
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2011

Mining Associations Using Directed Hypergraphs
Ramanuja N. Simha
University of South Florida, rsimha@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons, and the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Simha, Ramanuja N., "Mining Associations Using Directed Hypergraphs" (2011). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/3345

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarcommons.usf.edu%2Fetd%2F3345&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Mining Associations Using Directed Hypergraphs

by

Ramanuja N. Simha

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Computer Science
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Rahul Tripathi, Ph.D.
Yicheng Tu, Ph.D.

Xiaoning Qian, Ph.D.

Date of Approval:
March 9, 2011

Keywords: Association Rules, Multi-valued Attributes, Financial Time-series,
Discretization, Clustering, Similarity, Dominator

Copyright c© 2011, Ramanuja N. Simha

DEDICATION

to my parents, brother, and sister

ACKNOWLEDGEMENTS

This thesis has been written under the kind supervision of Dr. Rahul Tripathi, my thesis

advisor. I am extremely grateful for his helpful guidance and feedback while reviewing the

various versions of the thesis draft. His in-depth technical insights and comments have been

immensely motivational to me in achieving a high quality of research.

I am extremely grateful to Dr. Mayur Thakur from Google Inc., for being a collaborator

in this project and for providing me with ideas and in-depth technical insights during the

discussions. We had a number of e-mail and phone conversations during which his comments

have been highly motivational to me.

I wish to thank Dr. Rahul Tripathi for permitting me to include work done jointly with

him. The work in Chapter 3 and Chapter 4 was jointly done with him.

My thesis committee members were Dr. Rahul Tripathi, Dr. Yicheng Tu, and Dr.

Xiaoning Qian. I am extremely thankful to all of them for their helpful comments.

I have learnt immensely about achieving very high levels of academic quality, technical

excellence, and aptitude to learn, by taking theory courses under Dr. Rahul Tripathi, and

by working as a Teaching Assistant for theory courses and as a Research Assistant under

Dr. Rahul Tripathi. I have been fortunate for having had such an opportunity. During this

period, the experiences hugely contributed in shaping my research interests in algorithms

and problem solving.

I wish to thank Srinivasan Ramkumar from Qualcomm/Riverbed Technology for provid-

ing support and motivation throughout my studies by understanding the need to conquer

challenges for becoming successful in graduate research.

I would like to thank my parents, my brother, and my sister for giving me inspiration

and support whenever I needed during my studies.

TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES iv

LIST OF ALGORITHMS v

ABSTRACT vi

CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Thesis Overview 4

CHAPTER 2 PRELIMINARIES 6
2.1 Approximation Algorithms 6

2.1.1 Set Cover 7
2.1.2 Graph Dominating Set 8
2.1.3 The t-clustering 9

2.2 Directed Hypergraphs 11
2.3 Data Mining 12

2.3.1 Classification Rule Mining 13
2.3.2 Clustering 15

CHAPTER 3 MODELING ASSOCIATIONS IN DATABASES USING DIRECTED
HYPERGRAPHS 17

3.1 Associations Between Multi-Valued Attributes 17
3.1.1 Discretization 22

3.2 Association Hypergraphs 22
3.2.1 Constructing Association Hypergraphs 23

3.3 Association-Based Similarity Between Multi-Valued Attributes 26
3.3.1 In-Similarity and Out-Similarity 27
3.3.2 Clusters of Similar Attributes 28

CHAPTER 4 COMPUTATIONAL PROBLEMS 30
4.1 Leading Indicators 30

4.1.1 An Adaptation of Graph Dominating Set Approxima-
tion Algorithm 31

4.1.2 An Adaptation of Set Cover Approximation Algorithm 31
4.2 Association-Based Classifier 33

i

CHAPTER 5 EXPERIMENTATION 37
5.1 Association Hypergraph Modeling 37

5.1.1 Discretization 37
5.1.2 Choice of Parameters 38

5.2 Association Characteristics of Financial Time-Series 39
5.3 Association-Based Similarity 43

5.3.1 Comparison with Euclidean Similarity 43
5.3.2 Clusters of Financial Time-Series 45

5.4 Leading Indicators of Financial Time-Series 45
5.5 Association-Based Classifier 48

5.5.1 Evaluation 52

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 53

REFERENCES 55

ABOUT THE AUTHOR End Page

ii

LIST OF TABLES

Table 3.1 Patient database. 19

Table 3.2 Patient database (after discretization). 19

Table 3.3 Gene database. 20

Table 3.4 Gene database (after discretization). 20

Table 3.5 Personal interest database. 21

Table 3.6 Personal interest database (after discretization). 21

Table 3.7 An example association table (AT) for the combination ({A1, A2},
{A3}). 24

Table 5.1 The directed edge and the 2-to-1 directed hyperedge with the
highest ACV for each selected financial time-series from dif-
ferent sectors and for each configuration choice are shown. 42

Table 5.2 The 2-to-1 directed hyperedge with the highest ACV and the
constituent directed edges for each selected financial time-series
from different sectors and for each configuration choice are shown. 44

Table 5.3 The size of a dominator for all financial time-series and the
mean classification confidence of different classifiers for each
configuration are shown obtained using Algorithm 5. 49

Table 5.4 The size of a dominator for all financial time-series and the
mean classification confidence of different classifiers for each
configuration are shown obtained using Algorithm 6. 50

iii

LIST OF FIGURES

Figure 5.1 Weighted degree distribution. 40

Figure 5.2 Euclidean similarity comparision. 46

Figure 5.3 Clusters of financial time-series for configuration C1. 47

Figure 5.4 Classification confidence distribution of the association-based
classifier for in-sample and out-sample data for configuration C1. 51

iv

LIST OF ALGORITHMS

1 A greedy algorithm for computing a set cover. 8

2 The t-clustering algorithm. 10

3 Perceptron learning rule. 14

4 The k-means algorithm. 16

5 A greedy algorithm for computing dominators in directed hyper-

graphs which is an adaptation of graph dominating set approximation. 32

6 A greedy algorithm for computing dominators in directed hyper-

graphs which is an adaptation of set cover approximation. 34

7 Enhancement 1. 34

8 Enhancement 2. 34

9 Association-based classifier. 35

v

ABSTRACT

This thesis proposes a novel directed hypergraph based model for any database. We in-

troduce the notion of association rules for multi-valued attributes, which is an adaptation

of the definition of quantitative association rules known in the literature. The association

rules for multi-valued attributes are integrated in building the directed hypergraph model.

This model allows to capture attribute-level associations and their strength. Basing on

this model, we provide association-based similarity notions between any two attributes and

present a method for finding clusters of similar attributes. We then propose algorithms

to identify a subset of attributes known as a leading indicator that influences the values

of almost all other attributes. Finally, we present an association-based classifier that can

be used to predict values of attributes. We demonstrate the effectiveness of our proposed

model, notions, algorithms, and classifier through experiments on a financial time-series

data set (S&P 500).

vi

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Data Mining involves searching interesting patterns and/or classifying data. Association

rules help to discover interesting patterns by identifying implication relationships among

attribute-value pairs present in the data. Similarly, classification rules help to classify data

by predicting values of specific attributes in the data. In general, any association or classi-

fication rule consists of two components: the antecedent and the consequent. Association

rules may have more than one attribute in their consequent, whereas classification rules

always have a single attribute in their consequent. An example of an association rule is:

“If a customer buys milk and diapers, then the customer also buys beer and eggs.” Here,

milk, diapers, beer, and eggs are attributes, and they each take value ‘1’ (where ‘1’ denotes

present and ‘0’ denotes absent) in the association rule. An example of a classification rule

is: “If weather is sunny and humidity is low, then play is true.” Here, weather, humidity,

and play are attributes, and the values ‘sunny’ and ‘low’ help to predict the value ‘true’ for

the attribute play. Attributes can be either categorical, e.g., days of a week, or quantitative,

e.g., stock price. Agrawal et al. [AIS93] presented association rules that target identifying

implication relationships among categorical attributes that take only 0/1 values. Such asso-

ciation rules are called boolean association rules. Srikant et al. [SA96] introduced the more

general quantitative association rules that accommodate both categorical and quantitative

attributes. Henceforward, we will refer to quantitative association rules as association rules.

Association rules find their use in identifying implication relationships among attributes

in market-basket type data. This data type is a transactional data where each observa-

tion in the database is a transaction consisting of items purchased by a customer. Much

work [BAG99, SA95, AS94, SVA97, NLHP98] has been done in mining association rules

1

that satisfy constraints such as, minimum support (a measure of significance) and mini-

mum confidence (a measure of predictive ability). Association rules can be used to solve

the following problems: finding clusters of similar attributes, finding a small subset of at-

tributes that influences a large section of other attributes, and finding classification rules to

predict values of attributes. For instance, in market-basket type data, a practical applica-

tion of association rules is to identify clusters of similar items based on the customer sales

information. This helps to understand patterns in sales of items and to group items based

on customer interests. Similarly, identifying a small subset of items that influence the sales

of all other items in market-basket type data may help in recognizing major sales indicators.

Also, using the classification rules, the purchase of particular items for customers could be

predicted based on the prior purchases made by them.

In fact, applications of association rules go far beyond the realms of just the market-

basket type domain. Some other domains where association rules have important ap-

plications are as follows: in medicine for identifying relationships among medical con-

ditions and diseases [Ord06], in bioinformatics for identifying interrelationships among

genes [CH03, CSCR+06], in social networks for identifying social relationships, and in fi-

nance for identifying prediction relationships among stocks. We provide below some exam-

ples from these domains that will help elucidate the applications of association rules. In

each of these examples, 35% is the confidence and 5% is the support of the stated rule.

1. “35% of the times when the age of a patient is in the range 40-49 years and the

cholesterol of the same patient is in the range 220-229 mg/dL, the patient’s blood-

pressure is in the range 130-139 mmHg” and this rule occurs in 5% of the total

observations. Here, age, cholesterol, and blood-pressure are attributes.

2. “35% of the times when gene 1 and gene 2 in a patient are under expressed, gene 3

is over expressed in the patient” and this rule occurs in 5% of the total observations.

Here, gene 1, gene 2, and gene 3 are attributes.

3. “35% of the times when a person has high interest in reading and playing, the person

has low interest in music” and this rule occurs in 5% of the total observations. Here,

reading, playing, and music are attributes.

2

4. “35% of the times when the price of stock A and of stock B go up, the price of stock

C goes down” and this rule occurs in 5% of the total observations. Here, stocks A,

B, and C are attributes.

Our present work is motivated by the goal of building a model that inherently handles

many-to-many relationships, thus enabling to capture these relationships among attributes

of a database more accurately. Such a model is expected to be suited for handling problems

such as, similarity and clustering because many of the relationships exhibited in real world

are not restricted to be one-to-one.

Knobbe et al. [KH06] proposed an approach to mine a small set of binary attributes

that help differentiate observations in a database. Siebes et al. [SVL06] and Bringmann

et al. [BZ07] proposed techniques for compressing a database. The compressed set of bi-

nary attributes could then be used in a data mining classifier to avoid overfitting. The

above methods mainly attempt to identify informative sets of binary attributes, whereas

our approach attempts to build a generic model for any database containing multi-valued

attributes and address a variety of problems such as, similarity, clustering, leading indica-

tors, and classification.

In this thesis, we propose a novel model for any database using a directed hypergraph in

which the nodes represent attributes and the directed hyperedges represent many-to-many

relationships among the attributes. The weights on directed hyperedges capture the likeli-

ness of association in a particular direction. We introduce the notion of association rules for

multi-valued attributes, which is an adaptation of the definition of quantitative association

rules known in the literature [SA96]. The association rules for multi-valued attributes are

integrated in building the directed hypergraph model. Basing on this model, we provide

association-based similarity notions between any two attributes, present a method for find-

ing clusters of similar attributes, and propose an algorithm to identify a subset of attributes

known as a leading indicator that influences the values of almost all other attributes. Finally,

we present an association-based classifier that can be used to predict values of attributes.

We demonstrate the effectiveness of our proposed model, notions, algorithm, and classifier

through experiments on a financial time-series data set (S&P 500).

3

1.2 Thesis Overview

We present background on approximation algorithms and data mining in Chapter 2. The

various approximation algorithms presented are: finding minimum cost set cover, finding

minimum size graph dominator, and finding minimum diameter clustering. We then dis-

cuss some fundamental concepts and approaches in data mining such as linear regression,

perceptron rule learning algorithm, and k-means clustering.

In Chapter 3, we introduce the notion of association rules for multi-valued attributes,

which is an adaptation of quantitative association rules known in the literature. We then

propose a novel directed hypergraph based modeling for any database that allows us to

compute association-based similarity between multi-valued attributes and find clusters of

similar multi-valued attributes.

Using the directed hypergraph model, we propose in Chapter 4 two greedy algorithms

for identifying a subset of attributes known as a leading indicator that influences the values

of almost all other attributes. The first greedy algorithm is based on an adaptation of the

greedy O(log n)-approximation algorithm for computing a minimum cardinality dominating

set in graphs. The second greedy algorithm is based on an adaption of the greedy O(log n)-

approximation algorithm for computing a minimum cost set cover. Finally, we present an

association-based classier that can be used to predict values of attributes.

