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Forecasting Models for Economic and Environmental Applications 

Shou Hsing Shih 

 

ABSTRACT 

 

 The object of the present study is to introduce three analytical time series models 

for the purpose of developing more effective economic and environmental forecasting 

models, among others. Given a stochastic realization, stationary or nonstationary in 

nature, one can utilize exciting methodology to develop an autoregressive, moving 

average or a combination of both for short and long term forecasting. In the present study 

we analytically modify the stochastic realization utilizing (a) a k-th moving average, (b) a 

k-th weighted moving average and (c) a k-th exponential weighted moving average 

processes. Thus, we proceed in developing the appropriate forecasting models with the 

new (modified) time series using the more recent methodologies in the subject matter. 

Once the proposed statistical forecasting models have been developed, we proceed to 

modify the analytical process back into the original stochastic realization. 

The proposed methods have been successfully applied to real stock data from a 

Fortune 500 company. A similar forecasting model was developed and evaluated for the 

daily closing price of S&P Price Index of the New York Stock Exchange. 

The proposed forecasting model was developed along with the statistical model using 

classical and most recent methods. The effectiveness of the two models was compared 



ix 

using various statistical criteria. The proposed models gave better results. 

Atmospheric temperature and carbon dioxide, CO2, are the two variables most 

attributable to GLOBAL WARMING. Using the proposed methods we have developed 

forecasting statistical models for the continental United States, for both the atmospheric 

temperature and carbon dioxide. We have developed forecasting models that performed 

much better than the models using the classical Box-Jenkins type of methodology. 

Finally, we developed an effective statistical model that relates CO2 and temperature; 

that is, knowing the atmospheric temperature we can at the specific location estimate the 

carbon dioxide and vice versa. 

 

 



 

 

 

Chapter 1 

Literature Review and Fundamental Concepts 

 

1.0 Introduction 

Time series analysis is one of the major areas in statistics that can be applied 

to many realistic problems. In the present chapter, we begin with summarizing the 

development of time series modeling and introduce some methodologies that have 

been developed recently. We then introduce some fundamental concepts that are 

essential for dealing with time series models. Most real-world time series are 

nonstationary in nature. Thus, before we deal with those nonstationary phenomena in 

the latter chapter, we shall first define stochastic process and white noise process,   

then survey some of the most popular stationary time series forecasting 

methodologies, finally give a brief outline of the basic structure of each model.  

 

1.1 Literature Review 

During the preparation of the present study, we have surveyed literature in the 

area of time series forecasting. Although the present study is concerned mainly with 

economic and environmental applications, our literature survey was extended to the 

forecasting in general. 
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In 1960, Muth presented a method for forecasting by an exponentially 

weighted moving average. Muth’s study included the simple, seasonal effects and 

seasonal effects with linear trend. Actual sales data is used in the study to examine 

this proposed modeling scheme. 

D. W. Trigg initiated a study of automatically monitoring a forecasting process 

to assure that the forecast remains in control. Trigg utilizes a first order exponential 

model with data that contained jumps. 

A study for short term sales forecasting was carried out by Harrison in 1965. 

The study examines several methods for short term sales predictions; the method of 

Box and Jenkins in 1970 and Brown in 1965. It is argued that multi-parameter 

procedures for short term forecasting of sales do not give significantly better results. 

Harrison recommends the one parameter exponential procedure for sales data for non-

seasonal forecasting. Some methods are recommended for short term sales process 

with seasonal effects. 

A two stage exponential model with exponential smoothing and multiple 

regression was introduced by Crane and Eeatly in 1967. They first applied the 

exponential process forecasts along with other independent variables into developing 

a multiple regression model. This combined forecasting procedure was applied in 

modeling some economic data series related to bank deposits. This method produced 

good forecasting results of the economic series. 

In 1971, Tsokos studied some forecasting models for short term forecasting of 

economic data. He studied the autoregressive, moving average and mixture of 

2 



autoregressive moving average process as short term forecasting models for 

commodity contracts. Several models were developed for soybean, silver and New 

York Time Daily averages of fifty combined stocks for the first 100 business days. 

Their short term forecasts were evaluated using the minimum residual variance 

criteria. 

The investigation of outliers in time series was the aim of Fox in 1972. Two 

types of outliers in the time series were considered. Gross error in the sample of 

observations and a single innovation are extreme, but they were included in the study. 

The second type of outlier does not only effect the present observations but also 

subsequent observations. A likelihood ratio criterion was developed to study the 

problem of the two outliers. 

In 1994, Box and Jenkins introduced the multiplicative ARIMA model on 

airline data. This type of model addresses the issue of seasonal variation that was not 

identifiable by the classical ARIMA model. Thus, once we identify the period of a 

time series, we can use the multiplicative ARIMA model to forecast this series much 

better than the classical method. We shall investigate this model further in Chapter 4 

and 5. 

In 1982, Engle introduced the autoregressive conditional heteroskedasticity 

(ARCH) model that considers the variance of the current term to be a function of the 

variances of the previous time period’s error terms. ARCH relates the error variance to 

the square of a previous period’s error. In 1986, the generalized autoregressive 

conditional heteroskedasticity (GARCH) model was first proposed by Bollerslev, and 

3 



it is employed commonly in modeling financial time series that exhibit time varying 

volatility clustering. For further discussion on GARCH modeling, see (Enders 1995, 

Engle 2001, Gujarati 2003, and Nelson 1991). 

The state space representation of a system is related to the Kalman Filter and 

was originally developed by control engineers Kalman 1960, Kalman and Bucy 1961, 

and Kalman, Falb, and Arbib 1969. The system is also known as a state space model 

and is defined to be the minimum set of information from the present and past such 

that the future behavior of the system can be completely described by the knowledge 

of the present state and future input. For further discussion and development on the 

state space model, see (Chen 1999, Khalil, Nise 2004, Hinrichsen & Pritchard 2005, 

Sontag 1999, and Durbin & Koopman 2001) 

 

1.2 Fundamental Concepts 

A time series can be thought of as comprising of a sequence of measurements, 

almost certainly intercorrelated, representing some phenomena in different areas. 

Each of the measurements is associated with a moment of time, with some 

measurements incorporating other parameters. A time series can be classified as 

continuous or discrete depending upon whether the sequence is continuous or discrete. 

In the present study, we shall be only concerned with finite discrete time series which 

are measured at equal-distant time intervals or those continuous time series that have 

been digitized to a finite discrete time series.  
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1.2.1 Stochastic Process 

A stochastic process is a family of time indexed random variables ),( tX ω , 

where ω  belongs to a sample space and t  belongs to an index set. For a fixed , t

),( tX ω  is a random variable. For a given ω , ),( tX ω , as a function of , is called a 

sample function or realization. The population that consists of all possible realizations 

is called ensemble in stochastic processes and time series analysis. Thus, a time series 

is a realization or sample function from a certain stochastic process. 

t

Consider a finite set of random variables  from a stochastic 

process 

},...,,{
21 nttt XXX

,...}2,1,0:),({ ±±=ttX ω . The n-dimensional distribution function is defined 

by 

 },...,:{),...,,( 121, , 121 nttnXXX xXxXPxxxF
nnttt
≤≤= ω  (1.2.1) 

where  are any real numbers. A process is said to be first-order 

stationary if its one-dimensional distribution function is time invariant. i.e., if 

 for any integers  and 

nixi ,...,2,1, =

)()( 11 11
xFxF

ktt XX +
= kt ,1 kt +1 ; second-order stationary if 

),(),( 21,21, 2121
xxFxxF

ktkttt XXXX ++
=  for any integer ktktt +121 ,,,  and ; and nth-

order stationary if  

kt +2

 ),...,,(),...,,( 21, ,,21, ,, 2121 nXXXnXXX xxxFxxxF
kntktktnttt +++

=  (1.2.2) 

for any n-tuple  and  integers. A process is said to be strictly stationary if 

(1.1.2) is true for  The terms strongly stationary and completely stationary 

are also used to denote a strictly stationary process. Suppose (1.1.2) is true for some 

, it would also be true for 

),...,,( 21 nttt k

,....2,1=n

mn = mn ≤  because the mth-order distribution function 

determines all distribution functions of lower order. Therefore, a higher order of 
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stationarity always implies a lower order stationarity.  

 For a real-value process ,...}2,1,0:{ ±±=tX t , we defined the mean function of the 

process 

 )( tt XE=μ  (1.2.3) 

the variance function of the process 

  (1.2.4) ])[( 22
ttt XE μσ −=

the covariance function 

 ))((),(
221121 tttt XXEtt μμγ −−=  (1.2.5) 

and the correlation function 

 
22

21
21

21

),(),(
tt

tttt
σσ

γρ =  (1.2.6) 

Since the distribution function for a strictly stationary process is the same for all t, the 

mean function μμ =t  is a constant, provided ∞<)( tXE . This implies , 

and hence  for all t is also a constant. In addition, since 

∞<)( 2
tXE

22 σσ =t

),(),( 21,21, 2121
xxFxxF

ktkttt XXXX ++
=  for any integer  and k , we have 21,tt

),(),( 2121 ktkttt ++= γγ  

and 

),(),( 2121 ktkttt ++= ρρ  

Letting and , we get ktt −=1 tt =2

 kktttkttt γγγγ =+=−= ),(),(),( 21  (1.2.7) 

and 

 kktttkttt ρρρρ =+=−= ),(),(),( 21  (1.2.8) 

Thus, for a strictly stationary process with first two moments finite, the covariance 
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and correlation between  and  depend only on the time difference k. tX ktX +

A process is said to be nth-order weakly stationary if all of its joint moments 

up to the nth-order exist and are time invariant, hence a second-order weakly 

stationary process will have constant mean and variance, and the covariance and 

correlation functions depend only on the time difference. Moreover, a strictly 

stationary process with the first two moments being finite is also a second-order 

weakly stationary or covariance stationary process. However, a strictly stationary 

process does not always have finite moments.  When this occurs, it may not be 

covariance stationary. Therefore, it is possible for a strictly stationary process, with no 

joint moments existing, to not be weakly stationary of any order. 

 

1.2.2 White Noise Process 

A process is said to be a white noise process  if it is a sequence of 

uncorrelated random variables from a fixed distribution with constant mean 

}{ tW

WtWE μ=)(  and constant variance  and 2)( WtWVar σ= 0),( == +kttk WWCovγ  for all 

. It is obvious to see that a white noise process  is stationary with the 

autocovariance function  when 

0≠k }{ tW

2
Wk σγ = 0=k , 0=kγ  when 0≠k ; the autocorrelation 

function 1=kρ  when , 0=k 0=kρ  when 0≠k ; and partial autocorrelation function 

1=kkφ  when 0=k , 0=kkφ  when 0≠k . 

 The basic phenomenon of the white noise is that both its Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) are equal to zero. In addition, a 

white noise is Gaussian if its joint distribution is normal.  This concept plays an 
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important role in constructing time series models in our later chapters. 

1.2.3 Estimations on a Single Realization 

A stationary time series is characterized by its mean μ , variance , 

autocorrelation 

2σ

kρ , and partial autocorrelation kkφ . We can calculate the exact values 

of these parameters if the ensemble of all possible realizations is available. However, 

for most time series, only a single realization is available, thus making it impossible to 

calculate the ensemble average. In the following discussion, we discuss some 

statistical properties on these estimators by using time averages, which are useful 

when we deal with only a single realization. The mean μ  can be estimated by its 

sample mean 

 ∑
=

=
n

t
tx

n
x

1

1  (1.2.9) 

which is the time average of n observations. To see whether this is a valid or good 

estimator, we take the expectation of x , we get 

 ∑
=

=•==
n

t
t n

n
xE

n
xE

1

1)(1)( μμ  (1.2.10) 

which indicates that x  is an unbiased estimator for μ . And since 

 

∑

∑

∑∑∑∑

−

−−=

−

−−=

= =
−

= =

−=

−=

==

1

)1(

0

1

)1(
2
0

1 1
)(2

0

1 1
2

)1(

)(

),(1)(

n

nk
k

n

nk
k

n

t

n

s
st

n

t

n

s
st

n
k

n

kn
n

n
xxCov

n
xVar

ργ

ργ

ργ

 (1.2.11) 

Choose )( stk −= , we know that if 

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

−

−−=
∞→ k

n

nkn n
k

ρ
1

)1(
1lim  

8 



is finite, then 0)( →xVar  as ∞→n , and x  is a consistent estimator for μ . That is, 

 ∑
=

∞→
=

n

t
tn

x
n 1

1lim μ  (1.2.12) 

Similarly, the variance  can be estimated by its sample variance by using the time 

average as follows 

2σ

 ∑
=

∧

−=
n

t
t xx

n 1

22 )(1σ  (1.2.13) 

the sample autocovariance function  is given by 
∧

kγ

 ∑
−

=
+

∧

−−=
kn

t
kttk xxxx

1
))((γ   (1.2.14) 

the sample ACF kρ  can be estimated by 

 
∑

∑
=

−

= +
∧

∧
∧

−

−−
== n

t t

kn

t kttk
k

xx

xxxx

1
2

1

0
)(

))((

γ

γρ , ,...2,1,0=k   (1.2.15) 

and the sample PACF kkφ  can be estimated by using a recursive method starting with 

was published by Durbin(1960) as follows: 
∧∧

= 111 ρφ

 ∧

=

∧
=

∧

−+

∧∧

+∧

++

∑
∑

−

−
=

j
k

j kj

k

j jkkjk
kk

ρφ

ρφρ
φ

1

1 11
1,1

1
  (1.2.16) 

 

1.3 The Stationary AR, MA, and ARMA Models 

In time series analysis there are two very useful representations to express as a 

time series process, namely the autoregressive process and the moving average 

process. Before the discussion of these models, it is important to define several useful 

notations for simplifying purposes. The backshift operator is defined as 

   (1.3.1) jtt
j xxB −=
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and let 

   (1.3.2) )...1()( 2
21

p
pp BBBB φφφφ −−−−=

and 

   (1.3.3) )...1()( 2
21

q
qq BBBB θθθθ −−−−=

By defining (1.3.2) and (1.3.3), we can reduce models into compact forms in latter 

discussion. 

 

1.3.1 The Autoregressive (AR) Models  

The autoregressive process of order p, denoted as AR(p) was first introduced 

by Yule in 1926. It is useful in describing situations in which the present value of a 

time series is explained by its past values plus a random shock. The pth-order 

autoregressive process is defined as follows: 

   (1.3.4) tptpttt xxxx εφφφ ++++=
•

−

•

−

•

−

•

...2211

or 

    (1.3.5) ttp xB εφ =
•

)(

where }{ tε  is a zero mean white noise process, and . In addition, the 

AR(p) process contains  parameters, which are . As 

μ−=
•

tt xx

1+p 2
21 ,,...,, εσφφφ p ∞<∑

=

p

j
j

1
φ , 

the process is always invertible. To be stationary, the roots of 0)( =Bpφ  must lie 

outside of the unit circle. 

 

1.3.2 The Moving Average (MA) Models 

The moving average process of order q, denoted as MA(q) was first presented 

10 



by Slutzky in 1927. It is useful in describing phenomena that produce an immediate 

effect that only lasts for short periods of time. The qth-order moving average process 

is defined as follows: 

   (1.3.6) qtqttttx −−−

•

−−−−= εθεθεθε ...2211

or 

    (1.3.7) tqt Bx εθ )(=
•

The MA(q) process contains 1+q  parameters, which are . Moreover, a 

finite moving average process is always stationary as , and the 

process is invertible if the roots 

2
21 ,,...,, εσθθθ q

∞<++++ 22
2

2
1 ...1 qθθθ

0)( =Bqθ of lie outside the unit circle. 

 

1.3.3 The General Mixed ARMA Models  

The mixture of autoregressive and moving average process, denoted as 

ARMA(p, q), can be produced if we combine the autoregressive and moving average 

process. The process was put together by Wold in 1938, and it is defined as follows: 

   (1.3.8) qtqtttptpttt xxxx −−−

•

−

•

−

•

−

•

−−−−++++= εθεθεθεφφφ ...... 22112211

or 

   (1.3.9) tqtp BxB εθφ )()( =
•

where 

  )...1()( 2
21

p
pp BBBB φφφφ −−−−=

and 

  )...1()( 2
21

q
qq BBBB θθθθ −−−−=

The general mixed ARMA(p, q) process has 1++ qp  parameters, which are 
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2
2121 ,,...,,,,...,, εσθθθφφφ qp . In addition, the process is invertible if the roots 

of 0)( =Bqθ  lie outside the unit circle and the process is stationary if the roots of 

0)( =Bpφ  lie outside of the unit circle and under the assumption that 0)( =Bqθ  and 

0)( =Bpφ  share no common roots. 

 

1.4 Aims of Present Study 

The aim of the present study is to propose several new time series 

methodologies that can be applied to many economic and environmental problems. 

We begin with summarizing some fundamental concepts that are essential for dealing 

with time series modeling and introduce some preliminary processes that are 

necessary for model building in time series.  

After we define all the necessities for stationary time series, we shall introduce  

the classical nonstationary time series modeling. Box and Jenkins methodology is one 

the most famous time series approach that is widely being used by many researchers 

working in many different areas. The idea of our proposed models is to filter a 

nonstationary time series and smooth the edges of that series so we can be better 

forecast the phenomena. The smoothing components that we implement into the time 

series shall be removed once we have obtained the model. Due to the complexity of 

the developmental processes, we summarize the methodologies for both the classical 

approach and our proposed models by providing step by step procedures in chapter 2. 

 In chapter 3, 4, 5 and 6, we introduce several economic and environmental 

applications by developing time series forecasting models using both the classical 

12 



approach and our proposed methodologies. We shall show the quality and usefulness 

of our proposed models on those applications by comparing them with the classical 

methods. In each of the applications, we shall examine the proposed models by 

looking into some essential statistical properties numerically and identify the 

usefulness under circumstances. Finally, we shall evaluate the proposed models by 

ranking their efficiency under different circumstances according to their performance 

in forecasting the future phenomena. 

 

1.5 Conclusion 

In the present chapter, we began with surveying several major literatures in the 

area of time series forecasting and providing the references of the development of 

those methodologies in the subject area. We then defined some fundamental concepts 

such as stochastic process, white noise process and stationary ARMA process. Those 

processes are not only essential for our proposed model building procedures but also 

play a major role in time series forecasting. Finally, we briefly discuss the approach of 

our proposed methodologies and show the usefulness and effectiveness of our 

proposed models with the applications in the present study.    
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Chapter 2 

Analytical Formulations of Modified Time Series 

 

2.0 Introduction 

In the present chapter, we shall summarize the updated step-by-step process on 

developing a forecasting model from a non-stationary stochastic realization. In addition, 

we introduce three additional models, namely simple moving average, weighted moving 

average, and the exponential moving average. The basic structure of these models begins 

with the actual non-stationary realizations and we formulate a new time series from the 

original data based on the models we mentioned above. 

 

2.1 The General ARIMA Model 

The time series processes we have discussed so far are all stationary processes, 

but most of the time series in reality are non-stationary. Therefore, the roots of their AR 

polynomials do not lie outside the unit circle. Hence, we will not be able to use the 

general mixed ARMA(p,q) as we discussed in the previous chapter on a non-stationary 

time series. In order for us to resolve this issue, we must first introduce the difference 

filter as follows: 

  (2.1.1) dB)1( −

where , and d is the degree of differencing of the series. jtt
j xxB −=
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Due to the reason that the local behavior of such non-stationary time series is independent 

of its level, we let )(Bπ  be the autoregressive operator which describes the behavior of 

this homogeneous non-stationary time series, we have 

 tt xBCxB )())(( ππ =+  (2.1.2) 

for any constant C. This equation implies that )(Bπ  must be of the form 

  (2.1.3) dBBB )1)(()( −= φπ

for some , where 0>d )(Bφ  is a stationary autoregressive operator. Hence, we can 

reduce a non-stationary time series to a stationary time series after taking a proper degree 

of differencing of the series.  

After we define the difference filter, we can now introduce the famous 

ARIMA(p,d,q) autoregressive integrated moving average model as follows: 

  (2.1.4) tqt
d

p BxBB εθφ )()1)(( =−

where d is the degree of differencing,  

  )...1()( 2
21

p
pp BBBB φφφφ −−−−=

and 

  )...1()( 2
21

q
qq BBBB θθθθ −−−−=

Consider the simplest case, ARIMA(0,1,1), we have 

  tt BxB εθ )1()1( 1−=−  

or we can expand the model as 

 111 −− −+= tttt xx εθε  

which is a MA(1) model on the difference of the non-stationary time series.  

Consider another simplest case, ARIMA(1,1,0), we have 
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  ttxBB εφ =−− )1)(1( 1  

or we can expand the model as 

 tttt xxx εφ +−+= −− 211)1(  

which is a AR(1) model on the difference of the non-stationary time series. 

In time series analysis, sometimes it is very difficult to make a decision in 

selecting the best order of the ARIMA(p,d,q) model when we have several models that all 

adequately represent a given set of time series. Hence, Akaike’s information criterion 

(AIC), [1], plays a major role when it comes to model selection. AIC was first introduced 

by Akaike in 1973, and it is defined as follows: 

 AIC(M) = -2 ln [maximum likelihood] + 2M, (2.1.5) 

where M is the number of parameters in the model and the unconditional log-likelihood 

function suggested by Box, Jenkins, and Reinsel in 1994, [4], is given by 

 2
22

2
),,(2ln

2
),,,(ln

ε
εε σ

θμφπσσθμφ SnL −−= , (2.1.6) 

where ),,( θμφS  is the unconditional sum of squares function given by 

 ∑
−∞=

=
n

t
t xES 2)],,,([),,( θμφεθμφ  (2.1.7) 

where ),,,( xE t θμφε  is the conditional expectation of tε  given x,,, θμφ . 

