsesswithin a single contact
goal and to include as many Web sites as possible. The aetieatisn of a single contact

goal for a Web site is discussed in preprocessing step 12.

(2) Identify pages which were necessary conditions for thergssion of a contact goal (e.g.,
contact form page, thank you page). Once identified, thesessary condition pages were

then excluded from future mining of patches and trails.

(3) Classify goal sessions to an identified contact goat(dised further in preprocessing step
10y,

3INot all goal sessions would be classifiable to a contact gaus preprocessing process was only concerned with
discovering moderately-visited contact goals. Thus, geasions which submitted forms for non-discovered contact
goals would not be classified.
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Within the data, any contact form submission was repredesde visit to a specific URL (e.g.,
formSubmission.html). Therefore, a forager submittiraireither contact goal A or contact goal
B would both show a visit to page formSubmission.html witthiair session. The limitation of
this approach is not being able to directly classify goases according to their contact goal.
Therefore, an indirect manner of discovering contact geialdrowsing patterns was used.

The general pattern of a form submission consisted of thagein sequence: (1) a contact
form page, (2) a page representing a form submission, araltt@nk you page or the same con-
tact form page from (1). To discover these sequences, frégaguential patterns were mined

using the Sequential Pattern Mining (SPAM) algorithm (Ayet al., 20027,

Potential Contact Goal To be considered a potential contact goal, a mined seqiuipatizrn

must have met five criteria.

(1) Have a counted support of at least five goal sessionsoiédgfin the interest in this processing
was on contact goals with at least 50 goal sessions, theawsopport was set to five for two

reasons.

(&) The first reason was to account for valid, but non-stahtieswsing behavior. For exam-
ple, although the general submission pattern consistget thages, there are occasions
where a forager will only complete the first two pages of thguseice. This is because
after the form submission, the system automatically fodedra forager (after a short
delay) to the third page. However, due to the delay some érsagay browse elsewhere

or leave the site before being automatically forwarded.

(b) The second reason was to discover as many contact ggadssible so that goal ses-
sions were not incorrectly classified to the wrong contael.gbhe browsing patterns
of a forager may match, to differing degrees, multiple congmals. If only highly-

visited contact goals were discovered, a session may b&feasto that contact goal

32Another method of discovering contact goals would be to heeéferrer field of the form submission page to
discover all contact form pages. However, the data provideted the referrer field in this dataset to the domain-leve
In addition, after submitting a form, a forager is autometicforwarded to the third page. This forwarding is done
server-side and thus the referrer field would not be popdlédtaerefore, the pages shown as a result of a submitted
contact form (e.g., a thank you page) could not be discovieyesbarching for the URL of the form submission page in
the third page’s referrer field. Due to these data and meshelimitations, sequential pattern mining was used.
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even though a less-visited contact goal was a better mateksi€/ing sessions to con-

tact goals is discussed further in preprocessing step 11.
(2) Have a three-page sequence length.
(3) The first page of the sequence magthave been an index page or a form submission page.
(4) The second page of the sequenugsthave been a form submission page.

(5) The third page of the sequence musthave been a form submission page.

Confirmed Contact Goal A potential contact goal becomes a confirmed contact goahiet

the requirements listed above plus one additional requrgm

(1) A minimum of five goal sessions must directly match thegrat A direct match means a goal
session visited the exact same three pages, in order, anduwiny additional pages in be-
tween any of the pages of the sequence. The selection of @ kesisi than 50 was again due
to valid, but non-standard browsing behavior. For exangdsume a contact goal consists of
the pattern: pageA pageF pageA. A forager may visit the cofdam page (pageA), open
a new tab for the index page (pagel), and then return to thedissand submit the contact
form page. The session of the forager would be recorded a&fppagel pageF pageA. Even
though this session does not exactly match the pattern éardhtact goal, it would still be

considered a submission for the contact goal.

Conflicting Contact Goals During the process of discovering contact goals, four Wedssiere
flagged as having conflicting contact goals. A conflictingtachgoal is where the same page ei-
ther before or after the form submission is shared by anaitiact goal on the same Web site.
For example, a conflict would occur if two contact goals onghme Web site have the same third
page (e.g., contact.html) but different first pages (eaptact.html and product.html).

Table 42 provides information about the four Web sites aeit gonflicting contact goals. The
first three Web sites (A-C) each had two conflicting contaetigavhile the fourth Web site (D)
had three conflicts. For each conflicted contact goal the tiidts the contact goal id, sequential
pattern for the contact goal, and the number of direct sessimatched to the contact goal. The

final column of the table describes the action taken to restble conflict for the Web site.
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Table 42: Site-centric: Conflicting Contact Goals

Web site Contact Goal

Page Pattern

Direct Matches Action

CG-1

. contactus.html
. submission.html
. contactus.html

267

CG-2

. productABC.html
. submission.html
. contactus.html

13

Remove CG-2

CG-1

. contactus.html
. submission.html
. contactus.html

104

CG-2

. products.html
. submission.html
. contactus.html

Remove CG-2

CG-1

. contactus.html
. submission.html
. contactus.html

550

CG-2

. productABC.html
. submission.html
. contactus.html

Remove CG-2

CG-1

. signup.html
. submission.html
. thanks.html

70

D CG-2

. signupl.html
. submission.html
. thanks.html

99

CG-3

W N FRPIWDNPRFPIODNPWOODNPREPRPOWODNEPRPRPOWODNDPWOWLDNPRPRP WOWLCDNDPRPWDNLPR

. signupl.html
. submission.html
. signupl.html

88

Combine all
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The conflict between the contact goals on the first three Web shared three common charac-

teristics.

(1) A highly-visited contact goal with a symmetrical pagédtean (e.g., contactus.html, submis-

sion.html, and then contactus.html again).

(2) A rarely-visited contact goal with an asymmetrical pagéern (e.g., products.html, submis-

sion.html, and then contactus.html).
(3) The third page of the sequential pattern was shared ketleth contact goals.

To resolve the conflict between the contact goals at the firsetWeb sites, the highly-visited
contact goals were retained and the rarely-visited cogjaals were flagged as “invalid” and re-

moved. The decision to remove the rarely-visited contaatgywas made for two reasons.

(1) Symmetric patterns were the most common pattern fourmhgsi contact goals. This is be-
cause the default behavior for Web sites on the informatiplagform was to return a user
back to the original contact form after a form was submitfEaerefore, if one contact goal is
symmetric, the other is asymmetric, and they both shareatme shird page, it is more likely

the symmetric contact goal is valid.

(2) The rarely-visited contact goals likely represent iadi matches of the highly-visited con-
tact goal. In other words, the sessions with a direct mat¢hearely-visited contact goal
were really indirect matches to the highly-visited congaal. However, enough sessions vis-
ited the same page after the contact page, but before sutapthie contact form (e.g., con-
tactus.html, products.html, submission.html, and thertaius.html), to be discovered as a
contact goal. This rationale is plausible because (1) tivere so few direct matches for each
rarely-visited contact goal and (2) of the 25 direct matdbesarely-visited contact goals, 24

of them (96.00%) were indirect matches for the highly-visited contact gdal

For the final Web site (D), none of the conflicting contact gdally met the two reasons listed
above to be considered “invalid” contact goals. In regaods¢ first point listed, although CG-1

and CG-2 shared the same third page (thanks.html), neittiee @ontact goals had a symmetric

%3The single non-match did not visit any other pages excephfopattern for Web site A contact goal CG-2.
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pattern. In addition, unlike the second point mentioneldhaée contact goals had a substantial
number of direct matches and no indirect matches were foatwden CG-1 and CG22 There-
fore, the conflicting contact goals were examined to deteerifithey represented the evolution of
a single contact goal’s structure (e.g., changing namesrofd, thank you behavior).

Informally, the site was hypothesized to contain a singletact goal (CG-A) for signing people
up for activities that evolved from CG-1 to CG-2, and then ®-8. Table 43 illustrates the first
and third pages used for each contact goal (columns twoghréaur). Initially, CG-A was be-
lieved to contain the pages signup.html and thanks.htmk{EGlowever, at some point the page
signup.html was replaced or renamed on CG-A with signupdl.(€G-2). Later on, CG-A was
changed a third time when the thank you page (thanks.htnd)ds@pped and the first page was
also used as the thank you page (CG-3).

For the hypothesis to hold there should be no overlap in thesdaessions submitted forms for
CG-1, CG-2, and CG-3. In addition, the pages signup.htmltaadks.html should not be visited
by sessions after CG-2 and CG-3 were active, respectivelupport of the hypothesis, the final
column of table 43 shows a clear separation in the datesossssilbmitted forms for each of the
contact goaf®. In addition, table 44 illustrates the date ranges when page was visited by any
session only falls within the time period the contact goas wetive. Therefore, it was believed
that all three contact goals represented an evolution addhee contact goal, and thus they were

combined into one contact goal.

34 ndirect matches were not examined for CG-1 versus CG-24tmey do not share any common pages. Indirect
matches were also not done for CG-2 versus CG-3 since thiepghge differed.
%53essions were classified to the three contact goals acgaujsreprocessing step 11.
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Table 43: Site-centric: Conflicting Contact Goal Pages — $ebD

Contact Goal signup.html signupl.html thanks.html ClesiSessions

CG-1 1 3 9/12/07 5:50 PM — 1/28/08 7:28 PM
CG-2 1 3 1/30/08 7:44 PM — 5/15/08 9:47 PM
CG-3 1&3 5/19/08 3:12 PM — 9/23/08 10:52 PM

€91

Table 44: Site-centric: Web site D Page Visitations

Page Active Visitation Range

signup.html 9/12/07 2:47 PM — 1/30/08 7:19 PM
signupl.html 1/30/08 7:22 PM —9/23/08 11:05 PM
thanks.html  9/12/07 6:03 PM — 5/15/08 10:23 M

& There were two additional visits to thanks.html after 50B56n
7/12/08 and 9/16/08. However, since there were only two siew
during a four-month period, the page was considered iractiv
after 5/15/08.
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Figure 46.: Site-centric: Contact Goals Per Web site

Contact Goal Statistics A total of 77 contact goals were found on the 57 remaining Vitels s

in the dataset. Figure 46 illustrates how many contact geate discovered at each Web site. The
vast majority of Web sites (46) only had a single contact g@al average, each Web site had 1.35
contact goals (0.99 standard deviation), with one sitertta¥icontact goals (the maximum num-

ber found on a Web site).

Step 10. Classify Goal Sessions

After discovering all the contact goals for a Web site, akhiggessions were then classified. A goal

session was classified to a contact goal according to théshiewutlined below.

Direct match — an exact pattern match without any gaps betwages. The goal session is clas-
sified to the contact goal. If no direct matches exist for amytact goal, then continue on to

indirect match.

Indirect match — a pattern match of at least the first two pagits gaps between pages allowed.
The goal session is classified to the contact goal with théleshgap (i.e., number of other
pages present) between (1) the second and third page an(R)rée first and second page.
This method assumed that because an automatic transferpiaiee from the second to third
page it is less likely another page would be visited in betwibat transfer. If no indirect

matches exist for any contact goal, then continue on to ncmat

No match - a pattern match of at least the first two pages (wititbhout gaps) is not found for

any of the contact goals. The goal session is not classifiady@ontact goaf.

36A session without a match is not classified to any contact, geah on Web sites with only a single discovered

164



Number of Contact Goals

) & > N
S 2. 50 :e@ :% \,\7)@ "
¥ %o % %

Number of Goals Per Contact Goal

Figure 47.: Site-centric: Goals Per Contact Goal

Following the heuristic outlined above, 5,827 of the 5,98algessions (97.52) were classi-
fied to a contact goal. Of the 148 unclassified goal sessi@#soflthem (83.7%) were not classi-
fiable because the first page of their session was the formissiom page. The remaining 24 goal
sessions (16.22) may have been unclassifiable due to being a match for anaowdised con-
tact goal, or the user may have visited the first page of theacbgoal sequence during a previous
session.

Figure 47 illustrates the number of goal sessions per cbgtat. Out of the 77 contact goals,
49 of them (63.6%) had 50 or more goal sessions. Table 45 displays the meawlasthdevia-

tion, minimum, and maximum number of goal sessions for alt@mact goals.

Table 45: Site-centric: All Contact Goals Stats

Mean St. Dev. Minimum Maximum

Goals per contact goal 75.68 80.57 5 587

Step 11. Remove Web sites without any contact goals having50 goal sessions

For the eleventh step, Web sites without any contact goaiagat least 50 goal sessions were

removed. A total of 10 Web sites were removed along with thedtesponding contact goals for

those sites. In addition, 28,275 sessions were removel 528 of those being goal sessions.
Figure 48 displays the number of goal sessions per contatfgothe remaining 60 contact

goals. 49 of the 60 contact goals (81%)7had 50 or more goal sessions. Table 46 displays the

contact goal. This is because the Web site may contain otmact goals that were simply too small to detect during
the previous preprocessing step.
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Figure 48.: Site-centric: Web sites with50 Goal Sessions Per Contact Goal

mean, standard deviation, minimum, and maximum number alf ggssions for the remaining 60

contact goals.

Table 46: Site-centric: Web sites with50 Goal Sessions — Contact
Goals Stats

Mean St. Dev. Minimum Maximum

Goals per contact goal 88.37 86.89 5 587

Step 12. Classify other contact goal sessions as non-goasens

For the twelfth and final step of the process, the contactgahlthe highest number of goal ses-
sions was selected for each Web site as the contact goal twehgad. The selection of a single
contact goal per Web site was done to simplify the analysisl Gessions from any other contact

goal at the Web site were classified as non-goal sesgions

As there were 47 Web sites, a total of 47 contact goals weeeteel to be analyzed. The goal
sessions at the remaining 13 contact goals were classifiednagoal sessions. 4,979 goals were
achieved on the 47 selected contact goals (98)9thile the remaining 323 goals from the 13

not-selected contact goals (6%Ppwere classified as non-goal sessions.

$7Even though it is known these other goal sessions did achigeal, the goal was for a different contact form, and
thus not the goal being focused on at the Web site being agthlyz

166



6.2.2 Final Dataset

The following subsections provide general statistics abiweifinal dataset, along with characteris-

tics of the Web site§ and sessions in the dataset.

General Statistics

Table 47 displays general statistics for the final datadee. fiFst row of the table lists the total
number of sessions in the dataset. Each row after the fitsthie total count for the metric and
also its percentage compared to the total number of sessitvesoverall conversion rate of the
dataset was 1.99, which is similar to conversion rates found at e-commercé Bies (Moe,
2003; Sismeiro and Bucklin, 2004). Unique visitors accedrfor 80.6% of the sessions whereas
19.31% of the sessions were from repeat visitors. Lastly, 1,229d&yes were viewed over all

250,162 sessions from the 47 Web sites in the dataset.

Table 47: Site-centric: Final Dataset Statis-

tics
n %
Sessions 250,162 n/a
Goals sessions 4979 1%9

Non-goal sessions 245,183 98%W01

Unique visitors 201,845 80.69

Repeat visits 48,317 19.%1
Pages viewed 1,229,190 n/a
Web sites 47 n/a

Web Site Characteristics

Table 48 provides the mean, standard deviation, minimuchn@aximum values from all 47 Web

sites for the number of days a site was active in the datdsethumber of valid and excluded Web

%83ince there is only a single contact goal at a Web site, thestéeb site” and “contact goal” will be used inter-
changeably.
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pages on a site; the number of goal, non-goal, and totalogessisiting each site; and the con-
version rate from each site. Valid pages included all pagegéld as valid from step number two
in the preprocessing section. Excluded Web pages were gaggss flagged as necessary condi-
tions for achieving a goal. Excluded pages were removed &a@@ssion when mining patches and

trails.

Table 48: Site-centric; Web Site Characteristic Stasstic

Mean St.Dev. Minimum Maximum

WEB SITEACTIVITY

Days Active 308.36 104.37 46 377
PAGES
Valid pages 16.36 13.00 5 79
Excluded pages 2.04 0.29 2 4
SESSIONS
Total sessions 5,322.60 7,473.76 245 44,405
Goal sessions 105.94 90.13 51 587
Non-goal sessions 5,216.66 7,427.53 192 44,111
OTHER
Conversion 5.2% 5.70% 0.51% 24.29%

The entire dataset was collected over a 377 day period (392 to 09/23/2008). On average,
the 47 Web sites in the final dataset were active for 308.36 (B.79:)3°. One Web site was
only available for roughly a month and a half (46 days), whileumber of Web sites were present
during the greater than one-year data collection proces&dq8ys). The actual dates in which a
Web site was active is shown in figure 48avhere the dashed lines indicate the beginning and
ending dates of the data collection period. Figure 49b isegram illustrating the number of

Web sites with a specified number of active days.

39Activity is determined by finding the first and last sessicsiteid at each Web site. There may be periods of time
between the first and last session visit dates in which neigcticcurred on the Web site.
“°The Web sites were sorted in ascending order by first sesateraghd then descending order by last session date.
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Of the 47 Web sites, 27 of them (57 %% were active from the first day of data collection. 24
of those 27 Web sites (51.99 remained active by the last day of data collection. For th&2b
sites (42.5%), which were not present at the beginning of data collectidnof them (70.0%)

were still active by the end of the data collection period.
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Figure 49.: Site-centric: Web sites’ Activity

Figures 50a and 50b illustrate the distribution of numberabid and excluded Web pages for
each Web site, respectively. As seen in figure 50a, most dViite sites (31 out of 47 (70.29))
were fairly small in size having fewer than 17 valid Web sit&8.36 Web pages on average), with
the largest site having 79 pages. In terms of excluded Webspdigure 50b), 46 of the 47 Web
sites (97.8%) excluded only two Web pages. This means that the vast majriVeb sites had
symmetrical contact goal patterns (e.g., contact fornmfeubmission, contact form). The Web
site which combined three contact goals together (fromrmpegssing step nine) was the only Web

site with more than two excluded pages (the site had the maxiof four excluded pages).
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Figure 50.: Site-centric: Web site Pages Histograms
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On average, each Web site had 5,322.60 total sessionsigidiee Web site, with almost 50
times as many non-goal sessions as goal sessions. Eachté/bhdion average, 105.94 goal
sessions (1.98) and 5,216.66 non-goal sessions (980)1Figures 51a — 51c illustrate the dis-
tribution of the number of total, goal, and non-goal sessimn each Web site, respectively. The
majority of Web sites (37 out of 47 (78.73) had fairly light traffic, having less than 8,000 to-
tal sessions (figure 51a). However, there were 10 Web sife282) with more than 8,000 totall
sessions, with the most heavily-visited site having 44 #@&l sessions. In terms of goal sessions
(figure 51b), 41 Web sites (87.23 had between 50 and 150 goal sessions, with 32 of those 41
(78.09%) having 50 to 100 goal sessions.
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Figure 51.: Site-centric: Web site Sessions Histograms

The average conversion rate for the 47 Web sites wa$/g.@6h one site having the highest
rate of 24.25;. Figure 52 illustrates the distribution of conversion sdi@ each Web site. 25 of
the 47 Web sites (53.19) had less than a% conversion rate. 14 of the Web sites (294)%had
between a % and 8% conversion rate. The remaining eight Web sites (1%.)08ad a conversion

rate higher than®.
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Session Characteristics

Table 49 provides the mean, standard deviation, minimuhn@ximum values for the number
of pages viewed and duration from all 250,162 sessions iddkaset. For each metric, values are
provided for three sets of sessions: goal, non-goal, argkaflions. Since the site-centric click-
stream model of information foraging uses measures caélifarior to the submission of a con-
tact form to predict a goal, the number of pages viewed argi@esduration are also provided for
goal sessions at the point right¢forethey submitted a contact form.

Each session consisted, on average, of less than five page M&®1), with a maximum of 152
pages viewed by one session. Goal sessions viewed overd&it&ny pages per session, on aver-
age, compared to non-goal sessions (10.34 versus 4.80).vithen only the pages viewed before
a form submission were considered, goal sessions stilleademmost one additional page, on aver-
age, than non-goal sessions (5.60 versus 4.80). Goal sesdsw viewed a little more than half of
all their pages (54.1% more pages) before submitting a contact form. Figures 53d-sBow the
distribution of pages viewed by number of sessions.

The average duration from all 250,162 sessions was 3.78teswith one session spending
over 134 minutes on a site. The difference between goal andjoal session duration was even
more pronounced than the number of pages viewed. Goal sesgient over three times as many
minutes on a site compared to non-goal sessions (Ilid&ersus 3.62nin). Before submitting
a goal, goal sessions spent over two times as much time agdraga non-goal session (818n
versus 3.62nin). In addition, goal sessions spent more than three-qganfeheir time (76.7%
of their time) browsing the site before submitting a confaain. Figures 54a — 54d illustrate the

distribution of session duration in minutes by number ofEsts.
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Table 49: Site-centric: Session Characteristic Stasistic

Mean St. Dev. Minimum Maximum

PAGES VIEWED

All sessions 491 5.05 2 152
Goal sessions 10.34 7.17 2 87
Before goal 5.60 5.26 M 84
Non-goal sessions  4.80 4.94 2 152

SESSIONDURATION (MIN)

All sessions 3.78 6.99 0.00 134.75
Goal sessions 11.46 11.96 0.17 120.15

Before goal 8.80 9.21 0.08 94.17
Non-goal sessions  3.62 6.76 0.00 134.75

& A minimum of one page viewed is valid (when sessions areicéstito at
least two pages) because only those pages videéatethe form submission
were included. In this situation the contact form page wawved first and
then the form was submitted.

6.3 Conclusion

This chapter provided an overview of the datasets usedtithesiser- and site-centric clickstream
models of information foraging. An explanation was givegameling the process by which the
data was captured, along with the preprocessing stepstakdarto arrive at the final dataset for
each model. General statistics were then shown for eachatatdong with the Web site and ses-
sion characteristics from each dataset. Graphical reptasens of many metrics were also shown

to illustrate the distributions of values within the datase

174



Chapter 7

Results

Presented in this chapter are the results for both the usérsite-centric clickstream models of
information foraging. Descriptive statistics, checkshad fissumptions for the statistical tests used
to test the model’s hypotheses, and the results for eacttiggie are described individually for
both of the models. In addition, the site-centric secticovjates a sensitivity analysis of eight dif-
ferent mining significance and support levels used to caleuheasures for the seven hypotheses

that relied on learned patches and trails.

7.1 User-centric Clickstream Model of Information Foraging

The user-centric model consisted of four hypotheses ragathe value of an entire site as a patch.
The descriptive statistics of the dataset, metric staigtir each hypothesis, and checks of as-
sumptions for the three statistical tests used to test thethgses are presented in §7.1.1. The re-

sults from each of the statistical tests performed for alt foypotheses are then detailed in §7.1.2.

7.1.1 Descriptive Statistics

Table 50 details the mean, standard deviation, medianymimi, and maximum number of user-
sessions by Web site. Statistics for goal and non-goal sesssions at each Web site are also stHown
On average, each Web site had 9,545.06 user-sessions wigttinam 45 as many non-goal
user-sessions as goal user-sessions (9,339.02 vers@4R0khe average conversion rate for each
Web site (2.2%) was similar to the two percent conversion rate typicallyrfd at e-commerce
sites (Moe, 2003; Sismeiro and Bucklin, 2004)
Table 51 presents the mean, standard deviation, mediaimorm and maximum values of all

52 Web sites for each of the four metrics in the user-centodeh The statistics for the first two

IFurther descriptive statistics for the dataset can be fougé.1.2.
2The average conversion rate when taking the average fromwWab site was 6.7 (see §6.1.2).
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Table 50: User-centric: User-sessions by Site

Mean St. Dev. Median Min Max

All 9,545.06 14,078.48 4,21450 406 76,138
Goal 206.04 154.91 141.00 51 597
Non-goal 9,339.02 14,064.45 3,989.00 290 76,041

metrics are displayed in three groups of user-sessiongall, and non-goal. The statistics for the
last two metrics are also displayed for all user-sessiamswbre also split to show the conversion
rate within two groups of sessions: those users that redoingng the same session and those

foragers who stayed on the Web site during the entire session

The average relative duration of users spent 1.27 more gsraiteach target Web site than on
other sites. The goal target sessions spent, on averagentr minutes on the target Web site
than at other e-commerce sites within their respective-sisgsions. The non-goal target sessions
spent 4.89ewerminutes on the target Web site compared to the median tinteé speother Web
sites. A similar distinction between goal and non-goaleéasgpssions was also seen in the relative
number of pages visited. Over 20 more pages (20.27) wetedibyy goal sessions at their target
Web site, while non-goal sessions visited roughly one fgyegie (1.07) on their target site com-

pared to other Web sites within a user-session.

The final two measures demonstrated the conversion ratestfvo groups of sessions. On av-
erage, a 0.9% increase in conversion rate was found for sessions thatdtay a Web site the
entire session versus those that left and returned duringahne session (7.32versus 6.4%). A
similar difference was also found between the two grouphiwithe REPEAT measure. A 0.62
increase in conversion rate, on average, was found forogestiat were previous visitors of the

Web site versus new visitors (6 @Aversus 6.3%).

