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Tyrosinase-like Activity of Several Alzheimer’s Disease Related and Model Peptides 

and their Inhibition by Natural Antioxidants  

Kashmir Singh Juneja 
 

ABSTRACT 
 
 
 

Neurodegenerative diseases are associated with loss of neurons ultimately leading 

to a decline in brain function. Alzheimer’s disease (AD) is considered one of the most 

common neurodegenerative disorders that affects 16 million people worldwide.  The 

cause of the disease remains unknown, although significant evidence proposes the 

amyloid β-peptide (Aβ) as a potential culprit.  The binding of Cu2+ by the soluble 

fragments of Aβ have shown to form Type-3 copper centers and catalyze the oxidation of 

catechol-containing neurotransmitters.  Furthermore, the use of flavonoids as antioxidants 

to slow or inhibit the neurotransmitter oxidation has suggested further health benefits 

with their consumption.  A structure-function correlation is also made between the 

flavonoids and their reactively with Cu2+-Aβ.  Mechanistic insight into the binding of 

catechol and dioxygen within the tyrosinase-like mechanism are made using a 

metallopeptide modeling the active site of the metzinicins. 
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Chapter One  
 
 

Introduction 
 
 

Enzymes 
 

Enzymes are essential proteins that have the ability to regulate and govern 

numerous reactions required for life.  They serve as biological catalysts, reducing the 

energy barrier in a reaction.  The catalytic proficiency is further enhanced by an 

enzyme’s ability to be substrate specific. In general, enzymes can be categorized on the 

basis of the type of reaction in which they perform.  Examples include oxidoreducatses, 

hydrolases, and transferases. 

The catalysts that fall under the oxidoreducatase category are involved in redox 

reactions.  These redox reactions involve the transfer of electron(s) from one species to 

another.1 Redox reactions are involved extensively in industrial application, humus 

degradation, and are essential for life on this planet.  Biological systems use these 

oxidoreductases in anabolism, catabolism, protective, and energy sublimentive 

functions.2  Being that the inside of the cell is under reductive conditions, these enzymes 

are used to regulate and specify when and where a redox reaction takes place.  

In biological systems, constitutes formed are sometimes the result of several 

enzymes.  Whether the product is modified or the enzyme is regulated, it is usually a 

cascade of reactions that is involved in synthesizing the necessary biological components.  

Hydrolases are another class of enzymes that activate a water molecule to serve as a 

nucleophile in a substrate-specific bond cleavage.2  These hydrolytic enzymes are further 

classified on the basis of their substrate specificity.  An example is endopeptidases which 
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cleave peptide bonds within a peptide or protein at specific locations other then C and N-

terminal domains.  The structure of the protein, specifically the active site, controls the 

specificity of the enzyme.  In many enzymes, metals ions can be found within the active 

site to assist in catalysis. 

 Transition metals are excellent Lewis acids that have the ability to carry a charge 

and still contain a high electron affinity.3  In an effort to continue catalysis, metal ion(s) 

undergo a degree of mobility by making slight changes in its coordination during a 

reaction.  The differences in metal ions allow each to prefer particular geometries and 

types of chemistry.3  Table (1-1) summarizes information about several well-known 

metalloenzymes. 

Table 1-1.  Information on some metalloenzymes. 
 
Metalloenzyme Metal 

Ion(s)
Occurrence Function 

Reverse 
Transcriptase3 

Zn Human 
immunodeficiency 
virus (HIV) 

Transcribes ssRNA into dsDNA 

Tyrosinase3 2 Cu Plants and Animals Hydroxylation and oxidation of 
phenol 

Lipoxygenase3 Fe Animals Catalyse the dioxygenation of 
polyunsaturated fatty acids 

Methionine 
aminopeptidase3 

2 Co Bacteria to Animals Removal of N-terminal 
methionine 

Urease3 2 Ni Jack Bean and 
bacteria 

Hydrolysis of urea to ammonia  

Mn-catalase3 2 Mn Prokaryote Decomposition of  
2 H2O2  2 H2O + O2 

Bromoperoxidase3 V Some brown & red 
marine algae 

Defensive Mechanism 

Chromodulin4 

 
Cr Human Unknown, possible insulin 

signaling 
DMSO reductase3 Mo Bacteria Dimethyl sulfoxide to dimethyl 

sulfide 
Acetylene 
hydratase3 

W Pelobacter 
acetylenicus 

Hydration of acetylene to 
acetaldehyde 
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Metzincins 
 

The function of a metalloenzyme can be related to the transition metal ion(s) 

within its active site.  Of the transition metals, zinc is one of the most readily available to 

biological systems, ranging from 10-11 to 10-3 M in various portions of a cell.3  Zn(II) ion 

has the electronic configuration of [Ne] 3d10, lacking both spectroscopic and magnetic 

properties.  Like many of the first row transition metals, zinc is often found in divalent 

state (Zn2+) because of the loss of the 4s2 electrons.  When considering divalent cations, 

Zn2+ is an excellent Lewis acid, second only to Cu2+.3  The unique properties of Zn2+ also 

include extremely flexible coordination geometry extending, from 4 to 6 coordination. 

The most common ligands for Zn2+ are thiolate, imidazole, water, and carboxylate.  The 

Zn2+ found in metalloenzymes can serve a structural role or be involved in the reaction.  

For example, the Zn2+ in Cu,Zn-superoxide dismutase serves a structural role that 

stabilizes the protein.3  In other cases Zn2+ is involved in reactions, where in the 

metalloenzymes most always perform hydrolysis.  The classification of these 

hydrolytically active Zn2+ enzymes is based on the ligands coordinated to the metal ion 

and the substrate specificity.  

For the past two decades, several large groups of Zn2+-containing enzymes have 

received much attention because of similarities in their structure and distinctive location.  

The following groups have been classified as zinc endopeptidases: astacins, adamalysins, 

serralysins, matrixins.5  These endopeptidases contain a common α-helical Zn2+ binding 

motif (HEXXHxxGxxH) and a distant methionine turn (Figure 1.1).  It is because of these 

similarities that all of these families have been grouped into one super family called the 

metzincins.5  Despite their common structure, the metzincins have been found in  
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 numerous locations including caryfish digesitive fluid, sea urchin embryos, and snake 

vemon.5,6  In the metzincins, the metal is coordinated by 3 His side chains and a water 

molecule which is H-bonded to the Glu in the motif.5  Most recent evidence reveals a 

distant Tyr after the Met-turn in astacin, which stabilizes the enzyme-substrate complex 

through H-bonding and relieves steric hindrance.7  In addition, several studies have 

shown accelerated hydrolytic activity upon substitution of the native Zn2+ with Cu2+ or 

Co2+.7,8   

 It is evident through the properties and abundance of Zn2+ that this unique 

transition metal is one of the most important in biological systems.  The flexibility and 

ligand exchange rate haveforced nature to develop a dynamic scheme of delivery of this 

precious metal.3 Metal substitution experiments have postulated nature’s use of Zn2+ 

instead of another transition metal because of its inertness in redox chemistry. 

 

 
 
Figure 1-1:  Diagram of the zinc environment in the metzincins.5 
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Copper-Containing Enzymes 
 

Copper-associated chemistry is very rich in nature.  Exceeding all other transition 

metals, Cu2+ is a very effective divalent ion for binding organic ligand molecules.3  The 

high electron affinity makes it a valuable asset in biological redox chemistry. Several Cu-

containing enzymes can bind and activate small molecules such as O2.3  It is the affinity 

for these molecules and large redox potential that has forced nature to developed 

specialized transport systems to maintain homeostasis and limit free Cu2+ to 10-18 M in 

the human body.9  

To replenish the body, it is recommended to consume 0.9 mg of copper per day.9  

Copper is absorbed mainly in the small intestine and transported to the liver.  Here, 

transporters and chaperons deliver the metal to various locations in the body.  One of the 

main transports is human copper transport protein (hCtr1). 9   Together with the influx of 

potassium (K+), copper is taken up and delivered to several chaperons or storage 

structures such as the metallothionein pool.3  The chaperons in turn supply Cu to proteins 

like superoxide dismutatse, amyloid precursor protein (APP) dopamine β-hydroxylase, 

and tyrosinase.  The role of many Cu enzymes is O2 activation followed by oxidation of a 

substrate.10  The mechanistic differences within Cu-proteins are due to the protein 

structure, the number of Cu ions, and the coordination chemistry.  

The copper within proteins is usually limited to one of three types of coordination.  

Each copper protein can be categorized as Types I-III.  Type I copper proteins are well-

known for their intense blue color and consist of blue Cu-proteins and blue Cu-

oxidases.11 The blue Cu-proteins contain one copper ion coordinated by two histidines, 

one cystein, and one loosely coordinated methionine in a trigonal or trigonal bipyrimadal 
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conformation.11  An example of a Type I copper protein is the electron transfer protein 

plastocyanin in photosynthesis.  The active site of Type II copper protein is usually 

coordinated by both nitrogen and oxygen-containing ligands in a tetragonally distorted 

configuration.11  A well-known Type II copper enzyme is the radical scavenging Cu/Zn-

superoxide dismutase.  The third group of copper proteins are the EPR silent Type III 

copper proteins.  These copper proteins contain two copper ions as a dinuclear center 

coordinated by six histidine residues.11    One of the best known examples is tyrosinase.   