 The quantities , , and  that maximize (2.1.6) are called unconditional 

maximum likelihood estimators. Since  involves the data only through 

∧

φ
∧

μ
∧

θ

),,,(ln 2
εσθμφL

),,( θμφS , these unconditional maximum likelihood estimators are equivalent to the 

unconditional least squares estimators obtained by minimizing ),,( θμφS . In practice, the 

summation in (2.1.7) is approximated by a finite form 
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 ∑
=

=
n

Mt
t xES 2)],,,([),,( θμφεθμφ  (2.1.8) 

where M is a sufficiently large integer such that the backcast increment 

),,,(),,,( 1 xExE tt θμφεθμφε −−  is less than any arbitrary predetermined small ε  value 

for . This expression implies that )1( +−≤ Mt μθμφε ≅),,,( xE t ; hence, ),,,( xE t θμφε  

is negligible for .  )1( +−≤ Mt

After obtaining the parameter estimates , , and , the estimate  of  can 
∧

φ
∧

μ
∧

θ
∧

2
εσ

2
εσ

then be calculated from 

 
n

S ),,(2

∧∧∧
∧

=
θμφσε . (2.1.9)  

For an ARMA(p,q) model based on n observations, the log-likelihood function is 

 ),,(
2

12ln
2

ln 2
2 θμφ

σ
πσ

ε
ε SnL −−= . (2.1.10) 

We proceed to maximize (2.1.10) with respect to the parameters ,,, θμφ  and , from 

(2.1.9), we have 

2
εσ

 )2ln1(
2

ln
2

ln 2 πσε +−−=
∧∧ nnL . (2.1.11) 

Since the second term in expression (2.1.11) is a constant, we can reduce the AIC to the 

following expression 

 AIC(M) . (2.1.12) Mn 2ln 2+=
∧

εσ

Thus, we generate an appropriate time series model and select the statistical process with 

the smallest AIC. The model that we have identified will possess the smallest average 

mean square error. In addition, we summarize the development of the model as follows: 
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• Check for stationarity of the time series by determining the order of differencing 

d, where  according to KPSS test [12], until we achieve stationarity ,...2,1,0=d

• Deciding the order m  of the process, for our case, we let  where 5=m mqp =+  

• After (d, ) being selected, listing all possible set of (p, q) for m mqp ≤+  

• For each set of (p, q), estimating the parameters of each model, that is, 

qp θθθφφφ ,...,,,,...,, 2121  

• Compute the AIC for each model, and choose the one with smallest AIC 

According to the criterion that we mentioned above, we can obtain the ARIMA(p,d,q) 

model that best fit a given time series, where the coefficients are qp θθθφφφ ,...,,,,...,, 2121 .  

 

2.2 The k-th Moving Average Time Series Model  

In this section, we propose a model which is constructed based on the concept of 

the simple moving average. Before we actually discuss the proposed models, we shall 

first define the simple moving average. In time series analysis, the primary use for the k-

th simple moving average is for smoothing a time series. It is very useful in discovering 

short-term, long-term trends and seasonal components of a time series. The k-th simple 

moving average process of a time series  is defined as follows: }{ tx

 ∑
−

=
++−=

1

0
1

1 k

j
jktt x

k
y  (2.2.1) 

where .  nkkt ,...,1, +=

It is obvious to see that as k increases, the number of observations of  decreases, and 

the series  gets closer and closer to the mean of the series  as k increases. In 

}{ ty

}{ ty }{ tx
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addition, when , the series  reduces to a single observation, and equals to nk = }{ ty μ , 

because 

 ∑
=

==
n

j
jt x

n
y

1

1 μ  (2.2.2) 

On the other hand, if we choose a fairly small k, we can smooth the edges of the series 

without losing too much of the general information.  

We proceed to develop our proposed model by transforming the original time 

series  into  by applying (2.2.1). After establishing the new time series, usually 

very nonstationary, we begin the process of reducing it to stationary time series by 

selecting the appropriate differencing order. We then proceed with the model building 

procedure of developing time series model and at each stage calculate the AIC.  The best 

model will be the one with the smallest AIC. 

}{ tx }{ ty

Using the model that we developed for  and subject to the AIC criteria, we 

forecast values of  and proceed to apply the back-shift operator to obtain estimates of 

the original phenomenon , that is,  

}{ ty

}{ ty

}{ tx

 . (2.2.3) 121 ... +−−−

∧∧

−−−−= kttttt xxxykx

In addition, we summarize the development of the model as follows: 

• Transforming the original time series  into  by applying (2.2.1) }{ tx }{ ty

• Check for stationarity of the series  by determining the order of differencing 

d, where  according to KPSS test, until we achieve stationarity 

}{ ty

,...2,1,0=d

• Deciding the order m  of the process, for our case, we let where 5=m mqp =+  

• After (d, ) being selected, listing all possible set of (p, q) for m mqp ≤+  
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• For each set of (p, q), estimating the parameters of each model, that is, 

qp θθθφφφ ,...,,,,...,, 2121  

• Compute the AIC for each model, and choose one with the smallest AIC 

• Solve the estimates of the original time series by applying (2.2.3) 

The proposed model and the corresponding procedure discussed in this section 

shall be illustrated with real economic application and the results will be compared with 

the classical time series model. 

 

2.3 The k-th Weighted Moving Average Time Series Model 

Compare to the model that we proposed in the previous section, the model we 

proposed in this section is more useful to those time series which behave more 

aggressively compared with some time series which do not. Before we actually present 

the model, we shall first introduce the weighted moving average process. The k-th 

weighted moving average process is also a very good smoothing tool. However, the 

structure of it is slightly different from the simple moving average process. It puts more 

weight on the most recent observation, and the weight consistently decreases up to the 

first observation. In addition, it captures the original time series better than the moving 

average process, which is suitable for those analysts who believe the recent observations 

should weight more than the old ones. The k-th weighted moving average process of a 

time series  is defined as follows: }{ tx

 ∑
−

=
++−+

+
=

1

0
1)1(

2/)1(
1 k

j
jktt xj

kk
z   (2.3.1) 
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where . Similar to the moving average process, as k increases, the number 

of observations of the series  decreases, and as , from (2.3.1) the series  

becomes 

nkkt ,...,1, +=

}{ tz nk → }{ tz

 ∑
=+

=
n

j
jt jx

nn
z

12/)1(
1  (2.3.2) 

If we choose a fairly small k, we can smooth the edges of the series, and the series  is 

closer to the series  compared with the moving average method that we discussed in 

the last section. 

}{ tz

}{ tx

Our first proposed model begins with transforming the original time series  

into  by applying (2.3.1). After establishing the new time series, we begin the process 

of reducing it to stationary time series by selecting the appropriate differencing order. We 

then proceed with the model building procedure of developing time series model and at 

each stage calculate the AIC.  The best model will be the one with the smallest AIC. 

}{ tx

}{ tz

Using the model that we developed for  and subject to the AIC criteria, we 

forecast values of  and proceed to apply the back-shift operator to obtain estimates of 

the original phenomenon , that is,  

}{ tz

}{ tz

}{ tx

 
k

xxkxkzkkx ktttt
t

121 ...)2()1(]2/)1[( +−−−

∧
∧ −−−−−−+
=  (2.3.3) 

In addition, we summarize the development of the model as follows: 

• Transforming the original time series  into  by applying (2.3.1) }{ tx }{ tz

• Check for stationarity of the series  by determining the order of differencing 

d, where  according to KPSS test, until we achieve stationarity 

}{ tz

,...2,1,0=d
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• Deciding the order m  of the process, for our case, we let where 5=m mqp =+  

• After (d, ) being selected, listing all possible set of (p, q) for m mqp ≤+  

• For each set of (p, q), estimating the parameters of each model, that is, 

qp θθθφφφ ,...,,,,...,, 2121  

• Compute the AIC for each model, and choose one with the smallest AIC 

• Solve the estimates of the original time series by applying (2.3.3) 

To conclude the goodness of fit of the proposed model, we will illustrate in a later 

chapter with numerical examples. 

   

2.4 The k-th Exponential Weighted Moving Average Time Series Models 

Similar to the last two sections, in order for us to present our proposed models, we 

must first introduce the exponential weighted moving average method. The k-days 

exponential weighted moving average serves pretty much the same purpose as those two 

average processes as we discussed in the last two sections. Instead of decreasing weight 

consistently as the weighted moving average method, it decreases weight exponentially. 

This fits perfect for those analysts who care most on the recent observations and not pay 

too much attention to the old ones. In addition, it is not difficult to see that the 

exponential weighted moving average catches the original series faster than both average 

processes as we discussed earlier. Hence, it is very useful in dealing with very aggressive 

time series. The k-th exponential weighted moving average process of a time series  

is defined as follows: 

}{ tx

 ∑
∑

−

=
++−

−−
−

=

−
−

=
1

0
1

1
1

0

)1(
)1(

1 k

j
jkt

jk
k

j
jt xv α

α
 (2.4.1) 
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where ,  and the smoothing factor nkkt ,...,1, += α  is defined as 
1

2
+

=
k

α . If we let 

, we have nk =
1

2
+

=
n

α . Moreover, ∑ −

=
−

1

0
)1(k

j
jα  reaches its maximum when 3=k , 

and it gets closer and closer to 1 as k increases. As k increases, the number of 

observations the series  decreases, and it eventually reduces to a single observation 

when . As , the series  becomes 

}{ tv

nk = nk → }{ tv

 ∑
∑

−

=
+

−−
−

=

−
−

=
1

0
1

1
1

0

)1(
)1(

1 n

j
j

jn
n

j
jt xv α

α
 (2.4.2) 

From (2.4.2), it is obvious to see that the exponential weighted moving average process 

weighs heavily on the most recent observation and decreases the weight exponentially as 

time decreases. If we choose a fairly small k, we can smooth the edges of the series and 

the  would be the closest to the series  compared with both moving average 

processes that we discussed in the previous two sections. 

}{ tv }{ tx

We proceed to develop our proposed model by transforming the original time 

series  into  by applying (2.4.1). After obtaining the new time series, we select 

the appropriate differencing order to reduce the series  into a stationary time series. 

We then proceed the model building procedure of developing time series model and at 

each stage calculate the AIC.  The best model will be the one with the smallest AIC.  

}{ tx }{ tv

}{ tv

Using the model that we developed for  and subject to the AIC criteria, we 

forecast values of  and proceed to apply the back-shift operator to obtain estimates of 

the original phenomenon , that is,  

}{ tv

}{ tv

}{ tx
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In addition, we summarize the development of the model as follows: 

• Transforming the original time series  into  by applying (2.4.1) }{ tx }{ tv

• Check for stationarity of the series  by determining the order of differencing 

d, where  according to KPSS test, until we achieve stationarity 

}{ tv

,...2,1,0=d

• Deciding the order m  of the process, for our case, we let where 5=m mqp =+  

• After (d, ) being selected, listing all possible set of (p, q) for m mqp ≤+  

• For each set of (p, q), estimating the parameters of each model, that is, 

qp θθθφφφ ,...,,,,...,, 2121  

• Compute the AIC for each model, and choose one with the smallest AIC 

• Solve the estimates of the original time series by applying (2.4.3) 

The proposed model and the corresponding procedure discussed in this section 

shall be illustrated with real economic application and the results will be compared with 

the classical time series model. 

 

2.5 The Multiplicative ARIMA Model 

In time series analysis, seasonal variations sometimes dominate the variations of 

the original nonstationary time series. It occurs very commonly on the environmental 

applications, as most of the environmental forecasting problems, there exists some type 

of periodic trend that is obvious for us to recognize. We can treat the seasonal time series 

as a nonstationary time series that varies along some kind of seasonal periodic trend. 
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Hence, addressing the seasonal variations for the model becomes extremely useful when 

we deal with these types of problems.   

The multiplicative seasonal autoregressive integrated moving average, ARIMA 

model is defined by 

  (2.5.1)   t
s

Qqt
Dsd

p
s

P BBxBBBB εθφ )()()1()1)(()( Γ=−−Φ

where p is the order of the autoregressive process, d is the order of regular differencing, q 

is the order of the moving average process, P is the order of the seasonal autoregressive 

process, D is the order of the seasonal differencing, Q is the order of the seasonal moving 

average process, and the subindex s refers to the seasonal period. We shall denote the 

subject model by ARIMA sQDPqdp ),,(),,( × , and  defined 

as follows: 

)(),(),(),( s
q

s
Pqp BBBB ΓΦθφ

   )...1()( 2
21

p
pp BBBB φφφφ −−−−=

   )...1()( 2
21

q
qq BBBB θθθθ −−−−=

   Ps
P

sss
P BBBB Φ−−Φ−Φ−=Φ ...1)( 2

21

and 

 .  Qs
Q

sss
Q BBBB Γ−−Γ−Γ−=Γ ...1)( 2

21

The order of the multiplicative ARIMA model determines the structure of the model, and 

it is essential to have a good methodology in terms of developing the forecasting model. 

Below we summarize the model identifying procedure: 

• Determine the seasonal period s. 
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• Check for stationarity of the given time series  by determining the order of 

differencing d, where 

}{ tx

,...2,1,0=d  according to KPSS test, until we achieve 

stationarity. 

• Deciding the order m  of the process, for our case, we let  where 

. 

5=m

mQPqp =+++

• After  being selected, listing all possible configurations of  for 

. 

),( md ),,,( QPqp

mQPqp ≤+++

• For each set of , estimates the parameters for each model, that is, ),,,( QPqp

QPqp ΓΓΓΦΦΦ ,...,,,,...,,,,...,,,,...,, 21212121 θθθφφφ . 

• Compute the AIC for each model, and choose the one with smallest AIC. 

• After ( ) is selected, we determine the seasonal differencing filter by 

selecting the smaller AIC between the model with 

QPqdp ,,,,

0=D  and . 1=D

• Our final model will have identified the order of ( ). QDPqdp ,,,,,

To conclude the goodness of fit of the Multiplicative ARIMA model, we will illustrate in 

latter chapter with environmental applications. 

 

2.6 Conclusion 

In the present chapter, we began with developing a step-by-step forecasting 

procedure for the classical ARIMA model. We then introduced our three proposed 

models, namely the k-th Moving Average Time Series Model, the k-th Weighted Moving 

Average Time Series Model, and the k-th Exponential Weighted Moving Average Time 

Series Model, of which we believe perform better than the classical methodology. In 
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addition, we have developed a step-by-step procedure for each of our proposed models. 

This step-by-step procedure of each model shall be very helpful when one needs to 

develop model following our methodologies. Finally, we introduce the multiplicative 

ARIMA model that is able to address the seasonal variation when we deal with 

environmental applications in later chapters and a step-by-step procedure for the subject 

model.  
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Chapter 3 

Econometrics Forecasting Models 

3.0 Introduction 

The object of the present chapter is to illustrate the results of our proposed 

forecasting models for two nonstationary stochastic realizations. The subject models are 

based on modifying both given time series into a new k-th moving average, k-th weighted 

moving average, and k-th exponential weighted moving average time series to begin the 

development of the model. The study is based on the autoregressive integrated moving 

average process along with its analytical constrains. The analytical procedure of the 

proposed models is given in chapter two. The first series is a stock XYZ selected from 

the Fortune 500 companies and its daily closing price constitute the time series. The 

second series is the closing price of the S&P price index. Both the classical and proposed 

forecasting models were developed and a comparison of the accuracy of their responses 

is given. 

 

3.1 Forecasting Models on Stock XYZ 

In this section, we first begin with collecting 500 observations for a stock from 

the fortune 500 companies and try to forecast its daily closing value by using the 

traditional approach versus different forecasting models that we proposed in chapter two. 

We then examine each model by looking into the properties of its plots and residuals and 

rank each model based on the results of our findings. Finally, we hide the last 25 



observations and forecast the next 25 observations without using the future information. 

Thus, the coefficients of the models are updated every time when we get new 

information. We then examine the last 25 residuals so we can determine the goodness of 

fit of those models and draw conclusions based on these results. 

 

3.1.1 Data Preparation 

In order for us to properly illustrate different types of moving average ARIMA 

models, we need to first create another three time series, namely 3 days moving average 

time series (MA3), 3 days weighted moving average time series (WMA3), and 3 days 

exponential weighted moving average time series (EWMA3) by using the methodology 

that we discussed in chapter two.  

Suppose we let  (see Appendix A1) be the daily closing values of stock XYZ that we 

collect from the fortune 500 companies that we mentioned earlier. A plot of the actual 

information is given by Figure 3.1 
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Figure 3.1 Daily Closing Price for Stock XYZ 
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In order for us to apply the fitting procedure for our first proposed model, we 

must transform  into a 3 days moving average series  (see Appendix A2) by 

referring to (2.2.1). Hence, we have 

}{ tx }{ ty

21 yy =  are not available, and  

 
3

321
3

xxxy ++
=  

 
3

432
4

xxxy ++
=  

  

 
3

12 ttt
t

xxxy ++
= −−  (3.1.1) 

Similar to the last transformation, we need to create another series by referring to 

(2.3.1), which is transferring  into a 3 days weighted moving average series  (see 

Appendix A3). Hence, we have 

}{ tx }{ tz

21 zz =  are not available, and 

 
6

32 321
3

xxxz ++
=  

 
6

32 432
4

xxxz ++
=  

  

 
6

32 12 ttt
t

xxxz ++
= −−  (3.1.2) 

The last transformation we need to make is turning the original time series  

into a 3 days exponential weighted moving average series  (see Appendix A4) by 

referring to (2.4.1). that is 

}{ tx

}{ tv

21 vv =  are not available, and 

 
75.1
5.25. 321

3
xxxv ++

=  

30 



 
75.1
5,25. 432

4
xxxv ++

=  

  

 
75.1
5.25. 12 ttt

t
xxxv ++

= −−  (3.1.3) 

After finishing all of the above transformations, we end up with 4 set of different 

time series observations, which are , , , and . Now we are ready for the 

model fitting procedures in the next section. 

}{ tx }{ ty }{ tz }{ tv

In the following sub-sections, we shall follow those step by step procedures as we 

discussed in chapter two for both the classical time series approach and our proposed 

methods.  

 

3.1.2 The General ARIMA Model 

Following the step-by-step procedure that we introduced in Section 2.1, the 

classical forecasting model with the best AIC score is the ARIMA(1,1,2). That is, a 

combination of first order autoregressive (AR) and a second order moving average (MA) 

with a first difference filter. Thus, we can write it as 

 . (3.1.4) tt BBxBB ε)0581.0531.11()1)(9631.1( 2+−=−−

After expanding the autoregressive operator and the difference filter, we have 

    tt BBxBB ε)0581.0531.11()9631.9631.11( 22 +−=+−

and the model can be written as 

 2121 0581.0531.19631.9631.1 −−−− +−+−= tttttt xxx εεε    
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by letting 0=tε , we have the one day ahead forecasting time series of the closing price 

of stock XYZ as 

 . (3.1.5)  2121 0581.0531.19631.9631.1 −−−−

∧

+−−= ttttt xxx εε

 Using the above equation, we graph the forecasting values obtained by using the 

classical approach on top of the original time series, shown as Figure 3.2 
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Figure 3.2 Comparisons on Classical ARIMA Model VS. Original Time Series 

 

The basic statistics that reflect the accuracy of model (3.1.5) are the mean r , variance 

, standard deviation  and standard error 2
rS rS

n
Sr  of the residuals. Figure 3.3 gives a 

time series plot of the residual and table 3.1 provides the basic statistics. 
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Figure 3.3 Time Series Plot of the Residuals for Classical Model 

 

Table 3.1 Basic Evaluation Statistics for Classical ARIMA 

r   
2
rS  rS  

n
Sr  

0.02209169 0.1445187 0.3801562 0.0170011 

 

Furthermore, we restructure the model (3.1.5) with 475=n  data points to forecast 

the last 25 observations only using the previous information. The purpose is to see how 

accurate our forecast prices are with respect to the actual 25 values that have not been 

used. Table 3.2 gives the actual price, predicted price, and residuals between the forecasts 

and the 25 hidden values. 
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Table 3.2 Actual and Predicted Price for Classical ARIMA 
N Actual Price Predicted Price Residuals 

476 26.78 26.8473 -0.0673 
477 26.75 26.7976 -0.0476 
478 26.67 26.7673 -0.0972 
479 26.8 26.6922 0.1078 
480 26.73 26.8064 -0.0764 
481 26.78 26.7490 0.0310 
482 26.27 26.7911 -0.5211 
483 26.12 26.3277 -0.2077 
484 26.32 26.1631 0.1569 
485 25.98 26.3364 -0.3564 
486 25.86 26.0349 -0.1749 
487 25.65 25.9068 -0.2568 
488 25.67 25.6670 0.0031 
489 26.02 25.7119 0.3081 
490 26.01 26.0335 -0.0235 
491 26.11 26.0427 0.0674 
492 26.18 26.1343 0.0457 
493 26.28 26.2032 0.0768 
494 26.39 26.2986 0.0914 
495 26.46 26.4043 0.0557 
496 26.18 26.4743 -0.2943 
497 26.32 26.2219 0.0981 
498 26.16 26.3354 -0.1754 
499 26.24 26.1953 0.0447 
500 26.07 26.2602 -0.1902 

 

The average of these residuals is 05608.0−=r , and the Figure 3.4 is a graph presentation 

of the forecasting result. 
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Figure 3.4 Classical ARIMA Forecasting on the Last 25 Observations 

 

3.1.3 The 3 Days Moving Average ARIMA Models 

Figure 3.5 shows the new time series  along with the original time series , that 

we shall use to develop the proposed forecasting model.  
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Figure 3.5 MA3 Series VS. The Original Time Series 
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Following the procedure we discussed in section 2.2, we found the best model that 

characterizes the behavior of  to be ARIMA(2,1,3). That is,  }{ ty

 . (3.1.6) tt BBByBBB ε)0056..00561()1)(.0605.89611( 322 −−+=−−−

Expanding the autoregressive operator and the first difference filter, we have 

tt BBByBBB ε)0056..00561()0605.8356.8961.11( 3232 −−+=++− .   

and the model can be written as 

 321321 0056.0056.0605.8356.8961.1 −−−−−− −−++−−= tttttttt yyyy εεεε .   

