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Design & Synthesis of β-hairpin Peptidomimetics for Modulating Integrin Mediated 

Cell Adhesion, Abeta Fibrillogenesis and p53-MDM2 Protein-Protein Interactions 

Priyesh Jain 

ABSTRACT 

Inhibiting therapeutically important protein-protein interactions has been a tremendous 

challenge for medicinal chemists. The folded 3D structures of peptides and proteins, 

mainly comprise secondary structural elements i.e α-helices and β-sheet have created an 

opportunity to design small molecules and peptidomimetic inhibitors of protein-protein 

interaction (PPI). Hence, information about the formation and stabilization of these 

secondary structures is vital for designing future drugs. In this dissertation, several cyclic 

beta-hairpin peptidomimetics that mimic the recognition surface have been designed and 

synthesized as inhibitors for different targets such as integrin mediated extracellular 

matrix -cell adhesion in multiple myeloma, p53-MDM2 PPI, amyloid beta fibrillogenesis 

inhibitor. Cyclization of linear peptides to restrict the number of conformations available 

to the linear peptide can increase its affinity for the target as well as increase its 

proteolytic resistance. In this study, different beta turn promoters that increase the 

propensity of cyclic peptides to adopt beta-sheet structures have been designed and 

synthesized. Chapter two discusses the design and synthesis of several cyclic III (Integrin 

Interaction Inhibitor) peptides that block adhesion of integrins to extracellular matrix 

components in Multiple Myeloma tumor cells. These cyclic peptides, as assayed by 
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TOPRO 3 assay were more potent than the parent linear peptide with a bio-activity of 

1.08 µM. We have also studied structure activity relationships (SAR) of these cyclic III 

peptide analogs to increase the potency and bioavailability of these peptides.  

Chapter three describes the application of cyclic beta-hairpin peptidomimetics to inhibit 

abeta fibrillogenesis that is responsible for Alzheimer’s disease. We have successfully 

designed and synthesized cyclic peptides that target the hydrophobic region (17-21) of 

abeta fibril which is believed to cause self aggregation and plaque formation. We have 

also successfully explored these cyclic beta-hairpin peptides to disrupt p53-MDM2 

interactions. Chapter five discusses the design and synthesis of novel cysteine based 

Peptide Nucleic Acid (PNA) monomers that are aimed to increase cellular uptake by 

introducing positively charged species attached to the cysteine side chain. We have 

successfully synthesized CPNA monomers and made efforts to make PNA oligomers. 
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CHAPTER ONE: 

INTRODUCTION 

 

1.1 General overview of peptides and proteins 

 Proteins are macromolecules consisting of 20 different natural amino acids linked 

together by amide bonds to form linear chains. Linear chains consisting of 2 to 100 amino 

acids with molecular weight up to 10 KDa are usually termed as peptides whereas longer 

polypeptides with defined structures are classified as proteins. The total number of 

different proteins that can be made from 20 different amino acids is huge. A 10 amino 

acids chain can have up to 20
10

 possible sequences or 10 trillion structurally different 

molecules. The biological activity of a protein depends on its three dimensional 

conformation. Peptides often have many different conformations and can randomly 

change whereas proteins are relatively rigid with one or a handful of preferred 

conformations. The primary structure of a polypeptide or protein is the sequence of 

amino acids linked together by peptide bond. As shown in fig. 1.1a, the peptide C-N bond 

has partial double bond character due to resonance, which restricts free rotation around 

the peptide bond (1). Proteins fold themselves into well defined secondary and tertiary 

structures. The secondary structure of proteins usually stems from the geometry of bond 

angle between amino acids and hydrogen bonds betweens adjacent amino acids residues. 

The main secondary structures of protein are: the α-helix, the β-pleated sheet and the β-

turn. The tertiary structure of a protein describes the overall three-dimensional 
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arrangement of the atoms or shape of a protein. As shown in Fig. 1.1b, the peptide 

structure is always interpreted in terms of dihedral angles between adjacent planar 

peptide groups. The dihedral angle for free rotation around C
α 

–N bond is represented by 

angle Φ whereas rotation about C
α 

–C is denoted by Ψ.  

 

Fig. 1.1 (a) Resonance in planar peptide bonds (b) Various dihedral angles observed in 

linear peptide chains. 

 

Table 1.1 Dihedral angles for secondary structural elements in peptides 

Conformation Dihedral angle (degree) 

            Ф                      Ψ 

Residues per turn 

Right-handed α-helix -57 -47 3.6 

Anti-parallel β-sheet -139 +135 2.0 

Parallel β-sheet -119 +113 2.0 

Type I β-turn* -60(-90) -30(0) 3.0 

Type II β-turn* -60(+90) +120(0) 3.0 

For the β-turn, angle outside parenthesis is for ith+1 residue and within parenthesis is for 

ith+2 residue of the turn (2). 
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The right handed α-helix accounts for approximately 31% of all protein structures 

whereas β-sheets and β-turns accounts for 28% and 25% respectively (3). These 

secondary and tertiary structures are stabilized by noncovalent interactions such as 

hydrogen bonds, Van der Waals interactions, hydrophobic effects and steric interactions. 

The folded 3D structures of peptides and proteins have created an opportunity to design 

small molecules and peptidomimetics to mimic the recognition surface involved in 

various protein-protein interactions responsible for causing several diseases.  

1.2 β-Sheet and β-hairpins 

β-Sheet and β-hairpins are key recognition motifs that bind to many protein-

protein and protein-DNA interactions that are important for many biological functions 

and also in causing some diseases. So far, the α-helix secondary structure has been 

widely studied. The study of β-sheets was not widely adopted due to the fact that these 

peptides quickly undergo self-association to form large, insoluble, quaternary β-sheet 

structures, which makes detailed thermodynamic and structural characterization of these 

secondary structures very difficult (4,5). β-sheets consist of two or more paired β-strands 

arranged in parallel or antiparallel fashion. In parallel β-sheets, the individual β-strands 

run in the same direction and are usually characterized by 12 atom hydrogen bonded 

rings (Fig.1.2a). In antiparallel β-sheets, the individual β-strands run in the opposite 

directions and are usually characterized by alternating 10 and 14 atom hydrogen bonded 

rings (Fig.1.2b). Table 1.1 clearly depicts the dihedral angles found in parallel and anti-

parallel beta sheets. Antiparallel β-sheets have shorter (linear) H bonds whereas parallel 

β-sheet have slightly longer H bonds. Both parallel and antiparallel β-sheets have 

adjacent side chain residues running in opposite directions, thereby exhibiting an 
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extended conformation. Thus β-sheets offer three different recognition sites: interaction 

either via top or bottom faces of the sheet or via hydrogen bonding with amide hydrogen 

on each side of the sheet. Parallel β-sheets are usually seen in the hydrophobic interior of 

proteins whereas antiparallel β-sheets with amphipathic character are usually found at the 

surface of proteins. 

 

Fig. 1.2 Schematic representation of (A) parallel and (B) antiparallel β-sheets. H bonds 

are indicated by dashed lines whereas side chains of amino acids are represented by R. 

The arrow head indicates direction from N to C terminus of the β-sheet. 

 

The β-turn is another important protein structure which allows the polypeptide 

chain to change the direction abruptly by 180
o
 and allows the protein to adopt a more 

globular compact shape (6-8). β-turns usually consists of loops formed from four amino 
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acid residues where the hydrogen bonding from ith and ith +3 residue is important in 

stabilizing the turn (Fig. 1.3).  

 

Fig. 1.3 The β-turn 

Another very interesting secondary structure found at protein-protein interfaces is 

the β-hairpin motif (9-11). A β-hairpin is a simple motif that contains two antiparallel 

strands connected by a short connecting loop sequence of two to five amino residues that 

stabilizes the hairpin structure (Fig. 1.4). The β-hairpin scaffold is very interesting since it 

is used by many proteins for bimolecular recognition. 3D structure analysis of β-hairpins 

revealed that β-hairpins vary widely in hydrogen-bonding pattern between strands and 

most of hairpin loops have less than 5 residues (12).  

 

 

Fig. 1.4 β-hairpin 
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The simplest approach to design a β-hairpin mimetic is to transplant a hairpin 

loop of protein with a known structure onto a template that stabilizes the β-hairpin to 

form a conformationally defined macrocyclic structure. The template serves as a β-turn 

promoter and nucleates the cyclic β-sheet formation. The template structure plays an 

important role on macrocylic β-hairpin stability. Various research groups have 

incorporated natural or unnatural amino acids in the β-turn position of a β-hairpin and 

have studied β-hairpin folding and the stability of linear peptides in aqueous solution (13-

18). As shown in Fig. 1.5, Blanco and co-workers have used the L-Asn-Gly dipeptide 

template as a β-turn promoter which folds and forms β-hairpin structure in water. 

 

Fig. 1.5 16 amino acid residue peptide with Asn-Gly dipeptide template as turn promoter 

Gellman and co-workers have utilized D-Pro-Gly template to form stable β-

hairpins in aqueous solution (Fig. 1.6) (14). They found that the D-Pro-Gly template was 

better than Asn-Gly and use of D-amino acid increases the propensity of linear peptides 

to adopt the β-hairpin conformation. 
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Fig. 1.6 12 amino acid residue Gellman peptide with D-Pro-Gly dipeptide template 

It has been reported that achiral α-aminoisobutyric acid (Aib) forms a β-turn when 

used with D-α-amino acid or achiral α-amino acids. Balaram and co-workers have shown 

that peptides with the Aib-Xaa (Xaa= D-Ala, D-Val, D-Pro, D-Gly) dipeptide template 

adopts β-turn conformations in organic solvents (19). Hammer, Barany, Veglia and co-

workers have shown that Aib-D-Ala and Aib-Gly adopts a β-turn conformation in water 

(20). They have compared the conformation of Gellman’s peptide (Fig. 1.6) by replacing 

the D-Pro-Gly dipeptide β-turn inducer by Aib-D-Ala (Balram’s dipeptide template), 

Aib-Gly and demonstrated by NMR studies that these peptides (Fig. 1.7) adopt type I’ β-

turn conformations in water. 

 

Fig. 1.7 Hammer’s design of β-hairpin structures with (a) Aib-Gly and (B)Aib-D-Ala 

dipeptide units introduced as a β-turn inducer in Gellman’s peptide sequence. 
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Balaram and co-workers have also reported several expanded β-turn mimics with 

D-Pro-Xaa (Xaa= β-,γ-, and δ- amino acid) dipeptide template (21). They have shown 

that peptides with α,β and α,γ residues at the turn adopt β-hairpin structures in methanol. 

 

Fig. 1.8 Balaram’s design of β-hairpins with extended α,β, α,γ and α,δ turn promoter. 

Guan have reported a 1,4-disubstituted 1,2,3-triazole based β-turn promoter that 

induces β-hairpin structures for peptides in chloroform (22). Silvani have reported 
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tetrahydroisoquinoline based turn promoter to induce β-hairpin structures for smaller 

peptides in chloroform (23). Several research groups have reported new β-turn promoter 

that induce β-hairpin formation for linear peptides (24). Fig.1.10 lists some of the β-turn 

promoters reported for inducing β-sheet structure formation. 

 

 

 

Fig. 1.9 Different β-turn promoters for inducing β-hairpin structures for linear peptides 

 

Fig. 1.10 Parallel β-sheet formation using CHDA-Gly diacid linker  
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Fig. 1.11 Artificial β-sheets consisting of parallel β-sheet dimer with succinic diacid 

linkers and β-strand and β-turn mimic.  

 

Recently Gellman and co-workers have reported the first diacid linker, CHDA-

Gly turn promoter that promotes β-sheet formation in water (25). The CHDA-Gly turn 

promoter aligns two β-strands in parallel orientation as shown in Fig.1.10. Nowick and 

Levine have recently reported the synthesis of artificial β-sheets that dimerize through 

parallel interstrand β-sheet interations in chloroform (26). Parallel β-sheet interactions are 

important in the aggregation of peptides such as Aβ peptide aggregation observed in 

Alzheimer’s disease.  

1.3 Cyclic β-hairpin peptidomimetics 

Generally the bioactivity of proteins arises from a small local segment of protein 

surface formed by these secondary structures, so molecules based on these structures 

would in principle serve as antagonists. Hence a simple approach for medicinal chemists 
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is to design drugs would mimic the β-sheet/strand regions of proteins recognized by other 

proteins or DNA. However the linear peptides have the disadvantages of being 

conformationally flexible, existing as random structures in aqueous solution. Linear 

peptides have low bioavailability, are easily susceptible to degradation by proteases and 

poor pharmacological properties. There are two strategies for solving these issues. The 

first approach involves restricting the degrees of freedom available to the linear peptide 

through cyclization to form macrocycles. Molecules which are conformationally 

preorganized or have fixed shape that can be recognized by a receptor will have higher 

affinity for that receptor due to a diminished loss of entropy for adopting that shape. 

Nature frequently uses cyclization technique to force peptides to adopt bioactive 

conformations. Naturally occurring peptide antibiotics such as gramicidin S and θ-

defensin have been used and studied extensively for creating β-sheet structures. Cyclic 

peptides also cannot as readily be recognized by proteolytic enzymes.  

 

Fig. 1.12 Robinson’s cyclic β-hairpin design as inhibitors of p53/MDM2 interaction. 
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As shown in Fig.1.12, Robinson and co-workers have utilized this approach in 

mimicking the α-helix of p53 with a cyclic β-hairpin to inhibit p53/MDM2 interaction. 

They have designed a cyclic beta-hairpin scaffold mounted on a D-Pro-L-Pro beta-turn 

promoter template that holds the side chains of phenylalanine and tryptophan residues in 

the correct relative positions, so that they could interact with their respective binding sites 

on MDM2 protein (27). This dipeptide template adopts a stable type II’ β-turn that is 

ideal for inducing β-hairpin conformations. Kopple and co-workers have also used this 

template to design cyclic hexapeptides that exhibit β-sheet structures with type II’ β-turn 

(28). This cyclic β-hairpin peptide design developed by Robinson has been explored to 

design inhibitors for several bimolecular targets. Shankaramma have synthesized a cyclic 

macrocylic β-hairpin mimetic of the cationic antimicrobial peptide Protegrin I by using 

the DPro-LPro dipeptide template (Fig.1.13) (29). Robinson & co-workers have also 

reported β-hairpin mimetics with a mixed peptide-peptoid backbone that have shown 

excellent antimicrobial activity (Fig.1.14) (30). They have also synthesized a series of 

cyclic β-hairpin mimetics based on a trypsin inhibitor from sunflower seeds (31). 

 

Fig. 1.13 β-hairpin mimetic of cationic antimicrobial peptide Protegrin I. 
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Fig. 1.14 β-hairpin mimetic of antimicrobial peptides with mixed peptide-peptoid 

backbone. 

 

Nowick and co-workers have reported the synthesis of a triple-stranded artificial 

β-sheet that adopts β-sheet like conformation in organic solvents (Fig.1.15a)(32). 

Recently, they have developed several macrocyclic peptides containing a pentapeptide 

strand, β-strand mimic and two ornithine based β-turn promoters (33-34). These 42-

membered cyclic peptides adopt β-sheet conformations in water (Fig.1.15b). Ornithine α-
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amino groups provide a site that allows synthesis of bivalent peptides connected by a 

linker of suitable length (Fig.1.15c). 

 

Fig. 1.15a Nowick’s design for triple stranded artificial β-sheet.  

 

Fig. 1.15b 42-membered macrocyclic β-sheet peptide mimic containing β-strand & β-

turn mimic. 

 

 

Fig. 1.15c Macrocyclic β-sheet peptide mimic containing β-strand & β-turn mimic. 
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As shown in Fig.1.16, the methylsulfonamido aminoethyl glycine and proline 

based ether-peptidomimetic amino acid have been designed and synthesized to induce β-

sheet conformations for synthesizing cyclic β-haipin peptidomimetics to inhibit protein-

protein interactions. The core residues mimicking the recognition surface are placed in 

the recognition strand whereas non-recognition strand residues can be modified to 

optimize the bioavailability and bioactivity of the designed peptide. N- to C- terminus 

cyclization of linear peptides to restrict the number of conformations available to the 

linear peptide increases the affinity of the cyclized peptide for its target. Peptidomimetics 

obtained after incorportation of methylsulfonamido aminoethyl glycine turn promoters 

are believed to adopt β-sheet extended structures. Replacement of the aminoethyl glycine 

turn promoter with the D-Proline derived ether-peptidomimetic turn promoter should 

further constrain the β-hairpin and increase its binding affinity for the target.  

It is known through cited literature that adhesion of leukemia tumor cell to 

extracellular matrix components via integrin influences cell survival and inhibits drug 

induced apoptosis. Various research groups have made efforts to design drugs that mimic 

integrin recognition surfaces, inhibiting protein-protein interaction and thereby inducing 

cell death through apoptotic pathways. A linear 10 amino acid residue peptide referred as 

D-HYD1 has been reported to block adhesion of tumor cells to extracellular matrix. Our 

proposed strategy of cyclic β-hairpin peptidomimetics design that carries the core region 

of D-HYD1 in the recognition strand are expected to block adhesion of integrins 

(glycoprotein) to extracellular matrix components in prostate, multiple myeloma, and 

lung tumor cells.  
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(a) 

  

(b) 

 

(c) 

 

Fig. 1.16 (a) Designed methylsulfonamide aminoethyl glycine and proline based ether-

peptidomimetic amino acid turn promoters (b) Proposed cyclic β-hairpin peptidomimetic 

with aminoethyl glycine turn promoter to inhibit adhesion of leukemia cells to 

extracellular matrix (c) Cyclic β-hairpin peptidomimetic with proline based ether-

peptidomimetic amino acid turn promoter. 

 

Another well known example is the p53/MDM2 protein-protein interactions 

observed in many cancers. Various research groups have developed drugs that mimic the 

p53 recognition surface that binds to MDM2 and inhibits the protein-protein interactions. 

Fig.1.17 shows the 9-membered cyclic peptide that has been designed to mimic the α-

helix of p53 with cyclic β-hairpin to inhibit p53/MDM2 interaction.  
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Fig. 1.17 Proposed cyclic β-hairpin mimetic of α-helix of p53. 

In the last two decades many neurological disorders such as Alzheimer’s disease 

(AD), Parkinson’s disease, mad-cow disease, Huntington’s disease and many other prion 

diseases have been to be caused by protein misfolding without any alteration of the 

protein ‘primary structure’. It was found that aggregation or self-association of amyloid 

fibrils, consisting of 40-42 amino acid Aβ peptides formed insoluble β-sheet plaques that 

were responsible for causing AD. Many researchers have shown that the hydrophobic 

core region (residues 17-21) of Aβ peptide is critical for fibril formation. Based on these 

reports we propose the design and synthesis of cyclic β-hairpin peptides that bind 

specifically to this hydrophobic region and prevent abeta β-sheet aggregation (Fig.1.18). 

The recognition strand of the designed cyclic peptide would interact with the growing Aβ 

fibril whereas the non-recognition strand would have residues that would inhibit 

aggregation from the other face of the assembly. 
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Fig. 1.18 Cyclic β-hairpin peptidomimetic targeting hydrophobic core region (17-21) of 

Aβ peptide. 

 

1.4 Solid Phase Peptide Synthesis 

In 1959, Merrifield conceived the idea that if peptide is bound to an insoluble 

support then any unreacted reagents left at the end of each reaction step can be simply 

removed by general solvent wash, thereby reducing the time required for purification and 

synthesis of the desired compound. This idea led him to pioneer a new field in chemistry 

called solid-phase synthesis for which he was awarded Nobel Prize in 1984. Solid-phase 

synthesis is widely used by chemist to carry out chemical reactions on a solid support to 

prepare libraries of organic compounds, oligomers and complex molecules that are 

difficult to synthesize using solution-phase synthesis. During the last six decades, Solid-

Phase Peptide Synthesis (SPPS) has evolved as the primary route for synthesizing a great 

diversity of peptides and proteins. The basic concept of synthesizing peptides using SPPS 

is described in Fig.1.19. The peptide chain is assembled on polymeric resin solid support 

by stepwise addition of α-amino acid residues in the C to N direction. Fmoc and Boc 

protecting group strategies are widely used for synthesizing peptides on resin. Fmoc 
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chemistry has been widely adopted for most solid-phase peptide synthesis since this 

strategy has been shown to be more reliable. The greatest advantage of employing Fmoc 

SPPS strategy is that it is chemically compatible with most of the commercially available 

peptide synthesizers. The use of extremely hazardous and corrosive chemicals for 

deprotection step in Boc SPPS limits its application on an automated synthesizer.  

 

Fig. 1.19 General protocol for solid-phase peptide synthesis. 
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After base treatment, the peptide is washed several times with a mixture of 

solvents and then a mixture consisting of an activated amino acid and base is added to the 

peptide  in the reactor to couple the next amino acid. There are four different kinds of 

coupling agents used for carboxyl activation in SPPS: 

1. Carbodiimides  

2. Symmetrical anhydrides  

3. Activated Esters 

4. Uronium based coupling reagents 

Carbodiimides are widely preferred activation reagents (35). These reagents 

produce insoluble ureas in some of the solvents that are used in SPPS and thus interfere 

in peptide purification. Symmetrical anhydrides can be generated in situ from two 

equivalents of amino acid and one equivalent of carbodiimide reagent. The generated 

urea can be filtered off and the synthesized coupling agents can then be used for 

coupling. The most commonly used activated esters for peptide coupling are those 

derived from pentafluorophenol (HOPfp) and HODhbt (36). During last three decades, 

coupling reagents based on phosphonium and uronium salts have been widely used for 

synthesizing peptides. These in situ activation reagents are highly efficient in peptide 

couplings and reduces racemization or side-product formation. Fig.1.20 lists some of the 

common activating agents used. Other coupling reagents used for peptide coupling 

include amino acid halides and azides (37, 38). The activated acids can be prepared and 

purified prior to coupling or can be generated in situ be addition of reagents such as 

cyanuric chloride or fluoride to give acid chlorides or fluorides. Diphenyl 

phosphorylazide directly converts carboxyl groups to an acylazide intermediate. 
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Fig. 1.20 Common coupling reagents used in SPPS. 
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All cyclic β-hairpin peptidomimetics designed for the different targets (chapter 2, 

3 &4) will be synthesized on the Symphony peptide synthesizer, Protein Technologies 

Instrument, using Fmoc SPPS strategy. Typically, a linear precursor will be assembled on 

solid support, 2-Chlorotrityl chloride resin, and then macrocyclized and deprotected in 

solution phase.  SPPS strategy has also been adopted to synthesize PNA oligomers which 

is described in detail in chapter five. 

1.5 Cysteine based Peptide Nucleic Acid (CPNA) 

PNA (Peptide Nucleic Acids) are DNA mimics in which the deoxyribose 

phosphate diester backbone is replaced by a pseudo-peptide backbone while the four 

natural nucleobases are retained. PNA consists of repeating N-(2-aminoethyl)-glycine 

units in which the nucleobase is attached to the glycine nitrogen via a methylene carbonyl 

linker. The acyclic, achiral and neutral backbone makes PNA set apart from DNA. The 

neutral backbone of PNA allows stronger binding between complementary PNA/DNA 

strands than between complementary DNA/DNA strands. PNAs have been demonstrated 

as potential candidates for gene-targeting drugs but some disadvantages have limited its 

applications. These include low cellular uptake caused by poor cell membrane 

permeability and poor aqueous solubility. To increase cellular uptake we propose the 

design of novel CPNA (cysteine based PNA) scaffolds by introducing positive charge 

species attached to the cysteine side chains. An attempt to synthesize cysteine based 

Peptide nucleic acid (CPNA) monomers and oligomers containing all four nucleobases is 

described in chapter five. 
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1.6 Structural Analysis of Peptides 

The 3D structural analysis of peptides and proteins can be carried out by several 

experimental techniques such as X-ray crystallography, solution nuclear magnetic 

resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy and Fourier 

transform infrared spectroscopy (FTIR). X-ray analysis is a widely preferred technique 

for structural elucidation of peptides. Solution NMR spectroscopy is another powerful 

tool used since the last three decades. The NMR input for conformational studies of 

peptides depends on NOE (nuclear Overhauser effects) and coupling constants.  NOE 

studies detect the interactions involved by measuring interproton distances of 5 Ǻ or less 

while the coupling constants give information about torsion angles. The whole set of 

NOE constraints is then plugged in computational software and an energy minimization 

experiment is carried out to search for optimized solution structures of peptides and 

proteins. 

Circular Dichroism (CD) is another important technique for determining the 

conformations of peptides and proteins in solution. CD spectroscopy measures the 

difference in absorbance of right- and left-circularly polarized light by a substance. Bands 

in the far UV region of CD spectra (260-190 nm) are analyzed for the different secondary 

structural of peptides and proteins i.e. alpha helix, parallel and antiparallel beta sheet, 

beta turn, etc. Fig.1.21. shows various secondary structural elements in CD spectra of 

polypeptides in solution (39). All cyclic β-hairpin peptides synthesized will be 

characterized for their secondary structures using CD and NMR experiments. 
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Fig. 1.21 CD spectra of secondary structural elements in peptides and proteins. 

FTIR technique is used for examining peptides that shows self-association or 

aggregation behavior. In IR spectra each compounds has its own set of absorption bands. 

In FTIR, characterstic bands for peptides and proteins include Amide I and Amide II 

arising from the amide bond (40). The stretching vibrations of C=O leads to Amide I 

bands where bending vibrations of the N-H bonds leads to amide II bands. The location 

of both amide I and amide II bands are very sensitive to the secondary structure of 

peptides and proteins.  

 



25 

 

1.7 References 

1. Patrick, G. L., An Introduction to Medicinal Chemistry, 2nd Edition. Oxford 

University Press, New York, 2005; pp.24.  
 
2. Creighton, T. E. Proteins: Structure and Molecular Properties; 2nd ed; W. 

H.Freeman and Co.: New York, 1993; pp. 65-68. 

 
3. Walton, A. G. Polypeptides and Protein Structure; Elsevier: New York, 1981; 

pp. 49-55. 

  

4. Pauling, L.; Corey, R. B., Configurations of polypeptide chains with favored 

orientations around single bonds: two new pleated sheets. Proc. Natl. 

Acad. Sci. U. S. A. 1951, 37, 729-40. 

5. Pauling, L.; Corey, R. B.; Branson, H. R., The structure of proteins: two 

hydrogen-bonded helical configurations of the polypeptide chain. Proc. 

Natl. Acad. Sci. U. S. A. 1951, 37, 205-11. 

6. Dyson, H. J.; Rance, M.; Houghten, R. A.; Lerner, R. A.; Wright, P. E., Folding 

of immunogenic peptide fragments of proteins in water solution. I. 

Sequence requirements for the formation of a reverse turn. J. Mol. Biol. 

1988, 201 (1), 161-200. 

7. Hutchinson, E. G.; Thornton, J. M., A revised set of potentials for Î²-turn 

formation in proteins. Protein Sci. 1994, 3 (12), 2207-16. 

 

8. Sibanda, B. L.; Blundell, T. L.; Thornton, J. M., Conformation of beta-hairpins 

in protein structures. A systematic classification with applications to 

modelling by homology, electron density fitting and protein engineering. 

J. Mol. Biol. 1989, 206 (4), 759-77. 

 

9. Blanco, F. J.; Jimenez, M. A.; Herranz, J.; Rico, M.; Santoro, J.; Nieto, J. L., 

NMR evidence of a short linear peptide that folds into a beta -hairpin in 

aqueous solution. J. Am. Chem. Soc. 1993, 115 (13), 5887-8. 

10. Blanco, F. J.; Rivas, G.; Serrano, L., A short linear peptide that folds into a 

native stable beta-hairpin in aqueous solution. Nat Struct Biol 1994, 1 (9), 

584-90. 

11. Searle, M. S.; Williams, D. H.; Packman, L. C., A short linear peptide derived 

from the N-terminal sequence of ubiquitin folds into a water-stable non-

native beta-hairpin. Nat Struct Biol 1995, 2 (11), 999-1006. 

12. Sibanda, B. L.; Thornton, J. M., Beta-hairpin families in globular proteins. 

Nature 1985, 316 (6024), 170-4. 



26 

 

13. Ramirez-Alvarado, M.; Blanco Francisco, J.; Serrano, L., De novo design and 

structural analysis of a model beta -hairpin peptide system. Nat Struct Biol 

1996, 3 (7), 604-612. 

14. Gellman, S. H., Minimal model systems for beta sheet secondary structure in 

proteins. Curr. Opin. Chem. Biol. 1998, 2 (6), 717-725. 

15. Searle, M. S., Peptide models of protein beta -sheets: design, folding and 

insights into stabilising weak interactions. J. Chem. Soc., Perkin Trans. 2 

2001,  (7), 1011-1020. 

16. Venkatraman, J.; Shankaramma, S. C.; Balaram, P., Design of Folded 

Peptides. Chem. Rev. (Washington, D. C.) 2001, 101 (10), 3131-3152. 

17. Searle, M. S.; Ciani, B., Design of beta -sheet systems for understanding the 

thermodynamics and kinetics of protein folding. Curr. Opin. Struct. Biol. 

2004, 14 (4), 458-464. 

18. Hughes, R. M.; Waters, M. L., Model systems for beta -hairpins and beta -

sheets. Curr. Opin. Struct. Biol. 2006, 16 (4), 514-524. 

19. Aravinda, S.; Shamala, N.; Rajkishore, R.; Gopi, H. N.; Balaram, P., A 

crystalline beta -hairpin peptide nucleated by a type I' Aib-D-Ala beta -

turn: evidence for cross-strand aromatic interactions. Angew. Chem., Int. 

Ed. 2002, 41 (20), 3863-3865. 

 

20. Masterson, L. R.; Etienne, M. A.; Porcelli, F.; Barany, G.; Hammer, R. P.; 

Veglia, G., Nonstereogenic alpha -aminoisobutyryl-glycyl dipeptidyl unit 

nucleates type I' beta -turn in linear peptides in aqueous solution. 

Biopolymers 2007, 88 (5), 746-753. 