To date, tyrosinase is considered one of the most well studied multicopper 

oxygenases.  Found widely in living systems, tyrosinase is responsible for the preliminary 

steps in the synthesis of melanin.12  Like all Type III copper proteins, tyrosinase utilizes 

its dinuclear center to bind dioxygen.  Following the subsequent activation of O2, it 

hydroxylates and oxidizes the phenolic substrate to yield the ortho-quinone product 

(Figure 1-2).12  The rates for the oxidation (107 s-1) is ten thousand times that of the 

hydroxylation (103 s-1).11 To determine the mechanism and its intermediates, nitrogen-

based model systems have been used extensively.13    
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The reaction at the dinuclear center of tyrosinase begins with the binding of 

dioxygen, converting the deoxy into the oxy form of the dinuclear center.  Monophenol 

then binds to one of the copper centers, allowing for it to be oriented for ortho 

hydroxylation.  The hydroxylation is believed to go through one of three intermediates 

OH

OH

NH3+

COO-

Tyrosinase

O2
H 2O

O

O

NH3+

COO-

NH2+O

O COO-

NH2+OH

OH COO-

NH2+O

O

L-dopa Dopaquinone

Leucodopachrome

Dopachrome

Eumelanin

NH3+

COO-

OH

Tyrosinase

5,6-dihydroxyindole

 

Figure 1-2:  Scheme depicting tyrosinase activity in the production of melanin.12 
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(Figure 1-3).11  One intermediate involved the oxygen bridge cleavage prior to attack, 

resulting in the formation of a binuclear Cu3+.11  The second is the breakage of the 

oxygen bridge with the attack.11  And lastly, is a possible aryl peroxide intermediate.11  

The resulting diphenol is bound to the “met-D” center (Figure 1-4), allowing for a two-

electron oxidation to form the o-quinone.  In addition to the monophenolase activity, 

tyrosinase can oxidize catechol (diphenols) directly.  Both the met and oxy forms of the 

dinuclear center can bind and promote the oxidation of catechol.  The reaction continues 

in this cycle until the substrate has been depleted or the enzyme is inhibited. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

O N

N

O

O

Cu
3+

N

N N N
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3+
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N N N

O
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O
O
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N

N

N

N
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N N  
 
 
 
Figure 1-3:   Three proposed intermediates for the hydroxylation of phenol by tyrosinase.11   
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The intermediates and mechanism for tyrosinase were solved using various 

synthetic metal complexes as model systems.  The structure of these complexes varies but 

generally contain N-based functional groups such as amine, pyridyl, pyrazolyl, and 

imidazole.14  Through the use of numerous spectroscopic techniques and low-temperature 

experiments, a number of plausible Cu:O2 intermediates have been found.10  However, 

N

N

Cu
2+

O

O

Cu
2+

N

N

N

N

Cu
2+

O

O

Cu
2+

N

N

O

O O N

N

Cu
2+

OH

Cu
2+

N

N

OH

H
+

N

N

Cu
+

H
+

O
O
H2 O

O2

O O N

N

Cu
2+

OH

Cu
2+

N

N

O

OH

OH

O
O

H2 O

H

N

N

Cu
2+

OH

Cu
2+

N

N

OH
OH

Cu
+

N

N

Oxy-T Oxy

met-D deoxy

+

oxy-D

H2 +

+

+3

met

H2 +

Monophenolase Cycle

Diphenolase Cycle

 

Figure 1-4:  Proposed mechanism for tyrosinase.11 
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these model systems have been shown to contain reduced tyrosinase activity.  The 

modeling of active sites for activity and binding is an ever growing trend that extends to 

far beyond just Type III copper proteins.15 

 
Amyloid-β and Alzheimer’s Disease 
 

Through advances in modern medicine, the duration of life has been extended by 

eliminating or postponing various human diseases.  Unfortunately, with the average life 

span almost doubling from the 19th century there has been a significant increase in aging-

related illnesses.16 Neurological disorders such as Alzheimer’s, Parkinson’s, and 

Huntington’s disease, have caused increased concern for the ever-growing number of 

victims. The most common neurodegenerative disease is Alzheimer’s (AD), affecting 

near 4.5 million Americans.17  With only 10% of the cases being familial AD, the 

majority of the occurrences are sporadic and currently unpredictable.17 In general, a 

neurodegenerative disease is associated with the accumulation of misfolded or 

fragmented protein that affects normal neuronal function.9 

 AD is a progressive neurodegenerative disease that causes memory and motor 

skill loss. There are three hallmarks associated with AD which are believed to be 

responsible for the loss of neuronal function, located primarily in the hippocampus and 

cortex: (a) accumulation of neurofibrillary tangles composed of the hyperphosporylated 

microtububle-associated tau protein (p-tau), (b) insoluble plaques formed from the 

amyloid-β peptides (Aβ), and (c) ramped loss of neurons.9,18  Even though the exact 

cause of AD is still unknown, many have hypothesized an amyloid cascade leading to all 

three of the hallmarks. 
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 Even with slight variations, it has been agreed upon that the abnormal processing 

of the transmembrane amyloid precursor protein (APP) causes an increase in the 

production of Aβ.11,17  This overproduction is believed to affect synapses, causing altered 

ionic and enzymatic homeostasis resulting in tangles, plaques, and ultimately cell death.9 

The order and location of cleavage by three secreatases (α, β, γ) determine whether the 

product will be considered amyloidogenic or nonamyloidogenic.9 The nonamyloidogenic 

pathway begins with the α-secreatase cleavage followed by a γ-secreatase forming a 

shorter more soluble fragement of Aβ.9   The amyloidogenic pathway is initiated by β-

secreatase followed again by γ-secreatase.9  The fragments of APP following cleavage 

range from 16-42 amino acids in length (Figure 1-5), with the insoluble  Aβ40 and  Aβ42 

believed to have the largest effect on neuronal cell loss.9,18 

 

In addition to the accumulation of protein fragments,  postmortem studies have 

reported millimolar amounts of Zn2+, Cu2+, and Fe3+ within the amlyoid plaques.17  The 

findings of redox-active metals have fueled the hypothesis of reactive oxygen species 

(ROS) as a major contributor to the degradation of brain function in AD.  The ROS 

species normally generated by the body are used for degradation and defense purposes.2 

The body regulates ROS by both SOD and catalase.  The hypothesis that ROS is part of 

AD is well justified as non-regulated accumulation of redox active metal has led to other 

DAEFR5HDSGY10EVHHQ15KLVFF20AEDVG25SNKGA30IIGLM35VGGVV40 IA42 

Figure 1-5:  Amino acid sequence of Amyloid-β peptides (Aβ).  
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illnesses such as Wilson’s Disease (WD).9  The metal-centered generation of ROS is 

believed to be consistent with the Fenton and Haber-Weiss reactions shown below.9  

 

 

 

Studies have shown that APP is an active participant in copper homeostasis, with 

significant loss of this protein showing elevated levels of free Cu2+.9 Not surprising is that 

Aβ has also shown to chelate metal with a high affinity.19  Through the use of NMR, the 

binding site for the metal has shown to be three His within the first 14 amino acids.20 

Additional studies have shown the possible dimerization and coagulation of Aβ to begin 

at amino acid 17-20.21  Although much emphasis has been put on Aβ40,42 , numerous 

structure studies are focused on all of the Aβ and possible ways to inhibit its formation. 

To date, treatments for AD include metal chelators and acetylcholine esterase 

inhibitors.  Unfortunately there are many side effects associated with the metal chelators, 

specifically due to the chelation of “needed” metal ions.  The binding of redox-active 

metals to solvent-exposed peptide domains has raised the issue of possible ROS 

generation in AD.  This emphasizes the development of bioavailabile metal chelators or 

the use of antioxidants to scavenge ROS.  

Flavonoids  
 

In ancient China, there had been evidence of the use of antioxidants as a remedy 

to cure human illness.  Of these antioxidants, a group of phenolic plant constituents 

encompass a major portion of those consumed around the world for their potential 

benefits.  To date, there are over 6000 of these compounds known as flavonoids.22  

O2
- + H2O2  OH- OH• + O2   (Haber-Weiss reaction) 

Mn+ + H2O2  OH- + OH· + M(n+1)+  (Fenton reaction) 
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Several clinical studies have been done concerning the possible protection against cancer, 

cardiovascular, and neurodegenerative diseases.23,24 They have been further used for their 

potential anti-fungal, anti-microbial, and anti-radical properties.22  

Flavonoids have gained much attention over the years because of their potent 

antioxidant properties and bioavailability. The structural differences of the flavonoids, 

although subtle, have shown to remarkable change their bioactivity.25 It is these 

differences that allow the flavonoids to be divided into subcategories.  The general 

structure consists of two benzene rings (A and B) linked though a tetrahydropyran or α-

pyrone ring (C).22  Flavones (e.g. apigenin) contain a double bond at the 2-3 position, 

while flavanones (e.g. narigenin) are staturated at this position. A double bond at the 2-3 

position and a hydroxyl, methoxy, or sugar at the 3 position represents the flavonol 

category (e.g. quercetin, fisetin).  Dihydroflavonols contain a hydroxyl group at the 3 

position and is absent of the 2-3 double bond.  The catechins lack the ketone functionality 

in the C ring and contains hydroxyl groups at 3, 3’, and 4’ positions.  Many other 

classifications exist for flavonoids that contain further unsatutartion, hydroxylation, 

epoxidation, and sugar modification. Table 1-2 describes the structure of several well 

studied flavonoids. 

 The quantity of each group of flavonoids depends on the kind of plant, climate, 

and location the plant is found.  For example, several categories are found in higher 

amount in citrus, while others are found in green-leaf vegetables.22 Although there is an 

abundance of flavonoids within the diet, their protective properties are only good as they 

are absorbed.  Several flavonoids have better absorptive properties then others.  It has  
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Flavonoids Classification R1 R2 R3 R4 R5 R6 2-3 
Alkene 

4 
Ketone 

(-)-Epicatechin Flavan-3-ol H OH OH OH OH H - - 

(-)-Epigallocatechin 
Gallate Flavan-3-ol Gallate OH OH OH OH OH - - 

Fisetin Flavonol OH H OH OH OH H + + 
Quercetin Flavonol OH OH OH OH OH H + + 
Taxifolin Dihydroflavonol OH OH OH OH OH H - + 
Apigenin Flavone H OH OH H OH H + + 
Narigenin Flavone H OH OH H OH H - + 

Hesperetin Flavanone H OH OH OH OCH3 H - + 

Rutin Flavonol 
glycoside 

Rutinose 
 OH OH OH OH H + + 

 

 

been shown that lactase and β-glycosidase can cleave the glucoside portion off the sugar 

derivatives of flavonoids.22 It is the effects following absorption that has increased the 

interest in the natural polyphenols.  

With numerous illnesses and disease being associated with ROS, the antioxidant and 

antiradical properties of flavonoids have become the center of attention. For a compound 

to be considered a strong antioxidant it must inhibit oxidation reactions and/or the 

production of radicals at a low concentration compared to the oxidizable substrate.  

Table 1-2:  The classification and structure of several well studied flavonoids. 

A

B

C

3'

5'
4'

R 3 O

R 1
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5  4
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Furthermore, the radicals formed by flavonoids must be stable enough not to continue in 

as a chain propagating radical.  These properties associated with flavonoids have been 

used in conjunction with other molecules to further stabilize or complement the 

flavonoids bioactivity.26 

 
Green Tea  

 Believed to have originated some 3000 years ago in ancient China, tea is now one 

of the most consumed beverages in the world.27  The leaf extract of the plant Camellia 

sinensis, also known as tea, have shown to be rich in antioxidant polyphenols, ascorbic 

acid, and trace elements Cr, Mn, Se, and Zn.27  Depending on the species, season, and 

extent of fermentation, the amounts of these health-beneficial compounds can vary 

significantly.  The trace elements Mn, Se, Zn are directly involved with a number of 

enzymes that reduce oxidative damage.3  Biological systems use Mn as a constituent for 

Mn-superoxide dismutase.  Additionally, Se serves as a cofactor for glutathione 

peroxidase, allowing for the removal of peroxide radicals.3  When considering green, 

oolong, and fermented teas, green tea has shown to contain a higher content of catechins 

and other hydroxylated phenols.27,28  Within green tea, the general trend of quantity of 

green tea catechins (GTC) is (-)-epigallocatechin gallate (EGCG) > (-)-epicatechin gallate 

(ECG) > (-)-epicatechin (EC)  ≥ (-)-epigallocatechin  (EGC) >> (+)catechins.27,28  

Green Tea Catechins (GTC) 

 The GTCs are similar in structure, differing only by as many as 2 substitutions 

(Figure 1-6).  The structure of ECG and EC differ only by a gallate present on position 3.  