3For REPEAT, the groups demonstrated the conversion rate of sessiansat visited the Web site before and those
sessions that were new visitors to the Web site.
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Table 51: User-centric: Metric Statistics

N Mean St. Dev. Median Min Max

INFORMATION PATCH — SITE-PATCH
RELDUR (in minutes)

All 52 1.27 9.28 —-2.00 -11.00 43.50
Goal 7.44 9.59 6.00 —10.75 43.50
Non-goal —4.89 209 -5.00 -11.00 0.00

RELPGS

All 52 9.60 15.57 2.00 -6.00 77.00
Goal 20.27 15.79 17.25 1.00 77.00
Non-goal —-1.07 277 -125 -6.00 12.00

RETURN

All 52 6.8™% 751% 3.88% 0.09%h 41.04%
P (Goal|Return) 6.41% 6.68% 3.78% 0.13% 24.33%
P (Goal|Stayed) 7.3% 8304 4.11% 0.054 41.04%

REPEAT

All 52 6.66% 7.78% 3.64 0.106h 46.63%
P (Goal|Repeat) 6.9% 6.84%0 4.334F 0106 28.72%
P (Goal|New) 6.35 8687 2.8 0200 46.63%

Note: all values are based on the median values from each ig&bgoal and non-goal sessions.
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Assumptions of Statistical Tests

Table 52 lists the assumptions for each of the three statigtists used to test the model’s hy-
pothesel A @ symbol indicates the assumption was met for the statigtisa) while aa sym-

bol means the assumption was not met. If both and ag symbol are shown then the assump-
tion held for some metrics, but not for all of the metrics. figheere a total of five assumptions for
the paired t-test (assumptions three through seven); @uhé exact Wilcoxon signed rank test
(assumptions three through six); and three for the depévsdenples sign test (assumptions one,

two, and five).

Table 52: User-centric: Assumptions of Statistical Tests

# Assumption t-Test Wilcoxon Sign Test
1 The pairs &, Y;) are internally consistent, in that if P(3) val
P(-) for one pair &, Y;), then P(+)> P(-) for all pairs.
2 The measurement scale is at least ordinal within each pair. val
3 The measurement scale of thes is at least interval. vl val
4 TheD;s all have the same mean. vl val
5 TheD;s (or bivariate random variableX{, Y;)) are mutually @« val vl
independent.
The distribution of eacl®; is symmetric. valm va|m

TheD;s are identically distributed normal random variables. O

(Conover, 1999, pg. 157-158, 353, 363)

Further details about whether assumptions were met or negith of the statistical tests are
provided below. The tests are presented in order of whidhtasthe least to most stringent as-

sumptions: sign test, Wilcoxon test, and t-test.

Dependent-samples Sign Test

All three assumptions of the sign test were fully met.
Assumption 1 — Each observation pair was internally coeststf P(+)> P(-), P(+)< P(-), or
P(+) = P(-) for a single observation pair, then P&P(-), P(+)< P(-), or P(+) = P(-) was the

same across all observation pairs, respectively.

4Assume within the data there aepairs of X andY observationgXo, Yo), (X1, Y1), ..., (Xn, Y»). For each
observation pair, the differende; is calculated betweeX; andY;, whereD; = Y; — X;.
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Assumption 2 — Each metric used in this research was a gatwditvariable measured on at least

an interval scale.

Assumption 5 — Each pair of bivariate random variabl€g {;) was taken from a different and

independent Web site.

Exact Wilcoxon Signed Rank Test
Three of the four assumptions for the exact Wilcoxon sigraetk test were met. The fourth
assumption dealing with symmetry of tligs was met for some of the metrics, but not for all of

the metrics.

Assumption 3 — Each metric used in this research was a qatwditvariable measured on at least

an interval scale.

Assumption 4 — Each of the differences;| was taken from a Web site within the same popula-

tion. Therefore, the mean of each difference was expectbd the same.

Assumption 5 — Each of the differences;] was taken from a different and independent Web

site.

Assumption 6 — The last four columns from table 53 show twiediint measures of skewness
for the four metrics: coefficient of skewness and quartilevskoefficient. Since the Wilcoxon
test only considers data points with non-zero differenoal; the skew values from the “No

zeros” columns were analyzed

>None of the 52 Web sites had the same median value for goalamdaal sessions for any of the four measures.
Therefore, all 52 Web sites were included when calculatkagvsor both the “All” and “No Zeros” columns.

179



08T

Table 53: User-centric: Metric Normality and Skew

N Lilliefors Shapiro Skew Quartile Skew
Hyp. Metric Total No Zeros D p-Value W  p-Value All  No Zeros AlINo Zeros
INFORMATION PATCH — SITE-PATCH
SC1 RELDUR 52 52 0.22 <0.000f" 0.75 <0.000f" —2.23 —2.23 0.00 0.00
SC2 RELPGS 52 52 0.18 0.0002 0.83 <0.0001" —1.79 -1.79 0.11 0.11
SC3 RETURN 52 52 0.21 <0.000f" 0.69 < 0.0001™ 2.40 2.40 0.93 0.93
SC4 REPEAT 52 52 0.29 <0.0001" 0.65 < 0.0001™ 3.32 3.32 -0.29 -0.29

*p < 0.10; *p < 0.05; **p < 0.01



The first two of the skew columns provide the commonly usedficent of skewness (g), as
shown in equation 7.1 (Helsel and Hirsch, 1992). In equafidnn is the number of elements,
z; is the value of theé* element,X is the sample mean, ands the sample standard devia-
tion. Although widely used, when using the coefficient ofvgkess “...an otherwise symmet-
ric distribution having one outlier will produce a large @amossibly misleading) measure of

skewness” (Helsel and Hirsch, 1992, pg. 10).

3

n " (2 — X)
g3

n—1)*(n—2) (7.1)

g =
( i=1

Due to the sensitivity of the coefficient of skewness to angypoints, a more robust and re-
silient measure of skew which is not affected by outliers used (last two columns of ta-
ble 53). The formula for the quartile skew coefficient is shawequation 7.2 (Helsel and
Hirsch, 1992), wheré, o5, Py 50, and Py 75 refer to the lower quartile, median, and upper
quartile of the data, respectively. The quartile skew coieffit can range from negative one
to one. Since the quartile skew measure only considers flegatice between the upper and
lower quartiles and the median, outlying points (such asrtagimum and minimum) do not

impact the value of the skew measure.

5 (Po.7s — Po.so) — (Poso — Po.2s) (7.2)
1 Po.7s — Po.os '

Besides statistics on skew as shown in table 53, figure 55aspbvided to graphically show

the distribution of points for each measure.

RELDUR andrRELPGSwere both negatively skewed-R.23 and-1.79), having a long tail be-
low the median. However, between the lower and upper gesytihe distribution of points ap-
pears to be mostly symmetric around the median. Examinieagjtlartile skew coefficient val-
ues,RELDUR did not demonstrate any skew (0.00), whileLpGshad a slight positive skew

(0.11).

RETURN andREPEAT had a skew opposite of the first two measures and were pdgitikewed
(2.40 and 3.32). Both measures had a long tail above the mefiee quartile skew coefficient

demonstrated a severe positive skewHamuRrN (0.93) and a moderate negative skewHrar
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PEAT (—0.29).

RELDUR was the only metric which met the assumption of no skew (utfiegyuartile skew
coefficient).RELPGsandREPEAT both had slight to moderate amounts of skew and thus did
not fully meet the assumption. LastETURN was found to have a severe skew and did not

meet the assumption of symmetry.

Paired t-Test
Three of the five assumptions for the paired t-test were nie.fourth assumption dealing with
symmetry of theD;s was met for some of the metrics, but not for all of the metfidee fifth as-

sumption of normality was not formally met for any of the nietr

Assumption 3 — Each metric used in this research was a gatiwditvariable measured on at least

an interval scale.

Assumption 4 — Each of the differences;| was taken from a Web site from the same popula-

tion. Therefore, the mean of each difference was expectbd the same.

Assumption 5 — Each of the differences;] was taken from a different and independent Web

site.

Assumption 6 — The symmetry for each measure was determirib@ same manner as for the
exact Wilcoxon signed rank téstOf the four measures, three of the measures had between
zero and moderate amounts of skevELDUR did not have any skevRELPGShad slight skew,
andrREPEAT had moderate ske\RETURN had severe skew and did not meet the assumption of

symmetry.

Assumption 7 — Two formal statistical tests of normality veerformed on the difference®/s)
for each of the metrics Lilliefors (Kolmogorov-Smirnov) and Shapiro-Wilk norrity tests

(Conover, 1999). Each test has a null hypothesis that the data follows a riafistaibution

®The “All” column for values of skew was used (table 53) to detime skew for the t-test because the t-test uses all
differences (non-zero and zero). Since all Web sites hatfex@lice between goal and non-goal sessions, the “All” and
“No Zeros” columns are identical.

"Symmetry is a necessary, but not sufficient, condition fenadity. AlthoughRETURNwWas severely skewed and
thus not symmetrical, the tests of normality were still parfed on the measure for purposes of completeness.

8Although presented, formal tests of normality (such adéfitrs and Shapiro-Wilk) are known to be sensitive to
even slight departures from normality (Mendenhall and 8m@003).
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with an unspecified mean and variance. Lilliefors is a norapeetric normality test, whereas
Shapiro-Wilk has been found to have greater power than ¢éises (such as Lilliefors) in

many situations (Conover, 1999).

All four measures rejected the null hypothesis of a normstritiution using both the Lil-
liefors and Shapiro-Wilks tests. In addition to the testa@imality, the skew values from
table 53 and the graphical depiction of each metric’s pdiigsire 55) provided further evi-

dence that the measures did not follow a normal distribution

Overall, only the assumptions for the dependent-sampigstsst were fully met. Therefore,
the sign test was used to test the hypotheses of the useicamodef. The assumptions for the
Wilcoxon test and t-test were not completely met and areigeavonly for comparison purposes.
The lack of symmetry (and normality) for some of the measuoreans the results from the Wilcoxon

and t-test must be interpreted with caution.

7.1.2 Hypotheses Testing

Table 54 presents the results for the four user-centric tingses. The first two columns of the
table list the hypothesis number and name of the metric destgd. The third and fourth columns
list the total number of Web sites and the number of sites avitlon-zero difference (i.e); # 0),
respectively. The total number of Web sites was used in thstf-while only Web sites with non-
zero differences were used for the Wilcoxon and sign t&s@olumns five through seven list the

t statistic, degrees of freedom (df), and p-value for thest:tThe eighth and ninth columns display
the V statistic and p-value for the Wilcoxon test. The finabtwolumns list the S statistic and p-

value for the sign tet.

The sign test is generally the least powerful of the threts {@onover, 1999). However, as all of the sign test’s
assumptions were met, greater confidence can be given teshks of the sign test compared to the other two tests.

Owithin the user-centric dataset all of the Web sites had remo-differences.

HResults of the sign test are presented below since all tissaeneptions for the test were met. The results of the
t-test and Wilcoxon test are provided in footnotes. Singthaethe t-test nor the Wilcoxon test met all of their assump
tions, the results of those tests should be interpretedaaitition.
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Table 54: User-centric: Results

N t-test Wilcoxon Sign Test
Hyp. Metric Total No Zeros t df p-Value V  p-Value S p-Value
INFORMATION PATCH — SITE-PATCH

UCl RELDUR 52 52 9.71 51 <0.0001" 1,376 <0.0001" 51 < 0.0001"
UC2 RELPGS 52 52 10.37 51 <0.0001" 1,378 <0.000f" 52 <0.0001"
UC3 RETURN 52 52 —-1.96 51 0.9724 445 0.9874 22 0.8942
UC3 (opp} 52 52 196 51 0.0276 933 0.0129 30 0.1659
UC4 REPEAT 52 52 0.82 51 0.2075 1,021 0.00I0 36 0.0039"

& Hypothesis tested in opposite direction as original —lieaving and returning will beegativelyassociated with achieving a goal on
this long tail Web site.
*n < 0.10; **p < 0.05; ***p < 0.01



UC1 —RELDUR

The first hypothesis conjectured that goal achieving faig®uld spend relatively more time

on the Web site where a purchase was made than on any othiesiteisited. The rationale be-
hind the hypothesis was because foragers are assumed tiobalrand thus are looking to reduce
their search costs (Pirolli, 2007), they will only spendédion a site as long as they are obtain-
ing value from that site (i.e., satisficing on rate of infotrma gain (Pirolli, 2007; Simon, 1956)).
Thus, more information can be assumed to be gathered on ait&eth&re more time is spent
than other Web sites, which brings a forager one step clodegihg at a point to make a decision
to purchase or not.

The results of the sign test provide support for the hypasheszy = 0.01 (S = 51; p-value =
< 0.0001§2. Of the 52 Web sites in the dataset, 51 of them had a higherameeliative duration
amongst goal sessions than non-goal sessions. Compartbtcites in their user-sessions, goal
sessions spent over seven additional minutes on the tamgesifé while non-goal sessions spent
almost five minutes less.

The use of duration to explain choice behavior has not foumsistent results in prior liter-
ature. The role of absolute duration in predicting choiceavér has found mixed associations
(Sismeiro and Bucklin, 2004) and also differences in sigaifce (Padmanabhan et al., 2001) de-
pending on the task examined and data used. The results ofttegis UC1 provide additional
support for a positive association between duration antlagtaevement. However, the hypothe-

sis only supports the notion of a positive associationrdtative rather than absolute duration.

UC2 —RELPGS

The second hypothesis was similar to the first hypothesiausecit also relied on the concept of
satisficing (Pirolli, 2007; Simon, 1956). However, the n@mnbf pages viewed by a forager was
examined instead of the duration spent at the site. Wherelgrager clicked on a link at a site
that was an implicit signal the user believed other infoiorabf value would be obtained from the
site. Therefore, more pages (relative to other sites) shoellan indication of a greater wealth of

information being obtained.

2Hypothesis UC1 was also significantaat 0.01 for both the t-test (t = 9.71; df = 51; p-value=0.0001) and
Wilcoxon test (V = 1,376; p-value = 0.0001).
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The results from the sign test supported the hypothesis=.01 (S = 52; p-value = 0.0001§3.
All 52 Web sites in the dataset had a higher median relativeb®un of pages viewed for goal ses-
sions versus non-goal sessions. Goal sessions viewedeosmay over twenty additional pages on
the target Web site compared to other sites, whereas ndrsgssions viewed one fewer page than
at other Web sites.

Support has been mixed in prior literature for the role nunaf@ages viewed has on choice
behavior. Absolute number of pages viewed has found pesitssociation (Awad et al., 2006;
Moe, 2003), no association (Chatterjee et al., 2003), axeédrassociation depending on the task
(Sismeiro and Bucklin, 2004) or type of pages viewed (Vaneel and Buckinx, 2005). Like
duration, the result of this hypothesis also lends addifisapport to the notion of a positive asso-
ciation between number of pages viewed and goal achieverdentever, the support is restricted
to arelative examination of pages viewed rather than the absolute valonenonly used in prior
research.

Although both UC1 and UC2 were supportechat 0.01,RELPGSwas slightly better at distin-
guishing between the two groups of sessions (S = 52 versusio®ever, part or all of the dif-
ference between the two hypotheses may have been an asfiflagiasurement constraints, since
RELDUR was only measured at the minute-level. Thus, a finer-graimealsurement may be better
able to tease out differences in duration between sesdiansithat was shown in the user-centric

model*.

UC3 —RETURN

The third hypothesis examined the returning behavior ofager. In particular, it was hypothe-
sized that foragers who returned during the same sessioltlWweunore likely to achieve a goal
than foragers that did not. The rationale was that useiigllgiteft a site because they expected to
find another Web site with a higher rate of information gaie.(ithey followed the patch-leaving

rule from the marginal value theorem (Pirolli, 2007; Charnt®76)). However, after the forager

BHypothesis UC2 was also significantaat 0.01 for both the t-test (t = 10.37; df = 51; p-value<=0.0001) and
Wilcoxon test (V = 1,378; p-value = 0.0001).

14The site-centric model does indicate duration is a bettemmerof distinguishing between types of sessions than
pages viewed (see 87.2.2). However, considering a diffefaiaset was used, the results are not directly compara-
ble. For example, the Web sites in the site-centric dataagthmave had fewer pages and thus number of pages viewed
would be less able to distinguish between groups of sessiom&ldition, the site-centric model does not take into ac-
count behavior relative to other Web sites.
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explored other aspects of their environment, they bettmgeized the value of the site they ini-
tially left. Therefore, a forager that returned to the diteytleft not only had knowledge of what
was on the site, but also an expectation that the Web sitedwesult in additional information

gain, which was hypothesized to indicate greater likelthobgoal achieving behavior.

The sign test failed to support the hypothesis at any of thiede: levels (S = 22; p-value =
0.8942%°. Only 22 of the 52 Web sites found a greater incidence of gosiegement among ses-
sions that left and returned as opposed to those sessidrsaiiad on the site for the entire ses-
sion. Not only was UC3 not supported, but the expected assoeiof returning behavior to goal
achievement appeared to be incorrect. Instead of beingitivpagssociation, the results pointed
toward a strong (but non-significant) negative associatien a forager wakesslikely to achieve
a goal if the user left a Web site and then returned within #messession (the opposite of hypoth-

esis UC33¢.

Although the results of UC3 were not expected, they did mplewdditional support highlighting
the efficacy of a forager’s ability to search with only imgeat information and limited compu-
tational resources. For example, foragers appeared todablesof judging the rate of informa-
tion gain and value of a Web site relatively well, accordiagtteir need. The efficacy of foragers’
search behavior was informally backed up because more weerpurchased a product from their

target Web site did not feel the need to visit other Web siteig their sessioff.

As far as can be determined, prior literature has not exairtime returning behavior of a user
during the same session. Therefore, the results of thisthgpis provide an initial (but non-significant)
clue into the relationship between returning behaviorruthe same session and goal achieve-

ment.

Hypothesis UC3 was also not supported at any of the testedels for both the t-test (t =1.96; df = 51; p-value
=0.9724) and Wilcoxon test (V = 445; p-value = 0.9874).

15The opposite of hypothesis UC3 was also not supported atfaing tested levels (S = 30; p-value = 0.1659).
However, the opposite of hypothesis U@assupported atv = 0.05 for both the t-test (t = 1.96; df = 51; p-value =
0.0276) and Wilcoxon test (V = 933; p-value = 0.0129). Therdipancy of findings may be a symptom of the sign
test’s lack of power (the rank or actual differences betwagsa points are not used in the sign test). However, another
possibility may be the t-test and Wilcoxon test are prowgdimaccurate results, especially when considering themdr
skew of theRETURNmMeasure (quartile skew of 0.93).

"This assumes the action of purchasing a product from thettsvgb site was a “good” decision.
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UC4 —REPEAT

The final hypothesis also examined returning behavior, lolsa by looking at how past visita-
tions of a Web site affected the propensity of foragers toemeha goal. The expectation was prior
visitation of valuable sites would stand out more in a pessoremory (i.e., be more easily ac-
cessible) than less valuable sites. Thus, a repeat visaaldibe more likely to achieve a goal be-
cause of the expectation that the user was familiar withiteeasd had an understanding of the
available information from the site.

Using the sign test, the final hypothesis was supported=a0.01 (S = 36; p-value = 0.0039)
36 of the 52 Web sites had a higher median probability of almse amongst goal sessions when
a user had visited the site before.

Prior literature has found mixed associations (dependeth®task) between users returning
during different sessions and completing a task (SismeitbBucklin, 2004). The results of hy-
pothesis UC4 lends additional support of a positive astioni®etween repeat visitation behavior

and goal achievement.

Summary of Results

Table 55 summarizes the results of the hypotheses testinpe@our hypotheses, UC1, UC2, and
UC4 were all supported at = 0.01. Hypothesis UC3 was not supported in either its oaigim
opposite form at any of the tested alpha levels (0.01, 0.08,1®).

18Hypothesis UC4 was not significantat= 0.10 for the t-test (t = 0.82; df = 51; p-value = 0.2075), baswgignifi-
cant ato = 0.01 for the Wilcoxon test (V = 1,021; p-value = 0.0010). Thest may have failed to reach significance
because the actual difference between the goal and norsgssibns was only 0.62(6.97% versus 6.3%). The
Wilcoxon and sign tests do not consider the absolute differebut rather the relative difference (i.e., rank) or i€on
group was higher than the other.
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Table 55: User-centric: Hypotheses Results
Summary

Hyp. Metric Hypothesis Supported?

INFORMATION PATCH — SITE-PATCH

*kk

UC1 RELDUR Yes
UC2 RELPGS Yes™
UC3 RETURN No
UC3 (opp} No
UC4 REPEAT Yes™

& Hypothesis tested in opposite direction as original —
i.e., leaving and returning will beegativelyassoci-
ated with achieving a goal on this long tail Web site.
*n < 0.10; **p < 0.05; ***p < 0.01

7.2 Site-centric Clickstream Model of Information Foraging

The site-centric model consisted of nine hypotheses thet s@ncerned with both information
scent and patches. Descriptive statistics of the datagetarh measure along with checks of as-
sumptions for the three statistical tests used to test thethgses are presented in §7.2.1. The
results of all nine hypotheses are then detailed in §7.2s2hfee of the hypotheses (seven total
measures) used metrics derived from learning patches aitg] & sensitivity analysis was per-
formed at eight different mining levels of significance anggort. The descriptive statistics and

results of the sensitivity analysis are provided in §7.2.3.

7.2.1 Descriptive Statistics

Table 56 details the mean, standard deviation, mediannmimi, and maximum number of ses-
sions by Web site. Statistics for goal and non-goal sessibeach Web site are also shdWiriThe
data is separated in table 56 into three groups: the entiesea training set, and testing set.
The entire dataset was used to test the six hypotheses widiclotrely on mining patches or
trails (SC1-SC4, and SC7-SC8). The training dataset waktaskscover patches and trails that
would eventually be used to calculate measures for hypeth®€5a-c, SC6, and SCYcThe

1SFurther descriptive statistics for the dataset can be fougé.2.2.
2The training set consisted of the first%®f goal sessions (and all non-goal sessions occurring &éfierlast goal
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Table 56: Site-centric: Sessions by Site

Mean St. Dev. Median Min Max

ENTIRE DATASET
All 5,322.60 7,473.76 2,637.00 245 44,405
Goal 105.94 90.13 79.00 51 587
Non-goal 5,216.66 7,427.53 2,566.00 192 44,111
TRAINING SET

All 3,744.23 5,418.42 1,696.00 168 31,730
Goal 74.28 63.07 56.00 36 411
Non-goal 3,669.96 5,386.00 1,656.00 130 31,525

TESTING SET

All 1,578.36 2,156.26 901.00 48 12,675

Goal 31.66 27.07 23.00 15 176

Non-goal 1,546.70 2,143.14 884.00 29 12,586

actual calculation of the measures for hypotheses SC5&4;, &d SC9a-c were done using ses-
sions from the testing set of data.

On average, each Web site had a total of 5,322.60 sessidmsnoie than 49 as many non-goal
sessions as goal sessions (5,216.66 versus 105.94). Tiagaw®nversion rate for each Web site
(1.99%) was similar to the two percent conversion rate typicallyrfd at e-commerce Web sites
(Moe, 2003; Sismeiro and Bucklin, 2063)

Overall, the training set of data represented 7%.3% all sessions. For mining purposes, each
Web site had an average of 3,744.23 sessions. The trainilmgdea similar ratio of goal versus
non-goal sessions (49 times more non-goal than goal se$siad a slightly lower conversion rate
than what was seen in the entire dataset (%.98rsus 1.9%).

The testing set was also very similar in makeup to the entitastt. Each Web site had an aver-
age of 1,578.36 sessions, with almost 49 as many non-gasbaesas goal sessions (1,546.70 ver-
sus 31.66). The conversion rate was also very similar tontieeedataset (2.0%4 versus 1.9%).

As seen in table 56, the makeup of the training and testirgydsenot appear to differ drasti-

session added to the training set).
21The average conversion rate when taking the average fromwWab site was 5.26 (see §6.2.2).

191



cally from the entire dataset. Therefore, the results ofmgipatches and trails and the calculation
of measures using the testing and training datasets armaddo be generalizable to the entire
dataset (i.e., the results are not an artifact of the mamnahich the data was split).

Table 57 presents the mean, standard deviation, mediaimomm and maximum values from
all 47 Web sites for each of the six metrics that did not relyraning patches and trails. The
statistics for the first and last two metrics are displayettiae groups of sessions: all, goal, and
non-goal. The statistics for the middle two metrics are displayed for all sessions, but were
split to show the conversion rate within two groups of sessithose foragers that returned during
the same session and those users who stayed on the Web Bitgttierentire sessiéa

The average duration of users at each Web site was 3.69 mirltlie goal sessions spent, on
average, 4.60 more minutes on a Web site compared to thegairsgssions (5.99 minutes versus
1.39 minutes). A similar, but less large, of a difference aias seen between the number of pages
viewed between goal and non-goal sessions. On averagesegsbns viewed 0.43 more page
than non-goal sessions did (4.28 versus 3385)

The middle two measure® ETURN andREPEAT) demonstrate the conversion rates from two
groups of sessions. On average, a %58crease in conversion rate was found for sessions that
stayed on a Web site the entire session versus those thantefeturned during the same session
(7.24% versus 1.7%). A similar, but not as severe, difference was also found/ben the two
groups within theRePEAT measure. A 1.0Z increase in conversion rate, on average, was found
for sessions that were previous visitors of the Web siteugengew visitors (6.0% versus 5.0%).

The percentage of unique pages viewed, on average, was/7.9@@al sessions had a 20%22
increase in unique pages viewed over non-goal sessiors3{8¥ersus 69.3%). The difference
in clickstream linearity was also similar to the percentafjgnique pages viewed in both direction
and difference. A 0.23 increase in clickstream linearityswaen between the goal and non-goal
sessions (0.86 versus 0.75).

Table 58 lists the mean, standard deviation, median, mimpand maximum values for the
seven metrics (hypotheses SC5a-c, SC6, and SC9a-c) thateleulated from mined patches and

trails at the 0.05 significance leg&l The statistics for the metrics are displayed in three gsafp

22For REPEAT, the groups demonstrated the conversion rate of sessianisat visited the Web site before and those
sessions that were new visitors to the site.

2The duration and number of pages viewed for goal sessioysmeilides activitybeforeany form submission.

