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A WAVELET BASED MULTISCALE RUN-BY-RUN CONTROLLER
FOR MULTIPLE INPUT MULTIPLE OUTPUT (MIMO) PROCESSES

Santosh Kothamasu

ABSTRACT

Run-by-Run (RbR) control is an online supervisory control strategy designed for
the batch manufacturing industry. The objective of RbR control is to minimize pro-
cess drift, shift and variability between machine runs, thereby reducing costs. The
most widely used RbR controllers use the Exponentially Weighted Moving Average
(EWMA) filter. However, the linear nature of the EWMA filter makes these RbR
controllers inefficient for processes with features at multiple frequencies (also known
as multiscale processes). Recent developments in wavelet theory have enhanced the
ability to analyze events in multiscale processes. New RbR control strategies have
started to emerge that incorporate wavelet analysis. These controllers, developed at
the University of South Florida, seem to be robust in dealing with multiscale pro-
cesses. The objective of this research is to integrate the wavelet based, multiscale
analysis approach with the existing double EWMA RbR control strategy for control-
ling a multiple input multiple output (MIMO) process. The new controller (WRbR
controller) is applied on a Chemical Mechanical Planerization process having four
inputs and two outputs. A continuous drift and mean shift are introduced in the
process, which is then controlled using both the existing double EWMA and the new
wavelet based RbR controllers. The results indicate that the wavelet based controller

is better in terms of the average square deviation and the standard deviation in the

vii



process outputs. Moreover, the observed decrease in the magnitude of the average

absolute input deviation indicates a smoother process operation.
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CHAPTER 1
INTRODUCTION

Run-by-Run control is a combination of statistical process control (SPC), Design
of Experiments (DOE) and Engineering process control (EPC) techniques that is
suitable for controlling batch processes. A run-by-run process control system assumes
that automatic controllers like PID controllers, which control the process in situ or
during a run, cannot be kept at the same set-points from one run to the other because
of the various disturbances affecting the process, like deterministic trend and shifts
in the mean. A run-by-run process control system primarily consists of two steps -
process modeling followed by online model tuning and control. Process modeling is
done offline using response surface methods, design of experiments, or ordinary least
square estimation. The model, which is continuously updated or tuned based on the
observed process data, is also used to determine the control action for the next run.

This thesis concentrates on the online model tuning and control for processes with
shift and drift disturbances. One of the most commonly used model-tuning strategy
for a process with the above characteristics is the Double Exponentially Weighted
Moving Average (EWMA) filter. However, the double EWMA filter is inefficient as
it operates at a fixed scale (or frequency). Proposed in this research, is a multiscale
adaptation of the double EWMA filter for multiple input, multiple output (MIMO)

processes.



1.1 Run-by-Run (RbR) Control

The semiconductor manufacturing industry is among the fastest growing indus-
tries that require state of the art tools and techniques for process monitoring and
control. One such process control strategy is Run-by-Run control, which is popular
as an online, efficient, automatic and low cost control strategy in the semiconductor
manufacturing industry.

Many of the semiconductor manufacturing processes operate in batch mode, e.g.,
wafer-fabrication. A “run” is described as an event of processing a batch (or lot) of
silicon wafers. The batch size can be as small as one. Run-by-Run control refers to
a situation where the control action is taken at the end of each run. For example,
consider a metal sputter deposition process. Metal is deposited on a wafer by the
sputtering process [1], which is carried out for a batch of wafers. The goal of the RbR
control procedure for such a process is to maintain a desired deposition thickness for
a batch of wafers.

Run-by-Run control techniques are well suited for processes where the cost of a
run operating far from the target is very high, but the cost of the control action is

relatively low. This is typical for most of the semiconductor manufacturing processes.

1.2 The Basic Structure for a Run-By Run Controller

The basic structure of the run-by-run controller is shown in Figure 1.1. There
are two feedback or control loops. The outer control loop is the Run-by-Run con-
troller, and it acts as the supervisor for the inner control loop where automatic PID
controllers are used. The objective of the PID controller is to maintain constant
input settings (or “setpoints”) during a run. The run-by-run controller action (or
recipe) consists of varying these setpoints of the automatic (PID) controllers after

every run in a supervisory manner. The setpoints, in turn, regulate the physical pro-
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Figure 1.1. Basic Structure of a Run-by-Run Controller (Del Castillo and Hurwitz,
1997)

cess variables (or inputs) within each run, which affect the quality characteristics (or
outputs). The difference between the functions of the automatic controller and the
Run-by-Run controller is that the automatic controller controls the process within a
run, while the Run-by-Run controller controls the process between successive runs.

The control action for a run is based on the results of the most recent runs.

1.3 Need for Run-by-Run Control

For any process, the value of the controllable variables, or inputs, are preset by
the machine manufacturers. This recipe remains fixed during a run. Different recipe
settings can be desired to fabricate different products, or similar types of products
with different quality characteristics, leading to change in specifications from run
to run. Moreover, the equipment may suffer from ageing and tool wearing effects
that may induce trend and autocorrelation disturbances. Likewise, a maintenance
operation may cause process shifts. Hence the setpoints of the automatic controllers
cannot be kept at the same value from one run to the next. This calls for a supervisory

control that alters the values of the process parameters on a run-to-run basis.



1.4 Control Procedure

A run-by-run control procedure consists of two major steps. Firstly, a regression
model is developed that relates the input variables with the output variables. This
model is usually fitted offline with some experimental data using response surface of
least square estimation methods.

The second step involves online estimation and process control. The model devel-
oped offline is continuously tuned based on the observed process data to compensate
for the disturbances and also used to compute the control action for the subsequent

run. This control action is known as a recipe in the microelectronics literature [2].

1.5 Filters or Model Tuning Strategies

Measured data is generally contaminated with errors due to factors such as sensor
noise, disturbances, instrument degradation and human errors [3]. Since the decision
about the process performance is based on the quality of information extracted from
the measured data, the collected data must be cleaned or filtered for efficient process
operation. Filters are generally used for data rectification. Some of the popular
filters in the industry are the Shewhart, Exponentially Weighted Moving Average
(EWMA), CUSUM (Cumulative Sum), and MA (Moving Average) filters. They are
called linear filters as they rectify the data by taking the linear combination of the
measured data.

Run-by-Run control, in most of the cases, is a model based online control strategy.
At the end of each run, the difference between the actual measured output and its
target (or predicted) value is computed. This difference is called the prediction error.
This error is processed by filters and consequently the model parameters are updated

from run to run. Hence, the filters are also referred to as model tuning strategies.



1.6 A Basic SISO Run-by-Run (RbR) Control Methodology

The preliminary RbR control scheme can be traced back to the work by Sachs et
al. [2] and Ingolfsson and Sachs [4]. They presented a simple Exponentially weighted
moving average (EWMA) statistic based Run-by-Run controller that recommends
recipe adjustments for a silicon expitaxial growth process in a barrel reactor. Del
Castillo and Hurwitz[5] discuss a similar controller for a Single Input Single Output
(SISO) process. The true process model is assumed to be a first order linear model
of the form,

p=a+pfu1+e (1.1)

where, ¢ is the time index denoting the run number, ¢, is a white noise sequence with,
€ ~ (0,0%) representing measurement error and other unpredictable noise sources,
the parameters o and 3 are the intercept (or offset) and the process sensitivity (or
gain), respectively, y; is the process output at the end of the run ¢ and u;_; is the
recipe or the process input at run ¢ — 1, i.e., recipe at the start of run ¢ or the recipe
at the end of run ¢t — 1. It is assumed that there is no time lag between the control
action and its effect on the process output. Also, the process exhibits no dynamics,
i.e., the output y;, is dependent only on the input value at the start of run ¢ (or at
the end of the run (¢ — 1)), u;—;. The optimal control action for a minimal variance

around target value T is given by :

(1.2)

However, most industrial processes are prone to errors, which induce dynamics
into the process. To compensate for these dynamics, the intercept «, is assumed to

be time varying. The predicted output response for run ¢, is of the form,

Ye = a1 + buygy (1.3)



where, a;_; and b are estimates of the parameters, o and [ respectively, obtained
prior to run ¢ with the available information. The recipe u;, is chosen such that
ai—1 + buy—; =T, where T is the target for the response, y. Ingolfsson and Sachs [4]
also assume that the estimate b of the process gain ,3, is available from some off-line
designed experiment, and that this value remains constant over time. The intercept

estimate a, is updated after each run using the current output measurement, g,. This

is done by the EWMA equation,
a; = A(yt — but) + (1 — /\)at_l (14)

where, A is the smoothening constant of the EWMA filter. The optimal control

action with a minimum variance around a desired target T is given by :

T —
u=— a (1.5)

This is the control action for the next run, ¢ + 1.