EGCG and EGC differ only by an additional hydroxyl group on the B ring in position 5’.  

Despite these small differences, studies have shown them to differ in various types of 
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bioactivity and availability.  Like many flavonoids, the GTCs have been shown to exhibit 

potential protective effects against cardiovascular disease, cancer, and neurodegenerative 

disease.28  
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Figure 1-6:  The green tea catechins (A) Epicatechin (EC), (B) Epigallocatechin 
(EGC), (C) Epigallocatechin Gallate (EGCG). 
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GTCs have gained popularity as they have been demonstrated to show metal 

chelating, free radical scavenging, protein interaction, and transcription factor regulatory 

abilities.23  Specifically, several links have been made between GTCs and diseases 

involving ROS.  Following their reactions with free radicals GTCs form a number of 

dimers and seven member anhydride rings.29   In comparison with the body’s natural 

radical scavengers, EGCG can increase cell survival similar to that of catalase in ROS 

affected cells.30  Structurally, implications have been made on the advantage of the 

trihydroxybenzene and gallate moieties to enhance the antioxidant and metal chelation 

abilities.23,28  In addition to its chemical properties, the brain-permeability of GTCs may 

offer beneficial effects in several neurodegenerative diseases.  A recent study on 

Alzheimer’s disease has linked EGCG with APP processing.31  It was shown in vivo and 

in vitro that EGCG enhances the activation of the α-secretase and inhibits β-secretase 

activity, leading more toward a nonamyloidogenic pathway.31  

 Despite their reactivity, there is much concern over the stability of GTCs.  

Following an oral dose of 100mg of GTCs, only 9-10ug/ml will be absorbed.26 The 

absorption deficiency may be due to the change from the acidic stomach to the alkaline 

blood.26  In basic conditions, the trihydroxybenzene is probably more susceptible to 

oxidation and the gallate is hydrolytically cleaved to form gallic acid.26  Despite these 

absorption problems, green tea remains one of many good sources of flavonoids. 
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Citrus Flavonols  
 

Citrus is a flowering plant genus found in the Rutaceae family.   It includes fruits 

such as oranges, grapefruits, and lemons.  There is an annual production of 80 million 

tons of citrus fruits world wide.32 These fruits are known for their characteristic scent and 

sharp taste.  They are rich both in vitamins and flavonoids. Citrus has utilized these 

compounds to develop pigmentation and protection from insects in addition to ROS.22   

Studies have linked the components in citrus to prevention of cardiovascular disease, 

cancers, and allergies.33  Depending on the fruit, citrus can be an excellent source of 

many flavonoids.  Three structurally similar polyphenols found in citrus are quercetin, 

fisetin, and taxifolin, which vary in medicinal effect. 

Quercetin, Fistein, and Taxifolin 

In general, there are several presumed structural requirements for flavonoids to 

have good antioxidant/antiradical properties.  The structural requirements include: a 

catechol/polyphenol B ring, 2-3 double bond, abundance of free hydroxyl groups, and 

specifically the 3-hydroxyl group.34 

Quercetin is the most common flavonol in the human diet.  There is an abundance 

of quercetin in onions, fruits, teas, and red wine.22 Variations of quercertin are found 

naturally, having one or more sugars bound at the 3 position.  Studies have shown these 

sugar moieties assist in the absorption of quercetin.22  Like many flavonoids, queretin 

bind metal in addition to scavenging free radials.22,35 Fisetin is a less common flavonol, 

found in various fruits and vegetables.  It differs from quercetin in that it lacks a 

phenolate.  The desaturation of quercetin at the 2-3 position yields taxifolin, appropriately 

known as dihydroquerctein.  Taxifolin is considered a dihydroflavonol and is also found in 

some fruits and vegetables.34   
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Many studies have compared the flavonoids based on their level of antioxidant and 

antiradical activity.  In a study published by Oleszek et al.(34) the antioxidant properties 

were found to increase with the presence of the 2-3 double bond (i.e., Quercetin > Fisetin 

>> Taxifolin).  They also showed the antiradical properties were affected by the presence 

of the 3-OH and not the 2-3 double bond (Taxifolin > Quercetin > Fisetin).34  As there 

has been some debate over the “best” flavonoid, it generally agreed upon that the 

combination of several antioxidants would yield the best antioxidant/radical properties. 
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Figure 1-7:  Structure of flavonols qercetin (A), fisetin (B), and dihydroflavonol 
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Vitamins 
 

Once thought to require an amine functional group, they were termed “vital 

amines” (vitamine). Over the years, structural evidence revealed the lack of the amine in 

many vitamines, resulting in the loss of the “e” (vitamin).36 Most vitamins are obtained 

through the diet and are classified on either being water (B and C) or fat (A, D, E and K) 

soluble.  These compounds are found in abundance in human diet, with fruits and 

vegetables being excellent sources.  Studies have shown that many vitamins have 

excellent antioxidant properties and are directly involved in many human illnesses.36 

Vitamin B6 

 Considered to be 1 of 8 components of the vitamin B complex, vitamin B6 is 

found in three structurally distinct forms: pyridoxal, pyridoxine, pyridoxamine.  An 

enzyme known as pyridoxal kinase converts each of the three in the active form of 

vitamin B6, pyridoxal 5’-phosphate.37 The body utilizes the active form as a cofactor for 

over 140 enzymes.37 Some of which are involved in amino acid and monoamine 

neurotransmitter synthesis.38  A deficiency in vitamin B6  has been shown to lead to 

insufficient insulin and altered hormone production.38 The recommended daily intake is 2 

mg, which is easily obtained from various vegetables, fish, and non-citrus based fruit.38  

In addition to its regulatory roles vitamin B6 has also been shown to serve as a potent 

antioxidants.39  Studies have suggested that components of vitamin B6 inhibit the product 

of radicals and serve as quenchers for singlet oxygen.39  
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Ascorbic Acid  

 Being the most abundant soluble antioxidant in plants, L-ascorbic acid (AsA) 

(aka. Vitamin C) (Figure 1-9) has become increasingly consumed because of its proposed 

health benefits.40 At risk of diseases such as scurvy, AsA is considered essential in the 

human diet.  The body uses AsA as radical scavenger, calcium regulator, and as a 

cofactor for multiple enzymes, some involved in collagen synthesis.  It is the 

antioxidant/antiradical properties associated with AsA have believed to be responsible for 

its contribution to the prevention of numerous chronic diseases.40   

Through consumption of beverages such as green tea, one can easily obtain the 

recommended daily intake of 30-110 mg/day.40 In addition to its health benefits, AsA 

effect on the absorption of other biological components has also been measured.26  For 

example, the low absorption of GTCs is thought to be because of its oxidative 

breakdown. Results have shown AsA to serve as a reductant that can protect GTCs and 

potentially increase their total absorption.26  Although the overall effect of one compound 

N CH3

OH

NH2

OH

                    

N CH3

OH

NH2

Phosphate

  
 

Figure 1-8: Structures of pyridoxamine and pyridoxamine-5’-phosphate 
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can be significant, it is usually thought that a combination of antioxidants (e.g. flavonoids 

and vitamins) can provide a more beneficial antioxidant protective effect.41 

 
Closing Remarks: 
 

When characterizing an enzyme, it is not uncommon to use model systems to 

reveal both mechanistic and structural information.  Furthermore, it is often beneficial to 

find stable enzyme mimics that exhibit high levels of activity. This thesis presents both 

modeled and natural peptides that show tyrosinase-like activity.  The former is the 

metzinicin active site and is characterized through metal binding, activity, and inhibition.  

The latter are varied fragments of Alzheimer’s disease-related amyloid-β.  Catalytic 

efficiency and mechanistic insight are obtained on amyloid through the use of 

physiologically relevant substrates.  In addition, select flavonoids and vitamins are used 

to show that the possible consumption of high content antioxidant foods can reduce 

oxidative stress caused by Aβ. These antioxidants are compared based on their overall 

effect of the Aβ tyrosinase-like chemistry.  

  
 
 
 

O O

OHOH

OH

OH

 

Figure 1-9:  Structure of (R)-3,4-dihydroxy-5-((S)-1,2-dihydroxyethyl)furan-2(5H)-one 
(Ascorbic Acid) 
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Chapter Two   
 

Blastula Protease-10 Peptide as Tyrosinase-like Mimic 
 
 
 

 
Introduction/ Rationale 
 
 Blastula Protease 10 (BP10) is a mono-nuclear Zn-dependent endopeptidase that 

is involved in sea urchin embroyogenesis.1 The enzyme utilizes a structural motif 

(HExxHxxGxxH) and a Tyr ligand following a distant “Met turn” to coordinate the Zn2+ 

ion.  These conserved structures are found in nearly 30 different enzymes and are 

classified as “metzinicins.”2 The exact role of BP10 in embroyogenesis is still unknown.  

Furthermore, it is difficult to make comparisons to other members of the metzincins 

because each differs remarkably in localization. In a recent study, the copper derivatives 

of BP10 was prepared and have been shown to be more hydrolytically active in 

comparison to that of the native Zn-derivative.1 The binding of Cu2+ to the His rich motif 

has alluded to the possibility of additional types of Cu-chemistry.  

For years, model complexes have been prepared to characterize both 

intermediates and mechanisms for Type 3-Copper proteins, such as Tyrosinase.3,4 

Tyrosinase is an enzyme found in both plants and animals, responsible for the synthesis 

of melanin.  This enzyme is well studied partially due to its agricultural significance, 

specifically its role in the browning of food.  These model complexes tend to be nitrogen 

rich and activity is usually shown in mixed organic/aqueous solvent.3 Only in the past 

few years have begun to use model peptides to mimic enzymatic catalysis.5,6 The next 

chapter will concern the use of the metzincin motif from BP10 as tyrosinase mimic in 

aqueous media.  Metal binding and mechanistic information is alluded to by various 

kinetic experiments.  
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Experimental: 

 
Chemicals and Materials for Metal Titrations and Kinetics Assays: 
 
 The BP10 peptide was synthesized and purchased from the University of South 

Florida Peptide Center.  The identity of the 21 amino acid peptide (GIVHE IGHAI 

GFHHE QSAPD R) was confirmed with a Bruker matrix-assisted laser desorption 

ionization MALDI time-of-flight mass spectrometer.  The buffer used in all assays is 100 

mM HEPES at pH 7, with small amount of chlex resin to demetalize the solution.  EDTA 

was used in cleaning glass/plastic ware prior to usage in order to prevent metal 

contamination.  Deionized water of 18 MΩ was obtained from a Milli Q system 

(Millipore, Bedford, MA) and used for all cleaning and for preparation of stocks 

solutions. CuSO4 and ZnSO4 were used for all experiments.  All kinetic studies were run 

using a Varian CARY50 Bio-UV-Vis spectrophotometer at 293 K. 