In Chapter 5, we conduct experiments on financial time-series obtained from Yahoo Fi-

nance [Yah10] on the following problems: (a) finding clusters of similar attributes, (b) find-

ing leading indicators, and (c) predicting values of financial time-series using the association-

based classifier. We propose an equi-depth partitioning technique to discretize the financial

time-series in the S&P 500. This transformation is used to construct a database that is suit-

able for the association hypergraph modeling. The directed hypergraph H required for the

experiments is then constructed using the database. We show the association characteristics

of financial time-series by presenting the degree distribution of nodes in the association hy-

pergraph, by displaying the directed edges and directed hyperedges with highest association

confidence value (ACV) for selected financial time-series, and by comparing the directed

hyperedges with the highest ACV with those of the corresponding two directed edges. We

4

also display the clusters of financial time-series in the similarity graph, compute the lead-

ing indicators for a collection of financial time-series, and present the statistics of financial

time-series predictions.

In this thesis we show that directed hypergraphs, due to their inherent structure, help

us to capture interesting characteristics that exhibit many-to-one relationships among at-

tributes in a database. The proposed model displays the versatile usage of directed hyper-

graphs in addressing various problems relevant to mining associations in databases. Our

experiments on financial time-series demonstrate that directed hypergraphs capture more

relationships than directed graphs and in the stock market domain, our modeling allows us

to address problems such as computing financial time-series similarity, computing financial

time-series leading indicators, and predicting financial time-series values, using a common

framework/methodology.

5

CHAPTER 2

PRELIMINARIES

2.1 Approximation Algorithms

There are many problems whose decision version is NP-complete and optimization version

is NP-hard in nature, i.e., obtaining an optimal solution to the problem in polynomial time

is currently unknown. Due to their practical importance, it is extremely useful to have an

efficient polynomial time solution to such problems by carrying out any of the following:

(a) constraining the input, (b) introducing randomization in the solution approach, and

(c) obtaining a near optimal solution. In this section, we shall focus on obtaining a near

optimal solution to hard problems. Approaches that produce a near optimal solution are

used in the design of polynomial time approximation algorithms. The quality measure of

an approximation algorithm is given by its approximation factor.

Let us say that we have an optimization problem. Based on the problem, an optimal

solution may be a solution with either the maximum value or the minimum value. In other

words, the problem may be a maximization or a minimization.

Definition 2.1 For an optimization problem A that takes input I, an algorithm ALG has

an approximation ratio α if the cost ALGA(I) of the solution produced by the algorithm on

input I is within a factor of α of the cost OPTA(I) of an optimal solution on the same

input I. That is,

max
(
ALGA(I)
OPTA(I)

,
OPTA(I)
ALGA(I)

)
≤ α.

For a minimization problem, the ratio ALGA(I)/OPTA(I) ≤ α gives a factor by which the

solution cost produced by the algorithm exceeds the solution cost of an optimal solution.

For a maximization problem, the ratio OPTA(I)/ALGA(I) ≤ α gives a factor by which the

solution cost of an optimal solution exceeds the solution cost produced by the algorithm.

6

2.1.1 Set Cover

Definition 2.2 Let U be a universe consisting of n elements and let S = {S1, S2, . . . , Sm}

be a collection of subsets of U . A set cover SC is a subcollection of S that covers all the

elements in U .

Algorithm 1 presented below computes a set cover SC of size ALGSC(I) given a universe

U of size n and a collection of subsets S = {S1, S2, . . . , Sm} of U as input I. Let Cover

denote the set of elements that are currently covered by the algorithm. The greedy strategy

of the algorithm is as follows: for every subset Si ∈ S that is not part of the set cover yet,

the algorithm computes its cost effectiveness α(Si) that reflects Si’s covering ability, i.e,

α(Si) is the average cost paid by the greedy algorithm to cover the elements in Si that are

not already in Cover, i.e., 1/|Si − Cover|. During each iteration of the algorithm (until

all the elements in U are covered), the subset S∗i with the lowest average cost (highest

cost effectiveness) is added to the set cover. In other words, a price of 1/|S∗i − Cover| is

paid to cover each element in S∗i − Cover. Therefore, the cost of the set cover obtained is∑n
k=1 price(uk).

The greedy set cover algorithm can be implemented in linear time.

Theorem 2.3 ([Joh74, Lov75, Chv79]) Given a universe U of size n and a collection of

subsets S = {S1, S2, . . . , Sm} of U as input I, the cost of the set cover ALGSC(I) computed

by Algorithm 1 is at most a factor of O(log n) greater than the cost of an optimal set cover

OPTSC(I) in O(n logm) time.

Proof Let u1, u2, . . . , un ∈ U be the order in which the elements are added to Cover

by Algorithm 1. Since an optimal solution can cover all the elements in U with a cost of

OPTSC(I), there must always exist a set having an average cost of at most OPTSC(I)/|U−

Cover|. We know that |U −Cover| is at least n− k+ 1 when an element uk is about to be

covered. Since the algorithm picks the lowest average cost subset during each iteration, we

have

price(ek) ≤ OPTSC(I)
|U − Cover|

≤ OPTSC(I)
n− k + 1

.

7

Input : A universe U of size n and a collection of subsets S = {S1, S2, . . . , Sm} of
U .

Output: A set cover SC.
begin1

SC ← ∅;2

Cover ← ∅;3

while Cover 6= U do4

foreach S ∈ S do5

count← 0;6

foreach u ∈ S do7

if u /∈ Cover then8

count← count+ 1;9

end10

end11

α(S)← 1
count ;12

end13

Let S0 be such that α(S0)← minS∈S(α(S));14

Cover ← Cover ∪ S0;15

SC ← SC ∪ {S0};16

end17

return SC;18

end19

Algorithm 1: A greedy algorithm for computing a set cover.

Therefore, the cost of the set cover ALGSC(I) is

ALGSC(I) =
n∑

k=1

price(uk)

≤
n∑

k=1

OPTSC(I)
n− k + 1

≤
(

1
1

+
1
2

+ · · ·+ 1
n

)
×OPTSC(I)

≤ log n×OPTSC(I).

This completes the proof.

2.1.2 Graph Dominating Set

Definition 2.4 Let G = (V,E) be a graph. A dominating set is a subset DomSet ⊆ V of

vertices such that, for each vertex v ∈ V , either there exists an edge (u, v) ∈ E such that

u ∈ DomSet or v ∈ DomSet.

8

Theorem 2.5 ([Joh74, Lov75, Chv79]) There is a greedy O(log n)-approximation al-

gorithm for graph dominating set problem that, given any graph G = (V,E) as input I,

computes a dominating set of G whose size is within O(log n) of the optimal dominating set

size, where n is the number of vertices and m is the number of edges, of G.

The following construction can be used to transform an instance of graph dominating set

into an instance of set cover. Let U = V be the set of vertices that need to be covered and let

S = {S1, S2, . . . , Sn} be subsets of vertices, where each subset Si contains vertex vi and its

neighborhood set N(vi). This instance of set cover can be solved using the approximation

result in Theorem 2.3. Since every set added by Algorithm 1 to the set cover always adds

only a vertex to the graph dominating set, the approximation guarantee provided in the

theorem for the size of the set cover holds for the size of the graph dominating set.

2.1.3 The t-clustering

Let us assume we have a set of attributes, e.g., financial time-series, genes, or images, and

we are required to find independent groups of attributes where attributes belonging to the

same group are similar to each other. The general clustering problem addresses this by

defining an objective function based on which the attributes are grouped. A variant of the

general clustering problem is the problem t-clustering, which groups the attributes based

on how close they are to each other. In other words, the objective of t-clustering is to group

attributes into t clusters so that the maximum distance between any two attributes within

the same cluster (also called the diameter of the grouping a.k.a. clustering) is minimized.

This problem also assumes that the Euclidean distance function displays metric proper-

ties. A distance function d(·, ·) on a point set X = {x1, x2, . . . , xn} is said to have metric

properties if and only if it satisfies:

1. d(x1, x2) ≥ 0 for all xi ∈ X, and

2. d(x1, x2) = 0 if and only if x1 = x2, and

3. d(x1, x2) = d(x2, x1), and

4. d(x1, x2) ≤ d(x1, x3) + d(x3, x2) (Triangle Inequality).
9

Definition 2.6 Let X = (x1, x2, . . . , xn) be a set of points with a distance function be-

tween any pair of points d(·, ·) that satisfies the metric properties and let t be an integer.

A t-clustering C = {C1, C2, . . . , Ct} is a partition of X into t clusters C1, C2, . . . , Ct by

designating t points of X as centers, such that C minimizes the dimeter Diam(·) over all

possible clusterings. That is C minimizes

Diam(C) = max
i

max
xa,xb∈Ci

d(xa, xb).

Algorithm 2 presented below finds such a partition of X by designating some t points as

cluster centers. Initially, any point µ1 ∈ V is picked as the first cluster center. During each

iteration of the algorithm, it finds a point µi ∈ X that is the farthest from the existing

centers µ1, µ2, . . . , µi−1, i.e., a point µi ∈ X that maximizes minj<i d(·, µj). This iterative

process is carried out until there are t cluster centers. Now, t clusters are created such that

the i’th cluster Ci contains all points x ∈ X whose closest center is µi.

Input : X = (x1, x2, . . . , xn) be a set of points with a distance function between
any pair of points d(xa, xb) and the number of clusters t.

Output: A clustering C where each Ci is a cluster whose closest center is µi.
begin1

Pick any µ1 ∈ X as the first cluster center;2

for i = 2 to t do3

Let µi be the point in X that is farthest from µ1, . . . , µi−1; (i.e., that4

maximizes minj<i d(·, µj));
end5

Create t clusters such that the i’th cluster is Ci = {all x ∈ X whose closest center6

is µi};
end7

Algorithm 2: The t-clustering algorithm.

Theorem 2.7 ([Gon85]) Given a set of points X = {x1, x2, . . . , xn} and a distance func-

tion between any pair of points d(·, ·) that satisfies metric properties and an integer t as input

I, the diameter ALGTC(I) computed by Algorithm 2 is at most a factor of 2 greater than

the cost of an optimal diameter OPTTC(I).

Proof Let us consider the farthest point u ∈ X from the existing centers µ1, µ2, . . . , µt. If

r is the distance between u and the center closest to it, then every point in X has a distance

10

less than r to its closest center. From triangle inequality, the diameter of the t clustering is

at most 2r. Also, from the way the centers are chosen in every iteration of the Algorithm 2,

we know that all the centers µ1, µ2, . . . , µt and the point u are placed at least r distance

apart from each other. If a t-clustering of these points is found, then the diameter of the

clustering is at least r (i.e., OPTTC(I)). From above we have

ALGTC(I) ≤ 2×OPTTC(I).

This completes the proof.

2.2 Directed Hypergraphs

Directed hypergraphs are a generalization of directed graphs in which each directed hyper-

edge has one or more source (tail) vertices and has one or more destination (head) ver-

tices. They have found a variety of applications in Computer Science, e.g., in propositional

logic [AG97], databases [ADS83, ADS85], scheduling [LS95, GS02], routing in dynamic net-

works [Pre00], bioinformatics [KNO+03], and data mining [CDP04]. Theoretical problems

related to directed hypergraphs have been studied in [Vie04, TT09].

A related notion is undirected hypergraphs, which generalize undirected graphs.

Definition 2.8 [Ber73] An undirected hypergraph G is a pair (VG , EG), where VG is a finite

set of vertices and EG ⊆ 2VG is a finite set of hyperedges such that, for every hyperedge

ei ∈ EG, ei 6= ∅.

Definition 2.9 [GLPN93] A directed hypergraph H is a pair (V,E), where V is a finite

set of vertices and E ⊆ 2V × 2V is a finite set of directed hyperedges such that, for every

directed hyperedge e = (T,H) ∈ E, T 6= ∅, H 6= ∅, and T ∩H = ∅. (Here, T is called the

tail set and H is called the head set of e.)

Notice that directed hypergraphs are different from undirected hypergraphs [Ber73]. While

directed hypergraphs generalize directed graphs, undirected hypergraphs generalize undi-

rected graphs.

11

2.3 Data Mining

Data mining involves learning information or concepts from databases and using them to

solve problems. Based on the structure of the database, there are different problems that

can be addressed. For example, suppose our database contains attributes such as humidity,

weather, temperature, and type of play, and contains observations that in fact are records

of values that these attributes take on different days. In order to learn about the type of

play, one can fix type of play as the classification attribute and look into the values of other

attributes. A classifier is an algorithm that learns rules about the classification attribute

based on other attribute values. This approach can be used to predict the class attribute

value of unseen observations. Since the classifier is built under the supervision of a set of

observations, i.e., training dataset, this method is known as supervised classification. The

class value may also be non-discrete in nature.