%The use ofx = 0.05 for learning patches and trails was motivated by paeearch on contrast sets (Bay and Paz-
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Table 57: Site-centric: Metric Statistics

N Mean St. Dev. Median Min Max
INFORMATION PATCH — SITE-PATCH
SITEDUR (in minutes)

All 47 3.69 2.87 2.89 0.33 13.32
Goal 5.99 2.32 5.90 1.39 13.32
Non-goal 1.39 0.66 1.23 0.33 3.15

SITEPGS

All 47 4.06 1.26 4.00 2 9
Goal 4.28 1.46 4.00
Non-goal 3.85 1.00 4.00

RETURN

All 47 4.47%  6.04% 2.16% 0.006 31.72%
P (Goal|Return) 1.7%  2.68% 0.81% 0.006 14.02%
P (Goal|Stayed) 7.24%  7.14% 4.71% 0.65%6 31.72%

REPEAT

All 47 558%  5.99% 3206 0356 27.2%%
P (Goal|Repeat) 6.09  6.33% 3.55% 0.35% 27.2%%
P (Goal|New) 507  5.66% 2960 0.46% 24.8%

STRICT INFORMATION SCENT
UNIQUE

All 47 79.4% 1523, 77.50%0 50.000 100.00%
Goal 89.58c 11.94% 100.000 58.33%, 100.00%
Non-goal 69.3% 10.89%, 66.67% 50.000h 100.00%

LINEAR

All 47 0.86 0.29 1.00 0.00 1.00
Goal 0.98 0.08 1.00 0.60 1.00
Non-goal 0.75 0.37 1.00 0.00 1.00

Note: all values are based on the median values from each ig&bgoal and non-goal sessions.
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sessions: all, goal, and non-goal. The statistics for thefietrics regarding page-patches were
calculated from the 14 Web sites that discovered patchete thle three trail measures were cal-
culated from the 10 Web sites that discovered trails.

The first three patch measur@a{CHMAX, PATCHLAST, andPATCHSUM) had average patch
values of 0.32, 0.29, and 0.79 among all sessions, resphctivhe difference between goal and
non-goal sessions was similar fekTCHMAX andPATCHLAST. PATCHMAX had a difference of
0.44 (0.54 versus 0.10) and the differencedarcHLAST was 0.37 (0.47 versus 0.1MATCH-

SUM had the largest difference of the three measures with a w23 (1.40 versus 0.17), al-
most three times as great of a difference as eihA&CHMAX Or PATCHLAST.

The average duration users spent within patches was aolittleone minute (68.28 seconds).
Considering the average user spent 3.69 minutes on an sitéiréoragers spent almost a third of
their time (30.84¢) within patches. Goal sessions foraged within patchesyerage, 42.41 more
seconds compared to non-goal sessions (89.48 seconds 4@ seconds).

Unlike the patch visitation measures, the trail followingasures all had similar means: 0.27,
0.26, and 0.33. Likewise, the difference between goal amdgual sessions was also relatively
similar between the three measures. The differencedanLmax was 0.45 (0.50 versus 0.05),
TRAILLAST was 0.43 (0.48 versus 0.05), andAaiLsuM had the largest difference of 0.56 (0.61

versus 0.05).

Patch and Trail Descriptive Statistics

Table 59 provides the mean, standard deviation, mediangmmimn, and maximum values for a
number of descriptive measures about the learned patchesadls: number, size, coverage and
value. In addition, statistics are also provided about hamyrpatches were visited and trails were
followed by foragers.

An average of 11.93 patches was discovered on 14 Web siteg ths 0.05 significance mining
level. Although almost 12 patches were discovered on aegtagre was a fairly large spread of
discovered patches, with one Web site only finding a singlehpand another site discovering 111
patches. In general, discovered patches were fairly smalke, consisting of only 1.82 pages.

The small patch size indicates a number of valuable patclees simply individual pages on a

zani, 1999).
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Table 58: Site-centric: Metric Statistics (Significant 9%).

N Mean St. Dev. Median Min Max

INFORMATION PATCH — PAGE-PATCH

PATCHMAX

All 14 0.32 0.40 0.00 0.00 1.31
Goal 0.54 0.43 0.60 0.00 1.31
Non-goal 0.10 0.21 0.00 0.00 0.57

PATCHLAST

All 14  0.29 0.34 0.00 0.00 1.03
Goal 0.47 0.36 0.47 0.00 1.03
Non-goal 0.10 0.20 0.00 0.00 0.51

PATCHSUM

All 14  0.79 1.25 0.00 0.00 4.53
Goal 1.40 1.52 1.06 0.00 4.53
Non-goal 0.17 0.36 0.00 0.00 1.04

PATCHDUR (in seconds)

All 14 68.28 47.02 51.38 19.00 178.00
Goal 89.48 53.06 76.63 19.00 178.00
Non-goal 47.07 28.43 38.88 20.00 134.00

RELAXED INFORMATION SCENT
TRAILMAX

All 10 0.27 0.37 0.00 0.00 1.04
Goal 0.50 0.40 0.52 0.00 1.04
Non-goal 0.05 0.16 0.00 0.00 0.50

TRAILLAST

All 10 0.26 0.35 0.00 0.00 1.04
Goal 0.48 0.37 0.52 0.00 1.04
Non-goal 0.05 0.16 0.00 0.00 0.50

TRAILSUM

All 10 0.33 0.50 0.00 0.00 1.80
Goal 0.61 0.58 0.52 0.00 1.80
Non-goal 0.05 0.16 0.00 0.00 0.50

Note: all values are based on the median values from each Meé&bgoal and non-
goal sessions.
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Table 59: Site-centric: Patch and Trail Metric StatistiSgyqificant — 0.05)

N Mean St. Dev. Median Min Max

PATCHES
Number of patches 14 11.93 28.74 3.50 1 111
Patch size 14 1.82 0.64 2.00 1.00 3.00
Patch coverage 14 28%3 13.8%1 26.7% 10.00%6 50.00%
Patch value 14 0.67 0.16 0.67 0.28 0.88
Patch visitation
All 14 2.75 2.25 2.00 1.00 11.00
Goal 3.50 2.93 2.00 1.00 11.00
Non-goal 2.00 0.88 2.00 1.00 4.00
TRAILS
Number of trails 10 4.70 8.04 1.50 1 27
Trall size 10 2.15 0.34 2.00 2.00 3.00
Trail coverage 10 26.4% 14800 27.44, 6.904 50.00%
Tralil value 10 0.79 0.19 0.82 0.46 1.05
Trail following
All 10 1.60 1.14 1.00 1.00 5.00
Goal 1.80 1.48 1.00 1.00 5.00
Non-goal 1.40 0.70 1.00 1.00 3.00

Note: all values are based on the median values from each ifé&bgoal and non-goal ses-
sions.
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Web site. However, even though patches were small in sieg,rdpresented over a quarter of all
Web pages on a Web site (28%3

The average value of a patch was relatively high at 0.67¢atilig patches were reasonably
capable of separating areas predominately visited by gasi@ns versus non-goal sessions. How-
ever, the value of patches had a moderately large 0.60 gmieas between the minimum (0.28)
and maximum (0.88) valued patches.

Foragers visited, on average, 2.75 patches during a sesgiarh represented 23.060f all
available patches on a site. Goal sessions visited 1.50 padcees than non-goal sessions did
during a session (3.50 versus 2.00). Although non-goal@esappeared to visit a number of
patches, the statistics in table 59 only include sessiartsvthitedat leastone patch. Therefore,
when considering all sessions, less than half of all non-gessions visited patches while over
half of the goal sessions did visit patches (see median ¥dtuWe&ATCHMAX, PATCHLAST, Or
PATCHSUM in table 58).

Valuable trails were more difficult to discover than patclassevidenced by both the lower
number of Web sites with trails (10 versus 14) and the mearbeuwr trails discovered at each
Web site (4.70 versus 11.93). Discovered trails consisteitter two- or three-page sequences
(average of 2.15), which represented 26%4f all Web pages on a Web sife

Although more difficult to find, trails were 0.12 points mor@wable on average than patches
(0.79 versus 0.67). The value of trails had a 0.59 point sphibeéween the minimum (0.46) and
the maximum (1.05) valued trails, which was only one tenth pbint lower than patches.

In terms of usage of valuable trails, foragers followed agrage of 1.60 trails during a ses-
sion, which represented 34 %4of all available trails on a Web site. Like patches, goalisess
also followed more trails than non-goal sessions (1.80ugets40). Although fewer trails were
followed in absolute terms compared to the number of patelsited, percentage-wise goal ses-
sions followed a greater proportion of available trails dVeb site than patches (38 B30versus
29.34%).

Examples of Patches and Trails

ZTrails may contain the same page being visited multiple siomike patches which only represent unique pages.
Thus, the percentage of trail coverage (26¢4 tan still be lower than patch coverage (284€3ven when the mean
trail size (2.15) is higher than the average patch size J1'B2 preceding explanation assumed the difference inreove
age was not due to dissimilar Web sites with different nunadéieb pages being included in the calculation.
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Table 60 and 61 each present three examples of discoverguepand trails, respectively. Each
table lists an identifier for the Web site along with a shodaiption of what the purpose of the
Web site was. The value of the example patch or trail alonp thi¢ pages that make up the patch
or trail is also provided. For patches, the order in whichghges are displayed in table 60 does

not matter. For trails, the order of pages in tabledgiesmatter.

Table 60: Site-centric: Example Patches

Web site
Id Description Support Patch Pades
1 Sell and service light-weight outboard motors 0.31 Index
Outboard motor products
Accessories
Warrenties
2 Hair and make-up services for weddings 0.70 Hair prices

Hair style examples
Services offered
Makeup prices

3 Small dog breeder 0.61 Index
Photo album of puppies

Available puppies

Examples are from a variety of different significance / supfavels
a Order of pages doeawt matter

The first Web site from table 60 demonstrates a four-pagépdtelatively low value. The
patch may be of interest to a forager who had a question abewvarranty coverage of outboard
motors and their accessories. The second example regdsehigher-valued patch than the first
example. The four-page patch dealt with wedding hair andemgkservices and may have been
visited by an individual interested in booking the Web sitner for their wedding. Finally, the
third example illustrates a patch that a forager may vighéfy were interested in adopting puppies
from a small dog breeder.

The first trail shown from table 61 demonstrates a moderataiyed three-page sequence. The

example illustrates a trail followed when foragers arergdgted in learning how to deal cards. First
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Table 61: Site-centric: Example Trails

Web site

Id Description Support  Trail Pagés

4  Teaches professional card dealing 0.41 Index
Testimonials
Calendar of classes

5 Cosmetology school 0.54 General information
Financial assistance
Courses offered

6 Small financial company 0.31 Index

Getting loans with poor credit
Index
Testimonials

Examples are from a variety of different significance / supfavels
a Order of pagesloesmatter

the user visited the index page, then read the posted testitapand finally viewed when classes
were held. The second example demonstrates a likely patteat@ student may follow when
interested in enrolling in cosmetology school. Generairimfation about the school was read first,
followed by information about available financial assisgrand finally what courses were offered
at the school. The final example shows a trail where a forageaaed their steps. The index page
was visited first and then again after the forager read inédion on how to obtain a loan with

poor credit. The reason for the backtracking is not knowtnoaigh it may be the navigation on
the site followed a hub and spoke topology that required toacking (i.e., all pages linked from

the index page, but not to one another).

Assumptions of Statistical Tests

Table 62 lists the assumptions for each of the three statigtsts used to test the site-centric hy-

pothese®. A @ symbol indicates the assumption was met for the statistésa) while a0 sym-

ZAssume within the data there angpairs of X andY observationg X, Yo), (X1,Y1),. .., (X,,Y,). For each
observation pair, the differende; is calculated betweeX; andY;, whereD; = Y; — X;.
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bol means the assumption was not met. If both and axg symbol are shown then the assump-
tion held for some metrics, but not for all of the metrics. fehevere a total of five assumptions for
the paired t-test (assumptions three through seven); éuhé exact Wilcoxon signed rank test

(assumptions three through six); and three for the depétsdenples sign test (assumptions one,

two, and five).

Table 62: Site-centric: Assumptions of Statistical Tests

# Assumption t-Test Wilcoxon Sign Test
1 The pairs &, Y;) are internally consistent, in that if P(3) val
P(-) for one pair &, Y;), then P(+)> P(-) for all pairs.
2 The measurement scale is at least ordinal within each pair. val
3 The measurement scale of thes is at least interval. vl val
4 TheD;s all have the same mean. vl val
5 TheD;s (or bivariate random variableX{, Y;)) are mutually @« val vl
independent.
The distribution of eacl®; is symmetric. valm va|m

TheD;s are identically distributed normal random variables. 0O

(Conover, 1999, pg. 157-158, 353, 363)

Further details about whether assumptions were met or negith of the statistical tests are
provided below. The tests are presented in order of whidtheebthe least to most stringent as-

sumptions: sign test, Wilcoxon test, and t-test.

Dependent-samples Sign Test

All three assumptions of the sign test were fully met.

Assumption 1 — Each observation pair was internally coeststf P(+)> P(-), P(+)< P(-), or
P(+) = P(-) for a single observation pair, then P&P(-), P(+)< P(-), or P(+) = P(-) was the

same across all observation pairs, respectively.

Assumption 2 — Each metric used in this research was a gatwditvariable measured on at least

an interval scale.

Assumption 5— Each pair of bivariate random variabl&s, ;) was taken from a different and

independent Web site.
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Exact Wilcoxon Signed Rank Test
Three of the four assumptions for the exact Wilcoxon sigrak test were met. The fourth
assumption dealing with symmetry of tligs was met for some of the metrics, but not for all of

the metrics.

Assumption 3 — Each metric used in this research was a gatiwditvariable measured on at least

an interval scale.

Assumption 4 — Each of the differences;| was taken from a Web site from the same popula-

tion. Therefore, the mean of each difference was expectbd the same.

Assumption 5 — Each of the differences;] was taken from a different and independent Web

site.

Assumption 6 — The last two columns from tables 63 and 64 shevguartile skew coefficiefft
for all 13 metricg®. Since the Wilcoxon test only considers non-zero diffeesnonly the

skew values from the “No zeros” columns were analyzed.

27A description of quartile skew coefficient and why it was gueH over the traditionally used coefficient of skew-
ness can be found in §7.1.1. The values for the coefficierkefsess are provided in tables 63 and 64 for reference

purposes.
2The six measures that did not require mining for their caltah are shown in table 63. The remaining seven
metrics that were calculated from mined patches and traglsliaplayed in table 64.
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Table 63: Site-centric: Metric Normality and Skew

c0¢

N Lilliefors Shapiro Skew Quartile Skew

Hyp. Metric Total No Zeros D p-Value W  p-Value All  No Zeros AlINo Zeros
INFORMATION PATCH — SITE-PATCH

SC1 SITEDUR 47 47 0.14 0.0184 0.92 0.0035" -1.15 -1.15 0.15 0.15

SC2 SITEPGS 47 28 0.23 <0.0001" 0.93 0.0076" —0.34 0.27 —1.00 0.33

SC3 RETURN 47 47 0.22 <0.000I" 0.75 <0.0001" 2.10 210 0.8 0.18

SC4 REPEAT 47 47 0.16 0.0035 0.87 <0.000I" —1.30 —-1.30 -0.18 —0.18
STRICT INFORMATION SCENT

SC7 UNIQUE 47 44  0.09 0.3986 0.96 0.1368 —-0.34 -0.37 -0.43 —0.26

SC8 LINEAR 47 18 0.36 <0.000f" 0.67 <0.000I" —1.26 0.21 —-1.00 0.07

*p < 0.10; **p < 0.05; **p < 0.01
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Table 64: Site-centric: Metric Normality and Skew (Sigrafit — 0.05)

N Lilliefors Shapiro Skew Quartile Skew

Hyp. Metric Total No Zeros D p-Value W p-Value All  No Zeros AlINo Zeros
INFORMATION PATCH — PAGE-PATCH

SC5a PATCHMAX 14 9 0.19 0.1596 0.88 0.0595 —0.64 -0.43 -0.15 0.26

SC5b PATCHLAST 14 9 021 0.0966 0.89 0.0822 —0.48 —-0.56 0.06 —0.53

SC5C PATCHSUM 14 9 021 00795 079 0.0033° -1.41 -1.09 011 -0.37

SC6 PATCHDUR 14 14 0.15 0.5374 0.96 0.6601 —0.50 —0.50 -0.02 —0.02
RELAXED INFORMATION SCENT

SC9a TRAILMAX 10 6 0.25 0.0671 0.85 0.0581 —0.09 0.19 0.08 0.20

SC9b TRAILLAST 10 6 0.26 0.0616 0.86 0.0775 —0.08 -0.31 0.22 0.46

SC9Cc TRAILSUM 10 6 0.22 0.1860 0.87 0.0977 -0.91 —-1.05 -0.08 0.07

*p < 0.10; **p < 0.05; **p < 0.01



Besides statistics on skew as shown in tables 63 and 64, $i§6rand 57 are also provided to

graphically show the distribution of points for each measur
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Difference Plots

None of the measures exactly met the assumption of no skémg(the quartile skew coef-

ficient). HoweverpATCHDUR had a very slight negative skew 60.02 and was considered

symmetrical.LINEAR andTRAILSUM also had a slight positive skew values of 0.07 and were

considered mostly symmetricalATCHLAST had a high amount of skew-0.53) and did not
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meet the assumption of symmetry. All the other measuresatituily meet the assumption of

symmetry since they had slight to moderate amounts of skews( to |0.46|).

Paired t-Test
Three of the five assumptions for the paired t-test were nted.fdurth assumption dealing with
symmetry of theD;s was met for some of the metrics, but not for all of the metridse fifth as-

sumption of normality was met for only a couple of measures.

Assumption 3 — Each metric used in this research was a gatiwditvariable measured on at least

an interval scale.

Assumption 4 — Each of the differences;| was taken from a Web site from the same popula-

tion. Therefore, the mean of each difference was expectbd the same.

Assumption 5 — Each of the differences;] was taken from a different and independent Web

site.

Assumption 6 — The symmetry for each measure was determirthé same manner as for the
exact Wilcoxon signed rank test, except the “All” columngevased to determine skew since
the t-test uses points with either a difference or no difieee(i.e., bothD; = 0 andD; # 0)
in its calculation. Of the 13 measures, four of the measuadsahvery slight to slight amount
of skew: PATCHLAST (0.06),PATCHDUR (—0.02), TRAILMAX (0.08), andrrRAILSUM (—0.08).
Two of the measures had a severe skewdf00 SITEPGsandLINEAR) and did not meet the
assumption of symmetry. The other seven measures had atsligitoderate amount of skew

(0.11| to | — 0.43]).

Assumption 7 — Two formal statistical tests of normality eveerformed on the differenced/s)
for each of the metri@8: Lilliefors (Kolmogorov-Smirnov) and Shapiro-Wilk noriig tests
(Conover, 1999F. Each test has a null hypothesis that the data follows a Hatistabution

with an unspecified mean and variance. Lilliefors is a norametric normality test, whereas

2symmetry is a necessary, but not sufficient, condition famadity. AlthoughSITEPGSandLINEAR were severely
skewed and thus not symmetrical, the tests of normality weltgoerformed on the measures for purposes of complete-
ness.

30Although presented, formal tests of normality (such asefilirs and Shapiro-Wilk) are known to be sensitive to
even slight departures from normality (Mendenhall and 8m@003).
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Shapiro-Wilk has been found to have greater power than ¢#isés (such as Lilliefors) in

many situations (Conover, 1999).

Two of the measures failed to reject the null hypothesis ajraval distribution for both of the
Lilliefors and Shapiro-Wilks tests at anlevel of 0.15 or lower NIQUE andPATCHDUR).
PATCHMAX andTRAILSUM also failed to reject the null hypothesis using the Lillisfdest,

but did reject the null hypothesis using the more powerfldo-Wilks test at the 0.10 sig-
nificance level. The remaining nine measures rejected théypothesis using both tests with
at least ar level of 0.10. Thus, only two of the measures met the assompti normality,

while the distributions of the other 11 metrics were congdenon-normal.

In addition to the tests of normality, the skew values froblda 63 and 64 and the graphical
depiction of each metric’s points (figures 56 and 57) pradifiether evidence that most of the

measures did not follow a normal distribution.

Overall, only the assumptions for the dependent-sampigstsst were fully met. Therefore,
the sign test was used to test the hypotheses of the siteecertdeP?. The assumptions for the
Wilcoxon test and t-test were not completely met and areigeavonly for comparison purposes.
The lack of symmetry (and normality) for some of the measuoreans the results from the Wilcoxon

and t-test must be interpreted with caution.

7.2.2 Hypotheses Testing

Tables 65 and 66 present the results for the nine site-cdmipgotheses. Table 65 provides results
from the six hypotheses whose measure did not rely on miranghps and trails. Table 66 lists
the results for the three hypotheses that required minitghpa and trails.

The first two columns of each table list the hypothesis nurabername of the metric being
tested. The third and fourth columns list the total numbaneb sites and the number of sites
with a non-zero difference (i.el}); # 0), respectively. The total number of Web sites was used
in the t-test, while only Web sites with non-zero differemeeere used for the Wilcoxon and sign

tests. Columns five through seven list the t statistic, degod freedom (df), and p-value for the

%1The sign test is generally the least powerful of the threts {&onover, 1999). However, as all of the sign test's
assumptions were met, greater confidence can be given teshks of the sign test compared to the other two tests.
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t-test. The eighth and ninth columns display the V statiatid p-value for the Wilcoxon test. The

final two columns list the S statistic and p-value for the igf2.

32Results of the sign test are presented below since all tlsseneptions for the test were met. The results of the
t-test and Wilcoxon test are provided in footnotes. Singthaethe t-test nor the Wilcoxon test met all of their assump
tions, the results of those tests should be interpretedaaitition.
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Table 65: Site-centric: Results

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V  p-Value S p-Value
INFORMATION PATCH — SITE-PATCH

SC1 SITEDUR 47 47 1485 46 <0.000I" 1,128 < 0.0001" 47 < 0.0001"

SC2 SITEPGS 47 28 2.27 46 0.0140 295 0.0166 19 0.0436

SC3 RETURN 47 47 -6.66 46 1.0000 0 1.0000 0 1.0000

SC3 (opp} 47 47 6.66 46 <0.0001™ 1,128 < 0.0001" 47 < 0.0001"

SC4 REPEAT 47 47 1.74 46 0.0447 736 0.0346 29 0.0719
STRICT INFORMATION SCENT

SC7 UNIQUE 47 44  10.19 46 < 0.0001" 986 < 0.000I™ 42 < 0.0001"

SC8 LINEAR 47 18  4.41 46 <0.0001" 171 <0.000f" 18 < 0.0001"

& Hypothesis tested in opposite direction as original —lieaying and returning will beegativelyassociated with achieving a goal on
this long tail Web site.
*p < 0.10; **p < 0.05; **p < 0.01
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Table 66: Site-centric: Results (Significant — 0.05)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V  p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH

SC5a PATCHMAX 14 3.68 13 0.001% 45  0.0020™ 0.0020™

SC5b PATCHLAST 14 3.92 13 0.0009 45  0.0020" 0.0020™

SC5C PATCHSUM 14 3.00 13 0.0051 45  0.0020™ 0.0020™

SC6 PATCHDUR 14 14 4.11 13 0.0006 100 0.0006™ 13 0.0009™
RELAXED INFORMATION SCENT

SC9a TRAILMAX 10 3.33 0.0044 21 0.0156 6 0.0156'

SC9b TRAILLAST 10 3.36 0.0042 21  0.0156 6 0.0156

SC9c TRAILSUM 10 2.89 0.0089 21 0.0156 6 0.0156'

*p < 0.10; **p < 0.05; **p < 0.01

Hypotheses SC5a-c and SC9a-c are each significan(ety., 2% = 0.0333, 222 = 0.0167, and 22t = 0.0033).



SC1—-SITEDUR

Similar to UC1, the first hypothesis of the site-centric madso expected goal achieving for-
agers would spend more time on a Web site than non-goal actitarageré®. However, the site-
centric model did not compare the relative behavior of agerdrom one site to another. Instead,
all comparisons were done relative to an absolute valuerof Begardless of how comparisons
were determined, the rationale for the hypothesis doeshastge from one model to another: an
expectation of higher durations for goal sessions due tatgrénformation gain from the site of
interest.

The results of the sign test supported SC& at0.01 (S = 47; p-value = 0.0001§. All 47
Web sites had a higher median duration amongst goal segh@mmsion-goal sessions. Goal ses-
sions spent roughly six minutes on a site, while non-goaisas foraged for fewer than two min-
utes.

The use ofabsoluteduration, as used in this hypothesis, provides additiomapsrt to prior
research regarding the positive association betweenidurand goal achievement. In addition,
although the results between the user- and site-centrielmadge not directly comparable due to
the relative nature of the user-centric model, the sigmtisapport for both hypotheses generally

reinforces one another regarding the value of durationedipt goal achievement.

SC2 —SITEPGS

Both the first and second hypotheses were similar to one anbétause they both focused on
the concept of satisficing (Pirolli, 2007; Simon, 1956). Hwer, SC2 examined the importance of
greater pages viewed at a Web site rather than duration. difef tvas that every additional page
signaled the continued interest of the forager to stay omsiteedbecause information of value could
still be obtained from the Web site. Thus, greater pagestedua more information of value be-
ing obtained which further lead to a greater probability dfiaving a goal by the forager.

The second hypothesis was found to be significanta0.05 (S = 19; p-value = 0.0435)

33The rationale for the first four site-centric hypothesisexplained in greater detail in the user-centric results
(87.1.2).

34Hypothesis SC1 was also significantat 0.01 for both the t-test (t = 14.85; df = 46; p-value<=0.0001) and
Wilcoxon test (V = 1,128; p-value = 0.0001).

%5Hypothesis SC2 was also significantat 0.05 for both the t-test (t = 2.27; df = 46; p-value = 0.0140) a
Wilcoxon test (V = 295; p-value = 0.0166).
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supporting hypothesis SC2. 19 out of the 28 non-tied Web kidel a higher median number of
pages viewed for goal sessions versus non-goal sessioats&ssions viewed 4.28 pages on aver-
age, whereas non-goal sessions viewed only 3.85 pages.