 
Peptide Preparation 
 

The molar absorptivity was determined by monitoring the absorbance of known 

concentrations of peptide dissolved in water at 280nm for phenylalanine.  Metal 

derivatives were prepared by the addition of a known concentration of metal to achieve a 

1:1 ratio of metal to peptide.  Fresh peptide stocks were prepared and used within 24 

hours. 

 
 
Metal Binding 
 

Apo-BP10 was diluted in 100 mM HEPES at pH 7.00 to a final concentration of 

0.5 mM.  The binding of Cu2+ was monitored by titrating metal into apo-BP10 and 

collecting the spectra after each additional of metal.  Cu2+ binding was also determined 
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through oxidative activity of Cu2+-BP10 complex toward catechol.  In 100 mM HEPES 

pH 7.00 buffer, 2mM catechol, and the 2 mM o-quinone indicator 3-methyl-2-

benzothiazolinone hydrazone hydrochloride monohydrate (MBTH), activities of various 

ratios of Cu:BP10 were monitored at 500nm for the o-quninone-MBTH complex (Figure 

2-1).  Additionally, Cu2+/Zn2+ at various ratios were titrated to BP10 and the oxidation of 

catechol (conditions same as Cu2+ titration) monitored.  
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Figure 2-1: Scheme showing the binding of o-qunione indicator 3-methyl-2-
benzothiazolinone hydrazone hydrochloride monohydrate (MBTH) 
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Enzyme Kinetics 
 
 The study of the effect of changing experimental conditions on the rate of an 

enzyme-catalyzed reaction is known as enzyme kinetics.  In most studies, the initial rate, 

Vo, varies almost linearly with substrate concentration, [S] is determined. At higher [S], 

Vo response is decreased, eventually being virtually unaffected by any addition of S.  

This seemingly constant rate is considered as the maximum velocity, Vmax.  The reaction 

between the enzyme, E, and S, yields an ES complex, a necessity for the next step in 

enzymatic catalysis.   

k1
E   +   S ES

k2 E   +   P
k-1  

When the enzyme is initially introduced to the substrate, the reaction quickly 

achieves a steady state, with the ES complex remaining constant over time.  The ES 

complex then breaks down to yield a product (P) and an E that is able to catalyze another 

reaction.  The breakdown of the ES complex is used to determine Vo (Equation 2.1).   

 [ES]kV 2o =       Equation 2.1  

Experimentally it is difficult to determine [ES], making it important to consider 

alternative methods to determine Vo.   Utilizing a steady-state assumption that states the 

[ES] complex is formed and broken-down at an equivalent rate, one can derive an 

equation that can determine Vo though the use of experimentally derived parameters.  The 

rate of ES formation and breakdown can be define by equations (Equation 2.1, 2.2) 

[ES])[S]]([Ek
dt

d[ES]
t1 −=      Equation 2.2 

[ES]k[ES]k
dt

d[ES]-
21 += −      Equation 2.3 



 32

Where [Et] is the total enzyme concentration (both in E and ES).  Setting these 

equivalent and through some algebraic manipulation to solve for [ES], yields Equation 

2.4. 

1

12

t

k
)k(k[S]

][S][E
[ES]

−+
+

=      Equation 2.4  

By substituting equation 2.4 into equation 2.1, one can express the equation in terms of 

Vo (Equation 2.5). 

1

12

t2
o

k
)k(k[S]

][S][Ek
V

−+
+

=       Equation 2.5 

Because Vmax is defined as the maximum velocity attained after the enzyme is 

saturated (Equation 2.6), the equation to solve for Vo can further be simplified (Equation 

2.7) 

  ][EkV t2max =            Equation 2.6                       

1

12

max
o

k
)k(k[S]

[S]V
V

−+
+

=      Equation 2.7 

Another parameter of particular importance is the Michaelis-Menten constant 

(Km). This is usually defined as the substrate concentration that has a rate equal to half 

the Vmax.  Km is solved to give Equation 2.8. 

1

12
m k

kk
K −+

=       Equation 2.8 

Substituting this equation in equation 2.7 yields what is known as the Michaelis-

Menten equation (Equation 2.9) and is depicted in figure 2-2. 
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[S]K
[S]V

V
m

max
o +

=        Equation 2.9 

 
 

Depending on the rate limiting step, specifically when k2 << k-1, Km can be used 

to represent the affinity of E to S in the ES complex. When this condition holds, Km is 

defined as the dissociation constant (Kd) (Equation 2.10), of the ES complex. 

1

1
d k

kK −=        Equation 2.10 

Since enzymes can react in fashions that the rate limiting step is not the 

degradation of ES, the first-order rate constant kcat is often used to report rates in terms of 

turnover per time (Equation 2.11).   

[E]
V

k max
cat =        Equation 2.11 

[S]

V
o

1/2 Vmax

Km

Vmax

 

Figure 2-2:  Michaelis-Menten plot. 
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Furthermore, to compare enzymes the second order rate constant kcat/Km 

(specificity constant) is used to describe the conversion of E + S to E + P. 

 Another common technique to determine kinetic parameters is through the use of 

a double-reciprocal or Lineweaver-Burk plot (Equation 2.12, Figure2-3).   

  
maxmax

m

o V
1

[S]V
K

V
1

+=       Equation 2.12 

 

The Lineweaver-Burk plot is particularly useful to distinguish types of inhibition 

patterns, including competitive, noncompetitive, uncompetitive, and mixed-type 

inhibition.   A competitive competes for the active site of an enzyme with the substrate.  

This direct competition of the inhibitor (I) can be overwhelmed by increasing amounts of 

x

1/[S]  

1/
V

o

- 1/Km

1/Vmax

Slope = Km / Vmax

 

Figure 2-3:  Lineweaver-Burk plot. 
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S.  This type of inhibition has a trend of increasing Km and relativity constant Vmax. 

Competitive inhibition is depicted by the scheme, equations, and plot in Figure 2-4. 
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Figure 2.4:  Graphical, schematic, and equations for competitive inhibition 

Another type of inhibition, considered noncompetitive, is when the inhibitor binds 

both E and the ES.  This type of inhibition usually has the trend of increasing Vmax and 

constant Km.   This type of inhibition is shown by the following Lineweaver-Burk plot 

trend and equations in figure (2-5). 
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Figure 2.5:  Graphical, schematic, and equations for noncompetitive inhibition 
  

 A third type of inhibition is a mix between competitive and non-competitive, 

appropriately named mixed type.  Mixed type inhibition is the same equilibrium as 

noncompetitive, with inhibitor binding at different affinities to both the E and ES 

complex.   (Figure 2.6) 
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Figure 2.6:  Graphical, schematic, and equations for mixed-type inhibition. 
 

The forth type of inhibition which is when the inhibitor binds only to the ES 

complex.  An inhibitor is considered to be uncompetitive when it influences the rate by 

binding to a location other then substrate binding site.  The binding to the ES complex is 

associated with decreasing Km and Vmax. (Figure 2.7) 
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Figure 2.7:  Graphical, schematic, and equations for uncompetitive inhibition 
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Catechol/Phenol oxidation Assays 

Using a constant Cu-BP10 concentration (2-10µM) with a 1:1 Cu to peptide ratio, 

various substrate concentrations were assayed.  The final volume of each assay is 1 mL at 

pH 7.00 100 mM HEPES and 298 K. The concentration of MBTH was kept in proportion 

with substrate concentration. Catechol was varied 0.05-1.2 mM and the MBTH-o-

quinone product was monitored at 500 nm for 3-5 mins (Figure 2-8A)   The rates were 

determined by the change in absorbance over time (Figure 2-8B).  A similar assay was 

constructed for phenol with concentrations ranging from 0.2-3.2 mM and was also 

monitored at 500 nm for o-quinone production.                    
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Hydrogen peroxide (H2O2) titration was perfomed with fixed catalyst and 

saturating amount of substrate. The conditions were similar to non-H2O2 assays described 

above. H2O2 varied from 0.25mM-12mM and the catechol/phenol-MBTH product          

(ε = 32,500 M-1 cm-1) was monitored at 500 nm. Additionally, experiments were 
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Figure 2-8: (A) The production of o-quinone from catechol monitored by the 
increase in absorption as a result of the formation of its adduct with 3-methyl-2-
benzothiazolinone hydrazone hydrochloride monohydrate (MBTH). (B) Monitoring 
the increase in absorption at 500 nm for catechol oxidation to obtain the rate. 
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preformed that varied catechol concentration at a fixed catalyst and H2O2 concentration.  

The assays preformed had a [H2O2] fixed at 0.25, 0.75, 1.5, 3.0, or 6.0 mM. 

Deuterated–phenol (d-phenol) experiments were performed under the same 

conditions as described above.  Using 10 µM Cu2+-BP10 and varying d-phenol from .4-

3.2 mM the absorbance was monitored at 500 nm.  Furthermore, under saturating 

conditions of H2O2 (20 mM), d-phenol was titrated.                 

 
Inhibition Experiments 
 

Conditions for inhibition experiments consisted of 0.5-2 µM Cu2+-BP10, pH 7.00, 

100 mM HEPES buffer, 293 K, and 1 ml total volume.  To obtain the Dixon plot, kojic 

acid was titrated into assays containing fixed catechol and MBTH concentrations 

(0.3mM).  Kojic acid concentration varied from 0.025 - 0.8 mM.  Catechol oxidation was 

then monitored at various concentrations of kojic acid (0.25, 0.05, and 0.1 mM) at 500 

nm. 

Cyanide inhibition was monitored under similar conditions to kojic acid 

inhibition.  A dixion plot was obtained by titrating cyanide into a fixed amount of 

catechol (0.3mM) and monitoring for the formation of the o-qunione. Catechol oxidation 

was then monitored at various concentrations of cyanide (0.002,0.005, 0.0035, mM) to 

obtain the Lineweaver-Burk plot.  A Dixon plot was then obtained that kept catechol, 

MBTH, catalyst, and H2O2 (0.7 mM) constant, while titrating cyanide.  Assays were then 

performed at 0, 0.015 and 0.03 mM cyanide, while varying H2O2 from 0.125-10 mM. A 

third inhibition experiment was preformed that varied catechol at various cyanide 

concentrations (0, 0.015, 0.03 mM) while keeping H2O2 under saturating condition (8 

mM). 
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Results and Discussion   

Metal Binding  

To examine the metal-coordination environment, the electronic spectrum of Cu2+-

BP10 was obtained (Figure2.5).  Upon the addition of Cu2+, there is a d-d transition with 

a λmax of 610 nm.  The spectrum is analogous to type-2 copper centers and distinct from 

aqueous Cu2+ absorbance at 820 nm.6  Furthermore the spectrum is comparable to 

published Cu2+-bound His-rich peptides.6 In order to gain further insight into the metal-

centered redox chemistry, activity was also used to confirm the Cu2+:BP10 stoichiometry.  