In certain circumstances, a database may not have any information to distinguish a

particular attribute as the classification attribute. In such a scenario, learning information

about the database may not aid in the prediction of a class value. However, learning

information not only corresponds to the prediction of some attribute value in the database,

but also can be visualized as inferring relationships among attributes. For example, in

the sample database discussed earlier, an interesting association can be as follows: “The

pattern of humidity having the value 80%, temperature having the value 90F, and weather

having the value Rainy is very frequent in the database.” Such an inference is known as an

association rule. Here, there is no particular attribute whose value is predicted. But, as we

have seen in the example, learning information corresponds to identifying interesting and

useful patterns among attributes.

In the previous example, we saw that learning information can be visualized in terms

of inferring relationships among attributes. If this concept is generalized, then it can be

termed as identifying groups of attributes with similar characteristics. Here, characteristics

may relate to the patterns among attributes identified earlier. This problem is known as

clustering, as the objective is to find attributes and classify them into groups based on

their characteristics. For example, let the set of attributes be a set of financial time-series

12

and the set of observations be the stock prices recorded for the financial time-series on

various days. An interesting question here is to group the financial time-series into clusters

containing similar financial time-series. The quality of the clustering obtained is generally

verified based on the information available to the user. In this case, one way to verify

the quality of the financial time-series clusters obtained is by looking at the sectors of the

time-series. Here, the quality of the clustering may be defined good if a high percentage of

the time-series that belong to the same cluster are from the same sector.

2.3.1 Classification Rule Mining

We review the linear regression classifier used to construct classification rules. Linear regres-

sion can be used to predict the class attribute value when there are non-discrete attributes.

Let A1, A2, . . . , An denote the attributes and let O1, O2, . . . , Om denote the observations

corresponding to the attributes. Let there be a database that is visualized as a m×n table

containing m rows and n columns, where rows correspond to observations and columns cor-

respond to attributes. Let oij denote the value of the j’th attribute for the i’th observation

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. For convenience, let us say that the last attribute, An,

be the class attribute whose value needs to be predicted. In order to predict An’s value,

linear regression builds an attribute weight assignment model where w1, w2, . . . , wn−1 are

the weights assigned to the first n− 1 attributes. The weight assignment model (classifier)

is iteratively built by computing the predicted value for An for each observation. For the

i’th observation, An’s predicted value is given by:

w1oi1 + w2oi2 + · · ·+ wn−1oin−1 =
n−1∑
j=1

wjoij .

Intuitively, in order to have an accurate prediction of An for the i’th observation, the

difference between An’s predicted value
∑n−1

j=1 wjoij and An’s actual value oin has to be

minimized. Thus, for the i’th observation, where 1 ≤ i ≤ m, the classifier is constructed

by reducing the sum of squares of difference (oin −
∑n−1

j=1 wjoij)2. Overall, linear regres-

sion minimizes
∑m

i=1

(
oin −

∑n−1
j=1 wjoij

)2
. Using the attribute weights in the constructed

classifier, the class attribute value of an unseen observation can be predicted.

13

The basic idea used in linear regression is to express the class attribute value as a linear

combination of other attributes. When the attribute values are discrete, expressing the

class attribute as a linear combination of other discrete attributes fails to predict the value

of the class attribute. This is due to the fact that the error computed between the predicted

class value and the actual class value has little meaning as this error does not indicate how

far the predicted value is from the actual value. Also, the predictions may lie outside the

set of discrete values allowed in the dataset.

for i← 0 to n− 1 do1

wi ← 0;2

end3

while there exists an incorrectly classified observation in the training data do4

for j ← 1 to m do5

if Oj is currently incorrectly classified then6

if Oj belongs to the first class then7

Add values of attributes A0, A1, . . . , An−1 in this observation to8

weights w0, w1, . . . , wn−1 in the equation;
end9

else10

Subtract values of attributes A0, A1, . . . , An−1 in this observation from11

weights w0, w1, . . . , wn−1 in the equation;
end12

end13

end14

end15

Algorithm 3: Perceptron learning rule.

We now look at another approach to predict the class attribute value. Let A1, A2, . . . , An

denote the attributes and let O1, O2, . . . , Om denote the observations corresponding to the

attributes as before. Let us assume the class attribute An is 0/1-valued. This approach

tries to separate the observations into either 0-valued or 1-valued by using a hyperplane.

The equation of the hyperplane is as follows:

w0A0 + w1A1 + w2A2 + · · ·+ wn−1An−1 = 0.

During the construction of the hyperplane, the weight w0 of attribute A0, called bias, is

used to contribute a constant value in the equation of the hyperplane and hence A0 = 1.

The following algorithm in Algorithm 3, called perceptron learning rule, is used to construct
14

the hyperplane. A perceptron [Ros58] is a binary classifier that classifies an observation into

the first class if the sum from the equation is greater than 0 and classifies an observation

into the second class otherwise.

We see that the algorithm iteratively either increments or decrements the attribute

weights by the attribute values of the observation, if the class attribute value of that obser-

vation is incorrectly classified in the equation of the hyperplane. The goal is to predict class

values of all the observations correctly. If the data set is not linearly separable, the above

algorithm would not terminate. In such cases, the algorithm can be terminated forcefully

after the execution of a certain number of iterations.

2.3.2 Clustering

Definition 2.10 ([Llo82]) Let X = (x1, x2, . . . , xn) be a set of points with a distance

function between any pair of points d(·, ·) and let k be an integer. A k-means-clustering

C = {C1, C2, . . . , Ck} is a partition of X into k clusters C1, C2, . . . , Ck such that C minimizes

the sum of squares of distances of points from the centroid µi =
∑

xj∈Ci
xj/|Ci| for each

cluster Ci ∈ C. That is, C minimizes

k∑
i=1

∑
xj∈Ci

||xj − µi||2.

The k-means clustering algorithm, provided in Algorithm 4, is a well known technique to

find a k-means-clustering given points in Euclidean space. Initially k random cluster centers

are picked. The k-means algorithm then works iteratively. In each iteration, the algorithm

assigns the remaining points to the closest cluster center and computes the centroid for each

of the k clusters. These centroids are the new cluster centers for the next iteration. The

algorithm continues until the clusters centers between two consecutive iterations remain

unchanged.

The output of k-means algorithm depends on the initial cluster centers that are picked.

The k-means algorithm in each iteration picks the centroids of the points in the current

clusters as new cluster centers NewCC. The algorithm terminates when the current cluster

centers CurrentCC and new cluster centers NewCC are the same. The k-means clustering

15

Input : The number of clusters k and a set of points X = (x1, x2, . . . , xn) with a
distance function between any pair of points d(xa, xb).

Output: A clustering C = {C1, C2, . . . , Ck}.
begin1

NewCC ← Pick any k points, say, µ1, µ2, . . . , µk;2

CurrentCC ← ∅;3

while CurrentCC 6= NewCC do4

CurrentCC ← NewCC;5

Create k clusters such that the i’th cluster is Ci = {all x ∈ X whose closest6

center is µi ∈ CurrentCC};
for i← 1 to k do7

µi ←
P

xj∈Ci
xj

|Ci| ;8

end9

NewCC ← {µ1, µ2, . . . , µk};10

end11

end12

Algorithm 4: The k-means algorithm.

algorithm is suitable for finding clusters in a set of points that contain subgroups of points

that have symmetric shapes such as, circular, since these shapes allow the points to be

assigned to unique centroids. This makes the algorithm iteratively move towards the unique

centroids of the individual subgroups of points in order to obtain a stable clustering. When

the algorithm is input with subgroups of points that have asymmetric shapes with irregular

boundaries, it moves the centroids without being able to obtain a stable clustering, thus

constantly modifying the clustering configuration. The worst case running time for the

k-means algorithm is known to be 2Ω(
√

n) [AV06].

16

CHAPTER 3

MODELING ASSOCIATIONS IN DATABASES USING DIRECTED
HYPERGRAPHS

3.1 Associations Between Multi-Valued Attributes

Let D be a database in the form of a m×n table, where the rows correspond to observations

and the columns correspond to multi-valued attributes. Let O = {O1, O2, . . . , Om} be

the set of observations and A = {A1, A2, . . . , An} be the set of attributes. The table

entry for each attribute Ai and each observation Oj is a value from a fixed finite set V =

{v1, v2, . . . , vk}. We denote such a databaseD in the form ofD(A,O,V). For anyX ⊆ A×V,

let π1(X) denote {Ai | ∃vj(Ai, vj) ∈ X}.

We next present the definition of an association rule for multi-valued attributes and the

support and confidence measures for such an association rule.

Definition 3.1 An association rule for multi-valued attributes (in short, mva-type asso-

ciation rule) in a database D(A,O,V) is an implication relationship of the form X
mva=⇒Y ,

where X,Y ⊆ A× V and π1(X) and π1(Y) are disjoint subsets of A.

Definition 3.2 The support and confidence measures are generalized for multi-valued at-

tributes in a database D(A,O,V) as follows:

1. Let X = {(Ai1, vj1), (Ai2, vj2), . . . , (Air, vjr)} be any subset of A×V. The support of

X, denoted by Supp(X), is defined as the fraction of observations in D for which Ai1

takes value vj1, Ai2 takes value vj2, . . ., and Air takes value vjr.

2. Let Xmva=⇒Y be an mva-type association rule. Then the confidence of this rule, denoted

by Conf(Xmva=⇒Y), is defined as follows:

Conf(Xmva=⇒Y) =
Supp(X ∪ Y)

Supp(X)
.

17

The above definition of an mva-type association rule has been adapted from the definition

of a quantitative association rule [SA96] with a minor change to simplify the definition. In

an mva-type association rule, attributes are associated with values from a fixed finite set,

whereas in a quantitative association rule, attributes are associated with either categorical

values (e.g. zip code, make of car) or intervals (e.g. age, income). During the process of

discovering quantitative association rules, the attribute values are then mapped to discrete

values. On the other hand, our definition of database D (in particular, the set of values V)

assumes that the attribute values are already mapped to discrete values. In this sense, our

definition of mva-type association rules simplifies the definition of quantitative association

rules given in [SA96].

Note that the definitions of support and confidence in the market-basket type database

can be viewed as a special case of Definition 3.2. For instance, let A1, A2, and A3 be 0/1-

valued (i.e., binary) attributes. Then, the measure “support of {A1, A2}” in the market-

basket type data can be seen as equivalent to Supp({(A1, 1), (A2, 1)}) and the measure “con-

fidence of {A1, A2} =⇒ {A3}” can be seen as equivalent to Conf({(A1, 1), (A2, 1)}mva=⇒{(A3, 1)}),

given by Definition 3.2.

We now give some examples of databases containing multi-valued attributes, observa-

tions, and the values that attributes take for each observations. These examples are from

various domains, such as, medicine, bioinformatics, and social networks.

Our first example is a Patient database.

Example 3.3 Consider a Patient database in Table 3.1 where each observation consists of

attribute values such as age, cholesterol, blood-pressure, and heart-rate of different patients.

Here, patient 1 has age 25 years, cholesterol 135 mg/dL, blood pressure 135 mmHg, and

heart-rate 75 beats per minute. Similarly, records for other patients can be read from this

table.

In order to improve the usability of a database that contains attributes each of which can

take real values in an arbitrary range, it is a general practice to discretize the attribute

values. In the patient database in Table 3.1, for each attribute value ai, we consider the

discretized value bai/10c. Table 3.2 displays the discretized database.

18

Table 3.1 Patient database.
Observations Attributes

Patient Id Age Cholesterol Blood-Pressure Heart-Rate
Id A C B H
1 25 105 135 75
2 62 160 165 85
3 32 125 139 71
4 12 95 105 67
5 38 129 135 75
6 39 121 117 71
7 41 134 145 73
8 85 125 155 78

Table 3.2 Patient database (after discretization).

Observations Attributes
Patient Id Age Cholesterol Blood-Pressure Heart-Rate

Id A C B H
1 2 10 13 7
2 6 16 16 8
3 3 12 13 7
4 1 9 10 6
5 3 12 13 7
6 3 12 11 7
7 4 13 14 7
8 8 12 15 7

Let us consider the mva-type association rule Xmva=⇒Y , where X = {(A, 3), (C, 12)} and

Y = {(B, 13)}. This is an implication relationship that states: “If the age of a patient is

in the range 30-39 and the cholesterol of the same patient is in the range 120-129 mg/dL,

then it is likely that the patient’s blood-pressure is in the range 130-139 mmHg. Here,

Supp(X) = 3/8 = 0.375 and Conf(Xmva=⇒Y) = Supp(X ∪ Y)/Supp(X) = 2/3 = 0.667.

Our next example is a Gene database.

Example 3.4 Consider a Gene database in Table 3.3 where each observation consists of

attribute values such as gene 1 expression value, gene 2 expression value, gene 3 expression

value, and gene 4 expression value of different patients. Here, patient 1 has gene 1 expression

value 54.23, gene 2 expression value 66.22, gene 3 expression value 342.32, and gene 4

expression value 422.21. Similarly, records for other patients can be read from this table.