1.7 Multiple Input Multiple Output (MIMO) Systems

Most of the manufacturing processes are multivariate in nature. This is particu-
larly true for the semiconductor manufacturing industry where the processes are of
the Multi input Multi Output (MIMO) type. Consider, for example, the wafer fabri-
cation processes like etching, sputtering and polishing (CMP). In a CMP (Chemical
Planerization) process, the inputs are the table speed, back pressure, polishing down-
force and the profile of the conditioning system. The characteristics of interest (or
outputs) are the material removal rate and within wafer non-uniformity. The ap-
plication of Run-by-Run control for a MIMO process is relatively new. The control

structure and the methodology are discussed in detail in the Sections 3.2 and 3.3.
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Figure 1.2. A Process Signal and it’s Time Frequency Representation (Bakshi (1999))

1.8 Need for Multiscale Analysis

EWMA filter is a single scale linear filter. The linear filters, though easy to work
with and suitable for online analysis, have some limitations. They analyze the data
at a single scale, i.e. at a fixed resolution in time and frequency. For example,
Shewhart filters analyze the measurements at the sampling interval or the finest
scale, similar to the delta functions in Figure 1.3(a), and are best for detecting large,
localized changes. In contrast, the MA, EWMA and CUSUM charts inherently filter
the measurements at a coarser scale and hence can detect small shifts more efficiently.

In reality, measured data in most processes is multiscale in nature due to contri-
butions from events occurring at different locations in time and frequency. As can be
seen from Figure 1.2, a process signal contains contributions from a variety of sources
such as, sensor failure, equipment failure, equipment degradation, disturbance and

inherent noise in the process. These features have different time-frequency localiza-
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Figure 1.3. Tiling of the Time Frequency Space (Bakshi, 1999)

tion as shown in the adjoining figure. To control such a process, it is imperative
to examine these features over the entire time frequency domain. For example, a
step change within a process is localized in time domain while it is distributed in
the frequency domain. Similarly, a variance change in the process is localized in the
frequency domain but distributed in the time domain.

If the signal contains such data at multiple scales, the EWMA filter has the
tendency to trade-off the extent of error removal with the quality of the retained local
features. Also, the EWMA filter is not robust against a higher autocorrelation within
the data. Tiling of the time frequency space as shown in Figure 1.3(c), indicates that
the analysis of the signal at single scale will not permit efficient feature extraction
or noise removal from typical process signal.

As can be seen in Figure 1.3(b), the Fourier transform would provide only the
frequency related information within the signal; in other words, the data is local-
ized in frequency. Noise removal by eliminating the high frequency contribution by
Fourier transform will distort the localized features by over smoothing, as their high

frequency components will also be removed.



1.9 Multiscale Analysis Using Wavelets

Recently, wavelets have been popular as a multiscale analysis tool. Wavelets are
a family of basis functions with different time-frequency localization (or scale). As
can be seen from Figure 1.3(d), the wavelet functions span the entire time frequency
space. Most of the signals can be represented at multiple scales by decomposition
using a set of wavelet and scaling functions. This property is called as Multireso-
lution Analysis (MRA). Wavelets are capable of adjusting their scale to the nature
of the signal and thus provide complete information about a signal at different lo-
calizations in time and frequency by adjusting its scale to the nature of the signal.
Wavelet transform is computationally efficient than the traditional Fourier transform.
Wavelet analysis can often compress or de-noise a signal without appreciable degra-
dation. Moreover, compared to the Fourier transform, wavelets have the additional
property of compressing multiscale features and approximately decorrelating many
stochastic processes. All the above properties of wavelets are suitable for online,

multiscale analysis.

1.10 A Brief Description of the Problem

Most of the run-by-run control strategies are model based. Castillo and Rajagopal[6]
discussed a run-by-run strategy based process control for a Multiple Input Multiple
Output (MIMO) system. The model tuning strategy for such a system is based on a
double EWMA filter. This research is motivated by the developments in the multi-
scale wavelet based analysis and the limitations posed by the single scale filters. The
aim of this thesis is to integrate the wavelet based methodology with the existing
double EWMA controller for online analysis. The integrated controller (called the
WRBR controller) is tested for its performance in the presence of a continuous drift

and mean shift.



1.11 Thesis Organization

Chapter 2 provides a literature review about RbR control and wavelet based
multiscale methodology. Chapter 3 gives a detailed problem description. Chapter
4 discusses the proposed controller. Chapter 5 presents the experimental setup and

results.
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CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

Any industrial process, irrespective of how perfectly it is designed, is prone to
disturbances resulting in performance variability. Such inconsistency may be due to
factors such as variability in raw material properties, tool wear, equipment ageing or
change in the ambient conditions. These factors induce disturbances in the form of
mean shifts, variance shifts, autocorrelation and trend in the process output. SPC
and EPC are two strategies for process control. These control techniques evolved
independently in two different types of industries. While SPC originated in the
discrete parts industry, EPC is rooted in the continuous process industry. Box and
Kramer [7], provided a detailed comparison of SPC and EPC. They referred to SPC
as statistical process monitoring and to EPC as automatic process control (APC).

The control objectives in these industries were often different. In the parts in-
dustry, the objective was to consistently reproduce parts with the smallest possible
vartation about the fized target value. The process industries were attempting to
obtain the highest possible mean value for the process such as a purification process,

with the smallest variation.[7]

2.2 Statistical Process Control (SPC)

SPC comprises of monitoring a process through statistical analysis. It may also
be defined as a collection of statistical tools for process control. SPC looks for signals

representing assignable causes, which may be thought of, as external disturbances

11



that increase variability. At the same time, it ignores the chance causes of variation
that are inherent to the process. Thus, SPC does not control a process, but rather
performs a monitoring action that signals when control, in the from of identification
and removal of root causes, is needed [8]. SPC assumes that adjusting a process
is very expensive activity and hence should be utilized only when there is strong
evidence that the process is affected by an external source of variation. SPC is
“top-down” tool, driven by upper management as part of a company-wide quality
improvement drive. Some of the tools for achieving SPC are histogram, Pareto chart
and control chart. The control charts are the most powerful SPC tools. Shewhart

and EWMA control charts are popularly used in industry.

2.3 Engineering Process Control (EPC) or Automatic Process Control

(APC)

EPC is also referred to as Automatic Process Control (APC) in the literature. It
is an adaptive control policy commonly followed in process industries like chemical
industries. EPC actively reverses the effect of process disturbances by making regular
adjustments to the manipulatable process variables. In other words, EPC achieves
target output by transferring variability in the output variable to an input control
variable. [8]

Thus, EPC does not remove the root or assignable causes: it uses continuous ad-
justments to keep the process variables on target. EPC is a “bottom-up” procedure,
driven by process control or manufacturing engineers. EPC assumes that the cost
of controlling a process is far less as compared to the cost of being off-target.Feed

forward and feed back controls are some commonly used EPC strategies.

12



2.4 Integrating SPC and EPC

In the last decade, there were prominent efforts to integrate process monitoring
and engineering control strategies. Such integration is useful because an integrated
system can use EPC to reduce the effect of predictable quality variations and SPC to
monitor the process for detection of assignable causes of variation. The elimination
of these assignable causes results in additional reduction of the overall variability.
Improved quality would be the most likely outcome. The problem of integrating SPC
and EPC for process control has been studied by Box and Kramer [7], Van der Weil
et al. [9], Truker et al [10], Montgomery et al. [8] and Janakiram and Keats [11].