 

21. Rai, R.; Vasudev, P. G.; Ananda, K.; Raghothama, S.; Shamala, N.; Karle, I. 

L.; Balaram, P., Hybrid peptides: expanding the beta turn in peptide 

hairpins by the insertion of beta -, gamma -, and delta -residues. Chem.--

Eur. J. 2007, 13 (20), 5917-5926. 

22. Oh, K.; Guan, Z., A convergent synthesis of new beta -turn mimics by click 

chemistry. Chem. Commun. (Cambridge, U. K.) 2006,  (29), 3069-3071. 

23. Lesma, G.; Meschini, E.; Recca, T.; Sacchetti, A.; Silvani, A., Synthesis of 

tetrahydroisoquinoline-based pseudopeptides and their characterization as 

suitable reverse turn mimetics. Tetrahedron 2007, 63 (25), 5567-5578. 

24. Ressurreicao, A. S. M.; Bordessa, A.; Civera, M.; Belvisi, L.; Gennari, C.; 

Piarulli, U., Synthesis and Conformational Studies of Peptidomimetics 

Containing a New Bifunctional Diketopiperazine Scaffold Acting as a beta 

-Hairpin Inducer. J. Org. Chem. 2008, 73 (2), 652-660. 



27 

 

25. Freire, F.; Fisk, J. D.; Peoples, A. J.; Ivancic, M.; Guzei, I. A.; Gellman, S. H., 

Diacid Linkers That Promote Parallel beta -Sheet Secondary Structure in 

Water. J. Am. Chem. Soc. 2008, 130 (25), 7839-7841. 

26. Levin, S.; Nowick, J. S., An Artificial beta -Sheet That Dimerizes through 

Parallel beta -Sheet Interactions. J. Am. Chem. Soc. 2007, 129 (43), 

13043-13048. 

27. Fasan, R.; Dias, R. L. A.; Moehle, K.; Zerbe, O.; Vrijbloed, J. W.; Obrecht, 

D.; Robinson, J. A., Using a beta -hairpin to mimic an alpha -helix: Cyclic 

peptidomimetic inhibitors of the p53-HDM2 protein-protein interaction. 

Angew. Chem., Int. Ed. 2004, 43 (16), 2109-2112. 

28. Bean, J. W.; Kopple, K. D.; Peishoff, C. E., Conformational analysis of cyclic 

hexapeptides containing the D-Pro-L-Pro sequence to fix beta -turn 

positions. J. Am. Chem. Soc. 1992, 114 (13), 5328-34. 

 

29. Shankaramma, S. C.; Athanassiou, Z.; Zerbe, O.; Moehle, K.; Mouton, C.; 

Bernardini, F.; Vrijbloed, J. W.; Obrecht, D.; Robinson, J. A., Macrocyclic 

hairpin mimetics of the cationic antimicrobial peptide protegrin I: a new 

family of broad-spectrum antibiotics. ChemBioChem 2002, 3 (11), 1126-

1133. 

30. Shankaramma, S. C.; Moehle, K.; James, S.; Vrijbloed, J. W.; Obrecht, D.; 

Robinson, J. A., A family of macrocyclic antibiotics with a mixed peptide-

peptoid beta -hairpin backbone conformation. Chem. Commun. 

(Cambridge, U. K.) 2003,  (15), 1842-1843. 

31. Descours, A.; Moehle, K.; Renard, A.; Robinson, J. A., A new family of beta -

hairpin mimetics based on a trypsin inhibitor from sunflower seeds. 

ChemBioChem 2002, 3 (4), 318-323. 

32. Nowick, J. S.; Cary, J. M.; Tsai, J. H., A Triply Templated Artificial beta -

Sheet. J. Am. Chem. Soc. 2001, 123 (22), 5176-5180. 

33. Woods, R. J.; Brower, J. O.; Castellanos, E.; Hashemzadeh, M.; Khakshoor, 

O.; Russu, W. A.; Nowick, J. S., Cyclic Modular beta -Sheets. J. Am. 

Chem. Soc. 2007, 129 (9), 2548-2558. 

34. Khakshoor, O.; Demeler, B.; Nowick, J. S., Macrocyclic beta -Sheet Peptides 

That Mimic Protein Quaternary Structure through Intermolecular beta -

Sheet Interactions. J. Am. Chem. Soc. 2007, 129 (17), 5558-5569. 

35. Barany, G.; Merrifield, R.B. The Peptides: Analysis, Synthesis, Biology; 

Gross, E., Meienhofer, J. Eds.; Academic Press: New York, NY, 1979; 

Vol. 2. 

36. Kovacs, J.; Kisfaludy, L.; Ceprini, M. Q., Optical purity of peptide active 

esters prepared by N,N'-dicyclohexylcarbodiimide and complexes of N,N'-



28 

 

dicyclohexylcarbodiimide-pentachlorophenol and N,N'-

dicyclohexylcarbodiimide-pentafluorophenol. J. Am. Chem. Soc. 1967, 89 

(1), 183-4. 

37. Carpino, L. A.; Beyermann, M.; Wenschuh, H.; Bienert; Michael, Peptide 

Synthesis via Amino Acid Halides. Acc. Chem. Res. 1996, 29 (6), 268-

274. 

38. Ninomiya, K.; Shioiri, T.; Yamada, S., Amino acids and peptides. XII. 

Phosphorus in organic synthesis. VIII. Reaction of malonic acid half esters 

with diphenyl phosphorazidate. Chem. Pharm. Bull. 1974, 22 (6), 1398-

1404. 

39. Greenfield, N. J.; Fasman, G. D., Computed circular dichroism spectra for the 

evaluation of protein conformation. Biochemistry 1969, 8 (10), 4108-16. 

40. Haris, P. I.; Chapman, D., The conformational analysis of peptides using 

Fourier transform IR spectroscopy. Biopolymers 1995, 37 (4), 251-63. 

 

 

 

 



29 

 

 

 

 

 

 

CHAPTER TWO: 

NOVEL CYCLIC III PEPTIDES TARGETING INTEGRIN MEDIATED CELL 

ADHESION IN MULTIPLE MYELOMA 

 

2.1 Introduction 

Multiple Myeloma (MM) is an incurable malignancy which frequently exhibits 

relapse due to unsuccessful elimination of minimal residual disease (MRD). Current 

standard chemotherapeutic treatments that target apoptotic cell death pathways have 

proven to be unsuccessful in treating this disease, due to the strong multi-drug resistance 

(MDR) emergence by tumor cells (1). MRD is found in the bone marrow indicating that 

the bone marrow microenvironment is essential for tumor cell survival (2). The bone 

marrow is rich in extracellular matrices. Hazlehurst and co-workers have shown that 

adhesion of leukemia and multiple myeloma cells to the extracellular matrix component 

fibronectin (FN) influences cell survival and inhibits drug induced apoptotic cell death 

(3-9). Various research groups have targeted integrin mediated cell adhesion to increase 

the efficacy of standard cytotoxic drugs that predominantly use the apoptotic cell death 

pathways. Cell deaths in mammals have been reported to occur mainly via three different 

pathways. Type I cell death or apoptosis usually occurs with alteration of mitochondrial 

membrane potential, followed by subsequent release of cytochrome C and activation of 

caspases, ultimately leading to shut down of cell machinery. Type II cell death or 

autophagy is independent of activation of caspases and is usually observed with the 
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formation of double membrane vesicles (autophagosomes) (10, 11). It is usually the 

default cell death pathway and may occur when  apoptotic mechanisms fails. Type III cell 

death pathway or necrosis is seen with rupture of plasma membrane, swelling of 

cytoplasmic organelles, decrease in ATP levels and an increase in reactive oxygen 

species (ROS) (12). The majority of cancer cells follow the apoptotic pathway to induce 

cell death. Hence, the majority of current standard chemotherapeutic agents are 

developed to induce apoptosis in tumor cells. With the emergence of multi-drug 

resistance of tumor cells for currently used standard cytotoxic drugs that follow the 

apoptotic pathway, development of cytotoxic drugs that follow an alternative cell death 

pathway would be an effective strategy in tumor cell killing.  

 Using combinatorial peptide libraries and a functional binding assay, Kit Lam and 

Anne Cress and co-workers were able to identify several peptides that inhibited β1 

integrin mediated adhesion of prostate cancer cells to fibronectin, laminin and collagen 

IV (13). They identified a synthetic all D-amino acid peptide referred as 

HYD1(kikmviswkg) that blocks binding of epithelial prostate carcinoma cells to 

extracellular matrix components (14,15). Hazlehurst and co-workers have shown that use 

of HYD1 peptide in blocking β1 integrin mediated adhesion increased the efficacy of 

standard cytotoxic drugs used to treat Multiple myeloma (16). HYD1 induces cell death 

in multiple myeloma as a single agent in vitro and in vivo. HYD1 treatment did not 

trigger the activation of caspases nor did it induce DNA fragmentation. HYD1 treatment 

seemed to cause necrotic cell death as shown by loss of mitochondrial membrane 

potential, loss of cellular ATP and an increase in ROS production. 
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 Hazlehurst and co-workers performed truncation studies on the C and N terminus 

and identified MVISW as a likely core region of linear D-HYD1 responsible for 

biological activity. They have demonstrated that HYD1 has an IC50 value 33 μM when 

assayed for H929 multiple myeloma tumor cells using FACS analysis for cell death. It is 

well known that any molecule which is conformationally preorganized or fixed into a 

shape which can be recognized by a target will have higher affinity for that target, at the 

expense of entropy loss for adopting that conformation (17). Cyclization of linear 

peptides to form cyclic peptidomimetics, imposes constraints in the number of 

conformations available to the linear peptide. The constraint further stabilizes the bound 

conformation of the peptide. Also, cyclization of the linear peptide to form cyclic 

peptides makes the amide bonds less recognizable by various proteases. 

Based on the structural information of D-HYD1 peptide, we proposed the design 

and synthesis of novel cyclic III (Integrin Interaction Inhibitors) peptide analogs for 

optimizing the efficacy of the parent peptide (Fig.2.1). The introduction of a novel beta 

turn promoter in the cyclic peptide design will further constrain the recognition portion of 

cyclic peptide specifically into an extended or beta-sheet like conformation. All cyclic 

peptides were more potent as compared to linear D-HYD1 when assayed using TOPRO3 

protocol. The alanine scan of the recognition strand carrying core residues has also been 

investigated to determine critical residues responsible for bioactivity of cyclic peptides. 

Furthermore we have also proved that all cyclic peptidomimetics adopt beta sheet 

conformation as confirmed by circular dichroism and NMR studies.  
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(A) Cyclic D-HYD1 2.18                                            (B) Cyclic III Peptide 2.17 

 
 

 
(C) Cyclic III Peptide 2.1                                                     (D) Cyclic III Peptide 2.7 

    
 

 
(E) Retro-inverso Cyclic III Peptide 2.10 

 
 

Fig. 2.1 Proposed cyclic III peptide analogs of linear HYD1 peptide with L-WSVVM and 

D-MVVSW as key residues on recognition strand. 
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2.2 Results & Discussion 

2.2.1 Peptide design 

Hazlehurst and co-workers have systematically carried out truncated N and C 

terminus studies and identified MVISW as the likely core region of linear D-HYD1 

required for biological activity. Using this information and the finding that valine for 

isoleucine replacement gave a more active D-HYD1 analog, we developed a cyclized 

version of D-HYD1 that is designed to display the core sequence (MVVSW) in the 

recognition strand and (KLKLK) as the non-recognition strand. The designed cyclic 

peptidomimetic exhibited an extended or beta-sheet-like conformation (Fig. 2.1). N- to C- 

terminus cyclization of linear peptides to restrict the number of conformations available 

to the linear peptide increases the affinity of the cyclized peptide for its target when the 

constraint stabilizes the bound conformation of the peptide. As a starting point for the 

rational design, we did energy minimization studies on similar designed beta-hairpin 

cyclic peptides for inhibiting abeta fibrillogenesis (Fig. 2.2 & Fig. 2.3). Energy 

minimizations were carried out by keeping all backbone atoms fixed to refine the spatial 

position of side chain residues. Energy minimization studies suggested that introduction 

of the novel turn promoter and the Robinson template (D-Pro-L-Pro) at the turns gave 

stable hairpin peptide with all of the internal H-bonds intact.  Table 2.1. depicts the 

energy minization values for different turn promoters used in designing these stable 

cyclic peptides. Based on energy minimization studies data, we synthesized cyclic         

D-HYD1 with the methylsulfonamide aminoethyl glycine as turn promoters. As per the 

cell inhibition assay TOPRO 3, the cyclic D-HYD1 peptide was found to be twice as 

active as linear D-HYD1.  
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Fig. 2.2 Stereo drawing of cyclic abeta peptides obtained after energy minimization 

procedure. Cyclic Aβ peptides designed using (a) L-Pro-D-Pro and methylsulfonamido 

aminoethyl glycine (b) two methylsulfonamido aminoethyl glycine units and (c) L-Pro-

D-Pro and L-Pro-Aib turn promoters. 

(a) 

(b) 

(c) 
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Fig. 2.3 Cyclic Abeta peptide designed with different β-turn promoters. (a) Turn 1 (b) 

Turn 2 (c) top view (d) side view of cyclic abeta peptide with the methylsulfonamido 

aminoethyl glycine turns and (e) super-imposed pose for cyclic abeta peptides with 

different turn promoters. 

 

(c) (d) 

(a) (b) 

(e) 
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Table 2.1 Turn Promoters used in synthesis of cyclic peptidomimetics. 

 Turn1 Turn 2 Energy 

Minimization 

1 Methylsulfonamido aminoethyl 

glycine 

D-Pro-L-Pro -2100 Kcal 

2 Methylsulfonamido aminoethyl 

glycine 

Methylsulfonamido aminoethyl 

glycine 

-2400 Kcal 

3 L-Pro-Aib D-Pro-L-Pro -1400 Kcal 

 

We also further investigated the inverso- and retro-inverso- cyclic III peptide 

analogs for their potential to block beta integrin mediated cell adhesion. Retro-inverso 

design of biologically active peptides is a well known strategy to design all D-amino acid 

peptides from potentially bioactive all L-peptide sequences with increased stability (18-

21). Retro-inverso peptide analogs have a similar placement of side chain residues as 

observed for cyclic D-HYD1 and hence similar or better effect in bioactivity was 

anticipated for retro-inverso analogs. It was surprisingly found that retro-inverso analogs 

had better bioactivity than cyclic D-HYD1 analogs whereas cyclic III was twice more 

active as cyclic D-HYD1 (Table 2.2). In an effort to optimize the bioactivity of cyclic III, 

it was essential to determine the key residues most critical to the bioactivity of cyclic III 

peptide. 

2.2.2 Structure Activity Relationship of cyclic III peptide 

The key residues of cyclic III peptide responsible for biological activity have been 

identified by performing sequential alanine substitution analysis on the recognition strand 

of the peptide analog. We expected two or more of the recognition strand residues to be 

responsible for bio-activity of resulting cyclic III analogs. As anticipated, bioactivity data 
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revealed tryptophan, valine and methionine in peptides 2.2, 2.4 and 2.6 respectively as 

key residues critical for binding of cyclic III to integrins (Table 2.2). Replacement of 

alanine for the serine in peptide 2.2 drastically improved the bioactivity of cyclic III 

analog. Oxidation of methionine side chain has been observed during peptide isolation 

for some cyclic III analogs through HPLC. This problem was overcome by replacing the 

methionine side chain with a structurally similar and chemically stable side chain such as 

norleucine. To our surprise, introduction of the norleucine into the recognition strand of 

peptide 2.7 increased bioactivity drastically. We therefore anticipated that the recognition 

strand WAVVN (N= Norleucine) would further improve the bioactivity of the cyclic III 

analogs. After the determination of critical residues responsible for bioactivity of cyclic 

III peptide, efforts have been made to further enhance the bioactivity by making slight 

changes such as increased hydrophobicity or slightly decreased hydrophobicity in the 

recognition strand. As shown in Table 2.2, replacement of norleucine in peptide 2.9 with 

more hydrophobic tryptophan did not alter the bioactivity appreciably. Cress and           

co-workers have previously reported that another peptide RZ-3 (KMVIYWKAG) similar 

to HYD1 inhibited adhesion of prostate tumor cells to ECM proteins or human dermal 

fibroblasts (22). To further optimize our scaffold for enhancement of bioactivity of cyclic 

III peptide design, we synthesized cyclic peptide 2.8 with the RZ-3 (WYVVN) core 

sequence in the recognition strand. Peptide 2.8 had similar bioactivity as our optimized 

cyclic III analog. 
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Table 2.2 Structure-Activity Relationship studies of cyclic III peptide analogs. 

Peptide R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 IC50 

2.1 K L K L K W S V V M 15.5±7.7 

2.2 K L K L K A S V V M 57.1±22 

2.3 K L K L K W A V V M 4.1±1.9 

2.4 K L K L K W S A V M 19.0±6.9 

2.5 K L K L K W S V A M 6.2±2.7 

2.6 K L K L K W S V V A 31.1±7.6 

2.7 K L K L K W S V V N* 2.6±1.3 

2.8 K L K L K W Y V V N* 2.9±1.3 

2.9 K L K L K W A V V W 5.9 

2.10 K L K L K M V V S W 5.9±3.4 

2.11 K L K L K N* V V A W 12.3 

2.12 K L K L K A V V A W 21.9 

2.13 K L K L K N* A V A W 25.9 

2.14 K L K L K N* V A A W 41.3 

2.15 K L K L K N* V V A A 2.8 

2.16 K L K L K F V V A W 9.7 

N* = Nor-Leucine 
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2.2.3 Structure Activity Relationship of Retro-inverso cyclic III analog 

After determining that serine and methionine replacement with alanine and 

tryptophan residues yielded cyclic III peptides with improved bioactivity, we attempted 

to study structure activity relationship for the retro-inverso cyclic III analog. A sequential 

alanine scan was carried out with NVVAW as the core sequence in the recognition 

strand. It was found that replacement of norleucine (peptide 2.12) and valine in peptide 

2.13 & 2.14 are critical for the bioactivity of the retro-inverso peptides. There was an 

unexpected improvement in bioactivity for peptide 2.15 where tryptophan was substituted 

for alanine. 

2.2.4 Design of cyclic HYD1 analogs with constrained ether-peptidomimetic β-turn 

 promoter 

 

After optimizing the recognition strand for obtaining increased bioactivity for 

cyclic III analogs, efforts were made to further constrain the cyclic peptide by 

introduction of a constrained oxygenated turn promoter (Fig.2.4a) at one turn and the 

methylsulfonamido aminoethyl glycine as the other turn. The introduction of an ether-

peptidomimetic amino acid (proline or 2-piperidine carboxylic acid derivative) as a 

constrained turn promoter will probably further reduce the degrees of freedom available 

to the cyclic peptide and possibly increase its affinity for binding to the target. 

Conformational search and energy minimization studies were carried out using GLIDE 

software to ensure that all intramolecular hydrogen bonds are sustained within the cyclic 

beta-hairpin like scaffold (Fig. 2.4 b-d). Conformational search and energy minimization 

studies suggested that introduction of the five membered ring D-Proline derivatized 

ether-peptidomimetic was favorable in stabilizing and sustaining the intramolecular 

hydrogen-bonding within the cyclic III analog. Based on this information, we synthesized 
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cyclic III analog with the proline derived ether-peptidomimetic at one turn and 

methylsulfonamide amino ethyl glycine as other turn gave an impressive bioactivity of 

1.08 µM when assayed using TOPRO3 protocol.  

 

 

 

 

 

 

           

            

(b) 

(c) 

(a) 
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Fig. 2.4 Cyclic III analogs with constrained β-turn promoter. (a) proline derived ether-

peptidomimetic turn promoter, (b), (c) and (d) represents conformational search for the 

ether-peptidomimetic turn promoter, thioether peptidomimetic turn  promoter and 

piperidine derived ether-peptidomimetic turn promoter. 

 

As shown in figure 2.4d, computational studies suggested that when ether 

peptidomimetic was replaced with the thioether derivative it disrupts internal hydrogen 

bonding within the cyclic III peptide. 

2.2.5 Optimization of Non-recognition strand  

The non-recognition strand of cyclic III peptide was optimized to determine if it 

has any effect on bioactivity. A similar bioactivity observed for cyclic D-HYD1 and the 

cyclic III peptides suggest extensive peptide backbone interactions are absent or minimal 

since these two analogs have opposite backbone sequences. This hypothesis was tested 

by replacing the amino acid residues that have exo amide hydrogens with N-methylated 

amino acid residues. We first replaced all leucine residues in the non-recognition strand 

with N-methyl glycine (sarcosine) (Fig.2.5a). We anticipated that N-methylation of the 

exo amides will not significantly change III conformation but it should stabilize cyclic 

beta-hairpin and eliminate possible peptide aggregation due to beta-sheet like 

(d) 
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dimerization or oligomerization of one or more cyclic III analogs. Surprisingly, we found 

that this cyclic III analog with sarcosine residues in the non-recognition strand and the 

ether-peptidomimetic amino acid as the turn promoter did not show any bioactivity. We 

believe that the introduction of too many constraints in the molecule might have caused 

disruption of the internal hydrogen bonding which stabilizes the cyclic peptide. 

(a) 

 

(b) 

            

Fig. 2.5 (a) Retro-inverso cyclic III analog with ether-peptidomimetic amino acid turn 

promoter and N-methylated glycine residue in non-recognition strand. (b) cyclic III 

analog with  membrane seeking linker attached to the cysteine residue in the non-

recognition strand.     
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Cyclic HYD1 analogs with membrane seeking linker in the non-recognition strand 

It is presumed that the target of the cyclic III monomer is extracellular. We 

hypothesize that integrin clustering could enable an avidity effect on the cyclic III analog 

binding. Hence attachment of a long membrane-seeking fatty acid tail connected via 

oligoethyleneoxide linker to the cysteine side chain in the non-recognition strand should 

enhance the bioactivity of these III analogs (Fig. 2.5b). We have attempted to attach 

laurate, H3C(CH2)11-(OCH2CH2)5-OCH2CH2NHCOCH2Br to the cysteine side chain in 

the non-recognition strand as per reported procedure (23). MALDI-TOF data clearly 

suggested that the membrane seeking linker was attached to the cysteine side chain but 

we could not get appreciable yield to carry out bioassay experiments. A lysine monomer 

with a laurate side chain attached to the ε-nitrogen has also been synthesized with an aim 

to incorporate these monomers directly during solid phase peptide synthesis. This 

strategy should improve the bioavailability of these cyclic III analogs. Recently, several 

reports have appeared in the literature describing the use of bivalent linkers to target G-

protein coupled receptors (24-29). The use of bivalent linkers exhibited increased potency 

as compared to monovalent counterparts. Based on these cited reports, we propose the 

design of dimeric cyclic III analogs separated by the bivalent hexaethylene glycol derived 

linker BrCH2CONHCH2CH2(OCH2CH2)4CH2CH2NHCOCH2Br. These membrane-

seeking dimeric cyclic III analogs should probably be more bioactive than underivatized 

cyclic III analogs. We have been successful in synthesizing bivalent electrophilic linkers 

for making dimeric cyclic III analogs but have failed in attaching these linkers to the thiol 

side chain of the cysteine in the non-recognition strand. 
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2.2.6 Synthesis of β- turn promoters and cyclic III peptides 

All cyclic peptidomimetics were synthesized on 2-chlorotrityl chloride resin as 

solid support and Fmoc solid phase peptide synthesis strategy as shown in scheme 2.1. 

The linear peptides were synthesized and selectively cleaved from the resin without 

cleaving side chain Boc-groups using trifluoroethanol as the cleaving agent. The linear 

peptide is then cyclized in solution under dilute conditions to afford crude cyclized 

peptide in modest yields. We have made a few attempts to do on-resin cylization of linear 

peptides but failed in our endeavor to synthesize cyclic peptides. 

 

Scheme 2.1 Solid-Phase synthesis of cylic III analogs.  

Scheme 2.2 describes the synthesis of the methylsulfonamide aminoethyl glycine  

turn promoter. Selective mono-alkylation of excess ethylene diamine with tert-butyl 

bromoacetate was carried out under dilute conditions to give compound 2.2 in 85% yield 

(30). Compound 2.2 is taken up in the next step without further purification and selective 

Fmoc protection of the primary amine is achieved to give crude fmoc-protected 
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aminoethyl glycinate 2.3.  The crude reaction mixture is then washed with dilute 

hydrochloric acid, stored overnight in the deep freezer, resulting in precipitation of pure 

compound 2.3 as the hydrochloride salt that can be stored for several months in the 

refrigerator (Scheme 2.2). Mesylation of the secondary amine with methanesulfonyl 

chloride afforded compound 2.4 that precipitates from ethyl acetate solution under cold 

conditions. Deprotection of the t-butyl group was achieved by employing 4M HCl in 

dioxane to give the desired compound 2.5 in excellent yield. 

 

Scheme 2.2 Synthesis of the methylsulfonamido aminoethyl glycine beta turn promoter. 

As shown in scheme 2.3, the ether peptidomimetic amino acid was prepared from 

commercially available Boc-D-Prolinol. First, O-alkylation of 2.6 with tert-butyl 

bromoacetate afforded compound 2.7 in 77% yield (31, 32). Selective removal of the Boc 

protecting group of compound 2.7 using trifluoroacetic acid in DCM (1:4) gave 

compound 2.8. Fmoc-group protection of the secondary amine 2.8 with FmocOSu 

followed by acidic cleavage of the tert-butyl ester group gave the proline derived ether-

peptidomimetic 2.10 in 79% yield. The N-ethylated beta turn promoter 2.15 was 

synthesized to determine if the additional constraint further stabilizes the secondary 
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structure of the cyclic peptide and increase its affinity for the target. Compound 2.15 was 

prepared from 2-ethyl ethanolamine as shown in scheme 2.4. Boc protection of the 

secondary amine 2.11 followed by O-alkylation with tert-butyl bromoacetate gave the 

fully protected compound 2.12 in 89% yield. Selective deprotection of the Boc group of 

compound 2.12 followed by Fmoc protection of the resulting amine gave compound 2.14. 

Final cleavage of the tert-butyl ester in compound 2.14 afforded desired N-ethylated turn 

promoter 2.15 in 85% yield.  

 

Scheme 2.3 Synthesis of ether-peptidomimetic amino acid. 

 

Scheme 2.4 Synthesis of the N-Ethylated beta turn promoter. 
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The membrane-seeking linkers and bivalent linkers proposed for making 

membrane-seeking and dimeric/oligomeric cyclic III analogs were synthesized to target 

avidity effect arising due to integrin clustering near the cell membrane surface (scheme 

2.5). Synthesis of azides derived from the ethylene glycol derivatives have been 

previously reported by Bonger et. al.(33). Azide 2.18 was prepared from the 

corresponding ethylene glycol derivative 2.16 by transformation to the p-toluenesulfonate 

ester 2.17 followed by displacement of the esters with sodium azide. Hydrogenation of 

compound 2.18 with 10% Pd/C in methanol afforded primary amine 2.19 in quantitative 

yield. Acetylation of primary amine 2.19 with bromoacetyl bromide afforded the desired 

linker 2.20 in 93% yield. Bis-azide 2.23 required for making bivalent linkers was 

prepared from the corresoponding hexaethylene glycol using the above mentioned 

strategy in 85% yield. The diamine 2.24 was finally acetylated to give bis-

bromoacetylated hexaethylene glycol 2.25 in 81% yield. Compound 2.20 and 2.25 can be 

stored in refrigerator at -20
0
C for several weeks.  

Another attractive strategy proposed for making membrane-seeking linkers 

involved synthesis of lysine monomers with the side chain acetylated with lauroyl 

chloride. These modified amino acids would be incorporated into the sequence like other 

residues for the synthesis of the linear peptide on the resin. Based on these proposed 

ideas, lauryl and biotin groups have been attached to the ε-nitrogen of Fmoc-lysine to 

give compounds 2.28 and 2.29, respectively (scheme 2.6). 
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(A) 

  

 

 

(B) 

 
 

Scheme 2.5 Synthetic routes for preparing (a) membrane-seeking linkers and (b) bivalent 

linkers for making dimeric or oligomeric cyclic III analogs. 
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Scheme 2.6  Synthesis of Fmoc-Lys(lauroyl)-OH and Fmoc-Lys(biotin)-OH.  

 

2.2.7 Conformational studies of cyclic Peptides using Circular Dicroism 
 

Circular dichroism (CD) is a sensitive measure of the secondary structure of 

peptides and proteins. CD spectroscopy measures the difference in absorbance of right- 

and left-circularly polarized light by a substance. Peptides usually show absorption in the 

ultraviolet region of the spectrum from the peptide bonds and side chains of the amino 

acids in the sequence. Various reports cited in the literature have shown that CD spectra 

from 260-190 nm is analyzed for the different secondary structural of peptides and 

proteins i.e. alpha helix, parallel and antiparallel beta sheet, beta turn, etc (34, 35). The 

lowest energy transition in the peptide chromophore is an n - Π* transition observed at 

210-220 nm with weak intensity. The peptide with a β-sheet structure usually exhibits an 

absorption minima around 210 nm and a relatively strong absorption maxima around 190 

nm. Peptide conformational studies using CD are mainly characterized by comparing 

analysis of the overall shape of the CD spectra with standard peptide spectra.  

The conformational study of all cyclic III peptides were carried out in buffered 

aqueous solutions. The CD spectra of the cyclic peptide with Robinson’s template and the 

novel methylsulfonamide glycine turn promoter and peptide 2.1 are shown in Fig.2.6a.  
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Fig. 2.6b shows the CD spectra for cyclic peptides 2.4, 2.6, 2.7 and 2.10 in 7 mM sodium 

acetate buffer at a concentration of 200 µM at pH 7 and 25
0
C. All these cyclic peptides 

displayed similar, but different characteristic CD bands: negative absorption minima 

around 200 nm and strong positive absorption maxima around 185-190 nm. These 

characteristic CD bands are strongly  indicative of a beta-sheet or beta-turn secondary 

structures. These peptides shows strong absorption at higher concentration indicating a 

possible dimeric or oligomeric species in aqueous buffered solutions. 

