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An Ethologically Relevant Animal Model of Post-Traumatic Stress Disorder: 
Physiological, Pharmacological and Behavioral Sequelae in Rats Exposed to          

Predator Stress and Social Instability 
 

Phillip R. Zoladz 
 

ABSTRACT 
 
 Post-traumatic stress disorder (PTSD) is a debilitating mental illness that results 

from exposure to intense, life-threatening trauma. Some of the symptoms of PTSD 

include intrusive flashback memories, persistent anxiety, hyperarousal and cognitive 

impairments. The finding of reduced basal glucocorticoid levels, as well as a greater 

suppression of glucocorticoid levels following dexamethasone administration, has also 

been commonly observed in people with PTSD. Our laboratory has developed an animal 

model of PTSD which utilizes chronic psychosocial stress, composed of unavoidable 

predator exposure and daily social instability, to produce changes in rat physiology and 

behavior that are comparable to the symptoms observed in PTSD patients. The present set 

of experiments was therefore designed to 1) test the hypothesis that our animal model of 

PTSD would produce abnormalities in glucocorticoid levels that are comparable to those 

observed in people with PTSD, 2) examine the ability of antidepressant and anxiolytic 

agents to ameliorate the PTSD-like physiological and behavioral symptoms induced by 

our paradigm and 3) ascertain how long the physiological and behavioral effects of our 

stress regimen could be maintained. 



 

 xiv

 The experimental findings revealed that our animal model of PTSD produces a 

reduction in basal glucocorticoid levels and increased negative feedback sensitivity to the 

synthetic glucocorticoid, dexamethasone. In addition, chronic prophylactic administration 

of amitriptyline (tricyclic antidepressant) and clonidine (α2-adrenergic receptor agonist) 

prevented a subset of the effects of chronic stress on rat physiology and behavior, but 

tianeptine (antidepressant) was the only drug to block the effects of chronic stress on all 

physiological and behavioral measures. The final experiment indicated that only a subset 

of the effects of chronic stress on rat physiology and behavior could be observed 4 

months following the initiation of chronic stress, suggesting that some of the effects of 

our animal model diminish over time. Together, these findings further validate our animal 

model of PTSD and may provide insight into the mechanisms underlying trauma-induced 

changes in brain and behavior. They also provide guidance for pharmacotherapeutic 

approaches in the treatment of individuals suffering from PTSD. 
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Chapter One: Background 

Definition of Post-Traumatic Stress Disorder 

Individuals who are exposed to intense trauma that threatens physical injury or 

death, such as rape, wartime combat and motor vehicle accidents, are at significant risk 

for developing post-traumatic stress disorder (PTSD). People who develop PTSD respond 

to a traumatic experience with intense fear, helplessness or horror (American Psychiatric 

Association, 1994) and subsequently endure chronic psychological distress by repeatedly 

reliving their trauma through intrusive, flashback memories (Ehlers et al., 2004; 

Hackmann et al., 2004; Reynolds & Brewin, 1998; Reynolds & Brewin, 1999; Speckens 

et al., 2006; Speckens et al., 2007). These intrusions are frequently precipitated by the 

presence of cues associated with the traumatic event; therefore, PTSD patients make 

great efforts to avoid stimuli that remind them of their trauma. The re-experiencing and 

avoidance symptoms of the disorder significantly hinder everyday functioning in PTSD 

patients and foster the development of several additional debilitating symptoms, 

including persistent anxiety, exaggerated startle, cognitive impairments, diminished 

extinction of conditioned fear and pharmacological abnormalities, such as an increased 

sensitivity to yohimbine (Brewin et al., 2000; Elzinga & Bremner, 2002; Nemeroff et al., 

2006; Newport & Nemeroff, 2000; Stam, 2007a). 
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Susceptibility to Post-Traumatic Stress Disorder 

 Only about 25% of traumatized individuals develop PTSD (Ozer et al., 2003; 

Ozer & Weiss, 2004; Yehuda, 2004). While nearly every traumatized person displays re-

experiencing, avoidance and hyperarousal symptoms in the acute aftermath of trauma 

(McFarlane, 2000), only a minority continue to exhibit these symptoms for a period of at 

least 1 month and fulfill the requirements set forth by the Diagnostic and Statistical 

Manual of Mental Disorders (American Psychiatric Association, 1994) for a diagnosis of 

PTSD (Yehuda & LeDoux, 2007). Thus, in approximately 75% of traumatized 

individuals, the re-experiencing, avoidance and hyperarousal symptoms subside within a 

1-month time frame, and at least one-third of those who continue to display the 

symptoms at 1-month post-trauma recover within 3 months (Kessler et al., 1995). Thus, 

the natural response to trauma is recovery, and only a subset of traumatized individuals 

develops chronic forms of the disorder. 

Heightened Arousal in Post-Traumatic Stress Disorder 

Elevated Sympathetic Nervous System Activity 

PTSD is characterized by a complex aberrant biological profile involving several 

physiological systems, one of which is the sympathetic nervous system (SNS). Extensive 

work has demonstrated that PTSD patients exhibit greater baseline and stress-induced 

elevations of sympathetic activity than control subjects (Buckley & Kaloupek, 2001; 

Pole, 2007). In response to traumatic reminders and standard laboratory stressors, people 

with PTSD display significantly greater increases in heart rate (HR), blood pressure (BP), 

skin conductance, epinephrine (EPI) and norepinephrine (NE) than do control subjects 
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(Blanchard et al., 1982; Blanchard et al., 1991; Casada et al., 1998; Kolb & Mutalipassi, 

1992; Malloy et al., 1983; McFall et al., 1990; Orr et al., 1998; Pitman et al., 1987; Rabe 

et al., 2006; Schmahl et al., 2004; Shalev et al., 1993; Veazey et al., 2004). In addition, 

PTSD patients exhibit significant elevations of baseline HR, systolic BP and diastolic BP 

(Buckley & Kaloupek, 2001; Pole, 2007), findings that resonate with recent work 

reporting an association between PTSD and increased risk for cardiovascular disease 

(Boscarino & Chang, 1999; Kubzansky et al., 2007; Sawchuk et al., 2005). 

A vast literature has also implicated increased baseline noradrenergic activity in 

individuals suffering from PTSD. Several studies have shown that PTSD patients exhibit 

abnormally high levels of baseline NE (Geracioti et al., 2001; Kosten et al., 1987; 

Southwick et al., 1999a; Strawn & Geracioti, 2008; Yehuda et al., 1998), levels that have 

been shown to positively correlate with the severity of symptoms in PTSD patients 

(Geracioti et al., 2001). Another indication of accentuated sympathetic activity in people 

with PTSD is the hyperresponsivity they exhibit to the administration of yohimbine, an α2 

adrenergic receptor antagonist which blocks noradrenergic autoreceptors and leads to 

increased central norepinephrine activity (Rasmusson et al., 2000; Southwick et al., 1993; 

Southwick et al., 1999c; Southwick et al., 1999a; Southwick et al., 1999b). Southwick 

and colleagues (Southwick et al., 1993) found that, following yohimbine administration, 

70% of PTSD patients experienced panic attacks, and 40% experienced flashbacks. 

PTSD patients also exhibited significantly greater HR, systolic BP, anxiety-related 

behavior and acoustic startle responses to the drug (Morgan et al., 1995b). 



 

 4

Bremner and colleagues (Bremner et al., 1997a) suggested that these findings may 

be related to reduced NE catabolism in PTSD patients. To test this hypothesis, the 

investigators gave PTSD patients a single bolus of [F-18]2-fluoro-2-deoxyglucose, a 

compound that is taken up by high-glucose-using cells, immediately prior to intravenous 

injections of yohimbine. Approximately an hour later, the investigators measured cerebral 

metabolic activity in participants by employing positron emission tomography (PET). 

The PET scans revealed that, relative to healthy controls, PTSD patients displayed 

significantly lower levels of glucose metabolism in several neocortical brain regions that 

are highly innervated by noradrenergic nerve fibers, suggesting the presence of reduced 

NE catabolism in people with PTSD. The anxiogenic effects of yohimbine in people with 

PTSD have also been linked to the presence of fewer and less sensitive α2 adrenergic 

receptors and lower levels of plasma neuropeptide Y (NPY) in PTSD patients (Perry et 

al., 1990; Perry, 1994; Rasmusson et al., 2000). NPY is a peptide neurotransmitter that is 

colocalized with NE in most sympathetic nerve fibers and within the locus coeruleus, an 

area of the dorsal pons that contains the major cell bodies of the noradrenergic system. 

The peptide typically inhibits the release of the neurotransmitter with which it is 

colocalized. Rasmusson et al. (2000) found that PTSD patients had lower baseline plasma 

levels of NPY, as well as a smaller increase in NPY levels in response to a yohimbine 

challenge paradigm. This finding could explain the presence of greater baseline NE 

levels, as well as greater reactivity to yohimbine, in PTSD patients. 

Related to the symptoms of hyperarousal and greater noradrenergic activity, an 

exaggerated startle response is often presented as a core symptom of PTSD (Grillon et al., 
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1996). The startle response is defined as the rapid sequence of flexor motor movements 

that occurs after the onset of a briefly-presented, intense stimulus (Morgan, 1997). 

Approximately 85-90% of trauma survivors with PTSD subjectively report having an 

increased startle response (Shalev et al., 1997). However, empirical investigations 

examining the startle response in PTSD patients have presented conflicting results. While 

some studies have found heightened startle in people with PTSD (Butler et al., 1990; 

Grillon et al., 1998; Morgan et al., 1995a; Morgan et al., 1996; Morgan et al., 1997; Orr 

et al., 1995; Shalev et al., 1997), others have found no differences between PTSD patients 

and control subjects (Elsesser et al., 2004; Grillon et al., 1996; Lipschitz et al., 2005; Orr 

et al., 1997; Siegelaar et al., 2006). The exaggerated startle response often observed in 

PTSD patients may not be due to a stable trait of these individuals, but rather an acute 

state of conditioned fear or anxiety (e.g., anticipatory anxiety) that they experience during 

the experimental assessment. In support of this hypothesis, several studies have found 

that manipulations of the experimental context or the presentation of explicit threat cues 

consistently leads to enhanced startle responses in PTSD patients (Grillon et al., 1998; 

Grillon & Morgan, 1999; Pole et al., 2003). 

Investigators have also faced the challenge of determining whether or not the 

exaggerated startle response observed in people with PTSD is a secondary effect of the 

disorder or a predisposing risk factor that increases one’s susceptibility to develop the 

disorder. In a recent study, Guthrie and Bryant (2005) assessed the auditory startle 

response of firefighters before and after they had been exposed to trauma. Although none 

of the firefighters who were exposed to trauma developed PTSD during the course of the 
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study, they did display more symptoms (e.g., intrusive memories, avoidance) of the 

disorder after the trauma than firefighters who had not been exposed to a traumatic event. 

More importantly, the investigators found that the magnitude of the pre-trauma startle 

response predicted the development of acute PTSD symptoms. These findings suggest 

that an exaggerated startle response may not necessarily be a secondary effect of PTSD; 

rather, it could be a pre-existing factor that increases one’s susceptibility to develop the 

disorder. 

Despite the inconsistent findings on baseline startle responses in PTSD patients, 

research has reliably shown that upon exposure to briefly-presented, intense stimuli (e.g., 

loud tones), people with PTSD exhibit significantly greater autonomic reactivity than do 

controls (Metzger et al., 1999; Orr et al., 1995; Orr et al., 1997; Shalev et al., 1997; 

Shalev et al., 2000; Siegelaar et al., 2006). This includes a failure to physiologically 

habituate to the stimuli, in addition to the elicitation of greater autonomic responses from 

the onset of the stimuli. In a recent study, Siegelaar et al. (2006) found that although 

PTSD patients did not display an exaggerated startle response, relative to control 

subjects, they did exhibit significantly greater autonomic reactivity, in the form of 

galvanic skin response, to the test stimuli. The investigators contended that the presence 

of greater autonomic activity following the presentation of startling stimuli may explain 

why PTSD patients subjectively report exaggerated startle responses, despite not 

exhibiting them behaviorally. Ultimately, these findings suggest that while it is unclear 

whether or not individuals with PTSD exhibit a heightened baseline startle response, they 

do tend to display exaggerated autonomic reactivity to sudden, intense stimulation. 
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Contribution of the Parasympathetic Nervous System to Sympathetic Overdrive 

The parasympathetic nervous system (PNS), which is metaphorically considered 

the brakes on the SNS since it reduces SNS activity, makes a significant contribution to 

the maintenance of HR (Berntson et al., 1993). The vagus nerve, which is an important 

part of the PNS, innervates the sinoatrial node on the right atrium of the heart, where 

electrical impulses are generated to trigger cardiac contraction. By modulating the 

sinoatrial node, the vagus nerve slows HR and helps to maintain a balance between the 

SNS and PNS. Vagal modulation of HR is important for reactions to and recovery from 

stressful situations, and has been considered a possible mechanism for the differences in 

basal HR and changes in HR due to trauma-related cues in individuals with PTSD (Sahar 

et al., 2001). 

Most studies monitoring PNS activity in PTSD patients have utilized heart-rate 

variability (HRV) as the primary dependent measure. HRV is a measure of beat-to-beat 

alterations in heart rate, or more specifically, the variability of the intervals between R 

waves. The two main frequency bands that are examined during HRV assessment are the 

Low-Frequency (LF) band (0.04 to 0.15 Hz), which is influenced primarily by the SNS, 

and the High-Frequency (HF) band (0.15 to 0.40 Hz), which is influenced primarily by 

the PNS (Sahar et al., 2001). Cohen and colleagues (Cohen et al., 1997; Cohen et al., 

1998; Cohen et al., 2000a) found that, at rest, PTSD patients displayed greater HR and 

lower HRV than healthy control subjects. Furthermore, these patients demonstrated lower 

HF and higher LF components than controls, suggestive of enhanced sympathetic and 

reduced parasympathetic tone, respectively. Sahar et al. (2001) examined the vagal 
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modulation of HR in PTSD patients in response to a mental challenge by using 

respiratory sinus arrhythmia (RSA) as their dependent measure. RSA is the natural 

fluctuation in heart rate that occurs during the breathing cycle, and changes in RSA have 

been shown to reflect activity of the vagus nerve (Berntson et al., 1993). Sahar and 

colleagues (Sahar et al., 2001) found that PTSD patients and traumatized control subjects 

did not differ on resting levels of parasympathetic activity. However, when faced with a 

challenging arithmetic task, control subjects showed a significant increase in RSA (which 

was highly correlated with their HR), while PTSD patients showed no such increase. 

Thus, vagal mechanisms contributed to HR regulation in control subjects, but not in 

PTSD patients. These findings suggest that vagal modulation of HR may be impaired in 

PTSD patients, resulting in poor control of stress-induced changes in HR and increased 

risk for exaggerated sympathetic tone. 

Conclusion on Sympathetic Overdrive in Post-Traumatic Stress Disorder 

Sympathetic overdrive has been hypothesized to contribute to the hyperarousal 

symptoms observed in PTSD patients. It is also potentially responsible for their enhanced 

acquisition of conditioned fear and their “over-consolidation” of the original traumatic 

memory (Cahill et al., 1994; Cahill & McGaugh, 1998; McGaugh et al., 1996; Pitman, 

1989). Many researchers have used conditioning theory to explain the development of 

PTSD (Garakani et al., 2006; Wessa & Flor, 2002). These investigators have speculated 

that during the trauma, the plethora of cues (CSs) to which an individual is exposed 

becomes associated with the life-threatening experience (US) that he or she is enduring 

and eventually elicits feelings of intense fear (CRs) similar to those (URs) experienced 
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during the original traumatic event. In theory, individuals who are more susceptible to 

developing the disorder would exhibit more intense fear responses to the trauma, which 

would then be more strongly associated with the cues from the environment. This would 

subsequently cause these individuals to exhibit exaggerated physiological and behavioral 

responses to the presence of trauma-related cues and compel them to avoid reminders of 

their trauma. One mechanism that could explain the enhanced consolidation of traumatic 

memories in PTSD patients is excessive adrenergic activity at the time of trauma (Cahill 

et al., 1994; Cahill & McGaugh, 1998; McGaugh et al., 1996; Pitman, 1989). Decades of 

animal research has shown that the administration of EPI or NE following learning 

enhances the storage of emotional memories (Gold et al., 1977; Gold & Van Buskirk, 

1975; McGaugh, 2004), and a substantial amount of work in traumatized people has 

found that those individuals who exhibit greater HR responses to the traumatic event are 

at a much greater risk of developing PTSD (Bryant et al., 2000; Bryant et al., 2004; 

Bryant, 2006; Bryant et al., 2007; Shalev et al., 1998; Zatzick et al., 2005). As PTSD is a 

disorder of memory, in which an individual repeatedly relives his or her trauma through 

intrusive, flashback memories, an exaggerated sympathetic response to trauma could 

foster a development of a powerful, unrelenting traumatic memory that in some 

individuals becomes incapacitating over time. 

Although sympathetic activity facilitates a rapid response to threat in one’s 

environment, chronic activation of the system can have detrimental effects on an 

individual’s health (McEwen, 1998; McEwen, 2003; McEwen & Wingfield, 2003). As 

mentioned above, some studies have indicated that PTSD is associated with increased 
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risk for cardiovascular disease, including myocardial infarctions and atrioventricular 

conduction abnormalities (Boscarino & Chang, 1999; Kubzansky et al., 2007; Sawchuk 

et al., 2005). The finding of reduced PNS activity in PTSD patients could exacerbate this 

problem. Research has shown that diminished PNS activity is associated with increased 

susceptibility to cardiac arrhythmias and increased mortality in myocardial infarction 

patients (La Rovere et al., 1988; La Rovere et al., 1998; Verrier & Dickerson, 1994). 

Thus, the presence of chronic sympathetic activity and a hyperaroused physiological state 

can lead to a significant decline in the overall physical health of PTSD patients. 

Abnormal Functioning of the Hypothalamus-Pituitary-Adrenal Axis in Post-Traumatic 

Stress Disorder 

Stress involves activation of the hypothalamus-pituitary-adrenal (HPA) axis, 

which entails the paraventricular nucleus of the hypothalamus secreting corticotrophin-

releasing hormone (CRH), which travels through the median eminence via the portal 

vasculature to the anterior pituitary gland. Within the anterior pituitary gland, CRH 

stimulates the release of adrenocorticotrophin (ACTH), which then circulates through the 

bloodstream to stimulate the adrenal cortex to synthesize and release corticosteroids 

(primarily corticosterone in rodents and cortisol in humans). Corticosteroids help 

coordinate an individual’s ability to cope with stress and divert energy to tissues with 

greater demands (de Kloet et al., 1999). Although corticosteroids are critically involved 

in the stress response, they also play a role in regulating baseline physiology by 

influencing metabolism, the immune system and memory consolidation (de Kloet et al., 



 

 11

1999; Deuschle et al., 1997; Hartmann et al., 1997; Raison & Miller, 2003; Tsigos & 

Chrousos, 2002). 

Abnormal Baseline Levels of Cortisol and Its Hormone Precursors 

The HPA axis has been one of the most researched biological systems in people 

with PTSD. Researchers initially considered PTSD to be characterized by 

hypocortisolism, as a majority of the initial studies in this area of research reported 

abnormally low levels of baseline cortisol in people with PTSD (for reviews, see Yehuda, 

2002; Yehuda, 2005). However, this view has steadily evolved over the past decade, in 

light of new work that has reported baseline cortisol levels in PTSD patients that are 

either greater than, or no different from, those of controls (see de Kloet et al., 2006 for a 

review). Given such a complex set of findings, “it has recently been suggested that there 

may be no static hypo- or hypercortisolism in PTSD, but a tendency of HPA tone to 

‘hyperregulate’ in both [an] upward and downward direction” (Stam, 2007a, p. 536). 

Researchers have addressed several factors that could underlie the complexity of 

baseline cortisol findings in people with PTSD. One factor has been the considerable 

variability in the characteristics of PTSD patients across studies. According to Yehuda 

(2005, p. 373), “the absence of cortisol alterations in some studies [implies] that 

alterations associated with low cortisol…are only present in a biologic subtype of PTSD” 

(italics added for emphasis). The nature of baseline HPA axis alterations in PTSD 

patients may be dependent, at least in part, on the type of trauma that led to their 

psychopathology. For instance, a majority of the studies examining people with abuse-

related (i.e., sexual or physical abuse, including rape) PTSD have reported greater 
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baseline cortisol levels in PTSD patients than controls (Bremner et al., 2003a; De Bellis 

et al., 1999a; Elzinga et al., 2003; Inslicht et al., 2006a; Inslicht et al., 2006b; Lemieux & 

Coe, 1995), while a majority of the studies examining people with combat-related PTSD 

have reported lower baseline cortisol levels in PTSD patients than controls (Boscarino, 

1996; Kanter et al., 2001; Thaller et al., 1999; Yehuda et al., 1996b; Yehuda et al., 

1993a). 

Other factors that could have influenced studies examining baseline cortisol levels 

in people with PTSD are the type (i.e., peripheral vs. central) of cortisol that was assayed 

and when (i.e., time of day) the assay was performed. Most of the studies in this area of 

research have used peripheral measures (e.g., urine, saliva, serum) to examine cortisol 

levels in PTSD patients (for reviews, see de Kloet et al., 2006; Yehuda, 2002; Yehuda, 

2005). The only study to assess central levels of cortisol in people with PTSD reported 

that combat veterans with the disorder exhibited significantly greater CSF cortisol levels 

than healthy controls (Baker et al., 2005). While cortisol is mostly free (i.e., unbound) 

and biologically active in CSF, it is largely bound to corticosteroid-binding globulin 

(CBG) in serum (Dunn et al., 1981; Pardridge, 1981); and, one study found that people 

with PTSD displayed significantly greater levels of serum CBG than controls (Kanter et 

al., 2001). Thus, baseline cortisol levels in PTSD patients could vary based on the type of 

cortisol being measured.  

Many of the studies examining baseline cortisol levels in PTSD have collected 

biological samples for cortisol analysis at a single time point or have pooled the samples 

over a 12- or 24-hour period. These methodologies could have failed to detect a 
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difference between PTSD patients and control subjects due to measuring cortisol levels at 

a time of day when no true differences exist or by masking potential differences through 

pooling a number of samples spread across the day. To address this issue and study the 

circadian rhythm of cortisol levels in PTSD patients, Yehuda et al. (1996b) examined 

baseline levels of cortisol in combat veterans with PTSD at 30-minute intervals over a 

24-hour period of bed rest. Their results revealed that individuals with PTSD had lower 

levels of cortisol than controls during the late evening (i.e., ~10:00 p.m.) and early 

morning (i.e., ~5:00 a.m.) hours, which appeared to result from a prolonged nadir and 

short-lived peak response in the cycle of cortisol release. In addition to this finding, 

several other studies reporting lower levels of cortisol in PTSD patients have collected 

samples for cortisol analysis in the early morning hours (Brand et al., 2006; Goenjian et 

al., 1996; King et al., 2001; Lindauer et al., 2006; Rohleder et al., 2004; Seedat et al., 

2003; Wessa et al., 2006), suggesting that this may be the time of day when these 

individuals display hypocortisolism. 

In addition to cortisol level abnormalities, investigators have also reported 

significantly elevated levels of CRH in people with PTSD (Baker et al., 1999; Geracioti 

et al., 2001). If most PTSD patients display abnormally low baseline cortisol levels, these 

findings would create a paradox – that is, how could PTSD patients exhibit lower 

baseline levels of cortisol if they have significantly elevated levels of CRH? Smith and 

colleagues (Smith et al., 1989) found that in a CRH challenge paradigm, PTSD patients 

displayed significantly lower levels of ACTH than healthy control subjects (however, see 

Kellner et al., 2003; Rasmusson et al., 2001), and Kellner et al. (2000) reported 
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significantly lower levels of ACTH in PTSD patients following the administration of 

cholecystokinin tetrapeptide (CCK-4), a potent stimulator of ACTH. In addition, several 

studies have reported no differences in baseline ACTH levels between PTSD patients and 

controls (Baker et al., 2005; Duval et al., 2004; Kanter et al., 2001; Liberzon et al., 

1999a; Newport et al., 2004; Neylan et al., 2003; Neylan et al., 2006; Otte et al., 2007; 

Rasmusson et al., 2001; Yehuda et al., 1996a; Yehuda et al., 2004b). One possibility is 

that PTSD patients have desensitized CRH receptors and/or enhanced negative feedback 

inhibition at the level of the pituitary, which results in a blunted release of ACTH upon 

CRH receptor stimulation. 

Support for this hypothesis has been provided by studies using the 

dexamethasone-CRH challenge paradigm (de Kloet et al., 2006). In this paradigm, 

participants are treated with dexamethasone, a synthetic glucocorticoid, the night before 

the experiment. Since the HPA axis is regulated through a negative feedback system, the 

dexamethasone pre-treatment significantly reduces HPA axis activity. On the following 

morning, the participants are treated with CRH, and their levels of ACTH and cortisol are 

measured. The advantage of this paradigm is that, since all participants are treated with a 

relatively high dose of dexamethasone the night prior to the study, by the time of CRH 

administration, both the PTSD patients and control subjects should display the same 

amount of dexamethasone-induced cortisol suppression (i.e., the same “baseline”). Of the 

four studies examining the effects of this challenge paradigm on HPA axis functioning in 

PTSD patients, two (Rinne et al., 2002; Strohle et al., 2008) have reported that, following 

CRH administration, participants with PTSD displayed significantly lower ACTH levels 
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than controls. The other two (de Kloet et al., 2008; Muhtz et al., 2008) reported no 

significant group differences, which are likely a result of using too high of a dose of 

dexamethasone (see Strohle et al., 2008). Therefore, given that PTSD patients exhibited 

significantly less ACTH release upon CRH administration, it would suggest that the 

disorder is characterized by reduced CRH receptor sensitivity and/or enhanced 

glucocorticoid negative feedback at the level of the pituitary. 