Hypothesis SC2 provides additional support to prior litera about the positive association be-
tween number of pages viewed and goal achievement. Whenarethfp the user-centric model,
however; the results for this hypothesis were less sigmific@ne possible reason for the differ-
ence may be due to the use of absolute rather than relativeartsans of foragers’ behavior.
However, another likely reason may be due to the structutkeo¥Veb sites used in the site-centric
dataset.

In general, site-centric Web sites had relatively few pd46s36 pages on average). While the
number of pages on the user-centric Web sites was unknoe/sjtds may have had more pages
than the site-centric Web sifs Therefore, there would be more pages that could have bsen vi
ited on a Web site from the user-centric dataset, leadinggreater gap between page visitation

behavior of goal and non-goal sessions, and hence a moiécEghresult.

SC3 —RETURN

Hypothesis SC3 conjectured that foragers who left a Welasitereturned during the same ses-
sion would be more likely to achieve a goal. The hypothesis ma supported at any of the tested
a levels (S = 0; p-value = 1.0008) None of the 47 Web sites had a higher percentage of goals
achieved amongst foragers who left the site and returndédgltive same session than visitors
that stayed on the site during their entire session. Thdtsdadicated a forager wdssslikely

to achieve a goal if the user left a Web site and returned withe same session (the opposite of
hypothesis SC3), which was significanteat 0.01 (S = 47; p-value = 0.0001§8. All 47 Web

sites found a higher proportion of goal sessions that stegtber than left and returned during

their session.

3%%0n average, foragers from the Web sites in the user-ceratisdt viewed 14.84 pages during a session, while vis-
itors to site-centric sites only viewed 4.06 pages. Whiled@dinitive proof that user-centric sites had more pages tha
site-centric Web sites, the higher average number of pagesu for user-centric foragers does give some indication
that those Web sites might have had more pages.

$"Hypothesis SC3 was also not supported at any of the testedels for both the t-test (t =6.66; df = 46; p-value
= 1.0000) and Wilcoxon test (V = 0; p-value = 1.0000).

%8The opposite of hypothesis SC3 was also supported=a0.01 for both the t-test (t = 6.66; df = 46; p-value =
< 0.0001) and Wilcoxon test (V = 1,128; p-value<=0.0001).
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Since prior research has not examined returning behaviauser during the same session, this
hypothesis (in opposite form) provides an initial resultafegative association between returning
behavior during the same session and goal achievementniparison to the user-centric model,
the result of this hypothesis was also not supported. Howeawnéke the user-centric model, the
opposite of the original hypothesis was supported at0.01. The difference in support and not
support between the two models may have been due to the nodtlygddf determining when
leaving and returning behavior occurred.

In general, the user-centric model was conservative whéesite-centric model was liberal
when classifying leaving and returning behavior. For exiahe user-centric model only counted
visits of at least two pages to other known e-commerce Web ag valid leaving behavior. Such
a precise manner of determining leaving behavior was ndilplesin the site-centric data. There-
fore, a more simplistic manner of determining leaving bétrawas used which examined the re-
ferring field for each page viewed. A limitation of using tledarring field was it was not known if
true browsing behavior (i.e., more than one page was vietwet)place at the referred Web site.
Thus situations in which a forager left the site of intergitywed one page on another site, and
then returned would still be marked as leaving and returmirige site-centric mod&. In addi-
tion, the referring field was also limited because it was im&bcapture if a forager left to view

another Web site in a new Web browser window or tab.

SC4 —REPEAT

The final hypothesis which examined the value of the entire Bk as a patch looked at how
prior visitation behavior would affect goal achievemenypdthesis SC4 expected prior visita-
tion of a Web site would provide a forager with intimate knedge of what the site had to offer.
Therefore, when the forager has some need to be met at a flgteethey would more likely re-
turn to the Web site of interest if they believed it would sBtitheir information goal. Thus, repeat
visitation would signal greater likelihood of achieving @afat the Web site of interest.

The results of the sign test demonstrated the fourth hyptheas significant at = 0.10 (S =
29; p-value = 0.07199, supporting hypothesis SC4. 29 of the 47 Web sites had a thigbdian

3%Another example would be a forager that clicked the baclobutf their browser one too many times and ended
up on the search engine page that initially brought themegsite of interest, and then clicked a link to return back to
the site of interest.

40Hypothesis SC4 was significantat= 0.05 for both the t-test (t = 1.74; df = 46; p-value = 0.044T) &Vilcoxon
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probability of a form submission amongst goal sessions vehaser had visited the site before.
The slightly significant result was due to the small differefetween the proportion of goal ses-
sions that had and had not visited before (X%6difference between groups).

Prior literature has found mixed associations (dependeth® task) between users returning
during different sessions and completing a task (SismeicbBucklin, 2004). The result of this
hypothesis lends additional support of a slight positiveagmtion between repeat visitation be-
havior and goal achievement. When compared to the useriecemdel, there was a large differ-
ence in significance between the two models=(0.01 user-centric versus 0.10 site-centric). The
difference in significance may be partially explained in tweys.

First, the nature of the goal being examined in the userricetdtaset may better lend itself to
repeat visitation than the goal in the site-centric datdset example, the user-centric dataset ex-
amined product purchases, which may need to be replenistiertime to time. In contrast, there
is likely little need to resubmit contact information on arfehe site-centric Web sites. From an-
other standpoint, a purchase has a defined cost associdtei. Wherefore, a forager may return
to a site multiple times as they contemplate purchasing dyato Leaving contact information
on a Web site has no real monetary cost associated with tiomacherefore, the submission of
a contact form may not require the same degree of thought@ng@arison that purchasing does,
which may lower the need for repeat visitations to a site.

The second reason a difference between the hypothesestafdimeodels was seen may be
due to the mechanism by which site-centric foragers wengtiitled in the dataset. Cookies were
used to identify and track users across sessions. If a ukgedeheir cookie then they would be
seen as a new visitor on any subsequent visit. Thus, repsttian of foragers may be under-

represented in the site-centric dataset.

SC5 —PATCHMAX , PATCHLAST, and PATCHSUM

The fifth hypothesis expected that visitation of goal pasclheuld be positively associated with
goal achievement. The hypothesis operated under the asartipat certain areas of a Web site
were more valuable to goal achieving foragers than oth@savéthe site. Thus, users that visited

those same areas of the Web site were assumed to have sitfolamation goals and should be

test (V = 736; p-value = 0.0346). The reason the t-test anddifin test found SC4 significant at a lower alpha level
than the sign test may be due to the lower power of the sign test
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more likely to achieve a goal. The actual value from a foragesitation of patches was specified
in slightly different ways in three sub-hypotheses: maximealue of a patch, value of last patch
visited, and total value of all patches visited.

The three sub-hypotheses of SC5 were all found to be signifatax = 0.01 (S = 9; p-value =
0.0020 for all three measuré$)supporting hypotheses SC5a-c (table 66). 14 Web sitesf dli 0
47 total Web sites discovered patches at the 0.05 signifckavel, with only nine of those 14 sites
having a non-zero difference. All nine of the non-zero Websshad goal sessions with higher
median values for the most valuable patch visited, lastpétited, and sum of all patches visited.

On average, foragers visited 2.75 patches per session.sd/itw patches being visited it was
possible that some of the measures did not differ from onéhendy a great deal. For example,
sessions that only visited a single patch would have the satoe for all three measures. How-
ever, as foragers visited almost three patches per sefis®ayerage value GATCHSUM was
at least 0.42 points higher than either of the other measoralsing it unlikely thePATCHSUM
measure only included the same patches as the other two regabor the other two measures
though, the average difference betweamcHMAX andPATCHLAST was only 0.03 points, indicat-
ing many sessions may have had the same patch be the modilgadnd last patch visited. There-
fore, even though both sub-hypotheses were supportedintiiarty of each measure means the
actual impact of the most valuable and last visited patchaah gchievement cannot be reliably
separated from one another.

Since prior research has not examined the impact groupsgekpgghat may be of different
types (e.g., product pages, informational pages)), thimthesis provides an initial result of a pos-

itive association between visitation of patches and gdaiezement.

SC6 —PATCHDUR

The sixth hypothesis expected that mere visitation alonalfable patches would not necessarily
mean foragers were obtaining value from those patchesefdrer similar to hypothesis SC1,

this hypothesis also relied on the concept of satisficing(lRi2007; Simon, 1956); contending

“lUsing the t-test, hypotheses SC5a and SC5b were both satifite = 0.01 PATCHMAX (t = 3.68; df = 13; p-
value = 0.0014)pPATCHLAST (t = 3.92; df = 13; p-value = 0.0009)), while SC5c¢ was signifilcat « = 0.05 (t = 3.00;
df = 13; p-value = 0.0051). Using the Wilcoxon test, all thhggpotheses were significantat= 0.01 (V = 45; p-value
=0.0020 for all three measures). The discrepancy betweesighificance oPATCHsSUMfrom the t-test versus the
Wilcoxon and sign test may be due to a lack of normality of treasure. Without normality, the t-test may not have
enough power to detect as significant of a difference as tier divo tests.
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higher amounts of time spent within patches related to mdmgmation gained and thus a greater
likelihood of goal achievement.

Hypothesis SC6 found a higher median duration within patdbegoal sessions than non-goal
sessions at = 0.01 (S = 13; p-value = 0.000%) supporting the hypothesis. 13 of the 14 non-
zero Web sites with discovered patches had goal sessiond agdgher median duration of time
within patches than non-goal sessions spent in patchesvé&age, goal sessions spent almost
three-quarters of a minute more in patches than non-gosilosess

The use of duration on an entire site has been used in preoatiire to explain choice behav-
ior, with mixed results. Duration has had mixed associatiaith purchasing for different tasks
(Sismeiro and Bucklin, 2004) along with differences in digance among different datasets (Pad-
manabhan et al., 2001). However, as prior literature hagxathined the concept of patches be-
fore, this hypothesis provides an initial result of a pesitassociation between duration within

patches and goal achievement.

SC7 —UNIQUE

Hypothesis SC7 was the first of two hypotheses that definednr#tion scent in a strict manner.
In addition, the hypothesis also viewed a forager’s sesssoa single monolithic piece, and as-
sumed any repeat page viewings (regardless of locatiorg wwdicative of poor scent. In turn,
the cause of lackluster information scent was believed teither a poorly defined information
goal or a less than optimal Web site design, both of which @em®likely to result in a goal being
achieved. Stated in a positive direction, the hypothespgsed that the lower the percentage of
duplicate pages viewed, the more likely a goal would be &elie

Hypothesis SC7 (table 65) was significantat 0.01 (S = 42; p-value = 0.0001%3, support-
ing the hypothesis that goal achieving sessions wouldf@sier duplicate pages than non-goal
sessions. 42 of the 44 non-zero Web sites had goal sessitina higher median percentage of
unigue pages viewed than non-goal sessions, with goabssssiewing almost 9% unique pages
and non-goal sessions only viewing abou¥/0

Prior research has examined the relationship between dp®giion of unique pages visited and

42Hypothesis SC6 was also significantat 0.01 for both the t-test (t = 4.11; df = 13; p-value = 0.0006&) a
Wilcoxon test (V = 100; p-value = 0.0006).

“3Hypothesis SC7 was also significantat 0.01 for both the t-test (t = 10.19; df = 46; p-value=0.0001) and
Wilcoxon test (V = 986; p-value = 0.0001).
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purchasing behavior. Moe (2003) found that the proportiomnigque pages differed depending
on the type of pages being viewed (e.g., brand pages, prpdgess, category pages). However,
this hypothesis examined proportion of unique pages aalbpage types. Therefore, hypothe-
sis SC7 provides support for the general positive assoonidtetween proportion of unique pages

viewed and goal achievement.

SC8 —LINEAR

Hypothesis SC8 was the second of the two hypotheses thaedeéfiformation scent in a strict
manner, where repeat visitations were viewed as indicatidpoor scent. However, this hypoth-
esis took a finer-grained conceptualization of scent tharpthvious hypothesis by examining the
complexity of a user’s session. Complexity was determineddi only what pages were viewed,
but also the order in which they were viewed. Hypothesis S@©8gsed that less complex (i.e.,
more linear) clickstreams were indicative of higher levalscent, and thus a greater likelihood of
achieving a goal.

The hypothesis was found to be significantvat 0.01 (S = 18; p-value = 0.0001}4, support-
ing hypothesis SC8. All 18 of the non-zero Web sites had ighedian linear clickstream values
for goal sessions compared to non-goal sessions. The avgoad sessions had a linear click-
stream value of 0.98 compared to the average value of 0. #ofegoal sessions.

Prior research has found success in using the measure mfrsesmplexity to distinguish be-
tween groups (McEneaney, 2001), in the use of product re@ndation agents (Senecal et al.,
2005), and in predicting the completion of information arcbenmerce tasks (Kalczynski et al.,
2006). This hypothesis strengthens the use of session eaityplo distinguish between goal and
non-goal sessions within the context of goal achievement.

Both of the two strict information scent hypotheses weratbto be supported at the same
level. Using the results of the sign test, one measure waahteto be definitively considered
better than the other, since the number of non-zero Webwieslifferent for each hypothe&is

In addition, even though thaNEAR measure had a greater percentage of its non-zero Web sites in

4Hypothesis SC8 was also significantat 0.01 for both the t-test (t = 4.41; df = 46; p-value<=0.0001) and
Wilcoxon test (V = 171; p-value = 0.0001).

4SExamining the t-test shows a clear preference foluk&UE measure in being better able to distinguish between
goal and non-goal sessions (t value of 10.19 versus 4.41yetr, as the assumptions of the t-test were not fully met,
the results of the t-test should be interpreted with caution
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the positive direction (108 versus 95.4%), the loss of two Web sites in the negative direction for

the UNIQUE measure was not enough to raise the p-value precipitously.

SC9 —TRAILMAX , TRAILLAST , and TRAILSUM

The final hypothesis examined information scent from a eflakewpoint. The hypothesis as-
sumed that foragers who followed trails predominatelyedragd by prior goal sessions would be
positively associated with goal achievement. The hypashgserated under the assumption that
certain paths throughout a Web site (with or without “iné#ficies”) were indicators of high scent
relevant to a goal-achieving information goal. The valutawied from a forager following a trail
was specified in three slightly different sub-hypotheseaximum value of a trail, value of last
trail followed, and total value of all trails followed.

The three sub-hypotheses of SC9 (table 66) regarding tleevialg of valuable trails as a means
to explain goal achievement were all found to be significaiat 2 0.05 (S = 6; p-value = 0.0156
for all three measure®), supporting hypotheses SC9a-c. 10 Web sites out of the dl7sites
discovered trails at the 0.05 significance level, with ormkyos those 10 sites having a non-zero
difference. All six of the non-zero Web sites had goal sessigith higher median values for the
most valuable trail followed, last trail followed, and surfradi trails followed.

On average, foragers followed 1.60 trails per session. Ag/f@agers only followed a sin-
gle trail per session, it was likely the measures did noediiforn one another by a great deal. For
example, sessions that only followed a single trail wouldehthe same value for all three mea-
sures. Examining the difference in value between the thregsores (0.26 to 0.33) failed to re-
veal a clear and distinct difference between them. Thesgefren though all three sub-hypotheses
were supported, the similarity of each measure means thalaestpact of the most valuable, last
followed, and total value of all trails followed on goal ag@ment cannot be reliably separated
from one another.

Prior research has examined the use of paths and portiorasdhdf f predict future patch selec-
tions (Montgomery et al., 2004; Yang et al., 2004). Howethar,use of path fragments to segment

groups of a Web site population has not been examined in [ggoasture. Thus, this hypothesis

“®Hypotheses SC9a-c were significanbat 0.05 for both the t-testrRAILMAX (t = 3.33; df = 9; p-value =
0.0044);TRAILLAST (t = 3.36; df = 9; p-value = 0.0042y,RAILSUM (t = 2.89; df = 9; p-value = 0.0089)) and Wilcoxon
test (V = 21; p-value = 0.0156 for all three measures).
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provides an initial result of a positive association betvEslowing of trails and goal achieve-

ment.

Summary of Results

Table 67 summarizes the results of the hypotheses testirtpeQ3 hypotheses and sub-hypotheses,
seven were supported at= 0.01, four atx = 0.05, and one at = 0.10. Hypothesis SC3 was not
supported in its original form, but the opposite of SC3 waspsuted atv = 0.01.

Table 67: Site-centric: Hypotheses Results Sum-

mary
Hyp. Metric Hypothesis Supported?
INFORMATION PATCH — SITE-PATCH
SC1l SITEDUR Yes™
SC2 SITEPGS Yes™
SC3 RETURN No
SC3  (opp} Yes™
SC4 REPEAT Yes

INFORMATION PATCH — PAGE-PATCH

*kk

SC5a PATCHMAX Yes
SC5b PATCHLAST Yes™
SC5C PATCHSUM Yes™
SC6 PATCHDUR Yes™

RELAXED INFORMATION SCENT

*kk

SC7 UNIQUE Yes

Fkk

SC8 LINEAR Yes
RELAXED INFORMATION SCENT

*%

SC9a TRAILMAX Yes
SC9b TRAILLAST Yes™
SC9c TRAILSUM Yes™

& Hypothesis tested in opposite direction as original —i.e.,
leaving and returning will beegativelyassociated with
achieving a goal on this long tail Web site.

*p < 0.10; **p < 0.05; **p < 0.01

219



7.2.3 Sensitivity Analysis

The previous section tested hypotheses SC5a-c, SC6, araSIg@n patches and trails mined
at the 0.05 significance level. The usenof 0.05 for learning patches and trails was motivated by
prior research that used the sambevel when discovering contrast sets (Bay and Pazzani,)1999
However, other significance levels and different means tealimg contrast sets may be used (e.q.,
support). Therefore, a sensitivity analysis was done tdheeethe selection of mining criteria
used for learning patches and trails may affect the resbittsechypotheses.

This section provides descriptive statistics and resoltfiypotheses SC5a-c, SC6, and SC9a-c
at two different significance levels (0.01 and 0.05) and sskirct support levels (0.25 - 1.50 in

0.25 increments).

Descriptive Statistics

Figure 58 illustrates the number of Web sites that discal/pegches (figure 58a) and trails (fig-
ure 58b) from all eight mined significance and support leustsd’. Each figure also displays the

number of Web sites which did not have a zero difference feitégsted measurts
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Figure 58.: Site-centric: Patch and Trail Sample Size byi8aance / Support Levels

Between the two mined significance levels, there was velg thange in the number of Web

sites for either patches or trails. An increase of only twd\Akes for patches (16.67) and one

4"The actual number of Web sites may be found in tables 69 — 7&hvetne introduced later in this subsection.
“8The number of non-zero Web sites was determined by findingtleage number of “no zero” Web sites from
hypotheses SC5a-c for patches and SC9a-c for trails.
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Web site for trails (11.1%) was seen when moving from the more stringenrt 0.01 to the less
stringenta = 0.05.

The difference in sample size between mined support levatsmuch more dramatic than be-
tween mined significance levels. Higher support levelstiyreaduced the number of Web sites
which discovered patches and trails of the specified valighe\0.25 support level, 32 Web sites
found patches and 35 sites discovered trails. An increageet0.50 support level saw a 25%0
drop in patch Web sites (to 24 sites) and a 3%4Rcrease in trail Web sites (to 24 sites). An even
greater percentage drop in Web sites was seen using theup@brslevel: 58.3% decrease in
Web sites for both patches and trails (to 10 sites). At thednigupport levels there were very few
Web sites discovering patches or trails. Only two and five s, and one and zero Web sites
for patches and trails were found at the 1.00 and 1.25 sujppats, respectively.

Figure 59 displays the average value of all sessions fohttee tpatch visitation (figure 59a)
and trail following (figure 59b) measures across all eighting significance and support levels
used®. In addition, figure 59 also shows the average number of siscgpent within patches for
all sessions (figure 59c).

In general, the average values for each of the measuresragpesstay within a relatively nar-
row range of one another from the 0.01 significance leveledtir5 support level. Table 68 fur-
ther reinforces the relative stability of these measurelssbiyig the mean, standard deviation,
median, minimum, and maximum values from the average of thiesiix significance and sup-
port levels. The standard deviation for the three patchatisn and three trail following measures
ranged from 0.07 to 0.13.

The highest values afaTcHMAX andPATCHLAST were found at the 0.01 significance level
(0.36 and 0.34), whilerRAILMAX andTRAILLAST were at their highest average values at the 0.05
significance level (0.37 and 0.35). Not surprisingly, batthe sum measure®ATCHSUM and
TRAILSUM) had their highest values (0.90 and 0.60) when the supp@Ovzb (when the most
number of patches and trails were discové?ed

The PATCHDUR measure was the only metric that continued to increase ghrall the signifi-

“9The results from the 1.00 support level and above shouldtbepireted with caution as the averages were calcu-
lated from very few Web sites. In addition, the averageslajgal in the figures were calculated by including sessions
which did not visit a patch or trail. Therefore, the averagsnn may be lower than should otherwise be possible. For
example, the lowest average of patches learned at the Qpp@uevel should be 0.50. However, the averagecH-

MAX value was 0.17 for all sessions.
%0See tables 77 and 78 for more details.
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cance and support mining levels The increase may have been due to three inter-relatednsaso

First, the average number of patches per site increasedtf®@®01 significance level to the
0.25 support level. An increased number of patches gegerahnt greater coverage of the Web
site (e.g., 23.3% to 42.2% coverage between the 0.01 significance level and 0.25 sujgpet)?.
Therefore, the duration spent in patches may have morelglalsgned with the amount of time a
forager spent on the Web site as a whole.

The second reason may be due to the increase in average patcha example, the average
size of patches went from 1.67 to 2.25 pages when going frend.®il significance level to the
0.50 support level. When the size of a patch was increasediieetotal duration within the patch
included the duration of more pages. Therefore, an incdetagal duration within a patch may

then lead to higher median patch durations.

The final reason may have been because the average valuetoharmaeased. For example,
between the 0.25 to 0.75 support levels the average patah waireased from 0.42 to 0.88. The
assumption was foragers would spend more time within themaluable patches. Therefore,
when a site only had valuable patches (e.g., at support(ey8), then (1) more time should have
been spent within those patches and (2) the median patctiatucd the forager was not reduced

by the visitation of less valuable patches (where less tintlgimthe patch would be expected).

Table 68: Site-centric: Sensitivity Analysis Metric S&its

Mean St. Dev. Median Min Max

INFORMATION PATCH — PAGE-PATCH

PATCHMAX 0.28 0.07 0.28 0.17 0.36
PATCHLAST 0.24 0.08 0.24 0.12 0.34
PATCHSUM 0.77 0.09 0.78 0.64 0.90

PATCHDUR (in seconds) 82.75 20.35 81.35 58.46 107.71
RELAXED INFORMATION SCENT

TRAILMAX 0.24 0.09 0.21 0.14 0.37
TRAILLAST 0.21 0.10 0.19 0.11 0.35
TRAILSUM 0.42 0.13 0.36 0.31 0.60

51The measure was calculated by finding the median amount efgpant in all patches by a forager.
S2gtatistics about patch characteristics may be found in 87.2
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Figure 60 expands upon figure 59 by illustrating the averadigevof the seven measures against
three groups of sessions: all, goal, and non-tjoal

Tables 69 — 76 list the mean, standard deviation, mediaripmain, and maximum values for
the seven metrics that were calculated from mined patchegraifs at the eight different signif-
icance and support levels. The statistics for the metrieslesplayed in three groups of sessions:

all, goal, and non-goal.

Patch and Trail Descriptive Statistics

Figure 61 illustrates the differences between the sigmiieaand support levels for four differ-
ent statistic¥": number of patches and trails (figure 61a), size of patchédrails (figure 61b),
percentage of coverage of patches and trails (figure 61d)trenvalue of patches and trails (fig-
ure 61d). Each figure displays the statistic of patches ailg for each of the metrics. Figure 61
also displays the number of patches visited (figure 61e) raild followed (figure 61f) from three
groups of sessions: all, goal, and non-goal.

Tables 77 — 86 list the mean, standard deviation, mediarinmam, and maximum values for
the metrics displayed in figure 61 across all eight signifteaaind support mining levels.

The average number of patches and trails found on a Web Hdevéal a similar pattern for the
first five levels, with more patches being discovered thatstriot surprisingly, the greatest num-
ber of average patches (50.16) and trails (39.60) were fosimd) the least stringent support level
(0.25). In comparing the significance and support leveksethvas not a direct equivalent of either
significance level found within the selected support levetls example, in order to obtain a sim-
ilar number of patches and trails as foundvat 0.05 (11.93 patches and 4.70 trails), the support
level would need to have been between 0.75 and 1.00 (8.0@0 patches and 1.60 — 7.20 trails).

The average size of patches and trails roughly followedshape over the significance and
support levels, with trails being larger in size than pasctoe all but the 0.50 support level (2.63
pages per patch versus 2.56 pages pertraibatches and trails discovered using significance
were smaller in size than those patches and trails found finerfirst three support levels. For

example, patches were 1.82 pages in size and trails wergades long at: = 0.05. The first

53The actual values used in the figures may be found in tables?®9 which are introduced later in this subsection.

5%The analysis of patch and trail descriptive statistics damude support levels greater than 0.75, as a limited
number of Web sites found patches and trails at those sulgpets to provide reliable metric averages.

5Trails were restricted to a minimum of two pages in sequewbereas patches could be one page in size.
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Table 69: Site-centric: Metric Statistics (Significant 9.