The semiconductor manufacturing industry is a hybrid industry in the sense that,
it uses some of the attributes of that parts and process industries. For example, in
the manufacturing of computer chips, certain aspects of the parts industry and others
of the chemical industry are needed. Consequently, a control strategy, which could
integrate SPC and EPC strategies, was needed. Run-by-Run control technique is a

result of such efforts to integrate SPC and EPC.

2.5 Evolution of Run-by-Run Process Control

Sachs et al. [2], and Ingolfsson and Sachs [4] proposed a model based process
control technique, which they termed as Run-to-Run process control. They describe
a controller, which uses feedback control to regulate a process, while at the same
time the diagnostic capability of a generalized version of SPC is used to detect major
disturbances to the process. They studied the application of the EWMA statistic for
process adjustment. Butler and Stefani [12] discussed a Double EWMA controller
to take care of a deterministic trend within the process. Del Castillo [5] presented
a literature review of the run-by-run process and also suggested some extensions.

Pioneering work has been undertaken by Del Castillo [13] and Del Castillo et al.

13



[14] wherein conditions for stability of the run-by-run controllers were discussed.
SEMATECH International, a semiconductor research corporation, was continually
involved in the development and implementation of Run-by-Run control. The above
studies were restricted to Single Input Single Output (SISO) systems. Del Castillo [6],
Rajagopal [15] developed a controller for Multiple Input Multiple Output systems
(MIMO) as applied to a CMP device. Tseng it et al. [16] have also presented a
Double EWMA based controller for MIMO systems.

2.6 Run-by-Run Control Strategies

The EWMA based strategy has been widely used as a model tuning strategy in
Run-by-Run control because of its simplicity and ability to compensate for drifts and
other small disturbances.

Some other strategies for Run-by-Run control have been discussed in literature.
The strategies can be classified on the basis of the assumption of the process mod-
els being linear or nonlinear. Recursive Least Square Estimation Method (RLSE)
has been used to update the process model. A description of the recursive estima-
tion methods can be found in [17], [18] and [19]. Del Castillo and Yeh [20] have
discussed the application of this strategy for the Optimizing Adaptive Quality Con-
troller (OAQC) and self-tuning controllers [5]. The application of the OAQC strategy
for non-linear processes has been studied by Del Castillo and Yeh [20].

The Kalman filtering approach [21] uses a linear model to describe a process. It
is different from EWMA filter in the sense that it can update both the gain and the
offset parameters. Zhang et al. [22] have discussed about a Set valued R2R strategy
with ellipsoidal approximation.

Some methods for Run-by-Run control for non-linear process models are the
machine learning approach [23] and the artificial neural network based approach

[24].
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2.7 Applications of Run-by-Run Control

Run-by-Run control has been successfully implemented in many of the semicon-
ductor manufacturing processes. Ingolfsson and Sachs [4] have discussed the applica-
tion of the run-by-run controller to the control of a silicon epitaxy process in a barrel
reactor. Butler and Stefani [12] discuss a supervisory run-to-run control of polysilicon
gate etch process. The Double EWMA model tuning strategy was utilized for tuning
the process model. Mozumder and Barna [25] have applied the run-by-run strat-
egy for the control of the PECVD (Plasma Enhanced Chemical Vapor Deposition)
process.

The application of Run-by-run control to a Chemical Mechanical Planarization
(CMP) process has been widely discussed in literature. Boning et al. [26] have
presented the application of an integrated hardware software control system utilizing
run-by-run methods to overcome common CMP equipment difficulties. Del Castillo
and Rajagopal [6] also have successfully tested the EWMA and PCC based run-
by-run controllers for the CMP process. [27] have applied the run-by-run control
methodology for the CMP process. They have designed experiments to determine
the transition period necessary to reacquire equilibrium after a recipe change. Work
has been done in applying run-by-run controllers to the process of Metal Sputter
Deposition by Smith et al. [1]. They have applied the EWMA and the Predictor
Corrector controller (PCC) for process control. Palmer et al. [21] have applied
the Kalman filtering approach in the photolithography step of the semiconductor

manufacturing process.

2.8 Filters

Control charts are popular in the industry to monitor changes in the process.

Some of the commonly used control charts are Shewhart, CUSUM, EWMA and MA
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charts. Shewhart (or X) charts are suited to detect large shifts in the process mean
whereas EWMA, CUSUM and MA are better in detecting small shifts in the process
parameters. Hence the selection of the type of the control chart in an important issue
for a process engineer. The control charts, though effective, have a limitation. They
assume that the observations are statistically independent. In reality, in process and
hybrid industries like semiconductor manufacturing industry, this assumption can
lead to wrong conclusion.

The term ‘filter’ is analogous to the digital filters referred to in signal processing.
Filters are a set of weight functions, which on convolution with the data extract the
information contained in a specific frequency range. The process of filtering is also
referred to by the term rectification. The filters are broadly classified as Linear and

Non-linear filters based on the method of transforming the data.

2.8.1 Linear Filtering

The linear filters take a linear combination of the weights and the measured data

as:

N
i=1

Where w; are the filter weights, which satisfy

x; is the measured data and Xj is the filtered data.

The filter weights are called impulse response of the filter or filter coefficients.
If the filter window is of finite length, then these filters are called as finite impulse
response (FIR) filters. If the filters combine all measurements, they are called infinite
impulse response (IIR) filters. The linear filtering methods have found wide use in

statistical process control, since after proper tuning, they permit easier identification
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Figure 2.1. Shewhart Filter

of a change in the process mean. Some of the commonly used linear filters namely

the Shewhart, CUSUM, EWMA, and MA filter.

2.8.2 Shewhart Filter

A Shewhart chart, is a FIR filter with N=1 and w=1, which can be given by
y;i=1 * ;. Thus, a Shewhart chart uses only the last observed data point, ignoring
any information given by the entire sequence of points, i.e., the filter represents the
data at the finest scale (smallest window) or highest resolution of measurement. This
feature makes the Shewhart chart relatively insensitive to small shifts in the process.
Thus the quality characteristic obtained by Shewhart filter is sensitive to large shifts.
As can be seen form the Figure 2.1, the only filter coefficient for has a fixed value of

1.

2.8.3 Moving Average (MA) or Mean Filter

a process is monitored using the Moving Average control chart, the filtered data
or the quality characteristic of interest is the average of the measurements in the
window. The procedure consists of calculating the new moving average Y; as each

observation x; becomes available. The filtered data is given by:

X+ X+ Xt A+ X
w

Y;

(2.3)
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The MA filter is a FIR filter with equal weights (as shown in Figure 2.2), and is more
effective in detecting small process shifts. However, it is generally not as effective

against small shifts as the EWMA or the CUSUM filters, which are described next.

2.8.4 CUSUM Filter

A CUSUM filter (Figure 2.3) is given by the following recursive equation :

Yi=wX; +Yi (2.4)

where wy = w;_; = ... = w;. The length of the filter window increases as the window
of the measured data increases and hence it is an infinite impulse response (IIR) filter.
The CUSUM filter represents data at the coarsest scale (lowest resolution). The
CUSUM chart is very effective in detecting small shifts, but not as effective as the
Shewhart filters in detecting large shifts. An approach to improve the ability of the
CUSUM filters to detect large process shifts is to use a combined CUSUM-Shewhart

procedure for online control.

2.8.5 EWMA Filter

The Exponentially Weighted Moving Average filter is a good alternative to the
Shewhart filters when we are interested in detecting small shifts. The performance

of the EWMA is approximately equivalent to that of the CUSUM filters but it is
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easier to set up and operate. Hence, the EWMA filter is one of the most widely used
model adaptation strategies in run-by-run control. An EWMA filter is given by the

following recursive equation:

Yi = AX; + (1 - \)Yiy (2.5)

where A is the filter parameter. The above equation can be expanded as :

Vi=(1=NY+ A1 =N IX 4 A1 = N2 4L X (2.6)

and Yy = pp.