Mechanisms Underlying Abnormal Hypothalamus-Pituitary-Adrenal Axis Functioning in 

Post-Traumatic Stress Disorder 

Several hypotheses have been proposed to explain the abnormal HPA axis 

functioning observed in people with PTSD (de Kloet et al., 2006). As referenced above, 

one hypothesis has been that PTSD patients display pituitary insufficiency or reduced 

pituitary sensitivity to CRH stimulation. Although findings have been mixed, the reports 

above indicating that PTSD patients exhibited lower ACTH levels following CRH 

administration, relative to controls, support this hypothesis. Another hypothesis has 

suggested that PTSD is characterized by adrenal insufficiency or reduced adrenal 

sensitivity to ACTH. However, this scenario seems unlikely, as non-pharmacological 

challenge paradigms have indicated that PTSD patients exhibit a robust stress-induced 

increase in cortisol that is greater than that of control subjects (Bremner et al., 2003a; 

Elzinga et al., 2003). Moreover, if adrenal insufficiency or desensitization were the 

reason for HPA axis dysfunction in PTSD, one would expect PTSD patients to exhibit 

lower cortisol levels than controls following an ACTH challenge paradigm. On the 

contrary, the administration of ACTH has actually been shown to result in significantly 
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greater cortisol levels in people with PTSD, relative to control subjects (Rasmusson et al., 

2001). 

Another hypothesis, which has received the most empirical support, is that PTSD 

patients have enhanced negative feedback inhibition of the HPA axis. When cortisol is 

released into the bloodstream, it exerts negative feedback on the HPA axis by binding to 

glucocorticoid receptors throughout the body. Research has shown that PTSD patients 

have an increased number and sensitivity of glucocorticoid receptors (Rohleder et al., 

2004; Stein et al., 1997b; Yehuda et al., 1991; Yehuda et al., 1993a; Yehuda et al., 1995). 

In addition, studies have reported an increased suppression of cortisol and ACTH in 

PTSD patients following the administration of dexamethasone, a synthetic glucocorticoid 

(Duval et al., 2004; Goenjian et al., 1996; Grossman et al., 2003; Newport et al., 2004; 

Stein et al., 1997b; Yehuda et al., 1993b; Yehuda et al., 1995; Yehuda et al., 2002; 

Yehuda et al., 2004b). This finding suggests that dexamethasone produces greater 

negative feedback inhibition of the HPA axis in PTSD patients, which leads to a greater 

suppression of cortisol and ACTH in these individuals. Some have also observed 

increased activation of the pituitary gland in PTSD patients following the administration 

of metyrapone, a glucocorticoid antagonist that blocks the conversion of 11-deoxycortisol 

to cortisol (or 11-deoxycorticoterone to corticosterone in rodents) (Otte et al., 2006; 

Yehuda et al., 1996a). Both of these studies found that following the administration of 

metyrapone, PTSD patients exhibited a significantly greater increase in ACTH and 11-

deoxycortisol, two of the primary precursors to cortisol release, relative to controls. Since 

metyrapone prevents the production of cortisol, it hinders the negative feedback 
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component of the HPA axis. In theory, PTSD patients in these studies demonstrated 

greater increases in ACTH and 11-deoxycortisol because metyrapone removed the 

enhanced negative feedback inhibition initially present in these individuals. 

Structural and Functional Brain Abnormalities in Post-Traumatic Stress Disorder 

Smaller Hippocampal Volume 

Investigators have reported smaller hippocampal volume in people who 

developed PTSD following combat exposure (Bremner et al., 1995a; Gurvits et al., 1996; 

Hedges et al., 2003; Vythilingam et al., 2005; Woodward et al., 2006a), firefighting (Shin 

et al., 2004b), police work (Lindauer et al., 2004b; Lindauer et al., 2006), childhood 

abuse (Bremner et al., 1997b; Bremner et al., 2003b; Stein et al., 1997a), and mixed types 

of events, such as motor vehicle accidents and assaults (Villarreal et al., 2002; Wignall et 

al., 2004; Winter & Irle, 2004). In general, these studies have detected smaller 

hippocampal volume in individuals with PTSD after adjusting for the total brain volume 

and age of each subject. Nevertheless, numerous other studies have not replicated these 

findings; they reported no differences in hippocampal volume between individuals 

diagnosed with PTSD and control subjects (Bonne et al., 2001; De Bellis et al., 1999b; 

De Bellis et al., 2001; Fennema-Notestine et al., 2002; Jatzko et al., 2006; Pederson et al., 

2004; Schuff et al., 2001; Tupler & De Bellis, 2006; Yamasue et al., 2003; Yehuda et al., 

2007). The inconsistencies of these findings raise an important issue: is hippocampal 

volume reduced by trauma, or is a smaller hippocampus a pre-existing risk factor that 

increases one’s susceptibility to develop the disorder? 
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 Work conducted by Gilbertson and colleagues (Gilbertson et al., 2002) had a 

substantial impact on how the scientific community interpreted smaller hippocampal 

volume in PTSD patients. These investigators used MRI to measure hippocampal volume 

of monozygotic twins discordant for trauma exposure, which, in this case, was combat. 

Consistent with previous findings, those individuals who were exposed to combat and 

had developed PTSD exhibited smaller hippocampal volume than combat-exposed 

individuals who did not develop PTSD. The important finding, though, was that the non-

exposed twin brothers of those individuals who developed PTSD also displayed smaller 

hippocampal volume than trauma-exposed individuals who did not develop PTSD. Thus, 

these individuals had smaller hippocampal volume than controls, even though they were 

not exposed to a traumatic event. This finding supported the idea that smaller 

hippocampal volume was a pre-existing familial risk factor that enhanced the likelihood 

of the combat-exposed brother to develop PTSD. 

 In another study employing the same strategy, Gilbertson et al. (2007) assessed 

allocentric (i.e., related to configural relationships among distal stimuli) spatial 

processing, a hippocampus-dependent task, in monozygotic twins discordant for trauma 

exposure, which was combat. The investigators found that those individuals who were 

exposed to combat and had developed PTSD, as well as their twin brothers, made 

significantly more errors on the spatial task than those individuals who were exposed to 

combat and did not develop PTSD. These findings extended the earlier report by 

Gilbertson and colleagues by demonstrating that impaired hippocampal function, in 
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addition to smaller hippocampal volume, may also be a pre-existing familial risk factor 

for the development of PTSD. 

Cognitive Impairments 

Since there is extensive evidence supporting the presence of smaller hippocampal 

volume in PTSD patients, it is not surprising that numerous studies have reported 

declarative and working memory impairments, along with deficits in attention, in these 

individuals as well (Bremner et al., 1993; Bremner et al., 1995b; Bremner et al., 1995a; 

Gil et al., 1990; Gilbertson et al., 2001; Golier et al., 2002; Jenkins et al., 1998; Moradi et 

al., 1999; Sachinvala et al., 2000; Uddo et al., 1993; Vasterling et al., 1998; Yehuda et al., 

2004a). Bremner and colleagues (Bremner et al., 1993; Bremner et al., 1995b; Bremner et 

al., 1995a) reported verbal memory deficits in both combat-related and abuse-related 

PTSD patients. More importantly, Bremner et al. (1995a) found that these verbal memory 

deficits were significantly associated with the smaller right hippocampus of PTSD 

patients, suggesting the possibility of a relationship between these two phenomena. Other 

work has reported that PTSD patients have significant attentional impairments, which are 

believed to be due to a bias for the processing of emotional information and the persistent 

intrusiveness of memories related to the traumatic event (Bryant & Harvey, 1997; 

Buckley et al., 2000; Ehlers et al., 2006; Michael et al., 2005; Moradi et al., 2000; 

Paunovic et al., 2002). Some studies have reported enhanced memory for trauma-related 

information in PTSD patients (Golier et al., 2003; McNally, 1997), providing support for 

greater attentional resources devoted to processing emotional, especially trauma-relevant, 

information in these individuals.  
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Interactions between the Amygdala and Prefrontal Cortex 

Extensive work has implicated involvement of the amygdala, an almond-shaped 

medial temporal lobe structure, in the acquisition and expression of fear memories 

(Fanselow & Gale, 2003; LeDoux, 2003; Maren et al., 1996; Maren, 2003; McGaugh, 

2002; McGaugh, 2004). Inactivation of the amygdala impairs the acquisition of fear 

conditioning in rodents (Gale et al., 2004; Maren, 1999; Wallace & Rosen, 2001; 

Wilensky et al., 1999), and people with lesions of the amygdala have difficulty acquiring 

conditioned fear (LaBar et al., 1995) and recognizing fearful stimuli (Adolphs, 2002; 

Scott et al., 1997; Wang et al., 2002). Likewise, neuroimaging studies in humans have 

consistently reported amygdala activation during fear conditioning (Buchel & Dolan, 

2000; Cheng et al., 2003; Knight et al., 2004; LaBar et al., 1998). Investigators have 

speculated that PTSD patients may display abnormal amygdala functioning, which would 

lead to an aberrant stress response and an enhanced amygdala-induced augmentation of 

emotional memories (Elzinga & Bremner, 2002). Several studies have reported amygdala 

hyperresponsivity in PTSD patients during the presentation of traumatic scripts and 

stimuli (Driessen et al., 2004; Hendler et al., 2003; Liberzon et al., 1999b; Pissiota et al., 

2002; Protopopescu et al., 2005; Rauch et al., 1996; Shin et al., 1997; Shin et al., 2004a), 

the presentation of non-trauma-relevant emotional stimuli (Rauch et al., 2000; Shin et al., 

2005; Williams et al., 2006) and during the acquisition of fear conditioning (Bremner et 

al., 2005). Others have found a positive relationship between activation of the amygdala 

and PTSD symptom severity (Armony et al., 2005; Protopopescu et al., 2005; Rauch et 
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al., 1996; Shin et al., 2004a). These findings suggest an important role of the amygdala in 

the expression of PTSD symptomatology. 

 The prefrontal cortex (PFC) is located in the anterior part of the frontal lobe and is 

involved in working memory processes, attention, and decision making (Braver et al., 

1997; Curtis & D'Esposito, 2003; Funahashi & Kubota, 1994; McCarthy et al., 1996; 

Postle et al., 2000). This area of the brain has been shown to play a major role in more 

complex cognition, such as the planning and organization of behavior (Koechlin et al., 

1999; Koechlin et al., 2000; Tanji & Hoshi, 2001). Reciprocal connections between the 

PFC and amygdala allow for dynamic interactions between these two brain regions 

(Amaral & Insausti, 1992; Ghashghaei & Barbas, 2002; McDonald, 1987; McDonald, 

1991; Sesack et al., 1989). The PFC allows for the inhibition of inappropriate cognitive 

and emotional responses that are mediated in part by the amygdala (Elzinga & Bremner, 

2002). Such a role of the PFC has led researchers to speculate that PTSD patients may 

have impaired PFC functioning and that such an impairment may allow for hyperactivity 

of the amygdala and exaggerated emotional responsiveness. In agreement with this 

hypothesis, several studies have shown that PTSD patients have a smaller volume of 

major regions of the PFC (e.g., anterior cingulate cortex, medial frontal gyrus) (Carrion et 

al., 2001; De Bellis et al., 2002; Fennema-Notestine et al., 2002; Rauch et al., 2003; 

Woodward et al., 2006b; Yamasue et al., 2003) and perform more poorly on tasks 

dependent upon an intact PFC (Koenen et al., 2001). 

In addition, the PFC is involved in the extinction of fear memories. Animal 

studies have shown that lesions of the medial PFC impair the extinction of conditioned 
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fear (Lebron et al., 2004), while stimulation of this area facilitates this process (Milad et 

al., 2004). Research has shown that PTSD patients are impaired at extinguishing fear (Orr 

et al., 2000; Peri et al., 2000) and demonstrate reduced activity of PFC regions during 

extinction trials (Bremner et al., 2005). Moreover, these individuals exhibit less activity 

of, or a complete failure to activate, PFC brain regions during the presentation of trauma-

relevant stimuli (Bremner, 1999; Bremner et al., 1999; Britton et al., 2005; Lanius et al., 

2001; Lindauer et al., 2004a; Shin et al., 1999; Shin et al., 2004a). In theory, reduced 

activation of the PFC, in conjunction with amygdala hyperactivity, could promote the 

intrusive emotional thoughts and memories that PTSD patients often experience. Such a 

system could lead to greater governance of behavior by lower brain areas, such as the 

amygdala and hypothalamus, rather than the prefrontal areas, which allow for adaptation, 

behavioral flexibility and coherent cognitive processing. 

Pharmacotherapy for Post-Traumatic Stress Disorder 

Selective Serotonin Reuptake Inhibitors 

The fact that a subset of people with PTSD exhibit significant improvement in 

some of their symptoms following treatment with selective serotonin reuptake inhibitors 

(SSRIs) suggests a role of the serotonergic system in this disorder (Asnis et al., 2004; 

Davidson, 2003; Davis et al., 2006; Hidalgo & Davidson, 2000; Ipser et al., 2006; Stein 

et al., 2006). Research has shown that several SSRIs, such as fluoxetine, fluvoxamine and 

citalopram, exert positive effects on people with PTSD and lead to significant 

improvements in quality of life (Brady et al., 2000; Brady et al., 1995; Cavaljuga et al., 

2003; Connor et al., 1999; Davidson et al., 2001; De Boer et al., 1992; English et al., 



 

 23

2006; Escalona et al., 2002; Figgitt & McClellan, 2000; Friedman et al., 2007; Londborg 

et al., 2001; March, 1992; Martenyi et al., 2002a; Martenyi et al., 2002b; Martenyi & 

Soldatenkova, 2006; McRae et al., 2004; Meltzer-Brody et al., 2000; Neylan et al., 2001; 

Robert et al., 2006; Schwartz & Rothbaum, 2002; Seedat et al., 2001; Smajkic et al., 

2001; Van der Kolk et al., 1994). However, the response rates to SSRIs in PTSD patients 

rarely exceeds 60%, and full remission from the disorder is achieved following SSRI 

treatment only 20-30% of the time (Stein et al., 2002). In addition, SSRIs tend to blunt 

only the depressive components of PTSD, while having little effect on the memory- and 

anxiety-related symptoms of the disorder (Asnis et al., 2004; Boehnlein & Kinzie, 2007; 

Brady et al., 2000; Van der Kolk et al., 1994). Some forms of PTSD, such as combat-

related PTSD, are incredibly resistant to SSRI treatment (Jakovljevic et al., 2003; 

Rothbaum et al., 2008; Stein et al., 2002). SSRIs are also anxiogenic early in the 

treatment phase and only exert anxiolytic effects after a substantial delay (Browning et 

al., 2007; Burghardt et al., 2004; Humble & Wistedt, 1992). Given the numerous caveats 

to the efficacy of SSRIs in treating PTSD, there is a need for additional research in 

people with PTSD and in animal models of the disorder to facilitate the development of 

more effective treatments for PTSD. 

Tricyclic Antidepressants and Monoamine Oxidase Inhibitors 

 Tricyclic antidepressants, named for their three-carbon ring molecular structure, 

inhibit the reuptake of serotonin and NE to varying degrees. They also antagonize, to a 

lesser extent, dopaminergic, histaminergic, adrenergic and cholinergic receptor sites, 

which often produces an array of adverse secondary side effects (Albucher & Liberzon, 
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2002). Few randomized, placebo-controlled studies have been conducted to assess the 

effects of tricyclic antidepressants on PTSD, but those that have been performed have 

reported positive effects on PTSD symptomatology (Bisson, 2007). Some studies found 

that amitriptyline (Davidson et al., 1990; Davidson et al., 1993) and imipramine 

(Burstein, 1984; Frank et al., 1988; Kosten et al., 1991) significantly reduced global 

scores of PTSD severity and were particularly effective in ameliorating the avoidance, 

intrusion and re-experiencing symptoms in PTSD patients. Another study found that 

desipramine effectively reduced symptoms of depression in PTSD patients but had no 

effect on the anxiety-related symptoms that are specific to PTSD (Reist et al., 1989). 

Monoamine oxidase inhibitors (MAOIs) prevent the enzyme monoamine oxidase 

from breaking down monoamine transmitter substances. This leads to a significant 

increase in the synaptic release of monoamines, such as dopamine, norepinephrine, 

epinephrine and serotonin. Several studies have shown that MAOIs, such as phenelzine 

(Kosten et al., 1991; Shestatzky et al., 1988), brofaromine (Baker et al., 1995; Katz et al., 

1994) and moclobemide (Neal et al., 1997), are effective in reducing avoidance, intrusion 

and hyperarousal symptoms associated with PTSD, and MAOIs appear to be more 

effective in treating PTSD than tricyclic antidepressants (Albucher & Liberzon, 2002).  

Despite the positive effects of tricyclic antidepressants and MAOIs on PTSD 

symptoms, these agents are rarely used as the first line of treatment for PTSD and, 

instead, are typically only employed when SSRIs are ineffective (Albucher & Liberzon, 

2002). Due to the numerous side effects of both drug classes, the dropout rates for these 

agents are very high (e.g., 30-50%). Additionally, patients who take MAOIs must adhere 
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to a special low tyramine diet to avoid a potential life-threatening hypertensive crisis. 

Thus, tricyclic antidepressants and MAOIs, although effective treatments for some PTSD 

symptoms, are difficult to tolerate and therefore frequently avoided. 

Noradrenergic Modulators 

People with PTSD have significantly elevated baseline levels of NE and EPI and 

demonstrate adverse reactions (e.g., panic attacks, flashbacks) to agents that increase 

adrenergic activity, such as yohimbine. These adrenergic abnormalities are believed to 

contribute to the hyperarousal, intrusion and avoidance symptoms, as well as the sleep 

disturbances, that are often reported in PTSD patients (Boehnlein & Kinzie, 2007; Strawn 

& Geracioti, 2008). Thus, recent work has begun testing the effects of pharmacological 

agents that reduce adrenergic activity on PTSD symptomatology. Some studies have 

found that propranolol, a β-adrenergic receptor antagonist, may be effective in preventing 

the disorder’s development (Pitman et al., 2002; Taylor & Cahill, 2002; Vaiva et al., 

2003). For instance, Vaiva et al. (2003) found that propranolol treatment shortly after 

experiencing a traumatic event significantly reduced the incidence and symptoms of 

PTSD in individuals 2 months later, and Pitman and colleagues (Pitman et al., 2002) 

reported that post-trauma administration of propranolol ameliorated sympathetic 

responses to traumatic reminders at a 1-month follow-up visit. Additional work has 

shown that propranolol can effectively reduce PTSD symptoms if administered following 

the re-experiencing of a trauma (Taylor & Cahill, 2002), suggesting that it may be 

effective at preventing the reconsolidation of the traumatic memory (Brunet et al., 2008). 

These findings suggest that propranolol may be an effective treatment for PTSD if 
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administered immediately after the traumatic event or after the re-experiencing of a 

traumatic event. 

Other work has shown that clonidine, an α2-adrenergic receptor agonist, and 

prazosin, an α1-adrenergic receptor antagonist, can significantly ameliorate symptoms of 

heightened anxiety and hyperarousal in people with PTSD (Boehnlein & Kinzie, 2007). 

Clonidine works by facilitating α2-adrenergic autoreceptors, which ultimately leads to 

decreased NE levels. Though many studies have examined the effects of clonidine on 

PTSD and found it to be effective at reducing intrusive memories and hyperarousal 

(Harmon & Riggs, 1996; Porter & Bell, 1999; Viola et al., 1997), no randomized, 

placebo-controlled studies of clonidine’s effects on PTSD have been performed 

(Boehnlein & Kinzie, 2007). Prazosin, on the other hand, works by inhibiting post-

synaptic α1-adrenergic receptors, which, similar to clonidine, leads to a reduction of NE 

activity. Recent work has shown that prazosin is an effective treatment for hyperarousal 

symptoms, intrusive thoughts, recurrent distressing dreams and sleep disturbances in 

PTSD (Brkanac et al., 2003; Peskind et al., 2003; Raskind et al., 2002; Raskind et al., 

2003; Taylor & Raskind, 2002; Taylor et al., 2006). Collectively, these studies suggest 

that the reduction of adrenergic activity in PTSD patients is an effective approach to 

ameliorating many of the disorder’s debilitating symptoms. 

The Antidepressant Tianeptine 

Tianeptine is most commonly known to exert antidepressant effects and 

ameliorate symptoms of MDD, but it has been shown to have beneficial effects in 

treating PTSD as well (Onder et al., 2006). Early studies on tianeptine’s mechanism of 
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action showed that the drug led to significantly lower extracellular levels of serotonin, a 

finding that was hypothesized to result from enhanced serotonin reuptake (Fattaccini et 

al., 1990; Labrid et al., 1992; Mennini et al., 1987; Mocaer et al., 1988). However, 

tianeptine’s effects on the serotonergic system may be an indirect consequence of the 

drug’s influences on an alternative neurotransmitter system because later studies failed to 

show any direct effects of tianeptine on serotonergic neurotransmission (Pineyro et al., 

1995a; Pineyro et al., 1995b). Additionally, research has shown that tianeptine does not 

alter the density or affinity of any serotonin receptor subtype, and tianeptine’s affinity for 

the serotonin transporter is very low (Kato & Weitsch, 1988; Svenningsson et al., 2007). 

Some have also contested the validity of the original studies on tianeptine’s mechanism 

of action based on technical limitations that were present at the time (Malagie et al., 

2000). 

Recently, extensive work has suggested that tianeptine’s therapeutic effects are 

more associated with modulation of the glutamatergic system (Brink et al., 2006; Kasper 

& McEwen, 2008; Zoladz et al., in press). Glutamate is the primary excitatory 

neurotransmitter of the central nervous system, and one of its roles is to regulate calcium 

influx by acting on postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors (Riedel et al., 2003). 

Extensive work has implicated hyperactivity of the glutamatergic system in the 

deleterious effects of stress on brain structure and function. Experiments conducted 

primarily on the hippocampus have shown that stress significantly increases glutamate 

levels (Bagley & Moghaddam, 1997; Lowy et al., 1993; Lowy et al., 1995; Moghaddam, 
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1993; Reznikov et al., 2007), inhibits glutamate uptake (Yang et al., 2005), increases the 

expression and binding of glutamate receptors (Bartanusz et al., 1995; Krugers et al., 

1993; McEwen et al., 2002) and increases calcium currents (Joels et al., 2003). 

Accordingly, researchers have shown that administration of NMDA receptor antagonists 

blocks the effects of stress on behavioral, morphological and electrophysiological 

measures of hippocampal function (Kim et al., 1996; Magarinos & McEwen, 1995; Park 

et al., 2004). 

Tianeptine appears to protect the hippocampus and prefrontal cortex from the 

deleterious effects of stress by normalizing the stress-induced modulation of 

glutamatergic activity. Researchers have also shown that tianeptine inhibits the acute 

stress-induced increase in extracellular levels of glutamate in the amygdala (Reznikov et 

al., 2007). In addition to its glutamatergic modulation, tianeptine reduces the expression 

of CRH mRNA in the amygdala and the bed nucleus of the stria terminalis, a brain region 

that is highly innervated by amygdala fibers (Kim et al., 2006). CRH neurotransmission 

in both of these regions has been implicated in the expression of anxiety-like behaviors 

(Holsboer, 1999; Strohle & Holsboer, 2003). These findings suggest that tianeptine could 

be an effective pharmacological treatment for PTSD. 

Animal Models of Post-Traumatic Stress Disorder 

Existing Models of Post-Traumatic Stress Disorder in Rodents 

Preclinical researchers have used several types of stressors to model aspects of 

PTSD in rodents (see Stam, 2007b for a review). Such stressors have included electric 

shock (Garrick et al., 2001; Li et al., 2006; Milde et al., 2003; Pynoos et al., 1996; Rau et 
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al., 2005; Sawamura et al., 2004; Servatius et al., 1995; Shimizu et al., 2004; Shimizu et 

al., 2006; Siegmund & Wotjak, 2007a; Siegmund & Wotjak, 2007b; Wakizono et al., 

2007), underwater trauma (Cohen et al., 2004; Richter-Levin, 1998), stress-restress 

paradigms and single prolonged stress paradigms (Harvey et al., 2003; Khan & Liberzon, 

2004; Kohda et al., 2007; Liberzon et al., 1997; Takahashi et al., 2006) and exposure to 

predators (Adamec, 1997; Adamec et al., 2007; Adamec et al., 1999; Adamec et al., 

2006; Adamec & Shallow, 1993; Blanchard et al., 1998; Park et al., 2001) or predator-

related cues (Cohen et al., 2000b; Cohen et al., 2004; Cohen et al., 2006; Cohen et al., 

2007; Cohen & Zohar, 2004). The stressors employed in these studies typically produced 

increased behavioral signs of anxiety, and in some cases, exaggerated startle, cognitive 

impairments, enhanced fear conditioning and reduced social interaction. Although these 

studies have reported physiological and behavioral changes resembling those observed in 

people with PTSD, most have utilized only a small set of assessments, such as stress-

induced changes in anxiety, without assessing other measures common in people with 

PTSD, such as an impairment in cognition. Moreover, many of these studies have 

evaluated stress-induced changes in responses for a relatively short period of time. Thus, 

while these studies have provided insight into how stress or fear conditioning changes 

aspects of behavior and physiology, the field would benefit from an animal model of 

PTSD that takes into account how traumatic stress produces long-lasting PTSD-like 

changes in rats given multiple behavioral and physiological diagnostic tests. 
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Our Laboratory’s Recently Developed Animal Model of Post-Traumatic Stress Disorder 

Our laboratory has developed an animal model of PTSD in which rats are exposed 

to a cat (predator stress) on two separate occasions, in conjunction with daily social 

stress, and tested 3 weeks after the second cat exposure (Zoladz et al., 2008). We found 

that rats stressed in this paradigm exhibited reduced growth rate, greater adrenal gland 

weight, reduced thymus weight, heightened anxiety, an exaggerated startle response, 

impaired hippocampus-dependent memory, greater cardiovascular and corticosterone 

reactivity to an acute stressor and an exaggerated physiological and behavioral response 

to yohimbine. Importantly, all of these physiological and behavioral abnormalities are 

commonly observed in people with PTSD. 