The final analytical form of the proposed forecasting model can be written as 

 . (3.1.7) 321321 0056.0056.0605.8356.8961.1 −−−−−−

∧

−−+−−= ttttttt yyyy εεε

Using the above equation, we graph the forecasting values obtained by using the MA3 

ARIMA approach on top of the original time series, shown as Figure 3.6 
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 Figure 3.6 Comparisons on MA3 ARIMA Model VS. Original Time Series 

 
 

Note the very closeness of the two plots that reflect the quality of the proposed model. 
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Similar to the classical model approach that we discussed earlier, we shall use the 

first 475 observations  to forecast . Then we use the observations 

 to forecast , and continue this process until we obtain forecasts all the 

observations, that is, . From equation (2.2.3), we can see the 

relationship between the forecasting values of the original series  and the forecasting 

values of 3 days moving average series ,that is,  

},...,,{ 47521 yyy
∧

476y

},...,,{ 47621 yyy
∧

477y

},...,,{ 500477476

∧∧∧

yyy

}{ tx

}{ ty

 . (3.1.8) 213 −−

∧∧

−−= tttt xxyx

Hence, after we estimated , we can use the above equation, (3.1.8), to 

solve the forecasting values for .  Figure 3.7 is the residual plot generated by the 

MA3 ARIMA model, and followed by Table 3.3, that includes the basic evaluation 

statistics. 
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Figure 3.7 Time Series Plot of the Residuals for MA3 Model 
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Table 3.3 Basic Evaluation Statistics for MA3 ARIMA 

r   
2
rS  rS  

n
Sr  

0.01016814 0.1437259 0.3791119 0.01698841 

 

Both of the above displayed evaluations reflect on accuracy of the proposed 

model. The actual daily closing prices of stock XYZ from the 476th day along with the 

forecasted prices and residuals are provided in Table 3.4. 

Table 3.4 Actual and Predicted Price for MA3 ARIMA 
N Actual Price Predicted Price Residuals 

476 26.78 26.8931 -0.1131 
477 26.75 26.7715 -0.0215 
478 26.67 26.7121 -0.0421 
479 26.8 26.7239 0.0761 
480 26.73 26.7854 -0.0554 
481 26.78 26.6892 0.0908 
482 26.27 26.8292 -0.5592 
483 26.12 26.3027 -0.1827 
484 26.32 26.0808 0.2392 
485 25.98 26.3603 -0.3803 
486 25.86 25.9868 -0.1268 
487 25.65 25.8443 -0.1943 
488 25.67 25.7115 -0.0414 
489 26.02 25.6499 0.3701 
490 26.01 25.9650 0.0450 
491 26.11 26.0526 0.0574 
492 26.18 26.0912 0.0888 
493 26.28 26.1449 0.1351 
494 26.39 26.3090 0.0810 
495 26.46 26.3752 0.0848 
496 26.18 26.4223 -0.2423 
497 26.32 26.2461 0.0739 
498 26.16 26.2964 -0.1364 
499 26.24 26.1437 0.0963 
500 26.07 26.2678 -0.1978 
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The Results given above attest to the good forecasting estimates for the hidden data. The 

average of these residuals is 0342.0−=r , and the Figure 3.8 is a graph presentation of 

the forecasting result. 
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Figure 3.8 MA3 ARIMA Forecasting on the Last 25 Observations 

 

3.1.4 The 3 Days Weighted Moving Average ARIMA Models 

Figure 3.9 shows the new time series  along with the original time series , that 

we shall use to develop the proposed forecasting model.  

}{ ty }{ tx
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Figure 3.9 WMA3 Series VS. The Original Time Series 

 

Following the procedure we have stated in section 2.3, we found the best model 

that characterizes the behavior of  to be ARIMA(1,1,3). That is, }{ tz

  (3.1.9) tt BBBzBB ε)2456.8348.5084.11()1)(9073.1( 32 +++=−+

expand the autoregressive operator and the difference filter, we have 

  tt BBBzBB ε)2456.8348.5084.11()9073.0927.1( 322 +++=−−

and the model can be written as  

 32121 2456.8348.5084.19073.0927. −−−−− +++++= ttttttt zzz εεεε  

by letting 0=tε , we have the one day ahead forecasting series as 

  (3.1.10) 32121 2456.8348.5084.19073.0927. −−−−−

∧

++++= tttttt zzz εεε

Using the above equation, we graph the forecasting values obtained by using the WMA3 

ARIMA approach on top of the original time series, shown as Figure 3.10 
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Figure 3.10 Comparisons on WMA3 ARIMA Model VS. Original Time Series 

 

Similarly, we shall use the first 475 observations  to forecast . 

Then we use the observations  to forecast , and continue this process 

until we obtain forecasts all the observations, that is, . From equation 

(2.3.3), we can see the relationship between the forecasting values of the original series 

 and the forecasting values of 3 days moving average series ,that is,  

},...,,{ 47521 zzz
∧

476z

},...,,{ 47621 zzz
∧

477z

},...,,{ 500477476

∧∧∧

zzz

}{ tx }{ tz

 
3

26 21 −−

∧
∧ −−
= ttt

t
xxzx . (3.1.11) 

Hence, after we estimated , we can use the above equation, (3.1.11), to 

solve the forecasting values for .  Figure 3.11 is the residual plot generated by our 

proposed model, and followed by Table 3.5, that includes the basic evaluation statistics. 

},...,,{ 500477476
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zzz

}{ tx

 

41 



Time

P
ric

e

0 100 200 300 400 500

-3
-2

-1
0

1
2

3

 
Figure 3.11 Time Series Plot of the Residuals for WMA3 Model 

 

Table 3.5 Basic Evaluation Statistics for WMA3 ARIMA 

r   
2
rS  rS  

n
Sr  

0.00866631 0.1578446 0.3972966 0.01776764 

 

A detail ranking comparison between models will be illustrated in latter section, and 

Table 3.6 shows a head to head comparison between the actual and predicted price for 

WMA3 ARIMA model. 
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Table 3.6 Actual and Predicted Price for WMA3 ARIMA 
N Actual Price Predicted Price Residuals 

476 26.78 26.8435 -0.0635 
477 26.75 26.77416 -0.0242 
478 26.67 26.76265 -0.0926 
479 26.8 26.6686 0.1314 
480 26.73 26.79599 -0.0660 
481 26.78 26.72857 0.0514 
482 26.27 26.7817 -0.5117 
483 26.12 26.30523 -0.1852 
484 26.32 26.13652 0.1835 
485 25.98 26.30601 -0.3260 
486 25.86 25.98931 -0.1293 
487 25.65 25.89196 -0.2420 
488 25.67 25.65289 0.0171 
489 26.02 25.67122 0.3488 
490 26.01 25.9955 0.0145 
491 26.11 26.00049 0.1095 
492 26.18 26.11326 0.0667 
493 26.28 26.1717 0.1083 
494 26.39 26.26891 0.1211 
495 26.46 26.38754 0.0725 
496 26.18 26.44883 -0.2688 
497 26.32 26.20532 0.1147 
498 26.16 26.31132 -0.1513 
499 26.24 26.16914 0.0709 
500 26.07 26.23146 -0.1615 

The average of these residuals is 0325.0−=r , and the Figure 3.12 is a graph presentation 

of the forecasting result. 
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Figure 3.12 WMA3 ARIMA Forecasting on the Last 25 Observations 

 

3.1.5 The 3 Days Exponential Weighted Moving Average ARIMA Models 

Figure 3.13 shows the new time series  along with the original time series , that 

we shall use to develop the proposed forecasting model.  
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Figure 3.13 WMA3 Series VS. The Original Time Series 
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Following the procedure we have stated in section 2.4, we found the best model 

that characterizes the behavior of to be ARIMA(3,1,2), that is,  }{ tv

tt BBBvBBB ε)9071.0728.4362.1()1)(9045.4766.1( 322 −−−=−−−  (3.1.12) 

expand the autoregressive operator and the difference filter, we have 

  tt BBBvBBB ε)9071.0728.4362.1()9045.4279.4766.11( 3232 −−−=+−−

and rewrite the model as 

321321 9071.0728.4362.9045.4279.4766.1 −−−−−− −−−+−+= tttttttt vvvv εεεε  

by letting 0=tε , we have the one day ahead forecasting series as 

   (3.1.13) 321321 9071.0728.4362.9045.4279.4766.1 −−−−−−

∧

−−−−+= ttttttt vvvv εεε

Using the above equation, we graph the forecasting values obtained by using the 

EWMA3 ARIMA approach on top of the original time series, shown as Figure 3.14 
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Figure 3.14 Comparisons on EWMA3 ARIMA Model VS. Original Time Series 

Similarly, we shall use the first 475 observations  to forecast . 

Then we use the observations  to forecast , and continue this process 

},...,,{ 47521 vvv
∧

476v

},...,,{ 47621 vvv
∧

477v
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until we obtain forecasts all the observations, that is, . From equation 

(2.4.3), the relationship between the forecasting values of the original series  and the 

forecasting values of 3 days moving average series  can be derived as  

},...,,{ 500477476

∧∧∧

vvv

}{ tx

}{ tv

 . (3.1.14) 21 25.5.75.1 −−

∧∧

−−= tttt xxvx

Hence, after we estimated , we can use the above equation, (3.1.14), to 

solve the forecasting values for .  Figure 3.15 is the residual plot generated by our 

proposed model, and followed by Table 3.7, that includes the basic evaluation statistics. 
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Figure 3.15 Time Series Plot of the Residuals for EWMA3 Model 

 

Table 3.7 Basic Evaluation Statistics for EWMA3 ARIMA 

r   
2
rS  rS  

n
Sr  

0.008076663 0.1573456 0.3966682 0.01773954 
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A detail ranking comparison between models will be illustrated in latter section, and 

Table 3.8 shows a head to head comparison between the actual and predicted price for 

WMA3 ARIMA model. 

Table 3.8 Actual and Predicted Price for EWMA3 ARIMA 
N Actual Price Predicted Price Residuals 

476 26.78 26.86504 -0.0850 
477 26.75 26.80201 -0.0520 
478 26.67 26.79553 -0.1255 
479 26.8 26.69121 0.1088 
480 26.73 26.81608 -0.0861 
481 26.78 26.75107 0.0289 
482 26.27 26.81218 -0.5422 
483 26.12 26.3397 -0.2197 
484 26.32 26.16653 0.1535 
485 25.98 26.30794 -0.3279 
486 25.86 26.02086 -0.1609 
487 25.65 25.94825 -0.2983 
488 25.67 25.68467 -0.0147 
489 26.02 25.71181 0.3082 
490 26.01 26.03114 -0.0211 
491 26.11 26.05992 0.0501 
492 26.18 26.18416 -0.0042 
493 26.28 26.22193 0.0581 
494 26.39 26.31487 0.0751 
495 26.46 26.43036 0.0296 
496 26.18 26.48979 -0.3098 
497 26.32 26.25195 0.0680 
498 26.16 26.34178 -0.1818 
499 26.24 26.19074 0.0493 
500 26.07 26.2655 -0.1955 

The average of these residuals is 0678.0−=r , and the Figure 3.16 is a graph presentation 

of the forecasting result. 
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Figure 3.16 EWMA3 ARIMA Forecasting on the Last 25 Observations 

 

3.2 Forecasting Models on S&P Price Index 

In the following application, we shall use the S&P Price Index, and consider its 

daily closing price for 500 days to constitute the time series . A plot of the actual 

information is given by Figure 3.17. 
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Figure 3.17 Daily Closing Price for S&P Price Index 

 

48 



3.2.1 Data Preparation 

To proceed with the model building processes, we shall first create another three 

time series, namely 3 days moving average time series (MA3), 3 days weighted moving 

average time series (WMA3), and 3 days exponential weighted moving average time 

series (EWMA3) by using the methodologies that we discussed in chapter two.  

Suppose we let  (see Appendix B1) be the daily closing values of the S&P 

Price Index that we mentioned earlier. In order for us to proceed the fitting procedure for 

our first proposed model, we must transform  into a 3 days moving average series 

 (see Appendix B2), a 3 days weighted moving average series  (see Appendix 

B3), and a 3 days exponential weighted moving average series  (see Appendix B4) 

by referring to (3.1.1), (3.1.2), and (3.1.3) respectively. 

}{ tx

}{ tx

}{ ty }{ tz

}{ tv

After finishing all of the above transformations, we end up with 4 sets of different 

time series observations, which are , , , and . Hence, we are now ready 

to proceed with the model fitting procedures. 

}{ tx }{ ty }{ tz }{ tv

In the following sub-sections, we shall follow those step by step procedures as we 

discussed in chapter two for both the classical time series approach and our proposed 

methods.  

 

3.2.2 The General ARIMA Model 

Following the step-by-step procedure that we introduced in Section 2.1, the 

classical forecasting model with the best AIC score is the ARIMA(0,1,2). That is, a 

second order moving average (MA) with a first difference filter. Thus, we can write it as 

 . (3.2.1) tt BBxB ε)1104.0331.1()1( 2−−=−
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After expanding the autoregressive operator and the difference filter, we have 

    ttt BBxx ε)1104.0331.1( 2
1 −−=− −

and the model can be written as 

 211 1104.0331. −−− −−+= ttttt xx εεε    

by letting 0=tε , we have the one day ahead forecasting time series of the closing price 

of stock XYZ as 

 211 1104.0331. −−− −−= tttt xx εε . (3.2.2)  

 Using the above equation, we graph the forecasting values obtained by using the 

classical approach on top of the original time series, shown as Figure 3.2 
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Figure 3.18 Comparisons on Classical ARIMA Model VS. Original Time Series 

 

The basic statistics that reflect the accuracy of model (3.1.5) are the mean r , variance 

, standard deviation  and standard error 2
rS rS

n
Sr  of the residuals. Figure 3.19 gives a 

time series plot of the residual and table 3.9 provides the basic statistics. 

50 



Time

P
ric

e

0 100 200 300 400 500

-4
0

-2
0

0
20

40

 
Figure 3.19 Time Series Plot of the Residuals for Classical Model 

 

Table 3.9 Basic Evaluation Statistics for Classical ARIMA 

r   
2
rS  rS  

n
Sr  

0.5621225 60.76364 7.795104 0.3493070 

 

Furthermore, we restructure the model (3.1.5) with 475=n  data points to forecast 

the last 25 observations only using the previous information. The purpose is to see how 

accurate our forecast prices are with respect to the actual 25 values that have not been 

used. Table 3.10 gives the actual price, predicted price and residuals between the 

forecasts and the 25 hidden values. 
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Table 3.10 Actual and Predicted Price for Classical ARIMA 
N Actual Price Predicted Price Residuals 

476 1422.95 1430.7690 -7.8190 
477 1427.99 1422.8510 5.1390 
478 1440.13 1428.5800 11.5500 
479 1423.9 1439.1420 -15.2420 
480 1422.18 1423.3170 -1.1370 
481 1420.62 1423.8770 -3.2570 
482 1428.82 1420.8820 7.9380 
483 1438.24 1428.8140 9.4260 
484 1445.94 1436.9820 8.9580 
485 1448.39 1444.5870 3.8030 
486 1446.99 1447.3060 -0.3160 
487 1448 1446.6020 1.3980 
488 1450.02 1447.9800 2.0400 
489 1448.31 1449.7950 -1.4850 
490 1438.06 1448.1510 -10.0910 
491 1433.37 1438.5980 -5.2280 
492 1444.26 1434.6300 9.6300 
493 1455.3 1444.4730 10.8270 
494 1456.81 1453.8570 2.9530 
495 1455.54 1455.5140 0.0260 
496 1459.68 1455.2130 4.4670 
497 1457.63 1459.5290 -1.8990 
498 1456.38 1457.2000 -0.8200 
499 1451.19 1456.6180 -5.4280 
500 1449.37 1451.4620 -2.0920 

 

The average of these residuals is 9336.0=r , and the Figure 3.20 is a graph presentation 

of the forecasting result. 
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Figure 3.20 Classical ARIMA Forecasting on the Last 25 Observations 

 

3.2.3 The 3 Days Moving Average ARIMA Models 

Figure 3.21 shows the new time series  along with the original time series , that 

we shall use to develop the proposed forecasting model.  
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Figure 3.21 MA3 Series VS. The Original Time Series 
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Following the procedure we discussed in section 2.2, we found the best model that 

characterizes the behavior of  to be ARIMA(0,1,4). That is,  }{ ty

 . (3.1.3) tt BBBByB ε)1132.1562.8441..96081()1( 432 −−++=−

Expanding the autoregressive operator and the first difference filter, we have 

tttt BBBByy ε)1132.1562.8441..96081( 432
1 −−++=− − .   

and the model can be written as 

 43211 1132.1562.8441.9608. −−−−− −−+++= ttttttt yy εεεεε .   

The final analytical form of the proposed forecasting model can be written as 

 43211 1132.1562.8441.9608. −−−−− −−++= tttttt yy εεεε . (3.1.4) 

Using the above equation, we graph the forecasting values obtained by using the MA3 

ARIMA approach on top of the original time series, shown as Figure 3.22 
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 Figure 3.22 Comparisons on MA3 ARIMA Model VS. Original Time Series 

 
 

Note the very closeness of the two plots that reflect the quality of the proposed model. 
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Similar to the classical model approach that we discussed earlier, we shall use the 

first 475 observations  to forecast . Then we use the observations 

 to forecast , and continue this process until we obtain forecasts all the 

observations, that is, . From equation (2.2.3), we can see the 

relationship between the forecasting values of the original series  and the forecasting 

values of 3 days moving average series ,that is,  

},...,,{ 47521 yyy
∧

476y

},...,,{ 47621 yyy
∧

477y

},...,,{ 500477476

∧∧∧

yyy

}{ tx

}{ ty

 . (3.1.8) 213 −−

∧∧

−−= tttt xxyx

Hence, after we estimated , we can use the above equation, (3.1.8), to 

solve the forecasting values for .  Figure 3.23 is the residual plot generated by the 

MA3 ARIMA model, and followed by Table 3.11, that includes the basic evaluation 

statistics. 
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Figure 3.23 Time Series Plot of the Residuals for MA3 Model 
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Table 3.11 Basic Evaluation Statistics for MA3 ARIMA 

r   
2
rS  rS  

n
Sr  

-
0.0006352779 60.60183 7.784718 0.3488415 

 

Both of the above displayed evaluations reflect on accuracy of the proposed 

model. The actual daily closing prices of stock XYZ from the 476th day along with the 

forecasted prices and residuals are provided in Table 3.12. 

Table 3.12 Actual and Predicted Price for MA3 ARIMA 
N Actual Price Predicted Price Residuals 

476 1422.95 1430.3760 -7.4260 
477 1427.99 1422.7950 5.1950 
478 1440.13 1429.0290 11.1010 
479 1423.9 1438.7110 -14.8110 
480 1422.18 1423.2030 -1.0230 
481 1420.62 1424.5170 -3.8970 
482 1428.82 1420.4510 8.3690 
483 1438.24 1428.5580 9.6820 
484 1445.94 1437.5200 8.4200 
485 1448.39 1444.1100 4.2800 
486 1446.99 1447.1560 -0.1660 
487 1448 1447.2460 0.7540 
488 1450.02 1447.5280 2.4920 
489 1448.31 1449.6110 -1.3010 
490 1438.06 1448.7910 -10.7310 
491 1433.37 1438.1860 -4.8160 
492 1444.26 1434.5520 9.7080 
493 1455.3 1444.9280 10.3720 
494 1456.81 1453.3290 3.4810 
495 1455.54 1455.4640 0.0760 
496 1459.68 1455.7900 3.8900 
497 1457.63 1459.0210 -1.3910 
498 1456.38 1457.0970 -0.7170 
499 1451.19 1457.2440 -6.0540 
500 1449.37 1450.9800 -1.6100 
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The Results given above attest to the good forecasting estimates for the hidden data. The 

average of these residuals is 9551.0=r , and the Figure 3.24 is a graph presentation of 

the forecasting result. 

Time

P
ric

e

0 5 10 15 20 25

14
20

14
30

14
40

14
50

14
60

0 5 10 15 20 25

14
20

14
30

14
40

14
50

14
60

 Original Data
 MA3 ARIMA

 
Figure 3.24 MA3 ARIMA Forecasting on the Last 25 Observations 

 

3.2.4 The 3 Days Weighted Moving Average ARIMA Models 

Figure 3.25 shows the new time series  along with the original time series , that 

we shall use to develop the proposed forecasting model.  
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Figure 3.25 WMA3 Series VS. The Original Time Series 

 

Following the procedure we have stated in section 2.3, we found the best model 

that characterizes the behavior of  to be ARIMA(0,1,2). That is, }{ tz

  (3.1.9) tt BBzB ε)2249.6339.1()1( 2++=−

expand the autoregressive operator and the difference filter, we have 

  ttt BBzz ε)2249.6339.1( 2
1 ++=− −

and the model can be written as  

 211 2249.6339. −−− +++= ttttt zz εεε  

by letting 0=tε , we have the one day ahead forecasting series as 

 211 2249.6339. −−− ++= tttt zz εε  (3.1.10) 

Using the above equation, we graph the forecasting values obtained by using the WMA3 

ARIMA approach on top of the original time series, shown as Figure 3.26 
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Figure 3.26 Comparisons on WMA3 ARIMA Model VS. Original Time Series 

 

Similarly, we shall use the first 475 observations  to forecast . 