The length of the filter window increases with the length of the data; hence it
is an infinite impulse response filter. The filtered data is exponentially averaging
the current measurement with all the previous measurements. The EWMA thus
gives more weight to the current observations and exponentially less to the previ-
ous measurements. The EWMA weights decrease geometrically. Since an EWMA
filter considers an infinite data window (though with diminishing weights), it repre-
sents data at a coarser scale than the MA filter, but finer scale than the CUSUM

filter.Figure 2.4 below represents an EWMA filter.
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2.9 Disadvantages of Linear Filters

The linear filters discussed above operate at a fixed scale and hence are best
for detecting changes at a single scale. For example, Shewhart charts analyze the
measurements at the scale of the sampling interval or the finest scale, and hence are
best suited for detecting large changes. In contrast, MA, CUSUM and EWMA charts,
process measurements at a coarser scale. Hence, they are best suited for detecting
small shifts or features at coarse scales. Thus, the use of any one particular filter is
likely to fail in extracting an unknown feature of a data set. It means that if a signal
contains data at multiple scales, the linear filter will be forced to trade off the extent
of error removal with the quality of the retained local features [3]. With the removal
of more errors, the retained local features in the filtered signal become smoother and
more distorted.

Many SPC methods assume uncorrelated measurements, but in practice, auto-
correlated measurements are very common. On using the single sale filters, auto-
correlation is still present among the measurements. In other words, the linear filters
are unable to de-correlate the data in the process of filtering. Also, the linear filters
are also not robust in the presence of non-Gaussian errors such as outliers in the
measured data.

Wavelet based analysis is useful for understanding the features at different scales.

The multiscale literature is discussed henceforth.
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2.10 Literature Review on the Multiscale Methods and their Applica-

tions

Wavelets were first defined by Morlet [28]. Daubechies [29], one of the brightest
stars in the field of wavelets then developed her family of wavelets with compact
support. After their conceptualization, wavelets were applied in a wide variety of
applications. Some of the most significant applications have been in the areas of
signal processing, image and data compression. Grossman and Morlet [30] used
wavelet in seismic analysis. Wavelets have been widely used in the noise removal for
a variety of processes. Donoho [31], and Donoho and Johnstone [32] have studied
the mathematical background for wavelets.

To understand the concepts behind wavelet analysis, the stepping-stones of fre-
quency analysis, namely the Fourier series and the Fourier transform should be un-

derstood. They are explained below.

2.11 Fourier Analysis

The basic concept of frequency-domain analysis is that a signal can be considered
as the sum of sinusoidal basis functions. A continuous sine function sin(wt) is a single
frequency wave of frequency w radians/second, and the frequency domain description
consists of a single value at a particular frequency. The Fourier analysis is done for
periodic and non-periodic signals. For periodic signals, analysis is done by Fourier

series and for non-periodic signals analysis is done by Fourier transform.

2.11.1 Fourier Series

A periodic signal f(t) can be decomposed on a set of sine and cosine basis function

as follows.

f(t) = i e’ (2.7)

n=-—oo
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where a, = & [[*17T f(t)e"Imrtdt.,
It can be seen that the Fourier coefficient a,, represents a contribution of the signal
on a basis function with frequency nw;. Thus the information obtained is based on

the complete contribution over a particular basis function, hence this information is

localized in frequency.

2.11.2 Fourier Transform

The Fourier transform is applied for non-repetitive signal. It does the same
operation as what the Fourier series do. For a signal f(t), the Fourier transform is

given as follows

F(w) = /_ °; F(t)e 9 dt (2.8)
where
£(t) = /_ °:O F(w)etdw (2.9)

The Fourier transform of a signal indicates the frequency content of the signal and
the magnitude of the Fourier transform indicates the energy content of the signal.
A filter is designed accordingly with respect to its Fourier transform. For a low-pass
filter (which filter out high frequency component) the Fourier transform of the filter
should be bounded within a low frequency range. For a high pass filter, the Fourier

transform would be bounded within a higher range.

2.12 Definition of Scale (Resolution)

To understand the Multi-resolution or Multi-scale analysis it is necessary to un-
derstand the concept of scale. Scale can be described based on the filters used. There
are various ways by which we can describe a scale. Whenever a data set is filtered out
or the measurements are approximated to obtain a particular output, the description

obtained from the output depends on the scale of measurement or the size of the
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operator used [33]. Given a data set the scale (resolution) of the output obtained can
be described by the amount of filtering done to data set to obtain the output. The
original dataset represents the highest resolution of measurement. As the frequency
components are filtered out from the measurements, it results in a smoother version
of the input. This representation of the data is coarser, i.e., at lower scale. One can

obtain various levels of scale by applying different type of filters to the data set.

2.13 Dilation and Translation

This section is introduced to have a better understanding of the concept of
wavelets. The dilation of a function can be described by the Fourier representa-

tion of the signal. Consider the Fourier approximation of a function f(x) as

j
Z ajcos(jx) + bjsin(jz)) (2.10)

l\Dl»—\

The function is approximated by a set of sine and cosine basis functions for
various J. It can be seen from Figure 2.5 that sine and cosine at various j or levels
represent the dilated versions of the sine and cosine basis functions. It can be seen
that as the dilation level increases, the function frequency increases. Translation
of basis functions is explained by Figure 2.6, which shows the same basis functions

translated at various integer values.

2.14 A Multiresolution Analysis Example

Consider the signal shown in Figure 2.7. It consists of signals at various reso-
lutions (scales). The complete set of the Figures 2.7 (a) through (g) represents a
multiresolution representation of the signal. The original signal consists of oscilla-
tions at various time intervals. The multiresolution description of the signal can be

obtained at various scales by filtering out the highest frequencies present at every
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scale. The high frequency components are removed by approximating the signal on a
set of basis functions (piece wise constant function) for that resolution. In a similar
way, the difference (the high frequency components) between the first approximation
and the original signal (the information filtered out) is shown in Figure 2.7(c). To
get the signal in Figure 2.7(d) the first approximation is again approximated by a
set of basis function (piece wise constant functions). The above function is repeated
until the desired level 7. Thus we obtain the approximation at every level and also
information about the frequency components filtered out. This description is called
as the multiresolution description of the signal. The signal from Figure 2.7 (b,d,f)
are called as scaled signals and that from Figure 2.7 (c,e,g) are called detail signals.

Wavelet basis functions are introduced in the next section.
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2.15 Wavelets

Wavelets are localized waves. Instead of oscillating forever, they drop to zero.
A basic requirement for a function to be wavelet is that it should integrate to zero.
In the Fourier analysis, functions are represented a linear combinations of sine and
cosine waves, and hence the representations are localized in frequency, not in time.
On the contrary, the wavelet analysis uses linear combinations of wavelet basis func-
tions, localized in both time and frequency, to represent any function in the square
integral space i.e. Lo(R) space. Some of the commonly used wavelets are the Harr

wavelet, Daubachies and Morlet wavelets.

2.16 Wavelets as a Multiresolution Analysis (MRA) Tool

Figure 2.7 shows an example of the mulitresolution analysis. In the figure, each
approximation represents a signal at a particular resolution. To obtain multireso-
lution approximations of the signal and satisfy the properties for multi-resolution
analysis, good basis functions are needed. The basis function should have support
over finite interval and also satisfy multi-resolution conditions. Wavelets are basis
functions, which have compact support, and they satisfy multi-resolution conditions.
The wavelets have various useful properties (given below), which make MRA a useful

tool in analyzing signals.

1. The wavelet decomposition approach provides a sound mathematical back-

ground for multi-scale analysis.

2. The wavelet basis function have compact support, thus any signal can analyzed

on a piece wise basis.

3. The basis functions represent finer details of the signals more quickly due to its

oscillation property. The coefficients obtained (wavelet coefficient) determines
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the significant events in a signal, since they are measure of the amount of fluc-
tuation in the function about a particular point = 277k, where the frequency

is determined based on the dilation index j.