Our animal model of PTSD was developed to expose rats to conditions which, 

based on DSM-IV criteria, are analogous to conditions that produce PTSD in people. 

Specifically, a subset of the DSM-IV criteria for the diagnosis of PTSD includes the 

following three conditions: (1) PTSD can be triggered by an event that involves 

threatened death or a threat to one’s physical integrity; (2) a person's response to the 

event involves intense fear, helplessness or horror; and (3) in the aftermath of the trauma, 

the person feels as if the traumatic event were recurring, including a sense of reliving the 

experience (American Psychiatric Association, 1994).  

The behaviors that rats exhibit in response to forced exposure to a cat are 

consistent with the first two components of the DSM-IV criteria for PTSD. That is, rats 

exhibit an intense fear response when exposed to a predator, which is a condition that is a 

threat to their survival. In addition, we have observed that rats typically direct their 
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posture away from the cat’s gaze, which provides the rat with an element of control over 

its confrontation with the cat. As control critically influences the expression of the stress 

response, in general (Kim & Diamond, 2002), and a loss of control exacerbates 

behavioral and physiological responses to stress conditions (Amat et al., 2005; Bland et 

al., 2006; Bland et al., 2007; Kavushansky et al., 2006; Maier et al., 1993; Maier & 

Watkins, 2005; Shors et al., 1989), we immobilized the rats during predator exposure. 

The immobilization component of our animal model, therefore, may provide a rodent 

analogue to the sense of helplessness and a loss of control which feature prominently in 

the DSM-IV criteria for PTSD. 

Another component of our model is that rats are exposed to the cat on two 

occasions, separated by 10 days. PTSD develops in some people only after they have 

repeated traumatic experiences (Resnick et al., 1995; Taylor & Cahill, 2002), and 

prolonged exposure to trauma increases the likelihood of developing symptoms of PTSD 

(Gurvits et al., 1996). Therefore, the repeated inescapable cat exposure was designed to 

increase the likelihood that the manipulations would produce effects in the rats that could 

be broadly applied to people who develop PTSD as a result of multiple traumatic 

experiences. In addition, people who develop PTSD in response to only a single trauma 

experience powerful episodes of anxiety and panic as a result of their repeated reliving of 

the trauma through intrusive, flashback memories (Reynolds & Brewin, 1999). As 

mentioned above, the repeated reliving of the original experience through disturbing 

intrusive memories is a criterion for the diagnosis of PTSD. The second exposure of the 

rats to the cat forced them to re-experience the original stress experience, which can be 
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considered analogous to how people with PTSD report that they feel as if they relive their 

original trauma when they have an intrusive memory of the experience. 

The second reason why the rats were re-exposed to the cat pertained to the issue 

of predictability. The first predator exposure occurred during the light cycle and the 

second predator exposure occurred during the dark cycle, thereby adding an element of 

unpredictability as to when the rats might re-experience the traumatic event. A lack of 

predictability in one’s environment is a major factor in the development of PTSD, as a 

means with which to increase the susceptibility of a subset of people to develop PTSD in 

response to trauma, as well as to influence the later expression of PTSD symptoms (Orr 

et al., 1990; Regehr et al., 2000; Solomon et al., 1989; Solomon et al., 1988). 

Lastly, McEwen and colleagues observed increased spine density on dendritic 

arbors of amygdala neurons 10 days after a single immobilization experience (Mitra et 

al., 2005). Therefore, the second stress session reinforced stress-induced changes in brain 

and behavior which were presumably initiated by the first stress session. In theory, the 

reinforcement of morphological plasticity in the amygdala through a reminder of the 

original experience would augment the PTSD-like syndrome in psychosocially stressed 

rats. The strengthening of plasticity in the amygdala, which may be expressed in a 

number of different ways, such as dendritic hypertrophy (Fuchs et al., 2006; McEwen & 

Chattarji, 2004; Mitra et al., 2005; Vyas et al., 2002; Vyas et al., 2003; Vyas et al., 2006) 

or as stress-induced long-term potentiation (Kavushansky & Richter-Levin, 2006; 

Manzanares et al., 2005; Vouimba et al., 2004; Vouimba et al., 2006), lends itself to 

experimentation via pharmacological manipulations of the reconsolidation process, which 
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is likely to occur in response to traumatic memory recall (Cai et al., 2006; Debiec et al., 

2002; Debiec & LeDoux, 2004; Debiec & LeDoux, 2006; Maroun & Akirav, 2008; 

Nader et al., 2000; Przybyslawski et al., 1999; Przybyslawski & Sara, 1997; Sara, 2000; 

Suzuki et al., 2004).  

In addition to the two acute cat exposures, we included chronic unstable housing 

conditions in the psychosocial stress paradigm to mimic the lack of social support and 

chronic mild stress experienced by people with PTSD (Andrews et al., 2003; Boscarino, 

1995; Brewin et al., 2000; Solomon et al., 1989; Ullman & Filipas, 2001). We 

hypothesized that the daily anxiety produced by unstable housing would exacerbate any 

adverse effects on the rats induced by predator exposure, alone. This hypothesis was 

supported by our finding that the combination of two cat exposures with social instability 

produced greater anxiogenic effects on rat behavior than either manipulation in isolation. 

Chronic social instability, alone, had no negative effects on behavior and may have even 

been beneficial for rats, as it led to a small increase in growth rate and significantly 

greater motor activity on the elevated plus maze. 

In sum, the primary goal of this preliminary work was to develop an animal 

model of PTSD based on the factors that are known to be involved in the etiology and 

persistence of PTSD symptoms in people. To accomplish this goal, we combined a life-

threatening stress experience (i.e., unavoidable predator exposure) with a re-experiencing 

of the trauma and chronic social instability, all of which are well-described risk factors 

for PTSD. This approach enabled us to produce an animal model that targets the subset of 

people who actually develop PTSD in response to trauma and affords us the opportunity 
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to explore the mechanisms responsible for the effects of traumatic stress on brain and 

behavior. 

Purpose of the Present Experiments 

 The purpose of the present experiments was to further examine the 

neurobiological mechanisms responsible for the PTSD-like sequelae induced by our 

laboratory’s animal model and to explore the longevity of the effects induced by our 

chronic psychosocial stress paradigm. Specifically, the present set of experiments were 

designed to 1) test the hypothesis that our animal model of PTSD would produce 

abnormalities in glucocorticoid levels that are comparable to those observed in people 

with PTSD, 2) examine the ability of antidepressant and anxiolytic agents to ameliorate 

the PTSD-like physiological and behavioral symptoms induced by our laboratory’s 

paradigm and 3) ascertain how long the physiological and behavioral effects of our 

laboratory’s stress regimen could be maintained. 
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Chapter Two: Experiment One 

Chronic Psychosocial Stress Produces a Reduction in Basal Glucocorticoid Levels in 

Rats: Further Validation of an Animal Model of PTSD 

 Although findings have been mixed, extensive work has reported abnormally low 

baseline levels of cortisol in people with PTSD (for reviews, see de Kloet et al., 2006; 

Yehuda, 2002; Yehuda, 2005). Additionally, some (Bremner et al., 2003a; Elzinga et al., 

2003), but not all (Geracioti et al., 2008), studies have reported significantly greater 

stress-induced elevations of cortisol in PTSD patients, relative to control subjects. 

Therefore, to further validate our laboratory’s animal model of PTSD, Experiment One 

was designed to examine the effects of chronic psychosocial stress, composed of two 

acute predator exposures and daily social instability, on baseline and stress-induced 

serum corticosterone levels in rats. While previous studies in our laboratory have 

examined rat serum corticosterone levels following the proposed stress paradigm (Zoladz 

et al., 2008), these studies did not obtain undisturbed, baseline measures of corticosterone 

from psychosocially stressed animals. In each case, the rats were transported to the 

laboratory, and in some cases injected, prior to blood sampling, which could have 

induced a stress response in the rats. Moreover, the rats in these studies had been exposed 

to several behavioral assessments on the days prior to blood sampling. Both of these 

factors could have hindered an accurate interpretation of the data. Therefore, in order to 

obtain undisturbed, baseline measures of corticosterone, the rats in the present study were 
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exposed to only one endpoint manipulation, which was blood sampling, and the first 

blood sample was obtained immediately after removing the rats from their housing 

rooms. In light of the PTSD literature, I hypothesized that rats exposed to chronic 

psychosocial stress would display significantly lower baseline, but significantly greater 

stress-induced, corticosterone levels than control (i.e., unstressed) animals. 

Methods 

Rats 

Experimentally naïve adult male Sprague-Dawley rats (225-250 g upon delivery) 

obtained from Charles River laboratories (Wilmington, Massachusetts) were used for the 

present experiment. The rats were housed on a 12-hr light/dark schedule (lights on at 

0700) in standard Plexiglas cages (two per cage) with free access to food and water. The 

colony room temperature and humidity were maintained at 20±1ºC and 60±3%, 

respectively. Upon arrival, all rats were given 1 week to acclimate to the housing room 

environment, as well as cage changing procedures, before any experimental 

manipulations took place. All procedures were approved by the Institutional Animal Care 

and Use Committee at the University of South Florida. 

Psychosocial Stress Procedure 

Acute Stress Sessions. Following the 1-week acclimation phase, rats were brought 

to the laboratory, weighed and assigned to “psychosocial stress” or “no psychosocial 

stress” groups (N = 10 rats/group). Rats in the psychosocial stress group were 

immobilized in plastic DecapiCones (Braintree Scientific; Braintree, MA) and placed in a 

perforated wedge-shaped Plexiglas enclosure (Braintree Scientific; Braintree, MA; 20 x 
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20 x 8 cm). Then, the rats, still immobilized in the plastic DecapiCones within the 

Plexiglas enclosure, were taken to the cat housing room where they were placed in a 

metal cage (24 x 21 x 20 in) with an adult female cat for 1 hour. The Plexiglas enclosure 

prevented any contact between the cat and rats, but the rats were still exposed to all non-

tactile sensory stimuli associated with the cat. Canned cat food was smeared on top of the 

Plexiglas enclosure to direct cat activity toward the rats. An hour later, the rats were 

returned to the laboratory. Rats in the no psychosocial stress group remained in their 

home cages in the laboratory for the 1-hour stress period. Rats were exposed to two acute 

stress sessions, which were separated by 10 days. The first stress session took place 

during the light cycle, between 0800 and 1300 hours, and the second stress session took 

place during the dark cycle, between 1900 and 2100 hours. 

Daily Social Stress. Beginning on the day of the first stress session, rats in the 

psychosocial stress group were exposed to unstable housing conditions for the next 31 

days. Rats in the psychosocial stress group were still housed two per cage, but every day, 

their cohort pair combination was changed. Therefore, no rat in the psychosocial stress 

group had the same cage mate on two consecutive days during the 31-day stress period. 

Assessment of Basal and Stress-Induced Glucocorticoid Levels 

Preparation. Twenty days after the second stress session, rats in the psychosocial 

stress and no psychosocial stress groups were brought to the laboratory and weighed. 

Then, the hind legs of all rats were shaved to allow access to their saphenous veins. The 

rats were then taken back to the housing room and left undisturbed for the remainder of 

the day. The hind legs of all rats were shaved 1 day prior to blood sampling to minimize 
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the amount of time it took the experimenter to obtain baseline blood samples on the 

following day. 

Blood Sampling and Post-Mortem Dissection. Twenty-four hours later, rats were 

brought, one cage (i.e., 2 rats) at a time, to a nearby procedure room for blood sampling. 

Petroleum jelly was applied to each rat’s hind leg, and the saphenous vein of each rat was 

punctured with a sterile, 27-gauge syringe needle. A 0.2 cc sample of blood was then 

collected from each rat in a microcentrifuge tube. The first blood sample was considered 

a “baseline” measure of corticosterone and was collected within 2 minutes after the rats 

were removed from the housing room. After obtaining this sample, the rats were 

immobilized in plastic DecapiCones for 20 minutes. Then, the rats were removed from 

the DecapiCones, and another 0.2 cc sample of blood was collected in a microcentrifuge 

tube via saphenous vein venipuncture. This blood sample served to examine the 

hormonal responses of rats to acute immobilization stress. After collecting this sample, 

the rats were returned to their home cages. An hour later, one last blood sample (trunk 

blood) was collected following rapid decapitation. This sample was collected to examine 

the recovery of corticosterone levels following acute immobilization stress. Following 

rapid decapitation, the adrenal and thymus glands were removed and weighed. Once all 

of the blood had clotted at room temperature, it was centrifuged (3000 rpm for 8 

minutes), and the serum was extracted and stored at -80º C until assayed by Monika 

Fleshner at the University of Colorado at Boulder.  

Most studies have reported abnormal cortisol levels in PTSD patients in the early 

morning hours, when the levels of cortisol reach their peak in people (Brand et al., 2006; 
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Goenjian et al., 1996; King et al., 2001; Lindauer et al., 2006; Rohleder et al., 2004; 

Seedat et al., 2003; Wessa et al., 2006). Since rats are nocturnal, their circadian rhythm is 

reversed (Meaney et al., 1992). Rats exhibit very low morning corticosterone levels that 

slowly rise throughout the day and peak in the early evening hours (e.g., around 1800 

hours). Thus, in order to avoid a floor effect and allow room for between-group 

differences in basal corticosterone levels, as well as to relate the present findings to the 

PTSD literature, all blood sampling for this study took place between 1700 and 2000 

hours. 

Statistical Analyses 

 Experimental Design. The present study utilized a single factor, between-subjects 

design. The between-subjects factor was psychosocial stress (psychosocial stress, no 

psychosocial stress). 

Growth Rate, Adrenal Gland Weight and Thymus Weight. Growth rates, 

expressed as grams per day (g/day), were calculated for all rats by dividing their total 

body weight gained during the course of the experiment by the total number of days in 

the experiment (i.e., 31 days). The adrenal glands and thymuses were weighed and 

expressed as milligrams per 100 grams of body weight (mg/100 g b.w.). Independent 

samples t-tests were used to compare the growth rates, adrenal gland weights and thymus 

weights between the psychosocial stress and no psychosocial stress groups. 

Corticosterone Levels. Since the purpose of the present experiment was to 

examine whether the proposed animal model of PTSD would produce reduced baseline 

glucocorticoid levels, a planned comparison (independent samples t-test) was used to 
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compare the baseline corticosterone levels of the psychosocial stress and no psychosocial 

stress groups. Additionally, a mixed-model ANOVA was employed to analyze the 

corticosterone levels of the psychosocial stress and no psychosocial stress groups from all 

three time points. In the ANOVA, psychosocial stress served as the between-subjects 

factor, and time point (baseline, stress, return-to-baseline) served as the within-subjects 

factor. 

For all statistical analyses, alpha was set at 0.05, and Holm-Sidak post hoc 

comparisons were employed when necessary. 

Results 

Growth Rates (see Table 1) 

 The psychosocial stress group tended to display a reduced growth rate, relative to 

the no psychosocial stress group, but this difference did not reach statistical significance, 

t(18) = 2.02, p = 0.058. 

Adrenal Gland Weights (see Table 1) 

 The psychosocial stress group exhibited significantly larger adrenal glands than 

the no psychosocial stress group, indicative of chronic stress-induced adrenal 

hypertrophy, t(16) = 4.26, p < 0.001. 

Thymus Weights (see Table 1) 

 The psychosocial stress group exhibited significantly smaller thymuses than the 

no psychosocial stress group, indicative of chronic stress-induced suppression of the 

immune system, t(16) = 2.12, p = 0.05. 
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Table 1 

Growth Rates, Adrenal Gland Weights and Thymus Weights (± SEM) for the Groups in 

Experiment 1 

 
    Growth Rate          Adrenal Gland       Thymus Weight 
            (g/day)               Weight       (mg/100 g b.w.) 
              (mg/100 g b.w.) 
 
 
No Psychosocial Stress  4.75 ± 0.26            7.45 ± 0.64              115.18 ± 7.31 
 
Psychosocial Stress   3.72 ± 0.43           10.66 ± 0.44              96.47 ± 4.98 
 
 
Corticosterone Levels (see Figure 1) 

 A planned comparison indicated that the psychosocial stress group (2.42 ± 0.41 

μg/dL) displayed significantly lower baseline corticosterone levels than the no 

psychosocial stress group (3.96 ± 0.43 μg/dL), t(17) = 2.60, p < 0.05. 

 The mixed-model ANOVA revealed a significant main effect of time point, 

F(2,32) = 23.19, p < 0.001. Post hoc tests indicated that both groups demonstrated a 

significant increase in corticosterone levels following 20 minutes of acute immobilization 

stress and that these levels remained significantly elevated, relative to baseline, 1 hour 

later (p’s < 0.05). There was no significant main effect of psychosocial stress, F(1,16) = 

0.85, and the Time Point x Psychosocial Stress interaction was not significant, F(2,32) = 

0.38 (p’s > 0.05). 
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Figure 1. Chronic psychosocial stress produced a reduction of basal glucocorticoid levels 

in rats. The data are presented as mean corticosterone levels (µg/dL) ± SEM. * = p < 0.05 

relative to the no psychosocial stress group. 

Discussion of Findings 

As expected, psychosocially stressed rats exhibited significantly larger adrenal 

glands, significantly smaller thymuses and a marginally significant reduction in growth 

rate, relative to control rats. Yet, the most important finding of the present experiment is 

that rats exposed to chronic psychosocial stress exhibited significantly lower baseline 

levels of corticosterone than control animals. This difference was observed in the early 

evening hours (i.e., 1700-2000 hours), a time when serum corticosterone levels begin to 

rise in rats, and is comparable to much of the literature in PTSD patients. Several studies 

have reported abnormally low baseline levels of cortisol in people with PTSD in the early 

morning hours, when levels of cortisol begin to rise in humans (Brand et al., 2006; 

Goenjian et al., 1996; King et al., 2001; Lindauer et al., 2006; Rohleder et al., 2004; 
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Seedat et al., 2003; Wessa et al., 2006). However, as indicated above, the findings 

regarding baseline levels of cortisol in PTSD patients have been mixed, and the presence 

of abnormally low levels of baseline cortisol may only be present in a biologic subtype of 

PTSD (for reviews, see de Kloet et al., 2006; Yehuda, 2002; Yehuda, 2005). If this is the 

case, then it is important to consider what subtype of PTSD our laboratory’s chronic 

psychosocial stress paradigm is modeling. Since abnormally low levels of baseline 

cortisol have predominantly been reported in patients with combat-related PTSD 

(Boscarino, 1996; Kanter et al., 2001; Thaller et al., 1999; Yehuda et al., 1996b; Yehuda 

et al., 1993a), it is possible that our stress regimen models a subtype related to that which 

is caused by exposure to wartime combat. However, future work must clarify what 

specific biologic subtypes of PTSD exist before such a conclusion can be drawn with 

certainty. 

 Many animal models have reported that chronic stress, such as daily restraint 

stress (6 hours/day for 21 days), results in significantly elevated baseline glucocorticoid 

levels (Blanchard et al., 1993; Kant et al., 1987; Lepsch et al., 2005; Marin et al., 2007; 

Mizoguchi et al., 2001; Patterson-Buckendahl et al., 2001; Touyarot & Sandi, 2002). 

Few, however, have been shown to produce abnormally low baseline glucocorticoid 

levels similar to those reported here. Those animal models that have reported 

significantly reduced baseline glucocorticoid levels have employed either the single 

prolonged stress paradigm or a stress-restress paradigm consisting of situational 

reminders of the original stress experience (Diehl et al., 2007; Harvey et al., 2003). The 

single prolonged stress paradigm involves exposing rats to 2 hours of restraint, followed 
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by 20 minutes of swim stress, which is then terminated with exposure to ether vapors 

until anesthesia is induced. Investigators have reported that, up to 1 week later, such a 

paradigm results in abnormally low baseline glucocorticoid levels  and enhanced negative 

feedback of the HPA axis, among other behavioral impairments (e.g., heightened anxiety, 

cognitive impairments, exaggerated startle response) (Diehl et al., 2007; Harada et al., 

2008; Harvey et al., 2003; Iwamoto et al., 2007; Kohda et al., 2007; Liberzon et al., 1997; 

Takahashi et al., 2006; Wang et al., 2008). The present experiment therefore extends 

these findings by demonstrating that similar HPA axis abnormalities can be produced in 

rats by exposure to acute predator stress and daily social instability more than 4 weeks 

after the initial stress experience. 

 Psychosocially stressed rats did not display a greater acute stress-induced increase 

in corticosterone levels than control animals. This null effect could potentially be due to 

the time of day during which the blood samples were collected. Previous work has shown 

that the stress-induced increase in rodent corticosterone levels is not as robust during the 

dark cycle as it is during the light cycle (Kant et al., 1986; Yamada & Iwasaki, 1994). 

Therefore, it is possible that psychosocially stressed animals were limited in the extent to 

which their corticosterone levels could be increased by immobilization. Additionally, this 

null finding, although unexpected, is consistent with some of the PTSD literature 

reporting a blunted stress-induced increase in cortisol levels in PTSD patients. For 

instance, Geracioti et al. (2008) found that combat veterans with PTSD, despite reporting 

significantly greater levels of anxiety, exhibited a significant reduction of CSF CRH 

levels and peripheral cortisol levels while watching a trauma-related film. Importantly, 
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this effect was not observed when the same combat veterans were exposed to a neutral 

film about oil painting. Some animal models of PTSD have also reported a blunted 

glucocorticoid response to acute stress in animals that have developed PTSD-like 

behaviors. Harvey et al. (2006) found that previously-stressed rats exhibited significantly 

lower corticosterone levels than control animals following 20 minutes of acute swim 

stress. In addition, Louvart et al. (2005) reported that previously-shocked animals 

displayed a smaller increase in corticosterone levels in response to a situational reminder 

of the shock than controls. Investigators have contended that these findings are a result of 

stress-induced changes in HPA axis function that results in enhanced negative feedback 

inhibition. Thus, in these referenced studies, the same acute stress-induced increase in 

corticosterone levels that was observed in control animals would theoretically result in 

significantly greater glucocorticoid receptor occupancy in previously stressed animals 

and, ultimately, lead to a much greater suppression of their corticosterone levels. 

 The findings of Experiment One indicate that the our laboratory’s animal model 

of PTSD, composed of two acute predator exposures and daily social instability, produces 

changes in HPA axis functioning that are comparable to those observed in people with 

PTSD. Specifically, rats exposed to this chronic psychosocial stress paradigm exhibited 

significantly lower baseline glucocorticoid levels than control animals, and this effect 

was observed at a time of the circadian rhythm during which similar effects have been 

reported in PTSD patients. Therefore, this study provides further validation of our 

laboratory’s animal model of PTSD and promotes its use to further investigate the 

mechanisms underlying trauma-induced changes in brain and behavior. 
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Chapter Three: Experiment Two 

Chronic Psychosocial Stress Results in Enhanced Suppression of Corticosterone Levels 

following Dexamethasone Administration: Evidence for Enhanced Negative Feedback of 

the Hypothalamus-Pituitary-Adrenal Axis  

 Extensive work has suggested that people with PTSD may exhibit abnormally low 

baseline levels of cortisol due to the presence of enhanced negative feedback of the HPA 

axis (de Kloet et al., 2006). Several studies have found that PTSD patients have an 

increased number and sensitivity of glucocorticoid receptors (Rohleder et al., 2004; Stein 

et al., 1997b; Yehuda et al., 1991; Yehuda et al., 1993a; Yehuda et al., 1995). In addition, 

a majority of the PTSD literature has reported an increased suppression of cortisol and 

ACTH in people with PTSD following the administration of dexamethasone, a synthetic 

glucocorticoid (Duval et al., 2004; Goenjian et al., 1996; Grossman et al., 2003; Newport 

et al., 2004; Stein et al., 1997b; Yehuda et al., 1993b; Yehuda et al., 1995; Yehuda et al., 

2002; Yehuda et al., 2004b). These findings suggest that dexamethasone results in greater 

negative feedback inhibition of the HPA axis, presumably due to the presence of more 

glucocorticoid receptors, in PTSD patients, which leads to a greater suppression of 

cortisol and ACTH in these individuals. Taking these findings into consideration, 

Experiment Two was designed to examine the effects of chronic psychosocial stress, 

composed of two acute predator exposures and daily social instability, on the 

corticosterone response in rats to the dexamethasone suppression test. I hypothesized that 



 

 47

psychosocially stressed rats would exhibit a significantly greater suppression of 

corticosterone levels than control rats following the administration of dexamethasone. 

Methods 

Rats 

The same weight range and strain of rats, as well as the housing conditions, that 

were employed in Experiment One were used in the present experiment. Upon arrival, all 

rats were given 1 week to acclimate to the housing room environment and cage changing 

procedures before any experimental manipulations took place. All procedures were 

approved by the Institutional Animal Care and Use Committee at the University of South 

Florida. 

Psychosocial Stress Procedure 

Following the 1-week acclimation phase, rats were brought to the laboratory, 

weighed and assigned to “psychosocial stress” or “no psychosocial stress” groups (N = 

40 rats/group). Afterwards, each group of rats was exposed to the same respective 

manipulations that were utilized in Experiment One. That is, rats in the psychosocial 

stress group were given two acute cat exposures in conjunction with daily social stress, 

while rats in the no psychosocial stress group were given two laboratory exposures 

(remaining in their home cages) and had the same cage mates throughout the duration of 

the experiment. 