Then we use the observations  to forecast , and continue this process 

until we obtain forecasts all the observations, that is, . From equation 

(2.3.3), we can see the relationship between the forecasting values of the original series 

 and the forecasting values of 3 days moving average series ,that is,  

},...,,{ 47521 zzz
∧

476z

},...,,{ 47621 zzz
∧

477z

},...,,{ 500477476

∧∧∧

zzz

}{ tx }{ tz

 
3

26 21 −−

∧
∧ −−
= ttt

t
xxzx . (3.1.11) 

Hence, after we estimated , we can use the above equation, (3.1.11), to 

solve the forecasting values for .  Figure 3.27 is the residual plot generated by our 

proposed model, and followed by Table 3.13, that includes the basic evaluation statistics. 
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Figure 3.27 Time Series Plot of the Residuals for WMA3 Model 

 

Table 3.13 Basic Evaluation Statistics for WMA3 ARIMA 

r   
2
rS  rS  

n
Sr  

-0.005440737 60.87297 7.802113 0.3496211 

 

A detail ranking comparison between models will be illustrated in a later section, and 

Table 3.14 shows a head to head comparison between the actual and predicted price for 

WMA3 ARIMA model. 
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Table 3.14 Actual and Predicted Price for WMA3 ARIMA 
N Actual Price Predicted Price Residuals 

476 1422.95 1430.643 -7.6930 
477 1427.99 1422.655 5.3350 
478 1440.13 1428.753 11.3770 
479 1423.9 1438.699 -14.7990 
480 1422.18 1423.973 -1.7930 
481 1420.62 1424.451 -3.8310 
482 1428.82 1419.478 9.3420 
483 1438.24 1428.872 9.3680 
484 1445.94 1437.154 8.7860 
485 1448.39 1445.274 3.1160 
486 1446.99 1448.124 -1.1340 
487 1448 1447.094 0.9060 
488 1450.02 1448.109 1.9110 
489 1448.31 1449.747 -1.4370 
490 1438.06 1448.302 -10.2420 
491 1433.37 1438.673 -5.3030 
492 1444.26 1434.242 10.0180 
493 1455.3 1443.687 11.6130 
494 1456.81 1453.938 2.8720 
495 1455.54 1456.578 -1.0380 
496 1459.68 1455.873 3.8070 
497 1457.63 1459.531 -1.9010 
498 1456.38 1457.274 -0.8940 
499 1451.19 1456.895 -5.7050 
500 1449.37 1451.229 -1.8590 

 

The average of these residuals is 8329.0=r , and the Figure 3.28 is a graph presentation 

of the forecasting result. 
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Figure 3.28 WMA3 ARIMA Forecasting on the Last 25 Observations 

 

3.2.5 The 3 Days Exponential Weighted Moving Average ARIMA Models 

Figure 3.29 shows the new time series  along with the original time series , that 

we shall use to develop the proposed forecasting model.  

}{ ty }{ tx

Time

P
ric

e

0 100 200 300 400 500

11
50

12
00

12
50

13
00

13
50

14
00

14
50

0 100 200 300 400 500

11
50

12
00

12
50

13
00

13
50

14
00

14
50

 Original Data
 EWMA3

 
Figure 3.29 EWMA3 Series VS. The Original Time Series 
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Following the procedure we have stated in section 2.4, we found the best model 

that characterizes the behavior of to be ARIMA(3,1,2), that is,  }{ tv

  (3.1.12) tt BBvBBBB ε)1946.5144.1()1)(0671.1296.9617.1( 3232 −−=−++−

expand the autoregressive operator and the difference filter, we have 

   tt BBvBBBB ε)1946.5144.1()0671.1967.0913.19617.11( 32432 −−=−++−

and rewrite the model as 

 214321 1946.5144.0671.1967.0913.19617.1 −−−−−− −−++−−= tttttttt vvvvv εεε  

by letting 0=tε , we have the one day ahead forecasting series as 

  214321 1946.5144.0671.1967.0913.19617.1 −−−−−− −−+−−= ttttttt vvvvv εε  (3.1.13) 

Using the above equation, we graph the forecasting values obtained by using the 

EWMA3 ARIMA approach on top of the original time series, shown as Figure 3.30 
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Figure 3.30 Comparisons on EWMA3 ARIMA Model VS. Original Time Series 

Similarly, we shall use the first 475 observations  to forecast . 

Then we use the observations  to forecast , and continue this process 

},...,,{ 47521 vvv
∧

476v

},...,,{ 47621 vvv
∧

477v
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until we obtain forecasts all the observations, that is, . From equation 

(2.4.3), the relationship between the forecasting values of the original series  and the 

forecasting values of 3 days moving average series  can be derived as  

},...,,{ 500477476

∧∧∧

vvv

}{ tx

}{ tv

 . (3.1.14) 21 25.5.75.1 −−

∧∧

−−= tttt xxvx

Hence, after we estimated , we can use the above equation, (3.1.14), to 

solve the forecasting values for .  Figure 3.31 is the residual plot generated by our 

proposed model, and followed by Table 3.15, that includes the basic evaluation statistics. 
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Figure 3.31 Time Series Plot of the Residuals for EWMA3 Model 

 

Table 3.15 Basic Evaluation Statistics for EWMA3 ARIMA 

r   
2
rS  rS  

n
Sr  

0.01651362 60.42038 7.773055 0.3483189 
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A detail ranking comparison between models will be illustrated in latter section, and 

Table 3.16 shows a head to head comparison between the actual and predicted price for 

WMA3 ARIMA model. 

Table 3.16 Actual and Predicted Price for EWMA3 ARIMA 
N Actual Price Predicted Price Residuals 

476 1422.95 1430.186 -7.2360 
477 1427.99 1422.34 5.6500 
478 1440.13 1428.754 11.3760 
479 1423.9 1438.368 -14.4680 
480 1422.18 1423.878 -1.6980 
481 1420.62 1424.578 -3.9580 
482 1428.82 1419.391 9.4290 
483 1438.24 1428.912 9.3280 
484 1445.94 1437.024 8.9160 
485 1448.39 1445.242 3.1480 
486 1446.99 1447.595 -0.6050 
487 1448 1446.488 1.5120 
488 1450.02 1447.386 2.6340 
489 1448.31 1449.043 -0.7330 
490 1438.06 1447.769 -9.7090 
491 1433.37 1438.381 -5.0110 
492 1444.26 1434.177 10.0830 
493 1455.3 1443.617 11.6830 
494 1456.81 1453.801 3.0090 
495 1455.54 1456.459 -0.9190 
496 1459.68 1455.642 4.0380 
497 1457.63 1458.982 -1.3520 
498 1456.38 1456.648 -0.2680 
499 1451.19 1456.533 -5.3430 
500 1449.37 1450.962 -1.5920 

 

The average of these residuals is 1166.1=r , and the Figure 3.32 is a graph presentation 

of the forecasting result. 
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Figure 3.32 EWMA3 ARIMA Forecasting on the Last 25 Observations 

 

3.3 Evaluations on Proposed Models VS. Classical Method 

In the previous sections, we have discussed the classical ARIMA, MA3 ARIMA, WMA3 

ARIMA, and EWMA3 ARIMA models on both stock XYZ and S&P Price Index. We 

shall now compare the performance of each model through examining their basic 

statistical properties. The Following Table 3.17 shows the comparison between models 

for stock XYZ. 

Table 3.17 Ranking Comparison on stock XYZ 

 r  2Sr r S  
n

Sr  Order 

Classical ARIMA 0.02209169 0.1445187 0.3801562 0.0170011 1,1,2 

MA3 ARIMA 0.01016814 0.1437259 0.3791119 0.01698841 2,1,3 

WMA3 ARIMA 0.00866631 0.1578446 0.3972966 0.01776764 1,1,3 

EWMA3 ARIMA 0.008076663 0.1573456 0.3966682 0.01773954 3,1,2 
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According to Table 3.17 the MA3 ARIMA model performs best on forecasting stock 

XYZ compare to other models. 

Table 3.18 Ranking Comparison on S&P Price Index 

 r  2Sr r S  
n

Sr  RANK 

Classical ARIMA 0.5621225 60.76364 7.795104 0.3493070 0,1,2 

MA3 ARIMA -0.0006352779 60.60183 7.784718 0.3488415 0,1,4 

WMA3 ARIMA -0.005440737 60.87297 7.802113 0.3496211 0,1,2 

EWMA3 ARIMA 0.01651362 60.42038 7.773055 0.3483189 3,1,2 

 

According to Table 3.18 the EWMA3 ARIMA model performs best on forecasting S&P 

Price Index among all models. In addition, the MA3 ARIMA model also performs better 

than the classical ARIMA model; it speaks out the quality of our proposed models. 

 

3.4 Conclusion 

In the present chapter, we try to show the usefulness and effectiveness of our 

proposed models by applying them on two different economic time series, namely the 

daily closing price of Stock XYZ and the daily closing price of S&P Price Index. In both 

cases, once we obtained our proposed models we compare them with the classical 

approach and rank their efficiency by examining some basic statistical criteria of the 

residuals. In addition, by hiding the last 25 observations and trying to predict the future 

information, we are able to show that our proposed models perform well without 

knowing the future information. The encouraging results speak out the quality of the 

models. 
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Chapter 4 

Global Warming: Atmospheric Temperature Forecasting Model 

4.0 Introduction 

 Temperature plays a very important role in Global Warming and its relation with 

Carbon Dioxide. The aim of the present chapter is to develop a statistical forecasting 

model for the temperature in the Continental United States. There are two methods being 

used in recording temperatures and we shall refer them as Version 1 (see Appendix C1) 

and Version 2 (see Appendix C2) data sets. Thus, an additional aim in the present study is 

to determine if the two methods of recording temperatures are indeed different. Version 1 

data was collected by the United States Climate Division, USCD, and Version 2 data by 

the United States Historical Climatology Network, USHCN. 

The Version 1 dataset consists of monthly mean temperature and precipitation for 

all 344 climate divisions in the contiguous U. S. from January 1895 to June 2007. The 

data is adjusted for time of observation bias. However, no other adjustments are made for 

inhomogeneities. These inhomogeneities include changes in instrumentation, observer, 

and observation practices, station and instrumentation moves, and changes in station 

composition resulting from stations closing and opening over time within a division. For 

additional information concerning Version 1 of the data, see (Easterling & Peterson, 

1995; Karl et al., 1986; Karl & Williams, 1987; Karl et al., 1988; Karl et al., 1990; 

Peterson & Easterling, 1994; Quayle et al., 1991). A graphical presentation of the 

Version 1 dataset is given by Figure 4.1.  
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Figure 4.1 Time Series Plot for Monthly Temperature for 1895-2007 (Version 1) 

 

The Version 2 dataset was first become available in July 2007, and it consists of 

data from a network of 1219 stations in the contiguous United States that were defined by 

scientists at the Global Change Research Program of the U. S. Department of Energy at 

National Climate Data Center. A methodology was developed and applied to test known 

station changes for their impact on the homogeneity, and necessary adjustments were 

made if the changes caused a statistically significant response in the time series. They 

claim that the data set is a consistent network through time, which minimizes any biasing 

due to network changes through time. For information on Version 2 of the time series, 

see (Alexandersson & Moberg, 1997; Baker, 1975; Easterling et al., 1996; Easterling et 

al., 1999; Hughes et al., 1992; Karl et al., 1990; Karl et al., 1988; Karl et al., 1986; Karl 

& Williams, 1987; Lund & Reeves, 2002; Menne & Williams, 2005; Quinlan et al., 1987; 

Vose et al., 2003; Wang, 2003). A graphical presentation of the Version 2 dataset is given 

by Figure 4.2. 
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Figure 4.2 Time Series Plot for Monthly Temperature for 1895-2007 (Version 2) 
 

4.1 Analytical Procedure 

The multiplicative seasonal autoregressive integrated moving average, ARIMA 

model is defined by 

  (4.1.1)   t
s

Qqt
Dsd

p
s

P BBxBBBB εθφ )()()1()1)(()( Γ=−−Φ

where p is the order of the autoregressive process, d is the order of regular differencing, q 

is the order of the moving average process, P is the order of the seasonal autoregressive 

process, D is the order of the seasonal differencing, Q is the order of the seasonal moving 

average process, and the subindex s refers to the seasonal period. We shall denote the 

subject model by ARIMA sQDPqdp ),,(),,( × , and  defined 

as follows: 

)(),(),(),( s
q

s
Pqp BBBB ΓΦθφ

   )...1()( 2
21

p
pp BBBB φφφφ −−−−=

   )...1()( 2
21

q
qq BBBB θθθθ −−−−=

   Ps
P

sss
P BBBB Φ−−Φ−Φ−=Φ ...1)( 2

21
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and 

 .  Qs
Q

sss
Q BBBB Γ−−Γ−Γ−=Γ ...1)( 2

21

The order of the multiplicative ARIMA model determines the structure of the 

model and it is essential to have a good methodology in terms of developing the 

forecasting model. In the present study, we start with addressing the issue of the seasonal 

subindex s. After we examine the original data, shown by Figure 4.1 and 4.2, we have 

reason to believe the monthly temperature of the Continental United States behaves as a 

periodic function with a cycle of 12 months. Hence, we let the seasonal subindex 12=s .  

In time series analysis, one cannot proceed with a model building procedure without 

confirming the stationarity of a given stochastic realization, thus, we test the overall 

stationarity of the series by using the method introduced by Kwiatkowski, D., Phillips, P. 

C. B., Schmidt, P., and Shin, Y in 1992, (Kwiatkowski et al., 1992).  

Once the order of the differencing is identified, it is common for one 

ARIMA  model that we have several sets of  that are all 

adequately representing a given set of time series. Akaike’s information criterion, AIC, 

(Akaike, 1974), was first introduced by Akaike in 1974 plays a major role in our model 

selecting process. We shall choose the set of   that produces the smallest AIC.  

sQDPqdp ),,(),,( × ),,,( QPqp

),,,( QPqp

Another important aspect in our model selection process is to determine the seasonal 

differencing, D, the goal is to select a smaller AIC without complicating the selected 

model. Hence, we only compute the AIC for both 0=D  and 1=D  based on our 

previous selection of the orders ( ), and choose the model with smaller AIC to 

be our final model.  

QPqdp ,,,,

Below we summarize the model identifying procedure: 
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• Determine the seasonal period s. 

• Check for stationarity of the given time series  by determining the order of 

differencing d, where 

}{ tx

,...2,1,0=d  according to KPSS test, until we achieve 

stationarity. 

• Deciding the order m  of the process, for our case, we let  where 

. 

5=m

mQPqp =+++

• After  being selected, listing all possible configurations of  for 

. 

),( md ),,,( QPqp

mQPqp ≤+++

• For each set of , estimates the parameters for each model, that is, ),,,( QPqp

QPqp ΓΓΓΦΦΦ ,...,,,,...,,,,...,,,,...,, 21212121 θθθφφφ . 

• Compute the AIC for each model, and choose the one with smallest AIC. 

• After ( ) is selected, we determine the seasonal differencing filter by 

selecting the smaller AIC between the model with 

QPqdp ,,,,

0=D  and . 1=D

• Our final model will have identified the order of ( ). QDPqdp ,,,,,

   

4.2. Development of Forecasting Models 

The historical temperature data for the continental United States that we shall use 

are shown by Figure 4.1 and 4.2. A visual inspection does not show any obvious trends 

being present. Thus, we let the seasonal period 12=s . Following the step-by-step 

procedure we described above, we found that the model best characterizes the average 

monthly temperature of the Continental United States for both Version 1 and 2 is a 

ARIMA(2,1,1) (1,1,1)12  process, analytical given by ×

72 



  (4.2.1) tt BBxBBBBB εθφφ )1)(1()1)(1)(1)(1( 12
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Expanding both sides of the above ARIMA, we have 
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Simplify it, we get 
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Thus, the one-step ahead forecasting model for Version 1 data is given by 

  (4.2.2) 
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and the one-step ahead forecasting model for Version 2 data is given by 

  (4.2.3) 
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Note the closeness of the two forecasting models. 

 

4.3 Evaluation of the Proposed Models 

 We begin by forecasting for the last one hundred observations the monthly 

average temperature in the Continental United States for both Version 1 and 2, using the 

models given by expression 4.2.2 and 4.2.3. A graphical presentation of the results is 

presented below by Figure 4.3 and 4.4. 
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Figure 4.3 Actual VS. Predicted Values for Version 1 Dataset 
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Figure 4.4 Actual VS. Predicted Values for Version 2 Dataset 

 

As can be observed that both models are similar and the one-step ahead forecasting is 

quite good, except the temperature of January 2006 took an unexpected turn. We identify 

this inconsistency as a possible outlier. 

74 



We proceed to calculate the residuals estimates, , for both forecasting 

process given by (4.2.2) and (4.2.3). The results are graphically presented below by 

Figure 4.5 and 4.6. 
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Figure 4.5 Residual Plot for Monthly Temperature (Version 1 Dataset) 
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Figure 4.6 Residual Plot for Monthly Temperature (Version 2 Dataset) 
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We observe that the residuals are quite small and isolating around the zero axis as 

expected. It indicates that both models are good models in predicting the Version 1 and 

Version 2 of the time series. 

Next, we evaluate the mean of the residuals, r , the variance, , the standard 

deviation, , standard error, SE, and the mean square error, MSE. The results are 

presented below by Table 4.1 and 4.2, for Version 1 and Version 2 data, respectively.  

2
rS

rS

 

Table 4.1 Basic Evaluation Statistics (Version 1 Dataset) 

r  2Sr r SE MSE S    

-0.008512476 4.331902 2.081322 0.05673052 4.328756 

 

Table 4.2 Basic Evaluation Statistics (Version 2 Dataset) 

r  2Sr r SE MSE S    

-0.01310953 4.323726 2.079357 0.05667696 4.320685 

 

We observe that all evaluation criteria support the quality of the proposed forecasting 

model. We can also conclude the similarity of the two models. Thus, it raises the question 

is the effort to collect two data sets implement two different procedures by two agencies 

necessary?   

We have demonstrated that our proposed models are capable of representing the 

past monthly average temperature of the Continental United States, it is also essential to 

show that these models are also capable of forecasting the future values of the 

temperature. Therefore, we hide the last 12 months of the temperature, restructure the 
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models (4.2.2) and (4.2.3) and try to predict the following months only using the previous 

information. For example, we used the first 1334 observations  to forecast 

. Then we use the observations  to forecast , and continue this 

process until we obtain the forecasting values of the last 12 observations, that is, 

. Table 4.3, gives the actual, forecasting and residual data for the 

subject 12 months. 

},...,,{ 133421 xxx

∧

1335x },...,,{ 133521 xxx
∧

1336x

},...,,{ 134613361335

∧∧∧
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Table 4.3 Original VS. Forecast Values (Version 1 Dataset) 
 Original Values Forecast Values Residuals 

March 2006 43.31 44.0291 -0.7191 

April 2006 56.03 53.1361 2.89395 

May 2006 63.06 62.5318 0.52821 

June 2006 71.44 70.6153 0.82467 

July 2006 77.1 75.5855 1.51453 

August 2006 74.1 74.2054 -0.1054 

September 2006 63.69 66.6904 -3.0004 

October 2006 52.97 55.4991 -2.5291 

November 2006 44.68 43.2673 1.41275 

December 2006 36.64 34.6357 2.00433 

January 2007 31.39 32.58 -1.19 

February 2007 32.86 36.2024 -3.3424 
 

Figure 4.7 below gives a graphical presentation of the information presented in Table 4.3 

for Version 1 observed time series. 
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Figure 4.7. Actual VS. Predicted Values for the Last 12 Observations (Version 1) 

 

Similarly, for Version 2 of the data set, we have calculated the estimates 

presented by Table 4.4. 

Table 4.4 Original VS. Forecast Values (Version 2 Dataset) 
 Original Values Forecast Values Residuals 

March 2006 43.45 44.1812 -0.7312 

April 2006 56.12 53.2506 2.86942 

May 2006 63.12 62.6351 0.48486 

June 2006 71.55 70.7152 0.83478 

July 2006 77.22 75.6947 1.52532 

August 2006 74.19 74.3167 -0.1267 

September 2006 63.86 66.8069 -2.9469 

October 2006 53.13 55.6137 -2.4837 

November 2006 44.58 43.3947 1.18529 

December 2006 36.79 34.7224 2.06761 

January 2007 31.46 32.6854 -1.2254 

February 2007 32.86 36.3025 -3.4425 
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A graphical presentation of the results given in Table 4.4 are given below by Figure 4.8. 
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Figure 4.8 Actual VS. Predicted Values for the Last 12 Observations (Version 2) 

 

We remark the similarity of the results of both models and the good forecast values.  

 

4.4 Conclusion 

In the present study, we have developed two seasonal autoregressive integrated 

moving average models to forecast the monthly average temperature in degrees 

Fahrenheit in the Continental United States using historical monthly data from 1895-

2007. The two statistical models are based on two different methods of recording and 

weighting the subject temperature namely, USCD (Version 1) and USHCN (Version 2). 