2.16.1 Wavelet Expansion

Any signal can be analyzed, if expressed as linear decomposition by

f) =" am(t) (2.11)

where [ is an integer index for the finite or infinite sum, @, is the expansion coefficient,
and 1, represents the basis functions of ¢ called the expansion set. If the expansion is
unique, the set is called basis functions [34] For orthogonal basis function the inner

product is given by
(Wt o) = [@udt =0 k1 (2.12)
thus the coefficients can be calculated by the inner product
@ = (F(0),0nl0)) = [ FEpsu(t)at (2.13)

For the wavelet expansion, a two-parameter system is constructed by using (3.13),

it is given by the following equation

f(t) = ; Z a; ki (t) (2.14)

where both j and £ are integers : j is called the dilation parameter, k is the translation

parameter, and ), are the wavelet expansion functions. The coefficients a;;) are
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called the discrete wavelet transform (DWT). For an understanding about the basis

function, it is necessary to understand the wavelet system.

2.16.1.1 Characteristics of a Wavelet System

A wavelet system is a set of two-dimensional expansion set (basis functions) for
a class of functions or signals. From 3.16, we can say that if a wavelet set is given
by 4 for j,k =1,2,3..., a linear expansion would be f(t) = > >°; a; k0 (t) for
some set of coefficients a;;. There are three important characteristics for a wavelet
system (refer [35]

The wavelet system is generated from dilation and translation of scaling functions
or wavelets. The two dimensional parameterization is achieved from the function ()
by

Vi x(t) = 27%p(27 — k), jk € Z, (2.15)

where Z is the set of integers. The factor 2//2 maintains the norm for the wavelet
function. All wavelet system satisfies multiresolution condition. That is if a signal
can be expressed as a weighted sum of larger set of basis function then the same signal
can be expressed as a weighted sum of smaller set of basis functions. The coefficients
representing the larger set of basis function are the high-resolution coefficients and
smaller set of basis functions is made up of the lower resolution coefficients.

These lower resolution coefficients can be calculated from higher resolution coef-

ficients by a tree-structured algorithm (pyramid tree) called filter bank.

2.16.2 Scaling Function

The scaling function forms the basic step for derivation of wavelet bases. A set

of scaling functions in terms of its translates is given by

o(t) = o(t — k), k e Z, ¢ € L*(R). (2.16)
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The subspace of L2(R) spanned by the scaling functions is defined as
Vo = span{¢i(t), k € Z}, (2.17)
which implies that,
f(t) = ;sz(t)a for f(t) € Vo (2.18)

A two dimensional family of scaling functions are generated from the basic scaling

functions and translations are given by

in(t) = 229 (27t — k), (2.19)
where span over k is
Vi = span{;x(t), k € Z}, (2.20)
It implies that,
) =" wd(2t + k), for f(t) € V. (2.21)
l

For larger values of j the scaling function has a larger span hence it can represent
the signal in more number of steps (dilations and translation), thus the signal which
represents the finest scale of measurement would be represented by scaling function
which have translation equal to the number of measurements and the scaling function
will be dirac function hence the coefficients would be the measurements (samples of
the function). For small values of j the scaling function are translated in larger
steps thus can represent only coarse information. The importance of how the scaling

function can be known after knowing about MRA and the necessary condition for

MRA.
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2.16.3 Multiresolution Analysis

Multiresolution provides a formal approach for constructing orthonormal basis
function. It provides a particular framework for understanding of wavelet bases, and
for construction of newer examples [29]. The idea behind multiresolution analysis is
to express a function or signal as a limit of successive approximations, each of the
approximations indicating a smoother version of the function or signal. These succes-
sive approximations correspond to different resolution thus the name multiresolution.
The multiresolution analysis of L?(R) is defined as a sequence of closed subspaces V;

of L*(R), j € Z, with the following properties. Completeness in L*(R).
eV cV,acVpecVic Wy, (2.22)

NV = {0}, GV, = I*(R). (2.23)

This implies that the space that contains the higher resolution signals would also
contain the lower resolution signals.

Scale Invariance.

1(@) € V; & f(22) € Vi, (2.24)

This implies that elements in a space are scaled versions of elements in the next
space.

Shift invariance.
flx)eV, e f(x+k) €V, ke Z. (2.25)

Vo has an orthonormal basis ¢(t — k), and there exists a scaling function ¢(t) € Vj
such that

dix(t) = 22 (27t — k) ik € Z, (2.26)

30



which satisfy the property of Riesz basis and are linearly independent.
From this it is known that ¢(t) € V5 € Vi, and ¢(2t) is a basis for the subspace
V1 or in other words, V; is the space spanned by ¢(2t). This implies that ¢(t) can

be expressed as weighted sum of shifted ¢(2t) as
o(t) = h(k)V26(27t — k) n e Z, (2.27)
k

where the coefficients h(k) are a sequence of numbers which are called the scaling
function coefficients (scaling filter or scaling vector) and v/2 maintains the norm. This
recursive equation is of primary importance in derivation of the scaling function, the
complete basis set. The recursive equation is called as Dilation equation or refinement

equation or the two-scale equation. The scaling function has the following property

/ Todt=1 and Y h(k)=1. (2.28)

2.16.4 Wavelet Function

The resolution of a signal can be described by scaling functions and they describe
smoother versions of the signals. But to identify differences between the scaling
spaces (V},) a different set of functions have to be defined. These functions are called
wavelet functions (1) and they span the differences between the spaces spanned
by the scales of the scaling function. The difference spaces are useful in identifying
significant changes in the scaling space. Here the space representations are orthogonal
complements. The orthogonal complement of V,, in V, . is given by W,. If the

wavelet spanned space is defined such that

Vi=Vo & Wy, (2.29)
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then

Vo=Vod Wy W,. (2.30)
Thus it can be written that
R)=DW; =V, W, (2.31)
Jj€Z J>Jj0

The wavelet spaceW, C Vi, and thus can be represented as weighted sum of trans-

lated ¢(2t) as follows

p(t) = m(k)V29(2t—k), n € Z, (2.32)

where h;(k) = (—1)Fh(1 — k). This function obtained from (wavelet) gives or gener-

ates other equations for set of expansions of the form
Vik(t) =222t - k),  jk € Z. (2.33)

2.16.5 Discrete Wavelet Transform

According to Multiresolution analysis given by Equation 2.31, any function f(¢)
can be written using Equation 2.19 (scaling expansion) and Equation 2.33 (wavelet

expansion) as

Z C]0¢]0; + Z Z d; ,k%, (2.34)

k j=jo

The coefficients in the wavelet expansion are called the discrete wavelet transform
of the function f(z). If the wavelet system is orthogonal then coefficients can be

calculated by
6o = (F(0), 650 () = [ £ it (2.35)

dig = (£, 3x(0)) = [ £ (Ot (2.36)
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At high resolution, the scaling function is similar to the Dirac function and the
inner product just samples the function, in other words the coefficients are just the
measurements. This is a very important property about when to apply wavelet

transformation to the data set.

2.16.6 Mallat’s Decomposition and Reconstruction Algorithms

In most of the application we cannot deal with the scaling functions and wavelet
function, only the coefficients of dilation equation and the coefficients in the expan-
sions are needed. Thus given a multiresolution analysis, a pyramidal algorithm can
be employed to calculate the DW'T and the various approximations at every space.

Mallat [36] developed a very efficient algorithm (Pyramidal Algorithm) for multi-
resolution analysis using wavelets. This algorithm depends on two sequences, called
filters. Using this algorithm the DWT can be performed. For any wavelet family the

two equations needed to derive the entire family are
o) = V262t —k), n € Z, (2.37)
k

v(t) = V202t —k), n € Z, (2.38)

The sequences hg,gx, are used to get the DW'T, they are called as low pass and high
pass filters. Let
Xn,k = [Xn,Oa Xn,la o aXn,m—l] (239)

be a signal of length 2". We know that this signal defines a function f € v, given by

F='3 Xu(k)dus (2.40)
k=0

The filters process the signal X by two operators H and H;. When these two

operators are applied to the signal X two new signals (subband signals) are obtained
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and are denoted by HX and H;X. The entries in the two new signals are denoted

by
(HX) = X;_1(k) = 3 h(m — 2k)X;(m) (2.41)
(H1X) =Y 1(k) = D ha(m — 2k)X;(m) (2.42)

Equation2.41 contains the set of scaling coefficients at a particular scale and

Equation2.42 contains the set of detail coefficients at a particular scale.