Assessment of Post-Dexamethasone Basal and Stress-Induced Glucocorticoid Levels 

Preparation. Twenty days after the second stress session, rats in the psychosocial 

stress and no psychosocial stress groups were brought to the laboratory and weighed. As 
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in Experiment One, the hind legs of all rats were then shaved to allow access to their 

saphenous veins. The rats were then taken back to the housing room and left undisturbed 

for the remainder of the day. 

Pharmacological Manipulations. On the following day, between 1100 and 1400 

hours, rats were taken to the procedure room, one cage at a time, where they were 

administered subcutaneous (s.c.) injections of dexamethasone (10 μg/kg, 25 μg/kg, 50 

μg/kg) or vehicle at a volume of 1 ml/kg. These doses were chosen because previous 

work indicated that they produced a modest suppression of corticosterone levels in 

control rats (Lurie et al., 1989). Ten rats from each of the psychosocial stress and no 

psychosocial stress groups were randomly assigned to receive s.c. injections of one of the 

three doses of dexamethasone or the vehicle solution, for a total of 10 rats per group.  

Dexamethasone (Sigma-Aldrich, St. Louis, MO) was dissolved in a vehicle solution 

consisting of sodium sulfite (1 mg/ml) and sodium citrate (19.4 mg/ml), which were both 

dissolved in distilled water. Immediately following the administration of dexamethasone 

or vehicle, the rats were returned to the housing room until the commencement of blood 

sampling. 

Blood Sampling and Post-Mortem Dissection. Six hours following 

dexamethasone or vehicle administration, three blood samples (baseline, stress and 

return-to-baseline) were obtained from all rats, following the procedures utilized in 

Experiment One. Following rapid decapitation, the adrenal and thymus glands were 

removed and weighed. All blood sampling took place between 1700 and 2100 hours. 

Once all of the blood had clotted at room temperature, it was centrifuged (3000 rpm for 8 
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minutes), and the serum was extracted and stored at -80º C until assayed by Monika 

Fleshner at the University of Colorado at Boulder.  

Statistical Analyses 

 Experimental Design. The present study utilized a between-subjects, 2 x 4 

factorial design. The between-subjects factors were psychosocial stress (psychosocial 

stress, no psychosocial stress) and dexamethasone (vehicle and 10 μg/kg, 25 μg/kg or 50 

μg/kg of dexamethasone). 

Growth Rate, Adrenal Gland Weights and Thymus Weights. Growth rates, 

expressed as grams per day (g/day), were calculated for all rats by dividing their total 

body weight gained during the course of the experiment by the total number of days in 

the experiment (i.e., 31 days). The adrenal glands and thymuses were weighed and 

expressed as milligrams per 100 grams of body weight (mg/100 g b.w.). Two-way 

ANOVAs were used to analyze the growth rates, adrenal gland weights and thymus 

weights, with psychosocial stress and dexamethasone serving as the between-subjects 

factors in each case. 

Corticosterone Levels. A mixed-model ANOVA was employed to analyze the 

corticosterone levels of all groups from the three time points. In the ANOVA, 

psychosocial stress and dexamethasone served as the between-subjects factors, and time 

point (baseline, stress, return-to-baseline) served as the within-subjects factor. 

For all statistical analyses, alpha was set at 0.05, and Holm-Sidak post hoc 

comparisons were employed when necessary. Since dexamethasone administration took 

place on the final day of the experiment, it was predicted that the drug would have no 
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effect on growth rate and adrenal gland or thymus weights. As this was confirmed via the 

statistical analyses below, Table 2 presents the predicted effects of psychosocial stress on 

growth rate and adrenal gland and thymus weights, collapsed across all drug conditions. 

Results 

Growth Rates (see Table 2) 

 The growth rate analysis revealed a significant main effect of psychosocial stress, 

F(1,72) = 9.67, p < 0.01, indicating that the psychosocial stress group had a significantly 

lower growth rate than the no psychosocial stress group. There was no significant main 

effect of dexamethasone, F(3,72) = 1.80, and the Psychosocial Stress x Dexamethasone 

interaction was not significant, F(3,72) = 1.01 (p’s > 0.05). 

Adrenal Gland Weights (see Table 2) 

 The analysis of adrenal gland weights revealed a significant main effect of 

psychosocial stress, F(1,72) = 8.42, p < 0.01, indicating that the psychosocial stress group 

had significantly larger adrenal glands than the no psychosocial stress group. There was 

no significant main effect of dexamethasone, F(3,72) = 1.56, and the Psychosocial Stress 

x Dexamethasone interaction was not significant, F(3,72) = 0.03 (p’s > 0.05). 

Thymus Weights (see Table 2) 

 The analysis of thymus weights revealed a significant main effect of psychosocial 

stress, F(1,70) = 35.89, p < 0.001, indicating that the psychosocial stress group had 

significantly smaller thymuses than the no psychosocial stress group. There was no 

significant main effect of dexamethasone, F(3,70) = 2.67, and the Psychosocial Stress x 

Dexamethasone interaction was not significant, F(3,70) = 1.77 (p’s > 0.05). 
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Table 2 

Growth Rates, Adrenal Gland Weights and Thymus Weights (± SEM) for the 

Psychosocial Stress and No Psychosocial Stress Groups (collapsed across all 

dexamethasone conditions) in Experiment 2 

 
    Growth Rate          Adrenal Gland       Thymus Weight 
            (g/day)               Weight       (mg/100 g b.w.) 
              (mg/100 g b.w.) 
 
 
No Psychosocial Stress  5.39 ± 0.18            9.70 ± 0.39             113.77 ± 3.34 
 
Psychosocial Stress   4.65 ± 0.16           11.32 ± 0.39             90.08 ± 2.59 
 
 
Corticosterone Levels (See Figures 2 and 3) 

 The mixed-model ANOVA revealed a significant main effect of time point, 

F(2,126) = 102.31, p < 0.001. Post hoc tests indicated that, overall, rats demonstrated a 

significant increase in corticosterone levels following 20 minutes of acute immobilization 

stress and that these levels significantly declined, yet remained elevated relative to 

baseline, 1 hour later (p’s < 0.05). There was also a significant main effect of 

dexamethasone, F(3,63) = 67.47, p < 0.001. Post hoc tests revealed that, as expected, 

dexamethasone led to a significant reduction in circulating corticosterone levels. More 

specifically, the rats treated with 10 μg/kg or 25 μg/kg of dexamethasone displayed 

significantly lower corticosterone levels than the rats treated with vehicle, and the rats 

treated with 50 μg/kg of dexamethasone exhibited significantly lower corticosterone 
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levels than the rats treated with vehicle or the two lower doses of dexamethasone. There 

was no significant main effect of psychosocial stress, F(1,63) = 1.28, p > 0.05. 

Chronic Psychosocial Stress Increases Sensitivity of the
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Figure 2. Chronic psychosocial stress increases sensitivity of the HPA axis to 

dexamethasone. The data are presented as mean corticosterone levels (µg/dL) ± SEM. * = 

p < 0.05 (all dexamethasone-treated groups relative to the vehicle-treated groups); β = p < 

0.05 relative to 25 μg/kg dexamethasone-treated no psychosocial stress group; # = p < 

0.05 relative to 10 μg/kg dexamethasone-treated no psychosocial stress group. 

The Time Point x Dexamethasone, F(6,126) = 8.68, and Time Point x 

Psychosocial Stress x Dexamethasone, F(6,126) = 4.12, interactions were significant (p’s 

< 0.001). Post hoc tests indicated that 10 μg/kg of dexamethasone did not prevent the 

acute stress-induced increase in corticosterone levels in either the psychosocial stress or 

no psychosocial stress groups; however, it did lead to a greater suppression of post-

immobilization corticosterone levels in the psychosocial stress group. The administration 

of 25 μg/kg of dexamethasone prevented the acute stress-induced increase in 

corticosterone levels in the psychosocial stress group only. Finally, 50 μg/kg of 
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dexamethasone tended to produce lower baseline and post-immobilization corticosterone 

levels in the psychosocial stress group, relative to the no psychosocial stress group, 

although these comparisons did not achieve statistical significance (p’s = 0.07). The Time 

Point x Psychosocial Stress, F(2,126) = 0.92, and Psychosocial Stress x Dexamethasone, 

F(3,63) = 1.38, interactions were not significant (p’s > 0.05). 
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Effects of Chronic Psychosocial Stress on Corticosterone Responses
following Different Doses of Dexamethasone Administration

 

Figure 3. Effects of chronic psychosocial stress on corticosterone responses following 

different doses of dexamethasone. The data are presented as mean corticosterone levels 

(µg/dL) ± SEM. * = p < 0.05 relative to the no psychosocial stress group; β = p = 0.07 

relative to the no psychosocial stress group. 
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Discussion of Findings 

In contrast to Experiment One, vehicle-treated psychosocially stressed rats did not 

display significantly lower baseline corticosterone levels than vehicle-treated control 

animals. This null effect is likely due to the fact that rats in the present experiment were 

not left undisturbed for the entire day leading up to blood sampling, as was the case in 

Experiment One. Rats in the present experiment were injected 6 hours prior to blood 

sampling, which could have potentially influenced baseline HPA axis functioning for the 

remainder of the day.  

As expected, dexamethasone-treated animals, in general, displayed significantly 

lower baseline corticosterone levels than vehicle-treated animals. In addition, relative to 

vehicle, the two higher doses of dexamethasone significantly blunted the immobilization-

induced increase in corticosterone levels and led to significantly lower corticosterone 

levels in all rats an hour later. As in Experiment One, psychosocially stressed rats also 

exhibited significantly larger adrenal glands, significantly smaller thymuses and a 

significant reduction in growth rate, relative to control rats. 

The most important finding of the present experiment, however, is that chronic 

psychosocial stress, involving two acute predator exposures and daily social instability, 

resulted in enhanced negative feedback sensitivity to the synthetic glucocorticoid, 

dexamethasone. Psychosocially stressed animals displayed a greater suppression of post-

dexamethasone corticosterone levels in a dose- and time-dependent manner. In response 

to 10 µg/kg of dexamethasone, psychosocially stressed rats exhibited a greater recovery 

of corticosterone levels than controls animals an hour following exposure to 20 minutes 
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of immobilization. The 25 µg/kg dose of dexamethasone prevented the acute 

immobilization-induced increase in corticosterone levels in only the psychosocial stress 

group, and the 50 µg/kg dose led to marginally lower corticosterone levels in the 

psychosocial stress group, relative to controls, at baseline and an hour following the 20 

minutes of immobilization. These findings suggest that the stress regimen employed in 

this experiment results in enhanced negative feedback inhibition of the HPA axis. More 

specifically, since the doses of dexamethasone that were used in this study do not cross 

the blood-brain barrier (Meijer et al., 1998; Schinkel et al., 1995), the findings indicate 

that this enhanced negative feedback occurs at the level of the pituitary gland. 

These findings are consistent with a majority of the PTSD literature. A number of 

studies have reported that PTSD patients have an increased number and sensitivity of 

glucocorticoid receptors (Rohleder et al., 2004; Stein et al., 1997b; Yehuda et al., 1991; 

Yehuda et al., 1993a; Yehuda et al., 1995) and display an increased suppression of 

cortisol and ACTH following the administration of dexamethasone (Duval et al., 2004; 

Goenjian et al., 1996; Grossman et al., 2003; Newport et al., 2004; Stein et al., 1997b; 

Yehuda et al., 1993b; Yehuda et al., 1995; Yehuda et al., 2002; Yehuda et al., 2004b). 

Some studies have also observed increased activation of the pituitary gland in PTSD 

patients following the administration of metyrapone, which investigators believe to be 

due to the fact that metyrapone removes the enhanced negative feedback inhibition 

initially present in these individuals (Otte et al., 2006; Yehuda et al., 1996a). 

Collectively, these findings have implicated enhanced negative feedback inhibition in the 

HPA axis abnormalities observed in people with PTSD. 
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Rarely have investigators tested for the presence of enhanced negative feedback 

inhibition of the HPA axis in animal models of PTSD. Only two studies have conducted 

such assessments. Liberzon et al. (1997) found that rats exposed to a single prolonged 

stress paradigm subsequently (i.e., 1 week later) exhibited a blunted restraint stress-

induced increase in ACTH levels following the administration of cortisol. In addition, 

similar to the present findings, Kohda et al. (2007) reported that rats exposed to a single 

prolonged stress paradigm subsequently (i.e., 1 week later) exhibited a blunted restraint 

stress-induced increase in corticosterone levels following the administration of 

dexamethasone. Both of these findings suggest that the single prolonged stress paradigm 

produces changes in HPA axis function that resemble enhanced negative feedback 

inhibition and are comparable to the present set of data. 

The commonalities in HPA responses between psychosocially stressed rats from 

the present studies and traumatized people with PTSD further validate the use of this 

chronic psychosocial stress paradigm to explore the mechanisms underlying emotional 

trauma-induced changes in brain and behavior. Nevertheless, future work concerning the 

neurobiological bases of the present effects should examine other markers of enhanced 

negative feedback inhibition of the HPA axis, such as enhanced glucocorticoid receptor 

expression in key areas of the brain (e.g., anterior pituitary gland, hippocampus). Future 

studies will also need to explore the effect of metyrapone or dexamethasone-CRH 

challenge paradigms on pituitary function (e.g., ACTH release). Our laboratory already 

has preliminary data indicating that rats exposed to the psychosocial stress regimen 

exhibit significantly greater baseline levels of CRH mRNA in the paraventricular nucleus 
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of the hypothalamus than control animals (unpublished findings). This finding suggests 

that psychosocially stressed rats might also display abnormally high CRH levels, which 

would also be consistent with the PTSD literature. Future work, however, must be 

conducted to verify this hypothesis. 
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Chapter Four: Experiment Three 

Differential Effectiveness of the Pharmacological Agents Amitriptyline, Clonidine and 

Tianeptine in Blocking the PTSD-Like Physiological and Behavioral Sequelae in Rats 

A subset of people with PTSD exhibit significant improvement in their symptoms 

following treatment with SSRIs (Asnis et al., 2004; Davidson, 2003; Davis et al., 2006; 

Hidalgo & Davidson, 2000; Ipser et al., 2006; Stein et al., 2006). At this time, the SSRIs 

sertraline and paroxetine are the only two medications that have been approved by the 

Food and Drug Administration (FDA) for the treatment of PTSD (Albucher & Liberzon, 

2002; Barrett et al., 2005; Van der Kolk, 2001; Vaswani et al., 2003). However, SSRIs 

tend to blunt only the depressive components of PTSD, while having little effect on the 

memory- and anxiety-related symptoms of the disorder (Asnis et al., 2004; Boehnlein & 

Kinzie, 2007; Brady et al., 2000; Van der Kolk et al., 1994). In addition, some forms of 

PTSD, such as combat-related PTSD, are incredibly resistant to SSRI treatment 

(Jakovljevic et al., 2003; Rothbaum et al., 2008; Stein et al., 2002). They can even 

produce severe adverse side effects, including sleep disruption, headache, abdominal 

pain, sexual dysfunction, agitation, nausea and weight gain, which significantly interfere 

with an individual’s daily life (Asnis et al., 2004; Boehnlein & Kinzie, 2007; Brady et al., 

2000; Van der Kolk et al., 1994). Thus, there is a need for additional pharmacological 

research in people with PTSD and in animal models of the disorder to facilitate the 

development of more effective pharmacotherapy for PTSD patients. 
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 The purpose of Experiment Three was to ascertain whether chronic prophylactic 

administration of amitriptyline, clonidine and tianeptine would ameliorate the 

physiological and behavioral sequelae induced by chronic psychosocial stress in rats. 

Amitriptyline is a tricyclic antidepressant that has been reported to significantly 

ameliorate many symptoms of PTSD, especially those related to intrusion, avoidance and 

re-experiencing (Davidson et al., 1990; Davidson et al., 1993). Clonidine is an anxiolytic 

and α2 adrenergic receptor agonist that, via the facilitation of adrenergic autoreceptor 

activity, leads to a significant reduction in NE levels throughout the central nervous 

system. As PTSD is characterized by abnormally high levels of NE, researchers have 

contended that clonidine should ameliorate many of the symptoms of PTSD, and 

especially those related to hyperarousal (Boehnlein & Kinzie, 2007). However, as of 

now, there have been no randomized, placebo-controlled studies on the efficacy of 

clonidine in treating people with PTSD. The final experimental treatment was tianeptine, 

an antidepressant. While this agent is most commonly known to exert antidepressant 

effects and ameliorate symptoms of major depression, it has been shown to have 

beneficial effects in PTSD patients as well (Onder et al., 2006). Moreover, numerous 

studies in rodents have provided support for tianeptine’s use in treating stress-related 

psychopathologies, as it blocks the adverse effects of stress on cognitive, 

electrophysiological, morphological and molecular measures of hippocampal functioning 

(Diamond et al., 2004; Kasper & McEwen, 2008; McEwen et al., 2002; McEwen & Olie, 

2005; Uzbay, 2008). To emphasize that the design of the present experiment had clinical 

relevance, administration of the pharmacological agents did not begin until the day after 
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the stress paradigm commenced. Treatment beginning 24 hours after exposing rats to an 

intense stressor is potentially relevant to treatment applications begun in people within 24 

hours of a traumatic experience and may highlight the importance of quickly beginning a 

treatment regimen soon after experiencing intense trauma. 

Methods 

Rats 

The same weight range and strain of rats, as well as the housing conditions, that 

were employed in Experiments One and Two were used in the present experiment. Upon 

arrival, all rats were given 1 week to acclimate to the housing room environment and 

cage changing procedures before any experimental manipulations took place. All 

procedures were approved by the Institutional Animal Care and Use Committee at the 

University of South Florida. 

Psychosocial Stress Procedure 

PTSD is a disorder of memory, and individuals suffering from PTSD experience 

chronic psychological distress by repeatedly reliving their trauma through intrusive, 

flashback memories (Ehlers et al., 2004; Hackmann et al., 2004; Reynolds & Brewin, 

1998; Reynolds & Brewin, 1999; Speckens et al., 2006; Speckens et al., 2007). 

Therefore, to incorporate a rat analog of a traumatic memory into our animal model of 

PTSD, we developed a paradigm to quantify the memory for the acute cat exposures that 

are a part of the psychosocial stress procedure (Halonen et al., 2006). This paradigm was 

included in the psychosocial stress procedure in the present experiment to assess, during 

behavioral testing, the long-term memory of the acute cat exposures. 
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Following the 1-week acclimation phase, rats were brought to the laboratory and 

then assigned to “psychosocial stress” or “no psychosocial stress” groups (N = 60 

rats/group). Afterwards, rats from each group were exposed to a chamber for 3 minutes. 

During the last 30 seconds of the 3-minute chamber exposure, a 74-dB, 2500 Hz tone was 

presented to the rats. The chamber (25.50 x 30 x 29 cm; Coulbourn Instruments; 

Allentown, PA) consisted of two aluminum sides, an aluminum ceiling, and a Plexiglas 

front and back. The floor of the chamber consisted of 18 stainless steel rods, spaced 1.25 

cm apart. The rats were not exposed to footshock at any time in the chamber. The sole 

purpose of exposing rats to the chamber was to allow rats in the psychosocial stress group 

to associate the chamber (contextual fear conditioning) and tone [auditory (cue) fear 

conditioning] with the acute stress experience (i.e., immobilization plus cat exposure) and 

measure their memory for the experience (via an assessment of immobility in the 

chamber) during behavioral testing. Locomotor activity in the chamber was measured 

during the acute stress sessions and behavioral testing by a 24-cell infrared activity 

monitor (Coulbourn Instruments; Allentown, PA) mounted on the top of the chamber, 

which used the emitted infrared body heat image (1300 nm) from the animals to detect 

their movement. Immobility was defined as periods of inactivity lasting at least seven 

seconds. Following the 3-minute chamber exposure, rats in the psychosocial stress group 

were exposed to 1 hour of immobilization during cat exposure (as per the methods in 

Experiments One and Two), while rats in the no psychosocial stress group remained in 

their home cages in the laboratory for a yoked period of time. Both groups of rats were 

weighed following the 1-hour period and then returned to their housing rooms. As per 
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Experiments One and Two, this entire process (i.e., acute stress session) was repeated 10 

days later (during the dark cycle on Day 11), and beginning with the day of the first stress 

session, rats in the psychosocial stress group were exposed to unstable housing conditions 

for the next 31 days. 

Pharmacological Agents 

 Twenty-four hours after the first stress session (i.e., Day 2), all rats began 

receiving daily intraperitoneal (i.p.) injections of amitriptyline (5 or 10 mg/kg), clonidine 

(0.01 or 0.05 mg/kg), tianeptine (10 mg/kg), or vehicle (distilled water). The injections 

occurred every day throughout the 31-day period of psychosocial stress and also during 

behavioral testing. Drug administration was continued during behavioral testing to 

prevent withdrawal effects from influencing rat behavior. The injections were always 

administered in the morning (between 0900 and 1200 hours) at a volume of 1 ml/kg. Ten 

rats from each of the psychosocial stress and no psychosocial stress groups were 

randomly assigned to each of the drug conditions, for a total of 10 rats per group. 

Amitriptyline and clonidine were obtained from Sigma-Aldrich (St. Louis, MO), while 

tianeptine was provided by Servier Pharmaceuticals (France). 

Behavioral Testing 

 Three weeks after the second stress session (Day 32), rats were given tests to 

measure their fear memory, anxiety, startle, learning and memory, cardiovascular activity 

and corticosterone activity. The 3-week delay from the second stress session to 

behavioral testing was based on comparable time periods employed in other studies on 

the effects of stress on brain and behavior (Adamec & Shallow, 1993; Cook & Wellman, 
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2004; Magarinos et al., 1996; McLaughlin et al., 2007; Park et al., 2001; Watanabe et al., 

1992a; Watanabe et al., 1992c; Watanabe et al., 1992b). Additionally, work from our 

laboratory has previously shown that the chronic psychosocial stress paradigm employed 

in the present experiment produces significant changes in rat physiology and behavior 

that can be detected 3 weeks following the second stress session (Zoladz et al., 2008). On 

the first 4 days of behavioral testing (Days 32-35), all rats were taken to the procedure 

room across from the rat housing rooms, where they received i.p. injections of the drug 

appropriate to the condition to which they had been assigned. Then, they were taken to 

the laboratory and left undisturbed for 30 minutes before testing began. All behavioral 

testing took place during the light cycle, between 0800 and 1500 hours. 

Behavioral Apparatus 

 Contextual and Cue Fear Memory. On Day 32, rat behavior in response to the 

chamber (context test) and tone (cue test) that were previously paired with the acute 

stress sessions was examined. Rats were placed in the same chamber that they were 

exposed to during each of the two stress sessions for 5 minutes, and their immobility was 

recorded, as per the methods described above. An hour after the 5-minute context test, the 

rats were placed in a novel chamber that had different lighting, walls and flooring from 

that of the chamber in which they were placed during each of the two stress sessions. The 

rats were placed in the novel chamber for a total of 6 minutes (cue test). Three minutes 

into the cue test, the rats were presented with a 74-dB, 2500 Hz tone that continuously 

played for the remainder of the 6-minute testing period. The amount of immobility 

recorded during the first 3 minutes of the cue test (i.e., no tone) provided a measure of the 



 

 64

general fear of a novel place, while the amount of immobility recorded during the last 3 

minutes of the cue test (i.e., tone) provided a measure of the fear response to the cue that 

was, in the psychosocial stress group, specifically associated with the two acute cat 

exposures. 

Elevated Plus Maze. The elevated plus maze (EPM) is a routine test of anxiety in 

rodents (Korte & De Boer, 2003) and consists of two open arms (10.80 x 50.17 cm) and 

two closed arms (10.80 x 50.17 cm) that intersect each other to form the shape of a plus 

sign. On Day 33, the rats were placed on the EPM for 5 minutes, and their behavior was 

scored by 48 infrared photobeams (located along the perimeter of the open and closed 

arms), which were connected to a computer program (Motor Monitor, Hamilton-Kinder, 

San Diego, CA). The primary dependent measures of interest were the amount of time 

rats spent in the open arms and the number of ambulations made by each rat. An arm 

entry was scored by the computer program only when a rat’s entire body had moved from 

one arm into a new arm (e.g., the entire body of the rat moved from the closed arms into 

an open arm). Thus, the computer program would begin tallying open arm time only after 

a rat had completely entered an open arm. An ambulation was scored by the computer 

program each time a rat crossed a photobeam sensor. Thus, the ambulations score 

consisted of the total number of beam breaks made by each rat during the 5-minute trial 

and served as a measure of motor activity. Between each testing session, the EPM was 

wiped down with a 25% ethanol solution. 

Startle Response. One hour after the EPM assessment, acoustic startle testing was 

administered. The rats were placed inside a small Plexiglas box (18.50 x 9.75 x 9.75 cm), 
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which was inside a larger startle monitor cabinet (Hamilton-Kinder; San Diego, CA; 

35.56 x 27.62 x 49.53 cm). The small Plexiglas box within this cabinet contained a 

sensory transducer on which the rats were placed at the beginning of the trial. The 

sensory transducer was connected to a computer (Startle Monitor computer program; 

Hamilton-Kinder; San Diego, CA), which recorded the startle responses by measuring the 

maximum amount of force (in Newtons) that rats exerted on the sensory transducer for a 

period of 250 ms after the presentation of each auditory stimulus. To control for any 

differences in body weight, the sensitivity of the sensory transducer was adjusted prior to 

each trial via a Vernier adjustment with a sensitivity range of 0-7 arbitrary units. The 

startle trial began with a 5-minute acclimation period, followed by the presentation of 24 

bursts of white noise (50 ms each), eight from each of three auditory intensities (90, 100, 

and 110 dB). The noise bursts were presented in sequential order (i.e. eight bursts at 90 

dB, followed by eight bursts at 100 dB, followed by eight bursts at 110 dB), and the time 

between each noise burst varied pseudorandomly between 25 and 55 seconds. Upon the 

commencement of the first noise burst, the startle apparatus provided uninterrupted 

background white noise (57 dB). 