(A) 

 
(B) 

 
Fig. 2.6 Circular dichroism studies for cyclic III (A) peptides 2.1, 2.17 and (B) peptides 

2.4, 2.6, 2.7, 2.10 in 7 mM sodium acetate buffer at a concentration of 200 µM at pH 7. 
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To check the validity of turn promoters to induce β-hairpin structure, turn 

promoters 2.5 and 2.10 were replaced by D-Pro-Gly in linear Gellman’s peptide          

(fig. 2.7). CD spectra of these peptides indicated that oxygenated turn promoter produced 

well defined β-hairpin secondary structures in linear peptide as compared to 

methylsulfonamido aminoethyl glycine turn promoter. 

(A) (B) 

 

 

 

Fig. 2.7. Circular dichroism studies for validating the linkers (A) methylsulfonamido 

aminoethyl glycine and (B) ether-peptidomimetic amino acid in inducing secondary 

structures in Gellman peptide. 
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2.2.8 NMR studies for determination of structure of cyclic peptides in solution
†
  

 

Complete peak assignments were only done for cyclic peptides 2.4 and 2.17 and 

are shown in Table 2.3 and Table 2.4.  Assignments for both the recognition sequence 

and the non-recognition sequence, omitting the turns, were done for the remainder of the 

peptides.  In an effort to de-clutter the 2D spectra sets, the NMR experiments were run in 

100% D2O to remove the exchangeable amide and Lysine ε-NH protons from the 

spectrum.  Even without information from the amide and lysine ε-NH protons, the results 

from our NMR experiments clearly show that the peptides have all adopted a β-hairpin 

structure. 

Table 2.3 NMR assignments for peptide 2.4. 

 α β γ δ ε 

PNA Turn 3.465
S
, 4.047

R
   

3.490
S
, 3.529

R
 3.334 SO2Me = 3.050 

Lys-1 4.423 1.657, 1.770  1.305 1.589 2.879 

Leu-2 4.042 1.994 1.955 0.904, 0.929   

Lys-3 4.072 1.613, 1.740  1.149, 1.281  1.506 2.776 

Leu-4 4.160 1.418, 1.525 1.359 0.645, 0.768   

Lys-5 4.311 1.823 1.452 1.691 2.996 

PNA Turn 3.891
S
, 4.062

R
  

3.500
S
, 3.612

R
 3.236 SO2Me = 3.045 

Trp-6 4.609 3.123, 3.206 7.151, 7.160, 7.239, 7.473, 7.654 
(5H, 2H, 6H, 7H, 4H) 

Ser-7 4.599 3.720, 3.822     

Ala-8 4.531 1.183     

Val-9 4.575 1.618 0.797, 0.924    

Met-10 4.599 1.999, 2.234 2.532, 2.664   2.077 
R = Pro-R, S = Pro-S 

† All NMR run and analyzed by David B. Badger 
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Table 2.4 NMR assignments for peptide 2.17. 

 α β γ δ ε 

L-Pro-1 4.531 2.111, 2.219   1.940, 2.077 3.705, 3.949    

D-Pro-2 4.741 2.155, 2.287  1.896, 2.004  3.539, 3.793    

Lys-3 4.541 1.662, 1.789  1.242, 1.349 1.564 2.864 

Leu-4 4.985 1.730 1.530 0.777, 0.851    

Lys-5 4.291 1.667, 1.794  1.261, 1.403 1.564 2.947 

Leu-6 4.536 1.569 1.505 0.811, 0.812    

Lys-7 4.379 1.745, 1.784  1.403 1.667 2.977 

PNA Turn 
3.563

S
, 3.866

R
 

 3.348 3.162 SO2Me = 3.030 

Trp-10 4.692 3.128, 3.226 7.121, 7.146, 7.229, 7.473, 7.561 (5H, 2H, 6H, 7H, 4H) 

Ser-11 4.599 3.837     

Val-12 4.267 1.989 0.802, 0.880    

Val-13 4.130 1.940 0.665, 0.875    

Met-14 4.482 2.107 2.434, 2.551   2.121 
R = Pro-R, S = Pro-S 

Supporting our CD results, both the chemical shifts of the amino acid α-hydrogen 

protons (Hα) and the NOE data indicate that the peptides are in a β-hairpin conformation.  

Our NMR results agree with previous empirical analysis which has shown that when β-

sheets are formed, there is a downfield shift in the Hα resonances (36, 37).  The majority 

of the amino acid Hα’s in our peptides are shifted significantly downfield such that their 

values indicate a β-hairpin conformation.   

2.2.9 Analysis and Characterization of Our Novel Turn Promoter   

Hα and NOE NMR analysis of peptide 2.17, which contains both the Robinson β-

hairpin turn promoter template (38) (D-Pro-L-Pro) and the methylsulfonamido 

aminoethyl glycine turn, confirms the structure of this peptide as a β-sheet.  This peptide 
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was then remade using the methylsulfonamido aminoethyl glycine in place of the 

Robinson template as the β-hairpin turn promoter to give peptide 2.1.  The resulting Hα 

chemical shifts for this peptide show it is also a β-sheet. 

A comparison between the Hα shifts of these two peptides reveals a many 

similarities. Most of the Hα’s on the non-recognition side of peptide 2.1 have shifted 

upfield relative to 2.17, suggesting that the structure is less like a β-sheet.  While 3 of 

these residues have only shifted about 0.2 ppm or less upfield, Leu2’s shift of about 0.7 

ppm suggests a fair amount of structural change.  Interestingly, the only Hα on the non-

recognition strand that has an upfield shift is Lys1.  More importantly however, all but 

one of the Hα’s on the recognition side of the peptide have shifted downfield indicating a 

β-sheet conformation.  The Hα of Ser7 is the only one that has shifted upfield.  Looking at 

the fact that the Hα’s on residues Met10 and Lys1 have shifted downfield after the β-

hairpin turn promoter was changed from the Robinson template to our 

methylsulfonamido aminoethyl glycine turn, it suggests that our turn promoter allows for 

more β-hairpin-like character at this end of the peptide.  Thus, our turn may be a better β-

hairpin promoter for certain peptide sequences. 

Although most of the Hα shifts were small, about 0.2 ppm or less, there was a 

large shift in two of the Hα’s which appears to be highly structurally significant.  While 

the Leu2’s Hα shifted upfield 0.704 ppm, Val9’s Hα shifted downfield 0.532 ppm.  This 

suggests that the leucine α proton is not predominatly adopting a β-sheet conformation.  

This is most likely due to steric interactions from the γ-protons of Val9 which is directly 

across from Leu2.  Presumably as a direct result of Leu2’s structural conformational 
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change, Lys3’s Hα is shifted 0.215ppm (the second largest shift) upfield which removes a 

small amount of its β-sheet character and thus is further evidence supporting this claim.   

An examination of the other peptides reveals a similar phenomenon.  The Leu2 

Hα is always shifted upfield and the residue in position 9 is always shifted downfield, 

with the exception of peptide 2.10, in comparison with peptide 2.17. This can be 

explained by the fact that the D-Pro-L-Pro turn in the Robinson template is very 

structurally rigid, forcing those residues close to it into a β-hairpin conformation.  

However, our turn is much more flexible, thus allowing the residues close to the turn to 

be less rigid in their orientations.  It is probably this flexibility that allows the Leu2 Hα to 

deviate from the β-sheet configuration.  NOE analysis supports this view.  In peptide 

2.17, strong NOEs were observed between the Hα’s of Leu4 and Val13 as well as a small 

NOE between the Hα’s of Leu4 and Val12.  However, in peptide 2.1 the NOE between 

the Hα’s of Leu2 and Val9 was only of low intensity.  In its place, there was a strong 

NOE between the Hα’s of Leu2 and Leu4.  Additionally, a semi-strong NOE was 

observed between the Hα of Leu2 and only 1 γ-CH3 group of Val9.  This significant 

reduction in NOE cross-peak intensity between the Leu and Val Hα’s combined with the 

appearance of a new strong cross-peak between the two Leu Hα’s is strong evidence in 

support of this structural picture. 

The replacement of the Robinson template by our turn slightly increases the 

distance between the two sides of the β-sheet.  This is due to the fact that this turn isn’t 

rigidly fixed into a certain conformation thereby allowing the chain to expand and 

contract, much like an accordion.  It is this accordion-like action that allows the distance 

between the two sides of the β-sheet to change.  This change in distance can be seen by 
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the decrease in NOE intensity between the Leu and Val residues mentioned previously.  

NOEs also show the disappearance of the following; a strong NOE between the ε protons 

of Met14 and the Hα of Lys3, a strong NOE between the γ1 protons of Val12 and the β 

and β′ protons of Lys5.   Also, the intensity of the NOE interaction between the γ2 

protons of Val12 and the β proton of Lys5 dropped from being semi-strong to being quite 

low upon replacement of the Robinson turn. 

The methylsulfonamido aminoethyl glycine turn itself can be broken down into 

two parts for discussions sake.  The first part is the CH2 side between the carbonyl and 

the N-Mesyl group, which we will refer to as the α-protons.  The second part is the CH2-

CH2 side between the N-Mesyl group and the amide NH, which will be referred to as the 

γ and δ-protons as shown in Figure 2.7. 

 

Fig. 2.8 Labeled positions on the methylsulfonamido aminoethyl glycine turn. 

The flexibility of the turn is not just limited to adjusting the distance between the 

two sides.  Rather, NOE analysis shows the existence of 2 distinct conformations.  

Newman projections of the two different conformations viewed down the δ-γ bond 
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showing specific steric interactions can be seen in Figure 2.8.  The first conformation (a) 

exists as an eclipsed conformer which puts it in the higher energy state of the two.  

However, the bulky N-Ms group points down and away from the β-sheet, eliminating all 

steric interactions and placing it in the lowest energy state.  The second conformation (b) 

exists as the staggered conformer, thus being the lower energy of the two.  This time 

however, the bulky N-Ms group points directly into the center of the β-sheet causing 

large amounts of steric interactions with the backbone forcing the N-Ms group into a very 

high energy state.  Therefore, it can be assumed that the bulky N-Ms group drives the 

turn’s preference for the (a) conformation, picking the lower total energy conformer with 

the least amount of steric interactions. 

Interestingly, conformer (a) may also be slightly favored because the Pro-R γ-

proton (labeled as H
’
) is eclipsed with the amide NH and the Pro-R δ-proton is eclipsed 

with the nitrogen from the N-Ms group.  The proton attached to the amide NH is pointed 

out away from the backbone of the peptide while the lone pair on this nitrogen is pointed 

upwards towards the inside of the β-sheet.  Additionally, the lone pair on the nitrogen 

from the N-Ms group points out towards the middle of the two δ-protons.  There is the 

potential for a favorable attractive interaction (39,40) between the lone pairs on these 

nitrogens and their respective protons.  This would forgive some of the strain caused 

from being in the eclipsed conformation further reducing the total energy of the (a) 

conformation making it more favorable. 

Indeed, this favorable attractive interaction is supported by the chemical shifts of 

the respective protons.  In peptide 2.4 for both turns, the Pro-R γ-protons are shifted 
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downfield relative to the Pro-S γ-protons meaning a decrease in shielding as is expected 

with the interaction of the lone pair of electrons on the amide nitrogen. 

 

Fig. 2.9 Newman Projections of the β-turn viewed down the δ-γ bond:  (a) N-Ms pointing 

down and away from the β-sheet; (b) N-Ms pointing into the center of the  

β-sheet. 

 

 For all but one of the peptides, the turn’s geminal γ-protons are non-identical 

giving rise to a Pro-R proton and a Pro-S proton.  Peptide 2.17 is the only one where 

these protons are identical.  This is most likely caused by the Robinson turn locking the 

methylsulfonamido aminoethyl glycine turn into a more rigid conformation.  

Observations that support this analysis can be seen by the significant (0.08ppm and 

greater) upfield shift of both the γ and δ resonances from 2.4 to 2.17.  The α protons, with 

the exception of the equatorial one in 2.17, experience a much larger (0.18ppm and 

greater) upfield shift than either of these two.  Thus, this side of the peptide looks less 

like a β-sheet when the Robinson turn is used to induce the β-hairpin.   

Because only 1 peak is seen for these protons, the turn’s γ-protons must exist in 

somewhat similar environments and the turn’s conformation must be different enough 

from the two mentioned above.  Fig.2.9 is a Newman projection viewed down the δ-γ 

bond of what this altered conformation might look like which is supported by NOEs. 
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Fig. 2.10. Newman Projection of the structurally locked β-turn viewed down the  

δ-γ bond. 

 

2.2.10 Peptide Structural Characterization via NOE   

In conjunction with the chemical shifts of the α-protons, the NOE data was used 

to help determine the 3D structure of peptides.  Peptide 2.4 was used as a general model 

for all the peptides.  Cross-strand analysis reveals many NOEs between the Tryp6 and 

Lys5 residues, specifically between Tryp4H-LysεH, Tryp5H-LysβH, Tryp5H-LysεH, 

Tryp6H-LysγH and TrypβH-LysεH to name a few.  These suggest that the tryptophan 

ring sits between the two strands at an angle with the indole ring facing the rest of the 

peptide.  Additionally, peptide 2.1 also shows a NOE between TrypβH-LysβH, evidence 

that the ring spends part of its time in an alternate position between the two strands. 

Chemical shift analysis supports these two pictures, showing that the tryptophan 

ring occupies one of two positions depending on the adjacent residues.  With the 

exception of the Hα’s, all of the protons in Lys5 are downfield of their respective ones in 

either Lys3 or Lys1 even though Lys5 is cross-strand from Tryp6 which would suggest 

an upfield shift due to interaction with the aromatic rings.  The first picture deals with 

those peptides that contain a valine at residue 8.  Here, the aromatic ring of Tryp6 and the 

hydrophobic γ-methyl groups Val8 are oriented with each other such that one face of the 

H

N H

H

NHH
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tryptophan ring is interacting with the valine via intra-pair van der Waal’s contacts (41) 

while the other face is interacting slightly with the Lys5 protons via cation-π interaction 

(42) causing them to slightly shift upfield.  This is supported by the chemical shifts of the 

valine in position 8 because the protons interacting with the tryptophan ring shift upfield 

as is expected due to the increased shielding from the ring.  The chemical shifts of Lys5 

also show a small amount of upfield shift which indicates packing against the tryptophan 

ring.   However, peptide 2.6 does not follow this model.  While the Val8 Hα does shift 

upfield, the β and γ-protons shift downfield which means the face of the Tryptophan ring 

is not interacting with that valine.  Instead, all of Lys3’s protons shift upfield with the 

exception of Hα and new prominent NOEs can be seen between Lys3 and Tryp6.  This 

combined with the fact that there was very little shift, up or downfield, of Lys5’s protons 

means one face of the Tryptophan ring is now interacting with Lys3 rather than with 

Val8.  This is probably due to the replacement of the methionine with an alanine thus 

reducing the van der Waal’s interactions with Lys3. 

 The second picture is for peptide 2.4, which lacks a valine at residue 8.  In this 

picture, the tryptophan ring sits between the two strands partially over the turn and is at 

an angle with the indole ring facing the rest of the peptide.  Here, there is less interaction 

between the face of the tryptophan ring and the protons of Lys5.  Therefore, the Lys5 

resonances are shifted slightly downfield.  In either picture however, the Lys1 and Lys3 

are more upfield due to interactions with each other and the methionine. 

 Interestingly, peptide 2.4 shows only a small NOE between the Hα’s of Leu4 and 

Ser7, much like the Leu2-Val9 interaction mentioned above.  There are however a few 

notable NOEs between serine and leucine4 which include SerβH-LeuδH, SerβH-LeuβH 
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and SerβH-Leuβ′H.  These imply that the leucine is oriented such that the β-protons point 

into the β-sheet while the δ-methyl’s are pointing down and away from the β-sheet.  It is 

also important to note the chemical shift of the serine Hα.  There is no difference in the 

serine Hα chemical shift between peptides 2.17 and 2.4, this is due to the fact that in 2.17, 

the Robinson turn helps to keep everything in a tight β-sheet and in 2.4, the tryptophan 

ring is over the turn.  However, in peptides 2.1 and 2.7, the tryptophan ring is above the 

serine Hα shielding it and causing an upfield shift.  In peptide 2.6, the serine Hα is 

significantly downfield suggesting that the tryptophan ring isn’t above it; this is 

supported by the NOE data.  

The NOEs between the Ala8 and Lys3 residues are of significant intensity, The 

alanine β-proton shows an NOE with the β, β′, δ and γ-protons of Lys3.  Although the 

other peptides possess a valine at position 8, they show the same NOEs with Lys3 and 

some even show NOEs to Lys1 and Lys5.  These cross-strand and diagonal cross-strand 

NOEs imply that all of the Lysine’s are oriented over the β-sheet itself and that when 

there is a valine in position 8, it’s γ-methyl groups are aligned with the β-sheet and point 

in opposite directions. 

 The valine in position 9 has several NOEs, while most are with Leu2 there is one 

with Leu4 which is quite intense.  A few of those with Leu2 include Valγ2H-LeuγH, 

Valγ2H-LeuδH, Valγ2H-LeuβH, ValβH-LeuαH and ValαH-LeuδH.  The NOE with Leu4 

is between Valγ1H and LeuδH.  Although the intensity of the NOE between the Hα’s of 

Val9 and Leu2 is quite low, the strengths of the NOEs just mentioned provide compelling 

evidence that this part of the peptide is indeed a β-sheet. 



62 

 

 NOEs from Met10 describe an interesting side-chain structure and a particular 

orientation with Lys1.  Some of these include MetεH-LysαH, Metβ′H-Lysβ′H, Metβ′H-

LysεH and MetαH-LysεH.  Since these residues are attached to either side of the turn, 

their cross-strand NOEs are proof that the turn does in fact make a β-sheet rather than a 

random coil.  Additionally, NOEs are also observed between Met10 and Lys3.  Some of 

the most significant ones are MetεH-LysεH, MetγH-LysεH and MetβH-LysεH.  These 

diagonal cross-strand NOEs help to reinforce the fact that these peptides exist as β-sheets 

despite the lack of a strong NOE between the Hα’s of Leu2 and Val9.  These NOEs 

suggest that the methionine side chain is specifically interacting with the two lysine side 

chains.  In addition to the standard Van der Waals interactions, weak hydrogen bonding 

(43) may exist between the methionine sulfur and the lysine ε-NH protons holding the 

chains closer in space thus giving rise to more and stronger NOEs between the chains.  

This idea is supported by the fact that when methionine is replaced by nor-leucine in 2.7, 

both the amount and the intensity of the cross-strand NOEs decrease significantly.  

Furthermore, both the ε and γ-methylenes of the Lys1 experience a significant downfield 

shift upon the replacement with norleucine.  Replacing the methionine residue with a 

more hydrophobic one removes the hydrogen bonding and causes a change in the side 

chain conformation, which is evident in 2.7. 

2.3 Experimental Procedures 

 

2.3.1 Materials and Methods 

Organic and inorganic reagents (ACS grade) were obtained from commercial 

sources and used without further purification, unless otherwise noted. Fmoc-protected 

amino acids and the coupling agent HCTU were obtained from Protein Technologies, 
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Calbiochem-Novabiochem, or Chem-impex International. 2-Chlorotrityl chloride resin 

was purchased from Anaspec Inc. All linear peptides were synthesized on the Symphony 

peptide synthesizer, Protein Technologies Instruments. Solvents for peptide synthesis and 

reverse-phase HPLC were obtained from Applied Biosystems. Other chemicals used 

were obtained from Aldrich and were of the highest purity commercially available. Thin 

layer chromatography (TLC) was performed on glass plates (Whatman) coated with 0.25 

mm thickness of silica gel 60Å (# 70-230 mesh). All 
1
H and 

13
C NMR spectra were 

recorded on Bruker 250 MHz, Varian INOVA 400 MHz spectrometer in CDCl3 or unless 

otherwise specified and chemical shifts are reported in ppm (δ) relative to internal 

standard tetramethylsilane (TMS). High resolution mass spectra were obtained on an 

Agilent LC-MSD-TOF. 

2.3.2 Peptide Synthesis & Purification 

Cyclic III peptide with D-Pro-L-Pro and N-(2-aminoethyl)-N-methylsulfonamido 

glycine beta-turn promoters.  

 

2-Chlorotrityl chloride resin was treated with Fmoc-Pro-OH and then 

immediately Fmoc-deprotected using 20% piperidine/2% DBU in DMF. Fmoc 

quantification of resin indicated a loading of 0.19 mmol/g of resin.  For a 25 μmol 

synthesis, 132 mg of resin was charged to the peptide reaction vessel on a Protein 

Technologies Symphony Peptide Synthesizer. For each coupling step, 5 equivalents of 

Fmoc-amino acid and 7.5 equivalents of HCTU are dissolved in 0.4 M NMM in DMF to 

equal 20 equivalents of NMM, which is added to the reactor.  Each coupling reaction was 

carried out for 10 mins followed by NMP washes. Fmoc deprotection was done using 

20% piperidine/2% DBU in DMF for (2 x 2.5 mins). The amino acids used for peptide 

synthesis were coupled in the following order: Fmoc-D-Pro-OH, Fmoc-Lys(Boc)-OH, 
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Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-

NHCH2CH2N(O2SCH3)CH2COOH, Fmoc-Trp(Boc)-OH, Fmoc-Ser(t-Bu)-OH, Fmoc-

Val-OH, Fmoc-Val-OH, and Fmoc-Met-OH. After synthesis of the protected linear 

HYD1, the resin was transferred to a manual peptide synthesis vessel and treated with 5 

mL of a cleavage solution of 20% trifluoroethanol in DCM for 2 hours. The resin was 

filtered and washed with 5 mL of cleavage solution. This cleavage cycle was repeated 

twice. The combined organic filtrates were concentrated to give crude protected linear III 

peptide. The crude III peptide was dissolved in 15 mL of 1% v/v DIEA in DMF and 

treated with 4 equivalents of HCTU for one hour. After one hour, the reaction mixture 

was concentrated to give crude protected cyclized III peptidomimetic. The crude 

peptidomimetic was then treated with a 10 mL solution of 87.5% TFA/5% H2O/5% 

phenol/2.5% triethylsilane for 30 mins. The reaction mixture was concentrated and the 

thick viscous liquid was triturated twice with 10 mL of cold diethyl ether. The reaction 

contents were centrifuged to give crude cyclic III peptidomimetic. The crude 

peptidomimetic was dissolved in a solution of 0.1% TFA in H2O and freeze-dried to give 

a white fluffy powder. All cyclic III peptides and peptidomimetics were purified using 

semi-preparative reverse phase HPLC (5 µM particle size C18 AAPPTEC spirit column, 

25 x 2.12 cm) with eluents: A = 0.1% HCO2H in H2O, B = 0.1% HCO2H in H3CCN. The 

purification was carried out using a gradient of 5-50% B Buffer over 40 min with a flow 

rate 20 mL/minute using 222 nm UV detection.  All peaks with retention times expected 

for peptides were collected and lyophilized. The purified peptides were analyzed using 

similar analytical HPLC conditions and found to have >95% purity and were structurally 

characterized using a Bruker Autoflex MALDI-TOF instrument with α-cyano hydroxyl 
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cinnamic acid (CHCA) as matrix.  We have also characterized the secondary structure of 

selected cyclic III peptidomimetics and they show concentration independent CD spectra 

in pH 7.0 sodium acetate buffer at concentrations of 200 µM indicative of beta-sheet-like 

conformations with a minima around 200 nm for cyclic III and a maxima around 190 nm 

as expected.  This supports the assertion of cyclic beta-hairpin-like structure.   

Cyclic III peptides with two N-(2-aminoethyl)-N-methylsulfonamidoglycine beta-

turn promoters.  

 

2-Chlorotrityl chloride resin was treated with Fmoc-Met-OH and then 

immediately Fmoc-deprotected using 20% piperidine/2% DBU in DMF. Fmoc 

quantification of resin indicated a loading of 0.24 mmol/g of resin.  For a 25 μmol 

synthesis, 104 mg of resin was charged to the peptide reaction vessel on a Protein 

Technologies Symphony Peptide Synthesizer. Everything else was the same as above 

except the amino acids were coupled in the following order:                                       

Fmoc-NHCH2CH2N(O2SCH3)CH2COOH, Fmoc-Lys(Boc)-OH, Fmoc-Leu-OH,       

Fmoc-Lys(Boc)-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-

NHCH2CH2N(O2SCH3)CH2COOH, Fmoc-Trp(Boc)-OH, Fmoc-Ser(t-Bu)-OH,        

Fmoc-Val-OH, and Fmoc-Val-OH. We saw no evidence of Met C-terminal racemization 

from the C-terminal peptide cyclization step, which can be detected by the appearance of 

diastereomeric peptide side products in the HPLC analysis.   

Synthesis of cyclic HYD1 analogs with membrane seeking linker 20 attached to the 

cysteine side chain on the non-recognition strand. 

A stock solution of linker 2.20 (2.3 mg, 4 µmol) in 600 µL DMF was prepared 

and 42 µL (0.28 µmol) of this stock solution was added to cyclic peptide (1.8 mg, 1.1 

µmol). 20% (v/v) DMF in 0.1M Tris-HCl buffer (pH = 8) was then added and the 
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mixture was stirred for 3-4 hours under inert atmosphere. 200 µL DMF/ mg peptide was 

used. After completion of the reaction, the reaction contents were quenched by addition 

of 1M HCl to pH 2. MALDI-TOF analysis of the crude mixture showed the product peak 

along with the unreacted peptide peak . 

 

 

 
 

tert-Butyl N-(2-aminoethyl) glycine 2.2 
 

A solution of tert-butyl bromoacetate (27.6 mL, 0.18 mol) in 150 mL DCM was added 

dropwise to a solution of ethylenediamine (100 mL, 1.5 mol) in 700 mL DCM at 0
o
C for 

a period of 30 mins. The reaction mixture was allowed to warm to room temperature and 

stirred for 15 hours. The reaction mixture was then washed with (2 x 150 mL) water. The 

aqueous layer was re-extracted with DCM (3 x 100 mL). The combined organic washes 

were dried using sodium sulfate and then filtered. The solution was concentrated in vacuo 

to dryness and was used in next step without further purification (27.4 gm, 85%).
 1

H 

NMR (250 MHz, CDCl3) δ 3.30 (s, 2H), 2.83 – 2.76 (m, 2H), 2.72 – 2.64 (m, 2H), 1.60 

(b, 3H), 1.47 (s, 9H).  
13

C NMR (63 MHz, CDCl3) ppm 171.54, 80.59, 51.70, 51.21, 

41.34, 27.78. 

 

tert-Butyl N-[2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]glycinate hydrochloride 

2.3 
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Compound 2.2 (22 gm, 0.13 mol) was dissolved along with DIEA (22 mL, 0.13 mol) in 

DCM (1000 mL) and N-(9-fluorenylmethoxycarbonyloxy) succinimide (41 gm, 0.12 

mol) in 300 mL DCM was added dropwise over one hour. The reaction contents were 

stirred overnight and washed with (3 x 100 mL) 1M HCl solution and brine solution       

(100 mL). The organic contents were dried using Na2SO4 and filtered. The solution was 

partially concentrated to 50 mL and cooled in deep freezer (-20
o
C) for overnight. The 

white precipitate formed was filtered and washed with DCM. The precipitates were 

vacuum dried to give compound 2.3 as the hydrochloride salt (43.1 gm, 90%).
 1

H NMR 

(400 MHz, DMSO d6) δ 9.51 (s, 2H), 7.88 (d, J = 7.5 Hz, 2H), 7.70 (d, J = 7.4 Hz, 2H), 

7.65 (d, J = 5.5 Hz, 1H), 7.41 (t, J = 7.4 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 4.31 (d, J = 6.7 

Hz, 2H), 4.23 (d, J = 6.6 Hz, 1H), 3.86 (s, 2H), 3.49 – 3.26 (m, 2H), 3.02 (t, J = 5.9 Hz, 

2H), 1.45 (s, 9H).
 13

C NMR (101 MHz, DMSO d6) ppm 165.52, 156.21, 143.77, 140.70, 

127.60, 127.04, 125.17, 120.09, 82.91, 65.64, 54.91, 47.19, 46.63, 46.37, 36.59, 27.59. 

 

tert-Butyl N-[2-(N-9-fluorenylmethoxycarbonyl)aminoethyl N-methylsulfonamido 

glycinate 2.4 

 

Compound 2.3 (5.0 gm, 11.5 mmol) was suspended in 50 mL of THF and DIEA (4.0 mL, 

23.1 mmol) was added to it at 0
o
C. Methanesulfonyl chloride (0.9 mL, 11.5 mmol) was 

added dropwise for period of 10 mins. The reaction mixture was stirred for two hours and 

allowed to warm to room temperature. The mixture was evaporated to dryness in vacuum 

and the residue was partitioned between DCM and water. The organic layer was partially 

concentrated and kept in the refrigerator overnight. The white precipitate that formed was 
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filtered and dried in vacuuo. (4.8 gm, 88%)
 1

H NMR (250 MHz, CDCl3) δ 7.76 (d, J = 

7.1 Hz, 2H), 7.61 (d, J = 7.3 Hz, 2H), 7.44 – 7.27 (m, 5H), 5.48 (s, 1H), 4.38 (d, J = 7.1 

Hz, 2H), 4.28 – 4.18 (m, 1H), 4.02 (s, 2H), 3.38 (d, J = 12.6 Hz, 4H), 3.01 (s, 3H), 1.48 

(s, 9H).
13

C NMR (63 MHz, CDCl3) ppm 169.04, 156.58, 143.93, 141.30, 127.69, 127.09, 

125.18, 119.96, 82.97, 66.95, 49.45, 47.94, 47.19, 39.71, 39.20, 28.04. 

 

2-(N-(2-(((9H-fluoren-9-yl)methoxy)carbonylamino)ethyl)methylsulfonamido)acetic 

acid 2.5 

 

Compound 2.4 (4.8 gm, 10 mmol) was dissolved in 1,4-dioxane and 4M HCl was added 

to it. After completion of the reaction, reaction contents were filtered to give compound 

2.5 as white solid in quantitative yield (4.1 gm). 
1
H NMR (400 MHz, DMSO d6) δ 12.93 

(s, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.69 (d, J = 7.4 Hz, 2H), 7.43 (t, J = 7.4 Hz, 2H), 7.34 

(t, J = 7.3 Hz, 2H), 4.32 (d, J = 6.9 Hz, 2H), 4.23 (t, J = 6.8 Hz, 1H), 4.01 (s, 2H), 3.36 (s, 

1H), 3.29 (t, J = 6.3 Hz, 2H), 3.20 (dd, J = 12.0, 6.0 Hz, 2H), 2.98 (s, 3H). 
13

C NMR (101 

MHz, DMSO) ppm 170.99, 156.13, 143.88, 140.73, 127.60, 127.06, 125.13, 120.10, 

65.45, 48.25, 46.98, 46.74, 39.02, 38.87. 