Although the two different sets of data are somewhat similar, we believe from a statistical 

perspective that the one from USHCN is more appropriate to use. The two developed 

statistical models were evaluated using various statistical criteria and it was shown that 

both forecasting processes produced good estimates of the subject matter. 
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Chapter 5 

Global Warming: Carbon Dioxide Proposed Forecasting Model 

5.0 Introduction 

Global Warming is one of the most compelling and difficult problems facing our 

society. It is well understood that carbon dioxide (CO2), along with temperature are the 

primary causes of global warming. The present study is concerned with developing 

analytical statistical models to predict CO2. Jim Verhulst, Perspective Editor, St. 

Petersburg Times, writes, “Carbon dioxide is invisible- no color, no odor, no taste. It puts 

out fires, puts the fizz in seltzer, and is to plants what oxygen is to us. It is hard to think 

of it as a poison.” (Verhulst 2007). The United States is emitting approximately 5.91221 

billion metric tons of carbon dioxide in the atmosphere, which makes us one of the World 

leaders. In addition to CO2 in the atmosphere, we have CO2 emissions that are related to 

gas, liquid, and solid fuels along with gas flares and cement production.    

The aim of the present chapter is to develop two different statistical models for 

the carbon emissions and atmospheric carbon dioxide in the United States using historical 

data from the subject matter.  

 

5.1 Carbon Dioxide Emission Modeling 

The CO2 emissions data set that we used to develop the proposed model contains 

the monthly emissions data from 1981 to 2003 (see Appendix D). It was published by 

Carbon Dioxide Information Analysis Center (CDIAC), which is supported by the United 



States Department of Energy. The CDIAC is a well known organization, which responds 

to data and information requests from users worldwide investigating the greenhouse 

effect and global climate change. For detailed information, see (United States 

Environmental Protection Agency (EPA), 2004; Marland et al., 2003). A graphical 

presentation of the emissions data is given by Figure 5.1. 
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Figure 5.1 Time Series Plot on CO2 Emission 1981-2003 

 

In forecasting the CO2 emission, we start with addressing the issue of the seasonal 

subindex s. After we examine the original dataset, shown by Figure 5.1, we note that the 

monthly CO2 emission behaves as a periodic function with a cycle of 12 months and 

contains a small upward trend. Thus, we let the seasonal subindex . Follow by the 

step-by-step procedure as we described in section 4.2, we found the model that best 

characterizes the monthly emissions of the United States is an ARIMA(1,1,2) (1,1,1)12  

process, analytically given by 

12=S

×

  (5.1.1) tt BBBxBBBB εθθφ )1)(1()1)(1)(1)(1( 12
1

2
21

12
1

12
1 Γ−−−=−−−Φ−
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After expanding both sides of model (5.1) and estimate its coefficients. The final 

statistical model for CO2 emission, , with the appropriate estimate of the weights 

are given by 

∧

E
CO2

 (5.1.2) 
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1234.09988.0002549.0007449.00049.0
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xxxxxCO
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εεε
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Once we obtained proper coefficients, we shall proceed to evaluate the proposed model 

and illustrate the quality of the model. 

The forecasting values that obtained from the proposed statistical model, (5.1.2), 

for CO2 emissions in the United States is graphically presented Figure 4.2. 
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Figure 5.2 Actual VS. Predicted Values for CO2 Emission 1981-2003 

 

As can be observed, the predicted values follow the actual values of CO2 

Emission closely. It indicates that the overall quality of the model is good. We shall 
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proceed to calculate the residuals estimates, , and the results are graphically 

presented below by Figure 5.3 

∧
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Figure 5.3 Residuals Plot for CO2 Emissions 

 

The residuals are quite small and isolating around the zero axis as expected. It 

indicates that the proposed model forecasts the CO2 emissions closely in the United 

States.  

The mean of the residuals, r , the variance, , the standard deviation, , 

standard error, SE, and the mean square error, MSE, are presented below by Table 5.1. 

2
rS rS

 

Table 5.1 Basic Evaluation on CO2 Emissions Model 

r  2Sr r S  SE  MSE  

0.2339641 8.055668 2.838251 0.1708426 8.08122 
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We observe that all evaluation criteria support the quality of the proposed 

forecasting model for CO2 emissions.  

We now proceed to further evaluate model (5.1.1) hiding the last 12 months of the 

CO2 recordings and re-estimating the coefficients of the model (5.1.1). Having 

restructured the model (5.1.1) we proceed to estimate the hidden recordings. For example, 

we used the first 264 observations  to forecast . Then we use the 

observations  to forecast , and continue this process until we obtain 

the forecasting values of the last 12 observations, that is, . Table 5.2, 

gives the actual, forecasting and residual data for the subject 12 months. 

},...,,{ 26421 xxx
∧
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},...,,{ 26521 xxx
∧

266x
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∧∧∧

xxx

Table 5.2 Original VS. Forecasting Values on CO2 Emissions Model 

 Original Values Forecast Values Residuals 

January 2003 147.6298 145.2361 2.3937 

February 2003 134.1716 132.6554 1.5162 

March 2003 133.6979 137.3912 -3.6933 

April 2003 121.0047 124.5518 -3.5471 

May 2003 120.4789 122.4091 -1.9302 

June 2003 120.7394 123.101 -2.3616 

July 2003 132.4187 129.3481 3.0706 

August 2003 135.1314 132.787 2.3444 

September 2003 121.7753 123.8295 -2.0542 

October 2003 125.2487 125.9811 -0.7324 

November 2003 126.2127 126.812 -0.5993 

December 2003 143.1509 141.1834 1.9675 
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Note the closeness between the original and forecast values. A graphical 

presentation of the results given in Table 4.2 is given below by Figure 5.4. 
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Figure 5.4 Monthly CO2 Emission VS. Forecast Values for the Last 12 Observations 

 

It can be seen that the predicted values produced by our proposed model follow 

the actual values of CO2 Emissions closely. It not only shows that our proposed model is 

capable of forecasting CO2 Emissions without using any future information but also 

speaks out the usefulness of the model.  

 

5.2 Atmospheric Carbon Dioxide Modeling 

The data set that we used to develop our second proposed model consists of 

monthly CO2 concentrations in the atmosphere from 1958 to 2004 (see Appendix E). The 

data was collected in Mauna Loa by Carbon Dioxide Research Group, Scripps Institution 

of Oceanography, University of California. A map of geographical location of Mauna 

Loa is provided by Figure 5.5.  
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Figure 5.5 Geographical Location of Mauna Loa 

 

At the earlier stage of our model building process, we spot several missing values 

in the early 1960s. To address this problem, we decided to use the data from 1965 to 

2004, which is a period which contains no missing values. For additional information 

concerning the data set on CO2 concentrations in the atmosphere, see (Bacastow, 1979; 

Bacastow & Keeling, 1981; Bacastow et al., 1980; Bacastow et al., 1985; Keeling, 1960; 

Keeling, 1984; Keeling, 1998; Keeling et al., 1976; Keeling et al., 1982; Keeling et al., 

1989; Keeling et al., 1996; Keeling et al., 1995; Pales & Keeling, 1965; Keeling et al., 

2002; Whorf & Keeling, 1998).  

A plot of the actual CO2 concentration in the atmosphere is given by Figure 5.6. It 

provides a visual presentation of the time series plot of CO2 concentrations in the 

atmosphere. 
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Figure 5.6 Time Series Plot for Monthly CO2 in the Atmosphere 1965-2004 
 

In forecasting the atmospheric CO2, we begin by addressing the issue of the 

seasonal subindex s. After we examine the original data sets, shown by Figure 5.6, we 

note that the CO2 in the atmosphere data has a more obvious upward trend compare to the 

CO2 emission and the shape of its pattern is almost identical every year, as shown by 

Figure 5.6. Thus, we set the seasonal period 12=S . We have identified that the model 

that best described the monthly CO2 concentrations in the atmosphere according to the 

procedure that we discussed in section 4.2 is an ARIMA(2,1,0)× (2,1,1)12  process, 

analytically given by 

 (5.2.1) tt BxBBBBBB εφφ )1()1)(1)(1)(1( 12
1

122
21

24
2

12
1 Γ−=−−−−Φ−Φ−

After expanding both sides of model (5.2.1) and estimate its coefficients. The final 

statistical model for atmospheric CO2, , with the appropriate estimate of the 

weights are given by 

∧

A
CO2
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We shall proceed to evaluate these models and illustrate the quality of both models in the 

next section. 
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Figure 5.7 Actual VS. Predicted Values for Atmospheric CO2 1965-2004 

 

Obviously, this graphical presentation attests to show the quality of the proposed model. 

A plot of the residuals is given by Figure 5.8 below. 
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Figure 5.8 Residuals Plot for Atmospheric CO2

 

The residuals of our proposed model are very small and isolating around the zero axes. It 

illustrates the quality of the model. The following Table 5.3 gives a basic evaluation 

statistics of the proposed model. 

Table 5.3 Basic Evaluation on Atmospheric CO2 Model 

r  2Sr r S  SE  MSE  

0.01140137 0.08460756 0.2908738 0.01327651 0.08456128 

 

These results also confirm the effectiveness of the proposed model for forecasting CO2 in 

the atmosphere. 

We shall use the same technique as we used in the previous application to 

illustrate the quality of our proposed model in terms of forecasting values in the future. 

Again, we hide the last 12 months of atmospheric CO2 recordings and try to predict them 

only using the information from the past. Table 5.4 gives the numerical comparison 

between the original series and the forecasting. 
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Table 5.4 Original VS. Forecasting Values on Atmospheric CO2 Model 
 Original Values Forecast Values Residuals 

January 2004 376.79 376.7963 -0.0063 

February 2004 377.37 377.609 -0.239 

March 2004 378.41 378.1837 0.2263 

April 2004 380.52 379.6653 0.8547 

May 2004 380.63 380.8268 -0.1968 

June 2004 379.57 380.2339 -0.6639 

July 2004 377.79 378.3489 -0.5589 

August 2004 375.86 375.837 0.023 

September 2004 374.06 374.1871 -0.1271 

October 2004 374.24 374.1482 0.0918 

November 2004 375.86 375.6897 0.1703 

December 2004 377.48 377.2186 0.2614 
 

The residuals that were calculated are shown by Table 5.4 are all very small, and a 

graphical presentation of the results is given below by Figure 5.9. 
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Figure 5.9 Actual VS. Predicted Values for CO2 in the Atmosphere 
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Thus, we can conclude that the proposed model (5.2.1), forecasts very well on the future 

behavior of CO2  in the atmosphere. 

 

5.3 Conclusion 

We have developed two non-stationary time series statistical models with trend 

and seasonal effects to predict future estimates of carbon dioxide emissions and that in 

the atmosphere. We use actual CO2 recordings in both situations to develop the subject 

statistical models. The developed processes were evaluated to attest the degree of quality 

by using various statistical criteria. Finally, we tested the accuracy of the proposed 

models by predicting and analyzing the CO2 emission and atmosphere for 12 months. The 

results are very encouraging. 
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Chapter 6 

Global Warming: Temperature & Carbon Dioxide Prediction Modeling 

 

6.0 Introduction 

The object of the present chapter is to propose forecasting models for the monthly 

Carbon Dioxide in the atmosphere and monthly temperature of the Continental United 

States. The approach of the subject model is to use regression analysis on the monthly 

temperature of Continental United States to explain the difference of the monthly Carbon 

Dioxide and vice versa. Therefore, the final form of the subject models is a combination 

of regression model based on monthly temperature predicting the difference of the 

monthly Carbon Dioxide adding a time series term of the previous month atmospheric 

Carbon Dioxide.  

 

6.1 Relationship between Carbon Dioxide & Temperature 

Many studies have been done in the subject of Global Warming. In fact, it is 

common to use time series analysis to form a forecasting model when historical 

information is available. Shih & Tsokos introduces the time series approach on 

forecasting both temperature of the Continental United States and Carbon Dioxide in the 

atmosphere. In the present study, we take the monthly temperature of the Continental 

United States from 1965 to 2004 along with the monthly atmospheric CO2 from 1965 to 

2004 and try to explore the relationship between those two. Figure 6.1 is the illustration 



of the time series plot on monthly temperature of the Continental United States from 

1965 to 2004. 
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Figure 6.1 Monthly Atmospheric Carbon Dioxide from 1965 to 2004 

 
Obviously, the monthly atmospheric CO2 behave as a periodic function and has a 

stable upward trend present at all time period. Since there are total of 480 observations, 

we denote them as . Figure 6.2 is the time series plot of the mean  48021 ,...,, xxx

temperature of the Continental United States from 1965 to 2004.   
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Figure 6.2 Monthly Temperature of the Continental United States from 1965 to 2004 



It is expected that the average monthly temperature of the Continental United 

States behave as a periodic function with a clear seasonal variation that is obvious to 

identify. Similar to the CO2 data, we denote the 480 temperature observations as 

. The correlation coefficient is defined as  48021 ,...,, yyy

 ∑ −
•

−
−

=
yx s
yy

s
xx

n
r )()(

1
1  (6.1.1) 

By using (6.1.1), we calculated the correlation coefficient between the 

temperature and CO2 and found 04704972.0=r , which does not show much relationship 

between those two variables.  

In order for our proposed model to be accurate, it is important to have high 

correlation coefficient to drive the regression part of the subject model. Hence, a filtering 

process becomes necessary during our model building procedure. Consider the following 

difference filter 

 1)1( −−=− ttt xxxB  (6.1.2) 

It is obvious that the atmospheric CO2 series contains an upward trend, but the 

temperature series doesn’t. Hence, removing the upward trend from the atmospheric CO2 

series is the first step of our model building procedure. By applying (6.1.2), we can 

produce the differencing series of the atmospheric CO2, denote as . Where 47921 ,...,, zzz

 tt xBz )1( −=  (6.1.3) 

Figure 6.3 gives the time series plot of the first order differencing atmospheric CO2 series. 
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Figure 6.3 First Order Differencing Monthly Atmospheric CO2 Series 

 
It can be seen that the differencing filter has remove the upward trend from the 

atmospheric CO2 series, and turn it into a periodic function similar to the temperature 

series. After the examination of the temperature and the differencing series, we want to 

compare both series by graphing both series on a time series plot. Figure 6.4 shows the 

illustration of that subject matter. 
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Figure 6.4 The Temperature Series VS. The Differencing CO2 Series 
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The purpose of our next several transformations is to bring the temperature series 

to the same level as the CO2 series, so we can force a correlation between two series. We 

begin with computing the mean of both series using (6.1.4). 

 
n

x
x

n

i
i∑

== 1  (6.1.4) 

We found the mean of the temperature series is 53.03569, and the mean of the 

differencing CO2 series is 0.1211691. Hence, the first transformation is to subtract 

52.91452 from the temperature series. That is =d

 dyu tt −=  (6.1.5) 

Therefore, after the transformation (6.1.5), both series have the same mean as a periodic 

function. We then examine the minimum and maximum of both series. The following 

Table 6.1 gives a comparison on both series. 

Table 6.1 Comparison between Two Series 
Series Minimum Maximum Difference 

Temperature -30.5357 23.51431 54.05 

CO2 -2.53 2.11 4.64 

  Ratio 11.64871 
 

After the examination of both series, it is important to determine the ratio between 

both series, because it plays a major role on our next transformation. 

 
64871.11

t
t

u
v =  (6.1.6) 

After the 2nd transformation being made, we examine the time series plot on both series, 

shown as Figure 6.5. 
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Figure 6.5 Comparison between Both Series After Transformations 

 

It is obvious that both series behave as periodic functions at the same level. By 

examine the cross correlation function of the two, we can find the lag that shall give us 

the highest correlation. Consider two series  and , where ix iy 1,...,2,1,0 −= ti . The cross 

correlation r at delay d is defined as  

 
∑∑

∑
−−

−−
=

−

i
i

i
i

i
dii

yyxx

yyxx
r

22 )()(

)])([(
 (6.1.7) 

We then plot the cross correlation at different lag between the difference 

atmospheric CO2 and temperature on Figure 6.6.  
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Figure 6.6 Cross Correlation at Different Lag 

 
After reviewing the cross correlation function shown as Figure 6, it is clear to see 

that there exists a negative correlation between the difference of atmospheric CO2 and the 

temperature at lag 0, because r  is the maximum at lag 0. Hence we can now calculate 

the correlation coefficient between these two series by using (6.1.1), and we have 

, which indicate a negative linear relationship between two series. -0.8109993=r

 

6.2 Carbon Dioxide & Temperature Model-01 

The aim of this section is to develop a model for the atmospheric CO2 knowing 

the monthly temperature. Since all transformations being made are invertible, we can go 

ahead build the regression model first, and then use backward filter to solve back the 

original series. Let the first 479 observations of the temperature series after 

transformations be . The simple regression model formulated between series 

 and  is 

47921 ,...,, vvv

tz tv
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  (6.2.1) tt vz 7640.01319.0 −=
∧

The simple regression model given by equation (6.2.1) indicates the difference of 

the atmospheric CO2 is explained by the transforming temperature series. In addition, we 

can solve back the original atmospheric CO2 and temperature series by using equation 

(6.1.3), (6.1.5), and (6.1.6). Therefore, the final analytical form of the proposed model is 

 1)
64871.11

91452.52
(7620.01319.0 −

∧

+
−

−= t
t

t x
y

x   

And we can simplify the model as 

  (6.2.2) 106541.05933.3 −

∧

+−= ttt xyx

Table 6.2 illustrates the residual analysis of (6.2.2) 

Table 6.2 Residual Analysis for Combine Model-1 

r   
2
rS  rS  

n
Sr  

2.650722e-17 0.5242516 0.7240522 0.03280994 

 

After we develop our proposed model, it is essential to evaluate the performance 

of the model. In this section, we shall illustrate the evaluation and usefulness of our 

proposed model by using one-step ahead forecasting technique. That is we hide the last 

12 month of atmospheric CO2 data, and try to forecast them using only the previous 

information. In example, we forecast  using only  and ; 

forecast  using only  and ;…; and forecast  using only 

 and . In addition, we update the coefficient of the model once 

∧

469x 46821 ,...,, xxx 46921 ,...,, yyy

∧

470x 46921 ,...,, xxx 47021 ,...,, yyy
∧

480x

47921 ,...,, xxx 48021 ,...,, yyy
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we obtain new information. Table 2 gives the monthly comparison between the actual 

and the forecasts that produces by our proposed model.  

Table 6.3 Comparison between Actual and Forecast for Model-1 
Month (2004) Temperature CO2 (Actual) CO2 (Forecast) Residuals

January 30.34 376.79 376.9535 -0.1635 

February 33.91 377.37 378.3881 -1.0181 

March 47.94 378.41 378.7315 -0.3215 

April 53.53 380.52 378.8619 1.6581 

May 62.87 380.63 380.6131 0.0169 

June 68.87 379.57 380.1183 -0.5483 

July 73.59 377.79 378.6683 -0.8783 

August 70.8 375.86 376.5785 -0.7185 

September 66.26 374.06 374.8254 -0.7654 

October 55.84 374.24 373.3174 0.9226 

November 44.34 375.86 374.1783 1.6817 

December 35.15 377.48 376.5517 0.9283 
 

From Table 6.3, it can be seen that the forecasts fit closely to the actual CO2, it speaks 

out the quality of the model.  

 

6.3 Carbon Dioxide & Temperature Model-02 

The aim of this section is to develop a model for the monthly average temperature 

knowing the CO2 in the atmosphere. We shall use those transformations that we 

discussed in section 6.1 to build the regression model first, and then use backward filter 

to solve back the original series. Let the first 479 observations of the temperature series 



after transformations be . The simple regression model formulated between 

series  and  is 

47921 ,...,, vvv

tv tz

  (6.3.1) tt zv 8578.01180.0 −=
∧

The simple regression model given by equation (6.3.1) indicates the transforming 

temperature series is explained by the difference of the atmospheric CO2. In addition, we 

can solve back the original temperature and atmospheric CO2 series by using equation 

(6.1.3), (6.1.5), and (6.1.6). Therefore, the final analytical form of the proposed model is 

 )(8578.01180.0
64871.11

91452.52
1−

∧

−−=
−

tt
t xx

y
  

And we can simplify the model as 

  (6.3.2) 199226.999226.92891.54 −

∧

+−= ttt xxy

Table 6.2 illustrates the residual analysis of (6.2.2) 

Table 6.4 Residual Analysis for Combine Model-2 

r   
2
rS  rS  

n
Sr  

-1.646039e-06 80.08299 8.94891 0.4088861 

 

After we develop our proposed model, it is essential to evaluate the performance 

of the model. In this section, we shall illustrate the evaluation and usefulness of our 

proposed model by using one-step ahead forecasting technique. That is we hide the last 

12 month of the temperature data and try to forecast them using only the existing 

information. In example, we forecast  using only  and ; 

forecast  using only  and ;…; and forecast  using only 

∧

469y 46921 ,...,, xxx 46821 ,...,, yyy

∧

470y 47021 ,...,, xxx 46921 ,...,, yyy
∧

480y
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48021 ,...,, xxx  and . In addition, we update the coefficient of the model once 

we obtain new information. Table 2 gives the monthly comparison between the actual 

and the forecasts that produces by our proposed model.  

47921 ,...,, yyy

Table 6.5 Comparison between Actual and Forecast for Model-2 
Month 
(2004) CO2 Temperature Temperature 

(Forecast) Residuals 

January 376.79 30.34 40.70947 -10.36947 

February 377.37 33.91 43.27709 -9.36709 

March 378.41 47.94 48.37591 -0.43591 

April 380.52 53.53 43.7548 9.7752 

May 380.63 62.87 33.13691 29.73309 

June 379.57 68.87 53.18363 15.68637 

July 377.79 73.59 64.91555 8.67445 

August 375.86 70.8 72.14047 -1.34047 

September 374.06 66.26 73.62139 -7.36139 

October 374.24 55.84 72.27571 -16.43571 

November 375.86 44.34 52.4835 -8.1435 

December 377.48 35.15 38.11712 -2.96712 
 

From Table 2, it can be seen that the forecasts fit closely to the actual CO2, it speaks out 

the quality of the model.  