Novel Object Recognition. The novel object recognition (NOR) task was a 

modified version of that which was employed by Baker and Kim (2002). On Day 34, the 

rats were placed in an open field (Hamilton-Kinder, San Diego, CA – 40 x 47 x 70 cm) 

for 5 minutes to acclimate to the environment. Their behavior was monitored by a 

Logitech camera that was mounted on the ceiling overlooking the open field. This camera 

was connected to a computer program known as ANY-Maze (Stoelting; Wood Dale, IL), 



 

 66

which scored rat behavior. Twenty-four hours later (Day 35), the rats were placed in the 

same open field with two identical (plastic/metal) objects for 5 minutes. The objects were 

in opposite corners of the open field and secured to the flooring to prevent the rats from 

displacing them. The objects were counterbalanced across rats, as were the corners in 

which the objects were placed. Three hours later, the rats were returned to the open field 

for a final 5-minute test trial, but this time the open field contained a replica of the object 

that had been there before and a novel object. During this testing session, greater time 

spent by the rats in proximity to the novel versus familiar object was an indication of 

intact memory for the familiar object. The time that each rat spent with the objects during 

training and testing was quantified by specifying a 16 cm2 zone around the objects for the 

ANY-maze software to score the duration of investigatory behavior. 

Preparation for Blood Sampling. Immediately following the 3-hour object 

recognition test, the hind legs of all rats were shaved to allow access to their saphenous 

veins, as per Experiments One and Two. 

Blood Sampling and Cardiovascular Activity. On the final day of behavioral 

testing (Day 36), rats were brought, one cage at a time, to a nearby procedure room for 

blood sampling. Then, baseline and post-stress samples of blood were collected from the 

rats, as per the methods employed in Experiments One and Two. Immediately after 

collecting the post-immobilization blood sample, the rats were placed in Plexiglas tubes 

within a warming test chamber to increase their body temperature. This enhanced blood 

flow to their tails, and allow HR and BP to be assessed using a tail cuff fitted with 

photoelectric sensors (IITC Life Science; Woodland Hills, CA). Once their body 
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temperature reached approximately 32º C, three HR and BP recordings were obtained 

from each rat (these three recordings were averaged to create single HR and BP data 

points for each rat). An hour later, one last blood sample (trunk blood) was collected 

following rapid decapitation. Then, the adrenal glands and thymuses were removed and 

weighed. Once all of the blood had clotted at room temperature, it was centrifuged (3000 

rpm for 8 minutes), and the serum was extracted and stored at -80º C until assayed by 

Monika Fleshner at the University of Colorado at Boulder.  

Statistical Analyses 

 Experimental Design and General Analyses. The present study utilized a 

between-subjects, 2 x 6 factorial design. The independent variables were psychosocial 

stress (psychosocial stress, no psychosocial stress) and drug (vehicle, amitriptyline – 5 

and 10 mg/kg, clonidine – 0.01 and 0.05 mg/kg, tianeptine – 10 mg/kg). In most cases, 

two-way, between-subjects ANOVAs were used to analyze the data from the 

physiological and behavioral assessments, with psychosocial stress and drug serving as 

the between-subjects factors. Planned comparisons (independent samples t-tests) were 

also conducted between groups that were predicted to differ a priori. For all analyses, 

alpha was set at 0.05, and Holm Sidak post hoc tests were employed when necessary.   

Fear Memory. The amount of immobility from each chamber exposure (Stress 

Session 1, Stress Session 2, Context Test, Cue Test – No Tone, Cue Test – Tone) was 

analyzed separately. The number of fecal boli that rats produced in the chamber was also 

analyzed for the Context and Cue Tests. For each assessment, two-way, between-subjects 
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ANOVAs were used to analyze behavior. Psychosocial stress and drug served as the 

between-subjects factors in each case. 

Elevated Plus Maze. The amount of time that rats spent in the open arms of the 

EPM was calculated as a percent of the total trial time. The percent time that rats spent in 

the open arms, as well as the number of ambulations that rats made on the EPM were 

analyzed with two-way, between-subjects ANOVAs. Each of these analyses was 

performed for the entire 5-minute testing trial and for the first minute of the testing trial, 

with psychosocial stress and drug serving as the between-subjects factors in each case. 

Startle Response. Startle responses to each of the three auditory stimulus 

intensities (90, 100 and 110 dB) were analyzed separately. In each case, two-way, 

between-subjects ANOVAs were employed to analyze the data, with psychosocial stress 

and drug serving as the between-subjects factors. 

Novel Object Recognition. For habituation, a two-way, between-subjects ANOVA 

was used to compare overall locomotor activity across all groups, with psychosocial 

stress and drug serving as the between-subjects factors. The amount of time that rats 

spent in each area of the open field during the habituation phase was also analyzed to 

assure that the rats did not display a preference for one area of the open field over 

another. For the analysis, the open field was divided into four square quadrants via the 

ANY-Maze computer program. The amount of time that rats spent in each of the 

quadrants was analyzed with a mixed-model ANOVA, with psychosocial stress and drug 

serving as the between-subjects factors and time spent in each quadrant serving as the 

within-subjects factor. For training, paired samples t-tests were first conducted to 
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determine whether the rats within each group spent a comparable amount of time with 

each object replica (to rule out object preference effects). Then, the total time that rats 

spent with both object replicas during training was compared across groups by using two-

way, between-subjects ANOVAs, with psychosocial stress and drug serving as the 

between-subjects factors. For testing, a “ratio time” score was calculated for each group 

by taking the time that rats spent with the novel object and dividing it by the time that rats 

spent with the familiar object (i.e., ratio time = time with novel object / time with familiar 

object). The ratio times were compared across groups by utilizing two-way, between-

subjects ANOVAs, with psychosocial stress and drug again serving as the between-

subjects factors. This was performed for the entire 5-minute testing trial and for the first 

minute of the testing trial. 

Corticosterone Levels. A mixed-model ANOVA was used to analyze 

corticosterone levels at the three time points. Psychosocial stress and drug served as the 

between-subjects factors, and time point (baseline, stress, return-to-baseline) served as 

the within-subjects factor. 

Heart Rate and Blood Pressure. The HR, systolic BP and diastolic BP data were 

analyzed with two-way, between-subjects ANOVAs, with psychosocial stress and drug 

serving as the between-subjects factors. 

Growth Rates, Adrenal Gland Weights and Thymus Weights. Growth rates, 

expressed as grams per day (g/day), were calculated for all rats by dividing their total 

body weight gained during the course of the experiment by the total number of days in 

the experiment (i.e., 31 days). The adrenal glands and thymuses were weighed and 
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expressed as milligrams per 100 grams of body weight (mg/100 g b.w.). Two-way, 

between-subjects ANOVAs were used to analyze the growth rates, adrenal gland weights 

and thymus weights, with psychosocial stress and drug serving as the between-subjects 

factors in each case. 

Results 

Fear Memory 

 Stress Session One (see Figure 4). For the analysis of immobility during the 3-

minute chamber exposure during stress session one, there were no significant main 

effects of psychosocial stress, F(1,104) = 0.48, or drug, F(5,104) = 0.84, and the 

Psychosocial Stress x Drug interaction was not significant, F(5,104) = 1.13 (p’s > 0.05). 

Amount of Immobility upon Chamber Exposure
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Figure 4. Amount of immobility during the 3-minute chamber exposure during stress 

session one. The data are presented as mean percent immobility ± SEM. 

Stress Session Two (see Figure 5). For the analysis of immobility during the 3-

minute chamber exposure during stress session two, there was a significant main effect of 
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psychosocial stress, indicating that the psychosocial stress groups spent significantly 

more time immobile than the no psychosocial stress groups, F(1,103) = 7.55, p < 0.01. 

There was no significant main effect of drug, F(5,103) = 0.48, and the Psychosocial 

Stress x Drug interaction was not significant, F(5,103) = 0.96 (p’s > 0.05). Planned 

comparisons were also conducted between groups that were predicted to differ a priori. 

The vehicle-treated psychosocial stress group spent significantly more time immobile 

than the vehicle-treated no psychosocial stress group, t(17) = 2.73, p < 0.05. Groups of 

psychosocially stressed rats that were treated with 0.01, t(18) = 2.19, or 0.05, t(16) = 

2.26, of clonidine were the only other psychosocial stress groups that displayed 

significantly greater immobility than their respective control groups (p’s < 0.05). 
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Figure 5. Amount of immobility during the 3-minute chamber exposure during stress 

session two. The data are presented as mean percent immobility ± SEM. * = p < 0.05 

relative to the vehicle-treated no psychosocial stress group; τ = p < 0.05 relative to the 

respective drug-treated no psychosocial stress group. 
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Effects of Chronic Psychosocial Stress and Drug
Treatment on Immobility during the Context Test
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Figure 6. Effects of chronic psychosocial stress and drug treatment on immobility during 

the 5-minute context test. The data are presented as mean percent immobility ± SEM. * = 

p < 0.05 relative to the vehicle-treated no psychosocial stress group; β = p < 0.05 relative 

to the vehicle-treated psychosocial stress group; τ = p < 0.05 relative to the respective 

drug-treated no psychosocial stress group. 

Context Test Immobility (see Figure 6). For the analysis of immobility during the 

5-minute context test, there were significant main effects of psychosocial stress, F(1,97) 

= 11.96, and drug, F(5,97) = 3.90, and the Psychosocial Stress x Drug interaction was 

significant, F(5,97) = 2.56 (p’s < 0.05). Post hoc tests indicated that the vehicle-treated 

psychosocial stress group spent significantly more time immobile than the vehicle-treated 

no psychosocial stress group. Chronic treatment with 5 or 10 mg/kg of amitriptyline or 10 

mg/kg of tianeptine in groups that were psychosocially stressed prevented the chronic 

stress-induced increase in immobility, as evidenced by significantly less immobility than 

the vehicle-treated psychosocial stress group and a lack of statistical significance relative 
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to each of the group’s respective drug-treated no psychosocial stress group. The group of 

psychosocially stressed rats treated with 0.01 mg/kg of clonidine also did not exhibit 

significantly greater immobility than its respective drug-treated control group; however, 

the amount of immobility displayed by this group was not statistically different from that 

of the vehicle-treated psychosocial stress group. 

 Context Test Fecal Boli (see Figure 7). The analysis of fecal boli produced during 

the context test revealed significant main effects of psychosocial stress, F(1,97) = 15.45, 

and drug, F(5,97) = 4.09 (p’s < 0.01). The psychosocial stress groups produced 

significantly more fecal boli than the no psychosocial stress groups, and groups that were 

treated with 5 mg/kg of amitriptyline produced significantly more fecal boli than groups 

that were treated with 10 mg/kg of amitriptyline or tianeptine. The Psychosocial Stress x 

Drug interaction was not significant, F(5,97) = 0.87, p > 0.05. Planned comparisons were 

also conducted between groups that were predicted to differ a priori. The vehicle-treated 

psychosocial stress group produced significantly more fecal boli than the vehicle-treated 

no psychosocial stress group, t(17) = 2.81, p < 0.05. Chronic treatment with 10 mg/kg of 

amitriptyline, 0.01 mg/kg of clonidine or 10 mg/kg of tianeptine in groups that were 

psychosocially stressed prevented the stress-induced increase in fecal boli, as evidenced 

by the presence of significantly fewer fecal boli deposits than the vehicle-treated 

psychosocial stress group and a lack of statistical significance relative to each of the 

group’s respective drug-treated no psychosocial stress groups. While the group of 

psychosocially stressed rats treated with 0.05 mg/kg of clonidine did not defecate more 

than the vehicle-treated control animals, t(17) = 1.14, p > 0.05, they did produce 
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significantly more fecal boli than their respective drug-treated controls, t(18) = 2.40, p < 

0.05. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Fecal Boli Produced during the 

Context Test
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Figure 7. Effects of chronic psychosocial stress and drug treatment on fecal boli 

produced during the 5-minute context test. The data are presented as mean number of 

fecal boli ± SEM. * = p < 0.05 relative to the vehicle-treated no psychosocial stress 

group; β = p < 0.05 relative to the vehicle-treated psychosocial stress group; τ = p < 0.05 

relative to the respective drug-treated no psychosocial stress group. 

Cue Test Immobility – No Tone (i.e., Novel Environment) (see Figure 8). For the 

analysis of immobility during the first 3 minutes of the cue test, there were significant 

main effects of psychosocial stress, F(1,100) = 9.40, and drug, F(5,100) = 2.72, and the 

Psychosocial Stress x Drug interaction was significant, F(5,100) = 5.73 (p’s < 0.05). Post 

hoc tests indicated that chronic treatment with 0.05 mg/kg of clonidine in rats that were 

psychosocially stressed led to significantly greater immobility than all other groups. 
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Effects of Chronic Psychosocial Stress and Drug
Treatment on Immobility in a Novel Environment
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Figure 8. Effects of chronic psychosocial stress and drug treatment on immobility during 

the first 3 minutes of the cue test. The data are presented as mean percent immobility ± 

SEM. # = p < 0.05 relative to all other groups. 

 Cue Test Immobility – Tone (see Figure 9). For the analysis of immobility during 

the tone, there was no significant main effect of drug, F(5,100) = 2.02, p > 0.05. There 

was a significant main effect of psychosocial stress, F(1,100) = 12.04, and the 

Psychosocial Stress x Drug interaction was significant, F(5,100) = 2.71 (p’s < 0.05). Post 

hoc tests indicated that the vehicle-treated psychosocial stress group spent significantly 

more time immobile than the vehicle-treated no psychosocial stress group. Additionally, 

chronic treatment with 10 mg/kg of amitriptyline in groups that were not psychosocially 

stressed led to significantly greater immobility than the vehicle-treated no psychosocial 

stress group. Chronic treatment with 5 or 10 mg/kg of amitriptyline or 10 mg/kg of 

tianeptine in groups that were psychosocially stressed prevented the chronic stress-
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induced increase in immobility, as evidenced by a lack of statistical significance relative 

to each of the group’s respective drug-treated no psychosocial stress group. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Immobility during the Cue Test
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Figure 9. Effects of chronic psychosocial stress and drug treatment on immobility during 

the tone. The data are presented as mean percent immobility ± SEM. * = p < 0.05 relative 

to the vehicle-treated no psychosocial stress group; τ = p < 0.05 relative to the respective 

drug-treated no psychosocial stress group. 

Cue Test Fecal Boli (see Figure 10). The analysis of fecal boli produced during 

the cue test revealed a significant main effect of psychosocial stress, F(1,100) = 7.34. The 

psychosocial stress groups produced significantly more fecal boli during the cue test than 

the no psychosocial stress groups. There was no significant main effect of drug, F(5,100) 

= 2.19, and the Psychosocial Stress x Drug interaction was not significant, F(5,100) = 

0.57 (p’s > 0.05). Planned comparisons were also conducted between groups that were 

predicted to differ a priori. There was no significant difference between the vehicle-

treated psychosocial stress group and the vehicle-treated no psychosocial stress group, 
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t(17) = 1.90, p > 0.05. The psychosocial stress group that was chronically treated with 

0.05 mg/kg of clonidine produced significantly less fecal boli than the vehicle-treated 

psychosocial stress group, t(18) = 3.36, p < 0.01. 
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Figure 10. Effects of chronic psychosocial stress and drug treatment on fecal boli 

produced during the 6-minute cue test. The data are presented as mean number of fecal 

boli ± SEM. β = p < 0.05 relative to the vehicle-treated psychosocial stress group. 

Elevated Plus Maze 

 Percent Time in Open Arms, 5-Minute Trial (see Figure 11). For the analysis of 

percent time in the open arms during the 5-minute trial on the EPM, there were no 

significant main effects of psychosocial stress, F(1,100) = 2.89, or drug, F(5,100) = 1.14, 

and the Psychosocial Stress x Drug interaction was not significant, F(5,100) = 1.16 (p’s > 

0.05). Planned comparisons were also conducted between groups that were predicted to 

differ a priori. The vehicle-treated psychosocial stress group spent significantly less time 

in the open arms of the EPM than the vehicle-treated no psychosocial stress group, t(15) 
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= 2.44, p < 0.05. Chronic treatment with 10 mg/kg of amitriptyline, 0.01 or 0.05 mg/kg of 

clonidine or 10 mg/kg of tianeptine in groups that were psychosocially stressed prevented 

the chronic stress-induced decrease in open arm exploration, as evidenced by the 

presence of significantly greater percent time spent in the open arms than the vehicle-

treated psychosocial stress group or a lack of statistical significance relative to each of the 

group’s respective drug-treated no psychosocial stress group. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Anxiety on the EPM (5-Minute Trial)
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Figure 11. Effects of chronic psychosocial stress and drug treatment on percent time 

spent in the open arms during the 5-minute trial on the elevated plus maze. The data are 

presented as mean percent time spent in the open arms ± SEM. * = p < 0.05 relative to 

the vehicle-treated no psychosocial stress group; β = p < 0.05 relative to the vehicle-

treated psychosocial stress group. 

Percent Time in Open Arms, First Minute (see Figure 12). For the analysis of 

percent time in the open arms during the first minute of the 5-minute trial on the EPM, 

there was a significant main effect of psychosocial stress, F(1,102) = 4.79, and the 

Psychosocial Stress x Drug interaction was significant, F(5,102) = 3.03 (p’s < 0.05). The 
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vehicle-treated psychosocial stress group spent significantly less time in the open arms of 

the EPM than the vehicle-treated no psychosocial stress group. Chronic treatment with 

0.01 mg/kg of clonidine in the group that was not psychosocially stressed led to 

significantly less open arm exploration on the EPM, relative to the vehicle-treated no 

psychosocial stress group. Chronic treatment with 5 or 10 mg/kg of amitriptyline, 0.01 or 

0.05 mg/kg of clonidine or 10 mg/kg of tianeptine in groups that were psychosocially 

stressed prevented the chronic stress-induced decrease in open arm exploration, as 

evidenced by the presence of significantly greater percent time spent in the open arms 

than the vehicle-treated psychosocial stress group or a lack of statistical significance 

relative to each of the group’s respective drug-treated no psychosocial stress group. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Anxiety on the EPM (First Minute)
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Figure 12. Effects of chronic psychosocial stress and drug treatment on percent time 

spent in the open arms during the first minute of the 5-minute trial on the elevated plus 

maze. The data are presented as mean percent time spent in the open arms ± SEM. * = p 

< 0.05 relative to the vehicle-treated no psychosocial stress group; β = p < 0.05 relative to 

the vehicle-treated psychosocial stress group. 
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Effects of Chronic Psychosocial Stress and Drug
Treatment on Motor Activity on the EPM (5-Minute Trial)

VEH

To
ta

l A
m

bu
la

tio
ns

0

50

100

150

200

250

300

350 No Psychosocial Stress
Psychosocial Stress

AMI-5 AMI-10 C-0.01 C-0.05 TIA-10

*
*

 

Figure 13. Effects of chronic psychosocial stress and drug treatment on ambulations 

made during the 5-minute trial on the elevated plus maze. The data are presented as mean 

number of ambulations ± SEM. * = p < 0.05 relative to the vehicle-treated no 

psychosocial stress group. 

Ambulations, 5-Minute Trial (see Figure 13). For the analysis of ambulations 

made during the 5-minute trial on the EPM, there was no significant main effect of 

psychosocial stress, F(1,100) = 3.70, and the Psychosocial Stress x Drug interaction was 

not significant, F(5,100) = 0.52 (p’s > 0.05). There was a significant main effect of drug, 

F(5,100) = 4.48, p < 0.001. Planned comparisons were also conducted between groups 

that were predicted to differ a priori. There was no significant difference between the 

number of ambulations made by the vehicle-treated psychosocial stress group and the 

vehicle-treated no psychosocial stress group on the EPM, t(16) = 0.16, p > 0.05. Chronic 

treatment with 10 mg/kg of amitriptyline, t(15) = 2.67, or 10 mg/kg of tianeptine, t(16) = 

2.38, in groups that were not psychosocially stressed led to a significantly greater number 
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of ambulations on the EPM, relative to the vehicle-treated no psychosocial stress group 

(p’s < 0.05). 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Motor Activity on the EPM (First Minute)

VEH

To
ta

l A
m

bu
la

tio
ns

0

10

20

30

40

50

60
No Psychosocial Stress
Psychosocial Stress

AMI-5 AMI-10 C-0.01 C-0.05 TIA-10

*
*

*
*

 

Figure 14. Effects of chronic psychosocial stress and drug treatment on ambulations 

made during the first minute of the 5-minute trial on the elevated plus maze. The data are 

presented as mean number of ambulations ± SEM. * = p < 0.05 relative to the vehicle-

treated no psychosocial stress group. 

Ambulations, First Minute (see Figure 14). For the analysis of ambulations made 

during the first minute of the 5-minute trial on the EPM, there was no significant main 

effect of psychosocial stress, F(1,100) = 0.16, and the Psychosocial Stress x Drug 

interaction was not significant, F(5,100) = 1.57 (p’s > 0.05). There was a significant main 

effect of drug, F(5,100) = 2.43, p < 0.05. Planned comparisons were also conducted 

between groups that were predicted to differ a priori. There was no significant difference 

between the number of ambulations made by the vehicle-treated psychosocial stress 

group and the vehicle-treated no psychosocial stress group on the EPM, t(16) = 1.37, p > 
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0.05. Chronic treatment with 5 mg/kg, t(15) = 2.24, or 10 mg/kg, t(15) = 2.96, of 

amitriptyline in groups that were not psychosocially stressed and 5 mg/kg of 

amitriptyline, t(15) = 2.24, or 0.01 mg/kg of clonidine, t(16) = 2.16, in groups that were 

psychosocially stressed led to a significantly greater number of ambulations on the EPM, 

relative to the vehicle-treated no psychosocial stress group (p’s < 0.05). 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Startle Response to 90 dB Auditory Stimuli
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Figure 15. Effects of chronic psychosocial stress and drug treatment on startle responses 

to the 90 dB auditory stimuli. The data are presented as mean startle response (Newtons) 

± SEM. * = p < 0.05 relative to the vehicle-treated no psychosocial stress group; β = p < 

0.05 relative to the vehicle-treated psychosocial stress group. 

Startle Response 

 90 dB Auditory Stimuli (see Figure 15). For the analysis of startle responses to the 

90 dB auditory stimuli, there was no significant main effect of psychosocial stress, 

F(1,102) = 3.40, p > 0.05. There was a significant main effect of drug, F(5,102) = 3.84, 

and the Psychosocial Stress x Drug interaction was significant, F(5,102) = 2.74 (p’s < 
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0.05). Post hoc tests indicated that the vehicle-treated psychosocial stress group exhibited 

significantly greater startle responses than the vehicle-treated no psychosocial stress 

group. Chronic treatment with 5 or 10 mg/kg of amitriptyline, 0.01 or 0.05 mg/kg of 

clonidine or 10 mg/kg of tianeptine in groups that were psychosocially stressed prevented 

the chronic stress-induced increase in startle response, as evidenced by the presence of 

significantly lower startle responses than the vehicle-treated psychosocial stress group or 

a lack of statistical significance relative to each of the group’s respective drug-treated no 

psychosocial stress group. 

 100 dB Auditory Stimuli (see Figure 16). For the analysis of startle responses to 

the 100 dB auditory stimuli, there was no significant main effect of drug, F(5,98) = 1.39, 

p > 0.05. There was a significant main effect of psychosocial stress, F(1,98) = 7.29, and 

the Psychosocial Stress x Drug interaction was significant, F(5,98) = 2.32 (p’s < 0.05). 

Post hoc tests indicated that the vehicle-treated psychosocial stress group exhibited 

significantly greater startle responses than the vehicle-treated no psychosocial stress 

group. Chronic treatment with 10 mg/kg of amitriptyline, 0.05 mg/kg of clonidine or 10 

mg/kg of tianeptine in groups that were psychosocially stressed prevented the chronic 

stress-induced increase in startle response, as evidenced by the presence of significantly 

lower startle responses than the vehicle-treated psychosocial stress group. The 

psychosocial stress groups treated with 5 mg/kg of amitriptyline or 0.01 mg/kg of 

clonidine did not exhibit significantly greater startle responses than the vehicle-treated 

control group; however, neither of the groups displayed significantly lower startle 

responses than the vehicle-treated psychosocial stress group, and the psychosocial stress 
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group treated with 5 mg/kg of amitriptyline demonstrated significantly greater startle 

responses than its respective drug-treated control group. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Startle Response to 100 dB Auditory Stimuli
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Figure 16. Effects of chronic psychosocial stress and drug treatment on startle responses 

to the 100 dB auditory stimuli. The data are presented as mean startle response (Newtons) 

± SEM. * = p < 0.05 relative to the vehicle-treated no psychosocial stress group; β = p < 

0.05 relative to the vehicle-treated psychosocial stress group; τ = p < 0.05 relative to the 

respective drug-treated no psychosocial stress group. 