By measuring the activity at various equivalents of Cu2+, the resulting data saturates 

around 1:1 ligand-to-metal ratio (Figure 2.6).  The data reveals a sigmoidal pattern which 

is fit to the Hill equation yielding a Hill coefficient of 2.87.  In general, a Hill coefficient 

greater then unity indicates a positive cooperatively.  For comparsion purposes, the 

coefficient for Cu2+ binding to BP10 is equivalent to that of O2 binding to hemoglobin 

with a Hill Coefficient of 2.8.  To gain further insight into the metal-center, diluting Cu2+-

BP10 with Zn2+ would effectively silence the redox chemistry.  If the catalysis is carried 

out by a mononuclear Cu2+-center, the Zn2+ should replace the Cu2+ and result in a non-

cooperative nearly linear binding.  Figure 2.6 indicates a sigmodal relationship, yielding a 

Hill coefficient of 1.76.   This suggests the possible presence of a cooperative Cu2+ 

binding to form a Type-3 copper center during the catalysis of catechol, corroborating 

with the result in direct Cu2+ binding (Figure 2.,6 Top)  
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Figure 2.9: Electronic spectra of Cu2+-BP10 with 1 equivalent of Cu2+-BP10. 
(100 mM HEPES buffer at pH 7.0, 0.5 mM BP10)   
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Figure 2.10: (Top) Cu2+ titration to BP10 monitored with the oxidation of catechol. Fit to 
Hill equation, which yields a Hill coefficient of 2.86 ± 0.18. (Bottom) Oxidative activity 
of Cu2+-BP10  toward the oxidation of catechol as a function of the mole fraction of Cu2+ 
at a constant total concentration of Cu2+ and Zn2+. Fit to Hill equation, which yield Hill 
coefficient of 1.76 ± 0.17. (Both assays contained [BP10] = 6 µM, [MBTH] = [catechol] = 
2mM, 100 mM HEPES buffer pH 7.0, 293 K)  
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Catechol/Phenol Oxidation  

The oxidation of catechol to o-quinone is a 2-electron transfer that favors the presences of 

a dinuclear Cu2+ center.  Studies concerning tyrosinase and catechol oxidase have shown 

that once the dinuclear center is in the met form, catechol can readily bind and be 

oxidized to its quinone product.7 In the presence of O2, micromolar amounts of Cu2+-

BP10 can readily oxidize catechol and is saturated at mM amounts of substrate (Figure 

2.7),  yielding a  kcat = 4.06 s-1, Km = 0.254 mM, and a significant second-order rate 

constant of 1.60 x 104 M-1 s-1.  In terms of first order rate constant, Cu2+-BP10 is 8.57 x 

106 fold higher than the autooxidation of catechol (ko = 4.74 x 10-7 s-1) and 7.5 fold 

higher then another catechol oxidizing peptide mimic (0.531 s-1).6  
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Km               (mM) 0.254 ± .020  
Vmax           (mM/s) (1.63 ± .04) x 10-5   
kcat          (s-1) 4.06 
kcat/Km   (mM-1 s-1) 16.0 

Figure 2.11:  Cu2+-BP10 oxidation of catechol at pH 7.00 and 293K.  
[Cu2+-BP10] kept constant at 4 µM.  Table includes kinetic parameters. 
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To gain further insight into the mechanism of Cu2+-BP10, H2O2 was titrated into 

the complex with saturating amounts of catechol (Figure2.8).  The data showed a 

significant increase in rate and was saturated after mM amounts of H2O2.  The saturation 

kinetics observed for both catechol and H2O2 implies a possible bisubstrate mechnaism, 

wherein both can bind to the metal active center. To obtain apparent and  
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Km               (mM) .967 ± .188 
Vmax           (mM/s) 1.27x10-4  ± 6.12x10-6 
kcat          (s-1) 31.8 
kcat/Km   (mM-1 s-1) 32.8 

 
Figure 2.12  The effect of H2O2 on Cu2+-BP10 oxidation of catechol in the presence 
of saturating catechol (1.5mM) at pH 7.00 and 293K.   [Cu2+-BP10] kept constant at 
4µM. Table includes kinetic parameters.
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intensic dissociation constants for catechol and H2O2, the rates at varying amounts of 

[H2O2] holding [catechol] constant and vise versa were determined (Figure 2.9). The data 

could be fitted to a two-substrate random-binding equilibrium shown below. 
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Figure 2-13: Random bisubsubstrate equation  and equilibrium. 

 

In the equation, Kapp(H) is the apparent affinity constant for H2O2, Kapp(C) is the 

apparent affinity constant for catechol, and Kint(C) is the intrinsic affinity constant for 

catechol.  From the Hanes analysis, a secondary plot of the slope (1/Vmax) and the y-

intercept (Kapp(Substrate)/Vmax) verus 1/[Substrate] is obtained (Figure 2.10). From the 

slopes and y-intercepts of these secondary plots, the apparent and intensic dissociation 

constants can be obtained.  Using the ratios of Kapp/Kint the effect of the binding of one 

substrate on the other can be measured. If the ratio is above 1, then the binding of one 

ligand decreases the affinity for the other, below one represents an increased affinity, and 

equal to 1 indicates no effect on one another.  From the results obtained  
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Figure 2.14:   (Top Plot) The effect of the concentration of H2O2 on the first-order 
rate constant kcat toward the Cu2+-BP10 oxidation of catechol.  (Bottom Plot) 0 
(●), 0.25 (○), 0.75 (▼), 1.5 (∆), 3.0 (■), and 6 mM (□) H2O2 effect on the rate of 
catechol oxidation. Conditions at pH 7.0 and 293 K,  [Cu2+-BP10] = 2 µM. 
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Kapp(C)/Kint(C) =0.752, while Kapp(H)/Kint(H) = 1.04. From the Hanes analysis, catechol seems 

to have no effect on H2O2 binding, while H2O2 increases the affinity for catechol slightly.  

Although these results provide insight into the Cu2+-BP10 mechanism, alone they provide 

insufficient evidence to conclude the sequencal binding.   

 In addition to catechol oxidation, Cu2+-BP10 was shown to hydroxylate and 

oxidize phenol to the o-qunione product.   Phenol hydroxylation is often times 

challenging for metal-centered chemistry because it is a spin-forbidden process, inserting 

the triplet O2 into the singlet C-H bond.  Furthermore, the aerobic 

hydroxylation/oxidation of phenol is relativity slow (k0 = 4.60 x 10-8 s-1).6 Cu2+-BP10 was 

shown to significantly enhance the tyrosinase-like hydroxylation activity by 8.57 x 103 

times (kcat = 3.94 x 10-4 s-1).  The rate compared to catechol oxidation is significantly 

reduced by around 1 x 105 times, believed to be in part due to the difficult hydroxylation 

step.  To further inquire if in fact the rate determining step is the hydroxylation, d-phenol 

was used as a substrate.  The rate of the reaction remained relatively unchanged, with a 

kinetic isotope effect of only 1.27.  This result indicates that hydroxylation is most likely 

not the rate determining step of the reaction.   

 
 
 
 

 
 
 
 
 

[H2O2] mM Km (mM) Vmax (mM/s) kcat (s-1) kcat/Km (M-1 s-1) 

0 0.25 ± 0.02 (1.63 ± 0.04) x 10-5 4.06 16.0 x 103 
0.25 0.40 ± 0.06 (3.97 ± 0.20) x 10-5 19.9 49.4  x 103 
0.75 0.29 ± 0.01 (5.47 ± 0.08) x 10-5 27.4 93.5  x 103 
1.5 0.41 ± 0.04 (8.56 ± 0.26) x 10-5  42.8 103  x 103 
3.0 0.27 ± 0.03 (9.40 ± 0.35) x 10-5   47.0 173  x 103 
6.0 0.39 ± 0.08 (1.19 ± 0.78) x 10-4  59.5 149  x 103 

Table 2.1:   Kinetic parameters for H2O2 effect on Cu2+-BP10 oxidation of catechol. 
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Km (C)       (mM) 0.427
Kapp (C)    (mM) 0.321
Km (H)       (mM) 0.535
Kapp (H)    (mM) 0.558
Kapp (H) / Km (H) 1.04 
Kapp (C) / Km (C) 0.752

 
Figure 2.15: (Top) Hanes analysis of various [catechol] and secondary plot (slope ○, y-
intercept ●).  (Bottom) Hanes analysis of various [H2O2]  and secondary plot (slope ○, 
y-intercept ●).  Table includes apparent and intrinsic affinity constants for catechol and 
H2O2. 
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 Phenol d-Phenol 
Km               (mM) 1.67 ± .218  1.40 ± .176 
Vmax           (mM/s) (3.9 ± 0.2) x 10-6  (3.1 ± 0.2) x10-6  
kcat          (s-1) 3.94x10-4   3.05x10-4   
kcat/Km   (mM-1 s-1) 2.36x10-4 2.18x10-4 

 
Figure 2-16:  Cu2+-BP10 hydroxylation/oxidation of phenol (●) and  d-phenol (○) 
without H2O2.  Table includes kinetic parameters. 
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Inhibition 
 
 The results thus far have indicated that both H2O2 and catechol/phenol are 

substrates for Cu2+-BP10. Further detailed mechanistic inferences can be made by the use 

of oxygen and catechol mimics as inhibitors. A popular competitive inhibitor for Type-III 

Cu-centers is kojic acid.8 As seen in Figure 2-12, kojic acid shows to be a competitive 

inhibitor for catechol oxidation by Cu2+-BP10.  The low Ki indicates the inhibitor has 

tight binding and is relatively specific for the catalyst.   Kojic acid inhibition further 

supports the notion of the presence of a dinuclear center and that catechol binds to the 

same location as kojic acid.  