19

Table 3.3 Gene database.
Observations Attributes

Patient Id Gene 1 Gene 2 Gene 3 Gene 4
Id G1 G2 G3 G4
1 54.23 66.22 342.32 422.21
2 541.21 324.21 165.21 852.21
3 321.67 125.98 139.43 71.11
4 123.87 95.54 105.88 678.65
5 388.44 129.33 135.65 754.32
6 399.98 121.54 117.55 719.33
7 414.33 134.73 145.32 733.22
8 855.78 125.93 155.76 789.43

Table 3.4 Gene database (after discretization).

Observations Attributes
Patient Id Gene1 Gene 2 Gene 3 Gene 4

Id G1 G2 G3 G4
1 ↓ ↓ ↔ ↔
2 ↔ ↓ ↓ ↑
3 ↓ ↓ ↓ ↓
4 ↓ ↓ ↓ ↑
5 ↔ ↓ ↓ ↑
6 ↔ ↓ ↓ ↑
7 ↔ ↓ ↓ ↑
8 ↑ ↓ ↓ ↑

In the gene database in Table 3.3, for each attribute value ai, we consider the discretized

value ↓ if 0 ≤ ai ≤ 333, the discretized value ↔ if 334 ≤ ai ≤ 666, and the discretized value

↑ if 667 ≤ ai ≤ 999. Table 3.4 displays the discretized database.

Let us consider the mva-type association rule Xmva=⇒Y , where X = {(G2, ↓), (G3, ↓)} and

Y = {(G4, ↑)}. This is an implication relationship that states: “If gene 2 and gene 3 in a

patient are under expressed, then it is likely that gene 4 is over expressed in the patient.

Here, Supp(X) = 7/8 = 0.875 and Conf(Xmva=⇒Y) = Supp(X ∪ Y)/Supp(X) = 6/7 = 0.857.

Our next example is a Personal Interest database.

Example 3.5 Consider a Personal Interest database from a social network in Table 3.5,

where each observation consists of a rating for attributes such as ‘read’, ‘play’, ‘music’,

and ‘eat’ of different people (where 0 denotes the lowest interest and 10 denotes the highest

20

interest). Here, person 1 has a rating of 10 for read, 10 for play, 3 for music, and 5 for eat.

Similarly, records for other people can be read from this table.

Table 3.5 Personal interest database.
Observations Attributes

Person Id Read Play Music Eat
Id R P M E
1 10 10 3 5
2 7 9 4 6
3 3 1 9 10
4 5 1 10 7
5 9 8 2 6
6 8 10 7 6
7 5 4 6 5
8 8 10 1 8

Table 3.6 Personal interest database (after discretization).

Observations Attributes
Person Id Read Play Music Eat

Id R P M E
1 h h l m

2 m h m m

3 l l h h

4 m l h m

5 h h l m

6 h h m m

7 m m m m

8 h h l h

In the personal interest database in Table 3.5, for each attribute value ai, we consider

the discretized value l (low) if 0 ≤ ai ≤ 3, m (moderate) if 4 ≤ ai ≤ 7, and h (high) if

8 ≤ ai ≤ 10. Table 3.6 displays the discretized database.

Let us consider the mva-type association rule Xmva=⇒Y , where X = {(R, h), (P, h)} and

Y = {(M, l)}. This is an implication relationship that states: “If a person has high interest

in reading and playing, then it is likely that the person has low interest in music. Here,

Supp(X) = 4/8 = 0.5 and Conf(Xmva=⇒Y) = Supp(X ∪ Y)/Supp(X) = 3/4 = 0.75.

Thus, with the above examples, we have seen examples of databases containing multi-

valued attributes.
21

3.1.1 Discretization

We provide a methodology to discretize attribute values in financial time-series databases

in Section 5.1.1. In these databases, every observation corresponds to a reading taken at a

particular time and the order of observations is important. Our discretization methodology

captures the relationship between any two consecutive observations in a financial time-series

database. Thus, in the resulting database with discretized attribute values, the order of

observations is irrelevant.

3.2 Association Hypergraphs

Definition 3.6 An association hypergraph H for a database D(A,O,V) is a directed hy-

pergraph whose vertex set V is A and hyperedge set E consists of directed hyperedges (T,H),

where T and H are disjoint subsets of A. Each directed hyperedge e = (T,H) has an associa-

tion confidence value in the range [0, 1], denoted ACV (e) or ACV (T,H), and an association

table (as shown in Table 3.7), denoted AT (e) or AT (T,H), that are defined as follows:

1. The association confidence value of a directed hyperedge ({t1, . . . , tr}, {h1, . . . , hs})

equals

∑
v1,...,vr∈V

Supp({(t1, v1), . . . , (tr, vr)})× Conf({(t1, v1), . . . , (tr, vr)}mva=⇒H∗),

where H∗ = {(h1, v
∗
1), . . . , (hs, v

∗
s)} and v∗1, . . ., v∗s depend on v1, . . ., vr such that they

maximize the confidence of the mva-type association rule

{(t1, v1), . . . , (tr, vr)}mva=⇒{(h1, v
′
1), . . . , (hs, v

′
s)}

over all choices of v′1, . . ., v′s ∈ V. In other words, it equals
∑

v1,...,vr∈V Supp({(t1, v1),

. . ., (tr, vr)} ∪ H∗), where H∗ is as defined above.

2. The association table of a directed hyperedge ({t1, t2, . . . , tr}, {h1, h2, . . . , hs}) has rows

corresponding to the set of all possible values that t1, . . ., tr can take from V. The row

corresponding to t1 = v1, . . ., tr = vr, where v1, . . ., vr ∈ V, is a list that contains

22

(a) Supp({(t1, v1), . . . , (tr, vr)}),

(b) the values v∗1, . . ., v∗s ∈ V defined in part (1) above, and

(c) the confidence of the mva-type association rule

{(t1, v1), . . . , (tr, vr)}mva=⇒{(h1, v
∗
1), . . . , (hs, v

∗
s)}.

In other words, every row corresponds to an mva-type association rule.

The motivation for representing a database D using a directed hypergraph is to capture a

more general implication relationship between attributes than the one identified by mva-type

association rules. For example, we now want to answer the following question: “Regardless

of the values the attributes in set T take, what is the likeliness of predicting the values of the

attributes in set H?”. The above intuition helps us to model such a relationship between

attributes in T and attributes in H using a directed hyperedge (T,H) and to capture the

likeliness as the association confidence value ACV (T,H) of this directed hyperedge.

In this thesis, we consider only associations of the form (T,H), where T and H are

disjoint subsets of attributes, |T | ≤ 2, and |H| ≤ 1. Having no constraint on |T | and |H|

adds complexity in the model because of the numerous possibilities involved. Extending our

methodology to model associations in databases to the general case is a subject of future

work. Henceforth, we use the term association hypergraph to refer to this restricted case,

and call any directed hyperedge (T,H) in which |T | = 1 a directed edge and one in which

|T | = 2 a 2-to-1 directed hyperedge.

3.2.1 Constructing Association Hypergraphs

The association hypergraph H for a database D(A,O,V) has node set A and the hyper-

edge set consists of directed hyperedges of the form (T,H), where T and H are disjoint

subsets of A. We construct directed hyperedges in the order of their head set. For a fixed

combination of two or fewer attributes, say {A1, A2}, and any other attribute, say A3, we

determine whether ({A1, A2}, {A3}) could be included as a directed hyperedge of H by

checking whether the combination is γ-significant according to Definition 3.7.

23

Table 3.7 An example association table (AT) for the combination ({A1, A2}, {A3}).
Index Values Support Most frequent value Confidence

of A1 and A2 Supp({(A1, v1), (A2, v2)}) of A3 (v∗3) Conf({(A1, v1), (A2, v2)} mva=⇒ {(A3, v
∗
3)})

1 〈1, 1〉 0.14 2 0.43
2 〈1, 2〉 0.03 1 0.62
3 〈1, 3〉 0.06 1 0.75
4 〈2, 1〉 0.21 3 0.45
5 〈2, 2〉 0.11 2 0.38
6 〈2, 3〉 0.17 1 0.66
7 〈3, 1〉 0.01 2 0.49
8 〈3, 2〉 0.04 3 0.81
9 〈3, 3〉 0.23 2 0.73

24

Definition 3.7 Consider a combination (T,H) for inclusion as a directed hyperedge of the

association hypergraph H, where |T | ≥ 1. For γ ≥ 1, we say that (T,H) is γ-significant if

ACV (T,H) ≥ γ ·maxv∈T {ACV (T − {v}, H)}.

If (T,H) is γ-significant, then we include this directed hyperedge in H. Otherwise we skip

this combination and proceed to the next one. The weight of a directed hyperedge (T,H)

is set to ACV (T,H).

The association table for the directed hyperedge ({A1, A2}, {A3}) is constructed as fol-

lows. Supp({(A1, v1), (A2, v2)}) is computed by counting observations in the database for

which A1’s value is v1 and A2’s value is v2. Conf({(A1, v1), (A2, v2)} mva=⇒ {(A3, v
∗
3)}) is then

computed by counting such observations in the database for which A3’s value is v∗3, where

v∗3 is the most frequent value for A3. This process is repeated for all possible values that

A1 and A2 can take from V.

Theorem 3.8 Let A1, A2, and A3 be attributes over common observations. Then the

following holds:

1. ACV ({A}, {X}) ≥ ACV (∅, {X}).

2. ACV ({A,B}, {X}) ≥ max{ACV ({A}, {X}), ACV ({B}, {X})}.

Proof We prove part (1) only as the proof of part (2) is similar. Assume that the symbolic

representations of A1 and A3 are over the alphabet {1, 2, . . . , k}. Since A1 and A3 have

common observations, all the observations of A1 and A3 contribute towards building the

association table AT of the combination ({A1}, {A3}). Suppose that there are d rows in

AT . Let Maj(d) denote the number of times the most frequent value of A3 occurs in these

rows. Then, the fraction of the most frequent value of A3 is Maj(d)/d. W.l.o.g., assume

that the most frequent value of A3 is 1.

Out of d rows in AT , let di of them have value i for A1. Thus, we have
∑k

i=1 di = d.

Assume that, for each 1 ≤ i ≤ k, the number of rows in AT such that A1 takes value i

and A3 takes its most frequent value, 1, is ai. Then, we have
∑k

i=1 ai = Maj(d). For every

1 ≤ i ≤ k, restricting AT to all rows in which A1 takes value i, let Maj(di) denote the

number of rows the most frequent value of A3 belongs to in this restricted AT .
25

By definition, ACV ({A1}, {A3}) is given by
∑k

i=1 di/d · Maj(di)/di, which simplifies

to
∑k

i=1 Maj(di)/d. Next, notice that for every 1 ≤ i ≤ k, Maj(di) ≥ ai, since the most

frequent value of A3 out of all rows of AT that have A1 = i must occur at least ai times.

It follows that
∑k

i=1 Maj(di) ≥
∑k

i=1 ai = Maj(d). Hence, we get that

ACV ({A1}, {A3}) =
k∑

i=1

Maj(di)/d

≥ Maj(d)/d

= ACV (∅, {X}).

This completes the proof.

3.3 Association-Based Similarity Between Multi-Valued Attributes

Undirected hypergraphs have been used to cluster binary attributes and subsets of binary

attributes. Han et al. [HKKM98] used undirected hypergraphs where nodes represent binary

attributes and hyperedges represent subsets of attributes. They applied an undirected

hypergraph clustering algorithm to identify clusters of similar attributes. Ozdal et al. [OA04]

also used undirected hypergraphs where nodes represent patterns (i.e., subsets of attributes)

and hyperedges represent relationships among patterns, and proposed a clustering approach

for these hypergraph models. Lent et al. [LSW97] used clustering to group association

rules involving multi-valued attributes. This grouping was done based on certain attribute

conditions that segment the observations in the database.

We propose similarity notions that measure association-based similarity between any

two nodes of the association hypergraph. We can imagine two nodes A and B to be in-

similar if significantly many directed hyperedges that contain A in their headset lead to

valid directed hyperedges that contain B in their headset when A is replaced by B. Here, A

and B are in-similar since they both share similar incoming directed hyperedges. Likewise,

A and B can be regarded as out-similar by relating to the tailset instead of the headset of

directed hyperedges. These similarity notions are then used to define clustering of multi-

valued attributes.

26

Notation 3.9 Let H = (V,E) be an association hypergraph as defined in Section 3.1.

1. For any A ∈ V , outH(A) denotes the set of all directed hyperedges of H whose tail set

contains A.

2. For any A ∈ V , inH(A) denotes the set of all directed hyperedges of H whose head set

contains A.

3. For any A1, A2 ∈ V and e = (T,H) ∈ outH(A1), e|T:A1→A2 denotes the directed

hyperedge (T ′, H ′) whose head set H ′ is H and whose tail set T ′ is formed from T

by replacing node A1 by node A2 (i.e.,H ′ = H and T ′ = (T − {A1}) ∪ {A2}). For

any set of directed hyperedges S and nodes A1 and A2, S|T:A1→A2 denotes the set⋃
e∈S{e|T:A1→A2}.

4. For any A1, A2 ∈ V and e = (T,H) ∈ inH(A1), e|H:A1→A2 denotes the directed hy-

peredge (T ′, H ′) whose tail set T ′ is T and whose head set H ′ is formed from H by

replacing node A1 by node A2 (i.e., T ′ = T and H ′ = (H − {A1}) ∪ {A2}). For

any set of directed hyperedges S and nodes A1 and A2, S|H:A1→A2 denotes the set⋃
e∈S{e|H:A1→A2}.