2.17 Review on the Multiscale Methodology as Applied to Process Mon-

itoring and Control

Rajesh et al. [37] have discussed a wavelet based multiscle approach for statistical
process monitoring. The application of the multiscale methodology for process con-
trol is relatively new. Rao [38] presented a wavelet based Run-by-Run controller for a
Single Input Single Output System (SISO). The process offset is recursively updated,
after each run, using a single Exponentially Weighted Moving Average (EWMA) fil-
ter. They compared the performance of the wavelet-based controller against that
of the simple EWMA filter. They tested the integrated controller for a variety of
disturbances like the mean shift, spike and variance shift under different levels of
autocorrelations. The conclusions state that the wavelet based controller and the
EWMA controller were similar in performance for lower levels of autocorrelations.
Contrastingly, for higher levels of autocorrelation, the wavelet based controller is able

to control the process faster.

2.18 Examples of Multiple Input Multiple Output (MIMO) Systems

The examples of a MIMO process are the CMP process and the silicon Epitaxy

process. They are briefly discussed in the next section.
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2.18.1 Chemical Mechanical Planarization (CMP)

CMP is a process of polishing the surface of a wafer smooth by abrasive action
and chemical slurries. The CMP machine has carriers to hold the wafer and to press
it on the table pad. During the polishing process, the table pad and the carriers are
rotated. The mechanical force and the chemical action of the slurry thus remove the
material on the wafer. Two important variables of a CMP process are the removal
rate and the within-wafer non-uniformity. The inputs (or recipe) to be controlled are
the table speed, back pressure, polishing downforce and the profile of the conditioning
system.

The goal of the Run-by-Run control is to adjust these recipes so that the outputs

meet the specific targets as close as possible from run to run.

2.18.2 Silicon Epitaxy Process

Sachs et al. [4] illustrated a feedback controller using a silicon epitaxy process
in a barrel reactor. One important characteristic of interest is the uniformity of the
thickness of the wafers within a batch. The uniformity is greatly influenced by two
input variables, the balance between the metering valves of the left and the right

bellows and the horizontal angle of the injectors.
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CHAPTER 3
PROBLEM DEFINITION

3.1 Introduction

Run-by-Run control is a low cost and profitable supervisory control strategy
devised for the batch processing industry. The objective of the RbR control strategy
is to minimize process drift, shift, and variability between machine runs, thereby
minimizing costs. Most of the RbR controllers are model based and single scale in
nature. This strategy can be coupled with the recent developments in multiscale
analysis, which forms the core of this research. This chapter first discusses the

existing double EWMA controller, followed by the problem definition.

3.2 Need for a Double EWMA Controller

The model described in Equation 1.1 does not adequately describe those real
time-manufacturing processes, which are subject to various disturbances, some of
which are unpredictable. It is observed that many of the processes are subject to
the drift disturbance. For example, the polysilicon gate etch process is known to
drift considerably as the reactor ages. In a machining process, a drift in the response
represents the tool wear. In the epitaxial growth process, deposition of material
on the walls of the reactor chamber is a potential cause of process drift. Hence,
a more reasonable model should include an additional term representing a ‘drift’
in the process. However, the drift is not always constant and not always known
before. A single EWMA based run-by-run controller tends to be off target for a

drifting process [13]. Butler and Stefani [12] suggested a double EWMA controller
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(also referred to as the “Predictor Corrector Controller (PCC)”) that compensates
against different types of stochastic drifts. This is achieved by an additional term in
the model, ¢, which models a time dependent unidirectional drift disturbance (4 is
the drift parameter and ¢ is the time index or run number). Thus the double EWMA
based run-by-run controller updates two parameters, namely the process offsets (or

shift) and the process drift, from one run to the next.

3.3 Control Procedure for a MIMO System

Some of the MIMO systems are described in section 2.18. The steps involved in
an RbR control strategy are: developing a process model followed by online model
tuning and process control. This strategy, as presented below, is discussed in detail

by Del Castillo and Rajagopal [6].

3.3.1 Process Model

The process model for a multiple input multiple output (MIMO) system, with p

outputs and m inputs, is of the form:

Yt = a+ﬁUt71 +5t+€t (31)

Here,

Y, = (p x 1) vector of the quality characteristics (outputs or response) measured at
the end of run t,

a = (p x 1) vector of process offsets (intercept) for p responses,

B = (p x m) matrix of process gains,

U, 1 = (m x 1) vector giving the levels of the controllable variables (or inputs) set
at the end of run ¢t — 1,

d = (p x p) diagonal matrix containing the average drift per run for each of the
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responses,

t = (p x 1) vector with entries equal to t, the time index (or run number) and,

¢; = multivariate white noise.(1.e. E(e;)= 0, Var(e;) = 02, Cov(ex,€s4%)=0 for k#0) .
The model 3.1 assumes a Deterministic Trend (DT) disturbance, given by the terms
0t + €. Del Castillo and Rajagopal [6] assume that the estimate B, of the process
gain (3, is obtained offline, using methods such as Design of Experiments and linear
regression. The other parameters to be estimated are the offsets, o, and the drift, §.

This procedure is explained in the subsequent section.

3.3.2 Online Model Tuning and Process Control

Once the process model is optimized, the second step is tuning the model online
and hence maintaining the process in control. The model developed offline is contin-
uously tuned based on the observed process data and used to determine an optimal

control action.

3.4 Control Methodology

In the process Equation 3.1, it is assumed that the process exhibits no dynamics.
However, to be realistic, the intercept « is assumed to by time varying to account
for these dynamic process disturbances. Similarly, to compensate for the machine or
process drift, the drift parameter § is also assumed to be time varying. The offsets,
a, and the drift, §, will be estimated online and updated after each run, given by the
estimates A; and D; respectively.

Figure 3.1 shows the schematic representation of a double EWMA RbR Con-
troller. At the end of each run ¢, the model parameters A; and D; are updated
by the double EWMA strategy. These updated parameters, along with the desired

process targets, are then used to compute the recipe (or input settings for the Au-
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Figure 3.1. A Run-by-Run Controller for MIMO Systems

tomatic PID controllers) for the next run. The model is also updated with the new
recipe.

Thus, a corrective action, Uy, is computed at the end of run ¢, which gives a
prescribed set of inputs, to the process engineer for the next run. This is done by
choosing the control action that corrects for the one-step-ahead predicted deviation
from the target [6]. That is, ||Yt+1‘t — T|| is minimized, where T = (p X 1) vector

of targets for the responses in Y. Hence the objective function is:
Min Z = ||Ys31: — T (3.2)
The predicted process output for the run (t+1) is given by :

Y1 = a+0(t+ 1) + BU, (3.3)
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Replacing « and 6(¢ + 1) by their estimates, the above equation may be written
as:

Y11 = A, + D, + BU, (3.4)

For a square system, i.e., with the same number of input and output elements (m =

p), the controller equation, as a result of the minimization Equation 3.2, is given by:
U;=B(T-A,-D)) (3.5)

The online estimates A; and D, are obtained using the multivariate double EWMA

equations at the end of each run ¢, for the next run, given by :
At = Al(Yt - BUt_l) =+ (I - Al)At—l (36)

Dt = AQ(Yt - BUt,1 - Atfl) + (I - Ag)Dt,]_ (37)

where, I is a (pxp) identity matrix, and A; & Ay are (p x p) diagonal EWMA
weight matrices with values (0, 1]. A; = MI and Ay = Al Ay and Ay are the
smoothing constants for the above EWMA equations. The conditions for optimal
selection of the values A\; and A are discussed by Del Castillo [13]. When A; and
A, are diagonal, (A; + D;) provides the unbiased estimate of (o + 6(¢ + 1)), i.e., the
estimate provides an asymptotically one step ahead prediction of where the quality
characteristics would have drifted in the absence of any control action.