 To gain insight into the role and binding of the oxygen species cyanide was used 

as an inhibition.  Cyanide is a well-known oxygen mimic that has been used to 

characterize O2 binding sites. In figure 2-13, cyanide is used in the presence of 

atmospheric O2 while titrating catechol.  The mixed type inhibition and near equal Ki and 

Kis indicate cyanide binds to both the E and ES complex with similar affinity.  Since the 

concentration of O2 in solution is unknown and may not be at saturating conditions, the 

type of inhibition for this assay reveals only the possible presence competitive and 

uncompetitive inhibition and that cyanide can bind to the E and/or ES complex.  Another 

cyanide inhibition assay checked the inhibition in the presence of saturating conditions of 

catechol while titrating H2O2 (Figure 2-14).  The results reveal a clear noncompetitive 

pattern between cyanide and H2O2.  The inhibitor in noncompetitive inhibition binds both 

the E and the ES complex.  Being that catechol is at saturating conditions and bound first 

to E, cyanide could possibly serve as a reducing agent stabilizing and blocking Cu+ and 

thus preventing O2 from binding.  The third cyanide inhibition experiment involved H2O2  
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 [Kojic Acid] mM Km (mM) Vmax (mM/S) 
0.00 0.202 ± .016 (1.30 ± 0.03 ) x 10-5  

2.50e-2 0.344 ± .013 (1.39 ± 0.02) x 10-5  
5.00e-2 0.435 ± .041 (1.39 ± 0.05) x10-5  
1.00e-1 0.534 ± .074 (1.28 ± 0.07) x 10-5 

Ki= 0.043 mM 
Figure 2-17: Kojic Acid Inhibition- (Top) Kojic acid titration into constant [catechol] 
and [Cu2+-BP10]. (Bottom) Lineweaver-Burk plot titrating catechol at different [kojic 
acid] ( 0 mM, ●; 0.025 mM,○; 0.05 mM, ▼; 0.10 mM, ∆) (Table) The effects of 
[kojic acid] on Vmax and Km, in addition to the Ki for competitive inhibition. 
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[Cyanide] mM Km (mM) Vmax (mM/s) 
0.00 0.132 ± .008 (8.96 ± 0.16) x 10-6 

5.0 x 10-4 0.166 ± .005 (8.59 ± 0.08) x 10-6  
2.0 x10-3 0.211 ± .034 (6.22 ± 0.33) x 10-6 
3.5 x 10-3 0.223 ± .035 (4.06 ± 0.21) x 10-6  

Ki = (1.4 ± 1.7) x10-3 mM  |  Kis = (6.3 ± 4.7) x10-3 mM 
 
Figure 2-18:  Cyanide Inhibition in the presence of O2. (Top) Cyanide titration into 
constant [catechol] and [Cu2+-BP10]. (Bottom) Lineweaver-Burk plot titrating 
catechol at different [cyanide] ( 0 mM●, 0.5µM ∆, 2.0 µM ○, 3.5 µM ▼) (Table) 
The effects of [cyanide] on Vmax and Km, in addition to the Ki (Interaction with 
free E) and Kis (interaction with the ES complex) for mixed type inhibition. 
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[Inhibitor] mM Km (mM) Vmax (mM/s) 

0.0 0.496 ±.052 (6.31 ± 0.19) x 10-6 
1.5 x 10-3 0.522 ± .034 (3.57 ± 0.08) x 10-6  
3.0 x 10-3 0.764 ± .137 (3.17 ± 0.23) x 10-6  

Ki= 3.03x10-3 mM               |                 Kis= 1.45x10-3 mM 
Figure 2-19: Cyanide Inhibition in the presence of H2O2. (Top) Titrating 
cyanide into fixed [Catechol], [Cu2+-BP10], and [H2O2]=.7mM. (Bottom) 
Lineweaver-Burk plot titrating H2O2 at different [cyanide] ( 0 mM,●; 1.5 
µM, ○; 3.0 µM, ▼) while keeping [catechol] at saturating conditions. (Table) 
The effects of [cyanide] on Vmax and Km, in addition to the Ki for 
noncompetitive inhibition. 
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binding.  The third cyanide inhibition experiment involved H2O2 at saturating conditions 

while titrating catechol (Figure 2-15). The results clearly represents uncompetitive 

inhibition of cyanide against catechol.  An uncompetitive inhibitor binds only to the ES 

complex. Since cyanide is considered an oxygen mimic, the results suggest that oxygen 

(cyanide) would bind to the active center after catechol is bound to form the Cu2+-BP10-

catechol complex. 
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[Inhibitor] mM Km (mM) Vmax  (mM/s) 
0.0 1.06 ± 0.28 (1.24 ± 0.16) x10-5  

1.5 x 10-3 .590 ± 0.085 (5.19 ± 0.94) x 10-6 
3.0 x 10-3 .375 ± 0.053 3.27 ± 0.15) x10-6  

Ki = 1.64 x 10-3 mM 
 
Figure 2-20: Cyanide Inhibition in the presence of H2O2. Lineweaver-Burk plot 
titrating catechol at different [cyanide] ( 0 mM●, 1.5 µM ○, 3.0 µM ▼) while keeping 
[H2O2] at saturating conditions (8mM). (Table) The effects of [cyanide] on Vmax and 
Km, in addition to the Ki. 
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Closing Remarks 

 The metzinicin motif found in BP10 has shown to bind Cu2+ and form a Type-III 

Cu-center.  The complex is relatively active in comparison to the background rate of 

catechol and phenol oxidation.  Furthermore, it shows that H2O2 can enhance the reaction 

and serves as the second substrate in a bisubstrate reaction.  From the Hanes analysis, 

catechol seems to have no effect on H2O2 binding, while H2O2 increases the affinity for 

catechol slightly.  The catechol binding to the free E was confirmed by the kojic acid 

inhibition.  Cyanide inhibitions confirmed that oxygen is involved in the reaction and that 

cyanide binds only after catechol binding. 
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Chapter Three 
 

 Alzheimer’s Disease and Natural Antioxidants 
 
 
 
Introduction/ Rationale  
 

Of neurodegenerative diseases, the most prevalent is Alzheimer’s disease (AD).  

Although the past decade has made significant progress on the cause of the disease, it still 

remains somewhat of a mystery.  Of the many hypotheses proposed, the common link 

seems to be amyloid β-peptide (Aβ).1  This short peptide varies in length following 

secreatase cleavage of the amyloid precursor protein (APP).1  In general, shorter more 

soluble fragments are considered to be nonamyloidgenic, while longer hydrophobic 

fragments are considered the cause or effect of AD.1   Along with a microtubule 

stabilizing tau protein, longer fragments of Aβ have shown to accumulate, forming 

plaques in the brain.1  Studies have shown these plaques to be responsible for alterations 

in normal brain function, such as abnormal Ca2+ homeostasis and production of H2O2.1,2,3  

Furthermore, postmortem studies have revealed the presence of redox active metal (e.g. 

Cu2+) present in the plaques.4  The presence of this seemingly misguided metal has fueled 

the hypothesis of reactive oxygen species (ROS) as a major component of neuronal cell 

loss.  In addition, studies have shown Aβ to bind metal with a relativity high affinity 

within the first 14 amino acids of the peptide.5 

This study presents soluble fragments of Cu2+-bound Aβ as highly redox active 

complexes.  Compassions between fragments of Aβ containing the amino acids believed 

to start dimerization will be examined.6  This will include the effect of ROS on the redox 

activity of Cu2+-Aβ toward the neurotransmitter dopamine. In addition, natural 

antioxidants (e.g. flavonoids and vitamins) will be used to inhibit this AD-related redox 
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chemistry.  This will allow for further infancies on the possible beneficial effect of 

numerous antioxidants and the identification of structural moieties that enhance the 

overall antioxidant activity.    

 

 

 
 
 
 
 
 
 
 
 

Cu
2+

OH

Cu
2+

OH
OH

Cu
2+

OH

O

Cu
2+

O
H

+

O
O

Cu
+

OH

Cu
+

O2 , H+

Cu
3+

O

O
2-

Cu
3+Cu

2+

O

O

Cu
2+

Cu
2+

O
Cu

2+
O

 

Cu
2+

O

O

Cu
2+

O

O

O
O

2

H2O

Catechol2H+

3H+

+ H2O

H2O2  

H2O2 

2H+

2H+

H2O2  

2H+
2 e-

 

Figure (3-1) Purposed mechanism for polyphenol oxidation by Cu2+-Aβ.7  
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Experimental 
 
 
Chemicals and Materials for Metal Titrations and Kinetics Assays 
 
 The Aβ peptides (16 and 20 amino acid) were synthesized and purchased from the 

University of South Florida Peptide Center.  The identity of the peptides 

(DAEFR5HDSGY10EVHHQ15KLVFF20 and DAEFR5HDSGY10EVHHQ15K) were 

confirmed with a Bruker matrix-assisted laser desorption ionization time-of-flight 

(MALDI-TOF) mass spectrometer.  The buffer used in all assays is 100 mM HEPES at 

pH 7.4 or 7.0, with small amount of chlex resin to demetalize the solution.  EDTA was 

used in cleaning glass/plastic ware prior to usage, in order to prevent metal 

contamination.  Deionized water of 18 MΩ was obtained from a Milli Q system 

(Millipore, Bedford, MA) and used for all cleaning and for preparation of stocks 

solutions. CuSO4 and  CaCl2 were used for all experiments.  All kinetic studies were run 

using a Varian CARY50 Bio-UV-Vis spectrophotometer. 

 
Peptide Preparation  
 

The molar absorptivity was determined by monitoring the absorbance of known 

concentrations of peptide dissolved in water at 280nm for the aromatic amino acids.  

Metal derivatives were prepared by the addition of a known concentration of metal to 

achieve a 1:1 metal to peptide ratio.  Since Aβ tends to coagulate, fresh peptide stocks 

were prepared and used within 24 hours. 

 
Dopamine and Flavonoid Oxidation assays 
 

Using a constant Cu2+-Aβ concentration (1-6µM) with a 1:1 Cu-to-peptide ratio, 

various substrate concentrations were assayed.  The final volume of each assay is 1 mL at 
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pH 7.4 100mM HEPES and 298 K. The concentration of MBTH was kept in proportion 

with substrate concentration. Dopamine were varied from 0.1-2.5 mM and the MBTH-o-

quinone product was monitored at 510 nm for 3-5 mins. Similar assays were constructed 

for epicatechin (EC), epigallocatechin gallate (EGCG), and epigallocatehin (EGC) and 

were monitored at their respective λmax (460nm , 465nm, and 460 nm).  

Hydrogen peroxide (H2O2) titration were performed with fixed catalyst and 

saturating conditions of substrate. The conditions were similar to non-H2O2 assays 

described above. H2O2 varied and the dopamine/EC/EGC/EGCG-MBTH product was 

monitored at their respective absorbencies. Additionally, experiments were preformed 

that varied substrate at a fixed catalyst and H2O2 concentration. These data were then 

fitted to the Hanes analysis to determine apparent and intrinsic dissociation constants. 

Molar Absorptivity  

The Molar Absorptivity (ε) was calculated by oxidizing a known concentration of 

substrate with tyrosinase with excess MBTH at the pH 7.4 100mM HEPES buffer.  The  ε  

for EGCG was found by the combination of value for EGC and gallic acid.  