Notation 3.10 Let A1 and A2 be attributes and H = (V,E) be an association hypergraph

as defined in Section 3.1. Let ∅ denote the empty directed hyperedge.

1. outH(A1)⊗outH(A2) is the set of directed hyperedge pairs (e, f) s.t. e ∈ outH(A1),

f ∈ outH(A2), and e = f |T:A2→A1. The definition of inH(A1)⊗inH(A2) is similar.

2. outH(A1)⊕outH(A2) is the union of the following sets of directed hyperedge pairs: (1)

outH(A1)⊗outH(A2), (2) (e, ∅) s.t. e ∈ outH(A1) and e 6= f |T:A2→A1 for each f ∈

outH(A2), and (3) (∅, f) s.t. f ∈ outH(A2) and e|T:A1→A2 6= f for each e ∈ outH(A1).

The definition of inH(A1)⊕inH(A2) is similar.

3.3.1 In-Similarity and Out-Similarity

In Definition 3.11, we define the similarity notions in-similarity and out-similarity for

any pair (A1, A2) of attributes. The in-similarity of attributes A1 and A2, denoted by
27

in-simH(A1, A2), is the weighted fraction of directed hyperedges e ∈ inH(A1) ∪ inH(A2)

such that switching A1 to A2 in the head set of e results in another directed hyperedge;

the weights are the association confidence values of directed hyperedges. Similarly, the out-

similarity of attributes A1 and A2, denoted by out-simH(A1, A2), is the weighted fraction

of directed hyperedges e ∈ outH(A1) ∪ outH(A2) such that switching A1 to A2 in the tail

set of e results in another directed hyperedge.

Definition 3.11 Let A1 and A2 be attributes and H = (V,E) be an association hypergraph

as defined in Section 3.1. The following similarity notions are defined for A1 and A2:

1. out-simH(A1, A2) =
P

(e,f)∈outH(A1)⊗outH(A2) min{ACV (e), ACV (f)}P
(e,f)∈outH(A1)⊕outH(A2) max{ACV (e), ACV (f)} .

2. in-simH(A1, A2) =
P

(e,f)∈inH(A1)⊗inH(A2) min{ACV (e), ACV (f)}P
(e,f)∈inH(A1)⊕inH(A2) max{ACV (e), ACV (f)} .

Example 3.12 Suppose H has directed hyperedges a = ({A1, A3}, {A6}), b = ({A1, A4}, {A6}),

c = ({A2, A3}, {A6}), d = ({A2, A4, A5}, {A6}), and e = ({A4, A5}, {A6}), where A1, A2,

A3, A4, A5, and A6 are attributes. Let the ACVs of a, b, c, d, and e be 0.4, 0.5, 0.6, 0.7,

and 0.8, respectively. Then, we have outH(A1)⊗outH(A2) = {(a, c)}, outH(A1)⊕outH(A2)

= {(a, c), (b, ∅), (∅, d)}, and so weighted-out-simH(A1, A2) = 0.4
0.6+0.5+0.7 = 0.22.

3.3.2 Clusters of Similar Attributes

We define below the notion of a similarity graph induced by any subset S of attributes that

assigns every attribute pair {A1, A2} in S an undirected edge whose weight depends on the

in-similarity and the out-similarity of the pair.

Definition 3.13 Let H = (V,E) be an association hypergraph as defined in Section 3.1.

Given any collection S of attributes, a similarity graph SGS = (V ′, E′) induced by S in H

is an undirected, weighted, complete graph whose node set V ′ is S and edge set E′ contains

all attribute pairs in S such that, for every edge {A1, A2} ∈ E′, its weight d(A1, A2) is

defined as 1 − (weighted-in-simH(A1, A2) + weighted-out-simH(A1, A2)) / 2.

Our objective is to determine a partition of S into subsets of attributes such that attributes

within each subset are highly similar in their associative characteristics. The t-clustering

28

algorithm by Gonzalez [Gon85], presented in Algorithm 2 (Chapter 2), finds such a partition

of S by designating some t attributes as cluster centers. The algorithm takes the parameter

t in the input and assigns each attribute to its closest cluster center. This is a factor 2-

approximation algorithm for minimizing the diameter of the t-clustering, assuming that the

distances (i.e., weights) satisfy the metric properties. (Here, the diameter of a t-clustering

is the maximum distance between any two data points that are within the same cluster.)

If our original association hypergraph H has n vertices and m directed hyperedges, then

the construction of similarity graph SGS takes time O(m2), and the computation of the

t-clustering of vertices in SGS takes additional time O(|t| · |S|).

29

CHAPTER 4

COMPUTATIONAL PROBLEMS

An interesting question that arises in the context of association rules is about devising a

methodology to build classification rules. A classification rule suffers from overfitting when

the rule closely models a particular characteristic of the training data set and, due to this

specificity, the rule fails to predict the value of the attribute in an unseen test data set. A

classification rule suffers from underfitting when the rule models no particular characteristic

of the training data set and, due to this generality, the rule fails to predict the value of the

attribute both in the training data set and in an unseen test data set. Liu et al. [LHM98]

addressed the above problems by mining association rules that have only one attribute in

their consequent, proposing a pruning based algorithm to generate classification rules, and

testing on an unseen data set. Bayardo [Bay97] proposed various methods that again use

pruning to reduce the number of association rules discovered by standard association rule

mining algorithms. But the quality of the rules is unclear as they have not been tested

on an unseen data set. Liu et al. [LHM99] addressed the above problems by introducing

multiple minimum supports during mining of association rules.

In this section, we use the directed hypergraph based model to first propose algorithms

to identify a small subset of attributes that influence the characteristics of almost all other

attributes and then present the association-based classifier that can be used to predict the

values of attributes.

4.1 Leading Indicators

A leading indicator X for any set S of attributes is a subset of S such that knowing only

the values for the attributes in X allows us to infer the value for all attributes in S − X .

Motivated by the notion of a dominating set for any graph that essentially captures the

30

property of a subset of nodes covering all the nodes of the graph by at most one edge, we

define below the notion of a dominator for a set of vertices of any association hypergraph.

Our hypothesis is that a dominator for nodes corresponding to the set S of attributes in

the association hypergraph modeling attribute relationships gives a leading indicator for S.

Definition 4.1 A dominator for a set S of vertices in an association hypergraph H = (V,E)

is a set X ⊆ V such that, for every u ∈ S −X , there is a directed hyperedge e = (T,H) ∈ E

such that T ⊆ X and u ∈ H. That is, each node u ∈ S − X is covered using only directed

hyperedges whose tail set is from the set X .

We next provide two greedy algorithms for identifying a subset of attributes known as a

leading indicator that influences the values of almost all other attributes. The first greedy

algorithm is based on an adaptation of the greedy O(log n)-approximation algorithm for

computing a minimum cardinality dominating set in graphs. The second greedy algorithm

is based on an adaption of the greedy O(log n)-approximation algorithm for computing a

minimum cost set cover.

4.1.1 An Adaptation of Graph Dominating Set Approximation Algorithm

Algorithm 5 is a greedy algorithm for computing a dominator for any set S of vertices

in an association hypergraph H = (V,E). It is an adaptation of the greedy O(log n)-

approximation algorithm for computing a minimum cardinality dominating set in graphs.

In order to minimize the size of the dominator, the following greedy heuristic is applied: for

every node u that is not part of the dominating set yet, the algorithm computes the node

effectiveness α(u) that reflects u’s covering ability. During each iteration of the algorithm

(until all the nodes in the graph are covered), the node with the highest effectiveness value

is added to the dominator set. The algorithm runs in time O(|S| · |E|).

4.1.2 An Adaptation of Set Cover Approximation Algorithm

Algorithm 6 computes a dominator for any set S of vertices of any association hypergraph

H = (V,E). It is an adaptation of the greedy O(log n)-approximation algorithm for Set

Cover. The algorithm maintains a variable DomSet to store the (partially constructed)
31

dominator set of H and a variable CoveredSet to store the set of vertices covered by those

in DomSet. This is an iterative algorithm such that in each iteration some subset of vertices

t∗ is greedily chosen and made part of DomSet. The algorithm maintains a variable T ∗ that

stores subsets of vertices for possible inclusion in DomSet. Initially, T ∗ is the collection of

all tailsets of directed hyperedges in H, i.e., T ∗ = {T (e) | e ∈ E}.

Input : A set S of vertices and an association hypergraph H = (V,E).
Output: A dominator DomSet for the set S of vertices.
begin1

DomSet← ∅;2

CoveredSet← ∅;3

while CoveredSet 6= S do4

foreach vertex u ∈ V −DomSet do5

if u 6∈ CoveredSet and u ∈ S then6

α(u)← 1;7

end8

else9

α(u)← 0;10

end11

α(u)← α(u) +
∑

v 6∈CoveredSet∧v∈S

L(u, v),
12

where L(u, v)← maxe:u∈T (e)∧v∈H(e)
w(e)

|T (e)−DomSet|13

end14

Let u0 ∈ V be such that α(u0) = max
u6∈DomSet

α(u);
15

DomSet← DomSet ∪ {u0};16

CoveredSet← CoveredSet ∪ {u0} ∪ {v ∈ S | ∃e ∈ E s.t. v ∈ H(e)17

and T (e) ⊆ DomSet};18

end19

return DomSet;20

end21

Algorithm 5: A greedy algorithm for computing dominators in directed hypergraphs which
is an adaptation of graph dominating set approximation.

The algorithm iterates until all the vertices in the set S are covered. For every subset

t∗ ∈ T ∗, a measure α(t∗) is defined that reflects t∗’s covering ability in the following sense:

α(t∗) contains all new vertices that can be covered by including t∗ in DomSet. In each

iteration in Line 5, α(t∗) is computed for every t∗ ∈ T ∗ as follows. First, α(t∗) is assigned

to the number of vertices that are in t∗ as well as S, but not yet in CoveredSet (Lines 6–

12). Next, α(t∗) adds up the number of vertices in S −CoveredSet that t∗ covers via some

directed hyperedge e whose tailset T (e) is part of t∗ (Lines 13–17). Specifically, for the latter
32

contribution in α(t∗), every directed hyperedge e is traversed and if both T (e) ⊆ t∗ and

H(e) ∈ S −CoveredSet, then H(e) is counted in the computation of α(t∗). Clearly, all sets

t∗ ∈ T ∗ whose effectiveness α(t∗) is zero are insignificant; Line 15 discards such sets from

T ∗ so that they are not considered in later iterations. Towards the end of every iteration,

the set t∗ of maximum effectiveness is included in DomSet and the variable CoveredSet is

updated to account for the changed DomSet (Lines 20–22).

Since each iteration takes O(|E|2) time and there are |S| iterations, the computation

time of the algorithm is O(|S| · |E|2).

We now provide two enhancements with the goal of improving the computation time

of Algorithm 6 and also of reducing the size of the dominator set output by this algo-

rithm. Enhancement 1, presented in Algorithm 7, should be added between Lines 20–21,

and Enhancement 2, presented in Algorithm 8, should be added between Lines 22–24 of

Algorithm 6.

Enhancement 1. During each iteration of the while loop in Line 5, Algorithm 6 includes

in DomSet a subset t∗0 whose effectiveness α(t∗0) is the highest among all t∗ ∈ T ∗. This

enhancement considers the scenario when there are more than one possible candidate t∗0 in

some iteration. In such a case, the candidate subset t∗0 that contributes the least number of

elements to DomSet (i.e., that minimizes |t∗0 −DomSet|) might be better than any other

candidate t∗
′

0 .

Enhancement 2. We know that Algorithm 6 updates the coverage of DomSet in every

iteration by going over each directed hyperedge whose tailset is a part of DomSet and

adding vertices in the headset that are in S to CoveredSet. By removing a subset t∗ that

is already a part of the DomSet from T ∗, the enhancement saves the computation time

required to go over all the directed hyperedges in the subsequent iterations of the algorithm

to compute α(t∗).