 

I-tert-butyl 2-((2-tert-butoxy-2-oxoethoxy)methyl)pyrrolidine-1-carboxylate 2.7 

To a solution of 2.6 (0.5 gm, 2.5 mmol) in toluene (10 mL) were added 30% NaOH 

solution (6 mL), tert-butyl bromoacetate (0.73 mL, 5.0 mmol) and TBAI (0.46 gm, 1.2 

mmol) at 0
o
C. The reaction was carried out for 3 hrs until the TLC showed complete 
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consumption of starting material. The reaction mixture was diluted with water (5 mL) 

before extracting with ethyl acetate (3 x 20 mL). The combined organic layer was washed 

with 1M HCl (10 mL), brine (10 mL) and dried over Na2SO4. The organic layer was 

concentrated to leave a residue which was further purified by column chromatography to 

give compound 2.7 (0.6 gm) in 77% yield. 
1
H NMR (250 MHz, CDCl3) δ 3.89 (s, 2H), 

3.88 – 3.81 (m, 1H), 3.55 (d, J = 6.1 Hz, 1H), 3.26 (s, 2H), 1.88 (tdt, J = 28.0, 23.0, 9.0 

Hz, 4H), 1.40 (s, 9H), 1.39 (s, 9H). 
13

C NMR (63 MHz, CDCl3) ppm 169.69, 154.47, 

81.45, 79.21, 72.04, 68.96, 56.30, 46.40, 28.49, 28.08, 23.78, 22.88. 

 

1-tert-butyl 2-(pyrrolidin-2-ylmethoxy)acetate 2.8 

Compound 2.7 (0.6 gm, 1.8 mmol) was dissolved in 15 mL DCM and 5 mL 

trifluoroacetic acid was added to it. The reaction contents were stirred until the starting 

material was completely consumed. The reaction mixture was concentrated to dryness in 

vacuo and was used in the next step without further purification. 

 

I-(9H-fluoren-9-yl)methyl 2-((2-tert-butoxy-2-oxoethoxy)methyl)pyrrolidine-1-

carboxylate 2.9 

Compound 2.8 (0.5 gm, 1.8 mmol) was dissolved in 20 mL DCM and DIEA (1.0 mL, 5.4 

mmol) was added to it. The reaction mixture was cooled to 0
o
C and FmocOSu (0.6 gm, 

1.8 mmol) was added to it. The reaction contents were allowed to warm to room 
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temperature and stirred for two hours. The reaction mixture was concentrated in vacuo 

and residue was partitioned between DCM (20 mL) and H2O (15 mL). The organic layer 

was dried, filtered, concentrated and chromatographed using EtOAc/Hexane (4:1) as 

eluent to give compound 2.9 (0.55 gm) in 79%yield. 
1
H NMR (250 MHz, CDCl3) δ 7.61 

(d, J = 7.4 Hz, 2H), 7.45 (d, J = 7.1 Hz, 2H), 7.28 – 7.13 (m, 4H), 4.39 (d, J = 5.6 Hz, 

1H), 4.22 (d, J = 5.8 Hz, 1H), 4.08 (t, J = 6.9 Hz, 1H), 3.91 – 3.78 (m, 2H), 3.59 (d, J = 

3.6 Hz, 1H), 3.55 – 3.48 (m, 1H), 3.47 – 3.38 (m, 1H), 3.33 – 3.17 (m, 2H), 1.87 – 1.43 

(m, 4H), 1.32 (s, 9H). 

 

I-2-((1-(((9H-fluoren-9-yl)methoxy)carbonyl)pyrrolidin-2-yl)methoxy)acetic acid 

2.10 

Compound 2.9 (0.6 gm, 1.3 mmol) was dissolved in 10 mL DCM and 10 mL 

trifluoroacetic acid was added to it. The reaction contents were stirred until the starting 

material was completely consumed to give compound 2.10 in quantitative yield. 
1
H NMR 

(400 MHz, CDCl3) δ 7.76 (d, J = 7.5 Hz, 2H), 7.58 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.4 

Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 4.64 (t, J = 23.4 Hz, 1H), 4.43 (s, 1H), 4.21 (t, J = 26.2 

Hz, 3H), 3.77 (d, J = 20.2 Hz, 1H), 3.61 (d, J = 23.2 Hz, 1H), 3.41 (t, J = 34.1 Hz, 3H), 

3.00 (d, J = 36.5 Hz, 1H), 1.88 (d, J = 42.5 Hz, 4H). 
13

C NMR (101 MHz, CDCl3) ppm 

174.54, 159.10, 144.01, 127.99, 127.38, 125.22, 120.20, 72.71, 71.81, 68.49, 67.94, 

47.45, 47.11, 29.93, 23.97. 
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tert-butyl 2-(2-(tert-butoxycarbonyl(ethyl)amino)ethoxy)acetate 2.12 

 

2-ethylaminoethanol (2.2 mL, 23.7 mmol) was dissolved in DCM (10 mL) and cooled to 

0
o
C. (Boc)2O (5.2 gm, 23.7 mmol) dissolved in DCM (20 mL) was added to it and the 

reaction was monitored by TLC until the starting material was completely consumed. The 

reaction mixture was partitioned between DCM (50 mL) and H2O (20 mL). The organic 

layer was further washed with 1M HCl (15 mL) and brine (15 mL). The organic layer 

was dried, filtered, and concentrated to give tert-butyl ethyl(2-hydroxyethyl) carbamate 

(3.8 gm) in 90 % yield. To a solution of the Boc protected compound (1.0 gm, 5.3 mmol) 

in toluene (15 mL) were added 30% NaOH solution (12 mL), tert-butyl bromoacetate 

(1.6 mL, 10.6 mmol) and TBAI (1.0 gm, 2.65 mmol) at 0
o
C. The reaction was carried out 

for 3 hrs until the TLC showed complete consumption of starting material. The reaction 

mixture was diluted with water (10 mL) before extracting with ethyl acetate (3 x 20 mL). 

The combined organic layer was washed with 1M HCl (20 mL), brine (20 mL) and dried 

over Na2SO4. The organic layer was concentrated to leave a residue which was further 

purified by column chromatography to give compound 2.12 in (1.45 gm) in 90 % yield. 

1
H NMR (400 MHz, CDCl3) δ 3.86 (d, J = 8.6 Hz, 2H), 3.52 (s, 2H), 3.25 (d, J = 37.1 

Hz, 4H), 1.36 (t, J = 8.7 Hz, 18H), 0.99 (dd, J = 14.7, 7.1 Hz, 3H).
 13

C NMR (101 MHz, 

CDCl3) ppm 169.62, 155.68, 81.63, 79.45, 70.32, 69.05, 46.63, 43.41, 42.88, 28.56, 

28.19, 13.76. 
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tert-butyl 2-(2-(ethylamino)ethoxy)acetate 2.13 

Compound 2.12 (1.5 gm, 5.1 mmol) was dissolved in 15 mL DCM and 5 mL 

trifluoroacetic acid was added to it. The reaction contents were stirred until the starting 

material was completely consumed. The reaction mixture was concentrated to dryness in 

vacuo and was used directly in the next step without further purification. 

 

tert-butyl 2-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)(ethyl)amino)ethoxy)acetate 

2.14 

 

Compound 2.13 (1.6 gm, 5.1 mmol) was dissolved in 20 mL DCM and DIEA (2.7 mL, 

15.4 mmol) was added to it. The reaction mixture was cooled to 0
o
C and FmocOSu (1.7 

gm, 5.1 mmol) was added to it. The reaction contents were allowed to warm to room 

temperature and stirred for two hours. The reaction mixture was concentrated in vacuo 

and the residue was partitioned between DCM (40 mL) and H2O (15 mL). The organic 

layer was dried, filtered, concentrated, and chromatographed to give compound 2.14 in 

(1.78 gm) 85% yield. 
1
H NMR (250 MHz, CDCl3) δ 7.78 (d, J = 7.2 Hz, 2H), 7.62 (d, J = 

6.4 Hz, 2H), 7.46 – 7.28 (m, 4H), 4.58 – 4.39 (m, 2H), 4.32 – 4.20 (m, 1H), 3.91 (d, J = 

38.7 Hz, 2H), 3.68 (d, J = 4.3 Hz, 1H), 3.49 (b, 1H), 3.40 – 3.17 (m, 4H), 1.51 (s, 9H), 

1.16 – 0.96 (m, 3H). 
13

C NMR (63 MHz, CDCl3) ppm 169.50, 156.15, 144.18, 141.40, 

127.64, 127.06, 124.94, 119.95, 81.61, 69.99, 68.94, 67.11, 47.42, 47.05, 43.45, 28.13, 

13.62. 
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2-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)(ethyl)amino)ethoxy)acetic acid 2.15 

Compound 2.14 (1.8 gm, 4.2 mmol) was dissolved in 10 mL DCM and 10 mL of 

trifluoroacetic acid was added to it. The reaction contents were stirred until the starting 

material was completely consumed to give compound 2.15 in quantitative yield. 
1
H NMR 

(400 MHz, DMSO d6) δ 7.87 (d, J = 7.4 Hz, 2H), 7.64 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.4 

Hz, 2H), 7.33 (t, J = 7.1 Hz, 2H), 4.41 (d, J = 5.8 Hz, 2H), 4.29 – 4.25 (m, 1H), 3.99 – 

3.86 (m, 2H), 3.49 (s, 1H), 3.29 (s, 1H), 3.26 – 3.12 (m, 4H), 3.11 – 3.02 (m, 1H), 0.89 

(d, J = 67.3 Hz, 3H).
 13

C NMR (101 MHz, DMSO d6) ppm 171.49, 155.15, 154.81, 

144.03, 140.85, 127.53, 127.06, 124.82, 120.02, 68.84, 68.55, 67.47, 66.19, 51.35, 46.82, 

46.09, 45.70, 42.38, 41.94, 13.32, 12.95. 

 

 

3,6,9,12,15,18-hexaoxatriacontyl 4-methylbenzenesulfonate 2.17 

Hexaethylene glycol monododecyl ether 2.16 (1.0 gm, 2.2 mmol) and p-toluenesulfonyl 

chloride (0.6 gm, 2.2 mmol) were dissolved in DCM (15 mL). Powdered KOH (0.5 gm, 

8.8 mmol) was added to it in small lots so that temperature remains below 5
o
C. The 

reaction was carried out for 3 hrs. The reaction mixture was partitioned between DCM 

(15 mL) and 10% NaHCO3 (10 mL). The organic layer was dried using Na2SO4, filtered 

and concentrated to give a clear oil. This oil was chromatographed using flash silica to 

give compound 2.17 (1.1 gm) in 85% yield. 
1
H NMR (250 MHz, CDCl3) δ 7.87 – 7.73 

(m, 2H), 7.35 (d, J = 8.0 Hz, 2H), 4.23 – 4.08 (m, 2H), 3.76 – 3.53 (m, 22H), 3.45 (t, J = 
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6.8 Hz, 2H), 1.56 (dd, J = 13.5, 6.7 Hz, 2H), 1.26 (s, 18H), 0.88 (t, J = 6.6 Hz, 3H). 
13

C 

NMR (63 MHz, CDCl3) ppm 144.80, 132.96, 129.83, 127.99, 71.54, 70.74, 70.57, 70.04, 

69.26, 68.66, 31.92, 29.64, 29.50, 29.36, 26.09, 22.69, 21.66, 14.15. 

 

1-azido-3,6,9,12,15,18-hexaoxatriacontane 2.18 

Compound 2.17 (1.3 gm, 2.1 mmol) was dissolved in DMF (15 mL) and NaN3 (0.3 gm, 

4.3 mmol) was added to it. The reaction mixture was heated at 80
o
C for 18 hrs. The 

reaction mixture was concentrated in vacuo and chromatographed using EtOAc/Hexane 

(4:1) as eluent to give compound 2.18 (1.1 gm) in 96% yield. 
1
H NMR (250 MHz, 

CDCl3) δ 3.76 – 3.66 (m, 20H), 3.65 – 3.59 (m, 2H), 3.45 (dt, J = 8.1, 5.0 Hz, 4H), 1.61 

(dd, J = 13.3, 6.6 Hz, 2H), 1.30 (s, 18H), 0.92 (t, J = 6.6 Hz, 3H). 
13

C NMR (63 MHz, 

CDCl3) ppm 71.54, 70.69, 70.66, 70.62, 70.58, 70.04, 50.66, 31.91, 29.66, 29.63, 29.61, 

29.49, 29.35, 26.08, 22.68, 14.13. 

 

3,6,9,12,15,18-hexaoxatriacontan-1-amine 2.19 

Compound 2.18 (0.7 gm, 2.1 mmol) was taken up in MeOH and 10% Pd/C was added to 

it. Hydrogenation was carried overnight at 50 psi. The reaction contents were filtered 

over diatomaceous earth and concentrated to give compound 2.19 (0.83 gm) in 84% 

yield. 
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2-bromo-N-3,6,9,12,15,18-hexaoxatriacontylacetamide 2.20 

Compound 2.19 (0.7 gm, 1.6 mmol) was suspended in 8 mL DCM and 8 mL saturated 

aqueous Na2CO3 solution was added to it. The reaction mixture was cooled to 0
o
C and 

bromoacetyl bromide (0.4 gm, 1.8 mmol) was added to it. The reaction contents were 

allowed to warm to room temperature and stirred for two hours. The reaction mixture was 

concentrated in vacuo and residue was partitioned between EtOAc (20 mL) and H2O (15 

mL). The organic layer was dried, filtered, concentrated and chromatographed using 

EtOAc/Hexane (4:1) as eluent to give compound 2.20 (0.66 gm) in 93% yield.
 1

H NMR 

(250 MHz, CDCl3) δ 7.09 (s, 1H), 3.86 (s, 2H), 3.65 – 3.52 (m, 22H), 3.51 – 3.35 (m, 

4H), 1.63 – 1.43 (m, 2H), 1.24 (s, 20H), 0.86 (t, J = 6.4 Hz, 3H). 
13

C NMR (63 MHz, 

CDCl3) ppm 165.79, 71.52, 70.56, 70.33, 70.02, 69.34, 39.92, 31.90, 29.60, 29.48, 29.33, 

29.12, 26.07, 22.67, 14.13. 

 

3,6,9,12,15-pentaoxaheptadecane-1,17-diyl bis(4-methylbenzenesulfonate) 2.22 

Hexaethylene glycol 2.21 (1.0 gm, 3.5 mmol) and p-toluenesulfonyl chloride (1.4 gm, 7.1 

mmol) were dissolved in DCM (10 mL). Powdered KOH (1.6 gm, 28.3 mmol) was added 

to it in small lots so that temperature remains below 5
o
C. The reaction was carried out for 

3 hrs. The reaction mixture was partitioned between DCM (15 mL) and 10% NaHCO3 

(10 ml). The organic layer was dried using Na2SO4, filtered, and concentrated to give a 

clear oil. The crude oil was chromatographed using flash silica to give compound 2.22 
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(1.54 gm) in 74% yield.
 1

H NMR (250 MHz, CDCl3) δ 7.80 (d, J = 8.3 Hz, 4H), 7.35 (d, 

J = 8.0 Hz, 4H), 4.20 – 4.12 (m, 4H), 3.72 – 3.65 (m, 4H), 3.62 (s, 7H), 3.58 (s, 8H), 2.45 

(s, 6H).
 13

C NMR (63 MHz, CDCl3) ppm 144.86, 132.91, 129.86, 127.97, 70.71, 70.59, 

70.53, 70.48, 69.30, 68.65, 21.66. 

 

1,17-diazido-3,6,9,12,15-pentaoxaheptadecane 2.23 

Compound 2.22 (1.5 gm, 2.6 mmol) was dissolved in DMF (15 mL) and NaN3 (0.7 gm, 

10.4 mmol) was added to it. The reaction mixture was heated at 80
0
C for 18 hrs. The 

reaction mixture was concentrated in vacuo and chromatographed using EtOAc/Hexane 

(4:1) as eluent to give compound 2.23 (0.74 gm) in 85% yield. 
1
H NMR (250 MHz, 

CDCl3) δ 3.71 – 3.63 (m, J = 5.8, 2.8 Hz, 5H), 3.39 (t, J = 5.0 Hz, 1H). 

 

3,6,9,12,15-pentaoxaheptadecane-1,17-diamine 2.24 

Compound 2.23 (0.75 gm, 2.1 mmol) was taken up in MeOH and 10% Pd/C was added to 

it. Hydrogenation was carried overnight at 50 psi. The reaction contents were filtered 

over diatomaceous earth and concentrated to give compound 2.24. 

 

N,N’-(3,6,9,12,15-pentaoxaheptadecane-1,17-diyl)bis(2-bromoacetamide) 2.25 

Compound 2.24 (0.6 gm, 2.1 mmol) was suspended in 10 mL DCM and 10 mL saturated 

aqueous Na2CO3 solution was added to it. The reaction mixture was cooled to 0
o
C and 
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bromoacetyl bromide (1.0 gm, 4.7 mmol) was added to it. The reaction contents were 

allowed to warm to room temperature and stirred for two hours. The reaction mixture was 

concentrated in vacuo and the residue was partitioned between EtOAc (20 mL) and H2O 

(15 mL). The organic layer was dried, filtered, concentrated and chromatographed using 

EtOAc/Hexane (4:1) as eluent to give compound 2.25 (0.93 gm) in 81% yield. 
1
H NMR 

(250 MHz, CDCl3) δ 3.90 (s, 4H), 3.67 (d, J = 6.2 Hz, 16H), 3.63 – 3.57 (m, 5H), 3.49 

(dd, J = 10.1, 5.1 Hz, 4H). 
13

C NMR (63 MHz, CDCl3) ppm 166.02, 70.56, 70.28, 69.44, 

39.95, 29.17. 

 

(S)-2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-6-dodecanamidohexanoic acid 

2.28 

Fmoc-Lys(Boc)-OH (2.5 gm, 5.3 mmol) 2.26 was dissolved in 15 mL 1,4-dioxane and 15 

mL 4M HCl was added to it. After completion of the reaction, the reaction mixture was 

concentrated in vacuo. The white solid was filtered and dried to give compound 2.27 as 

the hydrochloride salt in quantitative yield. Compound 2.26 (1.0 gm, 2.5 mmol) was 

dissolved in 15 mL dioxane and sodium carbonate (0.8 gm, 7.4 mmol) in 15 mL H2O was 

added dropwise at 0
o
C. After 5 min, lauroyl chloride (0.6 mL, 2.6 mmol) in 10 mL 

dioxane was added to the reaction mixture. The reaction mixture was allowed to warm to 

room temperature and stirred overnight. After completion of reaction, the reaction 

contents were taken up in 125 mL DCM and washed with saturated NaHCO3 (1 x 20 

mL), 1M HCl (1 x 10 mL) and brine (1 x 20 mL). The organic layer was dried, filtered, 

concentrated, and chromatographed to give compound 2.28 as white solid in 72 % 
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yield. 
1
H NMR (400 MHz, cdcl3) δ 7.74 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 8.0 Hz, 2H), 7.37 

(t, J = 7.4 Hz, 2H), 7.30 – 7.25 (m, 2H), 5.82 (s, 2H), 4.49 – 4.30 (m, 3H), 4.19 (t, J = 7.2 

Hz, 1H), 3.31 – 3.13 (m, 2H), 2.18 – 2.11 (m, 2H), 1.92 – 1.76 (m, 1H), 1.65 – 1.35 (m, 

6H), 1.28 – 1.19 (m, 17H), 0.87 (dd, J = 8.5, 5.3 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) 

ppm 175.29, 174.63, 156.53, 143.93, 141.48, 127.92, 127.30, 125.40, 120.17, 67.30, 

53.83, 47.36, 39.30, 36.99, 32.13, 29.84, 29.73, 29.57, 29.52, 26.02, 22.91, 22.36, 14.35. 

 

(S)-2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-6-(5-((3aS,4S,6aR)-2- 

oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)hexanoic acid 2.29 

 

Compound 2.27 (0.4 gm, 1.0 mmol) was dissolved in 10 mL DCM and DIEA (0.5 mL, 

2.9 mmol) was added to it. Chlorotrimethyl silane (0.25 mL, 2.0 mmol) was added and 

reaction contents were heated until a homogenous solution was obtained. After 30 mins, 

the reaction contents were cooled to 0
o
C and Biotin-Onp (0.4 gm, 1.0 mmol) were added. 

The reaction was stirred for 3 hrs and washed with 5% NaHCO3 (10 mL), 1M HCl (1 x 

10 mL). The organic layers were filtered, dried and concentrated. To the resulting crude 

reaction mass was added 15 mL cold MeOH. The resulting gelatinous white solid was 

filtered, washed with MeOH to afford pure Fmoc-Lys(Biotin)-OH 2.29 as white solid in 

65% yield.
 1

H NMR (250 MHz, DMSO) δ 12.64 (s, 1H), 7.91 (d, J = 7.4 Hz, 2H), 7.74 

(d, J = 7.4 Hz, 2H), 7.43 (t, J = 7.1 Hz, 2H), 7.34 (t, J = 7.0 Hz, 2H), 6.45 (s, 1H), 6.39 (s, 

1H), 4.27 (m, 4H), 4.16 – 4.08 (m, 1H), 3.91 (m, 1H), 3.06 (m, 3H), 2.82 (dd, J = 12.4, 

5.0 Hz, 1H), 2.57 (d, J = 12.4 Hz, 1H), 2.05 (t, J = 7.1 Hz, 2H), 1.74 – 1.23 (m, 12H).
 13

C 

NMR (63 MHz, DMSO) ppm 174.01, 171.79, 162.68, 156.12, 143.77, 140.68, 127.62, 
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127.05, 125.28, 120.10, 65.56, 60.99, 59.13, 55.40, 53.78, 46.61, 38.14, 35.19, 30.43, 

28.74, 28.20, 28.00, 25.29, 23.08. 

Circular Dichroism Measurement 

Circular dichroism experiments were carried out at room temperature on the Aviv 

(Model # 210) spectropolarimeter flushed with nitrogen. The samples were prepared as 

stock solutions in sodium acetate buffer and diluted to the desired concentration for 

measurements.  Each spectra was collected from 250 to 184 nm using a 0.1 cm path 

length cylindrical quartz cell. Each spectrum was recorded as an average of three scans 

taken at a spectral bandwidth of 1 nm. All spectra were corrected for buffer contributions 

and presented in units of molar ellipticity. 

NMR Spectroscopy  

All deuterated reagents and solvents were purchased from Cambridge Isotopes.  

NMR samples were made by dissolving 1-2 mg peptide in 100 μL D2O and then 

adjusting the pD to 4.0 (uncorrected) with either 50 mM NaOAc-d3 or 50 mM AcOH-d4 

to yield a final concentration between 3-7 mM.  Chemical shifts are reported in parts per 

million (ppm) relative to 0.5 mM DSS.  NMR experiments were run and processed on a 

three-channel Varian Inova 500MHz instrument at 298.1 K using a 3-mm I.D. RT probe 

equipped with Z-axis PFGs running VnmrJ 2.2D.  Spectra were then analyzed using 

ACD labs NMR Manager version 11.0.  1D NMR spectra were collected using 32K data 

points, between 16 and 64 scans were collected using a 0.5 s delay and 1 s presaturation.  

2D TOCSY and NOESY experiments were run with a 5000 Hz window in both 

dimensions.  TOCSY experiments were run with a mixing time of 60 ms, a 0.5 s 

relaxation delay followed by 1 s of presaturation and 512 increments in the ƒ1 dimension 
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with 32 transients per increment (collecting 4096 data points per transient in the ƒ2 

dimension).  Zero-filling was then applied using 4096 points for each dimension.  

NOESY experiments were performed using a 500 ms mixing time, 1 s of presaturation 

and 512 increments of 32 transients each (collecting 4096 data points per transient in the 

ƒ2).  Zero-filling was then applied using 4096 points for each dimension.  Presaturation 

was used to suppress the water resonance both during the relaxation delay and during the 

mixing time.  All spectra were analyzed using standard window functions (Gaussian 

without shifting).  Assignments were made by using standard methods as described by 

Wüthrich (44). 

2D NMR Data 

Table 2.5 NMR assignments for peptide 2.1. 

  α β γ δ ε 

Lys-1 4.574 1.657, 1.765 1.286 1.589 2.879 

Leu-2 4.281 1.945 1.622 0.923, 0.845   

Lys-3 4.076 1.642, 1.759 1.285, 1.373 1.588 2.874 

Leu-4 4.349 1.554 1.427 0.782, 0.767   

Lys-5 4.262 1.774, 1.823 1.402, 1.432 1.642 2.976 

Trp-6 4.701 3.172 7.140, 7.121, 7.238, 7.473, 7.590 (5H, 2H, 6H, 7H, 4H) 

Ser-7 4.462 3.778     

Val-8 4.320 1.911 0.772, 0.816     

Val-9 4.662 1.637 0.801, 0.874     

Met-10 4.643 1.989, 2.155  2.522, 2.575    2.072 
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Table 2.6a NMR assignments for peptide 2.6. 

 

 α Β γ δ ε 

Lys-1 4.516 1.745, 1.647 1.291 1.564 2.869 

Leu-2 4.282 1.540 1.427 0.787, 0.768   

Lys-3 4.081 1.750, 1.638 1.339, 1.261 1.555 2.845 

Leu-4 4.311 1.946 1.892 0.836, 0.763   

Lys-5 4.438 1.823, 1.779 1.423 1.662 2.977 

Trp-6 4.668 3.153, 3.172 7.146, 7.141, 7.244, 7.478, 7.615 (5H, 2H, 6H, 7H, 4H) 

Ser-7 4.697 3.754, 3.803     

Val-8 4.184 1.950 0.860, 0.934     

Val-9 4.629 1.623 0.792, 0.865     

Ala-10 4.419 1.383       

Table 2.6b NMR assignments for peptide 2.7. 

 α β γ δ ε 

Lys-1 4.590 1.638, 1.731 1.310, 1.388 1.589 2.943 

Leu-2 4.375 1.985 1.618 0.836, 0.914   

Lys-3 4.086 1.682, 1.750 1.266, 1.369 1.584 2.869 

Leu-4 4.292 1.579 1.467 0.807, 0.821   

Lys-5 4.287 1.691, 1.799 1.379, 1.437 1.623 2.943 

Trp-6 4.595 3.246, 3.207 7.112, 7.141, 7.239, 7.483, 7.581 (2H, 5H, 6H, 7H, 4H) 

Ser-7 4.453 3.802     

Val-8 4.639 1.589 0.811, 0.861    

Val-9 4.673 2.038 0.880, 0.895     

Nor-10 4.453 1.794 1.711 1.276 0.851 

 

Table 2.6c NMR assignments for peptide 2.10. 

 α β γ δ ε 

Lys-1 4.345 1.770, 1.819 1.393, 1.437 1.687 2.977 

Leu-2 4.365 1.633 1.525 0.875, 0.905  

Lys-3 4.052 1.608, 1.731 1.354 1.535 2.943 

Leu-4 4.531 1.657 1.535 0.851, 0.895  

Lys-5 4.174 1.652, 1.770 1.345 1.379 2.967 

Met-6 4.453 1.941, 2.048 2.498, 2.562  2.083 

Val-7 4.096 2.009 0.924, 0.939   

Val-8 4.517 1.496 0.782, 0.816   

Ser-9 4.512 3.774, 3.754    

Trp-10 4.834 3.212, 3.436 7.141, 7.234, 7.268, 7.493, 7.630 (5H, 6H, 2H, 7H, 4H) 

For the NOE figures below, arrows drawn in red indicate a weak NOE enhancement.  

Arrows drawn in green indicate a medium NOE enhancement while those drawn in black 

indicate a strong NOE enhancement. 
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Fig. 2.10 Peptide 2.1 NOEs: (a) Intra-residue NOEs; (b) Same-strand NOEs; (c) Cross-

strand NOEs. 
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Fig. 2.11 Peptide 2.4 NOEs: (a) Intra-residue NOEs; (b) Same-strand NOEs; (c) Cross-

strand NOEs. 
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Fig. 2.12 Peptide 2.6 NOEs: (a) Intra-residue NOEs; (b) Same-strand NOEs; (c) Cross-

strand NOEs. 
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Fig. 2.13 Peptide 2.7 NOEs: (a) Intra-residue NOEs; (b) Same-strand NOEs; (c) Cross-

strand NOEs. 
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Fig. 2.14 Peptide 2.10 NOEs: (a) Intra-residue NOEs; (b) Same-strand NOEs; (c) Cross-

strand NOEs. 
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Fig. 2.15 Peptide 2.17 NOEs: (a) Intra-residue NOEs; (b) Same-strand NOEs; (c) Cross-

strand NOEs. 
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CHAPTER THREE: 

CYCLIC β- HAIRPIN PEPTIDOMIMETICS AS POTENTIAL Aβ 

FIBRILLOGENESIS INHIBITOR 

 

3.1 Introduction 

Substantial information amassed from genetic, animal modeling, and biochemical 

data, reveals that self aggregation of fibrillar amyloid beta (Aβ) peptides is responsible 

for insoluble, neuritic plaque formation in the brains of patients with Alzheimer’s disease 

(AD). These Aβ peptides are byproducts of cleavage of transmembrane protein, Amyloid 

Precursor Protein (APP) by successive action of two aspartyl proteases, β- and γ-

secretases (1-3). β-secretase cleaves APP to produce a membrane bound 99 amino acid  

long C-terminal stub which is successively cleaved by  γ-secretase releasing Aβ peptides. 