N Mean St. Dev. Median Min Max

INFORMATION PATCH — PAGE-PATCH

PATCHMAX

All 12 0.36 0.41 0.20 0.00 1.31
Goal 0.60 0.43 0.74 0.00 1.31
Non-goal 0.12 0.21 0.00 0.00 0.53

PATCHLAST

All 12 0.34 0.37 0.20 0.00 1.03
Goal 0.56 0.37 0.70 0.00 1.03
Non-goal 0.12 0.21 0.00 0.00 0.53

PATCHSUM

All 12 0.78 1.18 0.20 0.00 4.53
Goal 1.40 1.41 1.06 0.00 4.53
Non-goal 0.16 0.31 0.00 0.00 0.95

PATCHDUR (in seconds)

All 12 58.46 40.41 47.75 13.00 162.75
Goal 80.23 46.75 71.25 17.00 162.75
Non-goal 36.69 13.97 37.88 13.00 62.50

RELAXED INFORMATION SCENT
TRAILMAX

All 9 0.28 0.38 0.00 0.00 1.04
Goal 0.50 0.42 0.50 0.00 1.04
Non-goal 0.06 0.17 0.00 0.00 0.50

TRAILLAST

All 9 0.27 0.37 0.00 0.00 1.04
Goal 0.48 0.40 0.50 0.00 1.04
Non-goal 0.06 0.17 0.00 0.00 0.50

TRAILSUM

All 9 0.33 0.51 0.00 0.00 1.80
Goal 0.60 0.60 0.50 0.00 1.80
Non-goal 0.06 0.17 0.00 0.00 0.50

Note: all values are based on the median values from each Meé&bgoal and non-
goal sessions.
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Table 70: Site-centric: Metric Statistics (Significant 9%).

N Mean St. Dev. Median Min Max

INFORMATION PATCH — PAGE-PATCH

PATCHMAX

All 14 0.32 0.40 0.00 0.00 1.31
Goal 0.54 0.43 0.60 0.00 1.31
Non-goal 0.10 0.21 0.00 0.00 0.57

PATCHLAST

All 14  0.29 0.34 0.00 0.00 1.03
Goal 0.47 0.36 0.47 0.00 1.03
Non-goal 0.10 0.20 0.00 0.00 0.51

PATCHSUM

All 14  0.79 1.25 0.00 0.00 4.53
Goal 1.40 1.52 1.06 0.00 4.53
Non-goal 0.17 0.36 0.00 0.00 1.04

PATCHDUR (in seconds)

All 14 68.28 47.02 51.38 19.00 178.00
Goal 89.48 53.06 76.63 19.00 178.00
Non-goal 47.07 28.43 38.88 20.00 134.00

RELAXED INFORMATION SCENT
TRAILMAX

All 10 0.27 0.37 0.00 0.00 1.04
Goal 0.50 0.40 0.52 0.00 1.04
Non-goal 0.05 0.16 0.00 0.00 0.50

TRAILLAST

All 10 0.26 0.35 0.00 0.00 1.04
Goal 0.48 0.37 0.52 0.00 1.04
Non-goal 0.05 0.16 0.00 0.00 0.50

TRAILSUM

All 10 0.33 0.50 0.00 0.00 1.80
Goal 0.61 0.58 0.52 0.00 1.80
Non-goal 0.05 0.16 0.00 0.00 0.50

Note: all values are based on the median values from each Meé&bgoal and non-
goal sessions.
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Table 71: Site-centric: Metric Statistics (Supported -5).2

N Mean St.Dev. Median Min Max
INFORMATION PATCH — PAGE-PATCH
PATCHMAX

All 32 0.27 0.31 0.26 0.00 1.31
Goal 0.37 0.36 0.32 0.00 1.31
Non-goal 0.17 0.21 0.00 0.00 0.57

PATCHLAST

All 32 0.20 0.20 0.26 0.00 0.68
Goal 0.26 0.22 0.28 0.00 0.68
Non-goal 0.15 0.18 0.00 0.00 0.48

PATCHSUM

All 32 0.90 1.68 0.27 0.00 6.99
Goal 1.44 2.20 0.60 0.00 6.99
Non-goal 0.37 0.56 0.00 0.00 2.05

PATCHDUR (in seconds)

All 31 81.35 51.13 71.13 16.50 274.00
Goal 98.89 59.29 89.00 26.00 274.00
Non-goal 63.82 34.13 51.75 16.50 130.00

RELAXED INFORMATION SCENT
TRAILMAX

All 35 021 0.27 0.00 0.00 1.04
Goal 0.28 0.32 0.25 0.00 1.04
Non-goal 0.14 0.20 0.00 0.00 0.58

TRAILLAST

All 35 0.15 0.19 0.00 0.00 0.63
Goal 0.19 0.20 0.25 0.00 0.63
Non-goal 0.11 0.16 0.00 0.00 0.50

TRAILSUM

All 35 0.60 1.57 0.00 0.00 10.72
Goal 1.00 2.14 0.25 0.00 10.72
Non-goal 0.21 0.33 0.00 0.00 1.13

Note: all values are based on the median values from each Meé&bgoal and non-

goal sessions.
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Table 72: Site-centric: Metric Statistics (Supported -00.5

N Mean St. Dev. Median Min Max

INFORMATION PATCH — PAGE-PATCH

PATCHMAX

All 24 0.17 0.35 0.00 0.00 1.31
Goal 0.32 0.44 0.00 0.00 1.31
Non-goal 0.02 0.12 0.00 0.00 0.57

PATCHLAST

All 24 0.12 0.25 0.00 0.00 0.79
Goal 0.23 0.31 0.00 0.00 0.79
Non-goal 0.02 0.10 0.00 0.00 0.51

PATCHSUM

All 24 0.64 1.62 0.00 0.00 6.35
Goal 1.22 2.14 0.00 0.00 6.35
Non-goal 0.07 0.32 0.00 0.00 1.58

PATCHDUR (in seconds)

All 24  97.97 60.06 84.00 13.00 348.25
Goal 112.55 67.35 95.25 17.00 348.25
Non-goal 83.40 48.90 70.75 13.00 171.75

RELAXED INFORMATION SCENT
TRAILMAX

All 24 0.14 0.30 0.00 0.00 1.04
Goal 0.24 0.37 0.00 0.00 1.04
Non-goal 0.05 0.16 0.00 0.00 0.58

TRAILLAST

All 24 0.11 0.22 0.00 0.00 0.68
Goal 0.17 0.25 0.00 0.00 0.68
Non-goal 0.05 0.16 0.00 0.00 0.58

TRAILSUM

All 24 0.36 1.01 0.00 0.00 5.55
Goal 0.67 1.35 0.00 0.00 5.55
Non-goal 0.05 0.16 0.00 0.00 0.58

Note: all values are based on the median values from each Wé&bgoal and non-goal
sessions.
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Table 73: Site-centric: Metric Statistics (Supported 5.7

N Mean St. Dev. Median Min Max

INFORMATION PATCH — PAGE-PATCH

PATCHMAX

All 10 0.28 0.45 0.00 0.00 1.31
Goal 0.56 0.50 0.76  0.00 1.31
Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHLAST

All 10 0.24 0.39 0.00 0.00 1.03
Goal 0.49 0.43 0.76  0.00 1.03
Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHSUM

All 10 0.75 1.43 0.00 0.00 4.33
Goal 1.49 1.75 0.76  0.00 4.33
Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHDUR (in seconds)

All 10 107.71 90.64 89.38 13.00 398.25
Goal 130.60 109.67 105.88 17.00 398.25
Non-goal 84.83 64.42 71.00 13.00 240.75

RELAXED INFORMATION SCENT
TRAILMAX

All 10 0.21 0.38 0.00 0.00 1.04
Goal 0.41 0.46 0.22 0.00 1.04
Non-goal 0.00 0.00 0.00 0.00 0.00

TRAILLAST

All 10 0.19 0.36 0.00 0.00 1.04
Goal 0.38 0.43 0.20 0.00 1.04
Non-goal 0.00 0.00 0.00 0.00 0.00

TRAILSUM

All 10 0.31 0.61 0.00 0.00 1.81
Goal 0.62 0.76 0.22 0.00 1.81
Non-goal 0.00 0.00 0.00 0.00 0.00

Note: all values are based on the median values from each Wé&bgoal and non-goal
sessions.
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Table 74: Site-centric: Metric Statistics (Significant Q).

N Mean St.Dev. Median Min Max
INFORMATION PATCH — PAGE-PATCH
PATCHMAX

All 2 0.33 0.65 0.00 0.00 1.31
Goal 0.65 0.92 0.65 0.00 1.31
Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHLAST

All 2 0.26 0.52 0.00 0.00 1.03
Goal 0.52 0.73 0.52 0.00 1.03
Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHSUM

All 2 0.58 1.17 0.00 0.00 2.34
Goal 1.17 1.65 1.17 0.00 2.34
Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHDUR (in seconds)

All 2 105.88 54,06 102.88 43.00 174.75
Goal 136.25 54,45 136.25 97.75 174.75
Non-goal 75.50 45.96 75.50 43.00 108.00

RELAXED INFORMATION SCENT
TRAILMAX

All 5 0.10 0.33 0.00 0.00 1.04
Goal 0.21 0.47 0.00 0.00 1.04
Non-goal 0.00 0.00 0.00 0.00 0.00

TRAILLAST

All 5 0.10 0.33 0.00 0.00 1.04
Goal 0.21 0.47 0.00 0.00 1.04
Non-goal 0.00 0.00 0.00 0.00 0.00

TRAILSUM

All 5 0.10 0.33 0.00 0.00 1.04
Goal 0.21 0.47 0.00 0.00 1.04
Non-goal 0.00 0.00 0.00 0.00 0.00

Note: all values are based on the median values from each ie&bgoal and non-

goal sessions.
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Table 75:; Site-centric: Metric Statistics (Supported -51.2

N Mean St.Dev. Median Min  Max
INFORMATION PATCH — PAGE-PATCH
PATCHMAX

All 1 0.65 0.92 0.65 0.00 131
Goal 1.31 0.00 131 131 131
Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHLAST

All 1 0.65 0.92 0.65 0.00 131
Goal 1.31 0.00 131 131 131
Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHSUM

All 1 0.65 0.92 0.65 0.00 1.31
Goal 1.31 0.00 131 131 131
Non-goal 0.00 0.00 0.00 0.00 0.00

PATCHDUR (in seconds)

All 1 39.25 21.57 39.25 24.00 54.50
Goal 54.50 0.00 5450 54.50 54.50
Non-goal 24.00 0.00 24.00 24.00 24.00

RELAXED INFORMATION SCENT
TRAILMAX

All 0 n/a n/a n/a n/a n/a
Goal n/a n/a n/a n/a n/a
Non-goal n/a n/a n/a n/a n/a

TRAILLAST

All 0 n/a n/a n/a n/a n/a
Goal n/a n/a n/a n/a n/a
Non-goal n/a n/a n/a n/a n/a

TRAILSUM

All 0 n/a n/a n/a n/a n/a
Goal n/a n/a n/a n/a n/a
Non-goal n/a n/a n/a n/a n/a

Note: all values are based on the median values from each Neg&bgoal and non-

goal sessions.
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Table 76: Site-centric: Metric Statistics (Supported -01.5

N Mean St.Dev. Median Min Max
INFORMATION PATCH — PAGE-PATCH
PATCHMAX

All 0 n/a n/a na n/a nla
Goal n/a n/a na nfa nla
Non-goal n/a n/a na n/a nla

PATCHLAST

All 0 n/a n/a na n/a nla
Goal n/a n/a na nfa nla
Non-goal n/a n/a nfa nla nla

PATCHSUM

All 0 n/a n/a na n/a nla
Goal n/a n/a na nfa nla
Non-goal n/a n/a na n/a nla

PATCHDUR (in seconds)

All 0 n/a n/a na n/a nla
Goal n/a n/a na nfa nla
Non-goal n/a n/a nfa nla nla

RELAXED INFORMATION SCENT
TRAILMAX

All 0 n/a n/a na n/a nla
Goal n/a n/a na nfa nla
Non-goal n/a n/a na n/fa nla

TRAILLAST

All 0 n/a n/a na nla nla
Goal n/a n/a na nfa nla
Non-goal n/a n/a na n/a nla

TRAILSUM

All 0 n/a n/a na n/a nla
Goal n/a n/a na nla nla
Non-goal n/a n/a na n/a nla

Note: all values are based on the median values from each eé&bgoal and

non-goal sessions.
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three support levels had patches ranging in size from 2.2%® pages and trails from 2.45 to

2.63 pages.

The percentage of coverage for both patches and trails veandyridentical for the first five
significance and support levels. The pattern of coveragghtgunirrored that of the number of
patches and trails found from figure 61a. As the number ofahlai patches and trails increased,
the likelihood that more pages from a Web site may be includedpatch also increased. Thus,
the increase and decrease in Web site coverage changednila slirection and degree as the
change in discovered patches and trails. For example, Westonumber of patches and trails
found along with the smallest coverage percentage was=a0.01 (10.58 patches with 23.37
coverage and 3.44 trails with 20Z5coverage). In contrast, the highest number of patchefs,trai
and coverage percentage was at support level 0.25 (50.¢6gsatvith 42.2% coverage and 39.60
trails with 40.00% coverage).

The average value of patches and trails were relativelytaohacross the significance levels,
but increased steadily with each support [8¥%eh noticeable difference between patches and
trails was only present for the two significance levels (€¢.0 patch value versus 0.83 trail value
ata = 0.01). In comparing the significance and support levetsgtivas not a direct equivalent of
either significance level found within the selected supfewels. For example, in order to obtain a
similar value for patches and trails as foundvat 0.05 (0.67 patch value and 0.79 trail value), the
support level would need to have been between 0.50 and 0.6% (.83 patch value and 0.61
—0.88 trail value). However, a support level between 0.50@#5 would still not be equivalent
since the value of significant patches were as low as 0.27 28J@ér « = 0.01 and 0.05, respec-
tively.

The last measure (figures 61e and 61f) illustrated the nuoflqeatches visited and trails fol-
lowed by foragers. Goal sessions visited more patches dlodv/éml more trails across all the dif-
ferent significance and support levels than non-goal sessla addition, the general shape of
both figures followed the number of patches and trails foumd site. For example, the highest
numbers of patches found and visited were both seen at duppek0.25 (50.16 patches discov-

ered with 7.74 patches followed by goal sessions).

%%The increase of value for each support level was not sungrisince the support level created a minimum allow-
able value for any included patches or trails.
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Table 77: Site-centric: Number of Patches by Site

N Mean St.Dev. Median Min Max

SIGNIFICANCE
0.01 12 10.58 26.35 2.00 1 94
0.05 14 11.93 28.74 3.50 111

SUPPORTED
0.25 32 50.16 132.79 14.50 2 748
0.50 24 31.04 83.50 6.50 1 412
0.75 10 20.20 47.69 2.00 1 155

2
1

[EEN

1.00 2 8.00 8.49 8.00 14
1.25 1 1.00 0.00 1.00
1.50 0 n/a n/a n/a nla n/a

Table 78: Site-centric: Number of Trails by Site

N Mean St.Dev. Median Min Max

SIGNIFICANCE
001 9 344 6.29 1.00 1 20

0.05 10 4.70 8.04 1.50 1 27
SUPPORTED
0.25 35 39.60 97.97 12.00 1 491
0.50 24 18.21 40.69 5.00 1 188
0.75 10 7.20 11.60 3.00 1 39
1.00 5 1.60 0.89 1.00 1 3
125 O n/a n/a na nfa nla
150 O n/a n/a na n/a nla

236



Table 79: Site-centric: Patch Size by Site

N Mean St.Dev. Median Min Max

SIGNIFICANCE

0.01 12 1.67 0.54 1.50 1.00 3.00

0.05 14 1.82 0.64 2.00 1.00 3.00
SUPPORTED

025 32 242 0.72 2.25 1.00 4.00

050 24 2.63 0.89 2.75 1.00 4.00

0.75 10 2.25 0.75 2.25 1.00 3.00

100 2 175 0.35 1.75 150 2.00

125 1 1.00 0.00 1.00 1.00 1.00

150 O n/a n/a na nfa nla

Table 80: Site-centric: Trail Size by Site
N Mean St.Dev. Median Min Max

SIGNIFICANCE

001 9 200 0.00 2.00 2.00 2.00

0.05 10 2.15 0.34 2.00 2.00 3.00
SUPPORTED

025 35 2.63 0.65 3.00 2.00 5.00

0.50 24 2.56 0.74 2,50 2.00 5.00

0.75 10 245 0.50 2.25 2.00 3.00

100 5 230 0.67 2.00 2.00 3.50

125 O n/a n/a na n/fa nla

150 O n/a n/a na nfa nla

237



Table 81: Site-centric: Patch Coverage by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE
0.01 12 23.3% 13.88, 19.62% 7.14% 50.004
0.05 14 28.6% 13.89, 26.79% 10.000 50.00%
SUPPORTED
0.25 32 422% 16.79% 43.6% 7.8% 70.004
0.50 24 36.3% 16.04% 3592, 5.26% 70.00%
0.75 10 28.9% 11.66% 30.080 12500 47.62%
1.00 2 329% 20.82% 32900 18.18% 47.62%
125 1 9.0% 0.006 9.09% 9.09%  9.09%
150 O n/a n/a n/a n/a n/a

Table 82: Site-centric: Trail Coverage by Site

N Mean St. Dev. Median Min Max

SIGNIFICANCE
0.01 9 202% 12.78, 18.18: 3.450 47.6Z%
0.05 10 26.4% 14.800 27.44% 6.906 50.00%
SUPPORTED
0.25 35 40.00 17.18% 42.1% 2.53% 70.004
0.50 24 33.4% 13.437 3333 6.900 55.56%
0.75 10 29.4x 1458, 27.44% 8.33% 50.00h
1.00 5 23.0% 15306 18.18% 125040 50.00%
125 O n/a n/a n/a n/a n/a
150 O n/a n/a n/a n/a n/a
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Table 83: Site-centric: Patch Value by Site

N Mean St.Dev. Median Min Max

SIGNIFICANCE

0.01 12 0.70 0.23 0.71 0.27 1.17

0.05 14 0.67 0.16 0.67 0.28 0.88
SUPPORTED

025 32 044 0.11 0.43 0.28 0.67

0.50 24 0.60 0.06 0.58 0.52 0.75

0.75 10 0.83 0.12 0.78 0.75 1.17

100 2 113 0.05 113 1.09 1.17

125 1 131 0.00 131 131 131

150 O n/a n/a na nfa nla

Table 84: Site-centric: Trail Value by Site
N Mean St.Dev. Median Min Max

SIGNIFICANCE

001 9 0.83 0.21 0.86 0.50 1.06

0.05 10 0.79 0.19 0.82 0.46 1.05
SUPPORTED

025 35 042 0.10 0.41 0.27 0.78

050 24 0.61 0.06 0.60 0.53 0.78

0.75 10 0.88 0.10 0.83 0.80 1.05

100 5 1.06 0.04 1.05 1.00 1.12

125 O n/a n/a na n/fa nla

150 O n/a n/a na nfa nla
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Table 85: Site-centric: Patch Visitation by Site

Mean St. Dev. Median Min Max
SIGNIFICANCE
0.01
All 2.54 1.89 2.00 1.00 10.00
Goal 3.17 2.44 2.00 1.00 10.00
Non-goal  1.92 0.79 200 1.00 4.00
0.05
All 2.75 2.25 2.00 1.00 11.00
Goal 3.50 2.93 2.00 1.00 11.00
Non-goal  2.00 0.88 2.00 1.00 4.00
SUPPORTED
0.25
All 5.81 5.88 400 1.00 26.00
Goal 7.74 7.58 400 1.00 26.00
Non-goal  3.87 2.23 400 1.00 9.00
0.50
All 4.70 4.49 3.00 1.00 21.00
Goal 5.56 5.68 3.00 1.00 21.00
Non-goal  3.83 2.73 3.00 1.00 11.00
0.75
All 3.65 3.59 2.00 1.00 14.00
Goal 4.50 4.60 2.00 1.00 14.00
Non-goal 2.80 2.10 2.00 1.00 7.00
1.00
All 3.38 1.70 3.00 2.00 550
Goal 3.75 2.47 3.75 2.00 550
Non-goal  3.00 1.41 3.00 2.00 4.00
1.25
All 1.00 n/a 1.00 1.00 1.00
Goal 1.00 n/a 1.00 1.00 1.00
Non-goal  1.00 n/a 1.00 1.00 1.00
1.50
All n/a n/a na nla n/a
Goal n/a n/a n‘a nla n/a
Non-goal n/a n/a na nla n/a
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Table 86: Site-centric: Trail Following by Site

Mean St. Dev. Median Min Max
SIGNIFICANCE
0.01
All 1.36 0.94 1.00 1.00 4.50
Goal 1.61 1.27 1.00 1.00 4.50
Non-goal 1.11 0.33 1.00 1.00 2.00
0.05
All 1.60 1.14 1.00 1.00 5.00
Goal 1.80 1.48 1.00 1.00 5.00
Non-goal  1.40 0.70 1.00 1.00 3.00
SUPPORTED
0.25
All 4.23 5.24 3.00 1.00 34.00
Goal 5.32 6.86 3.00 1.00 34.00
Non-goal  3.13 2.49 3.00 1.00 10.00
0.50
All 3.18 3.05 2.00 1.00 14.00
Goal 3.77 3.68 2.00 1.00 14.00
Non-goal 2.58 2.17 2.00 1.00 11.00
0.75
All 2.56 1.62 250 1.00 6.00
Goal 2.78 1.86 3.00 1.00 6.00
Non-goal 2.33 1.41 2.00 1.00 4.00
1.00
All 1.50 0.71 1.00 1.00 3.00
Goal 1.60 0.89 1.00 1.00 3.00
Non-goal  1.40 0.55 1.00 1.00 2.00
1.25
All n/a n/a nfa nla n/a
Goal n/a n/a n‘a nla n/a
Non-goal n/a n/a na nla n/a
1.50
All n/a n/a na nla n/a
Goal n/a n/a n‘a nla n/a
Non-goal n/a n/a na nla n/a
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Hypotheses Testing

Table 87 presents a summary of the results from each of tferalit significance and support
mining level$’. The table lists the hypothesis number and metric beingdestthe first two
columns. Columns three and four present the results whehgmand trails were mined using a
significance value of 0.01 and 0.05. The final six columns ipleothe results when the specified

support level (0.25 to 1.50 in 0.25 increments) was usedsim Ipatches and tras

Table 87: Site-centric: Patches and Trails HypotheseslReSummary

Hypothesis Supported?

Significance Support

Hyp. Metric 0.01 005 025 050 0.75 1.00 125 1.50
INFORMATION PATCH — PAGE-PATCH

SC5a PATCHMAX Yes™ Yes” Yes™ Yes™ Yes" No No n/a

SC5b PATCHLAST Yes™ Yes” Yes™ Yes™ Yes" No No n/a

SC5c PATCHSUM Yes  Yes  Yes Yes Yes" No No n/a

SC6 PATCHDUR Yes™ Yes” Yes™ Yes™ Yes" No No n/a
RELAXED INFORMATION SCENT

SC9a TRAILMAX Yes Yes” Yes Yes Yes No n/a nla

SC9b TRAILLAST Yes VYes" Yes” Yes Yes No n/a nla

SC9c TRAILSUM Yes Yes' Yes Yes Yes No n/a nla

*p < 0.10; **p < 0.05; **p < 0.01

In general, the results for all seven measures appeareddddidy steady across the first five
significance and support mining levels. TierCHMAX andPATCHLAST measures both had the
same pattern of significant findings. The metrics were siganifi ato: = 0.01 for all but the most
stringent significance (0.01) and support mining levelgg.where the measures were both sig-
nificant atae = 0.05. PATCHSUM followed a similar pattern as the other two patch visitatioea-
sures. However, unlikeATCHMAX andPATCHLAST, PATCHSUM was only significant atv = 0.05

for patches mined at the 0.25 support level. The drop in fggmice may be a symptom of the

5"The results were determined from the sign test. As the dat@ fas the sensitivity analysis was from the same
data set that was used to test the site-centric model, thenpgi®ns of the sign test still held.

%8The analysis of results does not include supported levelstgr than 0.75. There were too few Web sites at those
mined support levels to possibly obtain statistically ffigant results.
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patches found at the 0.25 support mining level covering taohvof a Web site (42.22 average
coverage) to be as effective at distinguishing between gudinon-goal sessions.

The PATCHDUR metric was significant at = 0.01 for all levels except the 0.75 support mining
level, where the measure was significantvat 0.05. The decrease in significance may be due to
the sign test’s lack of power in detecting differencea at 0.01 with a sample size of only 10 Web
sites.

TRAILMAX , TRAILLAST, andTRAILSUM were all significant atv = 0.10 except for trails mined
at the 0.05 significance level, where all three measures significant ato = 0.05. In addition,
the TRAILLAST measure was also significantaat 0.05 at the 0.25 support mining level. A lack
of power by the sign test to adequately detect a differenseich small sample sizes (e.g., five to
nine Web sites) was the primary suspect for many of the measury reaching a significance of
a =0.10.