Most industrial processes are not squared. The common case is when the number
of controllable inputs is greater than the number of output responses, i.e. m > p.
Rajgopal and Del Castillo [15] extend the above controller for non-square systems.
Two controllers discussed are the Ridge-Solution Controller and the Right-Inverse

Controller.
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3.4.1 Ridge-Solution Controller

The Ridge Solution Controller equation is similar to Equation 3.5. The only
change is that the term pI is added to the term (B’B), which makes it invertible as

long as pu #0. The controller equation is given by:
U, = (BB+ul)"'B(T - A;, - D)) (3.8)

3.4.2 Right-Inverse Controller

Tseng et al. [16] extended the multiple outputs and single input controller pro-
posed by Sachs et al. [4] to the multivariate case. For a double EWMA based model

tuning strategy, the controller equation is given by :
U,=(I-B'(BB) ' —B)U_, +B'(BB) ' (T— A, — D)) (3.9)

Thus, the controller equation provides the prescribed input settings to the process

for run (¢ + 1). The recipe is also sent to update the process model.

3.5 Problem Definition

As discussed in the literature, the EWMA filter is not suitable for multiscale
analysis because it’s parameters do not adapt to the nature of the features within
the signal. Measured data, is most industrial cases, is found to be multiscale in
nature due to contributions from the error features located at different scales. There
has been a significant development in the area of wavelet based multiscale analysis.
Researchers in various fields like image processing and data compression have ex-
ploited this ability. Wavelet based strategy, as applied to process control operations,

is relatively new. Rao [38] integrated the multiscale wavelet based analysis strategy
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with the EWMA controller or a single input single output (SISO) system subjected
to Gaussian errors.

Most manufacturing processes are of the multiple input multiple output (MIMO)
type. The focus of this research is to develop a wavelet based multiscale double

EWMA RbR controller for multiple input multiple output processes.
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CHAPTER 4
PROPOSED CONTROLLER

4.1 Introduction

This chapter presents wavelet based model adaptation strategy for the double

EWMA RbR controller.

4.2 'Wavelet Based Run-by-Run Controller

To overcome the drawbacks of the single scale filters, Bakshi et al. [3] suggested
an online, multiscale (OLMS), wavelet based filtering approach. It consists of the

following steps:

1. Decompose the measured data within a window of dyadic length (in power of

2) using a wavelet filter.
2. Threshold the wavelet coefficients and reconstruct the filtered signal.
3. Retain only the last data point of the reconstructed signal for online-use.

4. When the measured data are available, move the window in time to include
the most recent measurement while maintaining the maximum dyadic window

length.

The objective of this research is to integrate the above wavelet based online

multiscale filtering approach with the double EWMA RbR control strategy.
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Figure 4.1. A Wavelet Based Multiscale Run-by-Run Controller for MIMO Systems
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As can be seen from Figure 4.1, the wavelet based multiscale strategy differs from
the double EWMA controller in that it preprocesses the prediction errors before
sending them to the EWMA filters.

The proposed strategy consists of the following steps- multiscale decomposition of
the prediction errors, thresholding the resulting wavelet coefficients (i.e. denoising)
and finally reconstructing the denoised error signal. The steps involved in wavelet

based analysis used are discussed henceforth.

4.2.1 Choice of Wavelet

The Daubechies 4" order (Db4) wavelet has been chosen in our analysis because
it is compactly supported with external phase and highest number of vanishing mo-
ments for a given support width. Also, it has the property of exponentially smoothing

the signal.

4.2.2 Determining the Number of Levels for Decomposition

The next step, after choosing the type of the wavelet, is to determine the number
of levels up to which the signal should be decomposed. The number of levels should

be 4-5 for one-dimensional analysis [39].

4.2.3 Wavelet Decomposition

In order to be able to use the wavelet based methodology online, a moving window
approach is used. A dyadic length (of the order 2) of the prediction error for offset
(Y;—BU; ;1—A; ;) and drift (Y;—BU; 1—A; ;—D; ;) isinitially chosen as 2 runs,
and is then sequentially increased up to decided number of levels. The data values,
within the moving window, are then decomposed using the Db4 wavelet. At each level

of decomposition, approximate and detail (wavelet) coefficients are obtained. The
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detail coefficients at each scale are the difference between the approximate coefficients

at the earlier scale and at that scale.

4.2.4 Denoising by Thresholding

The resulting wavelet coefficients are thresholded using the Visushrink method.
The concept of denoising and the Visushrink method are discussed in this section.
Any process signal consists of deterministic features and stochastic noise component.
The wavelet based filtering has the effect of capturing the deterministic features in a
relatively small number of large wavelet coefficients, while distributing the stochastic
component among all the coefficients according to its energy at each scale. This noise
component does not provide any useful information and is dispensable. When the
wavelet coefficients are small, they can be omitted without substantially affecting
the general picture. Thus, the rationale behind thresholding wavelet coefficients, or
“denoising” as per signal processing terms, is a way of cleaning out ‘unimportant’
details considered to be noise.

One of the methods of for determining the threshold at each scale is the Visushrink

method [40] (or Donoho’s universal threshold rule):

t; = 0j1/2log(n), (4.1)

where n is the signal length and o, is the standard deviation of the noise at scale j.
The value of o; is estimated from the median of absolute deviation of the wavelet

coefficients at scale j as

1
_ an(ld. 4.
O] 0.6745med2an(|d],k\), ( )

where |d; ;| are the wavelet coefficients. The significant wavelet coefficients are then

extracted using the soft thresholding approach as follows.
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. stgn(d;g)(|dix| — 1 dig| >t
Soft Thresholding: d;x = { (i) (il 1) |dj] 2 (4.3)

0 |dj,k <t

where, sign(d;y) is the sign of the wavelet coefficient |d;|. Calculations of the

threshold limits were done in real time.

4.2.5 Wavelet Reconstruction

The denoised signals, i.e., the prediction errors, are reconstructed from the ap-
proximate and detail coefficients. The last data point in the reconstructed signal is
then considered and used to recursively update the A; and D, terms using the two
EWMA filters, respectively. The window is then moved to include the latest (data

from next run) data point, and as more data is generated.

4.2.6 Calculation of the Recipe/Control Action

The updated offset parameter A;, and the drift parameter D;, are now used to
compute the input settings (or recipe) for the next run. The control action for the
next run is calculated from Equations (3.5), (3.8) or (3.9) depending on the type of
the system. This is the setting for the automatic controllers (e.g., PID) for the next

run or batch.
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CHAPTER 5
EXPERIMENTAL SETUP AND RESULTS

In this chapter the test process on which the controllers are tested is presented
first. Thereafter various conditions of the process to which the controllers were

applied are outlined. The results for the above study are presented.

5.1 Test Model

Rajagopal and Del Castillo [6] presented a double EWMA based RbR controller
for multiple input multiple output processes. They tested their controller’s perfor-
mance on a, four-input and two-output, CMP process [15]. The same CMP process
model is used to examine the performance of the wavelet based double EWMA RbR

controller (WRBR controller). The process output equations are:

Y1 = 1563.5 + 159.3(U1) — 38.2(Us) + 178.9(Us) + 24.9(Uy) — 0.9t + €14, (5.1)

Y, =254+ 32.6(Uy) + 113.2(Us) + 32.6(Us) + 37.1(Us) + 0.05¢ + o, (5.2)

where,

t is the time index or run number,
Y] = material removal rate,

Y, = within-wafer non-uniformity,
U, = table speed,

U,y = back pressure,

U3 = polishing downforce,
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U, = the profile of the conditioning system,
€1 ~ N(0,60%),and

€a ~ N(0,30?)

The values for other parameters are:

Ay = (0.15)I,

Ay = (0.35)1,

I = (p x p) identity matrix,

©=0.001,

2000
T= Target values for the responses in Y = ,

100
150 —40 180 25
Estimated Gain B= , and
30 100 30 35
159.3 —38.2 178.9 24.9

Process Gain § =
326 113.2 32.6 37.1

5.2 Initial Values

The initial values for the process model were provided as follows:

1600
Offset Estimate A; = , and
250
0
Drift Estimate D; =
0

The input parameters not available in [15] are suitably assumed. Initially the process

is assumed to be at target.