Depending on the exact cleavage point by γ-secretase, Aβ exists in three isoforms: Aβ38, 

Aβ40 and Aβ42. Aβ40 is more abundantly produced in nature but Aβ42 is more 

fibrillogenic and associated with diseased states (4-7). The mere presence of Aβ peptides 

in brains and cerebrospinal fluids does not cause neurodegenerative diseases (8).  These 

Aβ peptides are disordered in monomeric state, but adopt ordered beta sheet 

conformations to form amyloid plaques upon aggregation (9,10). Hence disruption of Aβ 

aggregation has been a major area of research in treating Alzheimer’s disease. Efforts 

have been made by various research groups to design small molecule inhibitors or 

peptidomimetics that could potentially inhibit Aβ aggregation, fibrillization, and plaque 
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formation. Fig. 3.1 shows some promising small molecule and peptidomimetic inhibitors 

developed for inhibiting Aβ aggregation (11). 

 

Fig. 3.1 Examples of some potential Aβ aggregation inhibitors 

Peptide based inhibitors for inhibiting Aβ aggregation 

 Since Aβ peptides self-oligomerize, the first strategy for developing Aβ 

aggregation inhibitors was to start with short peptide fragment homologous to the full 

length wild-type peptide. Tjernberg and co-workers first developed synthetic peptides 

homologous to the core section (16-20) (KLVFF) of full-length Aβ and showed that this 

peptide was able to bind full-length Aβ, thereby preventing self-assembly into fibrils 

(12). Soto also developed peptidomimetics targeting the core region of Aβ especially 

residues 17-21 (LVFFA) (13,14). They developed peptides with partial homology of core 
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region 17-21 of Aβ, having key positions replaced with proline. Proline residues were 

introduced to reduce the β-sheet-forming propensity of the peptide (LPFFD, 

RDLPFFDVPID) without losing its hydrophobicity. The β-sheet breaker peptides 

designed from all D-amino acids (LPFFD) were equally effective as the L-peptide 

versions but it was more stable, smaller and hydrophobic enough to penetrate blood brain 

barrier (15).  

 Murphy and co-workers targeted the core region (15-25) of Aβ and designed 

peptide with a disrupting element attached to the C-terminus, linked to the recognition 

element. The recognition element would interact specifically with Aβ whereas the 

disrupting element would interfere with normal fibril self-association mechanism and 

alter Aβ aggregation pathways (16-18). Residues 16-20 of the core of Aβ were more 

potent as recognition elements as compared to residues 15-25. Murphy showed that the 

disrupting element containing at least three lysine residues (KLVFFKKKKKK) was most 

potent at preventing Aβ toxicity and caused largest change in Aβ aggregation kinetics and 

aggregate morphology. 

 The use of N-methylated amino acids in peptides for inhibition of Aβ and 

improving peptide stability in vivo have been explored by various research groups (19-

23). Momany have shown that N-methylation promotes β-sheet formation by locking the 

residue into β-sheet conformation (24). Doig and co-workers have shown that N-

methylation generates soluble monomeric β-sheet peptides. One side of the N-methylated 

peptide forms hydrogen bonding with the Aβ fibril whereas the outer edge having N-

methyl groups in place of backbone NH groups blocks hydrogen bonding. Meredith 

reported N-methylated peptides corresponding to the core region 16-22 and 16-20 of Aβ 
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and have shown that these peptides prevented Aβ fibril formation and even dissolved pre-

formed fibrils (25, 26). N-methylated peptides have been shown to have high proteolytic 

resistance, solubility, blood brain barrier permeability and a high β-sheet forming 

propensity.  

Based on these finding by various research groups, we aim to target the 

hydrophobic core region 17-21 (LVFFA) of full length Aβ peptide. We propose the 

design and synthesis of cyclic β-hairpin peptide that binds specifically to this 

hydrophobic region and prevents β-sheet aggregation. Figure 3.2 clearly explains the 

inhibition mechanism of Aβ fibrils using cyclic peptides. The recognition strand of the 

cyclic peptide would interact with the Aβ fibril whereas the non-recognition strand would 

have residues that would inhibit aggregation from the other face of the assembly. The 

introduction of novel beta turn promoter in the cyclic structure stabilizes the extended 

conformation and provides stability to the cyclic structure. All of our cyclic peptides 

exhibit β-sheet character as characterized by circular dichroism and 
1
H NMR studies. We 

have also designed and synthesized cyclic N-methylated peptides to prevent abeta 

fibrillogenesis.  The designed N-methylated β-hairpin is believed to cap the growing 

fibril, prevent further oligomerization and even solubilize preformed Aβ fibrils. The Aβ 

fibril inhibition of all cyclic β-hairpin peptides synthesized has been studied using 

Thioflavin T fluorometry assay. 
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(a) 

 

(b) 

 

Fig. 3.2 (a) Proposed cyclic peptidomimetic fibrillogenesis inhibitor (b) Aβ peptide 

aggregation mechanism and fibril inhibition using proposed cyclic peptide. 
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3.2 Results & Discussion 

 

3.2.1 Peptide design 

 

Our design of cyclic peptide inhibitors for Aβ fibril is based on the hypothesis 

that peptides, which contain the hydrophobic core of Aβ (LVFFA) in the recognition 

strand, can interact with the corresponding residues of Aβ growing fibril via inter-strand 

hydrogen bonding and side chain-side chain interactions, whereas the non-recognition 

strand could have residues that would prevent further aggregation on other face of the 

assembly. Cyclization greatly restricts the number of conformations available to the 

linear peptide and thus induces distinct secondary structures. The proposed cyclic Aβ 

peptide is believed to exhibit secondary beta-sheet structure which we confirmed by 

circular dichroism and NMR studies. Also, cyclic peptides become resistant to 

proteolysis. It has been reported that short linear Aβ peptides containing the hydrophobic 

core (LVFFA) with N-methylated derivatives have been effective in inhibiting fibril 

formation and inducing secondary structure in short peptides (27,28). Our strategy 

involves incorporation of N-methylated leucine or sarcosine in the non-recognition strand 

that would eliminate any possible hydrogen bonding arising due to dangling amide 

hydrogens on the opposite face. Thus we hypothesized that cyclic peptides with this 

design could have strong affinity for the surfaces of β-sheet assemblies of Aβ and prevent 

further aggregation by blocking a face of the assembly. Fig. 3.3 shows the proposed 

design of cyclic Aβ peptidomimetic with novel designed methylsulfonamido aminoethyl 

glycine turn promoter and Robinson’s template (D-Pro-L-Pro). The incorporation of a 

beta turn promoter in the cyclic structure stabilizes the extended conformation and 

provides proteolytic stability to the cyclic hairpin. The designed cyclic peptide could 
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interact with the growing fibril in either the parallel or anti-parallel fashion (Fig. 3.3). To 

support our rational design, we did energy minimization studies on designed cyclic Aβ 

peptides designed to inhibit abeta fibrillogenesis as described in the previous chapter 2. 

Energy minimization studies suggested that introduction of the novel turn promoter and 

the Robinson template (D-Pro-L-Pro) at the turns gave stable hairpin peptides with all 

internal H-bonds intact. As per computational studies, the stability of cyclic hairpin 

further improved when both turns were replaced by methylsulfonamido aminoethyl 

glycine linker. Based on energy minimization studies data, we have synthesized a series 

of cyclic Aβ peptides as shown in Table 3.1.  

It has been previously reported that amino acid residues that are restrained to a 

limited range of backbone torsion angles may be used as turn promoters in the design of 

α-helix and β-hairpins (29). Conformationally constrained amino acids such as α-amino 

isobutyric acid (Aib) and related C
α,α

 dialkylated are strong α-helix and beta turn 

promoters. D-Pro-Aib sequences strongly favor type II' turn conformations, which have 

been used to design and synthesize β-hairpin structures (30). We have also synthesized 

cyclic abeta peptides with D-Pro-Aib and Robinson’s template as turn promoters. 



105 

 

 

 

Fig. 3.3 (a) Anti-parallel & (b) parallel interactions of proposed cyclic Aβ peptide with 

growing Aβ fibril. 
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Table 3.1  Primary sequences of cyclic Aβ-hairpin peptidomimetics. 

 

Peptide R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 

3.1 X K L K L K O L V F F A 

3.2 X K Meu K Meu K O L V F F A 

3.3 O K L K L K O L V F F A 

3.4 O K Meu K Meu K O L V F F A 

3.5 X K Sar K Sar K O L V F F A 

3.6 X K G K G K O L V F F A 

3.7 O K L K L K O K L V F F 

 

X = 
D
Pro-

L
Pro  Meu = N-methylated Leucine  Sar = Sarcosine O = methylsulfonamido 

aminoethyl glycine (NH2CH2CH2N(O2SCH3)CH2COOH). 

 

All synthesized cyclic peptides were tested for their potential to inhibit Aβ 

aggregation using Thioflavin T (ThT) binding assays. Thioflavin T is known to fluoresce 

upon binding to Aβ fibrils and the intensity of fluorescence is a measure of fibril content. 

The extent of fibril formation of each sample was determined by addition of varying 

concentrations of cyclic Aβ peptide and 5 μL of Aβ 1-42 solution to a 50 μL of a 
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thioflavin T solution. The fluorescence of the thioflavin T was measured by monitoring 

emission at 528 ± 20 nm with an excitation of 485 ± 20. Multiple experiments were 

conducted to determine the effect of cyclic peptides on beta-amyloid fibril formation. It 

can be seen from ThT binding assay data that peptide 3.6 prevented fibril formation of 

Aβ 1-42 in vitro.  As can be seen in Fig. 3.4, a molar ratio of 1:2 (inhibitor: Aβ1-42) is 

capable of inhibiting abeta fibrillogenesis. Designed cyclic Peptides 3.1, 3.2 & 3.4 were 

less potent in inhibiting fibril formation. 
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Fig. 3.4 Effects of cyclic Aβ  peptides 3.1, 3.2, 3.4 and 3.6 on oligomerization of Aβ 1-42 

in vitro. Beta-amyloid (Aβ 1-42) at 5 μM monomer concentration was mixed with cyclic 

peptides at 1 μM, 2 μM, 5 μM, 10 μM, and 20 μM. 50 μM Thioflavin T was then added 

to Aβ peptide solution. The fibril formation was measured at various time as the change 

in fluorescent emission at 528 nm with excitation at 450 nm. 

 

In our search of more potent Aβ fibrillogenesis inhibitors we designed another 

cyclic peptide that had a hydrophobic core (KLVFF) of Aβ 16-20 in the recognition 

strand. We were able to synthesize this peptide but were unsuccessful in isolation.  
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Fig. 3.5 Proposed cyclic Aβ peptide with KLVFF as core residues in recognition strand 

interacting with fragment 16-20 of growing Aβ fibril. 

 

All cyclic peptidomimetics were synthesized on 2-chlorotrityl chloride resin as 

solid support and standard solid phase Fmoc amino acid chemistry as described in 

chapter 2 (31). Coupling was carried out in most cases using standard chemistry of 

HCTU in N-methyl pyrrolidone (NMP) with double coupling for each residue. The 

exceptions were cyclic peptides 3.2 & 3.4, which required extended coupling times 

because of the difficulty of coupling amino acids following a N-methyl residue. These 

peptides were manually synthesized first to optimize coupling conditions for attaching 

the amino acid residue following the N-methyl residue. Coupling efficiency for each 

amino acid was monitored using UV quantification for dibenzofulvene-derived 

chromophore released on deprotection of the Fmoc-protecting group using 20% 

piperidine/2% DBU in DMF. It was seen that double coupling of unmethylated amino 
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acids following N-methyl residue coupling for 3 hours gave quantitative conversion. 

Only two coupling reactions had to be double coupled for 3 hrs, whereas the remaining 

were coupled for 10 mins each cycle. After optimizing and successfully synthesizing 

peptides 3.2 & 3.4 manually, we tried to synthesize these peptides on Protein 

Technologies Symphony synthesizer using optimized conditions for manual synthesis. To 

our surprise none of the peptides were synthesized. When N-methyl-Leu was replaced 

with commercially available and less hindered N-methyl-Gly (Sarcosine), peptide 3.5 

was synthesized on synthesizer using the same optimized conditions for manual 

synthesis. All linear peptides were cleaved from the resin and cyclized under dilute 

conditions as described in chapter 2. The crude cyclic peptides were then purified by 

HPLC and characterized by MALDI-TOF and NMR analysis. 

 

Fig. 3.6 Synthesis protocol for coupling step for peptide 3.5 on PTI symphony 

synthesizer. 

 

Various methods have been reported for the synthesis of α-N-methylated amino 

acids (32-36). All α-N-methylated amino acids were synthesized using a two step 

protocol. The first step involves 5-oxazolidinone formation by condensation of 

commercially available Fmoc-amino acids with paraformaldehyde in the minimum 

amount of toluene using microwave irradiation. All the reactions were carried out in an 
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unmodified domestic microwave oven operated at 2450 MHz frequency at 80% power. 5-

Oxazolidinone formation was monitored by TLC and the reaction was completed in 2 

mins. Treatment of oxazolidinones with excess triethylsilane in TFA:DCM (1:1) resulted 

in ring opening with reduction to give α-N-methylated amino acids 3.3a-c in good yields. 

 

Scheme 3.1 Synthesis of N-methylated amino acids via reduction of 5-oxazolidines. 

 

Most of the reported methodologies have limited or no applications to                

N-methylated amino acids with functionalized side chains and are not suitable for Fmoc- 

solid phase chemistry. We have synthesized N-methylated lysine by a second protocol 

employing o-nitrobenzenesulfonyl chloride (ONBSCl) as protecting group as shown in 

scheme 3.2 (37,38). Our strategy was to use the o-NBS group to protect and activate the 

amino group. The acidic proton of the sulfonamide is then easily removed by a relatively 

weak base such as DBU allowing softer conditions for N-methylation specifically on α-

amino group. The removal of the o-NBS protecting group is achieved with 

mercaptoethanol and DBU in DMF. The resulting secondary amine is acylated with 

Fmoc-Cl to give the N-methylated protected ester 3.9. The deprotection of the allyl 
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protecting group with Pd(PPh3)4 in the presence of NMM gives Fmoc-protected α-N-

methylated lysine in good yield. 

 

Scheme 3.2 Synthesis of Fmoc α-N-methyl Lys(Boc)-OH. 

We have also synthesized a N-methylated lysine derivative in good yields using a 

solid phase strategy. This methodology involves the use of 2-chlorotrityl chloride resin to 

temporarily protect the carboxylic group of the α-amino acid as shown in scheme 3.3.  
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Scheme 3.3 Solid Phase Synthesis of  Fmoc α-N-Methyl-Lys(Boc)-OH. 

 

3.2.2 Conformational studies of cyclic Peptides using Circular Dichroism 

 

The conformational study of all cyclic III peptides were carried out in buffered aqueous 

solutions. The CD spectra of cyclic Aβ-hairpin peptide with Robinson’s template and 

novel sulfonamide glycine turn promoter (peptide 3.1) are shown in Fig. 3.7. CD spectra 

for cyclic peptide 3.1 was take in 7 mM phosphate buffer at a   concentration of 200 µM 

at pH 7 and 25
0
C. As expected the CD spectra showed a negative absorption minima 

around 200 nm and strong positive absorption maxima around 185-190 nm. These 

characterstic CD bands are strongly  indicative of a beta sheet or beta turn  secondary 

structures. 
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Fig. 3.7 CD spectra for determining β-sheet conformation, for different concentration of 

cyclic Aβ hairpin 3.2 prepared in 7 mM phosphate buffer. 

 

3.3 Experimental Procedures 

 

3.3.1 Materials and Methods 

Organic and inorganic reagents (ACS grade) were obtained from commercial 

sources and used without further purification, unless otherwise noted. Fmoc-protected 

amino acids and the coupling agent HCTU were obtained from Protein Technologies, 

Calbiochem-Novabiochem, or Chem-impex International. 2-Chlorotrityl chloride resin 

was purchased from Anaspec Inc. All linear peptides were synthesized on the Symphony 

peptide synthesizer, Protein Technologies Instruments. Solvents for peptide synthesis and 

reverse-phase HPLC were obtained from Applied Biosystems. Other chemicals used 

were obtained from Aldrich and were of the highest purity commercially available. Thin 

layer chromatography (TLC) was performed on glass plates (Whatman) coated with 0.25 

mm thickness of silica gel 60Å (# 70-230 mesh). All 
1
H,

13
C and 

2
D NMR spectra were 

recorded on Bruker 250 MHz, Varian INOVA 400 MHz spectrometer in CDCl3 or unless 
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otherwise specified and chemical shifts are reported in ppm (δ) relative to internal 

standard tetramethylsilane (TMS). High resolution mass spectra were obtained on an 

Agilent LC-MSD-TOF. 

3.3.2 Peptide Synthesis & Purification 

Cyclic Aβ-hairpin peptide with 
D
Pro-

L
Pro and N-(2-aminoethyl)-N-

methylsulfonamido glycine beta-turn promoters.  

 

2-Chlorotrityl chloride resin was treated with Fmoc-Pro-OH and then 

immediately Fmoc-deprotected using 20% piperidine/2% DBU in DMF. Fmoc 

quantification of resin indicated a loading of 0.19 mmol/g of resin.  For a 25 μmol 

synthesis, 132 mg of resin was charged to the peptide reaction vessel on a Protein 

Technologies Symphony Peptide Synthesizer. For each coupling step, 5 equivalents of 

Fmoc-amino acid and 7.5 equivalents of HCTU are dissolved in 0.4 M NMM in DMF to 

equal 20 equivalents of NMM, which is added to the reactor.  Each coupling reaction was 

carried out for 10 mins followed by NMP washes. Fmoc deprotection was done using 

20% piperidine/2% DBU in DMF for (2 x 2.5 mins). The amino acids used for peptide 

synthesis were coupled in the following order: Fmoc-
D
Pro-OH, Fmoc-Lys(Boc)-OH, 

Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-

NHCH2CH2N(O2SCH3)CH2COOH, Fmoc-Leu-OH, Fmoc-Val-OH, Fmoc-Phe-OH, 

Fmoc-Phe-OH, and Fmoc-Ala-OH. After synthesis of the protected linear Aβ peptide, the 

resin was transferred to a manual peptide synthesis vessel and treated with 5 mL of a 

cleavage solution of 20% trifluoroethanol in DCM for 2 hrs. The resin was filtered and 

washed with 5 mL of cleavage solution. This cleavage cycle was repeated twice. The 

combined organic filtrates were concentrated to give crude protected linear Aβ peptide. 

The crude Aβ peptide was dissolved in 15 mL of 1% v/v DIEA in DMF and treated with 
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4 equivalents of HCTU for one hour. After one hour, the reaction mixture was 

concentrated to give crude protected cyclized Aβ-hairpin peptidomimetic. The crude 

peptidomimetic was then treated with a 10 mL solution of 87.5% TFA/5% H2O/5% 

phenol/2.5% triethylsilane for 30 minutes. The reaction mixture was concentrated and the 

thick viscous liquid was triturated twice with 10 mL of cold diethyl ether. The reaction 

contents were centrifuged to give crude cyclic Aβ peptidomimetic. The crude 

peptidomimetic was dissolved in a solution of 0.1% TFA in H2O and freeze-dried to give 

a white fluffy powder. All Aβ-hairpin peptides were purified using preparative reverse 

phase HPLC (5 µM particle size C18 AAPPTEC spirit column, 25 x 2.12 cm) with 

eluents: A = 0.1% HCO2H in H2O, B = 0.1% HCO2H in H3CCN. The purification was 

carried out using a gradient of 5-50% B Buffer over 40 min with a flow rate 20 

mL/minute using 222 nm UV detection.  All peaks with retention times expected for 

peptides were collected and lyophilized. The purified peptides were analyzed using 

similar analytical HPLC conditions and found to have >95% purity and were structurally 

characterized using a Bruker Autoflex MALDI-TOF instrument with α-cyano hydroxy 

cinnamic acid (CHCA) as matrix.  We have also characterized the secondary structure of 

selected cyclic peptidomimetics and they show concentration independent CD spectra in 

pH 7.2 phosphate buffer indicative of beta-sheet-like conformations with a minima at 218 

nm and a maxima at 190 nm for cyclic Aβ-hairpin peptide as expected.  This supports the 

assertion of cyclic beta-hairpin-like structures. 

General Procedure for the synthesis of N-Fmoc-5-oxazoldinone 

 

A mixture of Fmoc-amino acid (10 mmol), paraformaldehyde (60 mmol) and                    

p-toluenesulfonic acid (1 mmol) was suspended in toluene (10 mL) in a pyrex microwave 
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vial. The vial was placed in a beaker filled with sand and exposed to microwave 

irradiation in a domestic microwave operating at 2450 MHz frequency and 80% power 

for 45 sec. After completion of the reaction, an additional 25 mL of ethyl acetate was 

added and the reaction mixture was washed with water (1 x 20 mL). The organic layer 

was dried, filtered, concentrated and chromatographed using EtOAc/Hexane (1:4) as 

eluent to give the 5-oxazolidinone in good yields. 

 
 

(9H-fluoren-9-yl)methyl 4-isobutyl-5-oxooxazolidine-3-carboxylate 3.2a 

Compound 3.2a was obtained as oil and purified by column chromatography using 

EtOAc/Hexane (1:4). Yield: (3.5 gm, 95 %). 
1
H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 

7.5 Hz, 2H), 7.51 (d, J = 7.3 Hz, 2H), 7.39 – 7.34 (m, 2H), 7.32 – 7.26 (m, 2H), 5.39 – 

5.15 (m, 1H), 4.97 (d, J = 4.5 Hz, 1H), 4.58 (b, 2H), 4.17 – 4.04 (m, 2H), 2.33 (s, 2H), 

1.77 – 1.30 (m, 3H), 0.94 – 0.69 (m, 6H). 
13

C NMR (101 MHz, CDCl3) ppm 172.55, 

170.98, 143.77, 143.70, 141.61, 129.26, 128.45, 128.10, 127.37, 125.55, 124.85, 120.32, 

63.87, 60.45, 53.49, 53.41, 47.45, 39.42, 39.36, 22.86, 21.09. 

 

 
 

 

(9H-fluoren-9-yl)methyl4-(3-(allyloxy)-3-oxopropyl)-5-oxooxazolidine-3-carboxylate 
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Compound 3.2b was obtained as white foam and purified by column chromatography 

using EtOAc/Hexane (1:1). Yield: (4.1 gm, 98 %). 
1
H NMR (400 MHz, CDCl3) δ 7.74 

(d, J = 7.5 Hz, 2H), 7.51 (d, J = 7.4 Hz, 2H), 7.38 (td, J = 7.4, 4.0 Hz, 2H), 7.30 (t, J = 

7.4 Hz, 2H), 5.94 – 5.82 (m, 1H), 5.33 – 5.19 (m, 3H), 5.02 (d, J = 4.4 Hz, 1H), 4.71 – 

4.57 (m, 2H), 4.52 (d, J = 5.0 Hz, 1H), 4.19 (t, J = 5.3 Hz, 1H), 2.52 – 2.04 (m, 3H), 1.95 

– 1.70 (m, 1H). 
13

C NMR (101 MHz, CDCl3) ppm 171.82, 153.06, 143.51, 141.59, 

132.19, 128.18, 127.47, 124.80, 120.33, 118.75, 77.72, 67.59, 65.59, 54.04, 47.34, 29.33, 

25.85. 

 

 
 

(9H-fluoren-9-yl)methyl 4-isopropyl-5-oxooxazolidine-3-carboxylate 3.2c 

Compound 3.2c was obtained as pale yellow oil and purified by column chromatography 

using EtOAc/Hexane (1:1). Yield: (3.2 gm, 92 %). 
1
H NMR (400 MHz, CDCl3) δ 7.73 

(d, J = 7.5 Hz, 2H), 7.51 (d, J = 7.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.30 (t, J = 7.4 Hz, 

2H), 5.45 – 5.17 (m, 1H), 4.97 (d, J = 4.6 Hz, 1H), 4.68 – 4.53 (m, 2H), 4.21 – 4.14 (m, 

1H), 3.66 – 3.52 (m, 1H), 1.80 – 1.58 (m, 1H), 1.09 – 0.76 (m, 6H). 
13

C NMR (101 MHz, 

CDCl3) ppm 171.41, 153.42, 143.62, 141.65, 128.15, 127.42, 124.75, 120.30, 78.43, 

67.22, 60.06, 47.41, 31.12, 17.98. 

General Procedure for the synthesis of N-Fmoc-N-Methyl Amino Acid 

 

5-Oxazolidinone (1 equiv.) was dissolved in 20 mL DCM and 20 mL TFA, triethylsilane 

(3 equiv.) were added. The reaction mixture was stirred overnight at room temperature. 

The reaction contents were then concentrated in vacuo and reconcentrated three times to 
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remove residual TFA. The resultant crude oil was crystallized with 5% ether in hexane to 

give a white solid in good yields.  

 

2-((((9H-fluoren-9-yl)methoxy)carbonyl)(methyl)amino)-4-methylpentanoic acid 

3.3a 

Compound 3.3a was obtained as a white powder. Yield: (3.3 gm, 96 %) 
1
H NMR (250 

MHz, CDCl3) δ 7.75 (t, J = 7.9 Hz, 2H), 7.57 (dd, J = 12.8, 6.6 Hz, 2H), 7.45 – 7.26 (m, 

4H), 4.65 – 4.51 (m, 1H), 4.51 – 4.18 (m, 3H), 2.86 (d, J = 4.7 Hz, 3H), 1.81 – 1.40 (m, 

3H), 1.04 – 0.71 (m, 6H).
 13

C NMR (101 MHz, CDCl3) ppm 178.42, 161.50, 149.28, 

146.21, 133.07, 133.00, 132.52, 132.43, 130.44, 130.24, 125.52, 72.12, 61.56, 52.18, 

42.48, 42.17, 35.61, 35.34, 29.84, 28.54, 28.33, 26.43. 

 

2-((((9H-fluoren-9-yl)methoxy)carbonyl)(methyl)amino)-5-(allyloxy)-5-oxopentanoic 

acid 3.3b 

Compound 3.3b was obtained as a white powder. Yield: (4.1 gm, 92%) 
1
H NMR (400 

MHz, DMSO-d6) δ 12.93 (s, 1H), 7.88 (d, J = 6.8 Hz, 2H), 7.64 (t, J = 6.5 Hz, 2H), 7.41 

(t, J = 7.0 Hz, 2H), 7.33 (d, J = 2.9 Hz, 2H), 5.97 – 5.84 (m, 1H), 5.28 (d, J = 17.3 Hz, 

1H), 5.18 (d, J = 10.2 Hz, 1H), 4.53 (s, 2H), 4.42 – 4.32 (m, 2H), 4.32 – 4.26 (m, 1H), 

2.74 (s, 3H), 2.29 (d, J = 7.0 Hz, 1H), 2.19 (d, J = 17.5 Hz, 2H), 2.07 – 1.80 (m, 1H).
 13

C 

NMR (101 MHz, DMSO-d6) ppm 172.04, 171.84, 156.02, 143.75, 140.78, 132.65, 
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127.65, 127.10, 125.00, 120.09, 117.70, 117.65, 66.84, 64.45, 58.07, 46.74, 30.96, 30.19, 

23.44. 

 

2-((((9H-fluoren-9-yl)methoxy)carbonyl)(methyl)amino)-3-methylbutanoic acid 3.3c 

Compound 3.3c was obtained as a white powder. Yield: (3.2 gm, 95%) 
1
H NMR (400 

MHz, DMSO-d6) δ 11.29 (s, 1H), 7.85 (s, 2H), 7.63 (s, 2H), 7.35 (d, J = 29.8 Hz, 4H), 

4.40 (d, J = 26.4 Hz, 2H), 4.27 (s, 2H), 2.76 (s, 3H), 2.05 (d, J = 31.9 Hz, 1H), 1.14 – 

0.70 (m, 6H).
 13

C NMR (101 MHz, DMSO-d6) ppm 171.76, 171.58, 155.86, 155.25, 

143.65, 143.51, 140.62, 127.39, 126.84, 124.70, 119.82, 66.61, 63.58, 46.59, 46.53, 

29.92, 26.75, 26.63, 19.48, 19.42, 18.58, 18.28.  

 

allyl 1-(9H-fluoren-9-yl)-13,13-dimethyl-3,11-dioxo-2,12-dioxa-4,10-diazatetra- 

decane-5-carboxylate 3.5 

Fmoc-Lys(Boc)-OH (2.0 gm, 4.2 mmol) was suspended in dry methanol (12 mL) and 

cesium carbonate (0.7 gm, 2.1 mmol) was added to it. After forming homogenous 

solution, the reactions contents were stirred at room temperature for 2 hrs under inert 

atmosphere. The mixture was then concentrated to give white foam, which was 

redissolved in DMF (15 mL). Allyl bromide (3.7 mL, 42.4 mmol) was then added and 

reaction was stirred overnight. After completion of reactions, the contents were taken up 

in 200 mL ethyl acetate and washed with water (1 x 30 mL) and brine (1 x 30 mL). The 
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organic layer was dried over Na2SO4, filtered, concentrated and flash chromatographed to 

give compound 3.5 (1.8 gm, 82%) as colorless foam. Rf = 0.25 (1:3 ethyl acetate: 

hexane).
 1

H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 7.5 Hz, 2H), 7.61 – 7.54 (m, 2H), 

7.35 (t, J = 7.4 Hz, 2H), 7.26 (t, J = 7.3 Hz, 2H), 5.85 (ddd, J = 16.3, 10.7, 5.4 Hz, 1H), 

5.77 (d, J = 7.0 Hz, 1H), 5.29 (d, J = 17.2 Hz, 1H), 5.20 (d, J = 10.4 Hz, 1H), 4.80 (s, 

1H), 4.60 (s, 2H), 4.40 – 4.32 (m, 2H), 4.18 (t, J = 6.8 Hz, 1H), 3.06 (s, 2H), 1.91 – 1.52 

(m, 4H), 1.41 (s, 9H), 1.37 (b, 2H). 
13

C NMR (101 MHz, CDCl3) ppm 172.10, 155.99, 

143.79, 143.63, 141.12, 131.46, 127.55, 126.92, 124.98, 119.81, 118.69, 78.83, 66.84, 

65.72, 53.75, 47.02, 39.89, 31.80, 29.42, 28.31, 22.35. 