 

6.4 Temperature Model 

It is obvious that the average monthly temperature of the Continental United 

States contains a seasonal pattern. We consider the temperature series , and 

take the average of each month as  by using the following transformation. 

48021 ,...,, xxx

1221 ,...,, mmm
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1

xxx
m

+++
=   

 
40

... 470142
2

xxx
m

+++
=   

  

 
40

... 4802412
12

xxx
m

+++
=  (6.4.1) 

We then create a new series }{ tγ  simply by repeating the series  shown as 

(6.4.2). 

1221 ,...,, mmm

 },...,,{},...,,{ 12211221 mmm=γγγ  

 },...,,{},...,,{ 1221241413 mmm=γγγ  

  

 },...,,{},...,,{ 1221480470469 mmm=γγγ  (6.4.2) 

Let }{ tλ  be the difference between the temperature series and the new series }{ tx }{ tγ , 

shown as (6.4.3). 

 ttt x γλ −=  (6.4.3) 

By using the methodology that we discussed in section 2.1, we found the best ARIMA 

model on the series }{ tλ  is a ARIMA(2,1,2), that is  

 . (6.4.4) tt BBBBB ελ ).9819.01811()1)(.1938.7755-1( 22 −+=−+

Expanding the autoregressive operator and the first difference filter, we have 

 .   tt BBBBB ελ )9819..01811().19389693.1.77551( 232 −+=++−

and the model can be written as 

 21321 9819.0181..19389693.1.7755 −−−−− −++−−= ttttttt εεελλλλ .   
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The final analytical form of the proposed forecasting model can be written as 

 . (6.4.5) 21321 9819.0181.0.19389693.7755.1 −−−−−

∧

−+−−= tttttt εελλλλ

We can solve back the original temperature series by combining (6.4.2) and (6.4.3), we 

have 

  (6.4.6) tttttttx γεελλλ +−+−−= −−−−−

∧

21321 9819.0181.0.19389693.7755.1

After we obtained the predicted values for the temperature series, we proceed to evaluate 

the residuals of the model by calculating r , , , and 2
rS rS

n
Sr , shown as Table 6.6. 

Table 6.6 Basic Evaluation Statistics for the Temperature Model 

r   
2
rS  rS  

n
Sr  

0.1290907 3.75889 1.938786 0.08849305 

 

It can be seen that the evaluation of Table 6.6 supports the quality of the proposed 

temperature model.   

 

6.5 Conclusion 

In the present chapter, we look into the trend and seasonal patterns of the CO2 and 

temperature time series and examine the relationship between the two series. We discover 

that there exists a strong linear relationship between two series after we applied several 

transformations into both series. Thus, the first two proposed statistical models that 

relates CO2 to temperature are semi-regression based models; that is, knowing the 

atmospheric temperature we can at the specific location estimate the carbon dioxide and 

vice versa. Our last proposed model begins with removing the seasonal variation of the 
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temperature series by subtracting the mean function from the series. We found the new 

series become much easier to predict than the original series. Since all transformations 

that applied to the series are invertible, we can predict the original series by applying a 

back shift operator. The comparisons between the actual and forecasts of each model 

were provided and they attest the quality of the proposed models. 

 

 



 

 

Chapter 7 

Future Research 

As a result of the present study, we will continue the research on the subject 

area by studying the following problems. 

Investigate the selection of the best ARIMA model utilizing AIC versus BIC 

with respect to small, medium and large sample sizes.   

In the proposed forecasting models with k-th moving average, k-th weighted 

moving average, and k-th exponential weighted moving average processes, we want 

to be able to determine the optimal k that will produce the smallest residuals. We will 

also like to study the robustness and sensitivity of the selected models when k changes. 

Once a particular model has been identified with an actual sample size, we 

want to study the consistency of the orders of the model when the sample size 

changes. In addition, we will study the Fourier transform of the developed models so 

that we can investigate the behavior of the variance as a function of time for a given 

set of data. This information will assist us in improving the selected model. 

Finally, we will restructure the proposed models so that would be instantly 

updated as new information becomes available. We will obtain confidence limits for 

short term and long term forecasting and compare the confidence range with other 

acceptable and useful models. 
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Appendix A1 

Daily Closing Price of Stock XYZ 

    [1] 24.96 24.53 24.14 24.63 24.07 24.19 23.61 23.58 23.70 23.54 23.07 23.44 23.27 23.56 22.95 22.80 23.39 24.67 24.86 25.93 26.04 26.32 26.25 26.57 25.29 

  [26] 25.49 25.25 25.04 24.67 24.21 24.35 25.72 25.73 25.09 25.17 25.58 24.57 24.59 24.20 24.76 24.60 24.92 25.50 25.21 25.76 25.72 25.49 25.22 25.74 25.80 

  [51] 25.57 25.72 26.10 25.86 26.37 25.99 25.74 26.36 26.20 25.99 25.62 25.79 25.57 24.76 24.63 24.03 24.16 24.22 24.79 24.41 24.40 24.61 24.64 24.88 24.87 

  [76] 24.09 23.67 23.75 24.68 24.88 24.99 24.65 25.39 25.96 26.07 26.07 26.33 25.78 25.70 25.26 25.75 25.63 25.64 26.15 26.88 26.50 27.42 27.70 27.47 26.91 

[101] 27.31 27.40 27.27 27.52 26.69 26.89 26.04 26.38 26.45 26.00 26.89 26.61 26.47 26.23 26.41 26.17 26.18 25.66 25.65 25.71 25.58 25.61 25.73 25.60 25.63 

[126] 25.54 25.70 26.62 26.45 26.24 26.22 26.50 26.57 26.42 26.51 26.52 27.26 28.30 28.43 28.38 28.84 28.37 27.55 27.84 28.34 28.36 28.90 28.50 29.50 29.96 

[151] 29.07 29.60 28.46 28.24 28.19 28.83 27.80 28.52 28.50 29.08 29.19 29.14 28.82 28.94 28.91 28.78 28.68 29.07 29.23 28.93 29.35 29.35 28.89 28.91 26.61 

[176] 26.91 27.20 26.74 26.12 26.14 26.68 26.07 26.10 26.23 26.10 26.00 25.80 25.98 25.69 25.50 25.15 25.15 25.35 25.10 25.11 25.73 25.40 25.45 25.71 25.84 

[201] 25.66 25.67 26.20 25.98 26.24 26.38 26.59 26.61 26.65 26.74 27.06 27.04 27.40 27.36 27.18 27.15 27.04 27.21 27.46 27.52 27.37 27.45 28.14 28.24 28.21 

[226] 28.16 27.66 27.57 27.43 27.70 27.54 27.81 28.10 28.30 28.01 28.48 28.80 28.25 27.71 27.91 27.65 27.40 27.29 27.01 26.96 27.08 26.90 27.02 27.15 26.95 

[251] 26.59 26.99 26.77 26.46 26.57 26.61 26.88 26.70 26.50 26.53 26.70 26.39 26.37 26.37 26.35 25.83 25.72 25.37 25.09 25.38 25.16 25.18 25.13 24.89 24.63 

[276] 24.50 24.15 24.41 25.19 25.03 25.31 25.20 24.93 25.08 25.85 25.95 25.80 25.59 25.48 25.61 25.45 25.51 25.22 25.16 25.53 25.33 25.45 25.95 27.54 27.24 

[301] 27.22 26.56 26.48 26.13 26.35 26.33 26.30 26.12 25.78 25.93 25.94 25.94 26.10 25.86 25.54 25.83 25.62 25.73 25.89 25.76 26.10 26.14 26.19 26.23 26.11 

[326] 26.13 25.89 25.95 26.43 26.60 26.47 26.77 26.90 27.41 27.32 27.77 28.35 28.35 28.29 28.30 28.39 28.57 28.28 28.50 28.56 28.63 28.57 28.02 28.10 27.64 

[351] 27.86 27.89 27.60 28.13 27.87 27.48 27.95 28.32 28.86 29.00 28.03 28.66 28.44 28.58 28.48 28.49 28.52 28.07 28.06 27.53 27.14 27.18 27.72 27.41 26.88 
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Appendix A1:  (Continued) 

[376] 27.02 27.09 27.05 27.46 27.12 27.20 27.24 27.24 27.55 27.44 27.46 27.30 27.30 27.39 27.62 27.11 27.36 27.26 27.28 27.49 27.25 27.44 27.19 27.26 27.51 

[401] 27.51 27.26 27.12 27.35 27.29 27.19 27.27 27.58 27.65 28.25 28.12 28.38 28.53 28.17 27.99 28.06 28.03 28.03 27.80 27.99 28.41 28.18 28.70 28.56 27.74 

[426] 27.63 27.90 28.15 28.01 27.97 28.08 28.24 28.47 29.00 29.31 29.28 29.77 29.73 29.98 29.97 27.39 27.12 27.17 27.07 26.86 26.65 26.53 26.64 26.60 26.77 

[451] 26.81 27.25 27.09 27.23 27.33 27.07 27.36 27.23 27.08 27.25 27.23 27.11 27.16 26.96 26.95 27.07 26.97 27.01 26.85 26.95 26.90 26.76 26.72 26.74 26.84 

[476] 26.78 26.75 26.67 26.80 26.73 26.78 26.27 26.12 26.32 25.98 25.86 25.65 25.67 26.02 26.01 26.11 26.18 26.28 26.39 26.46 26.18 26.32 26.16 26.24 26.07 
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Appendix A2:  MA3 Series on Daily Closing Price of Stock XYZ 

    [1]   na      na    24.54 24.43 24.28 24.30 23.96 23.79 23.63 23.61 23.44 23.35 23.26 23.42 23.26 23.10 23.05 23.62 24.31 25.15 25.61 26.10 26.20 26.38 26.04 

  [26] 25.78 25.34 25.26 24.99 24.64 24.41 24.76 25.27 25.51 25.33 25.28 25.11 24.91 24.45 24.52 24.52 24.76 25.01 25.21 25.49 25.56 25.66 25.48 25.48 25.59 

  [51] 25.70 25.70 25.80 25.89 26.11 26.07 26.03 26.03 26.10 26.18 25.94 25.80 25.66 25.37 24.99 24.47 24.27 24.14 24.39 24.47 24.53 24.47 24.55 24.71 24.80 

  [76] 24.61 24.21 23.84 24.03 24.44 24.85 24.84 25.01 25.33 25.81 26.03 26.16 26.06 25.94 25.58 25.57 25.55 25.67 25.81 26.22 26.51 26.93 27.21 27.53 27.36 

[101] 27.23 27.21 27.33 27.40 27.16 27.03 26.54 26.44 26.29 26.28 26.45 26.50 26.66 26.44 26.37 26.27 26.25 26.00 25.83 25.67 25.65 25.63 25.64 25.65 25.65 

[126] 25.59 25.62 25.95 26.26 26.44 26.30 26.32 26.43 26.50 26.50 26.48 26.76 27.36 28.00 28.37 28.55 28.53 28.25 27.92 27.91 28.18 28.53 28.59 28.97 29.32 

[151] 29.51 29.54 29.04 28.77 28.30 28.42 28.27 28.38 28.27 28.70 28.92 29.14 29.05 28.97 28.89 28.88 28.79 28.84 28.99 29.08 29.17 29.21 29.20 29.05 28.14 

[176] 27.48 26.91 26.95 26.69 26.33 26.31 26.30 26.28 26.13 26.14 26.11 25.97 25.93 25.82 25.72 25.45 25.27 25.22 25.20 25.19 25.31 25.41 25.53 25.52 25.67 

[201] 25.74 25.72 25.84 25.95 26.14 26.20 26.40 26.53 26.62 26.67 26.82 26.95 27.17 27.27 27.31 27.23 27.12 27.13 27.24 27.40 27.45 27.45 27.65 27.94 28.20 

[226] 28.20 28.01 27.80 27.55 27.57 27.56 27.68 27.82 28.07 28.14 28.26 28.43 28.51 28.25 27.96 27.76 27.65 27.45 27.23 27.09 27.02 26.98 27.00 27.02 27.04 

[251] 26.90 26.84 26.78 26.74 26.60 26.55 26.69 26.73 26.69 26.58 26.58 26.54 26.49 26.38 26.36 26.18 25.97 25.64 25.39 25.28 25.21 25.24 25.16 25.07 24.88 

[276] 24.67 24.43 24.35 24.58 24.88 25.18 25.18 25.15 25.07 25.29 25.63 25.87 25.78 25.62 25.56 25.51 25.52 25.39 25.30 25.30 25.34 25.44 25.58 26.31 26.91 

[301] 27.33 27.01 26.75 26.39 26.32 26.27 26.33 26.25 26.07 25.94 25.88 25.94 25.99 25.97 25.83 25.74 25.66 25.73 25.75 25.79 25.92 26.00 26.14 26.19 26.18 

[326] 26.16 26.04 25.99 26.09 26.33 26.50 26.61 26.71 27.03 27.21 27.50 27.81 28.16 28.33 28.31 28.33 28.42 28.41 28.45 28.45 28.56 28.59 28.41 28.23 27.92 

[351] 27.87 27.80 27.78 27.87 27.87 27.83 27.77 27.92 28.38 28.73 28.63 28.56 28.38 28.56 28.50 28.52 28.50 28.36 28.22 27.89 27.58 27.28 27.35 27.44 27.34 

[376] 27.10 27.00 27.05 27.20 27.21 27.26 27.19 27.23 27.34 27.41 27.48 27.40 27.35 27.33 27.44 27.37 27.36 27.24 27.30 27.34 27.34 27.39 27.29 27.30 27.32 
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Appendix A2:  (Continued) 

[401] 27.43 27.43 27.30 27.24 27.25 27.28 27.25 27.35 27.50 27.83 28.01 28.25 28.34 28.36 28.23 28.07 28.03 28.04 27.95 27.94 28.07 28.19 28.43 28.48 28.33 

[426] 27.98 27.76 27.89 28.02 28.04 28.02 28.10 28.26 28.57 28.93 29.20 29.45 29.59 29.83 29.89 29.11 28.16 27.23 27.12 27.03 26.86 26.68 26.61 26.59 26.67 

[451] 26.73 26.94 27.05 27.19 27.22 27.21 27.25 27.22 27.22 27.19 27.19 27.20 27.17 27.08 27.02 26.99 27.00 27.02 26.94 26.94 26.90 26.87 26.79 26.74 26.77 

[476] 26.79 26.79 26.73 26.74 26.73 26.77 26.59 26.39 26.24 26.14 26.05 25.83 25.73 25.78 25.90 26.05 26.10 26.19 26.28 26.38 26.34 26.32 26.22 26.24 26.16 
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Appendix A3:  WMA3 Series on Daily Closing Price of Stock XYZ 

   [1]   na      na    24.41 24.45 24.27 24.22 23.88 23.69 23.64 23.60 23.33 23.33 23.29 23.44 23.21 22.98 23.12 23.93 24.55 25.36 25.81 26.16 26.24 26.42 25.88 

  [26] 25.60 25.34 25.18 24.89 24.50 24.36 25.01 25.50 25.41 25.24 25.36 25.01 24.75 24.39 24.54 24.59 24.79 25.16 25.26 25.53 25.65 25.61 25.39 25.52 25.68 

  [51] 25.68 25.68 25.89 25.92 26.16 26.09 25.93 26.09 26.18 26.12 25.84 25.77 25.65 25.20 24.83 24.35 24.20 24.17 24.50 24.50 24.47 24.51 24.59 24.75 24.83 

  [76] 24.48 24.01 23.78 24.20 24.62 24.90 24.80 25.08 25.55 25.92 26.05 26.20 26.01 25.83 25.49 25.58 25.61 25.66 25.89 26.43 26.57 27.02 27.41 27.54 27.23 

[101] 27.20 27.29 27.32 27.42 27.06 26.93 26.43 26.35 26.36 26.21 26.52 26.60 26.59 26.37 26.36 26.26 26.21 25.92 25.74 25.68 25.63 25.62 25.66 25.65 25.64 

[126] 25.58 25.63 26.13 26.38 26.37 26.26 26.36 26.49 26.48 26.49 26.50 26.89 27.66 28.19 28.38 28.62 28.53 28.04 27.83 28.04 28.27 28.63 28.61 29.07 29.56 

[151] 29.44 29.48 28.94 28.54 28.25 28.52 28.21 28.33 28.39 28.79 29.04 29.15 28.99 28.93 28.91 28.85 28.75 28.89 29.09 29.05 29.19 29.28 29.12 28.98 27.76 

[176] 27.14 27.00 26.92 26.51 26.23 26.41 26.29 26.19 26.16 26.14 26.07 25.92 25.92 25.80 25.64 25.36 25.21 25.25 25.19 25.15 25.42 25.46 25.48 25.57 25.73 

[201] 25.73 25.70 25.93 26.00 26.15 26.27 26.46 26.56 26.63 26.69 26.88 27.00 27.22 27.32 27.28 27.19 27.10 27.14 27.31 27.45 27.44 27.43 27.78 28.07 28.21 

[226] 28.19 27.92 27.70 27.52 27.59 27.57 27.70 27.91 28.15 28.12 28.29 28.56 28.47 28.07 27.90 27.75 27.57 27.39 27.17 27.03 27.03 26.97 26.99 27.07 27.03 

[251] 26.80 26.85 26.81 26.65 26.57 26.57 26.74 26.74 26.63 26.55 26.61 26.52 26.43 26.37 26.36 26.09 25.86 25.56 25.29 25.28 25.22 25.21 25.15 25.02 24.80 

[276] 24.61 24.35 24.34 24.76 24.98 25.20 25.21 25.08 25.05 25.44 25.77 25.86 25.72 25.57 25.56 25.51 25.51 25.36 25.24 25.36 25.37 25.42 25.68 26.66 27.12 

[301] 27.28 26.89 26.63 26.32 26.30 26.30 26.32 26.21 25.98 25.91 25.91 25.94 26.02 25.95 25.74 25.74 25.68 25.71 25.79 25.80 25.95 26.06 26.16 26.20 26.16 

[326] 26.14 26.01 25.96 26.18 26.43 26.51 26.64 26.78 27.13 27.28 27.56 27.99 28.25 28.32 28.30 28.34 28.46 28.39 28.44 28.49 28.58 28.59 28.30 28.15 27.86 

[351] 27.83 27.84 27.74 27.91 27.91 27.72 27.78 28.06 28.53 28.84 28.49 28.51 28.45 28.55 28.51 28.50 28.50 28.29 28.14 27.80 27.42 27.23 27.44 27.48 27.20 

[376] 27.04 27.03 27.06 27.26 27.22 27.22 27.21 27.23 27.39 27.44 27.47 27.38 27.33 27.35 27.49 27.33 27.32 27.27 27.29 27.38 27.34 27.39 27.28 27.27 27.37 
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Appendix A3:  (Continued) 

[401] 27.47 27.39 27.23 27.26 27.28 27.25 27.25 27.41 27.56 27.94 28.09 28.27 28.41 28.33 28.14 28.05 28.03 28.04 27.91 27.93 28.17 28.22 28.48 28.54 28.17 

[426] 27.82 27.78 27.98 28.04 28.01 28.03 28.14 28.33 28.70 29.07 29.24 29.53 29.67 29.86 29.93 28.68 27.69 27.19 27.11 26.98 26.79 26.62 26.61 26.60 26.69 

[451] 26.76 27.02 27.10 27.19 27.26 27.18 27.26 27.25 27.18 27.19 27.21 27.17 27.16 27.05 26.99 27.01 27.00 27.01 26.92 26.93 26.91 26.84 26.76 26.74 26.79 

[476] 26.79 26.77 26.72 26.75 26.74 26.77 26.52 26.28 26.25 26.12 25.98 25.77 25.70 25.84 25.96 26.06 26.13 26.22 26.32 26.41 26.31 26.30 26.22 26.23 26.14 
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Appendix A4:  EWMA3 Series on Daily Closing Price of Stock XYZ 

    [1]   na      na    24.37 24.48 24.24 24.22 23.84 23.68 23.65 23.59 23.29 23.35 23.29 23.46 23.17 22.95 23.16 24.04 24.60 25.44 25.84 26.18 26.24 26.44 25.79 

  [26] 25.59 25.32 25.16 24.86 24.46 24.36 25.11 25.53 25.36 25.23 25.39 24.94 24.73 24.36 24.58 24.59 24.81 25.21 25.25 25.57 25.66 25.59 25.37 25.56 25.70 

  [51] 25.66 25.69 25.92 25.91 26.19 26.08 25.90 26.13 26.18 26.10 25.81 25.77 25.64 25.14 24.80 24.31 24.19 24.18 24.54 24.49 24.46 24.52 24.60 24.77 24.84 

  [76] 24.43 23.96 23.78 24.27 24.66 24.91 24.78 25.12 25.61 25.94 26.05 26.22 25.98 25.81 25.46 25.60 25.61 25.65 25.93 26.49 26.56 27.08 27.45 27.53 27.18 

[101] 27.22 27.30 27.31 27.43 27.01 26.92 26.38 26.36 26.37 26.18 26.57 26.60 26.57 26.35 26.37 26.25 26.21 25.88 25.73 25.69 25.63 25.62 25.67 25.64 25.64 