Tables 88 — 95 present the results of all eight significandesapport mining levels for all three
statistical tests. Following the tables, figure 62 illustsathe p-values obtained from the statistical
tests for each of the seven measures. The graphs show tlis cfghe three tests over the first

five significance and support mining levels (0.01 — 0.75).
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Table 88: Site-centric: Results (Significant — 0.01)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH

SC5a PATCHMAX 12 8 372 11 0.00f7 36 0.0039 8 0.0039

SC5b PATCHLAST 12 8 390 11 0.001Z 36 0.0039 8 0.0039

SC5C PATCHSUM 12 8 292 11 0.0070 36 0.0039 8 0.0039

SC6 PATCHDUR 12 12 393 11 0.0012 78 0.0002° 12 0.000Z2"
RELAXED INFORMATION SCENT

SC9a TRAILMAX 9 5 292 8 0.0096 15 0.0313 5 0.0313

SC9b TRAILLAST 9 5 294 8 0.0094 15 0.0313 5 0.0313

SC9c TRAILSUM 9 5 257 8 00165 15 0.0313 5 0.0313

*p < 0.10; **p < 0.05; **p < 0.01

Hypotheses SC5a-c and SC9a-c are each significap(ety., 2% = 0.0333, 222 = 0.0167, and 22 = 0.0033).
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Table 89: Site-centric: Results (Significant — 0.05)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V  p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH

SC5a PATCHMAX 14 3.68 13 0.001% 45  0.0020™ 0.0020™

SC5b PATCHLAST 14 3.92 13 0.0009 45  0.0020" 0.0020™

SC5C PATCHSUM 14 3.00 13 0.0051 45  0.0020™ 0.0020™

SC6 PATCHDUR 14 14 4.11 13 0.0006 100 0.0006™ 13 0.0009™
RELAXED INFORMATION SCENT

SC9a TRAILMAX 10 3.33 0.0044 21 0.0156 6 0.0156'

SC9b TRAILLAST 10 3.36 0.0042 21  0.0156 6 0.0156

SC9c TRAILSUM 10 2.89 0.0089 21 0.0156 6 0.0156'

*p < 0.10; **p < 0.05; **p < 0.01

Hypotheses SC5a-c and SC9a-c are each significan(ety., 2% = 0.0333, 222 = 0.0167, and 22t = 0.0033).
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Table 90: Site-centric: Results (Supported — 0.25)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V  p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH

SC5a PATCHMAX 32 20 3.49 31 0.0007 191 0.0003" 17 0.0013"

SC5b PATCHLAST 32 17 3.36 31 0.001T 141 0.0005" 15 0.0012"

SC5C PATCHSUM 32 21 3.04 31 0.0024 210 0.0002" 17 0.0036

SC6 PATCHDUR? 31 31 420 30 0.000f 450 <0.000I" 27 < 0.0001"
RELAXED INFORMATION SCENT

SC9a TRAILMAX 35 20 2.49 34 0.0080 167 0.0096 15 0.0207

SC9b TRAILLAST 35 19 223 34 0.0162 153 0.0090 15 0.0096

SC9c TRAILSUM 35 20 233 34 0.0178 181 0.0018" 15 0.0207

& paTcHDURoONIy had a total of 31 Web sites (versus the 32 sitesaCHES because there were not any sessions which visited dis-
covered goal patches at one Web site. All five discovered gatahes at the site of interest contained a page that wasigerio
available to sessions within the testing set. More spedifidhe training set consisted of sessions which existedrdrefore

05/23/2008 8:29:38 PM. The page in question was last visiyeahy session on 03/20/2008 8:13:05 PM.

*p < 0.10; *p < 0.05; **p < 0.01

Hypotheses SC5a-c and SC9a-c are each significghiaty., 232 = 0.0333, %22 = 0.0167, and 2% = 0.0033).
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Table 91: Site-centric: Results (Supported — 0.50)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V  p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH

SC5a PATCHMAX 24 3.40 23 0.0017 45  0.0020™ 0.0020™

SC5b PATCHLAST 24 3.36 23 0.001% 45  0.0020" 0.0020™

SC5C PATCHSUM 24 2.84 23 0.0047 45  0.0020™ 0.0020™

SC6 PATCHDUR 24 23 2.80 23 0.0050 227 0.0027° 18 0.0053"
RELAXED INFORMATION SCENT

SC9a TRAILMAX 24 2.45 23 0.0112 41 0.0137 8 0.0195

SC9b TRAILLAST 24 212 23  0.02%6 39 0.0273 8 0.0195

SC9c TRAILSUM 24 2.29 23 0.0159 42 0.0098 8 0.0195

*p < 0.10; **p < 0.05; **p < 0.01

Hypotheses SC5a-c and SC9a-c are each significan(ety., 2% = 0.0333, 222 = 0.0167, and 22t = 0.0033).
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Table 92: Site-centric: Results (Supported — 0.75)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V  p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH

SC5a PATCHMAX 10 350 9 0.003% 21 0.0156 6 0.0156'

SC5b PATCHLAST 10 361 9 0.0028§ 21 0.0156 6 0.0156

SC5C PATCHSUM 10 270 9 0.0123 21 0.0156 6 0.0156

SC6 PATCHDUR 10 10 262 9 0.0138 50 0.0098° 9 0.0107
RELAXED INFORMATION SCENT

SC9a TRAILMAX 10 2.83 0.0099 15 0.0313 5 0.0313

SC9b TRAILLAST 10 2.80 0.0104 15 0.0313 5 0.0313

SC9c TRAILSUM 10 2.58 0.0148 15 0.0313 5 0.0313

*p < 0.10; **p < 0.05; **p < 0.01

Hypotheses SC5a-c and SC9a-c are each significan(ety., 2% = 0.0333, 222 = 0.0167, and 22t = 0.0033).
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Table 93: Site-centric: Results (Supported — 1.00)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V  p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH

SCba PATCHMAX 2 1 1.00 1 0.2500 1 0.5000 1 0.5000

SC5b PATCHLAST 2 1 100 1 0.2500 1 0.5000 1 0.5000

SC5C PATCHSUM 2 1 1.00 1 0.2500 1 0.5000 1 0.5000

SC6 PATCHDUR 2 2 1013 1 0.0313 3 0.2500 2 0.2500
RELAXED INFORMATION SCENT

SC9a TRAILMAX 5 1 1.00 4 0.1870 1 0.5000 1 0.5000

SC9b TRAILLAST 5 1 100 4 0.1870 1 0.5000 1 0.5000

SC9c TRAILSUM 5 1 1.00 4 0.1870 1 0.5000 1 0.5000

*p < 0.10; **p < 0.05; **p < 0.01

Hypotheses SC5a-c and SC9a-c are each significan(ety., 2% = 0.0333, 222 = 0.0167, and 22t = 0.0033).
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Table 94: Site-centric: Results (Supported — 1.25)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros df p-Value V p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH

SCba PATCHMAX 1 1 n/a nla n/a 1 0.5000 1 0.5000

SC5b PATCHLAST 1 1 n/a nla n/a 1 0.5000 1 0.5000

SC5C PATCHSUM 1 1 n/a nla n/a 1 0.5000 1 0.5000

SC6 PATCHDUR 1 1 n/a nla n/a 1 0.5000 1 0.5000
RELAXED INFORMATION SCENT

SC9a TRAILMAX n/a n/a n/a nla n/a n/a n/a n/a n/a

SC9b TRAILLAST n/a na n/a nla n/a n/a n/a n/a n/a

SC9c TRAILSUM n/a na n/a nla n/a n/a n/a n/a n/a

*p < 0.10; **p < 0.05; **p < 0.01

Hypotheses SC5a-c and SC9a-c are each significan(ety., 2% = 0.0333, 222 = 0.0167, and 22 = 0.0033).



TG6¢

Table 95:; Site-centric: Results (Supported — 1.50)

N t-test Wilcoxon Sign Test

Hyp. Metric Total No Zeros t df p-Value V p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH

SCba PATCHMAX n/a na n/a nla n/a n/a n/a n/a n/a

SC5b PATCHLAST n/a na n/a nla n/a n/a n/a n/a n/a

SC5C PATCHSUM n/a n/a n/a nla n/a n/a n/a n/a n/a

SC6 PATCHDUR n/a na n/a nla n/a n/a n/a n/a n/a
RELAXED INFORMATION SCENT

SC9a TRAILMAX n/a na n/a nla n/a n/a n/a n/a n/a

SC9b TRAILLAST n/a na n/a nla n/a n/a n/a n/a n/a

SC9c TRAILSUM n/a na n/a nla n/a n/a n/a n/a n/a

*p < 0.10; **p < 0.05; **p < 0.01
Hypotheses SC5a-c and SC9a-c are each significgh(aly.,

0.10

3

=0.0333, &% = 0.0167, and22 = 0.0033).



p-Value

p-Value

p-Value

0.03 0.03
t-Test —— t-Test —+——
0.025 A Wilcoxon ---x--- 0.025 - Wilcoxon —--x-—-
Sign test ---&--- Sign test ---&---
0.02 0.02
S
b S & _ B
0.015 / g 0.015 /
! o /
0.01 o 0.01 o /
/
0.005 0.005 . /
0 0
o o o o o o o o o o
X % T e ‘9 Y % g "
Significance / Support Levels Significance / Support Levels
(a) PATCHMAX (b) PATCHLAST
0.03 0.03
t-Test —— t-Test —+——
0.025 A Wilcoxon ---x--- 0.025 - Wilcoxon —--<-—-
Sign test ---&--- Sign test ---&---
0.02 0.02
S
0.015 + S 0.015
a
0.01 o 0.01 o
0.005 0.005
0 0
o o o o o o o o o o
X % T e ‘9 ‘9 % " "
Significance / Support Levels Significance / Support Levels
(c) PATCHSUM (d) PATCHDUR
0.05 - 0.05 -
t-Test —— t-Test —+——
Wilcoxon ---x--- Wilcoxon —--<-—-
0.04 7 Sign test ---&--- 0.04 1 Sign test ---&---
0034 X Ve 8 003 -
a I
\ S >
0.02 R I & 0.02 A
\&\,\ ,,x/
0.01 P 0.01 -
0 T T T T T 0 T T T T T

Q o o Q
% % N v %
Significance / Support Levels
(e) TRAILMAX

o o Q
X % N v %
Significance / Support Levels
(f) TRAILLAST

0.05
t-Test ——
0.04
g 0.03 -
=
>
& 0.02
0.01 -~
0
o, o, 0. ©
% v

Significance / Support Levels
(g) TRAILSUM

Figure 62.: Site-centric: Trail and Patch p-values by Sigance / Support Levels
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7.3 Conclusion

This chapter provided the results of both the user- andcsitéric models of information forag-

ing. Descriptive statistics, assumption checks of statistests, and results from each model’s hy-
potheses were provided. In addition, a sensitivity analysis done on the seven hypotheses of the
site-centric model that relied on mining patches and tréigerall, three of the four user-centric
hypotheses were supportedoat 0.01. Of the 13 site-centric hypotheses and sub-hypathese
seven were supported at= 0.01, four air = 0.05, one atv = 0.10, and one at = 0.01 in the op-

posite direction as expected.
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Chapter 8

Temporal Aspects of Information Foraging

The site-centric clickstream model of information foragyimade an implicit assumption that the
structure of the Web sites being examined did not changetbeasourse of the analysis. Thus,
it was expected that browsing patterns of goal and non-gesaliens would be roughly constant
over time, for both the calculated measures (e.g., duratiomber of pages viewed) and learned
patches and trails. However, the Web is a dynamic and ewpkmvironment (Warren et al., 1999;
Chi et al., 1998) where Web sites add, modify, and removeetriPitkow and Pirolli, 1997) on a
regular basis In addition, like traditional software, Web sites may alswlergo structural mainte-
nance to improve the quality of the browsing experience fsitors (Ricca and Tonella, 2001).

As Web sites can be dynamic, assuming a static represantatiy not be appropriate when
testing the site-centric modelTherefore, this chapter presents a second test of theesitigic
hypotheses using temporal aspects to determine if time sreakidference in the results. Instead
of comparing browsing behavior to an absolute point of zalidyehavior was compared relative
to prior goal sessions at the site of interest. Thus, if aunbe structural changes occurred, they
would be reflected in the relative value of the current sessio

Methodologically, relative measures were determined bgmassively calculating sessions in
order of their session start time. Thus, the currently pssed session would be compared rela-
tive to all goal sessions that occurred before it. Althoughdomparison was relatively simple in
definition (i.e., all prior goal sessions were used as opptsa sliding window), the computa-
tional complexity of the methodology was still much highleant for the static site-centric version.
Therefore, the results of this chapter may also shed ligttt he value of undertaking the extra

complexity of this methodology.

IFor example, Ricca and Tonella (2000) analyzed 15 Web sisaothree month period and found that each Web
site had, on average, 3.4 significant structural changdsnttat time frame.

2The same concern over static Web sites was not an issue iegteelportions of the user-centric model. Compar-
isons were made relative to browsing behavior at other Web siithin the limited time of the user’s session. Thus, the
only expectation was that the Web site would remain statitethe user was on the site of interest.
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The first section of this chapter details the methodologyl is¢est the temporal version of the
site-centric model. In particular, the data used to testribdel is explained first, followed by the
algorithm used to progressively calculate measures, andfthally the formulas used to deter-
mine the relative value for each session’s measures. Tloadeaection presents the results of the
temporal version and compares against the results of ttie gtgision of the model. Finally, the

conclusion summarizes the usefulness of the temporal melbgy given the results obtained.

8.1 Methodology

In the first subsection below, a description of the data efgsnavailable in the data are described
The second subsection details the progressive manner ahwle dataset was processed. The
processing was done in order to create measures that watieedb prior sessions. Finally, the
last subsection illustrates the equations used to caicelath of the measures for the temporal

version of the site-centric model.

8.1.1 Dataset Sample

The data used in the static and temporal versions of sitetcenodel were exactly the same. The
data contained a set efsessionsS (Sg, S1, ...,S5.-1), wheresS; represents a single session. Each
session §;) contained a set of: page information tuple® (P, P, ..., Pin—1), WhereP;; rep-
resents information about a particular page viewed duriegsaion. Each page information tuple
was made up of seven pieces of information: a unique identdighe session, Web site, referring
domain, and page viewed; date and time the page was viewednlich time was spent on the
page; and if the page represented a contact goal being adhiev

The calculation of metrics for each session was only dondaset parts of a session occurring
beforethe achievement of a contact gharhis truncation was done because the problem being in-
vestigated was the prediction of goal achievement duriegeimainderof a session. Thus, predic-
tion was done from a point right before a form submission aetlj i.e.,P only contained pages

which occurredeforethe contact form was submitted for the contact goal of irstiere

3Summary statistics about the site-centric dataset canurelfin chapter 6.
“If a session did not submit a contact form then the entirésesgas used.

255



8.1.2 Progressive Calculations

The measures in the temporal version of the site-centricatmmmmpared the browsing behavior

of the current forager against what previous goal-achgfimagers had dofie For calculating

the measures, previous was defined as any session thad $teftee the current forager’s session
began. For example, a session which took place a month &ftarcdllection began would have
had that entire month’s worth of goal sessions to comparmsigdor a session that took place six
months after the start of data collection, there would haenleven more goal sessions to com-
pare against.

The process used to compare prior sessions against iseabitirtheprocessDatasetlgorithm
(figure 63). The algorithm requires two arguments: a setssisas for a particular Web site and
the minimum percentage of goal sessions to bank before tbalaon of sessions’ measures
should begin. TherocessDatasedlgorithm operates in six basic steps.

The first step of th@rocessDatasedlgorithm sorted sessions in ascending order by their start
date and time (line 23). The second step (line 25) deterntimetbtal number of goal sessions in
the entire set of sessions. After setting up the environnmetite first two steps, each session was
then iterated over (lines 27-45) for the next three steps.

The third step (line 29) determined if the minimum perceatafjgoal sessions had been added
to the set of banked goal sessions. If the minimum perceritagdeen met, then the measures
for the current session were calculated and added to thealdtme 30). Calculations were per-
formed using all banked goal sessions along with valuabée patches and trails. The fourth step
then added the current session into the appropriate seh&élaessions in lines 34-38. A session
was banked regardless of if measures were calculated fosekaion or not.

The sixth step handled the mining of goal patches and tiaiklss(41-44). Since long tail sites
have limited data and an additional goal session may haw@padt on the formation of patches
or trails, mining was done after each goal session was addige thrank (once the minimum per-

centage was mét) The final step occurred after all sessions had been pratessthe last step,

SPrevious non-goal sessions were also used, but only fariteapatches and trails. See §8.1.3 for more details.

SPatches and trails were not mined after every non-goal@ebsicause there were generally many more non-goal
sessions than goal sessions. Thus, the addition of onéaddihon-goal session, when finding frequent itemsets or
sequential patterns, was unlikely to cause drastic difieee in patch and trail formation, unlike what may occur with
goal sessions. In addition, the computational effort nefito mine after every session would be very high at some
Web sites (e.qg., a site with 40,000 sessions).
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Parameters: (a) Set of user sessions: S{Sy, Si, ..., Snv-1}
where S; = set of page information tuples, P.
(b) Minimum percentage of goal sessions
to base calculations on: minPercent
Returns: Set of result records: R ¥Ry, Ri, ..., Rx-1}
Methods: (a) calculateMeasures(, G, A, T): calculates
all the necessary measures for sessidh using
all goal sessions from set G, goal patches from set A,
and goal trails from set T
(b) generatePatches (G, N): returns a set of valuable goaltqees
(c) generateTrails(G, N): returns a set of valuable goal tida
(d) getGoalCount(S): returns number of goal sessions in S
(e) isGoal(S;): true if session achieved goal
(f) sort(S): sorts sessions in ascending order by session
start date

~

18 processDataset (S, minPercen{)

41

47 }

/1 R =result records; G = banked goal sessions; N = banked goat sessions
/1 A = valuable goal patches; T = valuable goal trails

R={}h G={h N={}h A=A T={}h
sort(S); // sortsessions in ascending order by session start date
goalCount = getGoalCount(S) {/ determine how many total goal sessions in entire set

for each (ie S) {
/1 Only calculate once minimum percentage of goal sess®nset
if (G| / goalCount>= minPercent) {
R += calculateMeasures(i, G, A, T);

}

/1 Add session to banked goal or non-goal set
if (isGoal(i)) {
G += i;
} else {
N += i;
}

/1 Mine patches and trails for each new goal session (if ehagmpl sessions are banked)
if (isGoal(i) & ||G|]| / goalCount>= minPercent){
A = generatePatches (G, N);
T = generateTrails (G, N);
}
}

return R;

Figure 63.: Temporal Site-centric: processDataset Algori
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the set of result data records which contained the calallaasures for each session were re-
turned. Of note is the algorithm did not include those sesssio the returned results that occurred

before the minimum percentage of sessions was met.

Example

Table 96 presents an example of how the algorithm procesdathaet. The table shows the
first 11 sessions from the dataset sorted by session start ive of the sessions resulted in a
goal being achieved. All of the sessions were passed to goeiim. In addition, the minimum
percentage of goal sessions required before calculatirzgunes was set to 80 Therefore, ses-

sions were not considered part of the result dataset untildoal sessions (80) were banked.

Table 96: Temporal Site-centric: Example Sessions

Session Start Date and Time Goal Achieved?

S1 7/09/08 11:04:07 No
S2 7/09/08 17:35:12 Yes
S3 7/11/08 10:10:56 No
S4 7/15/08 11:36:18 Yes
S5 7/15/08 11:37:08 Yes
S6 7/15/08 14:43:23 No
S7 7/22/08 12:11:10 No
S8 7/23/08 19:44:39 Yes
S9 7/23/08 20:23:21 No
S10 7/25/08 14:05:09 Yes
S11 7/26/08 16:07:25 No

Table 97 illustrates the process using the sessions frole $&b The contents of which sessions
were in the result set, goal set, and non-goal set are prbetitheendof every iteration of the al-
gorithm (i.e., line 45). Calculations for a session wereadogforethe session was added to either
the goal or non-goal set.

After processing the first session the result and goal setiresd empty while51 was added to
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the non-goal set. After the eighth session was processadithmum percentage of goal sessions
was met for the goal set. Sessidfig, S4, S5, andS8 were included in the goal set while sessions
S1, 53, 56, andS7 were in the non-goal set. Up to the eighth session, no seskexhbeen added

to the result data set yet (i.e., no calculations had bedbnpeed).

Table 97: Temporal Site-centric: Example Dataset Proagssi

Step Result Set Goal Set Non-Goal Set
1 S1
2 52 S1
3 S2 S1,53
4 52,54 51,53
5 S52,54,55 S1,53
6 52,854,555 S1,53,56
7 S52,54,55 S1,53,56,S7
8 S52,854,55,58 S1,853,56,S7
9 S9 S52,54,55,58 S1,53,56,S57,59

10 59,510 52,54, 55,58, 510 51,53,56, 57,59

11 59,510,511 52,54,55,58,510 S1,53,56,57,59,511

After the eighth step; however, the minimum percentage af gessions had been met. There-
fore, all remaining sessions would have their measuresiledééel and added to the result data set.
SessionS9 used the patches and trails mined from the four banked g@als4, S5, S8) and
non-goal sessionsS(, 53, 56, S7), along with just the banked goal sessions to calculatelits r
ative measures. For sessiSi0, the previous sessiory') was added to the non-goal set, but the
patches and trails were not re-mined. For the final sessew patches and trails were mined, be-
causeS10 was a goal session. If more than eleven sessions existedthisgorogressive manner
of mining patches and trails and calculating measures woave continued until the final session
was processed.

In this research thprocessDatasedlgorithm was run with the minimum percentage of goal
sessions set to 7. Thus, measures were only calculated when at ledgtaftall goal sessions

were banked.
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8.1.3 Metrics

Table 98 summarizes the metrics used to test the tempguadlifioned hypotheses for the site-
centric clickstream model (TSC). The name of each metriogieith a description of how it was
calculated is provided. In addition, the hypothesis whiotr@sponds to the metric is also provided
in the table. A more in-depth description of the metrics i&giin the following subsections.

Table 98 does not contain tlReETURN andvISITED metrics (hypotheses SC3 and SC4) because
they were calculated at a Web site as opposed to an indivielall of analysis. The temporal ver-
sion of the model examines relative behavior efsgrversus previous sessions. Therefore, mea-
sures at a higher level of analysis were not analyzed.

To help clarify the notation being used below for the metr{csepresents the current session
being analyzed( is the set of banked past goal sessions thatill be compared against, and

median() is a function that returns the median from a set of values.

Information Patch — Site-Patch

RELDURis the total duration in seconds a visitor has spent at a Webedative to the median
time prior goal sessions have spent at the same Web site eldtive duration is calculated from
equation 8.1, whergduration(i) is the duration spent during sessiorfo obtainRELDUR, the
median duration of all banked goal sessions in the goakdetsubtracted from the total duration

of the current sessioft.

RELDUR = duration(C) — median (for each;c [duration()]) (8.1)

RELPGSIs the number of pages a visitor has viewed at a Web sitevelatithe median num-
ber of pages viewed by prior goal sessions at the same Wellhigerelative number of pages is
calculated as shown in equation 8.2, whedges(i) is the number of pages viewed during session
1. To acquireRELPGS the median number of pages viewed from all goal sessionedhsgtG is

subtracted from the number of pages viewed during the cusessionC.

RELPGS= pages(C) — median (for each;c [pages(i)]) (8.2)
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Table 98: Temporal Site-centric: Model Metrics

Hypothesis # Metric Description

INFORMATION PATCH — SITE-PATCH

TSC1 RELDUR Duration in seconds spent on a Web site relative to past
goal sessions.

TSC2 RELPGS Number of pages viewed on a Web site relative to past
goal sessions.

INFORMATION PATCH — PAGE-PATCH

TSCbha RELPTCMAX Maximum value of any goal page-patch visited relative to
past goal sessions.

TSC5b RELPTCLAST Value of last goal page-patch visited relative to past goal
sessions.

TSC5hc RELPTCSUM Total value of all goal page-patches visited relative to
past goal sessions.

TSC6 RELPTCDUR Median duration in seconds spent in all goal page-
patches relative to past goal sessions.

STRICT INFORMATION SCENT

TSC7 RELUNQ Percentage of unique pages viewed relative to past goal
sessions.
TSC8 RELLNR Linearity of clickstream relative to past goal sessions.

RELAXED INFORMATION SCENT

TSC9a RELTRLMAX Maximum value of any goal trail followed relative to past
goal sessions.

TSC9b RELTRLLAST Value of last goal trail followed relative to past goal ses-

sions.
TSC9c RELTRLSUM Total value of all goal trails followed relative to past goal
sessions.
OTHER
n/a GOAL Whether a goal occurred during the session.
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Information Patch — Page-Patch

Patches at a Web site must already be known in order to ctddie fourRELPTC visitation
metrics:RELPTCMAX, RELPTCLAST, RELPTCSUM andrRELPTCDUR The methodology for learn-
ing patches is described in detail in appendix 5.B. In génkrarning patches requires a set of
goal and non-goal sessions to determine which parts of a idefi.s., pages) are better able to
distinguish between the two groups. Patches are specifisitgie Web site.

As the fourrRELPTC metrics require patches to be learned first in order to giyaatsession’s
patch visitation, the banked goal and non-goal sessiGrem@ /V) were used to discover goal
patches at a Web site. The current session then calculaedteTC metrics from the learned
goal patches. However, the current session would only zdéetherRELPTC metricsif and only if
goal patches were found at the Web site. In additionRriberTCDUR mMetric would only be calcu-
lated for the current sessidinand only if that session visited at least one of the goal patches dis-
covered at the Web site of interest. Furthermore, since @esares for the temporal site-centric
model are all relative to prior goal sessions, the same gsai@ns used to learn the patches also
calculated th&ReLPTC metrics for their own respective sessions so that relativeparisons could

be made.

Learning Patches

Patches were learned for a Web site using the training dgt&sewhich consisted of banked
goal (&) and non-goal §) sessions, according to the methodology outlined in apgpeng.
Patches were learned at arlevel of 0.05.

Specifically, a set of valuable patched (Ag, A1, ...,A,_1) were discovered, wheté; rep-
resents a single valuable patch; consists of a set af: unordered and distinct pagés(Uy, U,
ey Un—1).

Each patch 4;) was also given a value according to equation 8.3 (Yang adchBaabhan,
2003). S¢; andSy; represent the number of goal and non-goal sessions fromaiming dataset
that visited patchi;, respectively.Rs and Ry is the total number of goal and non-goal sessions

from the training dataset. The value of patéhcould range from zero to two, with higher num-

A more in-depth description of learning patches may be faor§6.2.2.
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bers representing a greater difference in support of thghpatdistinguishing between goal and

non-goal sessions (i.e., being more valuable).

value(4;) = ——— N1 (8.3)

1 (Sai 4 Sni
Q(RG+RN>

Calculating RELPTC Metrics

To calculate th&ReLPTC metrics for a given session, two steps were required. Firnggs deter-
mined what patches the session visited from the set of vidymiches 4). Each session had a set
of [ visited patched” (1o, Vi, ...,V;—1), whereV; was an individual patch visited by the current
session. A session was considered to have visited a patttip#Eges of the patchl{) were visited
at least once (in any order) by the current session (as deiedrby the set of pages from the
session). Formally4; was added td” if U C P. Once it was known what patches were visited,
then the four measures were calculated.