 

allyl 6-(tert-butoxycarbonylamino)-2-(2-nitrophenylsulfonamido)hexanoate 3.6 

Compound 3.5 (1.8 gm, 3.5 mmol) was dissolved in 20 mL DCM and 5 mL 20%  

piperidine / 2% DBU was added to it. After complete deprotection of the Fmoc group, the 

resulting primary amine was quickly purified by passing over a pad of silica gel and used 

in the next step without further purification. The amine (0.94 gm, 3.3 mmol) was taken 

up in 20 mL DCM and DIEA (0.84 mL, 4.8 mmol) was added. o-Nitrobenzenesulfonyl 

chloride (1.1 gm, 5.0 mmol) in 10 mL DCM was added slowly at 0 
o
C. The reaction was 

stirred for 2 hrs by monitoring the conversion of starting material by TLC. After 

completion of the reaction, the crude mixture was further diluted with 50 mL DCM and 

washed with (1 x 15 mL) 5% Na2CO3 solution, water (1 x 20 mL) and brine (1 x 20 mL). 

The combined organic layers were dried, filtered, concentrated and chromatographed to 
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give compound 3.6 (1.12 gm, 73%). 
1
H NMR (250 MHz, CDCl3) δ 8.10 – 8.04 (m, 1H), 

7.95 – 7.90 (m, 1H), 7.77 – 7.70 (m, 2H), 6.12 (d, J = 9.2 Hz, 1H), 5.67 (ddt, J = 17.3, 

10.2, 5.9 Hz, 1H), 5.23 – 5.19 (m, 1H), 5.15 (dd, J = 1.7, 1.2 Hz, 1H), 4.54 (s, 1H), 4.38 – 

4.31 (m, 2H), 4.24 – 4.15 (m, 1H), 3.14 – 3.05 (m, 2H), 1.98 – 1.53 (m, 6H), 1.45 (s, 9H).
 

13
C NMR (101 MHz, CDCl3) ppm 170.37, 155.72, 147.19, 133.58, 133.35, 132.61, 

130.74, 130.04, 125.01, 118.61, 78.34, 65.64, 56.24, 39.65, 32.12, 28.85, 28.01, 21.96. 

 

allyl 6-(tert-butoxycarbonylamino)-2-(N-methyl-2-nitrophenylsulfonamido) 

hexanoate 3.7 

Compound 3.6 (1.12 gm, 2.4 mmol) was dissolved in 15 mL DMF and (CH3)2SO4 (0.3 

mL, 3.5 mmol), CH3I (0.2 mL, 3.5 mmol) was added along with DBU (0.8 mL, 4.7 

mmol) as base. The reaction was completed in 15 mins, as monitored by TLC. The 

solvent was removed in vacuo and crude reaction contents were purified by flash 

chromatography to give compound 3.7 (1.2 gm, 93%) as a pale yellow oil.
 1

H NMR (250 

MHz, CDCl3) ppm 8.07 – 8.02 (m, 1H), 7.71 – 7.66 (m, 2H), 7.65 – 7.58 (m, 1H), 5.84 – 

5.65 (m, 1H), 5.20 (ddd, J = 9.6, 7.4, 1.3 Hz, 2H), 4.66 (dd, J = 10.6, 4.9 Hz, 1H), 4.54 

(s, 1H), 4.50 – 4.44 (m, 2H), 3.17 – 3.06 (m, 2H), 2.97 (d, J = 3.3 Hz, 3H), 1.85 – 1.55 

(m, 6H), 1.44 (s, 9H). 
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allyl 1-(9H-fluoren-9-yl)-4,13,13-trimethyl-3,11-dioxo-2,12-dioxa-4,10-diaza 

tetradecane-5-carboxylate 3.9 

Compound  3.7 (1.15 gm, 2.4 mmol) was dissolved in 10 mL DMF and mercaptoethanol 

(1.7 mL, 23.6 mmol) along with DBU (1.8 mL, 11.8 mmol) was added at 0
o
C. After 

completion of reaction in 10 mins, the solvent was removed from reaction mixture and 

the crude mixture was quickly purified over pad of silica gel to give secondary amine 3.8 

(0.6 gm, 85%). This secondary amine was used without further purification. The 

secondary amine (0.14 gm, 0.5 mmol) was dissolved in 6 mL DCM and Fmoc-Cl (0.26 

gm, 0.9 mmol), DIEA (0.3 mL, 1.4 mmol) were added. The reaction was stirred 

overnight at room temperature. The reaction mixture was concentrated in vacuo and 

subjected to flash chromatography to give compound 3.9 (0.18 gm, 77%) as a white 

foam. 
1
H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 7.1 Hz, 2H), 7.57 – 7.43 (m, 2H), 7.31 – 

7.19 (m, 4H), 5.86 – 5.71 (m, 1H), 5.26 – 5.09 (m, 2H), 4.96 – 4.71 (m, 1H), 4.55 – 4.42 

(m, 2H), 4.40 – 4.28 (m, 2H), 4.19 – 4.08 (m, 1H), 3.07 – 2.93 (m, 2H), 2.76 (d, J = 7.1 

Hz, 3H), 1.95 – 1.60 (m, 2H), 1.37 (d, J = 8.6 Hz, 9H), 1.31 – 0.99 (m, 4H).
 13

C NMR 

(101 MHz, CDCl3) ppm 170.67, 170.34, 156.55, 155.83, 155.70, 144.57, 143.60, 143.47, 

140.89, 131.42, 131.35, 127.30, 126.93, 126.67, 126.49, 124.66, 124.61, 124.34, 119.58, 

119.44, 118.04, 78.36, 67.27, 66.96, 65.17, 64.69, 58.02, 50.07, 46.82, 39.79, 30.18, 

29.89, 29.02, 28.06, 27.81, 22.83. 
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1-(9H-fluoren-9-yl)-4,13,13-trimethyl-3,11-dioxo-2,12-dioxa-4,10-diazatetradecane-

5-carboxylic acid 3.10 

Compound 3.9 (0.18 gm, 0.34 mmol) was dissolved in anhydrous 10 mL DCM and 

Pd(PPh3)4 (39 mg, 0.03 mmol), NMM (0.17 gm, 1.7 mmol) were added to it. After 2 hrs, 

another fresh lot of catalyst (39 mg, 0.03 mmol) was added and reaction was stirred for 

another 2 hrs. The reaction contents were concentrated and purified by flash 

chromatography to give compound 3.10 (0.13 gm, 80%) as a white solid.
 1

H NMR (400 

MHz, CDCl3) δ 10.30 (b, 1H), 7.75 (t, J = 8.8 Hz, 2H), 7.62 – 7.53 (m, 2H), 7.42 – 7.27 

(m, 4H), 4.81 (dd, J = 10.5, 4.4 Hz, 1H), 4.69 – 4.53 (m, 1H), 4.50 – 4.38 (m, 2H), 4.30 – 

4.19 (m, 1H), 3.09 (d, J = 13.2 Hz, 2H), 2.86 (d, J = 10.6 Hz, 3H), 2.03 – 1.69 (m, 2H), 

1.44 (d, J = 8.8 Hz, 9H), 1.40 – 1.11 (m, 4H). 
13

C NMR (101 MHz, CDCl3) ppm 175.71, 

157.28, 156.53, 144.04, 143.88, 141.39, 127.76, 127.13, 125.10, 124.90, 120.02, 67.90, 

67.62, 58.39, 47.31, 41.42, 40.28, 30.69, 30.48, 29.41, 28.48, 28.14, 23.37. 
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CHAPTER FOUR: 

CYCLIC β- HAIRPIN PEPTIDOMIMETICS: TARGETING p53-MDM2 

PROTEIN-PROTEIN INTERACTIONS 

 

4.1 Introduction 

The tumor suppressor protein p53 plays a pivotal part in protection from tumor 

development that arises due to various forms of cellular stress pathways such as DNA 

damage, hypoxia, telomere shortening etc (1,2). p53 is a potent transcription factor that 

regulates multiple downstream genes implicated in cell cycle control, apoptosis, 

antiangiogenesis and senescence. It is estimated that half of all human tumors express 

p53 is disabled by mutations in its DNA-binding domain and becomes inactive as a 

transcription factor (3). Growth suppressive and proapoptotic activity of p53 could harm 

proliferating cells that are not under stress (4). The levels of p53 in cells are controlled by 

its negative regulator MDM2 (an oncoprotein) through an autoregulatory feedback loop 

mechanism (5,6). Under cellular stress, nuclear p53 level gets elevated that 

transcriptionally transactivates the MDM2 gene, resulting in MDM2 binding to p53 

(fig.4.1). This results in an increase in MDM2 expression. In turn, MDM2 binds to p53, 

blocks its transactivation domain and transports p53 to the cytoplasm where MDM2, acts 

as an E3 ubiquitin protein ligase and promotes p53 ubiquitination and degradation by the 

proteaosome (7-14). On response to cellular stress, p53 gets phosphorylated on specific 

serine residue near the MDM2 binding domain, thereby decreasing the affinity of p53 for 
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MDM2 (15). Over expression of MDM2 inhibits p53 function, leading to uncontrolled 

proliferation of tumor cells. These tumor cells become resistant to standard 

chemotherapeutic treatment and do not undergo programmed cell death or apoptosis.  

 

Fig. 4.1 Modulation of p53-MDM2 interactions. Cellular stress triggers the p53 response 

pathway. The p53-MDM2 autoregulatory feedback loop modulates the amount of p53. 

Over expression of MDM2 in human cancer leads to p53 ubiquitination to disable the p53 

network. Designed inhibitors should complex with MDM2 and block its interaction with 

p53. 

 

MDM2 interacts through its NH2 terminal domain with an α-helix present in the 

NH2 terminal transactivation domain of p53 and blocks its transcriptional activity 

directly. The hydrophobic side of the p53 α-helix formed by the amino acids 

phenylalanine, tryptophan and leucine fit deeply into the hydrophobic cleft of MDM2. 

Since MDM2 is seen to be over expressed in certain cancers, it may reduce the functional 

activity of p53-dependent cancer therapies. Hence disruption of p53/MDM2 interaction is 

a viable therapeutic target for the treatment of cancer. Various small molecule inhibitors, 

retroinverso peptides, peptoids, terphenyls, β-hairpins, p-oligobenzamides, β-peptides 

have been developed to mimic the recognition surface of the α-helix of p53. These 
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inhibitors occupy the p53-binding pocket in MDM2, thereby preventing protein-protein 

interaction, and thus, facilitate the p53 tumor suppressor function to inhibit cancer cells. 

Among small molecule inhibitors, Nutlin (cis-imidazolines) emerged as a potent and 

selective small molecule antagonist of p53/MDM2 interaction with both in vitro and in 

vivo activity (16). Figure 4.2. shows some promising small molecule and proteomimetic 

scaffold based inhibitors for p53/MDM2 interaction.   

 

Fig. 4.2 Small molecule and peptidomimetic inhibitors of p53/MDM2 interactions. 

Robinson mimicked the α-helix of p53 with a cyclic β-hairpin to inhibit 

p53/MDM2 interaction. The cyclic beta-hairpin scaffold  mounted on 
D
Pro-

L
Pro template 

holds the side chains of phenylalanine and tryptophan residues in the correct relative 
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positions, so that they could interact with their respective binding sites on MDM2 (17). 

This scaffold exhibited poor cellular uptake. In this present work, we have made an 

attempt to synthesize cyclic β-hairpin peptidomimetics mimicking the α-helix of p53 

using our novel β- turn promoter, to disrupt p53/MDM2 protein-protein interactions. The 

incorporation of novel β- turn promoter will further facilitate in stabilizing the cyclic      

β-hairpin. We have also made an attempt to synthesize morpholino derivatives of serine  

and lysine and incorporate them into the non-recognition strand of the proposed cyclic            

β-hairpin with an aim to improve the bioavailability and cellular permeability of the 

cyclic peptides. The synthesis of the chiral β-turn promoters have also been attempted to 

improve the binding affinity of these molecules to MDM2. 

4.2 Results & Discussions 

4.2.1 Peptide Design 

The crystal structure of a p53-derived peptide (residues 15-29) in complex with 

the inhibitory domain of MDM2 (residue 17-125) as revealed by Pavletich and workers 

suggested that the peptide adopts an α-helical backbone conformation (18). The side 

chains of Phe19, Trp23 and Leu26 align along one face of the helix and inserts deep into 

hydrophobic clefts on the surface of MDM2 (fig.4.3a). The binding energy for this 

protein-protein interaction arises due to van der Waals interactions of these three p53 side 

chains with the surface of MDM2. The C-terminal end of the helix is less tightly bound 

leading to a type I β-turn for the segment between Trp23 and Leu26. Robinson and 

coworkers found that the distance between Cα atoms of Phe19 and Trp23 residues on one 

face of the MDM2-bound p53 α-helix is same as the distance between Cα atoms of ith 

and ith+2 residues along one strand (recognition strand) of a β-hairpin. They proposed a 
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cyclic β-hairpin scaffold that would hold Trp and Phe residues in the correct relative 

positions so that they could interact with p53 binding site on MDM2. Our design for 

making cyclic β-hairpin peptides as p53-MDM2 inhibitors involves, Phe19, Trp23 and 

Leu26 residues aligned along one face of the recognition strand. We hypothesized that 

incorporation of a novel sulfonamido aminoethyl glycine β-turn promoter at the turns 

would further facilitate in stabilizing the β-hairpin conformation. As shown in Fig.4.3 (b), 

β-hairpin mimetic designed as scaffold for p53-MDM2 inhibitors was found to be a weak 

lead with an IC50 greater than 150 µM in an ELISA assay. 

(A) 
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(B)

 

Fig. 4.3 (A) Crystal structure of complex consisting of a p53-derived peptide and MDM2. 

(B) Proposed β-hairpin mimetic scaffold with novel sulfonamido aminoethyl glycine turn 

promoters. 

 

In an attempt to design bioactive peptides for inhibiting p53-MDM2 interaction 

we tried to shorten the β-hairpin loop to eight residue loop as shown in (Table.4.1). The 

eight residue loop with Leu and glutamic acid residues populated along the β turn was 

preorganized into a regular β-hairpin. We found that this scaffold is bioactive with an 

IC50 of 35 µM. With this design as our lead scaffold, we tried to study structure activity 

relationship with an aim to obtain β-hairpin mimetics with enhanced bioactivity.        

Table 4.1 depicts the structure activity relationship of designed β-hairpin mimetics as 

p53-MDM2 inhibitors. After obtaining peptide 4.1 as lead molecule we tried to replace 

aspartic acid with leucine at the β-turn. We found that this mimetic had IC50 of 2 µM. In 

another attempt, we tried to populate the β-turn with Leu and Trp residues. Here we tried 

to populate the three residues around the β-turn so that we could achieve maximum 

binding.  
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Table 4.1 Structure activity relationship of cyclic β-hairpin peptidomimetics. 

SM = Morpholine derivatized serine  ND= Not determined yet 

 

To check the bioavailability of the designed cyclic peptidomimetics, we carried 

out quikPro calculation for log P data for previously designed cyclic abeta and cyclic III 

peptides. We found that designed cyclic peptidomimetics are too hydrophilic with log P 

outside the range of acceptable limits. We proposed to decrease the hydrophilicity by 

incorporating morpholine derivatized lysine and serine derivatives into the non-

recognition strand of the peptidomimetics. This more hydrophobic lysine analog reduces 

the basic character of the epsilon nitrogen and removes two of the three hydrogen bond 

donors in the physiologically relevant protonated form of this side chain. As seen from 

Table 4.2, incorporation of the morpholine derivative brings the log P values for cyclic 

Peptide R1 R2 R3 R4 R5 R6 R7 R8 IC50 (µM) 

4.1 W K F F K W D L 35 

4.2 W K F F K W L L 2 

4.3 W SM F F SM W L L >125 

4.4 F K F L K W L W ND 
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abeta and cyclic III peptides within the range of acceptable limits.  To test this idea, we 

synthesized cyclic peptide 4.3 with the lysine replaced with the morpholine derivative. 

The peptide was synthesized successfully as characterized initially by MALDI-TOF but 

isolation and purification problems were encountered. We tested the crude peptide for 

p53-MDM2 inhibition, which did not give us expected results. 

 

Table 4.2 QuikPro calculations for LogP data for cyclic abeta and cyclic III peptides.  

O= Methylsulfonamido aminoethyl glycine turn promoter 

In a quest for obtaining improved bioactive peptides we further constrained the 

cyclic peptide by introduction of a constrained oxygenated turn promoter  (fig. 4.4) at one 

turn. The introduction of an ether-peptidomimetic amino acid (proline or 2-piperidine 

carboxylic acid derivative) as a constrained turn promoter will further reduce the degrees 

of freedom available to the cyclic peptide and possibly increase its affinity for binding to 

the target. As shown in figure 4.4, this cyclic peptidomimetic had an IC50 of 2 µM, 

similar to that of peptide 4.2. 

Peptide Log P (Octanol/Water) 

Cyclo (7,8) 
L
P

1
 
D
P

2
 K

3
 L

4
 K

5
 L

6
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7
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8
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9
 V
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 -3.078 
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Fig. 4.4 Cyclic betahairpin peptide with proline derived ether-peptidomimetic turn 

promoter. 

 

To further improve our lead scaffold, we designed a chiral reduced amide 

dipeptide β-turn promoter decorated with different alkyl groups at the turn as shown in 

fig. 4.5a. To support our design, we did computational studies by incorporating these 

reduced amide dipeptide β-turn promoters into the eight residue β-hairpin scaffold. It was 

seen that chiral turn promoter populated with tryptophan residues at the turn inserts deep 

into the hydrophobic pocket of MDM2 (fig. 4.5c). When superimposed, this mimetic had 

side chain residues perfectly aligned with the corresponding ligand residues as shown in 

Fig.4.5b. Fig.4.5c shows the docking and interactions of this peptide in the active site of 

MDM2. The key to this mimetic lies in the synthesis of the reduced amide dipeptide β-

turn promoter. An attempt to make the reduced amide dipeptide β-turn promoter with Leu 

side chains is described. 
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(A) 

 

 

 

 

 

 

(B) 
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(C) 

 
 

Fig. 4.5 (a) Proposed cyclic p53-MDM2 peptidomimetics with chiral reduced amide 

dipeptide β-turn promoter with leucine residues (b) reduced amide dipeptides β-turn 

promoter superimposed with ligand (PDB 2axi). (c) proposed cyclic p53-MDM2 hairpin 

peptide docked into the active site of MDM2 (PDB 2axi).  

 

All cyclic peptidomimetics were synthesized on 2-chlorotrityl chloride resin as 

solid support and standard solid phase Fmoc amino acid chemistry as described in 

chapter 2. Coupling was carried out in most cases using standard chemistry of HCTU in 

N-methyl pyrrolidone (NMP) with double coupling for each residue. The synthesized 

linear peptides were selectively cleaved from the resin without cleaving Boc groups on 

certain residues using dilute trifluoroethanol as the cleaving agent. The linear peptide is 

then cyclized in solution under dilute conditions to afford crude cyclized peptide in 

modest yields. 
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Scheme 4.1 Synthesis of Morpholino derivative of lysine. 

The morpholino derivative of lysine was synthesized from commercially available 

CbzLys(Boc)-OH as shown in scheme 4.1. The key step in this scheme was the formation 

of morpholine ring. Compound 4.2 was subjected to Boc-deprotection using TFA/DCM 

followed by reflux of resulting amine with 2-bromo ethyl ether to give key compound 4.3 

in 78% yield. Compound 4.3 was hydrogenated using 10% Pd/C in methanol to give 

completely deprotected amino acid 4.4. The primary amine was then protected with a 

Fmoc protecting group using Bolin’s procedure to give desired morpholine derivative 4.5 

in low yields. Hence an alternative route of preparing morpholine derivatives of serine 

was investigated using two different protecting group strategies.  
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Scheme 4.2 Synthetic routes for morpholino derivative of serine (a) using Cbz protecting 

groups (b) using Boc/Cbz protecting group strategy.   

 

In scheme 4.2(a), the morpholino compound 4.10 was synthesized by 

transformation of hydroxyl group to iodide followed by SN2
 
displacement of iodide with 

morpholine. Compound 4.10 is subjected to hydrogenation followed by Fmoc protection 

of resulting amine to give desired compound 4.11 in moderate yield 49%. An alternative 

strategy was formulated to maximize yield for compound 4.11. Scheme 4.2b describes 

the synthesis of the morpholino derivative of serine using commercially available Boc 

Ser-OH 4.12. Compound 4.15 was synthesized using the same procedure as described for 
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the preparation of compound 4.10. Compound 4.14 was then subjected to Boc 

deprotection using TFA/DCM followed by protection of the resulting amine with Fmoc 

group to give fully protected morpholino derivative 4.16. Hydrogenation of 4.16 with 

10% Pd/C gave desired compound 4.11 in good yields. 

 

Scheme 4.3 Synthesis of proposed reduced amide dipeptides β-turn promoter populated 

with Leu side chains. 

 

The synthesis of reduced amide dipeptides β-turn promoter 4.22 was carried out 

by making a dipeptide unit 4.18. Compound 4.18 was then reduced using 65% Vitride in 

toluene to give compound 4.19. The secondary amine was selectively protected with 

ortho-nitrobenezenesulfonyl chloride (ONBSCl) to give compound 4.20 in good yield. 

Oxidation of the resulting alcohol 4.20 using TEMPO and trichloroisocyanuric acid as 

oxidizing agent gave the corresponding acid 4.21 in low yield (19). We did not achieve 
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success in synthesizing Fmoc-protected amino acid 4.22 using standard Bolin’s 

procedure. 

4.3. Experimental Procedures 

4.3.1 Materials and Methods 

Organic and inorganic reagents (ACS grade) were obtained from commercial 

sources and used without further purification, unless otherwise noted. Fmoc-protected 

amino acids and the coupling agent HCTU were obtained from Protein Technologies, 

Calbiochem-Novabiochem, or Chem-impex International. 2-Chlorotrityl chloride resin 

was purchased from Anaspec Inc. All linear peptides were synthesized on the Symphony 

peptide synthesizer, Protein Technologies Instruments. Solvents for peptide synthesis and 

reverse-phase HPLC were obtained from Applied Biosystems. Other chemicals used 

were obtained from Aldrich and were of highest purity commercially available. Thin 

layer chromatography (TLC) was performed on glass plates (Whatman) coated with 0.25 

mm thickness of silica gel 60Å (# 70-230 mesh). All 
1
H and 

13
C NMR spectra were 

recorded on Bruker 250 MHz, Varian INOVA 400 MHz spectrometer in CDCl3 or unless 

otherwise specified and chemical shifts are reported in ppm (δ) relative to internal 

standard tetramethylsilane (TMS). High Resolution mass spectra were obtained on an 

Agilent LC-MSD-TOF. 

4.3.2 Peptide Synthesis & Purification 

Cyclic β-hairpin peptidomimetic with (2-aminoethyl)-N-methylsulfonamido glycine 

beta-turn promoter.  

2-Chlorotrityl chloride resin was treated with Fmoc-Phe-OH and then 

immediately Fmoc-deprotected using 20% piperidine/2% DBU in DMF. Fmoc 
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quantification of resin indicated a loading of 0.18 mmol/g of resin.  For a 25 μmol 

synthesis, 139 mg of resin was charged to the peptide reaction vessel on a Protein 

Technologies Symphony Peptide Synthesizer. For each coupling step, 5 equivalents of 

Fmoc amino acid and 7.5 equivalents of HCTU are dissolved in 0.4 M NMM in DMF to 

equal 20 equivalents of NMM, which is added to the reactor.  Each coupling reaction was 

carried out for 10 minutes followed by NMP washes. Fmoc deprotection was done using 

20% piperidine/2% DBU in DMF for (2 x 2.5 minutes). The amino acids used for peptide 

synthesis were coupled in the following order: Fmoc-Lys(Boc)-OH, Fmoc-Trp(Boc)-OH, 

Fmoc-Leu-OH, Fmoc-Leu-OH, Fmoc-Trp(Boc)-OH Fmoc-Lys(Boc)-OH, Fmoc-Phe-OH           

and Fmoc-NHCH2CH2N(O2SCH3)CH2COOH. After synthesis of the protected linear 

peptide, the resin was transferred to a manual peptide synthesis vessel and treated with 5 

mL of a cleavage solution of 20% trifluoroethanol in DCM for 2 hours. The resin was 

filtered and washed with 5 mL of cleavage solution. This cleavage cycle was repeated 

twice. The combined organic filtrates were concentrated to give crude protected linear 

peptide. The crude peptide was dissolved in 15 mL of 1% v/v DIEA in DMF and treated 

with 4 equivalents of HCTU for one hour. After one hour, the reaction mixture was 

concentrated to give crude protected cyclized β-hairpin peptidomimetic. The crude 

peptidomimetic was then treated with a 10 mL solution of 87.5% TFA/5% H2O/5% 

phenol/2.5% triethylsilane for 30 minutes. The reaction mixture was concentrated and the 

thick viscous liquid was triturated twice with 10 mL of cold diethyl ether. The reaction 

contents were centrifuged to give crude cyclic β-hairpin peptidomimetic. The crude 

peptidomimetic was dissolved in a solution of 0.1% TFA in H2O and freeze-dried to give 

a white fluffy powder. All cyclic peptides were purified using preparative reverse phase 
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HPLC (5 µM particle size C18 AAPPTEC spirit column, 25 x 2.12 cm) with eluents: A = 

0.1% HCO2H in H2O, B = 0.1% HCO2H in H3CCN. The purification was carried out 

using a gradient of 5-50% B Buffer over 40 min with a flow rate 20 mL/minute using 222 

nm UV detection.  All peaks with retention times expected for peptides were collected 

and lyophilized. The purified peptides were analyzed using similar analytical HPLC 

conditions and found to have >95% purity and were structurally characterized using a 

Bruker Autoflex MALDI-TOF instrument with α-cyano hydroxy cinnamic acid (CHCA) 

as matrix.  

 

N-α-benzyloxycarbonyl-N-ε-(tert-butoxycarbonyl)lysine benzyl ester (4.2) 

N-ε-(tert-butoxycarbonyl)-N-α-carbobenzyloxylysine 4.1(1 gm, 2.6 mmol) was dissolved 

in 25 mL dry acetonitrile and diisopropylethylamine (0.47 mL, 2.8 mmol) was added. 

Benzyl bromide (0.33 mL, 2.8 mmol) was subsequently added and the reaction mixture 

was stirred under argon at room temperature for two days. The reaction mixture was 

concentrated in vacuo and the residue was partitioned between DCM (25 mL) and water 

(15 mL). The organic layer was dried using Na2SO4, filtered and concentrated to give a 

clear oil. The crude oil was chromatographed over flash silica with EtOAc/Hexane (1:1) 

to give compound 4.2 (0.95 gm, 78%).
 1

H NMR (400 MHz, CDCl3) ppm 7.43 – 7.24 (m, 

10H), 5.42 (s, 1H), 5.23 – 5.06 (m, 4H), 4.53 (b, 1H), 4.40 (d, J = 4.9 Hz, 1H), 3.12 – 

2.94 (m, 2H), 1.88 – 1.63 (m, 2H), 1.46 – 1.25 (m, 13H).
 13

C NMR (101 MHz, CDCl3) δ 

172.35, 156.13, 136.33, 135.40, 128.73, 128.61, 128.44, 128.27, 79.24, 67.23, 67.10, 

53.89, 40.11, 32.25, 29.65, 28.52, 22.36. 
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(R)-benzyl 2-(benzyloxycarbonylamino)-6-morpholinohexanoate (4.3) 

Compound 4.2 (0.95 gm, 2 mmol) was dissolved in 20 mL DCM and 10 mL 

trifluoroacetic acid was added to it. The reaction contents were stirred until the starting 

material was completely consumed. The reaction mixture was concentrated to dryness in 

vacuo and used directly in the next step without further purification. The deprotected 

amine was suspended in 20 mL toluene and sodium bicarbonate (0.55 gm, 6 mmol),                      

2-bromoethyl ether (0.56 gm, 2.4 mmol) was added to it. The system was flushed with 

argon and reaction contents were refluxed for 24 hrs. The reaction mixture was 

concentrated in vacuo and the residue was partitioned between EtOAc (25 mL) and dilute 

NaHCO3 (15 mL). The organic layer was dried using Na2SO4, filtered and concentrated to 

give crude oil. The crude oil was chromatographed over flash silica with EtOAc:Hexane 

(2:1) to give compound 4.3 (0.7 gm, 79%).
 1

H NMR (250 MHz, DMSO) ppm 7.80 (d, J = 

7.7 Hz, 1H), 7.48 – 7.19 (m, 10H), 5.13 (t, J = 5.1 Hz, 2H), 5.09 – 4.97 (m, 2H), 4.16 – 

3.98 (m, 1H), 3.62 – 3.46 (m, 4H), 2.51 (dt, J = 3.5, 1.7 Hz, 1H), 2.34 – 2.24 (m, 4H), 

2.19 (t, J = 6.8 Hz, 2H), 1.69 (dt, J = 15.2, 6.3 Hz, 2H), 1.48 – 1.20 (m, 4H).
 13

C NMR 

(63 MHz, DMSO) ppm 172.33, 156.16, 136.89, 135.94, 128.39, 128.33, 128.03, 127.79, 

127.73, 127.23, 66.14, 65.84, 65.47, 57.99, 53.89, 53.29, 30.52, 25.30, 23.29. m/z 

441.2377 (M+H)
+
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(S)-2-amino-6-morpholinohexanoic acid (4.4) 

Compound 4.3 (0.7 gm, 1.6 mmol) was dissolved in MeOH and 10% Pd/C was added to 

it. Hydrogenation was carried overnight at 50 psi. The reaction contents were filtered 

over diatomaceous earth and concentrated to give compound 4.4. This compound was 

used in the next step without further purification. 