4.2 Association-Based Classifier

Let S be the set of attributes A1, A2, . . . , At and let these attributes take values v1, v2, . . . , vt,

respectively. Let T be another set of attributes, disjoint from S. The association-based

33

Input : A set S of vertices and an association hypergraph H = (V,E).
Output: A dominator DomSet for the set S of vertices.
begin1

DomSet← ∅;2

CoveredSet← ∅;3

T ∗ ← {T (e) | e ∈ E};4

while CoveredSet 6= S do5

foreach set t∗ ∈ T ∗ do6

α(t∗)← 0;7

foreach vertex u ∈ t∗ do8

if u /∈ CoveredSet and u ∈ S then9

α(t∗)← α(t∗) + 1;10

end11

end12

foreach directed hyperedge e such that T (e) ⊆ t∗ do13

if H(e) /∈ CoveredSet and H(e) ∈ S then14

α(t∗)← α(t∗) + 1;15

end16

end17

if α(t∗) == 0 then T ∗ ← T ∗ − {t∗};18

end19

Let t∗0 be such that α(t∗0)← maxt∗∈T ∗(α(t∗));20

DomSet← DomSet ∪ t∗0;21

CoveredSet← CoveredSet ∪ {t∗0} ∪ {v ∈ S | ∃e ∈ E s.t. v ∈ H(e) and22

T (e) ⊆ DomSet};23

end24

return DomSet;25

end26

Algorithm 6: A greedy algorithm for computing dominators in directed hypergraphs which
is an adaptation of set cover approximation.

foreach set t∗ ∈ T ∗ do1

if α(t∗0) == α(t∗) then2

if |t∗0 −DomSet| > |t∗ −Domset| then3

t∗0 ← t∗;4

end5

end6

end7

Algorithm 7: Enhancement 1.

foreach set t∗ ∈ T ∗ do1

if t∗ ⊆ DomSet then2

T ∗ ← T ∗ − t∗;3

end4

end5

Algorithm 8: Enhancement 2.

34

classifier determines the values of all attributes in T given the values of attributes in S. For

this problem, we will assume that S is a dominator for T in the association hypergraph H

and so S can be computed using the algorithm presented in Section 4.1. This assumption

stands on our earlier stated hypothesis that a dominator for any set of attributes is also a

leading indicator for the set.

Input : An association hypergraph H = (V,E) modeling attribute relationships, a
set T of attributes, and a set S = {(A1, v1), (A2, v2), . . . , (At, vt)}, where
A1, A2, . . . , At are attributes and v1, v2, . . . , vt ∈ V are their respective
values.

Output: An assignment of values that assigns each attribute Y ∈ T its best
classified value y∗ and the classification confidence val[y∗] associated with
every such assignment y∗ to Y .

begin1

foreach attribute Y ∈ T do2

for y ← 1 to k do3

val[y]← 0;4

end5

foreach directed hyperedge e = (T,H) ∈ E with H = {Y } and6

T ⊆ {A1, A2, . . . , At} do
Let T be {A1, A2} and let y be the most frequent value of Y given7

“A1 = v1” and “A2 = v2”;
val[y]← val[y] + Supp({(A1, v1), (A2, v2)}) ×8

Conf({(A1, v1), (A2, v2)}mva=⇒{(Y, y)});
end9

Let y∗ ∈ {1, . . . , k} be such that val[y∗] = maxy∈{1,...,k} val[y];10

val[y∗]← val[y∗]/
∑

y∈{1,...,k} val[y];11

Output “(Y, y∗, val[y∗])”;12

end13

end14

Algorithm 9: Association-based classifier.

To compute the value for any attribute Y ∈ T given only the values v1, v2, . . . , vt of

a set S of the attributes, we iterate over all directed hyperedges of H. For each directed

hyperedge e whose tailset is a subset of the attributes in S and whose headset is {Y }, we

examine the AT associated with e. Specifically, assume that e = ({A1, A2}, {Y }). Using

the AT of e, we find Supp({(A1, v1), (A2, v2)}) and Conf({(A1, v1), (A2, v2)}mva=⇒{(Y, y)}),

where y ∈ V is the most frequent value of Y given that A1 takes value v1 and A2 takes

value v2. The contribution of the directed hyperedge e in the value assignment y of Y is

Supp({(A1, v1), (A2, v2)}) × Conf({(A1, v1), (A2, v2)}mva=⇒{(Y, y)}). The total contribution

35

of all directed hyperedges in the value assignment y of Y is denoted by val[y]. At the

end of all iterations, we choose the value y∗ of Y for which val[y∗] is maximum. The

classification confidence associated with the value assignment y∗ to Y is then the normalized

val[y∗] ∈ [0, 1].

We see that the contributions from all mva-type association rules of both relevant di-

rected edges and relevant directed hyperedges are taken into consideration during the pro-

cess of determination of the value of an attribute. This approach avoids overfitting by not

fixing the value assignment for an attribute by looking only into a particular mva-type as-

sociation rule that closely models some characteristic of the data set. Also, this approach

avoids underfitting as it considers the appropriate weights for all mva-type association rules

before fixing the value assignment for an attribute.

Algorithm 9 describes this solution approach. The input is an association hyper-

graph H = (V,E) modeling attribute relationships, a set T of attributes, and a set S

= {(A1, v1), (A2, v2), . . . , (At, vt)}, where A1, A2, . . . , At are attributes and v1, v2, . . . , vt ∈ V

are their respective values. The algorithm returns an assignment of values that assigns each

attribute Y ∈ T its best classified value y∗ and also returns the classification confidence

val[y∗] associated with every such assignment y∗ to Y . Its running time is O(k2 · |T | · |E|).

36

CHAPTER 5

EXPERIMENTATION

The Standard & Poor’s (S&P) 500 is a market-value-weighted index of the stock prices

of some 500 large publicly held companies. We used Yahoo Finance [Yah10] to obtain

stock information for all financial time-series in S&P 500. In this section, all analysis

is based on the daily closing stock price information from Jan 1, 1995 to Dec 21, 2009.

We had to restrict start date to Jan 1, 1995 since a number of financial time-series in

the current S&P 500 started trading only from the mid 90s. As a result of this clean

up of our data, the number of financial time-series in our analysis is 346. These time-

series belong to the following industrial sectors: Basic Materials (BM), Capital Goods

(CG), Conglomerates (C), Consumer Cyclical (CC), Consumer Noncyclical (CN), Energy

(E), Financial (F), Healthcare (H), Services (SV), Technology (T), Transportation (T P),

and Utilities (U). Each industrial sector is subdivided into sub-sectors (e.g., Technology (T)

has 11 sub-sectors including Communications Equipment, Computer Hardware, Computer

Networks, Computer Peripherals, Computer Services, Computer Storage Devices, Electronic

Instr. and Controls, Office Equipment, Scientific and Technical Instr., Semiconductors, and

Software and Programming.) The total number of sub-sectors over the entire sectors is 104.

5.1 Association Hypergraph Modeling

5.1.1 Discretization

We now describe how to transform financial time-series data set into a database D(A,O,V)

suitable for the association hypergraph modeling. For each financial time-series in the data

set, we create a delta time-series, which is a list of real numbers whose i’th entry is the

fractional change in the closing stock price of the (i+ 1)’th day relative to the closing stock

price of the i’th day. We then compute a k-threshold vector, for some integer k ≥ 2, for each

37

financial time-series. A k-threshold vector for a financial time-series A is a (k − 1)-tuple

〈a1, a2, . . . , ak−1〉 such that, for every 1 ≤ i ≤ k, we have ai−1 < ai and the number of

entries of the delta time-series for A that lie in the range [ai−1, ai) is roughly 1/k. The

k-threshold vector is computed as follows: Let the number of entries in the delta time-series

be N . Sort the delta time-series in non-decreasing order and then, for each 1 ≤ i ≤ k − 1,

assign ai to the b(i/k) ∗Nc’th entry in the sorted list. The k-threshold vectors are used to

perform an equi-depth partitioning of the original data set and discretize it over the value

set V = {1, 2, . . . , k}.

Our discretization procedure makes a single pass over each delta time-series and com-

pares its entries with the components of the threshold vector. If an entry lies in the range

[ai−1, ai) for some 1 ≤ i ≤ k, then the entry is assigned to the value i. In this way, the

original financial time-series data set is transformed into the database D. Here, each finan-

cial time-series is an attribute. The set of values V is {1, . . . , k}, and each observation is

a list of values assigned to the financial time-series on a particular day. Finally we con-

struct an association hypergraph H from the database D using the methodology described

in Section 3.2.

5.1.2 Choice of Parameters

For the construction of the association hypergraph H, we try two configurations of param-

eters as follows: configuration C1 sets k to 3, γ (in Definition 3.7) for directed edges (say

γ1→1) to 1.15, and for 2-to-1 directed hyperedges (say γ2→1) to 1.05 and configuration C2

sets k to 5, γ1→1 for directed edges to 1.20, and γ2→1 for directed hyperedges to 1.12. The

choice for these values in both C1 and C2 are based on the following reasoning: (a) these

values of γ2→1 lead to higher ACV values of 2-to-1 directed hyperedges when compared to

the constituent directed edges and a similar remark can be made for the values of γ1→1, (b)

these are the stable values of γ1→1 and γ2→1; that is, slight perturbations to these values

do not result in significant changes to the numbers of directed edges and 2-to-1 directed

hyperedges in H, and (c) the values in C1 and the values in C2 result in comparable num-

bers of directed edges and 2-to-1 directed hyperedges in H. The configuration C1 leads to

106, 475 directed edges with a mean ACV of 0.436 and 157, 412 2-to-1 directed hyperedges
38

with a mean ACV of 0.437 and the configuration C2 leads to 109, 810 directed edges with

a mean ACV of 0.288 and 274, 048 2-to-1 directed hyperedges with a mean ACV of 0.288.

5.2 Association Characteristics of Financial Time-Series

Figure 5.1(a) shows the weighted in-degree distribution of the nodes of the association hy-

pergraph for configuration C1. Here the weighted in-degree of a node v is
∑

e:{v}=H(e)w(e),

i.e., the sum of weights of all hyperedges entering v. Figure 5.1(b) shows the weighted out-

degree distribution of the nodes of the association hypergraph for configuration C1. Here

the weighted out-degree of a node v is
∑

e:v∈T (e)
w(e)
|T (e)| , i.e., the sum of normalized weights

of all hyperedges leaving v. The mean ACV of directed edges is 0.43 and of 2-to-1 directed

hyperedges is 0.44.

Using our directed hypergraph based modeling, we are able to deduce some interesting

facts about the current stock market that would have been difficult to validate by other

means. Our findings concern relationship between producers and consumers in the stock

market.

Roughly speaking, a producer is any entity (company) that has very few dependency

on others for its resource requirements. A producer thrives mostly on its own or has little

resource requirements compared to the rest. Some notable sectors that are likely to have

entities in producer category are BM, CG, E , and SV sectors. On the other hand, a

consumer is an entity that is highly dependent on other entities or end-users for its own

functioning. Sectors such as CC, CN , H, SV, and T are likely to have entities in consumer

category. A particular exception is the SV sector in which there are both producers and

consumers depending on the particular industry they belong to. For example, entities in

SV sector that deal with real estate operations (e.g., Kimco Realty Corporation) are mostly

producers whereas entities in SV sector that provide basic services to the end user (e.g.,

Yahoo! Inc.) mostly satisfy the consumer category.

Time-series that are less dependent on other time-series for their resources (e.g., Produc-

ers) are likely to be more predictable in comparison to others. Why? Since these time-series

do not depend on other time-series for raw materials and other basic requirements, their

39

(a)

(b)

Figure 5.1 Weighted degree distribution. (a) Weighted in-degree distribution and (b)
Weighted out degree distribution. The ids of nodes are on the x-axis and their weighted
in-degree (out-degree) values are on the y-axis.

40

value in the market can be estimated by analyzing the demand of the sources of raw mate-

rials on which they rely on. The weighted in-degree of a node in our directed hypergraph

model indicates the level of predictability of the corresponding time-series. The greater

the weighted in-degree of a node is, the more predictable the corresponding time-series is.

We see from Figure 5.1(a) that XOM (E sector) and GT (CC sector) have high weighted

in-degree values in comparison to others from our chosen list. In the case of GT (The

Goodyear Tire & Rubber company), although the sector it belongs to is different from the

ones we listed for producer category, one of the basic materials this time-series depends on

is rubber, which is a naturally occurring compound. We also experimentally found out that

of the time-series with the top 25 weighted in-degree values, 72% of them belong to sectors

BM (iron, gold, silver, and metal mining industries), E (oil, gas, and coal industries), and

SV (real estate industries).

Time-series that have direct interactions with end-users for their products (e.g., Con-

sumers) are more likely to be good predictors. Why? These time-series happen to be good

predictors as they get affected by their immediate actions. The economy is driven by the

end-user’s requirements. By being in direct contact with the end-user, the performance

of the consumer time-series in the market follows direct patterns of the behavior of the

end-user.

The weighted out-degree of a node in our modeling indicates how much that node

(time-series) can predict other time-series. The greater the weighted out-degree of a node

is, the higher its ability to predict other time-series is. We see from Figure 5.1(b) that

PG (CN sector) and JNJ (H sector) have high out-degree values in comparison to others

from our chosen list. We also experimentally found out that of the time-series with the

top 25 weighted out-degree values, 84% of the time-series belong to sectors H (facilities,

biotechnology, and drugs), SV (particularly, business, real estate, and restaurant services),

and T (software, hardware, and semiconductors).

Table 5.1 shows, for each configuration, the directed edge and the 2-to-1 directed hy-

peredge with the highest ACV for each selected financial time-series from different sectors.

For example, the best prediction directed edge for GT (The Goodyear Tire & Rubber Com-

pany) shown in Row 3 for C1 and C2 represents a relationship between GT and PPG (PPG
41

Table 5.1 The directed edge and the 2-to-1 directed hyperedge with the highest ACV for each selected financial time-series from different
sectors and for each configuration choice are shown. The sector information of each financial time-series is indicated in parenthesis (google
finance).