[126] 25.57 25.64 26.20 26.39 26.35 26.26 26.38 26.50 26.47 26.49 26.50 26.94 27.75 28.23 28.38 28.65 28.51 27.97 27.83 28.08 28.28 28.67 28.59 29.13 29.62 

[151] 29.39 29.50 28.87 28.50 28.24 28.56 28.15 28.36 28.41 28.83 29.06 29.15 28.96 28.93 28.91 28.84 28.74 28.92 29.11 29.04 29.21 29.29 29.09 28.97 27.59 

[176] 27.11 27.03 26.90 26.45 26.22 26.45 26.25 26.17 26.17 26.14 26.06 25.90 25.93 25.79 25.62 25.33 25.20 25.26 25.18 25.14 25.46 25.45 25.48 25.59 25.75 

[201] 25.72 25.69 25.97 26.00 26.16 26.28 26.48 26.57 26.63 26.70 26.91 27.00 27.25 27.33 27.26 27.19 27.09 27.15 27.33 27.46 27.43 27.44 27.83 28.10 28.21 

[226] 28.19 27.88 27.68 27.50 27.60 27.57 27.72 27.94 28.17 28.11 28.32 28.60 28.44 28.02 27.90 27.73 27.54 27.37 27.15 27.02 27.04 26.96 26.99 27.08 27.02 

[251] 26.77 26.87 26.81 26.62 26.57 26.58 26.76 26.74 26.61 26.55 26.62 26.50 26.42 26.37 26.36 26.06 25.84 25.54 25.26 25.30 25.21 25.20 25.15 25.00 24.78 

[276] 24.59 24.32 24.35 24.82 24.99 25.21 25.21 25.06 25.05 25.50 25.80 25.85 25.70 25.56 25.57 25.50 25.51 25.34 25.23 25.38 25.36 25.43 25.72 26.79 27.14 

[301] 27.27 26.85 26.61 26.29 26.31 26.31 26.32 26.20 25.95 25.91 25.91 25.94 26.03 25.94 25.71 25.75 25.67 25.71 25.81 25.79 25.97 26.07 26.16 26.21 26.16 

[326] 26.14 25.99 25.96 26.22 26.46 26.50 26.66 26.80 27.17 27.29 27.59 28.04 28.27 28.32 28.30 28.35 28.48 28.38 28.45 28.50 28.59 28.59 28.26 28.14 27.83 

[351] 27.83 27.85 27.72 27.94 27.91 27.68 27.80 28.09 28.58 28.86 28.43 28.53 28.44 28.55 28.50 28.50 28.51 28.26 28.13 27.76 27.38 27.22 27.48 27.47 27.15 

[376] 27.04 27.04 27.06 27.29 27.21 27.21 27.21 27.23 27.42 27.44 27.47 27.37 27.32 27.35 27.51 27.30 27.33 27.27 27.29 27.40 27.32 27.39 27.27 27.27 27.39 
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Appendix A4:  (Continued) 

[401] 27.47 27.37 27.22 27.27 27.28 27.24 27.25 27.44 27.58 27.98 28.09 28.29 28.43 28.30 28.12 28.06 28.03 28.03 27.90 27.94 28.20 28.22 28.51 28.55 28.11 

[426] 27.79 27.80 28.00 28.03 28.01 28.04 28.16 28.35 28.74 29.10 29.25 29.56 29.68 29.88 29.94 28.50 27.60 27.19 27.11 26.96 26.77 26.61 26.61 26.60 26.70 

[451] 26.77 27.06 27.10 27.19 27.27 27.17 27.27 27.24 27.16 27.20 27.21 27.16 27.16 27.04 26.98 27.02 27.00 27.01 26.91 26.93 26.91 26.83 26.76 26.74 26.79 

[476] 26.79 26.77 26.71 26.76 26.74 26.77 26.48 26.26 26.26 26.10 25.96 25.76 25.69 25.87 25.96 26.07 26.14 26.23 26.33 26.41 26.29 26.30 26.21 26.23 26.13 
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Appendix B1:  Daily Closing Price of S&P Price Index 

    [1] 1210.08 1210.47 1222.12 1225.31 1219.43 1207.01 1209.25 1200.08 1206.83 1197.75 1188.07 1190.21 1189.65 1183.78 1171.71 1172.53 1171.42 

  [18] 1174.28 1165.36 1181.41 1180.59 1172.92 1176.12 1181.39 1184.07 1191.14 1181.20 1181.21 1187.76 1173.79 1162.05 1142.62 1145.98 1152.78 

  [35] 1137.50 1159.95 1152.12 1162.10 1151.83 1156.38 1143.22 1156.85 1162.16 1161.17 1175.65 1172.63 1171.35 1178.84 1166.22 1171.11 1159.36 

  [52] 1154.05 1165.69 1173.80 1185.56 1191.08 1189.28 1193.86 1194.07 1190.01 1197.62 1198.78 1191.50 1202.22 1204.29 1196.02 1197.51 1197.26 

  [69] 1194.67 1200.93 1198.11 1200.82 1203.91 1206.58 1210.96 1216.96 1216.10 1213.61 1213.88 1200.73 1191.57 1190.69 1201.57 1199.85 1191.33 

  [86] 1194.44 1204.99 1194.94 1197.87 1211.86 1219.44 1222.21 1223.29 1226.50 1227.92 1221.13 1229.35 1235.20 1227.04 1233.68 1229.03 1231.16 

[103] 1236.79 1243.72 1234.18 1235.35 1244.12 1245.04 1235.86 1226.42 1223.13 1231.38 1229.13 1237.81 1230.39 1233.87 1219.34 1220.24 1219.02 

[120] 1219.71 1221.73 1217.59 1209.59 1212.37 1205.10 1212.28 1208.41 1220.33 1221.59 1218.02 1233.39 1236.36 1231.67 1241.48 1240.56 1231.20 

[137] 1227.16 1227.73 1237.91 1231.02 1221.34 1210.20 1214.62 1215.29 1215.63 1215.66 1216.89 1227.68 1228.81 1226.70 1214.47 1196.39 1191.49 

[154] 1195.90 1187.33 1184.87 1177.68 1176.84 1186.57 1190.10 1178.14 1195.76 1177.80 1179.59 1199.38 1196.54 1191.38 1178.90 1198.41 1207.01 

[171] 1202.76 1214.76 1219.94 1220.14 1222.81 1218.59 1220.65 1230.96 1234.72 1233.76 1229.01 1231.21 1242.80 1248.27 1254.85 1261.23 1265.61 

[188] 1268.25 1257.46 1257.48 1249.48 1264.67 1265.08 1262.09 1263.70 1257.37 1255.84 1259.37 1260.43 1267.43 1272.74 1270.94 1267.32 1259.92 

[205] 1259.62 1262.79 1268.12 1268.66 1256.54 1258.17 1254.42 1248.29 1268.80 1273.46 1273.48 1285.45 1290.15 1289.69 1294.18 1286.06 1287.61 

[222] 1283.03 1277.93 1285.04 1261.49 1263.82 1266.86 1264.68 1273.83 1283.72 1285.19 1280.08 1282.46 1270.84 1264.03 1265.02 1254.78 1265.65 

[239] 1263.78 1266.99 1262.86 1275.53 1280.00 1289.38 1287.24 1283.03 1292.67 1287.79 1289.43 1294.12 1280.66 1291.24 1289.14 1287.23 1278.26 

[256] 1275.88 1278.47 1272.23 1281.42 1284.13 1297.48 1303.02 1305.33 1307.25 1305.08 1297.23 1305.04 1301.67 1302.95 1301.61 1293.23 1302.89 
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Appendix B1: (Continued) 

[273] 1300.25 1294.87 1297.81 1305.93 1311.56 1309.04 1295.50 1296.62 1286.57 1288.12 1289.12 1285.33 1307.28 1309.93 1311.46 1311.28 1308.11 

[290] 1301.74 1305.41 1309.72 1310.61 1305.19 1313.21 1308.12 1312.25 1325.76 1324.66 1325.14 1322.85 1305.92 1291.24 1294.50 1292.08 1270.32 

[307] 1261.81 1267.03 1262.07 1256.58 1258.57 1272.88 1280.16 1259.87 1270.09 1285.71 1288.22 1265.29 1263.85 1256.15 1257.93 1252.30 1237.44 

[324] 1223.69 1230.04 1256.16 1251.54 1240.13 1240.12 1252.20 1245.60 1244.50 1250.56 1239.20 1246.00 1272.87 1270.20 1280.19 1270.91 1274.08 

[341] 1265.48 1267.34 1272.43 1258.60 1242.28 1236.20 1234.49 1236.86 1259.81 1249.13 1240.29 1260.91 1268.88 1268.40 1263.20 1278.55 1276.66 

[358] 1270.92 1277.41 1280.27 1279.36 1275.77 1271.48 1265.95 1271.81 1266.74 1268.21 1285.58 1295.43 1297.48 1302.30 1297.52 1298.82 1292.99 

[375] 1296.06 1295.09 1301.78 1304.28 1305.37 1303.82 1311.01 1313.25 1300.26 1294.02 1298.92 1299.54 1313.00 1318.07 1316.28 1319.66 1321.18 

[392] 1317.64 1325.18 1318.03 1314.78 1326.37 1336.35 1336.59 1338.88 1335.85 1331.32 1334.11 1350.20 1353.22 1349.59 1350.66 1353.42 1349.95 

[409] 1362.83 1365.62 1369.06 1364.05 1365.80 1366.96 1368.60 1377.02 1377.38 1382.22 1389.08 1377.34 1377.93 1377.94 1367.81 1367.34 1364.30 

[426] 1379.78 1382.84 1385.72 1378.33 1380.90 1384.42 1393.22 1396.57 1399.76 1401.20 1400.50 1402.81 1406.09 1400.95 1381.96 1386.72 1399.48 

[443] 1400.63 1396.71 1409.12 1414.76 1412.90 1407.29 1409.84 1413.04 1411.56 1413.21 1425.49 1427.09 1422.48 1425.55 1423.53 1418.30 1410.76 

[460] 1416.90 1426.84 1424.73 1418.30 1416.60 1418.34 1409.71 1412.84 1412.11 1414.85 1423.82 1430.73 1431.90 1430.62 1426.37 1430.50 1422.95 

[477] 1427.99 1440.13 1423.90 1422.18 1420.62 1428.82 1438.24 1445.94 1448.39 1446.99 1448.00 1450.02 1448.31 1438.06 1433.37 1444.26 1455.30 

[494] 1456.81 1455.54 1459.68 1457.63 1456.38 1451.19 1449.37 
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Appendix B2:  MA3 Series on Daily Closing Price of S&P Price Index 

    [1]       NA       NA 1214.223 1219.300 1222.287 1217.250 1211.897 1205.447 1205.387 1201.553 1197.550 1192.010 1189.310 1187.880 1181.713 

  [16] 1176.007 1171.887 1172.743 1170.353 1173.683 1175.787 1178.307 1176.543 1176.810 1180.527 1185.533 1185.470 1184.517 1183.390 1180.920 

  [31] 1174.533 1159.487 1150.217 1147.127 1145.420 1150.077 1149.857 1158.057 1155.350 1156.770 1150.477 1152.150 1154.077 1160.060 1166.327 

  [46] 1169.817 1173.210 1174.273 1172.137 1172.057 1165.563 1161.507 1159.700 1164.513 1175.017 1183.480 1188.640 1191.407 1192.403 1192.647 

  [61] 1193.900 1195.470 1195.967 1197.500 1199.337 1200.843 1199.273 1196.930 1196.480 1197.620 1197.903 1199.953 1200.947 1203.770 1207.150 

  [76] 1211.500 1214.673 1215.557 1214.530 1209.407 1202.060 1194.330 1194.610 1197.370 1197.583 1195.207 1196.920 1198.123 1199.267 1201.557 

  [91] 1209.723 1217.837 1221.647 1224.000 1225.903 1225.183 1226.133 1228.560 1230.530 1231.973 1229.917 1231.290 1232.327 1237.223 1238.230 

[106] 1237.750 1237.883 1241.503 1241.673 1235.773 1228.470 1226.977 1227.880 1232.773 1232.443 1234.023 1227.867 1224.483 1219.533 1219.657 

[121] 1220.153 1219.677 1216.303 1213.183 1209.020 1209.917 1208.597 1213.673 1216.777 1219.980 1224.333 1229.257 1233.807 1236.503 1237.903 

[136] 1237.747 1232.973 1228.697 1230.933 1232.220 1230.090 1220.853 1215.387 1213.370 1215.180 1215.527 1216.060 1220.077 1224.460 1227.730 

[151] 1223.327 1212.520 1200.783 1194.593 1191.573 1189.367 1183.293 1179.797 1180.363 1184.503 1184.937 1188.000 1183.900 1184.383 1185.590 

[166] 1191.837 1195.767 1188.940 1189.563 1194.773 1202.727 1208.177 1212.487 1218.280 1220.963 1220.513 1220.683 1223.400 1228.777 1233.147 

[181] 1232.497 1231.327 1234.340 1240.760 1248.640 1254.783 1260.563 1265.030 1263.773 1261.063 1254.807 1257.210 1259.743 1263.947 1263.623 

[196] 1261.053 1258.970 1257.527 1258.547 1262.410 1266.867 1270.370 1270.333 1266.060 1262.287 1260.777 1263.510 1266.523 1264.440 1261.123 

[211] 1256.377 1253.627 1257.170 1263.517 1271.913 1277.463 1283.027 1288.430 1291.340 1289.977 1289.283 1285.567 1282.857 1282.000 1274.820 

[226] 1270.117 1264.057 1265.120 1268.457 1274.077 1280.913 1282.997 1282.577 1277.793 1272.443 1266.630 1261.277 1261.817 1261.403 1265.473 
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Appendix B2:  (Continued) 

[241] 1264.543 1268.460 1272.797 1281.637 1285.540 1286.550 1287.647 1287.830 1289.963 1290.447 1288.070 1288.673 1287.013 1289.203 1284.877 

[256] 1280.457 1277.537 1275.527 1277.373 1279.260 1287.677 1294.877 1301.943 1305.200 1305.887 1303.187 1302.450 1301.313 1303.220 1302.077 

[271] 1299.263 1299.243 1298.790 1299.337 1297.643 1299.537 1305.100 1308.843 1305.367 1300.387 1292.897 1290.437 1287.937 1287.523 1293.910 

[286] 1300.847 1309.557 1310.890 1310.283 1307.043 1305.087 1305.623 1308.580 1308.507 1309.670 1308.840 1311.193 1315.377 1320.890 1325.187 

[301] 1324.217 1317.970 1306.670 1297.220 1292.607 1285.633 1274.737 1266.387 1263.637 1261.893 1259.073 1262.677 1270.537 1270.970 1270.040 

[316] 1271.890 1281.340 1279.740 1272.453 1261.763 1259.310 1255.460 1249.223 1237.810 1230.390 1236.630 1245.913 1249.277 1243.930 1244.150 

[331] 1245.973 1247.433 1246.887 1244.753 1245.253 1252.690 1263.023 1274.420 1273.767 1275.060 1270.157 1268.967 1268.417 1266.123 1257.770 

[346] 1245.693 1237.657 1235.850 1243.720 1248.600 1249.743 1250.110 1256.693 1266.063 1266.827 1270.050 1272.803 1275.377 1274.997 1276.200 

[361] 1279.013 1278.467 1275.537 1271.067 1269.747 1268.167 1268.920 1273.510 1283.073 1292.830 1298.403 1299.100 1299.547 1296.443 1295.957 

[376] 1294.713 1297.643 1300.383 1303.810 1304.490 1306.733 1309.360 1308.173 1302.510 1297.733 1297.493 1303.820 1310.203 1315.783 1318.003 

[391] 1319.040 1319.493 1321.333 1320.283 1319.330 1319.727 1325.833 1333.103 1337.273 1337.107 1335.350 1333.760 1338.543 1345.843 1351.003 

[406] 1351.157 1351.223 1351.343 1355.400 1359.467 1365.837 1366.243 1366.303 1365.603 1367.120 1370.860 1374.333 1378.873 1382.893 1382.880 

[421] 1381.450 1377.737 1374.560 1371.030 1366.483 1370.473 1375.640 1382.780 1382.297 1381.650 1381.217 1386.180 1391.403 1396.517 1399.177 

[436] 1400.487 1401.503 1403.133 1403.283 1396.333 1389.877 1389.387 1395.610 1398.940 1402.153 1406.863 1412.260 1411.650 1410.010 1410.057 

[451] 1411.480 1412.603 1416.753 1421.930 1425.020 1425.040 1423.853 1422.460 1417.530 1415.320 1418.167 1422.823 1423.290 1419.877 1417.747 

[466] 1414.883 1413.630 1411.553 1413.267 1416.927 1423.133 1428.817 1431.083 1429.630 1429.163 1426.607 1427.147 1430.357 1430.673 1428.737 

[481] 1422.233 1423.873 1429.227 1437.667 1444.190 1447.107 1447.793 1448.337 1448.777 1445.463 1439.913 1438.563 1444.310 1452.123 1455.883 

[496] 1457.343 1457.617 1457.897 1455.067 1452.313 
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Appendix B3:  WMA3 Series on Daily Closing Price of S&P Price Index 

    [1]       NA       NA 1216.230 1221.773 1221.838 1214.200 1210.200 1204.292 1204.983 1201.165 1194.423 1190.753 1189.573 1186.808 1178.723 

  [16] 1174.132 1171.838 1173.035 1169.343 1174.872 1178.325 1176.892 1175.798 1178.222 1181.852 1187.158 1184.992 1182.862 1184.483 1179.683 

  [31] 1170.248 1154.292 1147.538 1148.820 1144.007 1151.272 1152.293 1158.415 1155.302 1155.817 1149.042 1152.228 1157.233 1160.780 1168.575 

  [46] 1171.727 1172.493 1175.308 1171.282 1170.768 1164.420 1158.663 1160.755 1167.805 1178.328 1186.360 1189.260 1191.870 1193.202 1192.005 

  [61] 1194.492 1196.932 1194.947 1198.073 1201.468 1199.810 1198.143 1197.137 1196.007 1198.232 1198.477 1199.935 1201.913 1204.730 1208.325 

  [76] 1213.230 1215.530 1214.998 1214.160 1207.260 1198.342 1192.657 1196.277 1198.897 1195.877 1194.305 1199.197 1198.207 1198.080 1204.377 

  [91] 1213.318 1219.562 1222.288 1224.715 1226.675 1224.288 1226.372 1230.905 1230.145 1231.720 1230.248 1230.870 1233.620 1239.317 1237.795 

[106] 1236.355 1239.540 1243.118 1240.297 1232.670 1226.348 1227.803 1228.880 1233.845 1232.653 1233.367 1226.025 1222.212 1219.480 1219.568 

[121] 1220.605 1219.323 1214.280 1212.313 1208.272 1209.902 1209.148 1215.015 1218.973 1219.595 1226.300 1232.313 1233.520 1237.357 1239.385 

[136] 1236.033 1230.740 1228.118 1232.725 1232.768 1227.328 1217.383 1214.267 1214.218 1215.348 1215.588 1216.270 1222.080 1226.447 1227.567 

[151] 1220.937 1207.468 1196.953 1194.512 1190.880 1187.528 1181.685 1178.458 1181.845 1186.713 1183.532 1188.943 1183.843 1181.688 1189.187 

[166] 1194.662 1194.433 1186.000 1190.735 1199.458 1203.452 1209.468 1215.350 1219.177 1221.442 1220.255 1220.323 1225.462 1231.122 1233.613 

[181] 1231.545 1230.902 1236.638 1243.603 1250.648 1256.943 1262.357 1266.200 1262.415 1259.268 1253.477 1258.408 1262.343 1263.517 1263.393 

[196] 1260.267 1257.660 1257.860 1259.312 1263.753 1268.918 1270.955 1269.430 1264.223 1261.003 1261.255 1264.927 1267.502 1262.510 1259.375 

[211] 1256.023 1251.980 1259.567 1267.712 1272.693 1279.462 1285.805 1289.137 1292.012 1289.372 1288.188 1285.062 1281.243 1282.335 1272.080 

[226] 1266.580 1264.952 1265.263 1269.618 1277.250 1282.807 1282.390 1282.122 1276.253 1269.372 1265.660 1259.735 1261.922 1262.903 1265.697 
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Appendix B3:  (Continued) 

[241] 1264.390 1269.883 1275.653 1283.945 1286.747 1285.492 1288.552 1288.623 1289.423 1291.502 1286.608 1288.193 1288.427 1288.535 1283.063 

[256] 1278.565 1277.572 1274.918 1277.865 1281.243 1290.353 1298.025 1303.252 1305.905 1305.845 1301.517 1302.443 1302.053 1302.872 1302.067 

[271] 1297.643 1299.457 1299.960 1298.000 1297.237 1301.380 1307.392 1309.362 1302.690 1298.317 1291.408 1289.020 1288.362 1287.058 1296.937 

[286] 1304.947 1310.253 1311.115 1309.725 1305.453 1304.637 1306.953 1309.447 1307.752 1310.103 1309.328 1311.033 1318.317 1322.958 1325.083 

[301] 1323.915 1314.767 1301.402 1295.317 1292.747 1281.603 1269.692 1265.838 1263.680 1260.152 1258.490 1265.393 1274.135 1268.802 1268.362 

[316] 1276.197 1284.362 1276.337 1268.392 1260.240 1258.323 1254.818 1245.808 1233.042 1229.157 1242.042 1249.497 1246.605 1242.027 1246.162 

[331] 1246.887 1246.150 1247.713 1243.870 1244.493 1258.302 1267.057 1275.640 1273.885 1274.042 1269.252 1267.843 1269.575 1264.667 1252.745 