 

(S)-2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-6-morpholinohexanoic acid (4.5) 

Compound 4.4 (0.32 gm, 1.5 mmol) was suspended in 15 mL anhydrous DCM and DIEA 

(0.73 mL, 4.19 mmol), TMSCl (0.53 mL, 4.2 mmol) were added to it. The reaction 

mixture became homogenous on gentle reflux for one hour. After one hour, the reaction 

mixture was cooled to 0 
0
C, and Fmoc-OSu (0.71 gm, 2.1 mmol) was added. The 

progress of the reaction was monitored by TLC. The reaction content was concentrated 

and flash chromatographed to give compound 4.5 in low yields. m/z 439.2227 (M+H)
+
 

 

(R)-2-(benzyloxycarbonylamino)-3-hydroxypropanoic acid (4.7) 

To a stirred suspension of NaHCO3 (10 gm, 12 mmol) in THF:H2O (50 mL) was added 

L-serine (5 gm, 47.5 mmol) in small lots. After 15 mins, benzyl chloroformate (7.5 mL, 

52.5 mmol) was added dropwise over a period of 30 mins. The reaction was carried out 
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for 2 hrs and then diethyl ether (50 mL) was added to it. The aqueous layer was acidified 

to pH 2~3 with 1N HCl solution and extracted with ethyl acetate (2 x 50 mL). The 

combined organic layer was further washed with 1N HCl (25 mL) and brine (50 mL), 

dried over Na2SO4. The reaction mixture was concentrated to dryness in vacuo and 

further crystallized with ethyl acetate/hexane to give 4.7 (9.9 gm) in 87 % yield. 
1
H NMR 

(250 MHz, MeOD) ppm 7.46 – 7.28 (m, 5H), 5.14 (s, 2H), 4.30 (t, J = 4.4 Hz, 1H), 3.97 

– 3.77 (m, 2H).
 13

C NMR (101 MHz, CD3OD) ppm 173.72, 158.41, 137.93, 129.37, 

128.93, 128.77, 68.01, 67.68, 63.03, 57.58. m/z 240.0866 (M+H)
+
 

 

(R)-benzyl 2-(benzyloxycarbonylamino)-3-hydroxypropanoate (4.8) 

Compound 4.7 (5 gm, 20.8 mmol) was dissolved in dry methanol (25 mL) and Cs2CO3 

(3.4 gm, 10.4 mmol) was added to it at 0 
0
C. After 10 mins, methanol was removed at 

reduced pressure and the reaction contents were taken in DMF (30 mL). Benzyl bromide 

(20 mL, 167 mmol) was added in excess and the reaction was stirred overnight at room 

temperature. After completion of reaction, the reaction mixture was concentrated and 

partitioned between DCM (200 mL) and water (50 mL).  The organic layer was dried, 

filtered, concentrated and chromatographed to give compound 4.8 (5.4 gm) in 79% yield. 

1
H NMR (400 MHz, CDCl3) ppm 7.46 – 7.30 (m, 10H), 5.71 (s, 1H), 5.22 (s, 2H), 5.12 

(s, 2H), 4.55 – 4.43 (m, 1H), 4.09 – 3.88 (m, 3H), 2.11 (s, 1H). 
13

C NMR (101 MHz, 

CDCl3) ppm 170.49, 156.25, 136.25, 135.30, 128.89, 128.78, 128.49, 128.42, 128.36, 

67.76, 67.46, 63.65, 56.40. m/z 330.1324 (M+H)
+
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(S)-benzyl 2-(benzyloxycarbonylamino)-3-iodopropanoate (4.9) 

To a stirred solution of 4.8 (2 gm, 6 mmol) in dry DCM (10 mL) was added a pre-mixed 

solution of PPh3 (2.38 gm, 9 mmol), iodine (2.31 gm, 9 mmol) and imidazole (0.75 gm, 

10.9 mmol) in 30 mL dry DCM. The reaction mixture was stirred at room temperature for 

2 hrs. After completion of reaction, the reaction mixture was concentrated in vacuo and 

chromatographed using EtOAc:Hexane (1:9) as eluent to give compound 4.9 (1.7 gm) 

70% as white solid. 
1
H NMR (250 MHz, CDCl3) ppm 7.67 – 7.49 (m, 10H), 5.84 (d, J = 

7.2 Hz, 1H), 5.42 (s, 2H), 5.33 (d, J = 0.6 Hz, 2H), 4.82 (dt, J = 7.5, 3.7 Hz, 1H), 3.88 – 

3.71 (m, 2H). 
13

C NMR (63 MHz, CDCl3) ppm 169.15, 155.43, 135.94, 134.72, 128.77, 

128.71, 128.66, 128.62, 128.34, 128.16, 68.17, 67.33, 54.04, 7.44. m/z 440.0345 (M+H)
+
 

 

(R)-benzyl 2-(benzyloxycarbonylamino)-3-morpholinopropanoate (4.10) 

To a solution of 4.9 (1.0 gm, 2.3 mmol) in dry DMF (15 mL) were added K2CO3 (0.81 

gm, 5.9 mmol) and morpholine (0.45 mL, 5.3 mmol) at room temperature. The reaction 

mixture was stirred overnight until TLC showed disappearance of starting material. After 

completion of reaction, the reaction mixture was concentrated in vacuo and 

chromatographed to give compound 4.10 (0.76 gm) 84% as pale yellow liquid.
 1

H NMR 

(250 MHz, DMSO d6) ppm 7.80 (d, J = 7.7 Hz, 1H), 7.48 – 7.19 (m, 10H), 5.13 (t, J = 
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5.1 Hz, 2H), 5.09 – 4.97 (m, 2H), 4.16 – 3.98 (m, 1H), 3.62 – 3.46 (m, 4H), 2.51 (dt, J = 

3.5, 1.7 Hz, 1H), 2.34 – 2.24 (m, 4H), 2.19 (t, J = 6.8 Hz, 2H), 1.69 (dt, J = 15.2, 6.3 Hz, 

2H), 1.48 – 1.20 (m, 4H). 
13

C NMR (63 MHz, DMSO d6) ppm 171.48, 155.92, 136.84, 

135.90, 128.36, 128.33, 128.00, 127.82, 127.77, 66.03, 65.87, 65.56, 58.54, 53.11, 52.11. 

m/z 399.1917  (M+H)
+
 

 

(S)-2-(((9H-fluoren-9-yl) methoxy) carbonylamino)-3-morpholinopropanoic acid 

(4.11) 

 

Compound 4.10 (0.9 gm, 2.3 mmol) was taken in MeOH and 10% Pd/C was added to it. 

Hydrogenation was carried overnight at 50 psi. The reaction contents were filtered over 

diatomaceous earth and concentrated to give the intermediate zwitterion (0.36 gm, 2.1 

mmol). This compound was used in the next step without further purification. This 

compound was suspended in 15 mL anhydrous DCM and DIEA (0.73 mL, 4.2 mmol), 

TMSCl (0.53 mL, 4.2 mmol) was added to it. The reaction mixture became homogenous 

on gentle reflux for one hour. After one hour, the reaction mixture was cooled to 0
o
C, and 

Fmoc-OSu (0.71 gm, 2.1 mmol) was added. The progress of the reaction was monitored 

by TLC. The reaction contents were concentrated and flash chromatographed to give 

compound 4.11 (0.41 gm, 49%). 
1
H NMR (400 MHz, CDCl3) ppm 7.74 (d, J = 7.3 Hz, 

2H), 7.57 (d, J = 6.6 Hz, 2H), 7.33 (dt, J = 36.2, 6.9 Hz, 4H), 6.01 (s, 1H), 4.43 – 4.31 

(m, 2H), 4.27 (s, 1H), 4.17 (t, J = 6.2 Hz, 1H), 3.92 – 3.69 (m, 4H), 3.28 – 2.91 (m, 5H), 

2.63 – 2.30 (m, 1H).
 13

C NMR (101 MHz, CDCl3) ppm 172.57, 156.14, 144.02, 141.53, 
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127.97, 127.26, 125.27, 120.21, 67.16, 64.86, 58.07, 52.99, 50.44, 47.35. m/z 397.1755 

(M+H)
+
. 

 

(S)-benzyl 2-(tert-butoxycarbonylamino)-3-hydroxypropanoate (4.13) 

Compound 4.12 (4.0 gm, 19 mmol) was dissolved in dry methanol (25 mL) and Cs2CO3 

(3.2 gm, 9.7 mmol) was added to it at 0
o
C. After 10 mins, methanol was removed at 

reduced pressure and the reaction contents were taken up in DMF (30 mL). Benzyl 

bromide (18.6 mL, 156 mmol) was added in excess and the reaction was stirred overnight 

at room temperature. After completion of reaction, the reaction mixture was concentrated 

and partitioned between DCM (200 mL) and water (50 mL).The organic layer was dried, 

filtered, concentrated and chromatographed to give compound 4.13 (5.1 gm) in 87% 

yield.. 
1
H NMR (400 MHz, CDCl3) ppm 7.42 – 7.20 (m, 5H), 5.64 (d, J = 7.4 Hz, 1H), 

5.18 (d, J = 20.2 Hz, 2H), 4.37 (s, 1H), 3.89 (dd, J = 41.7, 10.1 Hz, 2H), 3.17 (s, 1H), 

1.40 (s, 9H).
 13

C NMR (101 MHz, CDCl3) ppm 171.09, 156.05, 135.51, 128.76, 128.56, 

128.32, 80.39, 67.46, 63.37, 56.08, 28.48. 

 

(R)-benzyl 2-(tert-butoxycarbonylamino)-3-iodopropanoate (4.14) 

To a stirred solution of 4.13 (5.0 gm, 17 mmol) in dry DCM (10 mL) was added a pre-

mixed solution of PPh3 (6.7 gm, 25.5 mmol), iodine (6.4 gm, 25.5 mmol) and imidazole 

(0.75 gm, 30.6 mmol) in 100 mL dry DCM. The reaction mixture was stirred at room 
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temperature for 2 hrs. After completion of reaction, the reaction mixture was 

concentrated in vacuo and chromatographed using EtOAc:Hexane (1:9) as eluent to give 

compound 4.14 (4.8 gm) 70% as a white solid. 
1
H NMR (400 MHz, CDCl3) ppm 7.46 – 

7.25 (m, 5H), 5.36 (d, J = 4.8 Hz, 1H), 5.20 (t, J = 5.1 Hz, 2H), 4.54 (d, J = 3.0 Hz, 1H), 

3.56 (dd, J = 11.2, 6.6 Hz, 2H), 1.44 (s, 9H).
 13

C NMR (101 MHz, CDCl3) ppm 169.68, 

155.04, 135.06, 129.11, 128.85, 128.77, 80.68, 68.16, 53.91, 28.48, 7.99. m/z 428.0383 

(M+Na)
+
. 

 

(S)-benzyl 2-(tert-butoxycarbonylamino)-3-morpholinopropanoate (4.15) 

To a solution of 4.13 (3.5 gm, 8.6 mmol) in dry DMF (30 mL) were added K2CO3 (3.1 

gm, 22.4 mmol) and morpholine (1.71 mL, 19.8 mmol) at room temperature. The 

reaction mixture was stirred overnight until TLC showed disappearance of starting 

material. After completion of reaction, the reaction mixture was concentrated in vacuo 

and chromatographed to give compound 4.14 (2.65 gm) 84% as a pale yellow liquid.
1
H 

NMR (400 MHz, CDCl3) ppm 7.98 – 7.79 (m, 1H), 7.38 – 7.22 (m, 6H), 5.25 (d, J = 17.4 

Hz, 1H), 5.22 – 4.93 (m, 2H), 4.56 (d, J = 18.3 Hz, 1H), 4.27 (d, J = 5.4 Hz, 1H), 3.48 (t, 

J = 4.3 Hz, 3H), 2.83 (d, J = 7.5 Hz, 1H), 2.77 (s, 1H), 2.59 (t, J = 9.5 Hz, 2H), 2.35 – 

2.20 (m, 4H), 1.40 – 1.25 (m, 9H). m/z 365.2109 (M+H)
+
. 
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(S)-benzyl 2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-morpholinopropanoate 

(4.16) 

Compound 4.15 (0.79 gm, 2.2 mmol) was dissolved in 10 mL DCM and 10 mL TFA was 

added to it. After completion of the reaction, the residue was reconcentrated three times 

with DCM to remove residual TFA. The crude residue (1.06 gm, 2.2 mmol) was 

dissolved in 20 mL DCM and DIEA (1.32 mL, 7.6 mmol), FmocOSu (0.69 gm, 2.1 

mmol) was added. After completion of the reaction, the reaction contents were diluted 

with 50 mL DCM and washed with water (1 x 15 mL) and brine (1 x 15 mL). The 

organic layer was then dried, filtered, concentrated and subjected to flash 

chromatography to give compound 4.16 (0.95 gm, 91%).
1
H NMR (250 MHz, CDCl3) 

ppm 7.68 (d, J = 7.2 Hz, 2H), 7.52 (d, J = 6.4 Hz, 2H), 7.39 – 7.14 (m, 9H), 5.60 (d, J = 

6.2 Hz, 1H), 5.11 (dd, J = 29.2, 11.8 Hz, 2H), 4.33 (d, J = 6.6 Hz, 3H), 4.16 (s, 1H), 3.49 

(s, 4H), 2.64 (d, J = 4.7 Hz, 2H), 2.29 (s, 4H).
13

C NMR (63 MHz, CDCl3) ppm 171.59, 

155.97, 143.95, 143.77, 141.34, 135.22, 129.26, 128.63, 127.76, 127.10, 125.11, 120.04, 

67.27, 67.08, 66.85, 59.09, 53.74, 52.36, 47.18 m/z 487.2095 (M+H)
+
. 

 

(S)-2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-morpholinopropanoic acid 

(4.11) 
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Compound 4.16 (0.5 gm, 1.6 mmol) was taken up in MeOH and 10% Pd/C was added to 

it. Hydrogenation was carried overnight at 50 psi. The reaction contents were filtered 

through diatomaceous earth and concentrated to give compound 4.11 (0.35 gm, 87%). 

m/z 397.1755 (M+H)
+
. 

 

(S)-tert-butyl 2-((R)-2-(tert-butoxycarbonylamino)-4-methylpentanamido)-4-

methylpentanoate (4.18) 

 

Dipeptide 4.18 was synthesized from Boc-Leu-OH monohydrate (3.0 gm, 13 mmol) and 

leucine tert-butyl ester hydrochloride (2.9 gm, 13 mmol) as per the procedure for mixed 

anhydride coupling using N-methylmorpholine (4.3 mL, 39 mmol) and isobutyl 

chloroformate (1.7 mL, 13 mmol) using THF (60 mL) as solvent. After completion of the 

reaction, reaction contents were washed with water (1 x 25 mL), brine (1 x 25 mL) and 

filtered, dried and concentrated. The dipeptide 4.18 was obtained as white needles (4.48 

gm, 86.4%) after crystallization using EtOAc/Hexane as solvent. 
1
H NMR (250 MHz, 

CDCl3) ppm 6.38 (d, 1H), 4.89 (d, J = 8.3 Hz, 1H), 4.41 (td, J = 8.5, 5.4 Hz, 1H), 4.10 – 

3.95 (m, 1H), 1.65 – 1.45 (m, 6H), 1.39 (d, J = 2.1 Hz, 9H), 1.38 – 1.36 (m, 9H), 0.92 (s, 

1H), 0.90 – 0.84 (m, 13H). m/z 387.3225 (M+H)
+
. 
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tert-butyl (R)-1-((S)-1-hydroxy-4-methylpentan-2-ylamino)-4-methylpentan-2-

ylcarbamate (4.19) 

 

Compound 4.18 (3.4 gm, 9.5 mmol) was taken up in 60 mL toluene and a solution of 

65% Vitride in toluene (22 mL, 71 mmol) was added to it at 0 
o
C. The reaction contents 

were refluxed for one hour, cooled to room temperature and poured into cold 0.5 M citric 

acid solution at pH 2~3. The compound was then extracted with (2 x 100 mL) ethyl 

acetate and dried over Na2SO4. The combined organic layers were concentrated in vacuo 

to give compound 4.20 (2.4 gm) in 80% yield. 
1
H NMR (250 MHz, CDCl3) ppm 4.47 (b, 

1H), 3.85 – 3.69 (m, 1H), 3.62 (dd, J = 10.7, 3.8 Hz, 1H), 3.28 – 3.18 (m, 1H), 2.73 – 

2.67 (m, 1H), 2.63 (d, J = 5.6 Hz, 2H), 1.74 – 1.56 (m, 2H), 1.46 (s, 9H), 1.41 – 1.13 (m, 

5H), 0.93 (dd, J = 6.5, 4.8 Hz, 12H).
 13

C NMR (63 MHz, CDCl3) ppm 156.13, 63.54, 

56.88, 51.68, 49.00, 42.57, 41.38, 28.40, 24.94, 23.16, 23.08, 22.71, 22.21. m/z 317.2725 

(M+H)
+
. 

 

tert-butyl (R)-1-(N-((S)-1-hydroxy-4-methylpentan-2-yl)-2-itrophenylsulfonamido)- 

4-methylpentan-2-ylcarbamate (4.20) 

 

To a stirred solution of NaHCO3 (2.9 gm, 34 mmol) in 10 mL water was added 4.18 (1.8 

gm, 5.7 mmol) in 15 mL dioxane. The reaction contents were cooled to 0
o
C in ice-bath 
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and ONBSCl (2.5 gm, 11 mmol) in 10 mL dioxane was added slowly with vigorous 

stirring. The reaction was stirred overnight at room temperature. The reaction contents 

were then poured onto ether (50 mL), washed with 2N NH4OH (1 x 20 mL), water (1 x 

20 mL) and cold 0.5M citric acid (1 x 20 mL). The organic contents were then dried, 

filtered, and concentrated in vacuo to give 4.20 (2.43 gm, 85.3%) yield. 
1
H NMR (250 

MHz, CDCl3) ppm 8.13 – 8.04 (m, 1H), 7.65 – 7.60 (m, 2H), 7.57 – 7.52 (m, 1H), 4.77 

(d, J = 7.9 Hz, 1H), 3.87 – 3.66 (m, 2H), 3.64 – 3.58 (m, 2H), 3.29 (t, J = 8.4 Hz, 2H), 

2.66 (b, 1H), 1.70 – 1.50 (m, 2H), 1.35 (s, 9H), 0.86 (dd, J = 6.5, 3.9 Hz, 6H), 0.70 (dd, J 

= 16.6, 5.4 Hz, 6H). 
13

C NMR (63 MHz, CDCl3) ppm 155.86, 147.96, 133.66, 131.82, 

124.14, 79.32, 67.08, 63.33, 58.99, 48.90, 42.57, 39.09, 28.38, 24.81, 24.75, 23.28, 22.61, 

22.24, 22.05. m/z 524.2397 (M+Na)
+
. 

 

(S)-2-(N-((R)-2-(tert-butoxycarbonylamino)-4-methylpentyl)-2-nitrophenyl- 

sulfonamido)-  4-methylpentanoic acid (4.21) 

 

Compound 4.20 (1.9 gm, 3.7 mmol) was dissolved in 50 mL acetone and 15 mL 15% 

NaHCO3 was added to it. Then sodium bromide (76 mg, 0.7 mmol), TEMPO (11.6 mg, 

0.07 mmol) and trichloroisocyanuric chloride (1.73 gm, 7.4 mmol) were sequentially 

added. After completion of reaction, the reaction contents were extracted with ethyl 

acetate (1 x 50 mL). The organic contents were dried, filtered, concentrated, and purified 

by column chromatography to give 4.21 (0.8 gm) in 40 % yield. 
1
H NMR (250 MHz, 

CDCl3) ppm 9.05 (b, 1H), 8.06 – 7.96 (m, 1H), 7.68 – 7.59 (m, 2H), 7.54 (dd, J = 7.3, 1.8 
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Hz, 1H), 4.77 (b, 1H), 4.55 – 4.42 (m, 1H), 3.98 – 3.65 (m, 1H), 3.58 – 3.04 (m, 2H), 

1.46 – 1.32 (m, 11H), 0.90 – 0.79 (m, 12H). 
13

C NMR (63 MHz, CDCl3) ppm 175.65, 

155.84, 148.06, 134.02, 133.95, 131.70, 131.57, 131.43, 131.36, 124.31, 124.17, 81.63, 

79.31, 59.42, 58.75, 50.08, 48.52, 42.79, 38.58, 28.38, 28.08, 24.65, 24.31, 23.64, 23.15, 

22.55, 22.24, 21.35, 20.91. m/z 538.2193 (M+Na)
+
. 
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CHAPTER FIVE: 

DESIGN AND SYNTHESIS OF PEPTIDE NUCLEIC ACID OLIGOMERS 

 

5.1 Introduction 

Many human diseases are caused by over-, under-, or misproduction of specific 

proteins. Defects in the gene cause production of m-RNAs which codes for a non-

functional protein. Many diseases can be controlled by curbing production of these non 

functional proteins (1). Thus, if single strands of DNA can be synthesized, the base 

sequence could be studied and manipulated to treat various diseases. Gene expression can 

be regulated by binding of an oligonucleotide or oligonucleotide analogue to double 

stranded DNA or single stranded RNA. PNA (Peptide Nucleic Acids) is an extremely 

good DNA mimic in which the deoxyribose phosphate diester backbone is replaced by a 

pseudo-peptide backbone while the four natural nucleobases are retained. This new 

backbone designed using computer models is structurally similar to the deoxyribose 

phosphate backbone, synthetically accessible and amenable to automated assembly 

synthesis (2, 3) (Fig. 5.1). 

PNA consists of repeating N-(2-aminoethyl)-glycine units in which the 

nucleobase is attached to the glycine nitrogen via a methylene carbonyl linker. The 

acyclic, achiral and neutral backbone makes PNA set apart from DNA (4). The neutral 

backbone of PNA allows stronger binding between complementary PNA/DNA strands 

than between complementary DNA/DNA strands as determined by Tm’s (Melting 
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Temperature). This is attributed to lack of charge repulsion between the PNA strand and 

the DNA strand. PNA also binds to DNA with greater specificity. A mismatch in a 

PNA/DNA duplex is more destabilizing than a mismatch in a DNA/DNA duplex (5, 6). 

 

Fig. 5.1 Structures of PNA and DNA. 

PNA can bind to DNA or RNA strands in antiparallel or parallel orientations. In 

antiparallel orientations, a DNA or RNA strand in 5’ to 3’ orientation binds to a 

complementary PNA strand such that the carboxyl end of PNA is directed towards the 5’ 

end of DNA or RNA and the amino end is directed towards the 3’ end of DNA/RNA. The 

neutral polyamide backbone of PNA offers enzymatic stability, making PNA resistant to 

both proteases and nucleases (7). PNAs form stable triplexes PNA-DNA-PNA in which 

one PNA strand hybridizes to DNA by Watson-crick base pairing while other binds the 

same strand via the Hoogsten mode. 

PNA DNA 
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All of the above properties makes PNA an important tool for designing gene 

therapeutic drugs (antisense and antigene) and in genetic diagnostics (8). Although PNAs 

have been demonstrated as potential candidates for gene-targeting drugs, some 

disadvantages have limited applications. These include low cellular uptake caused by 

poor cell membrane permeability and poor aqueous solubility (9, 10). This is due to 

uncharged property of PNAs whereas nucleic acid oligonucleotides bearing negative 

charges can penetratate the cell membrane by endocytosis (11). In order to increase the 

cellular uptake of PNAs various strategies have been explored during the last decade. 

These includes microinjection, electroporation, and attachment to cell penetrating 

peptides (12). Since a positive charge will enhance attraction of molecules to cell 

membrane, some researchers have tried to introduce positively charged residues such as 

lysine and arginine into PNA molecules to increase cellular uptake of PNAs. Ly’s group 

synthesized GPNA with arginine side chain attached to PNA backbone (7, 13). Inspired 

by this idea to increase cellular uptake by introducing positive charge species into PNA, 

an attempt to synthesize cysteine based Peptide nucleic acid (CPNA) monomers and 

oligomers containing all four nucleobases was made. The proposed target molecule is 

shown in figure 5.2.  

 

Fig. 5.2 Proposed CPNA design for antisense applications. 
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CPNA monomers are derived from cysteine with positively charged guanidine units in 

the side chain. The thiol group in cysteine allows us to attach various alkyl groups 

designed to improve the properties of PNA. The presence of the thiol group usually 

interferes in solid phase synthesis too. This might be the reason for no report of PNAs 

based on cysteine. The introduction of positively charge residues on PNA is expected to 

increase aqueous solubility and cellular uptake of PNAs. We have also made efforts to 

synthesize standard Peptide Nucleic Acids monomers with an aim to make hybrid PNAs. 

In this chapter, the synthesis of standard and CPNA  monomers, modified nucleobases 

and an effort to synthesize PNA oligomers is described. 

5.2 Results and Discussion 

5.2.1 Synthesis of CPNA monomers 

Synthesis of PNA oligomers is based on solid phase peptide synthesis protocols. 

The scheme for protecting amino groups of PNA monomers is based on either Boc or 

Fmoc chemistry. Scheme 5.1 shows the synthesis of four CPNA monomers using Fmoc 

protecting groups on primary amine of backbone and Cbz protecting groups on the 

exocyclic amino groups of nucleobases. The backbone protecting groups must be 

orthogonal in their requirement from removal from PNA during oligomer synthesis i.e 

Cbz protecting groups on nucleobases must be stable to conditions used for removal of 

Fmoc protecting group from terminal amine. The use of Fmoc protection groups offers 

advantages of milder synthesis conditions and improved monomer solubility.  
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Scheme 5.1 Synthetic strategy for making CPNA monomers. 

Various research groups have used the reductive amination route (14) to 

synthesize PNA backbone but our PNA is synthesized by a novel SN2 route. Synthesis of 

CPNA monomers involves activation of commercially available Fmoc(Cys)Trt-COOH 
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using DCC followed by attack of nucleophile to enable formation of Amide 5.2. Selective 

reduction of 5.2 with BH3 in THF yields primary amine 5.3 in 65% yield. Alkylation of 

terminal amine 5.3 with tert-butyl bromoacetate via SN2 reaction followed by aqueous 

workup gives 5.4 in 82% yield. Deprotection of acid labile trityl protecting group in 5.4 

using triflouro acetic Acid followed by alkylation of resulting thiol with various 

alkylating agents (methyl iodide, guanidium) enabled us to introduce positive charge 

residue on the side chain of PNAs. The next step involves coupling of nucleobase acetic 

acids to unreactive secondary amine in 5.5, 5.6, 5.7 to give fully protected CPNA 

monomers in 80% yield. Finally, the t-butyl ester was deprotected with HCl in dioxane to 

give CPNA monomers in quantitative yield. 

During synthesis of amide, the by-product N,N’-DCC urea is mostly removed by 

filtration, but trace amounts still remain and is often difficult to remove. Other activating 

agents such as EDC, DIC were also used as an alternative. These activating agents were 

equally efficient to DCC with similar yields. Excess amount of ammonium hydroxide 

should be avoided as it often leads to cleavage of base labile Fmoc group, thereby 

decreasing the yields of amide. This reaction should be carried out at low temperature 

~10-15
0
C. Larger reaction time and elevated temperatures often resulted in low yields of 

amide. Borane reduction of amide to give primary amine was tricky reaction. 

Concentration of pure amine after column chromatography usually cleaved Fmoc 

protecting group which causes a reduction in yield. This problem was eliminated by 

making use of trityulation technique for purifying crude amine. During synthesis of 

compound 5.4, excess amount of alkylating agent caused formation of some dialkylated 

compound along with desired monoalkylated compound. Also cleavage of Fmoc 
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protecting group was seen when base slight excess of DIEA was used. This problem was 

solved by using 1equivalent of alkylating agent and 1.05 equivalent of base. The reaction 

temperature also determined the amount of dialkylated compound formed. A significant 

amount of dialkylated compound was formed when the reaction was carried at room 

temperature for longer time as well as some Fmoc cleavage was also observed. The 

reaction was done at 10-15
0
C for 10 hours and then at room temperature for two hours. 

The reaction rate was slow but no dialkylated compound and Fmoc cleavage was 

observed. Deprotection of trityl group in compound 5.4 and then alkylation of resulting 

thiol was done in a single pot. Extreme dilute conditions were employed while using TFA 

deprotection of trityl group. Dilute conditions enabled t-butyl to remain intact. Alkylation 

of thiol was done using slight excess of base followed by addition of slight excess of 

alkylating agent. Coupling of nucleobase acetic acids to CPNA submonomers gave 

monomers in good yield. Purification of these polar based coupled CPNA monomers was 

tedious, particularly Guanidine coupled CPNA monomer purification gave low yields. 

Deprotection of t-butyl ester from fully protected CPNA monomer using 

HCl/Dioxane gave final monomers in quantitative yields but removal of residual dioxane 

from monomers was difficult.  

 

Scheme 5.2 Synthesis of Cbz protected Adenine acetic acid nucleobase for CPNA.  
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Synthesis of Adenine Acetic Acid used for coupling to PNA backbone is shown 

in scheme 5.2. Several procedures for synthesizing nucleobase acetic acids have been 

reported till now (15, 16, 17). The exocyclic amine of adenine was first protected with 

acid labile Cbz protecting group using benzyl chloroformate to give 5.33. Compound 

5.33 was then alkylated with t-butyl bromoacetate in DMF using potassium carbonate 

and cesium carbonate to give a mixture of N-7 and N-9 alkylated products. The desired 

N-9 alkylated produced was separated using column chromatography in 49% yield. 

Removal of the t-butyl ester with TFA in DCM gave compound 5.35 in 92% yields along 

with a loss of Cbz group.  The loss of Cbz group in this reaction was suppressed by using 

slight excess of cation scavenger triethylsilane in the reaction mixture.  

The solid phase synthesis of CPNA monomers posed a great challenge to us. We 

have been able to synthesize dimers of nucleobase coupled CPNA monomers using 

solution phase coupling. Synthesis of purine based CPNA monomers and their coupling 

during solid phase synthesis was difficult. Solid phase coupling for obtaining CPNA 

oligomers (18-mer) was attempted but it did not yield promising results. The synthesis of 

standard peptide nucleic acid monomers was attempted with an aim to make hybrid 

PNAs consisting of standard PNA and CPNA monomers. This strategy will help us to 

modulate the positive charge on PNA, required for achieving cellular permeability.  