 110 dB Auditory Stimuli (see Figure 17). For the analysis of startle responses to 

the 110 dB auditory stimuli, there were no significant main effects of psychosocial stress, 

F(1,100) = 1.42, or drug, F(5,100) = 1.49, and the Psychosocial Stress x Drug interaction 

was not significant, F(5,100) = 1.92 (p’s > 0.05). Planned comparisons were also 

conducted between groups that were predicted to differ a priori. The vehicle-treated 

psychosocial stress group tended to exhibit greater startle responses than the vehicle-

treated no psychosocial stress group, although this difference did not achieve statistical 
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significance, t(16) = 2.06, p = 0.056. Chronic treatment with 5 or 10 mg/kg of 

amitriptyline, 0.01 or 0.05 mg/kg of clonidine or 10 mg/kg of tianeptine in groups that 

were psychosocially stressed prevented this marginally significant, chronic stress-induced 

increase in startle response, as evidenced by the presence of significantly lower startle 

responses than the vehicle-treated psychosocial stress group or a lack of statistical 

significance relative to each of the group’s respective drug-treated no psychosocial stress 

group. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Startle Response to 110 dB Auditory Stimuli

VEH

St
ar

tle
 R

es
po

ns
e 

(N
ew

to
ns

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0 No Psychosocial Stress
Psychosocial Stress

AMI-5 AMI-10 C-0.01 C-0.05 TIA-10

*

β β
β

 

Figure 17. Effects of chronic psychosocial stress and drug treatment on startle responses 

to the 110 dB auditory stimuli. The data are presented as mean startle response (Newtons) 

± SEM. * = p < 0.056 relative to the vehicle-treated no psychosocial stress group; β = p < 

0.05 relative to the vehicle-treated psychosocial stress group. 

Novel Object Recognition 

 Habituation (see Figure 18). The analysis of locomotor activity in the open field 

during the 5-minute habituation phase revealed significant main effects of psychosocial 

stress, F(1,104) = 8.25, and drug, F(5,104) = 9.27 (p’s < 0.01). In general, rats that had 
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been psychosocially stressed traveled significantly less distance in the open field than rats 

that had not been psychosocially stressed. In addition, rats that were treated with 0.05 

mg/kg of clonidine, independent of psychosocial stress, traveled significantly less 

distance than all other groups. The Psychosocial Stress x Drug interaction was not 

significant, F(5,104) = 0.40, p > 0.05. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Locomotor Activity during OR Habituation
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Figure 18. Effects of chronic psychosocial stress and drug treatment on locomotor 

activity during the 5-minute object recognition habituation period. The data are presented 

as mean distance traveled (m) ± SEM. # = p < 0.05 relative to all groups that were not 

treated with 0.05 mg/kg of clonidine. 

 The analysis of time that the rats spent in each area of the open field revealed no 

significant main effect of quadrant, F(3,309) = 1.26, psychosocial stress, F(1,103) = 0.54, 

or drug, F(5,103) = 1.00, and the Quadrant x Psychosocial Stress, F(3,309) = 2.54, 

Quadrant x Drug, F(15,309) = 1.33, Psychosocial Stress x Drug, F(5,103) = 0.43, and 

Quadrant x Psychosocial Stress x Drug, F(15,309) = 1.61, interactions were not 

significant (p’s > 0.05; data not shown). 
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Table 3 

Time (seconds ± SEM) Spent with Each Object during Object Recognition Training for 

all Groups in Experiment 3 

 
                    Paired t-test 
            Object 1                  Object 2            * = p < 0.05 
             
 
No Psychosocial Stress 
 
   Vehicle       10.54 ± 1.89    9.87 ± 1.19  t(9) = 0.03 
 
   5 mg/kg Amitriptyline       5.87 ± 0.88    6.26 ± 1.50  t(9) = 0.37 
 
   10 mg/kg Amitriptyline             9.03 ± 2.37    7.77 ± 1.29  t(9) = 0.46 
 

0.01 mg/kg Clonidine              11.85 ± 1.94    7.13 ± 0.85  t(9) = 2.78* 
 
0.05 mg/kg Clonidine                6.70 ± 1.89    9.55 ± 2.90  t(9) = 0.83 
 
Tianeptine                                  8.07 ± 1.50    9.76 ± 0.98  t(9) = 0.84 

 
Psychosocial Stress 
 
   Vehicle         6.31 ± 1.38   13.88 ± 5.32  t(9) = 1.34 
 
   5 mg/kg Amitriptyline       5.90 ± 0.91    9.46 ± 1.63  t(9) = 1.86 
 
   10 mg/kg Amitriptyline       8.41 ± 1.12    9.53 ± 2.82  t(9) = 0.36 
 

0.01 mg/kg Clonidine       7.80 ± 1.30    6.32 ± 0.87  t(9) = 1.02 
 
0.05 mg/kg Clonidine     12.20 ± 3.30    5.05 ± 1.91  t(9) = 1.55 
 
Tianeptine         7.40 ± 1.49    6.38 ± 0.96  t(9) = 0.93 

 
 

Training (see Table 3). Within-group comparisons indicated that most groups 

spent a comparable amount of time with each of the objects that were placed in the open 



 

 88

field during object recognition training (see Table 3), suggesting that no object preference 

effects were present. Only one group, the 0.01 mg/kg clonidine-treated no psychosocial 

stress group, spent more time with one object than the other. A between-groups 

comparison of the total amount of time spent with both objects during training revealed 

no significant main effects of psychosocial stress, F(1,103) = 0.27, or drug, F(5,103) = 

0.82, and the Psychosocial Stress x Drug interaction was not significant, F(5,103) = 0.99 

(p’s > 0.05; data not shown). These findings indicated that all groups spent a comparable 

amount of time with both objects during training. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Object Recognition Memory (5-Minute Trial)
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Figure 19. Effects of chronic psychosocial stress and drug treatment on object 

recognition memory during the entire 5-minute testing trial. The data are presented as 

mean ratio time ± SEM. 

Testing, 5-Minute Trial (see Figure 19). The analysis comparing the ratio times of 

all groups during the 5-minute object recognition testing session revealed no significant 
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main effects of psychosocial stress, F(1,87) = 0.80, or drug, F(5,87) = 0.52, and the 

Psychosocial Stress x Drug interaction was not significant, F(5,87) = 1.17 (p’s > 0.05). 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Object Recognition Memory (First Minute)
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Figure 20. Effects of chronic psychosocial stress and drug treatment on object 

recognition memory during the first minute of the testing trial. The data are presented as 

mean ratio time ± SEM. 

Testing, First Minute (see Figure 20). The analysis comparing the ratio times of 

all groups during the first minute of the testing trial revealed no significant main effects 

of psychosocial stress, F(1,68) = 1.56, or drug, F(5,68) = 1.34, and the Psychosocial 

Stress x Drug interaction was not significant, F(5,68) = 1.44 (p’s > 0.05). 

Corticosterone Levels (see Figure 21) 

 For the analysis of serum corticosterone levels, there was no significant main 

effect of psychosocial stress, F(1,97) = 0.02, p > 0.05. There was, however, a significant 

main effect of time point, F(2,194) = 487.29, p < 0.001. Post hoc tests indicated that rats 

demonstrated a significant increase in corticosterone levels following 20 minutes of acute 
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immobilization stress and that these levels declined, but remained significantly elevated 

relative to baseline, 1 hour later.  
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Figure 21. Effects of chronic psychosocial stress and drug treatment on serum 

corticosterone levels. The data are presented as mean serum corticosterone levels (µg/dL) 

± SEM. * = p < 0.05 relative to the respective no psychosocial stress group. 

There was also a significant main effect of drug, F(5,97) = 24.00, p < 0.001. Post 

hoc tests indicated that rats treated with 5 mg/kg of amitriptyline displayed significantly 

lower corticosterone levels than all other groups except for those treated with tianeptine 

or 10 mg/kg of amitriptyline. In addition, rats treated with 10 mg/kg of amitriptyline 

exhibited significantly lower corticosterone levels than all other groups, except for those 
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treated with 5 mg/kg of amitriptyline. Lastly, rats that were treated with tianeptine had 

significantly lower corticosterone levels than rats treated with vehicle or 0.01 mg/kg of 

clonidine. 

 The Time Point x Psychosocial Stress interaction was not significant, F(2,194) = 

0.34, p > 0.05. However, the Time Point x Drug interaction was significant, F(10,194) = 

8.91, p < 0.001. Post hoc tests indicated that both doses of amitriptyline, particularly the 

10 mg/kg dose, significantly blunted the acute immobilization-induced increase in serum 

corticosterone levels. Tianeptine had a similar effect, although not as pronounced as that 

of amitriptyline. The Psychosocial Stress x Drug, F(5,97) = 2.70, and Time Point x 

Psychosocial Stress x Drug, F(10,194) = 2.21, interactions were also significant (p’s < 

0.05). Post hoc tests revealed that psychosocially stressed rats treated with 10 mg/kg of 

amitriptyline exhibited significantly lower corticosterone levels than the controls treated 

with 10 mg/kg of amitriptyline an hour following 20 minutes of immobilization. In 

contrast, 0.01 mg/kg of clonidine prevented the reduction in corticosterone levels an hour 

following immobilization in the psychosocial stress group only. 

Cardiovascular Activity 

 Heart Rate (see Figure 22). For the analysis of heart rate, there were no 

significant main effects of psychosocial stress, F(1,81) = 0.05, or drug, F(5,81) = 1.15 

(p’s > 0.05). The Psychosocial Stress x Drug interaction was significant, F(5,81) = 3.99 

(p < 0.01). Post hoc tests indicated that the vehicle-treated psychosocial stress group 

exhibited significantly greater heart rate than the vehicle-treated no psychosocial stress 

group. Chronic treatment with 5 or 10 mg/kg of amitriptyline, 0.01 or 0.05 mg/kg of 
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clonidine or 10 mg/kg of tianeptine in groups that were psychosocially stressed prevented 

the chronic stress-induced increase in heart rate, as evidenced by the presence of 

significantly lower heart rate than the vehicle-treated psychosocial stress group or a lack 

of statistical significance relative to each of the group’s respective drug-treated no 

psychosocial stress group. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Heart Rate
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Figure 22. Effects of chronic psychosocial stress and drug treatment on heart rate. The 

data are presented as mean heart rate (bpm) ± SEM. * = p < 0.05 relative to the vehicle-

treated no psychosocial stress group; β = p < 0.05 relative to the vehicle-treated 

psychosocial stress group; τ = p < 0.05 relative to the respective drug-treated no 

psychosocial stress group. 

 Systolic Blood Pressure (see Figure 23). For the analysis of systolic blood 

pressure, there was no significant main effect of psychosocial stress, F(1,86) = 1.90, p > 

0.05. There was a significant main effect of drug, F(5,86) = 11.80, and the Psychosocial 

Stress x Drug interaction was significant, F(5,86) = 3.60 (p’s < 0.01). Post hoc tests 
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indicated that the vehicle-treated psychosocial stress group had significantly higher 

systolic blood pressure than the vehicle-treated no psychosocial stress group. Chronic 

treatment with 5 or 10 mg/kg of amitriptyline in groups that were not psychosocially 

stressed led to significantly greater systolic blood pressure than the vehicle-treated no 

psychosocial stress group. Chronic treatment with 5 or 10 mg/kg of amitriptyline, 0.01 or 

0.05 mg/kg of clonidine or 10 mg/kg of tianeptine in groups that were psychosocially 

stressed prevented the chronic stress-induced increase in systolic blood pressure, as 

evidenced by the presence of significantly lower systolic blood pressure than the vehicle-

treated psychosocial stress group or a lack of statistical significance relative to each of the 

group’s respective drug-treated no psychosocial stress group. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Systolic Blood Pressure
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Figure 23. Effects of chronic psychosocial stress and drug treatment on systolic blood 

pressure. The data are presented as mean systolic blood pressure (mm Hg) ± SEM. * = p 

< 0.05 relative to the vehicle-treated no psychosocial stress group; β = p < 0.05 relative to 

the vehicle-treated psychosocial stress group. 
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Effects of Chronic Psychosocial Stress and Drug
Treatment on Diastolic Blood Pressure
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Figure 24. Effects of chronic psychosocial stress and drug treatment on diastolic blood 

pressure. The data are presented as mean diastolic blood pressure (mm Hg) ± SEM. * = p 

< 0.05 relative to the vehicle-treated no psychosocial stress group; β = p < 0.05 relative to 

the vehicle-treated psychosocial stress group; τ = p < 0.05 relative to the respective drug-

treated no psychosocial stress group. 

Diastolic Blood Pressure (see Figure 24). For the analysis of diastolic blood 

pressure, there were significant main effects of psychosocial stress, F(1,86) = 9.67, and 

drug, F(5,86) = 21.78, and the Psychosocial Stress x Drug interaction was significant, 

F(5,86) = 6.11 (p’s < 0.01). Post hoc tests indicated that the vehicle-treated psychosocial 

stress group had significantly higher diastolic blood pressure than the vehicle-treated no 

psychosocial stress group. Additionally, chronic treatment with 5 or 10 mg/kg of 

amitriptyline in groups that were not psychosocially stressed led to significantly greater 

diastolic blood pressure than the vehicle-treated no psychosocial stress group. Chronic 

treatment with 10 mg/kg of amitriptyline, 0.01 or 0.05 mg/kg of clonidine or 10 mg/kg of 
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tianeptine in psychosocially stressed rats led to significantly lower diastolic blood 

pressure than the vehicle-treated psychosocial stress group. However, psychosocially 

stressed rats that were treated with 10 mg/kg of amitriptyline still displayed significantly 

greater diastolic blood pressure than the vehicle-treated no psychosocial stress group, and 

psychosocially stressed rats that were treated with 0.01 mg/kg of clonidine still exhibited 

significantly greater diastolic blood pressure than its respective drug-treated no 

psychosocial stress group. 

Growth Rates (see Figure 25) 

 For the analysis of growth rate, there was no significant main effect of 

psychosocial stress, F(1,100) = 0.61, p > 0.05. There was a significant main effect of 

drug, F(5,100) = 11.78, and the Psychosocial Stress x Drug interaction was significant, 

F(5,100) = 13.42 (p’s < 0.001). Post hoc tests indicated that the vehicle-treated 

psychosocial stress group had a significantly lower growth rate than the vehicle-treated 

no psychosocial stress group. Additionally, chronic treatment with 5 or 10 mg/kg of 

amitriptyline or 0.05 mg/kg of clonidine in groups that were not psychosocially stressed 

led to significantly lower growth rates than the vehicle-treated no psychosocial stress 

group. Chronic treatment with 5 or 10 mg/kg of amitriptyline, 0.01 mg/kg of clonidine or 

10 mg/kg of tianeptine in groups that were psychosocially stressed prevented the chronic 

stress-induced reduction of growth rate, as evidenced by the presence of significantly 

greater growth rates than the vehicle-treated psychosocial stress group or a lack of 

statistical significance relative to each of the group’s respective drug-treated no 

psychosocial stress group. However, the psychosocial stress group treated with 5 mg/kg 
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of amitriptyline still exhibited a significantly lower growth rate than the vehicle-treated 

no psychosocial stress group. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Growth Rate
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Figure 25. Effects of chronic psychosocial stress and drug treatment on growth rate. The 

data are presented as mean growth rate (g/day) ± SEM. * = p < 0.05 relative to the 

vehicle-treated no psychosocial stress group; # = p < 0.05 relative to all other groups; β = 

p < 0.05 relative to the vehicle-treated psychosocial stress group; τ = p < 0.05 relative to 

the respective drug-treated no psychosocial stress group. 

Adrenal Gland Weights (see Figure 26) 

For the analysis of adrenal gland weights, there was no significant main effect of 

psychosocial stress, F(1,97) = 0.89, p > 0.05. There was a significant main effect of drug, 

F(5,97) = 10.53, and the Psychosocial Stress x Drug interaction was significant, F(5,97) 

= 3.26 (p’s < 0.01). Post hoc tests indicated that the vehicle-treated psychosocial stress 

group had significantly larger adrenal glands than the vehicle-treated no psychosocial 

stress group. Additionally, chronic treatment with 10 mg/kg of amitriptyline or 0.05 
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mg/kg of clonidine in groups that were not psychosocially stressed led to significantly 

larger adrenal glands than the vehicle-treated no psychosocial stress group. Chronic 

treatment with 5 mg/kg of amitriptyline, 0.01 or 0.05 mg/kg of clonidine or 10 mg/kg of 

tianeptine in groups that were psychosocially stressed prevented the chronic stress-

induced hypertrophy of the adrenal glands, as evidenced by a lack of a statistically 

significant increase in adrenal gland weight relative to each of the group’s respective 

drug-treated no psychosocial stress group. Interestingly, the psychosocial stress group 

treated with 10 mg/kg of amitriptyline exhibited significantly lower adrenal gland 

weights than its respective drug-treated control group. 

Effects of Chronic Psychosocial Stress and Drug
Treatment on Adrenal Gland Weight
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Figure 26. Effects of chronic psychosocial stress and drug treatment on adrenal gland 

weight. The data are presented as mean adrenal gland weight (mg/100 g b.w.) ± SEM. * = 

p < 0.05 relative to the vehicle-treated no psychosocial stress group; τ = p < 0.05 relative 

to the respective drug-treated no psychosocial stress group. 
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Effects of Chronic Psychosocial Stress and Drug
Treatment on Thymus Weight

VEH

Th
ym

us
 W

ei
gh

t (
m

g 
/ 1

00
 g

 b
.w

.)

0

75

90

105

120

135 No Psychosocial Stress
Psychosocial Stress

AMI-5 AMI-10 C-0.01 C-0.05 TIA-10

* * * *
τ

τ

τ τ

β

 

Figure 27. Effects of chronic psychosocial stress and drug treatment on thymus weight. 

The data are presented as mean thymus weight (mg/100 g b.w.) ± SEM. * = p < 0.05 

relative to the vehicle-treated no psychosocial stress group; β = p < 0.05 relative to the 

vehicle-treated psychosocial stress group; τ = p < 0.05 relative to the respective drug-

treated no psychosocial stress group. 

Thymus Weights (see Figure 27) 

 For the analysis of thymus weights, there was no significant main effect of drug, 

F(5,91) = 1.42, p > 0.05. There was a significant main effect of psychosocial stress, 

F(1,91) = 17.12, and the Psychosocial Stress x Drug interaction was significant, F(5,91) 

= 6.49 (p’s < 0.001). Post hoc analyses indicated that the vehicle-treated psychosocial 

stress group tended to exhibit smaller thymuses than the vehicle-treated no psychosocial 

stress group, yet this difference did not reach statistical significance. Additionally, 

chronic treatment with 10 mg/kg of amitriptyline in groups that were not psychosocially 

stressed led to significantly smaller thymuses than the vehicle-treated no psychosocial 
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stress group. Chronic treatment with 5 mg/kg of amitriptyline or 0.01 or 0.05 mg/kg of 

clonidine in groups that were psychosocially stressed led to significantly smaller 

thymuses than the vehicle-treated no psychosocial stress group. Chronic treatment with 

10 mg/kg of amitriptyline or 10 mg/kg of tianeptine prevented the slight decrease in 

thymus weight induced by chronic psychosocial stress, as evidenced by the presence of 

significantly greater thymus weights than the vehicle-treated psychosocial stress group 

and/or a lack of a statistically significant decreases in thymus weight relative to each of 

the group’s respective drug-treated no psychosocial stress group. 

Discussion of Findings 

Consistent with our previous work (Zoladz et al., 2008), vehicle-treated rats that 

were exposed to chronic psychosocial stress, composed of two acute predator exposures 

and daily social instability, exhibited reduced growth rate, greater adrenal gland weight, 

heightened anxiety, an exaggerated startle response, greater blood pressure reactivity to 

an acute stressor and intact memories for the context and cue that were associated with 

the two cat exposures. In contrast to our prior findings, however, the vehicle-treated 

psychosocially stressed rats did not display a significant impairment of object recognition 

memory or significantly reduced thymus weights, relative to vehicle-treated control (i.e., 

unstressed) animals. Nonetheless, it is important to note that these effects were in the 

hypothesized direction. That is to say, vehicle-treated psychosocially stressed rats spent 

less time with the novel object and had smaller thymuses, albeit both non-significantly, 

than vehicle-treated control animals. One possible explanation for the lack of statistical 

significance is that the chronic injections in the present study acted as a chronic mild 
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stressor in control rats, which added considerable variability to their data on these 

measures. Studies in rodents have reported that chronic mild stress in the form of 

repeated injections can significantly alter the morphology of neurons in the prefrontal 

cortex (Weaver et al., 2005; Wellman, 2001). Therefore, chronic injections in the present 

study could have adversely influenced rat physiology and behavior. 

Another finding that is in conflict with our previous work is that the vehicle-

treated psychosocially stressed rats demonstrated significantly greater HR than vehicle-

treated control rats following exposure to an acute stressor on the final day of testing. 

Previously, we reported that the present psychosocial stress paradigm resulted in 

significantly lower HR, compared to controls, following acute stress on the final day of 

testing (Zoladz et al., 2008). Nevertheless, the HR exhibited by psychosocially stressed 

rats in the present study (409.85 ± 7.30 bpm) was very similar to the HR exhibited by 

psychosocially stressed rats in our previous work (413.25 ± 9.93 bpm). What appears to 

be the cause of the inconsistent effects between the findings of the present study and 

those of our previous work is the HR exhibited by the control animals in each case. 

Vehicle-treated control rats displayed much lower HR in the present study (385.61 ± 8.11 

bpm) than that which was displayed by controls in the prior study (462.88 ± 11.43 bpm). 

In theory, vehicle-treated controls could have exhibited much lower HR in the present 

study because the chronic mild stress of repeated injections protected them against 

responding as strongly to the acute stressor as the more naïve animals that were utilized 

in our prior work. 
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Amitriptyline 

Both doses of the tricyclic antidepressant amitriptyline blocked the expression of 

fear-related behaviors in psychosocially stressed rats in response to the context and cue 

that were paired with the two cat exposures. These fear responses served as a measure of 

memory for the acute stress experiences and rat analogs of a traumatic memory in 

humans. As traumatic memories are a source of psychological distress in people with 

PTSD, these findings suggest that amitriptyline could serve to effectively reduce the 

strength of traumatic memories and consequentially diminish the intrusion and re-

experiencing symptoms endured by PTSD patients. One caveat to this interpretation, 

however, is that extensive work has reported amitriptyline-induced memory impairments 

in both humans (Kerr et al., 1996; Liljequist et al., 1978; Mattila et al., 1978; Spring et 

al., 1992; van Laar et al., 2002) and rodents (Everss et al., 2005; Gonzalez-Pardo et al., 

2008; Kumar & Kulkarni, 1996), findings that may be related to the drug’s anti-

cholinergic side effects (Pavone et al., 1997). Therefore, the attenuation of contextual and 

cue fear conditioning in psychosocially stressed rats treated with amitriptyline could 

simply be due to its amnestic side effects, rather than a specific amelioration of the 

chronic stress-induced behavioral sequelae. On the other hand, studies reporting 

amitriptyline-induced memory impairments have administered the drug prior to learning. 

In the present experiment, amitriptyline treatment did not begin until 24 hours after the 

first pairing of the context and cue with the cat exposure. Therefore, a more likely 

explanation of the present findings is that amitriptyline blunted the augmentation of 

contextual and cue fear conditioning in psychosocially stressed rats that occurred in 
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response to the second cat exposure on Day 11 of the paradigm. Another possible 

explanation of these findings is that amitriptyline increased general locomotor activity, 

thus reducing overall immobility. Amitriptyline-treated control animals did display a 

significantly greater amount of motor activity on the EPM than vehicle-treated animals, 

but the same effect was not observed during the open field habituation period on the 

following day. In addition, the finding that amitriptyline, at least at the higher dose, led to 

significantly fewer fecal boli deposits in psychosocially stressed rats during the context 

test supports the notion that the observed effects were not by-products of drug-induced 

changes in locomotor activity. 

Both doses of amitriptyline were at least partially effective in preventing the 

chronic stress-induced increase in startle responses, but only the 10 mg/kg dose of 

amitriptyline blocked the effects of chronic psychosocial stress on anxiety, as measured 

by rat behavior on the EPM. These findings are consistent with other work in the rodent 

literature reporting that amitriptyline exerts anxiolytic effects in control animals (Bodnoff 

et al., 1988; Zajaczkowski & Gorka, 1993) and blocks stress-induced increases in 

anxiety-like behavior and startle (Orsetti et al., 2007; Poltyrev & Weinstock, 2004; West 

& Weiss, 2005). Research in humans has also shown that amitriptyline significantly 

blunts startle responses (Phillips et al., 2000). Thus, amitriptyline appears to have potent 

anxiolytic effects that may effectively ameliorate the hyperarousal symptoms related to 

PTSD. 

Amitriptyline also led to significantly lower serum corticosterone levels in rats 

and was particularly effective in blunting the immobilization-induced increase in these 
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levels on the final day of testing. This finding is consistent with several studies in the 

rodent literature reporting that chronic amitriptyline administration results in significantly 

reduced basal and stress-induced levels of ACTH and corticosterone in rats (Barden, 

1999; Reul et al., 1993). Amitriptyline appears to accomplish these effects by enhancing 

the negative feedback inhibition of the HPA axis. Investigators have shown that chronic 

amitriptyline administration leads to an up-regulation of glucocorticoid receptor 

expression and enhanced glucocorticoid receptor binding in several brain regions 

(Barden, 1999; Pariante & Miller, 2001; Przegalinski & Budziszewska, 1993; Reul et al., 

1993). Interestingly, in the present study, there was an additive effect of amitriptyline and 

psychosocial stress on the recovery of serum corticosterone levels following 

immobilization. Psychosocially stressed rats that were treated with amitriptyline, 

particularly the 10 mg/kg dose, exhibited significantly lower corticosterone levels at the 

80 minute time point than amitriptyline-treated controls. In theory, chronic amitriptyline 

and psychosocial stress synergistically facilitated the production of enhanced negative 

feedback of the HPA axis, which led to a more rapid recovery of stress-induced serum 

corticosterone levels in these rats. 