5.3 Cases Considered

The performance of the wavelet based double EWMA RbR (WRbR) controller

is examined for the following cases.
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Case 1: Process outputs given by (5.1) and (5.2).

Case 2: Process outputs given by (5.1) and (5.2) with a mean shift.

The controller equation is given by Equation (3.8). The program is coded in
MATLAB 6.5, Release 13, using the Wavelet Toolbox functions. The performance

measures used are the following.

1. Average Squared Deviation (ASD) from the target

ASD; =Y [Y;; — TJ?/m for all outputs i = 1, 2. (5.3)
t=1

2. Standard Deviation of the process outputs.

3. Average Absolute Input Deviation (AAD)

AAD; =) |U;; — U,y q|/m for all inputs j =1,..,4. (5.4)

t=1

where m is the total number of runs.

5.4 Results

The simulation was carried out for 100 runs. The performance of the WRbR and

the RbR controller was tested under identical conditions.

5.4.1 Results for Casel

The process outputs are shown in Figure 5.1. Though the plots appear to be
similar it is shown later that the WRbR controller has a better performance. The
prediction error plots for process offset are shown in Figures 5.2 and 5.3 for outputs
1 and 2 respectively. Similarly, the prediction error plots for process drift are shown
in Figures 5.4 and 5.5 for processes 1 and 2 respectively. The black lines represent

the prediction errors from the RbR controller, whereas the colored lines represent the
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Figure 5.1. Process Outputs

prediction errors from the WRbR controller. As a result of the wavelet based multi-
scale analysis, the prediction errors (for offsets and drift) from the WRbR controller

are observed to have lesser variation for both the outputs.
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Table 5.1. Average Absolute Input Deviation (x1072)

Inputs RbR W RbR |%Decrease
L1 /.15 246 k5.52
L2 11.62 4.35 B2.55
L5 8.67 3.03 B5.03
L4 3.35 1.26 B2.78

As the result of the smoother prediction errors, the generated recipe would also
have lesser fluctuations. This is verified in the input plots shown in Figures 5.6, 5.7,
5.8 and 5.9. The average sum of absolute deviation (AAD) in all the four inputs is
summarized in Figure 5.10. Table 5.1 presents the AAD for the process inputs. A

decrease of more than 60% is observed for all the four inputs to the WRbR controller.

A smoother process operation is the likely result.

o4

100



Input 3

— WRDbR
— RbR

\ | ‘} \L" “

25 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Run Number

Figure 5.7. Input 2

18 — WRbR

— RbR

161 n

15

‘ ) v
1l T
V‘y

11F N

1 ! ! ! ! ! ! ! ! !
0 10 20 30 40 50 60 70 80 90 100

Run Number

Figure 5.8. Input 3

95



Input 4

-0.2

— WRbR
— RbR
-0.22| -
-0.24} -
I
-0.26 H w -
e , .
-0.28H -
-03f
-0.32f , -
-0.34} -
-0.36 y -
-0.38} -
_04 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Run Number

Figure 5.9. Input 4

100

Average Absolute Input Deviation (AAD)

Inputs

Figure 5.10. Average Absolute Input Deviation (x10 %)

26



Table 5.2. Absolute Square Deviation Form Target (x10%)

Frocess FbF W bR |%Decrease
Nl 5,793 5.080 12.31
Y2 1.098 0.953 11.83

Table 5.3. Standard Deviation of the Process Outputs

Process RbR W RER [%Decrease
Y1 76.50 71.63 G.36
Y2 333 a1.27 B.10

This directly results in a more stable process performance. Tables 5.2 and 5.3
show the numerical values of ASD and Standard Deviation for both the controllers.
The WRDbR controller is observed to be better than the RBR controller with re-
spect to the standard deviation in the process outputs and ASD. As an illustration,
the ASD from the target is observed to be lesser by 12.31% for process output 1.

Similarly, the standard deviation for output 1 is observed to be lower by 6.36%.

5.4.2 Results for Case2

A mean shift of magnitude 1000 for Process 1 and 500 for Process 2 are generated
at run number 50. The process outputs are plotted in Figure 5.11. As can be observed
from the figure, the WRbR, controller is faster in bringing the process back to control.
Similar to Casel, the wavelet based multiscale treatment of the prediction errors has
resulted in lesser variation in all the four process inputs to the WRbR controller,
summarized in Table 5.4. The AAD decreased by more than 50% in all the inputs.
This can also be confirmed from Figure 5.12, showing a lower magnitude of AAD for

all the four inputs.

o7



Process outputs

3000

2500

2000

1500 - _
1000 - _
5001 Target |
0 - -
_500 | | | | | | | | |
0 10 20 30 40 50 60 70 80 920
Run Number

Target

— W RbR output 1
— W RbR output 2
— RDbR output 1
— RbR output 2

Figure 5.11. Process Outputs Under Mean Shift

Table 5.4. Average Absolute Input Deviation (x1072)

Inputs RbRE VW RbRE | %Decrease
L)1 8.38 4.43 52.78
|12 14 57 577 G042
|13 11.16 520 53.42
|14 4.56 2.1 53.78
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Figure 5.12. Average Absolute Input Deviation (x107%)

16

— WRbR
— RDbR

Average Absolute Input Deviation (AAD)

Inputs

Table 5.5. Absolute Square Deviation Form Target (ASD) (x10%)

Process FbR W RbR | %Decrease
kil 1.804 1.579 1245
Y2 0.452 0.407 983

The lower AAD directly influences the process performance resulting in a lesser
ASD and standard deviation in the process outputs from the WRDbR controller.
These results are summarized in tables 5.5 and 5.6. For example, in process output
2, the ASD decreased by 9.93%. Similarly, the standard deviation decreased by

5.03% indicating a smoother process performance.
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Table 5.6. Standard Deviation of the Process Outputs

Process FER W REhRE | %Decrease
bl 134.95 126.30 F.43
Y2 Ef.58 B4.14 .09

5.5 Other Research Efforts

In the course of this research, some other avenues were also tried.

1. The wavelet based double EWMA RbR controller was tested for autocorrelation
it the process outputs. It is observed that, in the presence of autocorrelation,
the WRbR controller had similar performance to that of the RbR controller.
Further, it is suggested that for an autocorrelated process, a Triple EWMA
RbR controller (refer Tseng et al. [41]) would provide an efficient control

action.

2. The wavelet based controller was tested for non-linear CMP processes. It is
observed that the linear nature of the EWMA equations restricts the ability of

the RbR strategy in controlling non-linear processes.

3. The EWMA Equations were considered with some modifications. An additional
term D; ; was introduced in Equation 3.6 and the A; ; term was replaced by

A, in Equation 3.7. The results indicate a mean shift in the response outputs.
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CHAPTER 6
CONCLUSIONS AND FUTURE RESEARCH

6.1 Conclusions

This thesis presents a wavelet based multiscale approach for process control. The
multiscale technique is integrated with the existing double EWMA RbR control strat-
egy. This research presents a first attempt to introduce the multiscale methodology
for run-by-run control of a multiple input multiple output (MIMO) process, which
is a norm in a manufacturing environment. The performances of both the WRbR
and the RbR controllers are compared for a multiple input multiple output CMP
process. The wavelet based controller is shown to provide more effective control ac-
tion, resulting in a smoother process performance, evaluated through three different
control performance measures in comparison to the double EWMA RbR controller
in a variety of circumstances. The process outputs from the WRbR controller are
observed to have lower ASD and standard deviation. Moreover, it is interesting to
note that the AAD decreased by more than 60% in all the four inputs. Further, the
WRDbR controller is observed to have a better control performance in dealing with

mean shifts in a process.

6.2 Future Research

The wavelet based controller is tested for generic processes. A logical extension
would be to validate the results using real time data. Development of software

packages for practical implementation would follow. The multiscale methodology
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can further be tested for other single scale filters. The control strategy can be

modified to account for process dynamics like autocorrelation.
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