PATCHMAX is the value of the most valuable patch visited by the cumeat. The maximum
value is determined by iterating over every visited patcfirtd the one with the highest value

(equation 8.4). If the user did not visit any patches thervtiee ofPATCHMAX would be zero.

max (for each; ¢y (value(V; if 1V >0
PATCHMAX = ( jev ( (Vi) IVl (6.4

0 else

RELPTCMAX was calculated as shown in equation 8.5. The megiacHMAX value of all
banked goal sessions in the goal Gewvas subtracted from the current session’$ yalue of

PATCHMAX in order to calculat®RELPTCMAX.

RELPTCMAX = PATCHMAX (C') — median (for each;cc [PATCHMAX (i)]) (8.5)

PATCHLAST is the value of the last patch visited by the @sé&quation 8.6 illustrates homELPT
CLAST was calculated. The mediaaTCHLAST value of all banked goal sessions from the goal

setG is subtracted from the current sessiort’§ falue ofPATCHLAST to arrive atRELPTCLAST.

8Details on the four-step heuristic used to determine whathlpwas visited last during a user’s sessions may be
found in 85.2.2.
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RELPTCLAST = PATCHLAST(C') — median (for each;cc [PATCHLAST(7)]) (8.6)

PATCHSUM adds up the value of every patch visited by the current usgrateon 8.7). A value

of zero is given to any user that did not visit any patches.

ey (value(V;)) it V]| > 0

0 else

PATCHSUM = (8.7)

Equation 8.8 illustrates homeLPTCSUMwas calculated. The metric was determined by sub-
tractingPATCHSUM for the current sessiofi from the mediarPATCHSUM value of all banked goal

sessions in the goal sét

RELPTCSUM = PATCHSUM(C') — median (for each;c; [PATCHSUM(7)]) (8.8)

PATCHDUR is the median duration a user spent in all their visited pegclonly sessions which
visited at least one patch (i.¢}|| > 0) would have a value foPATCHDUR. The calculation for
PATCHDUR is shown in equation 8.9otalTime(k, P) returns the total time a session with pages
P spent on pagé. If a session visited pagemore than once i#®, then the sum duration from all
k page visitations was returned.

PATCHDUR = median [for each;cy (Z totalTime(k, P)> (8.9)

keG

The manner in whiclRELPTCDURWas calculated is shown in equation 8.10. To obtnPTC
DUR, the mediarPATCHDUR value of all banked goal sessions in the goaksetas subtracted

from the current session’€’() value of PATCHDUR.

RELPTCDUR = PATCHDUR(C') — median (for each;ci [PATCHDUR(?)]) (8.10)

Strict Information Scent

UNIQUE is the percentage of unique pages viewed during a sessi@pdroentage of unique

pages viewed for the current visitor is calculated accardinequation 8.11, whewéstinct(P) is
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the number of distinct pages viewed in the set of page infoomauplesP.

distinct(P
UNIQUE = (%CH(» * 100 (8.11)

The relative percentage of unigue pages UNQ is determined by subtracting the mediariQuUE

value of all banked goal sessior@)(from the value of the current session'siiQUE (equation 8.12).

RELUNQ = UNIQUE(C') — median (for each;cc [UNIQUE(7)]) (8.12)

LINEAR is the complexity of a session as calculated via the strat@asore. Complexity is
determined via the straightness (i.e., absence of visgages repeatedly) of a user’s browsing be-
havior, where higher linearity equates to less compleStyatum is a measure of linearity from
graph theory (McEneaney, 2001) and details on its calanatay be found in appendix 5.A.
RELLNR was calculated according to equation 8.13, where the medieaar value from the

banked goal set{) was subtracted from the current session’s valuaoEAR.
RELLNR = LINEAR (C') — median (for each;c [RELLNR(7)]) (8.13)

Relaxed Information Scent

The threeRELTRL metrics for the relaxed information scent were calculated very similar
manner as theELPTC metrics. The same training set used to discover patches seasto learn
trails. Both the current session and the goal sessions fiertraining set then used those learned
trails to calculate their values for the threeLTRL metrics.

Specifically, a set of valuable trails” (1y, 11, .. .,T,_1) were discovered from the training
set, wherel; represents a single valuable trdil. consists of a set of, orderedpages0 (O,

01, ...,0,,-1), where the pages may repeat themselves in the orderedgetfe B, B, A, C)).
Once discovered, trails were given a value like patchegusguation 8.3 (withl; being used in-
stead of4,).

Once the trails were discovered, each session requiredtépe ® calculate theRELTRL mea-

sures. First, it was determined what trails were followedhgysession of interest from the set of
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valuable trails("). Each session had a setidbllowed trailsF’ (Fy, F1, ..., F;—1), whereF; was

an individual trail followed by the current session. A seasivas considered to have followed a
trail if all pages of the trail Q) were followed in order by the current session (as deterdhine

the set of page#® from the session). Although all pages must have been follawerder, repeat
visitation and gaps between pages were allowed (i.e., pdugpes may be visited in between pages
from the trail). More specificallyl; was added td' if O C P and the pages @ were found in

the same order i*. Once it was known what trails were followed, then the thremasures were

calculated.

TRAILMAX is the value of the most valuable followed trail by the cutneser. The maximum
value is determined by iterating over every followed traifind the one with the highest value

(equation 8.14). If the user did not visit any trails thenvhkie of TRAILMAX would be zero.

for each; lue(F; if ||F|| >0
TRAILMAX — maz ( jer (value(Fy))) [l (8.14)

0 else

RELTRLMAX was calculated as shown in equation 8.15, where the ma&anmax value of
all banked goal sessions in the goal Getvas subtracted from the current sessio®’3 yalue of

TRAILMAX .

RELTRLMAX = TRAILMAX (C) — median (for each;cc [TRAILMAX ()]) (8.15)

TRAILLAST is the value of the last trail followed by the u8eEquation 8.16 illustrates how
RELTRLLAST was calculated. The mediamAILLAST value of all banked goal sessions from the
goal set7 is subtracted from the current sessiorfy /alue of TRAILLAST to arrive atRELTRL-

LAST.

RELTRLLAST = TRAILLAST (C') — median (for each;cc [TRAILLAST (i)]) (8.16)

TRAILSUM adds up the value of every followed trail by the current usguétion 8.17). A value

of zero is given to any user that did not visit any trails.

®Details on the four-step heuristic used to determine whiaihwas followed last during a user’s sessions may be
found in 85.2.2.

266



S jep (value(F)) it |[F]| > 0

TRAILSUM = (8.17)

0 else

Equation 8.18 illustrates howELTRLSUM was calculated. The metric was determined by sub-
tractingTRAILSUM for the current sessioff from the mediarrRAILSUM value of all banked goal

sessions in the goal sét

RELTRLSUM = TRAILSUM (C') — median (for each;c [TRAILSUM (7)]) (8.18)

Other

The mutually exclusive binomially distributed metooAL specifies whether at some point
during the remainder of a session a contact form was sulthfdtehe contact goal of interest. If a
goal will be achieved during the sessi@BAL will have the value ofrue. Otherwise GoAL will

have a value ofalse

8.2 Results

The temporal site-centric model consisted of seven hygethabout information scent and trails.
Descriptive statistics of the dataset and each measureaa@rieled in the first subsection below.

The results for each of the seven hypotheses are then pdovidiee next subsection.

8.2.1 Descriptive Statistics

Table 99 presents the mean, standard deviation, mediaimormn and maximum number of ses-
sions per Web site in three categories: all, goal, and nahggssions. Statistics for the entire
dataset are shown first, followed by the number of sessiatialiy used in the training set. The
training set first contained all sessions occurring befoedfirst 70% of goal sessions. However,
since measures were calculated in a progressive mannéraitieg set increased in size after
each processed session.

The training set (or set of banked sessions), was used tolagddhe measures for each session

after the minimum percent of goal sessions was reached.ahdb8,744.24 sessions (703%
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Table 99: Temporal Site-centric: Sessions by Site

Mean St. Dev. Median Min Max

ENTIRE DATASET
All 5,322.60 7,473.76 2,637.00 245 44,405
Goal 105.94 90.13 79.00 51 587
Non-goal 5,216.66 7,427.53 2,566.00 192 44,111
MINIMUM TRAINING SET
All 3,744.23 5,418.42 1,696.00 168 31,730
Goal 74.28 63.07 56.00 36 411
Non-goal 3,669.96 5,386.00 1,656.00 130 31,525

per Web site, on average, had their measures calculatedrogeepsive manner from prior goal
sessions. New patches and trails were learned on each Wedysitthirty different times (30.66).
Each addition mining procedure also meant that all previm# sessions had to recalculate their
RELPTCandRELTRL measures against the new patches and trails.

Table 100 displays the mean, standard deviation, mediariimim, and maximum values for
each of the four measures that did not require mining of gatemd trails. The statistics are bro-
ken down into three groups of sessions: all, goal, and nah-gine same 47 Web sites used in the
site-centric version were also used in the temporal version

The average relative duration of all users was 2.10 feweuntagon a site than previous goal
sessions. Goal sessions spent 0.27 more minutes than phsegesions on a site, while non-goal
sessions spent 4.46 fewer minutes. A pattern similar todladive duration of time between the
three groups was also seen for the relative number of pagesngst all foragers, 0.15 fewer
pages were viewed on average compared to prior goal ses§oassessions viewed relatively
more pages than non-goal sessions did (0.12 verfu41) when compared to prior goal sessions.

All three groups viewed a lower percentage of unique pagesayerage, than past goal ses-
sions:—11.67 for all, —2.33% for goal, and—-21.02% for non-goal. Although the average was
negative for goal sessions, the median value shows go@sedsad exactly the same percentage

of unique pages viewed as past sessions (i.e. %80

1%The negative relative value for percentage of unique pagashave also been a symptom of the evolution of Web
sites. For example, information on a Web site may have beesotidated to only a few pages which caused foragers to
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Table 100: Temporal Site-centric: Metric Statistics

N Mean St. Dev. Median Min Max

INFORMATION PATCH — SITE-PATCH
RELDUR (in minutes)

All 47 -2.10 3.07 —-1.75 —11.98 4.45
Goal 0.27 1.58 0.23 —-3.54 4.45
Non-goal —4.46 2.27 —4.43 —11.98 0.18

RELPGS

All 47 —0.15 1.25 0.00 —4.00 2.00
Goal 0.12 1.13 0.00 -3.00 2.00
Non-goal -0.41 1.33 0.00 —4.00 2.00

STRICT INFORMATION SCENT
RELUNQ

All 47 -11.6% 1572, —8.33% —50.000 20.00%
Goal —-2.33% 11.03% 0.00% —33.33% 20.00%
Non-goal —-21.02% 1412, —20.006h —50.0060 8.93%

RELLNR

All 47 -0.14 0.31 0.00 -1.00 0.46
Goal 0.00 0.09 0.00 -0.17 0.46
Non-goal -0.28 0.38 0.00 -1.00 0.23

Note: all values are based on the median values from each ie&bgoal and non-goal sessions.
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Relative clickstream linearity followed the same basidgratas both the relative duration and
number of pages viewed: values for goal sessions wereagitiile they were negative for non-
goal sessions. On average, goal sessions had exactly tieevahine of clickstream linearity (0.00)
as the previous goal sessions. Non-goal sessions had naora tjuarter-of-a-point lower value
(—0.28) for clickstream linearity than past goal sessions.

Table 101 lists the mean, standard deviation, median, nuimp@and maximum values for the
seven measures derived from patches and trails. The paiobdsails were learned at the 0.05
significance level from prior goal and non-goal sessionghEatistic is broken down for all,
goal, and non-goal sessions. Each measure also lists ghatwhber of Web sites that found
patches or trails at any point during the processing praeedithe number of Web sites differ
from the site-centric version (17 versus 14 patch Web sitelsl® versus 10 trail sité§ because
of the multiple times patches and trails were mined at each $ife. For example, patches may
have been found on a Web site when usingo8ff goal sessions, but not when only%®f goal
sessions were used.

The first three patch measur&E( PTCMAX, RELPTCLAST, andRELPTCSUM had average rel-
ative patch values 0f0.17,—0.15, and-0.82 among all sessions, respectively. The relative patch
values forRELPTCMAX andRELPTCLAST both had the same positive value (0.0RELPTCMAX,
however, was negative by almost a third of a poir0(29). All three of the non-patch values
shared negative values 60.36,—0.31, and-1.36 fOrRELPTCMAX, RELPTCLAST, andRELPTC
SUM, respectively.

Users spent, on average, 8.03 fewer seconds within patelaive to prior goal sessions. Cur-
rent goal sessions spent 13.95 more seconds in patchégerétgpast goal sessions, whereas non-
goal sessions spent 30.01 fewer seconds in patches.

Unlike the patch visitation measures, the trail followingasures had negative values for all
three groups of sessions. The average meaREQTRLMAX, RELTRLLAST, andRELTRLSUM
was—0.10,—0.09, and-0.22, respectively. All three measures for the goal sessi@re also
negative, but were close to having the same values as pdstagsions {0.01 forRELTRLMAX
andRELTRLLAST and—0.04 forRELTRLSUM). The non-goal sessions were much further away

from zero than the goal sessions, with values ranging frdirl6 to—0.40.

switch back and forth between the pages.
11See table 58 in §7.2.1 for statistics on the site-centrisivarof the model.
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Table 101: Temporal Site-centric: Metric Statistics ($igant — 0.05)

N Mean St. Dev. Median Min Max
INFORMATION PATCH — PAGE-PATCH
RELPTCMAX

All 17  -0.17 0.36 0.00 -1.30 0.30
Goal 0.02 0.08 0.00 -0.10 0.30
Non-goal —0.36 0.43 -0.19 -1.30 0.00

RELPTCLAST

All 17 -0.15 0.30 0.00 -1.02 0.30
Goal 0.02 0.07 0.00 -0.01 0.30
Non-goal -0.31 0.35 -0.19 -1.02 0.00

RELPTCSUM

All 17 —0.82 2.44 0.00 -11.44 1.62
Goal —0.29 2.03 0.00 -7.99 1.62
Non-goal -1.36 275 -0.43 -11.44 0.00

RELPTCDUR (in seconds)

All 17 -8.03 39.61 -—-2.75 -118.00 102.75
Goal 13.95 33.62 5.88 —36.75 102.75
Non-goal —30.01 32.85 —21.00 —118.00 4.63

RELAXED INFORMATION SCENT
RELTRLMAX

All 15 -0.10 0.27 0.00 -0.89 0.35
Goal —-0.01 0.17 0.00 -0.51 0.35
Non-goal —0.18 0.33 0.00 -0.89 0.00

RELTRLLAST

All 15 -0.09 0.24 0.00 -0.70 0.35
Goal —0.01 0.17 0.00 -0.51 0.35
Non-goal —-0.16 0.28 0.00 -0.70 0.00

RELTRLSUM

All 15 -0.22 0.92 0.00 -3.97 1.02
Goal —0.04 0.80 0.00 -2.57 1.02
Non-goal —0.40 1.03 0.00 -3.97 0.00

Note: all values are based on the median values from each ifé&bgoal and non-goal

sessions.
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8.2.2 Hypotheses Testing

Tables 102 and 103 present the results for the seven terypfralised site-centric hypotheses.
Table 102 provides results from the four hypotheses whosesune were not dependent on knowl-
edge of mined patched and trails. Table 103 lists the refarlthe three hypotheses that relied on
mined patches and trails.

The first two columns of each table list the hypothesis nunabername of the metric being
tested. The third and fourth columns list the total numbaéneb sites and the number of Web
sites with a non-zero difference (i.); # 0), respectively. The total number of Web sites was
used in the t-test, while only Web sites with non-zero dédfezes were used for the Wilcoxon and
sign tests. Columns five through seven list the t statiségreles of freedom (df), and p-value for
the t-test. The eighth and ninth columns display the V gtatisnd p-value for the Wilcoxon test.

The final two columns list the S statistic and p-value for tige $est?.

L2All three assumptions of the sign test were met. Therefbieresults from the sign test are focused on in the
following paragraphs. Unlike the sign test, some assumgptad the Wilcoxon test (symmetry @;s) and t-test (sym-
metry and normality of);s) were not believed to have been met. Since the same datesse@$an both the temporal
and non-temporal versions of the model, the same genenginimstrical and non-normal distributions b;s were ex-
pected. Thus, while results of the Wilcoxon test and t-tesipaovided in footnotes, the results of those tests shoeild b
interpreted with caution.
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Table 102: Temporal Site-centric: Results

N

T-test

Wilcoxon

Sign Test

Hyp. Metric Total No Ties

t

df  p-Value

V  p-Value

S p-Value

INFORMATION PATCH — SITE-PATCH

TSC1 RELDUR 47 47

TSC2 RELPGS 47 30
STRICT INFORMATION SCENT

TSC7 RELUNQ 47 46

TSC8 RELLNR 47 24

13.87
2.22

9.34
5.15

46 < 0.0001™
46 0.0155

46 < 0.0001"
46 < 0.0001™

1,128 < 0.0001"
328 0.0243

1,049 < 0.0001"
295 < 0.0001"

47 < 0.0001"
20 0.0494

43 < 0.0001"
22 < 0.0001"

*p < 0.10; **p < 0.05; **p < 0.01
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Table 103: Temporal Site-centric: Results (SignificantG5).

N T-test Wilcoxon Sign Test
Hyp. Metric Total No Ties t df p-Value V p-Value S p-Value
INFORMATION PATCH — PAGE-PATCH
TSC5a RELPTCMAX 17 10 3.74 16 0.0009 55 0.0010" 10 0.0010"
TSC5b RELPTCLAST 17 10 3.95 16 0.0006 55 0.0010" 10 0.0010"
TSC5¢c RELPTCSUM 17 10 3.32 16 0.0027 55 0.0010" 10 0.0010"
TSC6 RELPTCDUR 17 17 354 16 0.0014 142 0.0004" 16 0.0001"
RELAXED INFORMATION SCENT
TSC9a RELTRLMAX 15 6 213 14 0.0255 21  0.0156 6 0.0156
TSC9b RELTRLLAST 15 5 221 14 0.0219 15 0.0313 5 0.0313
TSC9Cc RELTRLSUM 15 6 237 14 0.0165 21  0.0156 6 0.0156

*p < 0.10; **p < 0.05; **p < 0.01
Hypotheses SC5a-c and SC9a-c are each significap(ety., 2% = 0.0333, 222 = 0.0167, and 22 = 0.0033).



TSC1 —-RELDUR

The first hypothesis expected that goal achieving foragerddwspend more time on a site, rela-
tive to prior goal sessions, than non-goal sessions wowddsp The results of the sign test sup-
ported hypothesis TSC1 at= 0.01 (S = 47; p-value = 0.0001}*. All 47 Web sites had a higher
median relative duration amongst goal sessions than nahsgssions. Relative to prior goal ses-
sions, current goal sessions spent roughly 15 additiomalnsks on a site, while non-goal sessions
spent almost five fewer minutes.

The results for this first hypothesis were identical betwiertwo site-centric versions of the
model (S = 47; p-value = 0.0001 for both versions). For each of the versions, all eftésted
Web sites had goal sessions with a higher median durationrthia-goal sessions. Therefore, the
use of duration, in either an absolute or relative manngrears to be consistently useful in distin-

guishing between goal and non-goal sessions.

TSC2 —RELPGS

The second hypothesis also examined how foragers judgedlire of a Web site, but did so by
looking at the relative number of pages viewed. The hypdadhest goal sessions would have

a higher relative median number of pages viewed than nohsgsaions was supportedat

0.05 (S = 20; p-value = 0.0436) 20 out of the 30 non-tied Web sites had a higher median rel-
ative number of pages viewed for goal sessions versus nalnsgesions. On average, goal ses-
sions viewed 0.12 more pages relative to past goal sessib@seas non-goal sessions viewed
0.41 fewer pages.

The second hypothesis had practically identical resultsden the two site-centric versions
of the model: static (S = 19; p-value = 0.0436) and temporal 28; p-value = 0.0436). Roughly
two-thirds of all the non-zero Web sites found a higher mediamber of pages viewed for goal
sessions than non-goal sessions (6% &6 Web sites for static and 66.%vfor temporal). This
hypothesis also demonstrated that either an absoluteativeemanner of determining number of

pages viewed was useful in distinguishing between goal aneyoal sessions.

13A more in-depth discussion of each of the hypotheses mayurelfin §4.2.1 and §7.2.2.

YHypothesis TSC1 was also significaniat 0.01 for both the t-test (t = 13.87; df = 46; p-value<=0.0001) and
Wilcoxon test (V = 1,128; p-value = 0.0001).

Hypothesis TSC2 was also significaniat 0.05 for both the t-test (t = 2.22; df = 46; p-value = 0.015%) a
Wilcoxon test (V = 328; p-value = 0.0243).
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TSC5 —RELPTCMAX , RELPTCLAST, and RELPTCSUM

The three sub-hypotheses of TSC5 (table 103) explored hewisitation of valuable patches
could help explain goal achievement. All three sub-hypstisevere significant at = 0.01 (S =
10; p-value = 0.0010 for all three measutésyupporting the hypothesized positive association of
relative patch value and goal achievement. All 10 of the nero Web sites had goal sessions with
higher relative patch visitation values than the non-geakmns, for all three patch measures.
The results for hypothesis TSC5 were found to be significatiteasameyx level for both ver-
sions of the site-centric model: static (S = 9; p-value = AMfor all three measures) and temporal
(S = 10; p-value = 0.0010 for all three measures). Both vessas the model had all non-zero
Web sites find a higher median patch value amongst goal rdtaemon-goal sessions. However,
the temporal version had more Web sites find patches thanétie wersion (17 versus 14 total
Web sites). Thus, the temporal version was better able lteeuthe available, but sparse, amount
of data to learn patches. Furthermore, as the structure aftasite may evolve, the temporal ver-

sion’s use of the most recent data would better reflect thegihg nature of a sité.

TSC6 —RELPTCDUR

Hypothesis TSC6 expected that mere visitation of valuahteles did not wholly indicate a for-

ager obtained value from a patch. Thus, the hypothesis ctoingl that relatively higher amounts

of time within patches were associated with greater infaimnagain and thus were more likely

to achieve a goal. The results of the sign test supportedyipetiesis atv = 0.01 (S = 16; p-

value = 0.0001%, finding a higher relative duration within patches for gadsions than non-goal

sessions. 16 of the 17 non-zero Web sites with discoverath@amhad goal sessions that spent a

higher relative duration of time within patches than nogessions. On average, goal sessions

spent almost 14 additional seconds within patches and nahsgssions spent 30 seconds less.
Like many of the other hypotheses, the results between theéwsions of the site-centric model

for hypothesis TSC6 were also almost the same: static (S p-¢8lue = 0.0009) and temporal (S

18A|l three sub-hypotheses of hypothesis TSC5 were alsofgignt ata = 0.01 for both the t-tesRELPTCMAX (t
= 3.74; df = 16; p-value = 0.0009RELPTCLAST(t = 3.95; df = 16; p-value = 0.0006); amELPTCSUM(t = 3.32; df =
16; p-value = 0.0022)) and Wilcoxon test (V = 55; p-value =000 for all three measures).

YFor a discussion of the limitations of the current incamatf the temporal model refer to §9.1.

18Hypothesis TSC6 was also significaniat 0.01 for both the t-test (t = 3.54; df = 16; p-value = 0.0014) a
Wilcoxon test (V = 142; p-value = 0.0004).
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= 16; p-value = 0.0001). Each version only had one Web sitelwfuund a higher median amount
of time spent within patches for non-goal sessions than ggsdions (92.86 of positive Web

sites for static and 94.%2 for temporal). Therefore, the use of duration within patchppears
useful in discriminating between groups of sessions, t#gss of the measure being absolute or

relative.

TSC7 —RELUNQ

The seventh hypothesis (TSC7) examined information scemstrict manner where any ineffi-
ciency was viewed as poor indicators of scent. A positiveeasion between the relative propor-
tion of unique pages viewed and goal achievement was expantksupported at = 0.01 (S =
43; p-value =< 0.0001}°. 43 of the 46 non-zero Web sites had goal sessions with ahiglze
tive percentages of unique pages viewed than non-goabsss$oth goal and non-goal sessions
viewed a lower percentage of unique pages than past goabise$s2.33% versus—21.02%), but
goal sessions still visited a greater proportion of unigaggs than the non-goal sessions.

For this hypothesis, both the static and temporal versibtiseosite-centric model were sup-
ported at the same level: static (S = 42; p-value = 0.0001) and temporal (S = 43; p-value =
< 0.0001). 95.4% and 93.48; of the non-zero static and temporal Web sites found goaisess
with a higher percentage of unique pages, respectivelyw@&si the two versions, the unigue per-
centage of pages viewed was equally successful in diffieterd between the two groups of ses-

sions.

TSC8 —RELLNR

The second hypothesis about strict information scent (&8 examined information scent in a
strict manner. However, overall scent was determined inaa-finained manner by using the pages
and the order in which those pages were visited. The belisftheat less complex (i.e., more lin-
ear) clickstreams were indicative of higher levels of scantl thus a greater likelihood of achiev-

ing a goal was expected and supported a0.01 (S = 22; p-value = 0.0001°. 22 of the 24

P¥Hypothesis TSC7 was also significaniat 0.01 for both the t-test (t = 9.34; df = 46; p-value<=0.0001) and
Wilcoxon test (V = 1,049; p-value = 0.0001).