Despite the positive effects of amitriptyline on the chronic stress-induced 

physiological and behavioral sequelae in rats, there were adverse side effects of the drug 

that should be considered. For instance, chronic amitriptyline treatment resulted in 

significantly greater stress-induced increases in systolic and diastolic blood pressure than 

vehicle. Most work in both humans and rodents has reported that chronic amitriptyline 

treatment results in increased heart rate, postural hypotension and increased 
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cardiotoxicity (Balcioglu et al., 1991; Fiedler et al., 1986; Hong et al., 1974; Joubert et 

al., 1985; Kopera, 1978; Low & Opfer-Gehrking, 1992; Yokota et al., 1987). The results 

presented here are novel in that they reveal that chronic amitriptyline treatment has 

unfavorable effects on stress-induced changes in cardiovascular activity. 

Amitriptyline also led to a significant reduction in growth rate in rats, particularly 

at the higher dose of the drug. Although counterintuitive, 10 mg/kg of amitriptyline 

significantly reduced growth rates in the control rats, an effect that was reversed by 

exposure to chronic psychosocial stress. Similar findings were observed with regards to 

adrenal gland and thymus weights. The higher dose of amitriptyline led to significantly 

larger adrenal glands and significantly smaller thymuses than vehicle in control animals, 

and exposure to chronic psychosocial stress significantly blunted each of these effects. 

These findings suggest that, in the present experiment, there was an interaction between 

amitriptyline treatment and chronic psychosocial stress, in which the physiological 

consequences of the drug were more prominent in those rats that were unstressed. 

Another finding of interest is that upon dissection of these animals, there were a large 

number of adhesions observed on the internal organs, such as the liver, intestines and 

spleen, and the mortality rate for rats chronically treated with amitriptyline (3 out of 40, 

or 7.5%) was greater than the mortality rates for rats chronically treated with clonidine (0 

out of 40, or 0%) or tianeptine (0 out of 20, or 0%). Thus, despite its ability to prevent the 

effects of psychosocial stress on anxiety-like behavior and startle and the development of 

a powerful traumatic memory, the adverse physiological side effects of amitriptyline 

could be a major limitation to its use in the treatment of people with PTSD. 
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Clonidine 

Neither dose of clonidine prevented the expression of fear-related behaviors in 

psychosocially stressed rats in response to the context and cue that were paired with the 

two cat exposures. Although psychosocially stressed rats chronically treated with 0.01 

mg/kg of clonidine did not display significantly greater immobility during the context test 

than vehicle-treated control rats (p = 0.15), the within-drug contrast (i.e., clonidine-

treated psychosocial stress group vs. clonidine-treated controls) was marginally 

significant (p = 0.06). These findings should be interpreted cautiously, however. Since 

clonidine is an α2-adrenergic receptor agonist and significantly reduces central 

noradrenergic activity, it can have sedative side effects at higher doses (Millan et al., 

2000). In the present study, the higher dose of clonidine did result in a significant 

reduction of locomotor activity in the open field during OR habituation. On the other 

hand, clonidine had no significant effects on motor activity on the EPM, and 

psychosocially stressed rats treated with 0.05 mg/kg of clonidine still produced 

significantly more fecal boli during the context test than the no psychosocial stress group 

treated with 0.05 mg/kg of clonidine. One study also reported that clonidine’s sedative 

effects are not observed until doses greater than 0.1 mg/kg are employed (Millan et al., 

2000). Therefore, the data support the notion that clonidine is ineffective in blunting the 

expression of a traumatic memory in rats. 

Both doses of clonidine, and in particular the 0.05 mg/kg dose, blocked the effects 

of psychosocial stress on anxiety and startle, as well as cardiovascular responses to acute 

immobilization. However, the higher dose of clonidine led to a significantly reduced 
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growth rate in controls, which was exacerbated by chronic psychosocial stress. It also 

resulted in significantly increased adrenal gland weights in control animals. Lastly, 

neither dose of clonidine prevented the chronic psychosocial stress-induced decrease in 

thymus weights. Thus, despite its amelioration of the chronic stress-induced behavioral 

and cardiovascular sequelae, clonidine was ineffective at preventing the remaining 

physiological changes induced by our laboratory’s stress regimen. 

Since people with PTSD have significantly elevated baseline NE levels and 

demonstrate adverse reactions (e.g., panic attacks, flashbacks) to agents that increase 

these levels (e.g., yohimbine), pharmacological agents that reduce noradrenergic activity 

could be effective treatments for people with PTSD (Boehnlein & Kinzie, 2007; Strawn 

& Geracioti, 2008). Some studies have reported that propranolol, a β-adrenergic receptor 

antagonist, may be an effective treatment for PTSD if administered immediately after the 

traumatic event or after the re-experiencing of a traumatic event (Pitman et al., 2002; 

Taylor & Cahill, 2002; Vaiva et al., 2003). Other work has found that prazosin, an α1-

adrenergic receptor antagonist, reduces hyperarousal symptoms, intrusive thoughts, 

recurrent distressing dreams and sleep disturbances in PTSD (Brkanac et al., 2003; 

Peskind et al., 2003; Raskind et al., 2002; Raskind et al., 2003; Taylor & Raskind, 2002; 

Taylor et al., 2006). However, despite the case of clonidine’s use in treating PTSD, no 

randomized, placebo-controlled studies of clonidine’s effects on PTSD have been 

performed. The present findings suggest that clonidine may be particularly effective in 

ameliorating the anxiety, hyperarousal (e.g., exaggerated startle response) and 
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cardiovascular components of PTSD. They also highlight the need for clinical research 

addressing the effectiveness of clonidine as a treatment for the disorder. 

Tianeptine 

In the present experiment, tianeptine was the only pharmacological agent to 

prevent the effects of chronic psychosocial stress on all physiological and behavioral 

measures. Tianeptine completely blocked the expression of fear-related behaviors in 

psychosocially stressed rats in response to the context and cue that were paired with the 

two cat exposures. It also prevented the effects of psychosocial stress on anxiety, startle, 

cardiovascular reactivity to an acute stressor, growth rate, adrenal gland weight and 

thymus weight. These findings suggest that tianeptine could be a premier treatment for 

PTSD. 

The present findings may be related to previous work reporting that chronic, but 

not acute, administration of tianeptine significantly impairs the acquisition and 

expression of conditioned fear in rats (Burghardt et al., 2004). These effects appear to be 

more related to the anxiolytic, rather than memory-impairing, properties of tianeptine, as 

numerous studies have shown that tianeptine treatment enhances, rather than impairs, 

hippocampus-dependent learning and memory (Jaffard et al., 1991; Meneses, 2002; 

Munoz et al., 2005). Interestingly, the same investigators reporting tianeptine’s effects on 

fear conditioning found that acute administration of the SSRI citalopram enhanced the 

acquisition of auditory fear conditioning, while chronic treatment with the drug impaired 

the acquisition and expression of conditioned fear. Thus, tianeptine appears to 
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demonstrate long-term anxiolytic effects that are similar to SSRIs, without having the 

acute anxiogenic effects typically found with these agents. 

In the present study, tianeptine significantly attenuated the immobilization-

induced increase in serum corticosterone levels. This finding is consistent with previous 

work indicating that tianeptine reduces stress-induced activation of the HPA axis 

(Delbende et al., 1991). Additionally, tianeptine, relative to vehicle, resulted in 

significantly lower systolic BP in control animals following 20 minutes of 

immobilization. Few studies have examined the effects of tianeptine on cardiovascular 

activity, but those that have investigated the phenomenon have typically reported no 

effects of the drug on HR or BP (Juvent et al., 1990; Lasnier et al., 1991). On the other 

hand, one study did report that tianeptine resulted in significantly reduced diastolic BP 

(Lechin et al., 2006). The effects of tianeptine on cardiovascular activity in the present 

study are not likely due to acute effects of the drug. Our laboratory has preliminary data 

indicating that tianeptine does not prevent an acute stress-induced increase in BP 

(unpublished findings). In this particular study, rats were treated with 10 mg/kg of 

tianeptine or vehicle 30 minutes prior to a 15-minute exposure to predator stress. Animals 

that were exposed to the cat for 15 minutes exhibited significant elevations of systolic 

and diastolic BP, regardless of whether or not they had received tianeptine. In other 

words, tianeptine was ineffective in preventing the acute stress-induced increase in blood 

pressure. Thus, the ability of tianeptine to prevent the effects of chronic psychosocial 

stress on cardiovascular reactivity to an acute stressor is most likely attributable to its 

effects on general anxiety. Although speculative, tianeptine theoretically enabled the 
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psychosocially stressed rats to cope better with the daily mild stress of social instability 

and also with future acute stressors, such as the 20-minute exposure to immobilization on 

the final day of testing. 

Chronic treatment with tianeptine also prevented the effects of chronic 

psychosocial stress on all of the other physiological endpoints, including growth rate, 

adrenal gland weight and thymus weight. Previous work in rodents has reported that 

tianeptine had no effect on the chronic stress-induced adrenal gland hypertrophy or 

reduction in growth rate (Magarinos et al., 1999; Watanabe et al., 1992b). However, these 

studies utilized a different stressor (restraint stress, 6 hours per day for 21 days) than that 

which was employed here, which could account for the apparent discrepancies. The 

finding that tianeptine prevented any chronic stress-induced atrophy of the thymus is 

consistent with work demonstrating that tianeptine significantly interacts with the 

immune system. For instance, several studies have shown that tianeptine prevents the 

adverse effects of cytokines on brain biochemistry and peripheral measures of 

inflammation in the rat (Castanon et al., 2001; Plaisant et al., 2003b; Plaisant et al., 

2003a). Thus, an interesting avenue of future research would involve exploring the 

contribution of tianeptine-immune system interactions to its anti-stress effects on rat 

physiology and behavior. 

Early studies on tianeptine’s mechanism of action showed that the drug led to 

significantly lower extracellular levels of serotonin, a finding that was hypothesized to 

result from enhanced serotonin reuptake (Fattaccini et al., 1990; Labrid et al., 1992; 

Mennini et al., 1987; Mocaer et al., 1988). However, tianeptine’s effects on the 
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serotonergic system may be an indirect consequence of the drug’s influences on an 

alternative neurotransmitter system because later studies failed to show any direct effects 

of tianeptine on serotonergic neurotransmission (Pineyro et al., 1995a; Pineyro et al., 

1995b). Additionally, research has shown that tianeptine does not alter the density or 

affinity of any serotonin receptor subtype, and tianeptine’s affinity for the serotonin 

transporter is very low (Kato & Weitsch, 1988; Svenningsson et al., 2007). Some have 

also contested the validity of the original studies on tianeptine’s mechanism of action 

based on technical limitations that were present at the time (Malagie et al., 2000). 

Recent work has suggested that its therapeutic effects may be more associated 

with modulation of the glutamatergic system (Brink et al., 2006; Kasper & McEwen, 

2008; Zoladz et al., in press). Extensive work has implicated hyperactivity of the 

glutamatergic system in the deleterious effects of stress on brain structure and function 

(Bagley & Moghaddam, 1997; Bartanusz et al., 1995; Joels et al., 2003; Kim et al., 1996; 

Krugers et al., 1993; Lowy et al., 1993; Lowy et al., 1995; Magarinos & McEwen, 1995; 

McEwen et al., 2002; Moghaddam, 1993; Park et al., 2004; Reznikov et al., 2007; Yang 

et al., 2005), and tianeptine appears to protect brain regions that are highly susceptible to 

stress, such as the hippocampus and prefrontal cortex, from the deleterious effects of 

stress by normalizing the stress-induced modulation of glutamatergic activity. For 

instance, tianeptine has been shown to prevent stress-induced increases in NMDA 

channel currents, as well as the ratio of NMDA:non-NMDA receptor currents, in the CA3 

region of the hippocampus (Kole et al., 2002). It also inhibits the acute stress-induced 

increase in extracellular levels of glutamate in the basolateral amygdala (Reznikov et al., 



 

 111

2007). In addition to its glutamatergic modulation, tianeptine reduces the expression of 

CRH mRNA in the amygdala and the bed nucleus of the stria terminalis, a brain region 

that is highly innervated by amygdala fibers (Kim et al., 2006). CRH neurotransmission 

in both of these regions has been implicated in the expression of anxiety-like behaviors 

(Holsboer, 1999; Strohle & Holsboer, 2003). Thus, tianeptine’s effects on glutamatergic 

and CRH activity in these various brain regions may play an important role in its ability 

to reverse the effects of chronic stress on the expression of anxiety-like behaviors. 

Uzbay and colleagues found that tianeptine reduced the intensity (Ceyhan et al., 

2005) and delayed the onset (Uzbay et al., 2007) of pentylenetetrazole-induced seizures 

in rodents. The latter effect was blocked by the administration of caffeine, a nonspecific 

adenosine receptor antagonist, and 8-cyclopentyl-1,3-dipropylxanthine, an A1 receptor-

specific antagonist. However, administration of the A2 receptor-specific antagonist, 8-(3-

chlorostyryl) caffeine, had no effect on the tianeptine-induced delay of seizure onset, 

suggesting that tianeptine’s anticonvulsant properties are dependent upon activation of A1 

adenosine receptors. Since previous work has shown that activation of A1 adenosine 

receptors has anxiolytic effects (Florio et al., 1998; Jain et al., 1995; Prediger et al., 2004; 

Prediger et al., 2006), this specific category of adenosinergic receptors could be 

responsible, at least in part, for tianeptine’s anxiolytic effects in rodents (Burghardt et al., 

2004; File et al., 1993; File & Mabbutt, 1991; Pillai et al., 2004) and in the depressed 

population (Defrance et al., 1988; Wilde & Benfield, 1995). 

In sum, tianeptine was the only pharmacological agent to prevent the effects of 

chronic psychosocial stress on all physiological and behavioral measures. Extensive 
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preclinical research has shown that exposure to stress results in a significant increase in 

glutamate activity, and tianeptine’s antidepressant properties have been attributed to its 

ability to normalize this hyperactivity of the glutamatergic system. It is therefore likely 

that at least some of the behavioral changes observed in our animal model of PTSD are a 

result of stress-induced alterations in glutamate function. Furthermore, it is possible that 

abnormalities in glutamatergic function also underlie the pathology of PTSD (Chambers 

et al., 1999; Nair & Singh, 2008; Reul & Nutt, 2008), in which case tianeptine would 

certainly be an optimal choice to treat individuals with the disorder. 

Limitations and Future Research 

 The design of this experiment does not distinguish between the acute and chronic 

effects of amitriptyline, clonidine and tianeptine on rat physiology and behavior. Rats 

were administered these pharmacological agents not only on Days 2-31 of the chronic 

psychosocial stress paradigm, but throughout behavioral testing as well. The drug 

administration continued during behavioral testing to prevent withdrawal effects from 

influencing rat behavior. Importantly, our laboratory does have preliminary data 

indicating that chronic tianeptine treatment prevents the effects of the current stress 

regimen on all physiological and behavioral measures even if it is administered only 

during Days 2-31 and discontinued at the commencement of behavioral testing. 

Nevertheless, future work should examine the effects of the present compounds on the 

stress-induced changes in rat physiology and behavior when they are administered during 

the chronic stress period only and during behavioral testing only. 
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Summary and Application to Pharmacotherapy for Post-Traumatic Stress Disorder 

A subset of people with PTSD show significant improvement in their symptoms 

following treatment with SSRIs (Asnis et al., 2004; Davidson, 2003; Davis et al., 2006; 

Hidalgo & Davidson, 2000; Ipser et al., 2006; Stein et al., 2006). However, SSRIs tend to 

blunt only the depressive components of PTSD, while having little effect on the memory- 

and anxiety-related symptoms of the disorder (Asnis et al., 2004; Boehnlein & Kinzie, 

2007; Brady et al., 2000; Van der Kolk et al., 1994). In addition, some forms of PTSD, 

such as combat-related PTSD, are incredibly resistant to SSRI treatment (Jakovljevic et 

al., 2003; Rothbaum et al., 2008; Stein et al., 2002). These agents also have anxiogenic 

effects early in the treatment phase and only exert their antidepressant effects after a 

substantial delay (Browning et al., 2007; Burghardt et al., 2004; Humble & Wistedt, 

1992). Thus, there is an urgent need to develop alternative pharmacotherapeutic 

interventions for the treatment of PTSD. 

The present experiment examined the ability of amitriptyline, clonidine and 

tianeptine to prevent the development of PTSD-like sequelae in rats exposed to chronic 

psychosocial stress. The tricyclic antidepressant amitriptyline was effective in reducing 

the memories for the context and cue that were associated with the acute cat exposures, 

and it ameliorated the stress-induced increase in anxiety and startle. However, this agent 

had adverse side effects, as it significantly increased cardiovascular reactivity in control 

animals and led to adverse physiological reactions, including reduced growth rate, 

increase adrenal gland weight and internal adhesions. Thus, despite its positive effects, 
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the adverse physiological side effects of amitriptyline could be a major limitation to its 

use in the treatment of people with PTSD. 

Clonidine also blocked the effects of chronic psychosocial stress on anxiety and 

startle, but in contrast to amitriptyline, prevented the stress-induced changes in 

cardiovascular reactivity to an acute stressor as well. However, it did not prevent the 

expression of fear-related behaviors in psychosocially stressed rats upon exposed to the 

context and cue that were paired with the acute cat exposures. Clonidine also had some 

adverse side effects of its own, including a significant reduction in growth rate and a 

significant increase in adrenal gland weight. Thus, clonidine may be particularly effective 

in ameliorating the anxiety, hyperarousal (e.g., exaggerated startle response) and 

cardiovascular components of PTSD, but have little effect on the strength of a traumatic 

memory. 

Lastly, tianeptine was the only pharmacological agent to prevent the effects of 

chronic psychosocial stress on all physiological and behavioral endpoints. It completely 

blocked the expression of fear-related behaviors in psychosocially stressed rats in 

response to the context and cue that were paired with the two cat exposures and 

prevented the effects of psychosocial stress on anxiety, startle, cardiovascular reactivity 

to an acute stressor, growth rate, adrenal gland weight and thymus weight. Collectively, 

these findings illustrate the differential effectiveness of these three treatments in blocking 

the PTSD-like sequelae in rats, and the profile of tianeptine as the most effective agent 

provides guidance for pharmacotherapeutic approaches in the treatment of individuals 

suffering from PTSD. 
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Chapter Five: Experiment Four 

Temporal Dynamics of the Physiological and Behavioral Sequelae Induced by Chronic 

Psychosocial Stress 

 People with chronic PTSD display physiological and behavioral symptoms of the 

disorder years after the original trauma took place. These symptoms develop acutely after 

experiencing the trauma and progressively worsen to eventually produce full-blown 

PTSD. A valid animal model of PTSD should be able to demonstrate PTSD-like effects 

on physiology and behavior long after the initial stress exposure. Therefore, the purpose 

of Experiment Four was to examine whether or not the stress regimen employed in the 

previous experiments would produce physiological and behavioral changes in rats that 

would be present for a longer period of time. It was also designed to explore the 

contribution of an additional, third, acute stress session and irregular, rather than just 

daily, social instability to the maintenance of the PTSD-like effects for this extended 

period of time. 

Methods 

Rats 

The same weight range and strain of rats, as well as the housing conditions, that 

were employed in Experiments One, Two and Three were used in the present experiment. 

Upon arrival, all rats were given 1 week to acclimate to the housing room environment 

and cage changing procedures before any experimental manipulations took place. All 
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procedures were approved by the Institutional Animal Care and Use Committee at the 

University of South Florida. 

Psychosocial Stress Procedure 

Following the 1-week acclimation phase, rats were brought to the laboratory and 

then randomly assigned to one of four groups (see Figure 28; N = 10 rats per group). In 

contrast to Experiments One through Three, each of the four groups was exposed to three, 

as opposed to two, acute stress sessions. During each stress session, as in Experiment 

Three, the rats were exposed to a chamber for 3 minutes (with a 30-second tone presented 

at the end of the 3-minute period). Then, the rats were either immobilized and exposed to 

a cat or placed back in their home cages for 1 hour. As before, the first stress session 

occurred during the light cycle, between 0800 and 1300 hours, while the second stress 

session occurred 10 days later during the dark cycle, between 1900 and 2100 hours. The 

third and final stress session took place 3 weeks following the second stress session 

during the light cycle, between 0800 and 1300 hours. 

Of the four groups in the present experiment, three were exposed to chronic 

psychosocial stress and one was a control, no psychosocial stress, group. Each of the 

three psychosocial stress groups was exposed to the same manipulations until the third 

stress session. That is, these groups were exposed to the chamber followed by 

immobilization plus cat exposure during the first and second stress sessions, as well as 

daily randomized housing throughout the 31-day period leading up to the third stress 

session. During the third stress session (Day 32), rats in “psychosocial stress group 1” 

were exposed to the chamber for 3 minutes followed by a 1-hour exposure to their home 
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cages. Rats in “psychosocial stress group 2” and “psychosocial stress group 3” were 

exposed to the chamber for 3 minutes followed by 1 hour of immobilization during cat 

exposure. These procedures are illustrated in Figure 28. 

 

Figure 28. Experimental groups in Experiment 4. 

Following the third stress session, each of the three psychosocial stress groups 

was exposed to randomized housing. As in the previous experiments, psychosocial 

groups 1 and 2 were exposed to daily randomized housing for the 12 weeks following the 

third stress session. In contrast, psychosocial stress group 3 was exposed to irregular 

randomized housing for the next 12 weeks. In other words, the cage mates in this group 
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were randomized every 1-4 days. The strategy behind this manipulation was to add an 

additional element of unpredictability to the stress experience. The typical daily 

randomized housing procedure, although effective for the 31-day paradigm, is somewhat 

predictable in that it occurs at approximately the same time every day, and if continued 

for an extended period of time, could eventually become ineffective. 

Behavioral Testing 

Twelve weeks after the third stress session (i.e., Day 116), rats were given tests to 

measure their fear memory, anxiety, startle, learning and memory, cardiovascular activity 

and corticosterone activity. On the first 4 days of behavioral testing (Days 116-119), all 

rats were brought to the laboratory and left undisturbed for 30 minutes before testing 

began. All behavioral testing took place during the light cycle, between 0800 and 1500 

hours. 

Behavioral Apparatus 

 All rats in the present experiment were exposed to the same physiological and 

behavioral testing procedures that were employed in Experiment Three. Thus, these 

procedures will only be briefly addressed here. 

Contextual and Cue Fear Memory. On Day 116, rat behavior in response to the 

chamber (context test) and tone (cue test) that were previously paired with the acute 

stress sessions was examined. Testing adhered to the procedures employed in Experiment 

Three. 
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Elevated Plus Maze. On Day 117, the rats were placed on the EPM for 5 minutes, 

and their behavior was scored according to the procedures employed in Experiment 

Three. 

Startle Response. One hour after the EPM assessment, acoustic startle testing was 

administered according to the procedures employed in Experiment Three. 

Novel Object Recognition. On Day 118, the rats were placed in an open field for 5 

minutes to acclimate to the environment. Their behavior was monitored and scored 

according to the procedures employed in Experiment Three. Twenty-four hours later 

(Day 119), the rats were given novel object recognition training and testing according to 

the procedures employed in Experiment Three. 

Preparation for Blood Sampling. Immediately following the 3-hour object 

recognition test, the hind legs of all rats were shaved to allow access to their saphenous 

veins, as per Experiments One through Three. 

Blood Sampling and Cardiovascular Activity. On the final day of behavioral 

testing (Day 120), three blood samples, as well as measures of heart rate and blood 

pressure, were collected, according to the procedures utilized in Experiment Three. 

Following rapid decapitation, the adrenal and thymus glands were removed and weighed. 

Once all of the blood had clotted at room temperature, it was centrifuged (3000 rpm for 8 

min), and the serum was extracted and stored at -80º C until assayed by Monika Fleshner 

at the University of Colorado at Boulder.  
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Statistical Analyses 

 Experimental Design and General Analyses. The present study utilized a single 

factor, between-subjects design. The independent variable was psychosocial stress 

(psychosocial stress group 1, psychosocial stress group 2, psychosocial stress group 3, no 

psychosocial stress). In most cases, one-way, between-subjects ANOVAs were used to 

analyze the data from the physiological and behavioral assessments, with psychosocial 

stress serving as the between-subjects factors. Planned comparisons (independent 

samples t-tests) were also conducted between each of the psychosocial stress groups and 

the no psychosocial stress group. For all analyses, alpha was set at 0.05, and Holm-Sidak 

post hoc tests were employed when necessary. 

Fear Memory. The amount of immobility during each chamber exposure (Stress 

Session 1, Stress Session 2, Stress Session 3, Context Test, Cue Test – No Tone, Cue 

Test – Tone) was analyzed separately. For each test, one-way, between-subjects 

ANOVAs were used to analyze behavior. Psychosocial stress served as the between-

subjects factor in each case. 

Elevated Plus Maze. The amount of time that rats spent in the open arms of the 

EPM was calculated as a percent of the total trial time. The percent time that rats spent in 

the open arms, as well as the number of ambulations that rats made on the EPM were 

analyzed with one-way, between-subjects ANOVAs. Each of these analyses was 

performed for the entire 5-minute testing trial and for the first minute of the testing trial, 

with psychosocial stress serving as the between-subjects factor in each case. 
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Startle Response. Startle responses to each of the 3 auditory stimulus intensities 

(90, 100 and 110 dB) were analyzed separately. In each case, one-way, between-subjects 

ANOVAs were employed to analyze the data, with psychosocial stress serving as the 

between-subjects factor. 