5.2.2 Synthesis of standard PNA monomers 

Scheme 5.3 depicts the synthesis of standard PNA monomers using orthogonal      

Fmoc/t-butyl strategy as cited in reported literature procedures. Selective monoalkylation 

of excess ethylene diamine with t-butyl bromoacetate gave compound 5.37. This material 

was utilized in next step without further purification. Fmoc protection of the primary 



167 

 

amine in 5.37 followed by acidic workup gave compound 5.38 as Hydrochloride salt. 

This compound can be stored indefinitely in deep freezer. Coupling of nucleobase acetic 

acids to PNA backbone was achieved using HATU and DIEA in DMF to give nucleobase 

coupled PNA esters. Finally deprotection of t-butyl group using HCl gas in dioxane gave 

peptide nucleic acid monomers in good yields.  

 
Scheme 5.3 Synthesis of standard PNA monomers using Fmoc/t-butyl strategy. 

The solid phase synthesis of standard PNA monomers was carried out on MBHA 

resin solid support using standard Fmoc protecting group strategy. We were able to 

synthesize 12mer PNA oligomer with sequence NH2LysTTACATCTTTTC-COOH along 

with truncated byproducts. The purification of PNA using RPLC became difficult and we 

were not successful in obtaining purified PNA out of the column. We sought for 

alternative strategies for making standard peptide nucleic acid. Lee and coworkers have 

synthesized self-activated cyclic PNA monomers and an efficient method for 
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synthesizing PNA oligomer using benzothiazole-2-sulfonyl (Bts) protecting group. 

Scheme 5.4 shows the synthesis of cyclic Bts protected PNA monomers carried out as per 

cited literature procedure (18). 

 
 

Scheme 5.4 Synthesis of Cyclic Bts PNA monomers. 

Compound 5.48 was prepared by treating 5.47 with Bts-Cl synthesized from       

2-meracaptobenzothioazole in 72% yield (19, 20). Nucleobases used for coupling were 

protected with Bhoc group due to its stability towards nucleophiles and ease of 

deprotection. Nucleobase acetic acids were prepared as per reported literature and 

coupled to 5.48 using HATU and DIEA in DMF (21). The corresponding esters (5.49-

5.52) were hydrolysed using LiOH to give corresponding acids (5.53-5.56) in 80-90% 

yield. The acids (5.53-5.56) were then readily cyclized using EDC to give cyclic Bts 

protected PNA monomers in 85-90% yield. Scheme 5.5 describes the solid phase 

synthesis of PNA oligomer using cyclic Bts monomers. 
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Scheme 5.5  Solid phase synthesis of standard PNA using cyclic Bts protecting group. 

Bts group activates carbonyl of piperazinone to be readily attacked by primary 

amine of PNA and is easily removed by thiols in presence of base after the coupling 

reaction. PNA synthesis was carried out on CLEAR amino resin loaded with PAL linker 

that allows cleavage of PNA under acidic conditions. Coupling was carried out at 40
o
C 

for two hours and unreacted amine of PNA was capped by Ac2O/Lutidine. The Bts group 

was removed by 1M 4-Methoxybenzethiol and 1M DIEA in DMF. The greatest 

advantage of using cyclic Bts protected monomers is that they do not require 

preactivation or extremely anhydrous conditions. Also we can recover unused monomers 

since no coupling agents are involved. MALDI-TOF analysis of the crude PNA synthesis 

suggested we were able to synthesize desired PNA alongwith truncated byproducts using 

this strategy but we could not quantify it into appreciable yields.  
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5.3 Experimental Procedures 

5.3.1 Materials and Methods 

Organic and inorganic reagents (ACS grade) were obtained from commercial 

sources and used without further purification, unless otherwise noted. Fmoc-protected 

amino acids and the coupling agent HCTU were obtained from Protein Technologies, 

Calbiochem-Novabiochem, or Chem-impex International. 2-Chlorotrityl chloride resin 

was purchased from Anaspec Inc. All linear peptides were synthesized on the Symphony 

peptide synthesizer, Protein Technologies Instruments. Solvents for peptide synthesis and 

reverse-phase HPLC were obtained from Applied Biosystems. Other chemicals used 

were obtained from Aldrich and were of highest purity commercially available. Thin 

layer chromatography (TLC) was performed on glass plates (Whatman) coated with 0.25 

mm thickness of silica gel 60Å (# 70-230 mesh). All 
1
H and 

13
C NMR spectra were 

recorded on Bruker 250 MHz, Varian INOVA 400 MHz spectrometer in CDCl3 or unless 

otherwise specified and chemical shifts are reported in ppm (δ) relative to internal 

standard tetramethylsilane (TMS). High Resolution mass spectra were obtained on an 

Agilent LC-MSD-TOF. 

 

 

(R)-(9H-fluoren-9-yl)methyl1-amino-1-oxo-3-(tritylthio)propan-2-ylcarbamate (5.2)  

To a solution of 5.1(10.00 g, 17.05 mmol), HOBT (2.76 gm, 20.0 mmol) and DCC (4.23 

gm, 20.0 mmol) in THF (100 mL) was added 28% NH4OH (2.45 mL, 20.0 mmol) at 0°C. 

After 2hr of stirring at 0°C, the reaction mixture was filtered through diatomaceous earth 
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and the filtrate was concentrated, diluted with ethyl acetate, and washed with water and 

brine. The organic layer was then dried over sodium sulfate, concentrated and subjected 

to flash column chromatography to give 5.2(9.25 g, 92 %) as white solid. Rf = 0.45 

(50:50 ethyl acetate: hexane) ) 
1
H NMR (400MHz, CDCl3) δ 2.65(m, 2H), 4.12 (q, J = 

7.14, 1H), 4.17 (t, J = 6.52, 1H), 4.41 (d, J = 4.92, 2H), 5.02 (d, J = 7.54, 1H), 5.48 (s, 

1H), 5.74 (s, 1H), 7.23 (m, 11H), 7.38 (dd, J = 7.6 & 11.0, 8H), 7.36 (d, J = 7.36, 2H), 

7.74 (m, 2H).
 13

C NMR (400MHz, CDCl3) δ 25.94, 33.94, 53.5, 60.10, 67.4, 120.01, 

124.99, 126.94, 127.07, 127.10, 127.75, 127.77, 128.08, 129.55, 141.35, 143.66, 144.28, 

156.76, 172.72. m/z 585.2 (M+H)
+
  

 

 

 

 (R)- (9H-fluoren-9-yl) methyl 1-amino-3-(tritylthio) propan-2-ylcarbamate (5.3).  

To a solution of 5.2(9.25 gm, 15.8 mmol) in THF(30 mL was added 1 M Borane·THF 

complex (34.76 mL, 34.76 mmol) at 0°C and After stirring at 0°C for 3 hrs,  reaction 

mixture was then heated to 70°C and stirred for 12 hrs. Reaction mixture was cooled to 

0°C and quenched by MeOH. The reaction mixture was concentrated and diluted with 

MeOH and concentrated again in vacuo. The concentrated oil was subjected to flash 

column chromatograph to afford 5.3(6.5 gm) in a 72 % yield. Rf = 0.50 (90:10 ethyl 

acetate: methanol) ) 
1
H NMR (400 MHz, CDCl3) δ 0.78 (m, 2H), 2.37 (d, J = 20.25, 2H), 

2.63 (s, 2H), 4.20 (t, J = 6.74, 1H), 4.40 (d, J = 6.62, 2H), 4.81 (s, 1H), 7.25 (m, 11H), 

7.41 (m, 8H), 7.59 (d, J = 7.39, 2H), 7.75 (m, 2H). ).
 13

C NMR (400 MHz, CDCl3) δ 
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24.94, 25.62, 33.96, 44.56, 47.30, 52.42, 66.90, 119.96 125.03, 126.81, 127.03, 127.68, 

127.97, 129.58, 141.34, 143.91, 144.54, 155.92. m/z 571.2 (M+H)
+
 

 

 

 

[2-(9H-Fluoren-9-ylmethoxycarbonylamino)-3-tritylsulfanyl-propylamino]-acetic 

acid tert-butyl ester (5.4) 

To a solution of 5.3 (1.8 gm, 3.2 mmol) in THF(20 mL) was added tert-butyl 

bromoacetate (0.47 mL, 3.2 mmol) and DIEA (0.576 ml, 3.31 mmol) at 0°C. The reaction 

mixture was slowly allowed to warm to room temperature. The reaction mixture was 

concentrated in vacuo, diluted with EtOAc and washed with brine. The organic layer was 

dried over sodium sulfate, concentrated in vacuo and subjected to a flash column 

chromatography to give 5.4(2.2 gm, 82%). Rf = 0.73 (50:50 ethyl acetate: hexane) ) 
1
H 

NMR (400 MHz, CDCl3) δ 0.868 (d, J = 7.09, 2H), 0.97 (d, J = 6.55, 1H), 1.25 (s, 2H), 

1.45 (s, 9H), 2.46 (m, 4H), 3.17 (s, 2H), 4.20 (s, 1H), 4.35 (d, J = 6.71, 2H), 5.10 (m, 

1H), 7.25 (m, 11H), 7.4 (m, 8H), 7.59 (d, J = 7.31, 2H), 7.75 (d, J = 7.49, 2H).
 13

C NMR 

(400 MHz, CDCl3) δ 29.51, 35.3, 47.6, 49.5, 50.2, 67.6, 67.52, 81.9, 120.1, 125.8, 

127.43, 127.9, 128.05, 129.88, 140.7, 144.2, 145.5, 156.2, 172.1. m/z 685.2 (M+H)
+
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 (R)-tert-butyl 13-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3,9-dioxo-1-phenyl-2-

oxa-11-thia-4,8,15-triazaheptadecan-17-oate (5.6) 

To a stirred solution of 5.4 (1.5 gm, 2.1 mmol) in DCM (50 mL) at 0°C was added TFA 

(4 mL). The reaction mixture was treated with triethylsilane (0.35 mL, 2.1 mmol). The 

reaction mixture was stirred for 30 min at 0°C and concentrated in vacuo.  The crude 

product was dissolved in EtOH (20 mL) and the solution was cooled to 0
0
C. Aqueous 

NaOH (2N, 3.3 mL, 6.6 mmol) was added slowly to the solution followed by addition of 

the alkyl bromide, (0.86 gm, 2.6 mmol). The reaction was stirred for 4 hrs at 0°C. After 

the removal of organic solvents in vacuo, the residue was diluted with EtOAc and washed 

with water and brine. The organic layer was dried over sodium sulfate, concentrated in 

vacuo and subjected to a flash column chromatography to give 5.6(1.4 gm, 92 %). Rf = 

0.4 (100% ethyl acetate) 
1
H NMR (400 MHz, CDCl3) δ 1.44 (d, J = 7.17, 9H), 1.63 (s, 

2H), 2.75 (m, 2H), 3.24 (m, 8H), 3.52 (s, 2H), 4.06 (s, 1H), 4.17 (q, 1H), 4.33 (d, 2H), 

5.03 (s, 2H), 5.4 (s, 1H), 6.58 (b, 1H), 7.28 (m, 7H), 7.37 (t, J = 7.47, 2H), 7.45 (m, 1H), 

7.58 (d, 2H) 7.73 (d, J = 7.52, 2H). m/z 691.2 (M+H)
+ 

 

 

[2-(9H-Fluoren-9-ylmethoxycarbonylamino)-3-methylsulfanyl-propylamino]-acetic 

acid tert-butyl ester (5.5) 
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 Rf = 0.52 (50:50 ethyl acetate: hexane) ) 
1
H NMR (250 MHz, CDCl3) δ 1.43 (d, J = 19.9, 

9H), 2.116 (s, 2H), 2.78 (m, 4H), 3.28 (s, 2H), 3.85 (s, 1H), 4.21 (t, J = 6.78, 1H), 4.39 (s, 

2H), 5.55 (s, 1H), 7.33 (ddd, J = 5.57, 12.76 & 17.63, 4H), 7.61 (d, J = 7.28, 2H), 7.74 (d, 

J = 7.27, 2H).
 13

C NMR (400 MHz, CDCl3) δ 16.19, 28.12, 36.81, 47.28, 50.29, 51.01, 

51.65, 66.58, 81.42, 119.94, 125.11, 127.03, 127.64, 141.3, 143.95, 156.13, 171.64. m/z 

457.2(M+H)
+
 

General procedure for Base coupling 

(R)-tert-butyl13-(((9H-fluoren-9-yl)methoxy)carbonylamino)-15-(2-(5-methyl-2,4-

dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetyl)-3,9-dioxo-1-phenyl-2-oxa-11-thia-

4,8,15-triazaheptadecan-17-oate (5.19) 

To a stirring solution of 5.6(1.18 gm, 1.7 mmol), HATU (0.78 gm, 2.04mmol) and 

thymine acetic acid (0.47 gm, 2.6 mmol) in DMF was added TEA (0.71 mL) at room 

temperature for 4 hrs. The reaction mixture was diluted with EtOAc, washed with cold 

water and brine, dried over sodium sulfate, concentrated in vacuo and subjected to a flash 

column chromatography to give 5.19(1.38 gm, 95%). 

 

{[2-(9H-Fluoren-9-ylmethoxycarbonylamino)-3-methylsulfanyl-propyl]-[2-(5-

methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-yl)-acetyl]-amino}-acetic acid tert-

butyl ester (5.8).  
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 Rf = 0.51 (100% ethyl acetate) ) 
1
H NMR (400 MHz, CDCl3) δ 1.47 (d, J = 27.2, 9H), 

2.93 (s, 3H), 2.01 (s, 1H), 2.1 (d, J = 22.8, 3H), 2.6-2.72 (m, 2H), 2.8 (d, J = 0.58, 2H), 

4.09 (m, 2H), 4.21 (m, 1H), 4.41 (d, J = 10.32, 2H), 4.74 (b, 1H), 7.23 (d, J = 6.09, 1H), 

7.3 (d, J = 6.28, 2H), 7.51 (dd, J = 4.46 & 8.43, 1H), 7.66 (m, 2H), 7.78 (d, J = 7.27, 2H), 

8.42 (dd, J = 1.36 & 8.43, 1H), 8.72 (d, J = 4.46, 1H). m/z 645.1 (M+Na)
+
 

General procedure for deprotecting carboxylic acid  

Synthesis of (R)-13-(((9H-fluoren-9-yl)methoxy)carbonylamino)-15-(2-(5-methyl-

2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)acetyl)-3,9-dioxo-1-phenyl-2-oxa-11-thia-

4,8,15-triazaheptadecan-17-oic acid (5.23).  

HCl gas was passed through a solution of 5.19(1.38 gm, 1.6 mmol) in dioxane for 20 

minutes. The reaction mixture was then stirred at r.t for 2 hrs followed by concentration 

in vacuo to give 5.23 (1.2 gm, quantitative yield).  

 

6-N-(Benzyloxycarbonyl) adenine (5.33)             

Sodium Hydride (6.07 gm, 252 mmol), washed with hexane (3 times), was taken up in 

DMF (100 mL) in an ice-bath. Adenine (5 gm, 7 mmol), 5.32, was then added in small 

lots. The suspension was stirred for 5 minutes and then benzyl chloroformate (11.6 gm, 

81.5 mmol) was added dropwise. The reaction mixture was stirred for 4 hours, poured 

into ice-cooled water (250 mL) and pH was adjusted to 7 with 1 N HCl. The yellow 

precipitate was washed with water and ether to give crude product. Recrystallization with 
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DCM gave 5.12 gm of 5.33 in a 51 % yield. 
1
H NMR (400MHz, DMSO) δ 5.3 (s, 2H), 

7.3-7.5 (m, 5H), 8.4 (s, 1H), 8.6 (s, 1H) m/z 270.0 (M+H)
+
 

 

6-N-(Benzyloxycarbonyl)-9-(tert-butoxycarbonylmethyl) adenine (5.34)             

5.33 (4 gm, 14.8 mmol) was taken up in DMF (25 mL). Anhydrous Cs2CO3 (0.48 gm, 

1.48 mmol) and anhydrous K2CO3 (2.04 gm, 14.8 mmol) was added to it. After stirring 

for 5 minutes, tert-butyl bromoacetate (2.64 mL, 17.8 mmol) was added dropwise. After 

stirring for 24 hours, the mixture was concentrated, diluted in EtOAc, washed with water    

(10 mL) and ethyl acetate (35 mL). The organic layer was dried over sodium sulfate, 

concentrated, and subjected to column chromatography to give 2.85 gm of 5.34 in a 49 % 

yield. Rf = 0.33, (50:50 EtOAc:Hexane)
 1

H NMR (400 MHz, CDCl3) δ 8.78 (s, 1H), 8.09 

(s, 1H), 7.25-7.35 (m, 5H), 5.3 (s, 2H), 4.89 (s, 2H), 1.47 (s, 9H). m/z 384.1(M+H)
+
 

 

6-N-(Benzyloxycarbonyl)-9-(carboxymethyl) adenine 5.35           

Triethylsilane (11.4 ml) was added to a solution of 5.34 (2.85 gm, 7.43 mmol) in 

anhydrous DCM (10 mL) and then TFA (15 mL) was added dropwise at 0
0
C. After 5 

min, the reaction mixture was allowed to warm to room temperature and stirred for 10 

hrs. The mixture was concentrated and any volatile impurities were removed by 
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azeotroping with CHCl3 (3 times) to give a crude product as white foam. 

Recrystallization with acetone gave 2.23 g of 5.35 in a 92 % yield. 
1
H NMR (400 MHz, 

DMSO) δ 5.05 (s, 2H), 5.2 (s, 2H), 7.2-7.3 (m, 5H), 8.4 (s, 1H), 8.6 (s, 1H), 10.7 (s, 1H). 

m/z 326.0 (M-H)
+ 

Synthesis for compound 5.38 has been reported in chapter two.  

General procedure for coupling of Cbz protected nucleobases to PNA backbone 

 

To a stirring solution of 5.38 (1.0 eq.), HATU (1.2 eq)  and thymine acetic acid (1.2 eq.) 

in DMF was added TEA (3 eq.) at room temperature for 4 hrs. The reaction mixture was 

diluted with EtOAc, washed with cold water and brine, dried over sodium sulfate, 

concentrated in vacuo and subjected to a flash column chromatography to give 

corresponding esters 5.39-5.41 in 75-80% yield. 

General procedure for deprotection of esters 5.39-5.41 

 

Corresponding esters 5.39-5.41 were dissolved in 1, 4-dioxane and HCl(g) was passed into 

solution for 10 min. The reaction mixture was stirred for another one hour and 

concentrated in vacuo and dried to give the corresponding acids. 
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N-[2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[[4-N-(benzloxycarbonyl)- 

cytosine-1-yl]acetyl]glycine 5.43 

Yield: 86%, White solid. 
1
H NMR (400 MHz, DMSO) δ 7.89 – 7.81 (m, 3H), 7.65 (d, J = 

6.9 Hz, 2H), 7.42 – 7.26 (m, 10H), 7.00 – 6.93 (m, 1H), 5.16 (s, 2H), 4.79 (s, 1H), 4.60 

(s, 1H), 4.34 – 4.23 (m, 2H), 4.20 (s, 2H), 3.96 (s, 1H), 3.45 – 3.01 (m, 5H). 

 

N-[2-N-(N-9-Fluorenylmethoxycarbonyl)aminoethyl]-N-[(thymin-1-yl)acetyl]- 

glycine (5.44) 

Yield: 89%, White solid. 
1
H NMR (400 MHz, DMSO) δ 11.24 (d, J = 7.0 Hz, 1H), 7.85 

(d, J = 7.5 Hz, 2H), 7.65 (d, J = 7.3 Hz, 2H), 7.38 (t, J = 7.4 Hz, 3H), 7.29 (dd, J = 7.3, 

6.6 Hz, 3H), 4.62 (s, 1H), 4.44 (s, 1H), 4.28 (dd, J = 16.0, 6.9 Hz, 2H), 4.22 – 4.14 (m, 

2H), 4.05 – 3.77 (m, 2H), 3.38 (t, J = 6.3 Hz, 1H), 3.30 (t, J = 6.6 Hz, 1H), 3.22 (d, J = 

5.9 Hz, 1H), 3.07 (dd, J = 12.3, 6.1 Hz, 1H), 1.69 (s, 3H). 
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N-[2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[[6-N-(benzyloxycarbonyl) 

adenin-9-yl]glycine (5.42) 

Yield: 82% White solid. 
1
H NMR (400 MHz, DMSO) δ 8.56 (d, J = 19.3 Hz, 1H), 8.49 – 

8.45 (m, 1H), 7.84 (d, J = 7.5 Hz, 2H), 7.67 – 7.61 (m, 2H), 7.50 – 7.46 (m, 1H), 7.45 – 

7.42 (m, 2H), 7.39 – 7.34 (m, 4H), 7.34 – 7.30 (m, 1H), 7.29 – 7.25 (m, 2H), 5.35 (s, 1H), 

5.19 (d, J = 18.2 Hz, 3H), 4.33 (d, J = 7.1 Hz, 2H), 4.28 – 4.14 (m, 3H), 3.97 (s, 1H), 

3.55 – 3.50 (m, 1H), 3.33 (d, J = 15.4 Hz, 2H). 

 

N-(2-Aminoethyl) glycine (5.46) 

Ethylene diamine (18 mL, 27 mmol) was dissolved in methanol (26 mL) and glyoxylic 

acid monohydrate (8.4 gm, 91 mmol) in 2 6mL of H2O was added slowly at 0
o
C. After 

stirring for 20 mins, 5% Pd/C is added to the mixture and hydrogenation was carried out 

at 50 psi at room temperature. After filtering the mixture, the filtrate was concentrated 

and residue was reconcentrated twice with toluene (2 x 25 mL). Methanol (15 mL) was 

added to the crude residue stirring vigorously at 0
o
C. After 15 mins, the white precipitates 

that formed were filtered off and washed with cold methanol. A second crop of 

precipitate was obtained from concentration of the mother liquor. The white precipitates 

were combined and dried to give compound 5.46 in 62% yield.
 1

H NMR (250 MHz, D2O) 
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δ 3.22 (s, 2H), 2.99 (dd, J = 9.5, 3.4 Hz, 2H), 2.85 (t, J = 6.0 Hz, 2H). m/z 118.13 

(M+H)
+
 

 

Ethyl N-(2-aminoethyl) glycinate dihydrochloride (5.47) 

Compound 5.46 (10 gm, 84.7 mmol) was suspended in ethanol and HCl gas was passed 

into the suspension. The mixture was refluxed overnight and cooled to 0
o
C. The product 

was filtered off and dried in vacuo to give compound 5.47 in quantitative yield. 
1
H NMR 

(250 MHz, D2O) δ 4.25 (q, J = 7.2 Hz, 2H), 4.04 (s, 2H), 3.82 (s, 1H), 3.54 – 3.27 (m, 

5H), 1.23 (t, J = 7.2 Hz, 3H). m/z 147.10 (M+H)
+
 

 

N-[2-(Benzothiazole-2-sulfonylamino)-ethyl]-glycine ethyl ester (5.48) 

Compound 5.47 (3.2 gm, 15 mmol) was suspended in 100 mL DCM and TEA (7.5 mL, 

58.4 mmol) was added slowly at room temperature. Then Bts-Cl (3.5 gm, 15 mmol) 

dissolved in 50 mL DCM was added over a period of 10 minutes. The reaction was 

stirred for 3 hours at room temperature and washed with water (50 mL). The organic 

layer was dried, filtered, concentrated and purified by column chromatography to give 

compound 5.48 in 72% yield. 
1
H NMR (250 MHz, CDCl3) δ 8.20 – 8.13 (m, 1H), 8.01 – 

7.94 (m, 1H), 7.64 – 7.51 (m, 2H), 4.13 (q, J = 7.1 Hz, 2H), 3.38 (s, 2H), 3.34 (d, J = 5.9 

Hz, 2H), 2.88 – 2.81 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H).  
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General Procedure for synthesizing compounds (5.53-5.56) 

 

 To a stirred solution of 5.48 (1.0 eq.), nucleobase acetic acid (1.0 eq.), HOBT (1.2 eq.) 

and DCC (1.2 eq.) in DMF was added DIEA (1.5 eq.) at room temperature. The reaction 

mixture was stirred overnight and concentrated to leave crude residue. The residue was 

dissolved in DCM and the precipitates were filtered. The filtrate was washed with 1M 

cold HCl solution, sat. NaHCO3 solution and brine. The residue was then triturated with 

ethyl alcohol to give protected ester (5.49-5.52). The protected esters were suspended in 

THF:H2O (1:1) mixture, solution of lithium hydroxide (2 eq.) in water was then added 

and the reaction mixture was stirred at room temperature for one hour. After completion 

of the reaction, the reaction contents were acidified to pH ~ 2-3 by dropwise addition of 

1M HCl at 0
o
C. The resulting solution was extracted with ethyl acetate, dried, filtered, 

and concentrated to dryness in vacuo to afford compounds 5.53-5.56 in 80-90% yield. 

General procedure for synthesizing cyclic Bts protected PNA monomers 

 

To a mixture of Bts protected PNA monomers (5.53-5.56) (1.0 eq.) in DMF was added 

EDCI (1.2 eq.) and stirred for 6 hours at room temperature. After completion of the 

reaction, solvent was removed by evaporation and residue was dissolved in DCM. The 

solution was washed with cold 1M HCl and water. The organic contents were dried, 
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filtered, concentrated and purified by flash chromatography to give cyclized Bts protected 

PNA monomers in 85-90% yield. 

 

1-(Benzothiazole-2-sulfonyl)-4-{[6-N-(benzhydryloxycarbonyl)-adenine-9-yl]-

acetyl}-piperazin-2-one) (5.57) 

Yield: 87%, white solid. 
1
H NMR (250 MHz, DMSO) δ 10.91 (s, 1H), 8.60 (d, J = 4.3 

Hz, 1H), 8.33 (ddd, J = 13.4, 7.5, 2.2 Hz, 3H), 7.74 (dd, J = 6.4, 2.5 Hz, 2H), 7.54 (d, J = 

7.1 Hz, 4H), 7.39 (t, J = 9.9, 4.6 Hz, 4H), 7.33 – 7.26 (m, 2H), 6.83 (s, 1H), 5.41 (s, 1H), 

5.30 (s, 1H), 4.59 (s, 1H), 4.30 (s, 2H), 4.11 (s, 2H), 3.89 (s, 1H). m/z 683.147 (M+H)
+ 

 

1-(Benzothiazole-2-sulfonyl)-4-[(thymin-1-yl)-acetyl]-piperazin-2-one (5.60)  

Yield: 92%, white solid. 
1
H NMR (400 MHz, DMSO) δ 11.27 (d, J = 7.2 Hz, 1H), 8.32 

(d, J = 4.8 Hz, 1H), 8.24 (s, 1H), 7.72 – 7.67 (m, 2H), 7.31 (s, 1H), 7.24 (s, 1H), 4.65 (s, 

1H), 4.55 (s, 1H), 4.39 (s, 1H), 4.25 (s, 1H), 4.18 (s, 1H), 4.04 (s, 1H), 3.96 – 3.90 (m, 

1H), 3.86 – 3.80 (m, 1H), 1.71 (s, 3H).
 13

C NMR (101 MHz, DMSO) δ 167.03, 166.45, 

166.31, 165.03, 164.44, 151.87, 151.73, 142.66, 142.58, 137.24, 129.10, 128.68, 125.64, 

124.07, 108.89, 60.42, 49.47, 48.80, 48.62, 47.70, 46.84, 46.68, 42.40, 12.58. LCMS 

(ESI)  m/z 464.07 (MH
+
) 
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5.4 General Procedure for PNA synthesis using Fmoc/Cbz protecting group strategy 

PNA oligomer synthesis was carried out on Protein Technologies Instrument PTI 

Symphony synthesizer. MBHA resin was first swollen manually in NMP for 45 minutes 

and downloaded with Fmoc-Lys(Boc)-OH to a substitution level of ~0.15mmol/g. Fmoc 

deprotection was then carried out using 20% piperidine/2%DBU in NMP and the resin is 

washed with NMP (5x), DCM (5x). Coupling was carried out using 5 equivalents of 

Fmoc protected PNA monomers, 5 equivalents HCTU and 10 eq. NMM in NMP. After 

coupling the resin was washed again with NMP (5x), DCM (5x). This cycle was repeated 

for each base coupled. After the last coupling the Fmoc group was deprotected and PNA 

oligomer was cleaved off from the resin using following procedure: The resin was 

swelled in TFA once. Two solutions were prepared: 

Solution 1      Solution 2 

TFA/dimethylsulphide/m-cresol (1:3:1)  TFA/TFMSA (9:1) 

1 mL of each solution was added to resin first and swirled for one hour. Here the 

protecting groups on the immobilized oligomer are removed first. Then 1 mL of a third 

solution TFMSA/TFA/m-cresol (2:8:1) was added to the reaction vessel and swirled for 

another 1.5 hrs. The black solution was poured out in ether (6-7 mL). The white solid was 

precipitated out by centrifugation and the precipitate was washed with ether. The ether 

was decanted and precipitates were freeze-dried. Different PNA oligomers synthesized 

using various orthogonal protecting group strategies are listed in Table 5.1. 
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Table 5.1 PNA sequences synthesized on PTI synthesizer using different protecting 

group strategies. 

 

Sequence Protecting Group Expected Observed 

LysTTCCC Fmoc/Cbz 1181.177 1180.736 

Lys-TTCTTCCTTCTTC-NH2 Fmoc/Cbz 3532.132 3532.902 

Lys-TTCTTCCTTCTTC-NH2 Preactivated OPf esters 3532.132 3532.071 

CO2HCTTTTCTACATTLysNH2 Bts/Bhoc 3312.3477 3312.0891 

GlyTTCC Fmoc/Cbz (CPNA) 1364.5131 1364.5138 
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APPENDIX A: Selected 
1
H and 

13
C NMR Spectra 
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APPENDIX B: Analytical & Characterization Data of Selected Peptides 

Peptide 2.17 
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Peptide 2.3 
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Peptide 2.4 
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Peptide 2.6 
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Peptide 2.7 
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Peptide 2.8 
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Peptide 2.11 
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Peptide 2.12 
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Peptide 2.14 
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Peptide 2.16 
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Peptide 2.17 
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Peptide 2.18 
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Peptide 3.1 
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Peptide 4.1 
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Peptide 4.3 
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