Row Time-series Configuration Top directed edge Top 2-to-1 directed hyperedge
1 EMN (BM) C1 PPG (BM) → EMN (BM) AVY (BM), GT (CC) → EMN (BM)

C2 PPG (BM) → EMN (BM) BLL (BM), IFF (BM) → EMN (BM)
2 HON (CG) C1 TXT (C) → HON (CG) CAT (CG), ITT (T) → HON (CG)

C2 UTX (CG) → HON (CG) BA (CG), ROK (T) → HON (CG)
3 GT (CC) C1 PPG (BM) → GT (CC) DOW (BM), F (CC) → GT (CC)

C2 PPG (BM) → GT (CC) ETN (T), FMC (BM) → GT (CC)
4 PG (CN) C1 CL(CN) → PG (CN) CLX(CN), K (CN) → PG (CN)

C2 CL(CN) → PG (CN) ABT(H), CPB (CN) → PG (CN)
5 XOM (E) C1 CVX (E) → XOM (E) HES (E), SLB (E) → XOM (E)

C2 CVX (E) → XOM (E) COG (E), PEG (U) → XOM (E)
6 AIG (F) C1 C (F) → AIG (F) BEN(F), PGR (F) → AIG (F)

C2 C (F) → AIG (F) AON (F), CI (F) → AIG (F)
7 JNJ (H) C1 MRK (H) → JNJ (H) IFF (BM), SYY (SV) → JNJ (H)

C2 MRK (H) → JNJ (H) CL (CN), PEP (CN) → JNJ (H)
8 JCP (SV) C1 M (SV) → JCP (SV) FDO (SV), GPS (SV) → JCP (SV)

C2 M (SV) → JCP (SV) COST (SV), HD (SV) → JCP (SV)
9 INTC T) C1 LLTC (T) → INTC (T) EMC (T), QCOM (T) → INTC (T)

C2 XLNX (T) → INTC (T) CTXS (T), QCOM (T) → INTC (T)
10 FDX (T P) C1 AXP (F) → FDX (T P) EXPD (T P), ITT (T) → FDX (T P)

C2 AXP (F) → FDX (T P) EXPD (T P), BAC (F) → FDX (T P)
11 TE (U) C1 PGN (U) → TE (U) PEG (U), SO (U) → TE (U)

C2 AEP (U) → TE (U) SO (U), TEG (U) → TE (U)

42

Industries, Inc.). This relationship may be interpreted in terms of GT procuring raw ma-

terials (e.g., precipitated silicas) from PPG for the manufacturing or processing of rubber.

A more interesting many-to-one relationship is represented by the best prediction 2-to-1

directed hyperedge for GT shown in Row 3 for C1. Here, the 2-to-1 directed hyperedge

for GT represents a relationship of GT with DOW (The Dow Chemical Company) and F

(Ford Motor Company). This relationship may be interpreted in terms of GT procuring

raw materials (e.g., polyurethane polymer) from DOW, whereas the relationship with F

may be attributed towards F utilizing the products (e.g., tires) from GT. Thus, we see

that 2-to-1 directed hyperedges provide meaningful and more interesting information than

directed edges do.

Table 5.2 shows, for each configuration, the 2-to-1 directed hyperedge with the highest

ACV and the constituent directed edges for each selected financial time-series from different

sectors. For example, in Row 5, for C1 the accuracy of HES (Hess Corporation) predicting

XOM (Exxon Mobil Corporation) is 0.55 and SLB (Schlumberger Limited) predicting XOM

is 0.54, but both of them together predicting XOM is 0.58. This shows that the combination

of two financial time-series leads to a better predicting 2-to-1 directed hyperedge.

5.3 Association-Based Similarity

5.3.1 Comparison with Euclidean Similarity

Figure 5.2 compares in-similarity and out-similarity values with Euclidean similarity values

for configuration C1. Here, the Euclidean similarity between any two financial time-series

A and B is computed as follows. Let ∆(A) = (a1, a2, . . . , an) and ∆(B) = (b1, b2, . . . , bn),

where ai and bi are the values that A and B take in the i’th observation. The Euclidean dis-

tance between A and B is defined as ED(A,B) = ||normalized(∆(A))−normalized(∆(B))||,

where for any vector V = (v1, v2, . . . , vn), normalized(V) = (v1/||V ||, v2/||V ||, . . . , vn/||V ||)

and ||V || = (
∑n

i=1 v
2
i)

1
2 . Now, the Euclidean similarity ES(A,B) between A and B is defined

as ES(A,B) = 1− 1
2×ED(A,B). Note that ES(A,B) is a real value in the range [0, 1] such

that a higher value indicates a greater similarity. Figure 5.2 shows that Euclidean similarity

does not differentiate between financial time-series pairs as distinctly as our similarity mea-

43

Table 5.2 The 2-to-1 directed hyperedge with the highest ACV and the constituent directed edges for each selected financial time-series
from different sectors and for each configuration choice are shown.

Row Time-series Configuration Top 2-to-1 directed hyperedge Directed edge 1 Directed edge 2
1 EMN (BM) C1 AVY, GT → EMN (0.52) AVY → EMN (0.49) GT → EMN (0.49)

C2 BLL, IFF → EMN (0.37) BLL → EMN (0.32) IFF → EMN (0.33)
2 HON (CG) C1 CAT, ITT → HON (0.53) CAT → HON (0.5) ITT → HON (0.49)

C2 BA, ROK → HON (0.38) BA → HON (0.33) ROK → HON (0.33)
3 GT (CC) C1 DOW, F → GT (0.51) DOW → GT (0.48) F → GT (0.47)

C2 ETN, FMC → GT (0.37) ETN → GT (0.33) FMC → GT (0.33)
4 PG (CN) C1 CLX, K → PG (0.53) CLX → PG (0.5) K → PG (0.49)

C2 ABT, CPB → (0.36) ABT → PG (0.32) CPB → PG (0.32)
5 XOM (E) C1 HES, SLB → XOM (0.58) HES → XOM (0.55) SLB → XOM (0.54)

C2 COG, PEG → XOM (0.37) COG → XOM (0.33) PEG → XOM (0.31)
6 AIG (F) C1 BEN, PGR → AIG (0.54) BEN → AIG (0.51) PGR → AIG (0.51)

C2 AON, CI → AIG (0.37) AON → AIG (0.33) CI → AIG (0.33)
7 JNJ (H) C1 IFF, SYY → JNJ (0.48) IFF → JNJ (0.45) SYY → JNJ (0.45)

C2 CL, PEP → JNJ (0.36) CL → JNJ (0.32) PEP → JNJ (0.31)
8 JCP (SV) C1 FDO, GPS → JCP (0.51) FDO → JCP (0.48) GPS → JCP (0.48)

C2 COST, HD → JCP (0.37) COST → JCP (0.32) HD → JCP (0.33)
9 INTC T) C1 EMC, QCOM → INTC (0.55) EMC → INTC (0.52) QCOM → INTC (0.52)

C2 CTXS, QCOM → INTC (0.4) CTXS → INTC (0.35) QCOM → INTC (0.35)
10 FDX (T P) C1 EXPD, ITT → FDX (0.52) EXPD → FDX (0.49) ITT → FDX (0.46)

C2 EXPD, BAC → FDX (0.37) EXPD → FDX (0.33) BAC → FDX (0.33)
11 TE (U) C1 PEG, SO → TE (0.55) PEG → TE (0.52) SO → TE (0.52)

C2 SO, TEG → TE (0.4) SO → TE (0.35) TEG → TE (0.35)

44

sures do. This could be because of the fact that Euclidean similarity accounts for pair-wise

differences in price variations on a day-to-day basis whereas the similarity measures account

for the closeness in being associated with common sets of financial time-series on an average

basis.

5.3.2 Clusters of Financial Time-Series

Figure 5.3 shows a clustering of financial time-series for configuration C1. The clusters

are obtained using the approach explained in Section 3.3.2. Here, the collection S is the

set of all financial time-series in our data set. The value of parameter t in the t-clustering

algorithm is set to 104, which is the total number of sub-sectors over the entire sectors (as

pointed out at the beginning of Chapter 5). The first cluster center is picked from the sector

T as this sector has the maximum number of financial time-series in our data set.

We experimentally verified that the weight function in Definition 3.13 satisfies the tri-

angle inequality property, and hence the factor 2-approximation of the optimal diameter of

the t-clustering is in fact achieved by the algorithm. For clarity of display, Figure 5.3 shows

only clusters of size greater than 6. The edges that connect all cluster centers to other

nodes in their clusters and the edges that interconnect the cluster centers are also shown

in the figure. This partial similarity graph consists of 256 nodes and 298 edges. To show

the quality of the clustering obtained, the following information is relevant: (i) the mean

diameter over all clusters obtained is 0.83 and the overall mean distance in SGS is 0.89 and

(ii) the largest cluster of size 29 contains all financial time-series from the sector T .

5.4 Leading Indicators of Financial Time-Series

In this experiment, we find the leading indicators for the collection S of all financial time-

series using the approach explained in Section 4.1. In order to obtain a dominator set that

covers the rest of the financial time-series via directed edges and 2-to-1 directed hyperedges

of high ACV , we set a threshold for ACV (ACV -threshold) and discard all directed edges

and 2-to-1 directed hyperedges below this threshold during the computation of the domi-

nator. Now, for the computation of dominators for configurations C1 and C2, we consider

45

(a)

(b)

Figure 5.2 Euclidean similarity comparision. (a) In-similarity (for configuration C1) vs
Euclidean similarity and (b) Out-similarity (for configuration C1) vs Euclidean similarity.
The in-similarity (out-similarity) values are on the x-axis and the corresponding Euclidean
similarity values are on the y-axis.

46

Figure 5.3 Clusters of financial time-series for configuration C1. Note that this figure is made up of multiple colors and the colors
correspond to sectors in financial domain. The big circles represent cluster centers and the small ones represent other nodes. The size of
the big circles is directly proportional to the number of nodes assigned to them. The small circles are attached to their respective cluster
centers.

47

the following choices for thresholds: (i) top 40% directed hyperedges w.r.t. ACV s—this sets

ACV -threshold to 0.45 for C1 and sets ACV -threshold to 0.32 for C2, (ii) top 30% directed

hyperedges w.r.t. ACV s—this sets ACV -threshold to 0.46 for C1 and sets ACV -threshold

to 0.33 for C2, and (iii) top 20% directed hyperedges w.r.t. ACV s—this sets ACV -threshold

to 0.47 for C1 and sets ACV -threshold to 0.34 for C2. Tables 5.4 and 5.3 shows the size

of dominator for almost all the financial time-series in our data set. Here, in row 1 of Ta-

ble 5.4, for the case when ACV -threshold is set to 0.45, our greedy approximation algorithm

(Section 4.1) finds a dominator of size 16 that covers 96% of all financial time-series in our

data set.

5.5 Association-Based Classifier

In this experiment, we evaluate the accuracy of the assignments given by the Asociation-

Based Classifier on several test data sets. For each training data set, we construct an

association hypergraph H = (V,E) using the procedure described in Section 3.2. Next, in

the corresponding test data set, all the financial time-series are converted to their respective

delta time-series and then discretized using the methodology described in Section 5.1.1. We

choose a small collection S of financial time-series, usually a dominator for all financial

time-series in our data sets. The values of every financial time-series A in the dominator

are already known from the discretized representation of A. The best predicted value of all

other financial time-series in our data sets is computed using the association-based classifier

presented in Section 4.2. We define the classification confidence for any financial time-series

Y on a particular test data set as the fraction of days on which the value assigned by our

classifier matches the value in Y ’s discretized representation, obtained from the same data

set.

We also compute the accuracy of value assignments given by other data mining classifiers

such as the support vector machine (SVM), multilayer perceptron, and logistic regression.

For experiments here, the classifiers provided by Weka [HFH+09] are used. The following

methodology is used to predict the values of any financial time-series Y by constructing a

training data set whose feature set is the set S of financial time-series: Consider a directed

48

Table 5.3 The size of a dominator for all financial time-series and the mean classification confidence of different classifiers for each
configuration are shown obtained using Algorithm 5.

Row Configuration ACV-
threshold

Dominator
Size

Percent
Cov-
ered

Mean Classification Confidence

In-sample Out-sample
(top %
hyper-
edges)

Association-
Based
Classifier

Association-
Based
Classifier

SVM Multilayer
Percep-
tron

Logistic
Re-
gres-
sion

1 C1 0.45
(40%)

13 99 0.643 0.719 0.546 0.716 0.541

0.46
(30%)

15 95 0.646 0.723 0.509 0.718 0.508

0.47
(20%)

22 94 0.65 0.724 0.494 0.719 0.492

2 C2 0.32
(40%)

20 96 0.646 0.716 0.429 0.627 0.231

0.33
(30%)

30 96 0.649 0.719 0.433 0.638 0.238

0.34
(20%)

31 91 0.65 0.722 0.403 0.633 0.224

49

Table 5.4 The size of a dominator for all financial time-series and the mean classification confidence of different classifiers for each
configuration are shown obtained using Algorithm 6.