 

Inhibition Experiments 
 

Conditions for inhibition experiments consisted of µM Cu2+-Aβ, pH 7.4 or 7.0 

HEPES 100 mM buffer, 293 K, and 1 ml total volume.  The inhibitors used were 

Substrates (pH 7.4) Dopamine EC EGC EGCG 

ε (M-1 cm-1) 10095 10040 7159 7665 

Wavelength (nm) 510  460  460  465  

 

Table 3-1:  Molar Absorptivity values for neurotransmitter and flavonoids 
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quercetin, fisetin, taxifolin, ascorbic acid, and pyridoxamine.  For all inhibitors a Dixon 

plot was obtained by titrating inhibition into a fixed concentrations of dopamine, MBTH, 

and Cu2+-Aβ.  Then oxidation rates at different [dopamine] were determined in a fixed [I] 

and [Cu2+-Aβ] to obtain the Lineweaver-Burk plots. Inhibition constants were determined 

from inhibition equations from Chapter 2. 

Attenuation of inhibition was monitored by titrating Ca2+ into a fixed 

concentration of fisetin, dopamine, and Cu2+-Aβ.  Oxidation rate of dopamine was then 

determined at fixed concentration of fisetin, Cu2+-Aβ, and Ca2+to obtain kinetic 

parameters. 
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Results and Discussion 
 
 
Green Tea  
 

Dopamine is a catechol containing neurotransmitter found extensively throughout 

the body.  Like other neurotransmitters, dopamine is used to amplify and regulate signals 

to dopamine receptors.  An alteration in levels of dopamine (e.g. oxidation) is in general a 

hallmark of several neurodegenerative diseases.7  Alzheimer’s disease (AD) is associated 

with degradation of normal brain function which includes altered levels of 

neurotransmitters, influx of Ca2+, and accumulation of protein fragments.1,2  The results in 

figure 3-2 and 3-3 indicated Cu2+-Aβ1-16 and Cu2+-Aβ1-20 significantly accelerate aerobic 

oxidation of dopamine in terms of kcat relative to auto-oxidation rate constant ko = 1.59 x 

10-8. Furthermore, the additional 4 amino acids of Cu2+-Aβ1-20 seem to have a negligible 

effect on dopamine oxidation.  Through metal ion reduction, reports have indicated the 

production of H2O2 by metallo-Aβ.2 The results in figure (3-5) and (3-6) indicated that 

H2O2 significantly increases the rate of oxidation of dopamine.  The oxidation rate 

dependent on H2O2 eventually plateaus, concluding H2O2 binds Cu2+-Aβ and is turned 

over.   Since both dopamine and H2O2 are considered substrates for Cu2+-Aβ1-16 and Cu2+-

Aβ1-20 , the data can be fitted to a bisubstrate random-binding equation to obtain both 

apparent and intrinsic dissociation constants Kapp and Km. (Table 3-2).   

The oxidation and generation of ROS in AD brains have suggested possible 

benefit from the consumption of foods with high antioxidant content.9  A class of 

compounds reported to have antioxidant, antiradical, and influence on APP processing 
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are the green tea catechins (GTC).10,11  The three GTCs were shown to be substrates for 

both  Cu2+-Aβ1-16 and Cu2+-Aβ1-20 (Figures 3-2 – 3-4). 
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Cu2+-Aβ16 Dopamine EC EGCG 
Km (mM) 0.269 ± 0.033 0.830 ± 0.095 0.215 ± 0.012 

Vmax (mM/s) (1.45 ± 0.06) x 10-5 (1.08 ± 0.05) x10-5  (2.73 ± 0.05) x 10-5

kcat (s-1) 4.83 x 10-3 3.60x10-3 9.10x10-3 
kcat / Km (mM-1 s-1) 0.0180 4.34x10-3 .0423 
 
Figure 3-2:  Saturation kinetic profile for the oxidation of dopamine (▼), epicatechin 
(EC) (○), and epigallocatechin gallate (EGCG) (●) using Cu2+-Aβ16 (3 µM) at 100 mM 
HEPES pH 7.4, 298K.  Table includes kinetic parameters for dopamine, EC, and EGCG 
oxidation by Cu2+-Aβ16. 
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Cu2+-Aβ20 Dopamine EC EGCG 
Km (mM) 0.214 ± .050 0.302 ± 0.016 0.310 ± 0.053  

Vmax (mM/s) (3.26 ± 0.22) x 10-5 (2.66 ± 0.05) x10-5  (9.52 ± 0.52) x 10-5

kcat (s-1) 4.66x10-3 3.80x10-3 .0136 
kcat / Km (mM-1 s-1) 0.0218 0.0126 0.0439 
 
Figure 3-3:  Saturation kinetic profile for the oxidation of dopamine (○), epicatechin (EC) 
(▼), and epigallocatechin gallate (EGCG) (●) using Cu2+-Aβ20 (7 µM) at 100 mM HEPES 
pH 7.4 298K.  Tables include kinetic parameters for dopamine, EC, and EGCG oxidation by 
Cu2+-Aβ20. 
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EGC Cu2+-Aβ16 Cu2+-Aβ20 
Km (mM) 1.22 ± 0.28 8.91 ± 0.30 

Vmax (mM/s) (3.42 ± 0.35) x 10-4  (3.30 ± 0.43) x 10-4  
kcat (s-1) .114 .0825 

kcat / Km (mM-1 s-1) .0934 .00926 
 
Figure 3-4: oxidation of epigallocatechin (EGC) by Cu2+-Aβ20 (○)(4µM) and Cu2+-
Aβ16 (●)(3µM) at 100mM HEPES pH 7.4, 293 K. Table includes kinetic 
parameters for EGC oxidation by Cu2+-Aβ16,20. 
 



 70

Additionally, the effect of H2O2 on Cu2+-Aβ catalysis was also monitored to obtain both 

apparent (Kapp) and intrinsic (Km ) affinity constants. (Figure 3-5, 3-6 and Table 3-2).  The 

Kapp/Km ratio can reveal details on the effect one substrate have on the affinity of other. 

Ratios above unity indicate one substrate decreases the affinity for the other, while those 

above unity indicate the opposite.  For dopamine, EC, and EGCG, H2O2 seems to have 

little effect on the binding (close to unity).  On the contrary, dopamine, EC, and EGCG 

seem to slightly increase the binding affinity for H2O2.   

 In addition to catechins, green tea is also an excellent source of ascorbic acid 

(AsA) and vitamin B6 (B6).  Studies have shown both to serve as excellent antioxidants in 

addition to other vital roles in the human body.  As shown in Figure (3-7,3-8), AsA is an 

excellent mixed type inhibitor for Cu2+-Aβ1-16 and Cu2+-Aβ1-20 toward dopamine 

oxidation.  The most likely explanation is AsA may bind to the metal center and reduce 

Cu2+ to Cu+ thus preventing O2 from binding. Studies have shown AsA can increase the 

stability of GTCs, thus providing benefit by protecting antioxidants from premature 

oxidative breakdown.  The other component in green tea is one of three derivates of 

vitamin B6, pyridoxamine.  Pyridoxamine is a critical component needed by the body, 

used by some enzymes for the production of neurotransmitters.12 Furthermore, 

prydoxamine has been shown to inhibit ROS generated in the body.12  As shown in 

figures (3-9, 3-10) pyridoxamine is a competitive inhibitor.  The competitive inhibition 

pattern is most likely to be due to pyridoxamine weak affinity for Cu2+.12  This is further 

supported by the large Ki (in comparison to AsA).  
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Figure 3-5:  The effect of the concentration of H2O2 on the first-order rate 
constant kcat toward the Aβ 1-16 oxidation of Dopamine (●), Epicatechin (○), 
and epigallocatechin gallate (∆). 
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Figure 3-6:  The effect of the concentration of H2O2 on the first-order rate 
constant kcat toward the Aβ 1-20 oxidation of Dopamine (●), Epicatechin (○), 
and epigallocatechin gallate (▼). 
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Table 3-2: Hanes analysis to compare the apparent (Kapp) and intrinsic (Km) affinity 
constants of H2O2 on substrate binding and vise versa.  
 
 
 
 
 
 
 
 
 
 

Substrate Catalyst Kapp/Km Kapp(H) / Km(H) 
Dopamine Cu2+-Aβ16 .924 .228 
Dopamine Cu2+-Aβ20 1.39 1.18 

EGCG Cu2+-Aβ16 1.35 .771 
EGCG Cu2+-Aβ20 1.86 .924 

EC Cu2+-Aβ16 .554 .296 
EC Cu2+-Aβ20 1.43 .824 
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[Ascorbic Acid] mM Aβ1-16 Km (mM) Vmax (mM/s) 
0.0 0.211 ± .053 (3.75 ± 0.24) x 10-6 

3.0 x 10-4 0.372 ± .070 (3.25 ± 0.19) x 10-6 
1.2 x 10-3 0.560 ± .178 (2.00 ± 0.23) x 10-6 

Ki= 1.37 µM                                                         Kis= .302 µM 
Figure 3-7: Inhibition of Cu2+-Aβ1-16 by ascorbic acid (AsA). (Top) AsA titration 
into fixed [Cu2+-Aβ1-16] , 1 mM Dopamine, 1 mM MBTH.  (Bottom) Titrating 
dopamine at fixed concentrations of AsA.  Table includes effect of [AsA] on 
kinetic parameters including inhibition constants for mixed-type inhibition.  
Assays done at pH 7.4 100mM HEPES buffer , 293K. 
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[Ascorbic Acid] mM Aβ1-20 Km (mM) Vmax (mM/s) 
0.0 0.177 ± .016 (7.57 ± 0.16) x10-6 
5.0 x 10-4 0.248 ± .026 (7.58 ± 0.21) x 10-6  
2.0 x 10-3 0.237 ± .029 (5.84 ± 0.19) x 10-6  
3.0 x 10-3 0.523 ±.044 (5.61 ± 0.17) x10-6  

Ki = 8.59 µM                                                               Kis = 1.00 µM 
Figure 3-8: Inhibition of Cu2+-Aβ1-20 by ascorbic acid (AsA). (Top) AsA titration into fixed 
Cu2+-Aβ1-20, 1mM Dopamie, 1mM MBTH.  (Bottom) Titrating dopamine at fixed 
concentrations of AsA.  Table includes effect of [AsA] on kinetic parameters. including 
inhibition constants for mixed type inhibition.  Assays done at pH 7.4 100mM HEPES 
buffer , 293K. 
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[Pyridoxamine] mM Aβ 1-

20 
Km (mM) Vmax (mM/s) 

0.0  (●) 0.381 ± 0.063 (2.39 ± 0.14) x10-5 
0.5  (○) 0.590 ± 0.031 (2.74 ± 0.61) x10-5 
1.0  (▼) 0.959 ± 0.061 (3.31 ± 0.11) x10-5  

Ki= .911 mM 
 
Figure 3-9: Inhibition of Cu2+-Aβ1-20 by Pyridoxamine (B6). (Top) B6 titration into 
fixed [Cu2+-Aβ1-20], 1 mM Dopamie, 1mM MBTH.  (Bottom) Titrating dopamine at 
fixed concentrations of B6.  Table includes effect of [B6] on kinetic parameters, 
including inhibition constants for competitive inhibition.   Assays done at pH 7.4, 
100mM HEPES buffer , 293K.
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[Pyridoxamine] mM Aβ1-16 Km (mM) Vmax (mM/s) 
0.0 (●) 0.419 ± 0.020 (3.11 ± 0.05) x 10-5 
0.4 (○) 0.541 ± 0.015 (3.13 ± 0.04) x 10-5 
0.8 (▼) 0.746 ± 0.052 (3.37 ± 0.11) x 10-5  