Novel Object Recognition. For habituation, a one-way, between-subjects ANOVA 

was used to compare overall locomotor activity across all groups, with psychosocial 

stress serving as the between-subjects factor. The amount of time that rats spent in each 

area of the open field during the habituation phase was also analyzed to assure that the 

rats did not display a preference for one area of the open field over another. For the 

analysis, the open field was divided into four square quadrants via the ANY-Maze 

computer program. The amount of time that rats spent in each of the quadrants was 

analyzed with a mixed-model ANOVA, with psychosocial stress serving as the between-

subjects factor and time spent in each quadrant serving as the within-subjects factor. For 

training, paired samples t-tests were first conducted to determine whether the rats within 

each group spent a comparable amount of time with each object replica (to rule out object 

preference effects). Then, the total time that rats spent with both object replicas during 

training was compared across groups by using one-way, between-subjects ANOVAs, 

with psychosocial stress serving as the between-subjects factor. For testing, a “ratio time” 

score was calculated for each group by taking the time that rats spent with the novel 

object and dividing it by the time that rats spent with the familiar object (i.e., ratio time = 

time with novel object / time with familiar object). The ratio times were compared across 

groups by utilizing one-way, between-subjects ANOVAs, with psychosocial stress again 
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serving as the between-subjects factor. This was performed for the entire 5-minute testing 

trial and for the first minute of the testing trial. 

Corticosterone Levels. A mixed-model ANOVA was used to analyze 

corticosterone levels at the three time points. Psychosocial stress served as the between-

subjects factor, and time point (baseline, stress, return-to-baseline) served as the within-

subjects factor. 

Heart Rate and Blood Pressure. The HR, systolic BP and diastolic BP data were 

analyzed with one-way, between-subjects ANOVAs, with psychosocial stress serving as 

the between-subjects factor. 

Growth Rates, Adrenal Gland Weights and Thymus Weights. Growth rates, 

expressed as grams per day (g/day), were calculated for all rats by dividing their total 

body weight gained during the course of the experiment by the total number of days in 

the experiment (i.e., 115 days). The adrenal glands and thymuses were weighed and 

expressed as milligrams per 100 grams of body weight (mg/100 g b.w.). The growth rate, 

adrenal gland weights and thymus weights were analyzed with one-way, between-

subjects ANOVAs, with psychosocial stress serving as the between-subjects factor. 

Results 

Fear Memory 

 Stress Session One (see Figure 29). The analysis of immobility during the 3-

minute chamber exposure during stress session one revealed a significant main effect of 

psychosocial stress, F(3,35) = 3.07, p < 0.05. However, post hoc analyses did not indicate 

any significant differences between the groups. 
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Amount of Immobility upon Chamber Exposure
During Stress Session 1
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Figure 29. Amount of immobility upon chamber exposure during stress session one. The 

data are presented as mean percent immobility ± SEM. 

 Stress Session Two (see Figure 30). The analysis of immobility during the 3-

minute chamber exposure during stress session two revealed no significant main effect of 

psychosocial stress, F(3,35) = 1.79, p > 0.05. 
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Figure 30. Amount of immobility upon chamber exposure during stress session two. The 

data are presented as mean percent immobility ± SEM. 
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 Stress Session Three (see Figure 31). The analysis of immobility during the 3-

minute chamber exposure during stress session three revealed no significant main effect 

of psychosocial stress, F(3,33) = 2.63, p = 0.067. However, planned comparisons 

indicated that psychosocial stress group 1, t(16) = 2.31, and psychosocial stress group 2, 

t(16) = 2.85, spent significantly more time immobile than the no psychosocial stress 

group (p’s < 0.05). 
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Figure 31. Amount of immobility upon chamber exposure during stress session three. 

The data are presented as mean percent immobility ± SEM. * = p < 0.05 relative to the no 

psychosocial stress group. 

 Context Test Immobility (see Figure 32). The analysis of immobility during the 5-

minute context test revealed a significant main effect of psychosocial stress, F(3,34) = 

14.79, p < 0.001. Post hoc tests indicated that psychosocial stress group 1 spent 

significantly more time immobile than the no psychosocial stress group, and psychosocial 

stress group 2 spent significantly more time immobile than all other groups. 
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Effects of Differential Chronic Psychosocial Stress
Paradigms on Immobility during the Context Test
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Figure 32. Effects of differential chronic psychosocial stress paradigms on immobility 

during the 5-minute context test. The data are presented as mean percent immobility ± 

SEM. * = p < 0.05 relative to the no psychosocial stress group; # = p < 0.05 relative to all 

other groups. 

 Context Test Fecal Boli (see Figure 33). The analysis of fecal boli produced 

during the 5-minute context test revealed a significant main effect of psychosocial stress, 

F(3,35) = 7.51, p < 0.001. Post hoc tests indicated that psychosocial stress group 2 

produced significantly more fecal boli than the no psychosocial stress group, and 

psychosocial stress group 1 produced significantly more fecal boli than all other groups. 
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Effects of Differential Chronic Psychosocial Stress
Paradigms on Fecal Boli Produced during the Context Test
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Figure 33. Effects of differential chronic psychosocial stress paradigms on fecal boli 

produced during the 5-minute context test. The data are presented as mean number of 

fecal boli ± SEM. * = p < 0.05 relative to the no psychosocial stress group; # = p < 0.05 

relative to all other groups. 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Immobility in a Novel Environment
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Figure 34. Effects of differential chronic psychosocial stress paradigms on immobility 

during the first 3 minutes of the cue test. The data are presented as mean percent 

immobility ± SEM. 
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 Cue Test Immobility – No Tone (i.e., Novel Environment) (see Figure 34). The 

analysis of immobility during the first 3 minutes of the cue test revealed no significant 

main effect of psychosocial stress, F(3,34) = 2.09, p > 0.05. 

Cue Test Immobility – Tone (see Figure 35). The analysis of immobility during 

the last 3 minutes of the cue test revealed no significant main effect of psychosocial 

stress, F(3,33) = 2.73, p = 0.059. However, planned comparisons indicated that 

psychosocial stress group 1, t(16) = 2.23, and psychosocial stress group 2, t(16) = 3.30, 

spent significantly more time immobile than the no psychosocial stress group (p’s < 

0.05). 
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Figure 35. Effects of differential chronic psychosocial stress paradigms on immobility 

during the tone. The data are presented as mean percent immobility ± SEM. * = p < 0.05 

relative to the no psychosocial stress group. 

Cue Test Fecal Boli (see Figure 36). The analysis of fecal boli produced during 

the 6-minute cue test revealed no significant main effect of psychosocial stress, F(3,35) = 

1.73, p > 0.05.  
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Effects of Differential Chronic Psychosocial Stress
Paradigms on Fecal Boli Produced during the Cue Test
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Figure 36. Effects of differential chronic psychosocial stress paradigms on fecal boli 

produced during the 6-minute cue test. The data are presented as mean number of fecal 

boli ± SEM. 

Elevated Plus Maze 

Percent Time in Open Arms, 5-Minute Trial (see Figure 37). The analysis of 

percent time spent in the open arms during the 5-minute trial on the EPM revealed no 

significant main effect of psychosocial stress, F(3,33) = 0.43, p > 0.05.  

Percent Time in Open Arms, First Minute (see Figure 38). The analysis of percent 

time spent in the open arms during the first minute of the 5-minute trial on the EPM 

revealed a significant main effect of psychosocial stress, F(3,31) = 5.28, p < 0.01. Post 

hoc tests indicated that each of the psychosocial stress groups spent significantly less 

time in the open arms than the no psychosocial stress group. 
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Effects of Differential Chronic Psychosocial Stress
Paradigms on Anxiety on the EPM (5-Minute Trial)
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Figure 37. Effects of differential chronic psychosocial stress paradigms on percent time 

spent in the open arms during the 5-minute trial on the elevated plus maze. The data are 

presented as mean percent time spent in the open arms ± SEM. 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Anxiety on the EPM (First Minute)
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Figure 38. Effects of differential chronic psychosocial stress paradigms on percent time 

spent in the open arms during the first minute of the 5-minute trial on the elevated plus 

maze. The data are presented as mean percent time spent in the open arms ± SEM. * = p 

< 0.05 relative to the no psychosocial stress group. 
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 Ambulations, 5-Minute Trial (see Figure 39). The analysis of ambulations made 

during the 5-minute trial on the EPM revealed no significant main effect of psychosocial 

stress, F(3,35) = 0.73, p > 0.05. 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Motor Activity on the EPM (5-Minute Trial)
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Figure 39. Effects of differential chronic psychosocial stress paradigms on ambulations 

made during the 5-minute trial on the elevated plus maze. The data are presented as mean 

percent time spent in the open arms ± SEM. 

Ambulations, First Minute (see Figure 40). The analysis of ambulations made 

during the first minute of the 5-minute trial on the EPM revealed no significant main 

effect of psychosocial stress, F(3,35) = 1.77, p > 0.05. 
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Effects of Differential Chronic Psychosocial Stress
Paradigms on Motor Activity on the EPM (First Minute)
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Figure 40. Effects of differential chronic psychosocial stress paradigms on ambulations 

made during the first minute of the 5-minute trial on the elevated plus maze. The data are 

presented as mean percent time spent in the open arms ± SEM. 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Startle Response to 90 dB Auditory Stimuli
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Figure 41. Effects of differential chronic psychosocial stress paradigms on startle 

responses to the 90 dB auditory stimuli. The data are presented as mean startle response 

(Newtons) ± SEM. 
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Startle Response 

 90 dB Auditory Stimuli (see Figure 41). The analysis of startle responses to the 90 

dB auditory stimuli revealed no significant main effect of psychosocial stress, F(3,35) = 

1.57, p > 0.05. 

100 dB Auditory Stimuli (see Figure 42). The analysis of startle responses to the 

100 dB auditory stimuli revealed no significant main effect of psychosocial stress, 

F(3,34) = 2.30, p > 0.05. 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Startle Response to 100 dB Auditory Stimuli
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Figure 42. Effects of differential chronic psychosocial stress paradigms on startle 

responses to the 100 dB auditory stimuli. The data are presented as mean startle response 

(Newtons) ± SEM. 
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Effects of Differential Chronic Psychosocial Stress
Paradigms on Startle Response to 110 dB Auditory Stimuli
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Figure 43. Effects of differential chronic psychosocial stress paradigms on startle 

responses to the 110 dB auditory stimuli. The data are presented as mean startle response 

(Newtons) ± SEM. 

110 dB Auditory Stimuli (see Figure 43). The analysis of startle responses to the 

110 dB auditory stimuli revealed no significant main effect of psychosocial stress, 

F(3,34) = 1.62, p > 0.05. 

Novel Object Recognition 

 Habituation. The analysis of locomotor activity in the open field during the 5-

minute habituation phase revealed no significant main effect of psychosocial stress, 

F(3,35) = 0.68, p > 0.05 (data not shown). The analysis of time that the rats spent in each 

area of the open field revealed no significant main effects of quadrant, F(3,105) = 1.05, 

or psychosocial stress, F(3,35) = 0.91, and the Quadrant x Psychosocial Stress interaction 

was not significant, F(9,105) = 0.40 (p’s > 0.05; data not shown). These findings 
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indicated that the rats did not display a preference for one area of the open field over 

another. 

Training. Within-group comparisons showed that the no psychosocial stress 

group, t(9) = 0.81, psychosocial stress group 1, t(9) = 0.72, psychosocial stress group 2, 

t(9) = 1.30, and psychosocial stress group 3, t(8) = 0.91, spent a comparable amount of 

time with each of the objects that were placed in the open field during object recognition 

training (p’s > 0.05; data not shown), indicating that no object preference effects were 

present. Moreover, a between-groups comparison of the total amount of time spent with 

both objects during training revealed no significant main effect of psychosocial stress, 

F(3,35) = 1.44, p > 0.05, indicating that all groups spent a comparable amount of time 

with both objects during training (data not shown). 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Object Recognition Memory (5-Minute Trial)
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Figure 44. Effects of differential chronic psychosocial stress paradigms on object 

recognition memory during the entire 5-minute testing trial. The data are presented as 

mean ratio time ± SEM. * = p < 0.05 relative to the no psychosocial stress group. 
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Effects of Differential Chronic Psychosocial Stress
Paradigms on Object Recognition Memory (First Minute)
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Figure 45. Effects of differential chronic psychosocial stress paradigms on object 

recognition memory during the first minute of the testing trial. The data are presented as 

mean ratio time ± SEM. * = p < 0.05 relative to the no psychosocial stress group. 

 Testing. The analysis comparing the ratio times of all groups during the 5-minute 

object recognition testing session revealed no significant main effect of psychosocial 

stress, F(3,29) = 1.23, p > 0.05 (see Figure 44). The analysis comparing the ratio times of 

all groups during the first minute of the testing trial revealed a significant main effect of 

psychosocial stress, F(3,20) = 6.29, p < 0.01 (see Figure 45). Post hoc contrasts indicated 

that each of the 3 psychosocial stress groups exhibited significantly lower ratio times than 

the no psychosocial stress group (p’s < 0.05). 
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Effects of Differential Chronic Psychosocial Stress Paradigms
on Serum Corticosterone Levels
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Figure 46. Effects of differential chronic psychosocial stress paradigms on serum 

corticosterone levels. The data are presented as mean corticosterone levels (μg/dL) ± 

SEM. 

Corticosterone Levels (see Figure 46) 

 The analysis of corticosterone levels revealed a significant main effect of time 

point, F(2,62) = 138.41, p < 0.001. Post hoc tests indicated that all groups displayed 

significantly elevated serum corticosterone levels, relative to baseline, following 20 

minutes of acute immobilization stress and that these levels remained elevated an hour 

later (p’s < 0.05). There was no significant main effect of psychosocial stress, F(3,31) = 

1.11, and the Time Point x Psychosocial Stress interaction was not significant, F(6,62) = 

0.93 (p’s > 0.05). 

Cardiovascular Activity 

 Heart Rate (see Figure 47). The analysis of heart rate revealed no significant 

main effect of psychosocial stress, F(3,22) = 0.17,  p > 0.05. 
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Effects of Differential Chronic Psychosocial Stress
Paradigms on Heart Rate
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Figure 47. Effects of differential chronic psychosocial stress paradigms on heart rate. The 

data are presented as mean heart rate (bpm) ± SEM. 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Systolic Blood Pressure
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Figure 48. Effects of differential chronic psychosocial stress paradigms on systolic blood 

pressure. The data are presented as mean systolic blood pressure (mm Hg) ± SEM. * = p 

< 0.05 relative to the no stress group. 
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Systolic Blood Pressure (see Figure 48). The analysis of systolic blood pressure 

revealed a significant main effect of psychosocial stress, F(3,22) = 3.46, p < 0.05. Post 

hoc tests indicated that psychosocial stress group 3 exhibited significantly greater systolic 

blood pressure than the no psychosocial stress group. 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Diastolic Blood Pressure
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Figure 49. Effects of differential chronic psychosocial stress paradigms on diastolic 

blood pressure. The data are presented as mean diastolic blood pressure (mm Hg) ± SEM. 

* = p < 0.05 relative to the no psychosocial stress group. 

Diastolic Blood Pressure (see Figure 49). The analysis of diastolic blood pressure 

revealed a significant main effect of psychosocial stress, F(3,22) = 3.13, p < 0.05. Post 

hoc tests indicated that psychosocial stress group 3 exhibited significantly greater 

diastolic blood pressure than the no psychosocial stress group. 

Growth Rates (see Figure 50) 

 The analysis of growth rate revealed no significant main effect of psychosocial 

stress, F(3,34) = 0.54, p > 0.05. 
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Effects of Differential Chronic Psychosocial Stress
Paradigms on Growth Rate
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Figure 50. Effects of differential chronic psychosocial stress paradigms on growth rate. 

The data are presented as mean growth rate (g/day) ± SEM. 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Adrenal Gland Weight
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Figure 51. Effects of differential chronic psychosocial stress paradigms on adrenal gland 

weight. The data are presented as mean adrenal gland weight (mg/100 g b.w.) ± SEM. 
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Adrenal Gland Weights (see Figure 51) 

 The analysis of adrenal glands weight revealed no significant main effect of 

psychosocial stress, F(3,34) = 0.73, p > 0.05. 

Effects of Differential Chronic Psychosocial Stress
Paradigms on Thymus Weight
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Figure 52. Effects of differential chronic psychosocial stress paradigms on thymus 

weight. The data are presented as mean thymus weight (mg/100 g b.w.) ± SEM. * = p < 

0.05 relative to the no psychosocial stress group; β = p = 0.057 relative to the no 

psychosocial stress group. 

Thymus Weights (see Figure 52) 

 The analysis of thymus weight revealed a significant main effect of psychosocial 

stress, F(3,35) = 3.76, p < 0.05. Post hoc tests indicated that psychosocial stress group 3 

exhibited significantly smaller thymuses than the no psychosocial stress group. 

Moreover, psychosocial stress group 2 tended to display smaller thymuses than the no 

psychosocial stress group, although this difference did not reach statistical significance. 
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Discussion of Findings 

 The most important finding of the present experiment is that at least some of the 

PTSD-like physiological and behavioral effects induced by the chronic psychosocial 

stress paradigm employed in Experiments One through Three could be maintained for at 

least 4 months following the initial stress session. Psychosocial stress group 1, which was 

given two acute cat exposures and daily social instability throughout the entire 

experiment, displayed significantly greater fear responses to the context and cue that 

were paired with the acute cat exposures, heightened anxiety on the EPM and impaired 

object recognition memory, relative to the no psychosocial stress (i.e., control) group. 

However, psychosocial stress group 1 did not exhibit an exaggerated startle response to 

any auditory stimulus intensity or reduced growth rate, larger adrenal glands or smaller 

thymuses than the controls. These findings suggest that some of the effects of our chronic 

stress regimen, and in particular the physiological effects, diminish over time, even with 

the continued presence of daily social instability. 

 Psychosocial stress group 2 exhibited physiological and behavioral effects (i.e., 

significant fear responses to the context and cue tests, heightened anxiety on the EPM, 

impaired object recognition memory) that were very similar to those observed in 

psychosocial stress group 1. Like psychosocial stress group 1, psychosocial stress group 2 

did not exhibit an exaggerated startle response to any auditory stimulus intensity or a 

reduced growth rate, larger adrenal glands or smaller thymuses than the controls. One 

major difference between these two groups, however, was that psychosocial stress group 

2 displayed a significantly greater fear response, at least with regards to immobility, to 
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the context that was paired with the acute cat exposures than all other groups. These 

findings indicate that the additional cat exposure resulted only in a stronger contextual 

fear memory for the acute cat exposures and did not reinforce the physiological and 

behavioral changes that were lacking in psychosocial stress group 1. 

 Similar to psychosocial stress groups 1 and 2, psychosocial stress group 3 

exhibited heightened anxiety on the EPM and impaired object recognition memory. 

Interestingly, however, psychosocial stress group 3 displayed some physiological and 

behavioral effects that were markedly different from those of the other psychosocial 

stress groups. First, psychosocial stress group 3 did not exhibit a significant fear response 

to the context or tone that was paired with the acute cat exposures. Moreover, 

psychosocial stress group 3 was the only psychosocial stress group to display 

significantly greater blood pressure and smaller thymuses than the control group. Since 

the only difference between psychosocial stress groups 2 and 3 was the type of social 

instability to which each was exposed, these findings suggest that the irregular social 

instability resulted in stronger effects on contextual and cue fear memory, as well as the 

physiological responses of rats to an acute stressor, than daily social instability.  

Conclusions and Limitations 

 The results of this final experiment provide insight into the temporal and social 

factors that mediate the length of time that trauma-induced changes in rat physiology and 

behavior last. This is the first study to report physiological and behavioral changes in rats 

subjected to a chronic psychosocial stress paradigm more than 4 months after the stress 

regimen began. The findings of this experiment indicate that some of the PTSD-like 
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behavioral changes (i.e., intact fear memory, heightened anxiety, cognitive impairments) 

produced by our laboratory’s stress paradigm can be maintained up to 115 days post-

stress. One caveat to these findings is that in every psychosocial stress group, the social 

instability manipulation continued until the beginning of behavioral testing. Thus, the 

observed effects may have been caused, at least in part, by the presence of social 

instability until behavioral testing. 

Perhaps the most interesting finding of the present experiment was that irregular 

social instability led to an impairment of the memories for the context and cue that were 

previously paired with the acute cat exposures and exacerbated the stress-induced 

physiological changes in rats. Psychosocial stress group 3 was the only stress group to 

display significantly greater cardiovascular reactivity to an acute stressor and a 

significantly smaller thymus than the no psychosocial stress group. Most studies, and 

even those from our own laboratory, that have employed unstable housing conditions in a 

stress paradigm have used daily social instability to demonstrate its adverse effects on rat 

physiology and behavior (Baran et al., 2005; Baranyi et al., 2005; Gerges et al., 2004; 

Haller et al., 2004; Lemaire et al., 1997; Park et al., 2001). The strategy behind using the 

irregular social stress in the present experiment was to make the unstable housing more 

unpredictable. The typical daily randomized housing procedure, although effective for the 

31-day paradigm, is somewhat predictable in that it occurs at approximately the same 

time every day, and if continued for an extended period of time, could eventually become 

ineffective. Therefore, I reasoned that the irregular social stress could exacerbate the 

physiological and behavioral effects of the daily social instability and increase the 
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likelihood that rats would exhibit PTSD-like abnormalities for a longer period of time. 

The present findings demonstrate that the element of predictability in day-to-day stressors 

may play a major role in the development of chronic PTSD. 
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Chapter Six: Concluding Remarks 

PTSD is a debilitating mental illness that is characterized by the repeated reliving 

of a life-threatening traumatic event through intrusive, flashback memories. People with 

PTSD display an array of physiological and behavioral symptoms, including persistent 

anxiety, exaggerated startle, heightened autonomic activity, impaired HPA axis 

functioning, cognitive impairments and impaired extinction of conditioned fear. Despite 

scientific advances over the past couple of decades, the neurobiological mechanisms 

underlying the development and maintenance of PTSD remain unclear. Moreover, there 

are currently no pharmacological agents that effectively treat both the dynamic memory 

(e.g., intrusive memories, re-experiencing symptoms) and stable trait (e.g., anxiety, 

hyperarousal) components of the disorder. Thus, the need for a valid animal model of 

PTSD to use for preclinical research has become an issue of growing importance. 

 Many of the symptoms of PTSD (e.g., heightened anxiety, exaggerated startle 

response, cognitive impairments, etc.) can be experienced by people suffering from other 

mental illnesses such as major depressive disorder, panic disorder or generalized anxiety 

disorder. Thus, an animal model of PTSD should produce physiological and behavioral 

changes that are unique to the disorder as it is observed in humans. Some of the 

symptoms of PTSD that set it apart from other disorders include the presence of a 

powerful and intrusive memory of the traumatic event, abnormally low levels of 

glucocorticoids and enhanced suppression of glucocorticoid levels following the 
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administration of dexamethasone. While other mental illnesses have also been 

characterized by abnormal HPA axis functioning, PTSD is the only disorder to be 

characterized by abnormal reductions in basal cortisol levels and an enhanced 

suppression of cortisol in the dexamethasone suppression test (Marshall et al., 2002; 

Yehuda, 2002; Yehuda, 2005; Yehuda et al., 1993a). For instance, major depressive 

disorder is characterized by chronically elevated glucocorticoid levels and reduced 

glucocorticoid suppression following the administration of dexamethasone (Pariante & 

Lightman, 2008). In contrast to people with PTSD, patients suffering from MDD also 

display an abnormally low number of glucocorticoid receptors. Previous work from our 

laboratory has already demonstrated that the present psychosocial stress regimen 

produces heightened anxiety, an exaggerated startle response, cognitive impairments, 

heightened cardiovascular reactivity and hyperresponsivity to yohimbine (Zoladz et al., 

2008). The present work has extended these findings by demonstrating that it also results 

in a powerful memory for the two isolated stress experiences and produces HPA 

abnormalities that are commonly observed in people with PTSD. In conjunction with our 

previous work, these findings further support that this psychosocial stress regimen 

produces physiological and behavioral changes that specifically model those found in 

PTSD. 

Experiment Three also indicated that this model demonstrates predictive validity. 

That is to say, compounds that were predicted to ameliorate stress-induced changes in rat 

physiology and behavior and have led to improvements in some symptom clusters of 

PTSD were shown to ameliorate some of the physiological and behavioral sequelae 
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induced by our chronic psychosocial stress paradigm. Thus, this paradigm could be used 

in future research to guide the development of new pharmacotherapeutic approaches to 

the treatment of PTSD. The differential effectiveness of the pharmacological agents 

examined in Experiment Three, particularly the profile of tianeptine as the most effective 

agent, suggests that abnormal glutamatergic functioning may be involved in this 

regimen’s stress-induced changes in rat physiology and behavior. 

Finally, the last study provided evidence that some of the effects induced by our 

chronic psychosocial stress paradigm could be maintained for at least 4 months following 

the first stress exposure. As PTSD is often a chronic disorder that affects people for most 

of their lives, such a finding indicates that this paradigm could serve to examine the 

neurobiological correlates of chronic PTSD as well. The reason why the exaggerated 

startle response, along with some of the other effects that we normally detect (e.g., 

reduced growth rate, increase adrenal gland weight, etc.), was not observed in our typical 

psychosocial stress paradigm at 4 months post-stress should be examined further in future 

work. 

Collectively, these studies have provided insight into the mechanisms underlying 

trauma-induced changes in brain and behavior and should advance our understanding of 

the biological basis of PTSD. Yet, much remains to be known regarding the 

neurobiological underpinnings of the present effects. Future studies should examine the 

effects of the present psychosocial stress manipulations on neuroplasticity within brain 

regions that play a major role in PTSD, such as the PFC, amygdala and hippocampus and 
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whether or not these changes correlate with the observed alterations in rat physiology and 

behavior. 
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