Row Configuration ACV-
threshold

Dominator
Size

Percent
Cov-
ered

Mean Classification Confidence

In-sample Out-sample
(top %
hyper-
edges)

Association-
Based
Classifier

Association-
Based
Classifier

SVM Multilayer
Percep-
tron

Logistic
Re-
gres-
sion

1 C1 0.45
(40%)

16 96 0.651 0.723 0.526 0.717 0.519

0.46
(30%)

22 93 0.653 0.723 0.514 0.718 0.510

0.47
(20%)

26 91 0.656 0.728 0.515 0.725 0.512

2 C2 0.32
(40%)

28 96 0.65 0.721 0.429 0.627 0.231

0.33
(30%)

40 90 0.652 0.722 0.433 0.638 0.238

0.34
(20%)

36 78 0.652 0.72 0.403 0.633 0.224

50

(a)

(b)

Figure 5.4 Classification confidence distribution of the association-based classifier for in-
sample and out-sample data for configuration C1. The start year for training data set is
1996. Figure (a) uses the dominator obtained from Algorithm 5 and Figure (b) uses the
dominator obtained from Algorithm 6.

51

hyperedge e in H such that e = ({A1, A2}, {Y }) and A1, A2 ∈ S. The training data set is

built by using each row in AT (e) as a data point. Here, the particular value assignment

A1 = v1 and A2 = v2 is the feature value, and the corresponding value y∗ of Y (defined in

Definition 3.6(1)) is the class value.

5.5.1 Evaluation

Tables 5.4 and 5.3 list, for each dominator, the mean classification confidence over all

financial time-series for configurations C1 and C2. Here, in-sample indicates the training

data set for constructing the directed hypergraph model and out-sample indicates the test

data set for evaluating the value assignments made by the classifiers. The in-sample contains

financial time-series data from Jan 1, 1996 to Dec 31, 2008 and the out-sample contains

financial time-series data from Jan 1, 2009 to Dec 31, 2009. From this table, it is clear

that the association-based classifier outperforms SVM, Logistic Regression, and Multilayer

Perceptron for both configurations C1 and C2. Also, its mean classification confidence is

consistent regardless of k, whereas the mean classification confidence of other classifiers

decreases as k increases.

Figures 5.4(a) and 5.4(b) shows the distribution of the mean classification confidence

over various in-sample and out-sample data for configuration C1 where the dominator hav-

ing ACV -threshold of 0.45 is chosen to be S. In these figures, the mean classification

confidence for each in-sample data has been computed by increasing the training data set

incrementally one year at a time, starting from Jan 1, 1996 and ending at Dec 31, 2008.

The corresponding out-sample contains financial time-series data for one year immediately

following the last day in the training data set. For instance, if the training data set is

from Jan 1, 1996 to Dec 31, 2001, then the corresponding test data set contains financial

time-series from Jan 1, 2002 to Dec 31, 2002. From these figures, it is evident that the

association-based classifier achieves mean classification confidence in the range 0.60 to 0.75

on both in-sample and out-sample data. The higher classification confidence values for out-

sample data compared to in-sample data may be attributed to the fact that the out-sample

data is substantially smaller than the in-sample data.

52

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We proposed a directed hypergraph based model to capture attribute-level associations and

their strength in any database. We tested this model on a financial time-series data set

(S&P 500). The clustering method based on our similarity notions allowed to find clusters

of financial time-series. The association-based classifier coupled with the leading indicator

of all the financial time-series exhibited a methodology to use mva-type association rules

and predict values of financial time-series. We also demonstrated the consistency of our

model by varying k throughout our experiments.

Our work raises interesting questions on the applications of association rule mining. It

might be fruitful to explore associations by applying the directed hypergraph model on

data sets such as gene databases, social network data sets, and medical databases. It would

be useful to understand how the different parameters (k, γ, and the sizes of head and tail

sets) affect the model. Examples of applications of association rule mining in the context

of social network data sets and medical database have been presented in Section 3.1.

In genetic research, a common problem is to effectively model the interrelationship

among multiple genes. By recording the gene expression values of a set of genes, researchers

work towards obtaining the gene expression values of others. In general, knowledge about

the genes help researchers and physicists to understand the genetic state of patients and

the genetic conditions for diseases.

Anastassiou [Ana07] provided a synergy-based method to analyze the interactions among

multiple interacting genes. Such a framework can be used to predict the presence of a disease

or the absence of a disease, based on given gene expression values. Although this is recent

work in disease prediction, there been continuous interest in locating genes with similar

characteristics. For example, Eisen et al. [ESBB98] provided a variation of clustering to

53

find clusters of similar genes. Finding a group of genes that instigate a certain disease is

very important in recognizing a medical condition in patients.

The directed hypergraph based model, i.e. association hypergraph, presented in this

thesis can be used to model gene interactions. By modeling the gene interactions using

an association hypergraph, we can address the following problems: (1) identify clusters of

similar genes and predict gene expression values of a set of genes, and (2) identify disease

causing conditions present among a set of genes and predict the presence of a disease or the

absence of a disease. Let a gene database consist of gene expression values recorded from

patients. Also, let the database contain information on the status of patients being affected

by a certain disease. Here genes and diseases are the multi-valued attributes, and each

observation consists of the gene expression values and the disease status, of a particular

patient.

The problem stated in (1) can be addressed by considering the part of the gene database

that only consists of the multi-valued attributes that correspond to the gene expression

values and constructing an association hypergraph using the technique described earlier

in Section 3.1. By considering the multi-valued attributes that correspond to the gene

expression values, interactions among the genes can be modeled using directed hyperedges.

Then, groups of similar genes can be identified by finding clusters of similar multi-valued

attributes, as given in Section 3.3.2. Also, by knowing the gene expression values of a

subset of genes, the gene expression values of the remaining genes can be predicted using

the association-based classifier given in Section 4.2.

The problem stated in (2) can be addressed by considering the entire gene database and

constructing an association hypergraph using the technique described earlier in Section 3.1.

In this problem, we are interested in obtaining a prediction for the presence of a disease or

the absence of a disease in patients. Therefore, during the construction of the association

hypergraph, the directed hyperedges whose headset consist a disease are the only ones

that get included in the association hypergraph. The remaining directed hyperedges are

not considered for inclusion in the association hypergraph. Now, by knowing the gene

expression values of a subset of genes for a patient, a disease prediction can be obtained by

using the association-based classifier given in Section 4.2.
54

REFERENCES

[ADS83] G. Ausiello, A. D’Atri, and D. Saccá. Graph algorithms for functional depen-
dency manipulation. Journal of the ACM, 30(4):752–766, 1983.

[ADS85] G. Ausiello, A. D’Atri, and D. Saccá. Strongly equivalent directed hypergraphs.
Analysis and Design of Algorithms for Combinatorial Problems, 25:1–25, 1985.

[AG97] G. Ausiello and R. Giaccio. On-line algorithms for satisfiability formulae with
uncertainty. Theoretical Computer Science, 171(1–2):3–24, 1997.

[AIS93] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In SIGMOD 93, pages 207–216. ACM, 1993.

[Ana07] D. Anastassiou. Computational analysis of the synergy among multiple inter-
acting genes. Molecular Systems Biology, 3:1–8, 2007.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In VLDB 94, pages 487–499. Morgan Kaufmann, 1994.

[AV06] D. Arthur and S. Vassilvitskii. How slow is the k-means method? In ACM
Symposium on Computational Geometry. ACM, 2006.

[BAG99] R. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining in
large, dense databases. In ICDE 99, pages 188–197. IEEE, 1999.

[Bay97] R. Bayardo. Brute-force mining of high-confidence classification rules. In KDD
97, pages 123–126. ACM, 1997.

[Ber73] C. Berge. Graphs and Hypergraphs. North-Holland, 1973.

[BZ07] B. Bringmann and A. Zimmermann. The chosen few: On identifying valuable
patterns. In ICDM 07, pages 63–72. IEEE, 2007.

[CDP04] S. Chawla, J. Davis, and G. Pandey. On local pruning of association rules using
directed hypergraphs. In ICDE 04, page 832. IEEE, 2004.

[CH03] C. Creighton and S. Hanash. Mining gene expression databases for association
rules. Bioinformatics, 19:79–86, 2003.

[Chv79] V. Chvatal. A greedy heuristic for the set covering problem. Mathematics of
Operations Research, 4:233235, 1979.

[CSCR+06] P. Carmona-Saez, M. Chagoyen, A. Rodriguez, O. Trelles, J. Carazo, and
A. Pascual-Montano. Integrated analysis of gene expression by association
rules discovery. BMC Bioinformatics, 19:79–86, 2006.

55

[ESBB98] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display
of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95(25):14863–
14868, December 1998.

[GLPN93] G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. Directed hypergraphs and
applications. Discrete Applied Mathematics, 42(2–3):177–201, 1993.

[Gon85] T. Gonzalez. Clustering to minimize the maximum intercluster distance. The-
oretical Computer Science, 38:293–306, 1985.

[GS02] G. Gallo and M. Scutella. A note on minimum makespan assembly plans.
European Journal of Operational Research, 142:309–320, 2002.

[HFH+09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten.
The weka data mining software: An update. SIGKDD Explorations, 11, 2009.

[HKKM98] E. Han, G. Karypis, V. Kumar, and B. Mobasher. Hypergraph based clustering
in high-dimensional data sets: A summary of results. IEEE Data Eng. Bull.,
21(1):15–22, 1998.

[Joh74] D. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256278, 1974.

[KH06] A. Knobbe and E. Ho. Maximally informative k-itemsets and their efficient
discovery. In KDD 06, pages 237–244. ACM, 2006.

[KNO+03] L. Krishnamurthy, J. Nadeau, G. Ozsoyoglu, M. Ozsoyoglu, G. Schaeffer,
M. Tasan, and W. Xu. Pathways database system: an integrated system for
biological pathways. Bioinformatics, 19(8):930–937, 2003.

[LHM98] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In KDD 98, pages 80–86. ACM, 1998.

[LHM99] B. Liu, W. Hsu, and Y. Ma. Mining association rules with multiple minimum
supports. In KDD 99, pages 337–341. ACM, 1999.

[Llo82] S. Lloyd. Least square quantization in pcm. IEEE Transactions on Information
Theory, 28:129137, 1982.

[Lov75] L. Lovasz. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383390, 1975.

[LS95] W. Lin and M. Sarrafzadeh. A linear arrangement problem with applications.
In ISCAS 95, pages 57–60, 1995.

[LSW97] B. Lent, A. Swami, and J. Widom. Clustering association rules. In ICDE 97,
pages 220–231. IEEE, 1997.

[NLHP98] R. Ng, L. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained association rules. In SIGMOD 98, pages 13–24.
ACM, 1998.

[OA04] M. Ozdal and C. Aykanat. Hypergraph models and algorithms for data-pattern-
based clustering. Data Mining and Knowledge Discovery, 9(1):29–57, 2004.

56

[Ord06] C. Ordonez. Comparing association rules and decision trees for disease predic-
tion. In HIKM 06, pages 17–24. ACM, 2006.

[Pre00] D. Pretolani. A directed hypergraph model for random time dependent shortest
paths. European Journal of Operational Research, 123:315–324, 2000.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65:386408, 1958.

[SA95] R. Srikant and R. Agrawal. Mining generalized association rules. In VLDB 95,
pages 407–419. Morgan Kaufmann, 1995.

[SA96] R. Srikant and R. Agrawal. Mining quantitative association rules in large
relational tables. In SIGMOD 96, pages 1–12. ACM, 1996.

[SVA97] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item con-
straints. In KDD 97, pages 67–73. ACM, 1997.

[SVL06] A. Siebes, J. Vreeken, and M. Leeuwen. Item sets that compress. In SDM 06.
SIAM, 2006.

[TT09] M. Thakur and R. Tripathi. Linear connectivity problems in directed hyper-
graphs. Theoretical Computer Science, 410(27–29):2592–2618, 2009.

[Vie04] A. Vietri. The complexity of arc-colorings for directed hypergraphs. Discrete
Applied Mathematics, 143(1-3):266–271, 2004.

[Yah10] Yahoo.com. Yahoo finance. http://finance.yahoo.com/, 2010.

57

ABOUT THE AUTHOR

Ramanuja Simha studied information science at The National Institute of Engineering af-

filiated to the Visvesvaraya Technological University from 2001 to 2005. He graduated with

a Bachelor of Engineering in Information Science. Then, he worked at Tesco Hindustan

Service Center as a Software Engineer from 2005 to 2008, and had the title of a Senior

Software Engineer when he left the firm. He began his graduate studies in computer science

at the University of South Florida in 2008. There, he pursued research in Algorithms and

Data Mining under the supervision of Prof. Rahul Tripathi. During this period, he also

completed a summer internship at the National Center for Atmospheric Research in the

Computational and Information Systems Laboratory.

	University of South Florida
	Scholar Commons
	2011

	Mining Associations Using Directed Hypergraphs
	Ramanuja N. Simha
	Scholar Commons Citation

	tmp.1323289539.pdf.lMxFM