2Hypothesis TSC8 was also significaniat 0.01 for both the t-test (t = 5.15; df = 46; p-value<=0.0001) and
Wilcoxon test (V = 295; p-value = 0.0001).
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non-zero Web sites had higher relative linear clickstreafnas for goal sessions compared to
non-goal sessions, with goal sessions having, on avelagexact same clickstream complexity
as prior goal sessions. Non-goal sessions were over a goaggoint lower in clickstream com-
plexity (—0.28) than past goal sessions.

The results of the static and temporal versions of the modet&lmost identical: static (S =
18; p-value =< 0.0001) and temporal (S = 22; p-value<=0.0001). None of the non-zero static
Web sites (0.0%) and only two of the temporal Web sites (8738had any sites with non-goal
sessions having a higher median clickstream complexitusTlike many of the other measures,
both versions were equally capable of separating goal fromgoal sessions using the linearity of

a user’s session.

TSC9 —RELTRLMAX , RELTRLLAST , and RELTRLSUM

The final three sub-hypotheses of TSC9 (table 103) examheedfficacy that following valuable
trails had in explaining goal achievement. Hypothesis T&&% TSC9c were both supportechat
=0.05 (S = 6; p-value = 0.0156 for both measures), while hyggs TSC9b was only supported
ata = 0.10 (S = 5; p-value = 0.031%) The difference in significance between the measures was
due to sample size. BORELTRLMAX andRELTRLSUM had six non-zero Web sites, whikeL-
TRLLAST only had five (all of which supported the hypothesis in a pasidirection). Thus, there
were simply not enough Web sites RELTRLLAST to reach significance at = 0.05.

The results for hypothesis TSC9 were found to be significatiteasameyx level for all but one
measureELTRLLAST) in the temporal version of the site-centric model: staic=(6; p-value =
0.0156 for all three measures), and temporal (S = 6; p-vald®156 forRELTRLMAX andREL-
TRLSUM and S = 5; p-value = 0.0313 f®@ELTRLLAST). Similar between the versions was all

non-zero Web sites found higher median trail values with@irtgoal sessions. However, just as

2IHypotheses TSC9a-c were significant at either 0.05 or 0.10, depending on the test. For the t-test, twoef th
three measures were significanbat 0.10 RELTRLMAX (t = 2.13; df = 14; p-value = 0.0255) amELTRLLAST (t =
2.21; df = 14; p-value = 0.0219)), while the third was sigrificata. = 0.05 RELTRLSUM (t = 2.37; df = 14; p-value =
0.0165)). For the Wilcoxon test, two of the measures wengifsigint atoe = 0.05 (V = 21; p-value = 0.0156 faEL-
TRLMAX andRELTRLSUM), while the third was only significant at = 0.10 (V = 15; p-value = 0.0313). The less sig-
nificantRELTRLMAX measure from the t-test may be due to the degree of diffefeetwecen the goal and non-goal
sessions. For example, both of the measures that were sagnifit 0.10 had less of an average difference between
sesSionsKELTRLMAX = —0.17;RELTRLLAST = —0.15) than the measure that was significant at ORER (RLSUM =
—0.35). The difference in significance between the meastride &Vilcoxon test was due to the same reason as found
with the sign test: smaller sample size and thus less powgstert differences between the sessions.
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with learning patches, the temporal version also had more &ies find valuable trails than the
static version (15 versus 10 total Web sites), highlightimg ability of the temporal version to use

the extra available data to learn additional trails.

Summary of Results

Table 104 summarizes the results of the hypotheses teQinge 11 hypotheses and sub-hypotheses,
seven were supported at= 0.01, three atv = 0.05, and one at = 0.10. The table also lists the

results obtained from the static version of the site-cer@IF.

Table 104: Temporal Site-centric: Hypotheses Results
Summary

Hypothesis Supported?

Hyp. Metric Temporal Static

INFORMATION PATCH — SITE-PATCH

*kk Fkk

TSC1 RELDUR Yes Yes

TSC2 RELPGS Yes” Yes™
INFORMATION PATCH — PAGE-PATCH

TSC5a RELPTCMAX Yes™ Yes™

TSC5b RELPTCLAST Yes™ Yes™

TSC5¢c RELPTCSUM Yes™ Yes™

TSC6 RELPTCDUR Yes™ Yes™
RELAXED INFORMATION SCENT

TSC7 RELUNQ Yes™ Yes™

TSC8 RELLNR Yes™ Yes™
RELAXED INFORMATION SCENT

TSC9a RELTRLMAX Yes” Yes™

TSC9b RELTRLLAST Yes Yes”

TSC9Cc RELTRLSUM Yes” Yes™

*p < 0.10; **p < 0.05; **p < 0.01
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8.3 Conclusion

Overall, the results between the two versions of the sitdricemodel did not differ in significant
ways. Although the results were not significantly bettegytlvere also not worse. Thus, the use of
the temporal version provides additional evidence in tfieafy of the selected measures and in
the ability of relative measures to distinguish betweerl gond non-goal sessions. In addition, the
temporal version did see an increase in the number of Webwliech were able to learn patches
and trails, although the significance of the results did notdase with the larger sample size.

At the surface, the lack of significantly better results thanstatic version would discourage
the undertaking of the temporal model, especially giverctiaputational cost and complexity
associated with its methodology. However, the Web sited tstest the model may not have
changed dramatically enough over the course of the datactiolh period to warrant the need
for the temporal methodology. Warren et al. (1999) foundhimitheir limited examination of
Web sites that “. . . the overall rate of change of a site irggdawith the size of the site” (pg. 182).
Thus, the temporal version may be more appropriate for taidgh sites that are evolving at a

faster rate than those seen within the site-centric d&faset

220n average, Web sites within the site-centric dataset weedl svith only 16.36 pages.
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Chapter 9

Conclusion

This dissertation sought to explain goal achievement, @leoice behavior) at limited traffic long
tail Web sites using Information Foraging Theory (IFT) @ir 2007; Pirolli and Card, 1999).

The thesis of IFT was that individuals are driven by a metaphbsense of smell that guides them
through patches of information in their environment. Hgvanfoundation in both psychology and
ecology, IFT drew from both disciplines to explain the medbms and the resulting behavior of
information foragers.

IFT used a production rule system from the psychologicapta control of thought-rational
(ACT-R) theory to describe the cognitive process of indils$ foraging for information (Ander-
son et al., 2004). The rationalization of why a person wouttvenfrom one area of their envi-
ronment to another was explained according to the ecolbgatah model from optimal foraging
theory (OFT) (Stephens and Krebs, 1986).

From ACT-R and OFT, the concepts of information scent andhest were defined for IFT. In-
formation scent was the driving force behind why a personen@adavigational selection amongst
a group of competing options. As foragers were assumed tatlmmal, scent was a mechanism
by which foragers could reduce their search costs by intrgdkeir accuracy on which option
lead to the information of value (Pirolli, 2007). An infortian patch was defined as an area of
the search environment with similar information (e.g.gtnWeb page, multiple Web pages, Web
site) (Pirolli, 2007).

IFT was originally developed to be used in a “production Televironment, where a user would
perform an action when the conditions of a rule were met. Hewehe use of IFT in clickstream
research required conceptualizing the ideas of IFT in aproduction rule environment. To meet
such an end this dissertation asked three research questigarding how to learn (1) information
patches, (2) trails of scent, and finally (3) how to combinthlmmncepts to create a Clickstream

Model of Information Foraging (CMIF).
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The first two research questions were similar in both conaegtexecution. In regards to patches,
each user was free to define what a patch was as they saw fit.\dQwertain patterns of patches
emerged on a Web site amongst those foragers with similamition goals. Likewise, scent
trails were also defined by each user. When combined witlr ofers, patterns from fragments
of scent trails also emerged on a site between users withasimiormation goals. For the online
firm, categorizing patches or trails as valuable to goaleaiing or non-goal-achieving foragers
helped give an indication of the intent of users accordinghah patches or trails were visited or

followed.

Research Question 1How can information patches be learned from a long tail Wedy?si

Research Question 2How can information scent trails be learned from a long taéiWite?

For research question 1 and 2, frequent itemsets and séjusiterns were learned on each
Web site from goal and non-goal sessions to create contress{Bay and Pazzani, 1999). Contrast
sets which were able to significantly distinguish betweentéto groups of sessions at= 0.05
were deemed valuable patches or trails. Once discoverathgsaand trails were given a value
according to how well the patch or trail distinguished betwéhe goal and non-goal sessions.

In general, finding valuable patches and trails was suagessfroughly a quarter of all tested
Web sites (29.79 of sites for patches and 21 Z8&or trails). On those Web sites which did dis-
cover patches and trails, there were multiple instancestwhes and trails being found (average
of 11.93 patches and 4.70 trails per site).

The previous two research questions examined the conciipf®nation scent and patches
individually. However, the real value of IFT was its abiltty combine the search environment
(i.e., patches) with the actions of a forager (i.e., scértus the main focus of this dissertation
and the final research question was on how these conceptslm®abmbined using clickstream

data to infer goal achievement.

Research Question 3How can information foraging theory and clickstream dataused to ex-

plain the achievement of a goal at a long tail Web site?

Two versions of a clickstream model of information foragimgre proposed which used click-

stream metrics to represent the concepts of informationtsoed patches. In addition, the mod-
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els also included measures which extended IFT. For examybetheses were introduced which
tested the role of memory about a site and how patch valueifip® a group of foragers, could
be used to predict goal achievement. The user-centric (Uiiehrexploited user-centric data
(Padmanabhan et al., 2001) about a forager’s entire brgvilhavior to explain goal achieve-
ment at a long tail Web site. This model compared a foragetmbior across multiple Web sites.
However, due to user-centric data being aggregated at #sesdevel, the model lacked depth at
individual Web sites.

In light of the rarity with which a user’s entire clickstreamer multiple sites is commonly
available to an online firm, a site-centric (SC) version &f thodel employing site-centric data
(Padmanabhan et al., 2001) was also developed. Havingsattcpage-level data made the site-
centric model capable of analyzing patches at all levels\afysis along with information scent at
a Web site. However, since a forager’s behavior acrosswassinknown with site-centric data,
the site-centric model compared a forager’s behaviorivel& an absolute value of zéro

The user-centric model proposed four hypotheses that eeghtihe behavior of a forager within
a site-patch (i.e., Web site). Three of the four hypothesa®wupported at am level of 0.01,
while the fourth was not supported at any of the tested algbeld. The site-centric model pro-
posed the same four site-patch hypotheses as the usacceattel, plus the addition of two page-
patch hypotheses, and three information scent hypothasestypotheses total). Five of the hy-
potheses were supported ata@tevel of 0.01, two aty = 0.05, and one at = 0.10. The remaining
hypothesis was found to be highly significant£ 0.01) in theoppositedirection of what was hy-
pothesized.

Overall, both models were able to find measures which suitdlgsdistinguished between goal
and non-goal sessions. Furthermore, the measures wemdgaon a theoretical base that not
only guided their selection (or creation), but also prodidereasoning for their existence that
helped to explain why users behaved in the manners in whahdhd. In general, the two con-
cepts of IFT were well supported using both versions of tiekstream model of information for-
aging.

The remainder of this chapter is organized as follows. Ringt limitations of this research are

discussed in 89.1. A discussion of the contributions ofdmsertation are given in §9.2. Finally,

1Chapter 8 contains a temporal version of the site-centridehwhich compared each session relative to prior goal
sessions.
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§9.3 provides a brief overview of future research which exisaupon this dissertation.

9.1 Limitations

As with any research, there were a number of limitations tvslwould be recognized so that fu-

ture research may improve upon this work. Listed below ame hinitations of this dissertation.

(1) Since IFT is a relatively new and not widely tested thebgasing this entire dissertation on its
usage may be considered a limitation. However, even thdugjtheory has not seen widespread
usage like other theories commonly used in IS (e.g., ThebBlamned Behavior (Ajzen,
1991)), prior research has successfully used the theoryexample, elements of IFT have
been used to inform the design of user-interfaces (Wilkedl.e2007; Xie et al., 2006; OI-
ston and Chi, 2003) and to help explain the browsing behafitwragers (Lawrance et al.,
2007; Galletta et al., 2006; Katz and Byrne, 2003). FurtleeenlFT is itself heavily based
upon two theories that are well established within theipeesive disciplines: Optimal Forag-
ing Theory (OFT) (Stephens and Krebs, 1986) and the Adaftiverol of Thought-Rational
Theory (ACT-R) (Anderson et al., 2004). Therefore, whild@ iB relatively new, its usefulness
as a theory should not be discounted on that basis aloneathghis dissertation and other

research like it are needed to determine, through evatluatie worth of IFT.

(2) The prediction problem being examined between the as®lr-site-centric models were dif-
ferent. The site-centric model predicted if a goal would blei@ved during the remainder of a
session. To meet that task, only information that occubefdrea form submission was used
to calculate the measures and learn patches and trailsfortvard-looking prediction was
possible because the site-centric dataset containedlgaglanformation, which allowed a
session to be segmented such that only browsing behaviorebtife form submission was
used. In contrast, the user-centric model predicted if 4\goald have occurred given all in-
formation about a session (i.e., backward-looking préaigt The user-centric data was at
the site-level and thus constrained the problem that comlanalyzed. Since it was unknown
where in the session a purchase took place, there was nbleaefieeans with which to segment

sessions.

The use of all browsing behavior within the user-centric eladtroduced two limitations.
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(4)

First, the measures reflected the browsing behavior of éssalgefore and after their purchase.
While the data only allowed the first four measures to be deste change in information

goal after the purchase may have introduced a greater arobnaise into some of the other
measures (e.g., those dealing with page-patches and.sthatsecond limitation is that goal
sessions by default would likely have higher number of pagmsed and session duration as
a direct consequence of purchasing a product. For examyagy goal session would have an
increased number of pages viewed and session duration onegaal sessions simply because
they went through the checkout process. Thus, some of tfeatiices seen between the mea-

sures of the first two hypotheses may be biased because allibefrom a session was used.

Within the site-centric version of the clickstream miodee Web sites were assumed to re-
main relatively constant over the course of the data catlegieriod. If the assumption of
constant structure or content on a site was not met, therrthvesing behavior of sessions
may differ depending on when the sessions took place. Fongiea at one point in time goal
sessions at a Web site may have visited 10 pages per sessiaverage. However, after reor-
ganizing and streamlining the Web site, goal sessions thirviewed five pages on average.
Comparing against an absolute value of zero would makendisighing goal from non-goal

sessions difficult because of the drastic change in browsghavior.

To combat this limitation a temporal version of the sitetdermodel was introduced in chap-
ter 8. The temporal version compared all browsing behaeiative to all goal sessions which
had taken place before the current session. Thus, theveelaasures would be better able to
reflect changes in the structure or content of a site. Comgaiie results of the two versions
of the site-centric model failed to find any large differentetween the models, indicating the
Web sites used in the site-centric dataset were mostlg stdtiwever, other datasets which
contain Web sites which evolve at a much more rapid pace, mdyb#tter results using the
temporal version of the model. Future research will morsalipexamine the affect time has

on explaining goal achievement.

The user-centric dataset contained Web sites of alllagipy but this dissertation was only
interested in examining long tail Web sites. The limitatias a rigorous and quantifiable def-

inition of what constituted a long tail Web site was not knowhus, the 80/20 rule (Newman,
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2005) was used to classify sites as either parts of the skad ar long tail of a power law
distribution. While the use of the 80/20 rule appears to bsorable, future research should

better explore how to define the long tail.

The user-centric dataset also restricted Web sites tha teerfar down the long tail. For
example, sites with few achieved goals (0 purchases) were removed as they were sus-
pected of being abandoned, too new, or representing failsithéss models. Due to their lack
of traffic, these “very long tail” sites were considered tparse to be usable for the intended
analysis (e.g., mining may result in no or spurious patchestiails being found). While the
selection of 50 goal sessions appears to be reasonablel¢ioctian was specific to the user-
centric dataset. Thus, future research may be better ablgtoent the long tail by defining

generally-applicable rules.

A common limitation faced when dealing with real-worldtdsets is the element of “noise”

in the data. Although both datasets were preprocessedsexn some elements of noise
inevitably remained within the datasets. For example, iwithe site-centric dataset robots,
spiders, and other automated programs may have been pretieadata. To deal with these
robots, the data provider had initially scrubbed the datafy self-identified robots. Then

the outlier analysis was performed during preprocessingrwmve any other out-of-place ses-

sions.

The actual effect of such noise on the results of the modeaiksown. However, it was be-
lieved the noise had a minimal impact because the resultstbfdgrsions of the model gener-
ally came out as expected. Thus, the model demonstratesleeehl®f robustness in the face
of noisy data. Future work may be better able to quantify tingsict noise has on the model
by using more in-depth (e.g., categories of sites for the-csetric data) and focused data

(e.g., browsing behavior from experimental participants)

The determination of leaving and returning behaviohwithe same session differed between
the two models, making comparisons of their results difficlihe user-centric model was
stricter than the site-centric model in determining whethsession left and returned dur-

ing a session. The user-centric model required a visitaifat least two pages at another e-

commerce Web site, whereas the site-centric model coungédtions of any length at any
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site. Thus, the site-centric model may have inadvertenthpduced noise into the analysis by
counting Web sites which were not related to the informatjoal of the forager at the site of
interest. Future research using more detailed user-centric datesat be better able to de-
termine if the distinction between the types of sites beafgfbr makes a difference. For ex-
ample, a site-centric dataset may be created from a detasedcentric dataséto determine

if viewing more than one page at a similar type of Web sitelygahtters when considering

leaving and returning behavior.

The site-centric version of the clickstream model usexfirst 70% of sessions to calculate
patches and traits The rationale behind the usage of/7@as to have a large enough num-
ber of sessions to mine from in order to find valuable patchegails, without introducing
noise into the analysis by discovering spurious patchegraiid (e.g., a patch that only one
other session visited). Future research should performsitsdty analysis to determine if the

results of the model change dramatically with differentcpatages.

The temporal site-centric version of the model used #messet of sessions to perform two
tasks. First, a set of goal and non-goal sessions were useartopatches and trails. Second,
the goal sessions from that same set of sessions were théttousaculate measures for patch
visitation and trail following. The median value of thoseaneres was then used to determine
the relative value of patch visitation and trail followingrfthe current session. The reason this
approach was taken was due to the limited sample size at eablsi®. Ideally, the mining of
patches and trails should have used one group of sessioils thécalculation of measures
should have used another. Future research that uses Wehdaitso far down the long tail

may be better capable of having independent groups of sssa@@omplish each task.

The path stratum measure was based on concepts from tipeqly (McEneaney, 2001).
When used to quantify the linearity of a user’s clickstrearn main limitations came to the

surface. First, the path stratum measure would be much libwer user started and ended

2Within the user-centric model, noise could have been furéguced by restricting e-commerce sites to those

within the same product category as the target session.riunfitely, the Web sites within the user-centric dataseewe
not categorized.

®See Padmanabhan et al. (2001) for an example of creating-eesitric dataset from a user-centric dataset.
“To be precise, the first %0 of goal sessions were used. In addition, all non-goal sessidich occurred before

the last of the 7% of goal sessions were also used.
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their session on the same page (e.g., the index page), aseapfmodifferent pages (e.g., in-
dex and contact page). This is because the path the user txk wlosed walk. Within the
context of measuring scent, however; such a closed walk migatessarily indicate such an
extreme drop in scent. For example, a forager may returretintiex page at the end of their

session to make sure they investigated all links of interest

The second limitation of the metric is that repeating setjakpage views and multiple traver-
sals of the same path are lost when transforming a clickstteahe converted distance matrix
that is needed to calculate the measure. Since repeateddrekdost, the overall scent of

a user may be marked as high by the measure even in situatimre wultiple cycles occur
within the clickstream. Given these limitations, futureearch may further explore if these
situations unique to measuring information scent may berpuarated into the path stratum

measure.

9.2 Contributions

In light of the limitations mentioned in the previous sentid is believed this dissertation still

makes a number of worthwhile contributions. Listed beloe/thie major contributions of this dis-

sertation.

(1) First, this dissertation demonstrated how IFT could $&duas a theoretical basis for click-

()

stream research. Through the creation of two versions atlestteam model of information
foraging, the concepts of IFT were quantified outside of apetion rule environment. In ad-
dition, the CMIF not only operationalized the core concegftd=T, but also extended the the-
ory by introducing memory, forager-independent valuatbpatches and trails, along with re-
fined definitions of scent (e.g., strict and relaxed scentcedested, many of the core aspects
of IFT and the theoretical extensions introduced in thisdistion were supported. Thus, this
dissertation not only demonstrated the ability of IFT tolakpgoal achievement, but it also
introduced theoretical extensions which provided a moweipth explanation of goal behav-

jor.

This dissertation also presented a methodology on hdeato patches and scent trails using

not only significant, but also supported contrast sets. Measwere also created which quan-
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(4)

tified a forager’s visitation of patches and following ofilsaThe metrics measured the most
valuable, last, and summation of all patches and trailswieaé visited or followed. For those
Web sites within the CMIF that discovered patches and friilsmeasures were capable of
distinguishing goal from non-goal sessions according tarager’s visitation and following

behavior.

The third contribution was a methodology that detailed o preprocess datasets with long
tail Web sites. In particular, a separate user- and sitéricenethodology was presented which
highlighted the unique challenges associated with preyaging each dataset. For example, a
process was provided for the site-centric dataset aboutttidvzcate and select a single defin-

able goal on Web sites which have more than one available goal

Finally, due to the presence of IFT guiding analysigitranally understudied long tail Web

sites were able to be examined even in light of their spartesdts.

9.3 Future Research

This dissertation was meant to provide a well-defined cHahneugh which a stream of future

research may flow. Thus, listed below are four future re$eprgjects that continue and extend

upon the work in this dissertation.

(1)

The first research project deals with attempting to anslaeequestion “What is the long tail?”.
In this dissertation the long tail was defined as those Wels sihich only accounted for 20

of achieved goals. A natural extension would be to more pedgidefine the separation be-
tween long tail and short-head Web sites. However, suchtiactisn may still be too sim-
plistic in light of how much area the long tail portion of a earmay cover. Therefore, further

segmentation within the long tail (e.g., the “very longaihay also need to be defined.

In addition, there may be other means with which to define taiigVeb sites, in general. For
example, should sites be defined according to their totabautnaf traffic or by the number

of goals achieved? If the goal being examined is purchasesa site be a long tail Web site
for one type of product, yet reside within the short-headotbier product categories? If so,
how do browsing patterns of foragers differ in regards tolding tailedness of the Web site’s

product categories?
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The largest contributions of this research would be a clefinition of what “long tail” really

means.

(2) The second research project is also a natural extensibisaissertatioh: “How does the
evolution of long tail Web sites affect browsing patternsPhe temporal version of the site-
centric model provided an initial, yet somewhat simplisgilimpse into a time-sensitive rel-
ative analysis. In essence, the temporal version used awindnsisting of all previous ses-
sions. However, including all previous sessions may beldlithaon Web sites that commonly
change, since “old” data would limit the ability of new pagshand trails to be learned from
the newly changed site. Thus this research project woulthieahow sliding windows may
be defined to better meet the needs of long tail sites. For peamvindows may be of a cer-
tain size (number or percentage), for a particular timegokf a size necessary to stabilize

measures, or some combination of the three.

In addition, the burn-in period may also be defined such thesisures are not calculated until
patch and trail discovery has stabilifed’he use of stabilization may also have the added ben-
efit of not “throwing” away extra banked sessions just beedhe bank had not met the pre-
scribed number (or percentage) of sessions in it. Furthesntioee computationally expensive
task of re-learning patches and trails may be restrictedhip after those times of destabiliza-

tion.

The largest contribution of this research would be a thanacargalysis of how time impacts
the analysis of foraging behavior on long tail Web sites.ddition, a methodology would be
introduced that would make the most of the sparseness ofrdatdong tail sites, while still

allowing relative comparisons of foraging behavior.

(3) The third research project would provide a test of infation foraging theory using a produc-
tion rule system. In particular, IFT would be examined agloail Web sites to determine how
well the production rules, as specified by Pirolli (2007§ able to explain foraging behavior

on long tail Web sites. In addition, production rules whiake into account the theoretical

5A dataset which consists of Web sites that evolve at a moid pgze than those seen in the site-centric dataset
would be used.

6Measure calculation would also cease following Web sitengba until patch and trail discovery had stabilized
again.
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(4)

extensions tested in this dissertation (e.g., memorygvafypage-patches) would also be cre-
ated and tested. The main contributions of this researchdwamutwo-fold. First, IFT would

be tested in its original form on a sample of Web sites difiefeom those sites used to create
and test the theory. The second contribution would exanfi@ability and importance of the

theoretical extensions outlined in this dissertation fol@x goal achievement using IFT.

The final research project would not be as direct of annsibe of this dissertation as the

other three projects, however; it would still employ IFT abeoretical base to examine search-
ing behavior. In particular, the purpose of this researelcg@iwould be to determine how search
gueries, used to arrive at a Web site, can predict the priityatfia goal being achieved. The
belief is that search queries are an observable manif@statithe information goal of a for-
ager. Thus, information within a search query may provide<€linto not only the goal of

the forager, but also how well-defined the goal is. For examgdsume one visitor submit-

ted “flat-panel TV” for their search query, while another suitted “Sony Bravia 52”. The first
query appears to be more general in nature and thus may besoitee for browsing behavior
that occurs during the information gathering stage. Inmemttthe second query looks to be
much more refined and pointing toward a specific product, ivhitorager may be interested

in purchasing.

Semantic similarity, which is the likeness of concepts leetvtwo sets of words (Li et al.,
2003), would be used to quantify the textual nature of sequerties and then group similar
search queries (and their resulting sessions) togetheste®ing search queries, which are
semantically similar to one another, may uncover groupgsséiens which are more likely

to achieve a goal during a session. The expected contnitautibthis research would be the
introduction of semantic similarity to clickstream resgraand the creation of a methodology

on how semantic similarity may be used to predict goal achment.
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