Ki= 1.03 mM 
Figure 3-10: Inhibition of Cu2+-Aβ1-16 by Pyridoxamine (B6). (Top) B6 titration 
into fixed Cu2+-Aβ1-16, 1mM Dopamie, 1mM MBTH.  (Bottom) Titrating 
dopamine at fixed concentrations of B6.  Table includes effect of [B6] on kinetic 
parameters. including inhibition constants for competitive inhibition.   Assays 
done at pH 7.4 100mM HEPES buffer, 293K. 
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Quercetin, Fisetin, and Taxifolin 

There are over 6000 flavonoids which differ in both structure and bioactivity.13,14  

Studies have been done concerning the “best” structure for the binding of redox-active 

metal in addition to antioxidant and antiradical activity.13,14 The flavonoids used in this 

study are  structurally similar, differing only by the absence and presence of the enolate 

or β-keto-phenolate.  The results show quercetin, fisetin, and taxifolin to be competitive 

inhibitiors of Cu2+-Aβ oxidation of dopamine. Quercetin contains both the presence of 

the enolate or β-keto-phenolate and shows to be an excellent competitive inhibitor, 

yielding a Ki (4 µM) almost equivalent to the [Cu2+-Aβ] (Figure 3-11).  Fisetin does not 

contain the β-keto-phenolate, but it is near equivelant to querctin in terms of Ki. (Figure 

3-12, 3-13).  Taxifolin contains the β-keto-phenolate but is missing the double bond on 

the enolate.  Taxifolin shows also to be a competitive inhibitor with a Ki 100 times higher 

then quercetin or fisetin. (Figure 3-15, 3-16)  The results, in combination with the fact 

that catechins are substrates, reveal that the 3-hydroxy on the C-ring is required for 

inhibition.  Furthermore the presence of the enolate allows for a better affinity for Cu2+.  

To further distinguish between the β-keto-phenolate and enolate, fisetin was used in 

conjunction with Ca2+.  The Ca2+ titration in figure (3-14) reveal that Ca2+ attenuate the 

inhibition of fisetin oxidation of dopamine by Cu2+-Aβ16.  This result concludes that Ca2+ 

is binding in the same place as Cu2+ the enolate.    

The general mechanism for AD is believed to involve metal-centers ROS.  This 

study proposes the use of green tea components as suicide substrates and antioxidants for 

a possible way to slow the oxidation of neurotransmitters.  In addition, citrus flavonoids 

quecetin, fisetin, taxifolin have shown to be excellent inhibitors of both Cu2+-Aβ16 and 
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Cu2+-Aβ20.  The Ca2+ binding properties allude to certain flavonoids to serve as Ca2+ 

“sponge”, potentially reducing the influx of Ca2+ seen in AD.  The activity and inhibition 

of both the Cu2+-Aβ16 and Cu2+-Aβ20 conclude that the 4 amino acid differences make no 

significant contribution to activity.   
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[Quercetin] mM Aβ16 Km (mM) Vmax (mM/s) 

0 0.467 ± 0.053 (3.26 ±0.15) x 10-5 
2.0 x 10-3 0.699 ± 0.052 (3.59 ± 0.13) x10-5 
4.0 x 10-3 0.962 ± 0.082 (3.92 ± 0.18) x 10-5  
6.0 x 10-3 1.31 ± 0.16 (4.39 ± 0.29) x 10-5  
8.0 x 10-3 1.57 ± 0.12 (4.32 ± 0.19) x 10-5 

Ki= .004 mM 
Figure 3-11: Quercetin inhibition of Cu2+-Aβ1-16 oxidation of dopamine. (Top) 
Quercetin titration into fixed [Cu2+-Aβ1-16], [Dopamine]. [MBTH].  (Bottom) Titrating 
dopamine at fixed concentrations of quercetin.  Table includes effect of [Quercetin] on 
kinetic parameters including inhibition constants for competitive inhibition.  Assays 
done at pH 7.0 100mM HEPES buffer , 293K. (●), .002(○), .004 (▼), .006(∆), 
.008mM (■) of inhibitor. 
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[Fisetin] mM Aβ1-20 Km (mM) Vmax (mM/s) 
0 0.307 ± 0.039 (9.22 ± 0.37) x10-6 
1.25 x 10-2 0.756 ± 0.148 (8.12 ± 0.75) x10-6  
2.50 x 10-2 1.73 ± 0.35 (9.83 ± 0.13) x 10-6  
5.00 x 10-2 2.03 ± 0.78 (7.40 ± 0.19) x10-6 

Ki= .009 mM 
Figure 3-12: Fisetin inhibition of Cu2+-Aβ1-20 oxidation of dopamine. (Top) Fisetin 
titration into fixed [Cu2+-Aβ1-16], [Dopamine]. [MBTH].  (Bottom) Titrating 
dopamine at fixed concentrations of fisetin.  Table includes effect of [fisetin] on 
kinetic parameters including inhibition constants for competitive inhibition. 
Assays done at pH 7.4, 0 mM (●), .0125(○), .025 (▼), .05(∆), of inhibitor.  
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 [Fisetin] mM Aβ1-16 Km (mM) Vmax (mM/s) 

0.00 0.271 ± 0.040 (8.71 ± 0.39) x 10-6 
1.25 x 10-2 0.830 ± 0.176 (7.97 ± 0.83) x 10-6 
2.50 x 10-2 1.31 ± 0.34 (8.31 ± 1.24) x 10-6 
5.00 x 10-2 2.32 ± 0.69 (7.59 ± 1.55) x10-6 

Ki= .007 mM 
Figure3-13: Fisetin inhibition of Cu2+-Aβ1-16 oxidation of dopamine. (Top) Fistein 
titration into fixed [Cu2+-Aβ1-16], [Dopamine]. [MBTH].  (Bottom) Titrating 
dopamine at fixed concentrations of fistein.  Table includes effect of [fistein] on 
kinetic parameters including inhibition constants for competitive inhibition. Assays 
done at pH 7.4, 0 mM (●), .0125(○), .025 (▼), .05(∆),of inhibitor. 



 82

 

[CaCl2] mM

0 5 10 15 20 25 30 35

R
at

e 
(m

M
/s

)

3.0e-6

3.5e-6

4.0e-6

4.5e-6

5.0e-6

5.5e-6

6.0e-6

6.5e-6

 

[Dopamine] mM

0.0 0.5 1.0 1.5 2.0 2.5

R
at

e 
(m

M
/s

)

2e-6

4e-6

6e-6

8e-6

1e-5

 

Fisetin - Ca2+ Aβ1-16 Fistein 0 mM Fistein .025 mM Fistein .025 mM Ca2+ 
Km (mM) 0.271 ± 0.040 1.310 ± 0.337 0.806 ± 0.088 
Vmax (mM/s) (8.71 ± 0.39) x 10-6  (8.32 ± 1.24) x 10-6  (8.73 ± 0.41) x 10-6 
kcat s-1 0.003 0.003 0.003 
kcat /Km (mM-1 s-1) 0.011 0.002 0.004 
Figure 3-14: Ca2+ effect on Fistein inhibition of Cu2+-Aβ1-16 oxidation of dopamine.  (Top) 
Ca2+ titration in fixed [Cu2+-Aβ1-16], [Dopamine], and [Fisetin].  (Bottom) Dopamine 
titrations without fisetin (▲), with fisetin (○), and with fisetin + Ca2+ ([Ca2+] = 30 mM)(●). 
Table includes kinetic parameters. 
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[Taxifolin] mM
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[Taxifolin] mM Aβ1-16 Km (mM) Vmax (mM/s) 
0.00 0.271 ± 0.040 (8.71 ± 0.39) x 10-6 
0.16 0.392 ± 0.075 (8.38 ± 0.57) x 10-6 
0.32 0.670 ± 0.149 (9.66 ± 0.97) x 10-6 
0.64 1.23 ± 0.282 (1.14 ± 0.15) x10-5  

Ki = 0.216 mM 
Figure3-15: Taxifolin inhibition of Cu2+-Aβ1-16 oxidation of dopamine. (Top) Taxifolin 
titration into fixed [Cu2+-Aβ1-16], [Dopamine]. [MBTH].  (Bottom) Titrating dopamine 
at fixed concentrations of taxifolin.  Table includes effect of [Taxifolin] on kinetic 
parameters including inhibition constants for competitive inhibition. Assays done at 
pH 7.4, 0 (■), .16 (●), .32 (○), .64 mM(▼),of inhibitor. 
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[Taxifolin] mM Aβ1-20 Km (mM) Vmax (mM/s) 
0.00 0.290 ± .0585 (1.19 ± 0.08) x 10-5 
0.16 0.331 ± .0663 (1.15 ± 0.08) x 10-5  
0.32 0.539 ± .102 (1.10 ± 0.09) x 10-5 
0.64             0.729 ± .150 (1.12 ± 0.11) x 10-5 

Ki= 0.372 mM 
Figure3-16: Taxifolin inhibition of Cu2+-Aβ1-20 oxidation of dopamine. (Top) Taxifolin 
titration into fixed [Cu2+-Aβ1-20], [Dopamine]. [MBTH].  (Bottom) Titrating dopamine 
at fixed concentrations of taxifolin.  Table includes effect of [Taxifolin] on kinetic 
parameters including inhibition constants for competitive inhibition. Assays done at 
pH 7.4, 0 (■), .16 (●), .32 (○), .64 mM(▼),of inhibitor. 
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Closing Remarks 

With plaques composed of Aβ in addition to redox active metal, the results 

indicate their combination can result in oxidative damage. As shown, different forms of 

metallo-Aβ can oxidative neurotransmitters which may be a cause or effect of AD.  This 

thesis focuses on the possible use of natural antioxidants to slow or inhibit this oxidative 

damage.  Flavonoids have been studied extensively and are considered to provide 

therapeutic effect for numerous diseases.  Here, the GTCs were shown to be oxidized and 

can potentially serve as suicide substrates.  In addition vitamins AsA and B6  were shown 

to inhibit the metallo-Aβ redox chemistry, possibly by reducing or chelating the metal. 

This study extents into the debate over the “best” flavonoid, by examining the properties 

of several common moieties.  The GTCs, quercetin, fisetin, and taxifolin all vary specific 

functional groups and through inhibition of metallo-Aβ can determine thoughts of most 

benefit.  The results indicate that the enolate is the most important in terms of metal 

chelation.  The absence of the β-keto-phenolate seems to have no effect on the inhibition, 

while the opposite it true for the 2-3 alkene.   
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