[346] 1241.960 1236.358 1235.960 1247.940 1250.645 1246.490 1252.073 1261.458 1267.312 1265.880 1271.742 1275.047 1274.105 1275.122 1277.758 

[361] 1279.338 1277.717 1274.223 1269.430 1269.802 1268.298 1268.320 1276.650 1287.610 1294.813 1299.548 1299.107 1298.967 1295.688 1295.497 

[376] 1295.063 1298.597 1301.915 1304.408 1304.413 1307.673 1310.932 1306.382 1299.305 1297.510 1298.413 1306.167 1313.292 1316.330 1318.268 

[391] 1319.857 1319.157 1322.000 1320.348 1317.597 1321.117 1329.428 1334.807 1337.695 1336.983 1334.090 1333.470 1341.690 1349.028 1350.902 

[406] 1350.730 1351.862 1351.225 1356.968 1362.078 1366.875 1365.982 1365.760 1366.088 1367.587 1372.537 1375.797 1379.740 1384.843 1382.067 

[421] 1379.592 1377.837 1372.873 1369.263 1365.898 1372.547 1378.730 1383.770 1381.545 1380.847 1382.232 1388.233 1393.428 1397.607 1399.948 

[436] 1400.610 1401.772 1404.065 1402.973 1392.312 1387.505 1392.307 1397.928 1398.478 1403.568 1409.872 1412.890 1410.405 1409.500 1411.015 

[451] 1411.767 1412.632 1419.075 1424.243 1424.518 1424.783 1424.028 1421.252 1415.402 1415.087 1420.847 1424.128 1421.867 1418.522 1417.753 

[466] 1413.735 1412.713 1411.953 1413.602 1418.878 1425.780 1430.163 1431.065 1428.708 1429.143 1426.037 1426.728 1433.220 1429.992 1425.745 

[481] 1421.687 1424.980 1432.163 1440.520 1445.882 1447.282 1447.728 1448.842 1448.828 1443.470 1437.423 1439.597 1447.965 1454.215 1455.923 

[496] 1457.822 1457.965 1457.347 1453.993 1451.145 
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Appendix B4:  EWMA3 Series on Daily Closing Price of S&P Price Index 

    [1]       NA       NA 1217.071 1222.279 1221.494 1213.173 1210.064 1203.690 1205.247 1200.677 1193.516 1190.676 1189.584 1186.376 1177.721 

  [16] 1173.903 1171.779 1173.213 1168.774 1175.806 1178.649 1176.324 1175.844 1178.674 1182.169 1187.727 1184.450 1182.626 1184.951 1178.841 

  [31] 1169.077 1152.624 1147.316 1149.386 1143.077 1152.511 1152.269 1158.941 1154.806 1155.897 1148.210 1152.889 1157.937 1160.836 1169.586 

  [46] 1171.856 1172.330 1175.813 1170.559 1170.817 1163.697 1158.004 1161.460 1168.661 1179.361 1187.034 1189.263 1192.154 1193.326 1191.720 

  [61] 1194.939 1197.196 1194.454 1198.666 1201.871 1199.269 1198.053 1197.154 1195.816 1198.617 1198.424 1200.061 1202.199 1204.994 1208.701 

  [76] 1213.763 1215.611 1214.800 1214.120 1206.327 1197.374 1192.376 1197.033 1199.033 1195.227 1194.324 1200.024 1197.740 1198.050 1205.446 

  [91] 1214.193 1219.940 1222.431 1224.970 1226.853 1223.837 1226.797 1231.519 1229.701 1232.000 1230.074 1230.911 1234.073 1239.946 1237.279 

[106] 1236.211 1240.194 1243.393 1239.663 1231.777 1225.889 1228.314 1228.916 1234.411 1232.330 1233.439 1225.070 1221.930 1219.414 1219.589 

[121] 1220.766 1219.076 1213.610 1212.321 1207.819 1210.241 1209.043 1215.774 1219.347 1219.370 1227.313 1232.891 1233.256 1237.946 1239.553 

[136] 1235.343 1230.229 1228.063 1233.466 1232.519 1226.473 1216.357 1214.317 1214.371 1215.389 1215.599 1216.359 1222.880 1226.784 1227.443 

[151] 1220.013 1205.886 1196.173 1194.710 1190.373 1187.149 1181.113 1178.227 1182.520 1187.197 1182.761 1189.917 1182.980 1181.389 1190.643 

[166] 1194.930 1193.997 1184.986 1191.831 1200.537 1203.353 1210.224 1216.006 1219.314 1221.637 1220.017 1220.370 1226.247 1231.636 1233.634 

[181] 1231.183 1230.946 1237.519 1244.270 1251.249 1257.556 1262.821 1266.493 1261.707 1259.013 1252.906 1259.303 1262.734 1263.313 1263.437 

[196] 1259.853 1257.400 1258.076 1259.471 1264.279 1269.464 1270.953 1269.129 1263.609 1260.806 1261.474 1265.383 1267.667 1261.657 1259.203 

[211] 1255.794 1251.453 1260.886 1268.533 1272.806 1280.317 1286.426 1289.216 1292.321 1288.899 1288.106 1284.771 1280.770 1282.721 1270.567 

[226] 1266.186 1265.224 1265.180 1270.220 1278.174 1283.147 1282.060 1282.170 1275.480 1268.609 1265.569 1259.027 1262.454 1263.029 1265.881 
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Appendix B4:  (Continued) 

[241] 1264.171 1270.690 1276.274 1284.721 1286.817 1285.140 1289.140 1288.504 1289.424 1291.876 1285.759 1288.629 1288.529 1288.349 1282.377 

[256] 1278.181 1277.700 1274.534 1278.373 1281.656 1291.371 1298.739 1303.549 1306.097 1305.736 1300.904 1302.814 1301.999 1302.883 1302.001 

[271] 1297.013 1299.947 1300.001 1297.553 1297.319 1302.030 1307.987 1309.316 1301.663 1298.074 1290.717 1288.891 1288.470 1286.811 1298.414 

[286] 1305.659 1310.426 1311.139 1309.494 1304.923 1304.747 1307.349 1309.613 1307.386 1310.547 1309.156 1311.207 1319.380 1323.201 1325.091 

[301] 1323.763 1313.503 1299.950 1295.200 1292.651 1279.991 1268.566 1266.009 1263.450 1259.641 1258.501 1266.463 1274.996 1267.526 1268.609 

[316] 1277.556 1284.913 1274.759 1267.743 1259.656 1258.267 1254.459 1244.613 1231.706 1229.283 1244.059 1249.789 1245.680 1241.754 1247.024 

[331] 1246.703 1245.914 1248.120 1243.203 1244.709 1260.383 1267.506 1276.290 1273.460 1274.047 1268.713 1267.771 1269.983 1263.800 1251.250 

[346] 1241.137 1236.091 1236.089 1249.636 1250.429 1245.604 1253.336 1262.519 1267.467 1265.497 1272.714 1275.277 1273.650 1275.449 1278.117 

[361] 1279.341 1277.439 1273.831 1268.933 1270.089 1268.076 1268.304 1277.926 1288.727 1295.194 1299.941 1298.880 1298.946 1295.303 1295.577 

[376] 1295.067 1299.051 1302.253 1304.546 1304.329 1308.150 1311.263 1305.507 1298.550 1297.711 1298.574 1307.143 1313.974 1316.323 1318.467 

[391] 1320.046 1318.940 1322.454 1320.017 1317.194 1321.867 1330.417 1335.061 1337.864 1336.821 1333.694 1333.561 1342.906 1349.627 1350.714 

[406] 1350.720 1352.084 1351.043 1357.806 1362.584 1367.187 1365.706 1365.766 1366.213 1367.731 1373.177 1376.023 1380.094 1385.449 1381.391 

[421] 1379.354 1377.851 1372.150 1368.989 1365.670 1373.580 1379.317 1384.049 1381.086 1380.854 1382.544 1388.946 1393.877 1397.914 1400.127 

[436] 1400.594 1401.920 1404.354 1402.684 1390.833 1387.393 1393.331 1398.314 1398.226 1404.361 1410.570 1412.891 1409.960 1409.549 1411.304 

[451] 1411.737 1412.714 1419.991 1424.650 1424.227 1424.893 1423.957 1420.830 1414.739 1415.346 1421.703 1424.214 1421.357 1418.247 1417.837 

[466] 1413.160 1412.731 1411.976 1413.780 1419.584 1426.487 1430.411 1431.001 1428.374 1429.337 1425.596 1426.909 1434.207 1429.121 1425.236 

[481] 1421.534 1425.529 1433.031 1441.294 1446.240 1447.240 1447.767 1449.010 1448.754 1442.697 1436.844 1440.263 1449.013 1454.586 1455.869 

[496] 1458.087 1457.917 1457.209 1453.593 1450.891 
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Appendix C1:  Monthly Temperature for 1895-2007 (Version 1 Dataset) 

   [1] 27.88 27.63 41.14 53.89 61.00 68.68 72.08 72.38 66.75 51.23 40.29 33.09 32.60 36.07 38.97 53.51 63.38 70.30 74.24 73.06 63.60 52.55 39.79 

  [24] 36.31 29.11 34.56 40.20 52.06 61.69 68.73 74.00 71.82 67.21 56.05 41.91 31.65 31.62 36.15 42.32 51.56 60.36 69.79 73.87 73.39 66.07 52.32 

  [47] 39.09 29.54 30.83 26.43 38.74 51.67 60.71 69.15 73.40 72.49 65.27 55.13 45.89 32.65 35.02 31.63 42.09 52.40 62.27 70.60 73.60 73.63 65.91 

  [70] 57.34 42.51 35.28 32.90 30.77 41.67 50.19 61.54 69.08 76.84 73.73 63.82 56.16 42.52 32.33 30.83 32.47 42.85 51.81 62.73 68.62 72.66 72.00 

  [93] 63.22 55.08 44.70 31.73 31.85 29.47 43.34 51.05 60.22 66.43 72.44 71.56 63.24 54.59 40.85 31.28 28.20 32.60 42.60 50.19 60.73 67.84 71.86 

 [116] 71.20 65.46 54.64 43.91 32.86 27.82 27.60 46.24 51.37 59.86 68.76 72.44 72.91 66.48 52.28 43.08 31.90 33.89 34.42 37.00 53.55 60.23 68.00 

 [139] 72.82 72.56 66.78 53.05 41.45 35.91 31.85 36.24 46.72 48.15 56.53 66.41 73.09 71.40 64.62 54.42 41.69 35.57 33.25 33.93 44.80 53.46 59.35 

 [162] 67.55 73.67 71.21 65.99 52.31 43.24 34.15 32.88 35.90 41.28 49.70 58.64 69.51 73.18 73.53 64.80 53.40 45.73 26.42 30.41 30.21 50.39 54.45 

 [185] 59.78 68.85 74.59 71.63 66.16 56.25 41.93 32.73 33.77 34.59 45.10 50.87 61.87 71.37 73.18 71.47 66.58 53.31 38.02 33.03 25.59 32.00 36.75 

 [208] 51.52 61.22 67.35 72.87 70.77 63.23 53.88 43.09 33.95 31.32 30.45 39.74 52.33 60.87 68.94 73.66 74.07 64.24 52.33 46.02 34.22 35.56 30.66 

 [231] 41.91 51.92 61.94 70.08 74.69 72.32 65.11 55.95 44.42 27.72 29.43 37.02 38.10 55.53 58.89 66.78 71.58 70.71 65.00 56.15 44.07 33.94 29.02 

 [254] 33.90 43.31 51.18 59.99 67.02 74.93 72.48 64.17 52.87 41.10 29.76 29.23 30.93 39.46 49.54 55.88 67.68 75.20 71.58 64.78 51.11 44.47 30.35 

 [277] 24.76 34.80 46.74 49.88 61.53 71.75 72.97 73.16 62.39 56.87 41.25 35.18 32.65 33.12 41.82 52.12 60.68 70.00 74.89 72.78 66.14 53.30 40.07 

 [300] 29.49 29.95 34.45 41.25 47.59 59.97 68.03 73.31 71.27 65.85 55.26 40.43 33.78 35.10 37.82 47.53 51.74 60.71 71.00 75.23 72.60 67.02 55.95 

 [323] 43.35 35.80 27.65 32.79 41.39 51.15 61.83 70.91 73.54 73.38 67.79 55.65 42.65 34.24 35.42 30.41 39.31 50.77 60.07 68.73 74.37 71.70 65.56 

 [346] 51.91 43.54 36.86 27.06 36.03 38.16 51.10 58.55 69.22 72.45 72.71 63.26 55.66 43.27 28.21 29.84 39.20 45.17 55.50 60.66 70.53 74.73 72.05 

 

131 



Appendix C1:  (Continued) 

[369] 67.17 49.45 41.33 33.32 31.15 38.59 40.68 50.89 61.70 68.91 74.02 72.95 64.54 55.53 41.37 32.16 32.33 38.73 43.25 52.40 60.38 67.87 73.31 

 [392] 69.98 65.53 56.57 45.14 29.02 32.79 35.26 44.10 48.88 62.11 66.55 74.00 72.40 63.74 55.66 42.52 33.77 27.15 27.84 44.65 51.99 59.52 68.17 

 [415] 74.28 73.27 63.93 54.53 39.21 34.67 24.43 41.02 41.40 55.23 59.92 69.15 75.67 73.57 66.28 52.43 42.01 32.08 33.88 38.91 40.43 51.90 60.13 

 [438] 71.45 76.36 72.67 68.70 57.27 44.28 36.02 32.41 37.63 38.37 52.42 61.28 69.98 74.83 73.22 65.25 53.04 41.64 30.32 35.25 30.56 42.93 50.78 

 [461] 60.62 72.34 75.85 72.55 68.25 55.89 43.46 37.18 36.00 35.18 43.79 54.63 65.38 71.48 77.09 74.25 64.43 57.22 45.91 33.55 32.33 36.94 44.62 

 [484] 50.54 58.02 68.37 75.86 73.66 65.32 54.42 40.39 31.71 28.20 26.08 44.52 51.04 64.15 71.35 77.52 75.32 66.89 54.11 40.69 35.37 25.77 32.72 

 [507] 39.90 51.03 62.67 69.56 75.28 75.36 66.26 54.58 41.69 33.52 32.98 36.95 46.16 52.60 60.56 69.54 74.47 74.46 67.24 57.15 40.89 35.14 34.91 

 [530] 30.98 43.56 52.37 63.43 69.58 75.51 73.30 67.95 55.47 43.20 38.55 24.56 34.85 42.57 51.07 61.57 70.29 74.82 72.79 65.94 56.88 39.98 37.01 

 [553] 33.20 34.53 40.35 53.07 63.15 68.71 74.74 72.82 65.16 56.02 43.97 37.13 30.79 31.80 42.51 53.99 59.88 68.72 74.68 72.51 64.30 55.36 44.06 

 [576] 33.84 30.28 37.28 39.61 53.86 60.48 69.70 75.01 74.25 64.84 54.42 41.90 33.55 33.04 35.62 39.69 49.97 62.82 69.16 73.49 72.82 65.81 56.04 

 [599] 42.56 31.57 31.34 36.26 46.70 51.17 59.00 66.63 73.65 72.89 65.50 54.86 43.01 30.01 32.34 35.93 47.93 55.56 59.46 69.16 74.54 71.83 65.13 

 [622] 54.03 42.73 37.08 32.72 32.38 39.80 51.94 60.83 67.54 73.54 74.84 67.12 59.58 39.20 33.90 28.83 32.59 39.83 54.31 61.04 69.56 73.97 72.81 

 [645] 66.67 53.97 42.70 33.55 27.07 32.95 41.93 53.03 62.54 70.05 74.88 72.82 64.33 54.84 46.22 34.31 31.41 36.51 39.95 49.65 60.24 68.74 71.89 

 [668] 70.72 64.14 58.17 41.58 33.88 31.16 35.43 39.62 50.69 61.50 67.35 74.29 72.56 64.61 54.75 39.07 32.18 32.96 36.50 38.84 52.61 61.34 71.55 

 [691] 74.74 73.50 66.47 53.66 41.00 34.36 37.26 36.90 44.79 49.66 59.94 70.92 74.78 72.78 66.69 56.95 44.85 34.66 31.64 42.30 40.32 55.04 59.31 

 [714] 69.61 76.15 72.87 67.07 55.43 44.98 34.86 30.36 32.07 41.10 53.80 62.09 67.26 75.12 74.54 66.46 55.77 39.10 32.45 31.78 33.16 41.80 50.34 

 [737] 62.58 71.09 73.77 72.36 65.67 56.90 41.31 37.05 27.95 38.93 42.37 51.64 60.50 69.52 74.99 72.41 64.77 52.43 41.26 37.95 32.51 32.89 38.75 

 [760] 51.31 63.28 68.74 73.26 73.98 66.08 55.48 43.96 32.98 30.26 33.40 42.58 52.56 61.70 70.72 74.24 73.89 65.35 54.02 39.52 36.82 30.30 31.55 
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[783] 36.84 53.54 60.10 69.84 74.52 72.86 66.98 55.49 43.62 31.24 30.51 38.38 44.56 49.57 59.68 70.26 73.89 73.37 64.06 54.57 41.45 31.86 27.75 

 [806] 35.86 38.95 52.77 63.13 68.70 72.75 72.78 64.76 56.83 44.03 34.17 25.14 35.03 44.84 52.88 61.83 69.49 74.34 72.69 66.94 60.03 44.83 28.50 

 [829] 32.34 32.76 39.89 52.26 62.29 68.78 75.35 71.37 64.31 54.43 43.19 32.76 32.43 33.35 36.49 52.85 61.68 67.65 73.33 71.74 62.38 55.61 45.40 

 [852] 36.51 27.11 32.17 44.00 50.93 61.02 68.76 75.78 71.50 65.15 53.53 43.96 33.41 33.81 33.81 44.66 52.03 58.50 68.38 73.22 71.92 64.68 54.60 

 [875] 42.30 32.93 29.55 33.81 44.66 51.63 59.05 69.30 73.60 71.36 64.50 55.31 41.93 30.74 29.86 33.67 37.13 53.62 62.27 67.65 74.81 73.87 66.16 

 [898] 51.74 42.44 34.17 27.83 36.23 39.59 50.52 61.97 69.59 74.69 74.07 65.21 52.99 42.11 34.35 30.07 34.33 40.76 51.33 59.27 70.34 73.16 72.78 

 [921] 65.00 55.82 42.41 34.76 30.56 34.37 45.07 51.82 61.44 69.11 72.91 72.46 65.10 52.98 39.74 30.46 30.27 34.52 45.44 49.86 60.16 69.80 74.03 

 [944] 73.29 64.99 56.74 43.58 34.36 31.61 35.63 45.44 52.60 61.31 69.29 74.87 70.99 62.90 54.55 43.11 34.33 32.95 33.52 39.76 47.88 61.34 68.34 

 [967] 74.30 72.26 63.51 55.29 43.34 34.77 30.49 40.35 43.39 52.93 59.97 68.64 73.67 71.46 64.85 50.70 39.16 31.52 23.66 36.86 44.32 55.12 62.64 

 [990] 71.17 75.21 72.51 66.51 54.57 43.54 33.81 26.36 28.69 42.22 52.62 60.64 69.81 74.59 72.51 66.52 55.05 42.13 30.46 22.50 28.74 43.16 51.17 

[1013] 60.13 68.73 73.91 71.72 66.72 55.91 40.70 36.60 31.62 33.50 40.37 52.46 61.21 69.55 76.49 73.53 66.82 53.27 43.03 35.66 32.96 37.43 43.91 

[1036] 56.19 59.92 70.67 74.66 72.78 65.50 52.95 45.41 34.14 26.60 33.19 43.01 49.71 61.80 67.14 73.96 72.80 64.65 53.89 41.86 36.41 33.59 37.68 

[1059] 43.43 48.09 58.91 68.00 74.81 75.85 66.21 55.63 43.78 25.85 29.28 38.17 41.08 50.65 61.08 69.51 73.93 73.89 63.76 54.31 42.29 35.07 26.72 

[1082] 31.56 44.53 55.38 63.03 68.95 74.81 71.71 63.38 54.94 40.13 29.05 35.11 36.59 47.17 53.91 62.08 71.34 74.33 72.39 64.44 54.62 42.01 34.93 

[1105] 31.95 38.23 43.58 54.51 64.03 71.08 74.04 72.54 65.76 53.34 44.65 35.23 28.21 34.26 43.47 52.84 62.23 71.71 75.51 74.38 65.13 54.29 44.00 

[1128] 33.94 34.40 29.68 43.49 53.76 61.42 68.99 74.91 72.02 64.59 54.92 43.45 27.99 37.15 37.46 45.63 53.47 59.88 70.97 74.05 72.97 67.90 54.59 

[1151] 45.54 31.28 29.74 40.44 44.43 53.61 63.00 69.95 74.70 73.73 65.48 55.25 40.02 36.12 33.96 40.43 45.62 53.48 62.07 68.29 72.02 70.46 65.17 

[1174] 55.00 40.75 32.22 30.75 31.69 42.52 50.95 61.95 68.19 73.05 72.71 63.88 53.60 39.69 34.77 29.91 32.55 45.42 53.73 61.73 71.77 74.32 72.90 
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[1197] 66.06 54.86 43.37 36.73 33.59 38.06 44.36 50.52 59.69 68.54 74.38 74.99 65.27 55.05 42.50 34.01 30.26 36.25 39.85 51.70 61.94 70.60 74.30 

[1220] 73.02 64.13 54.31 40.05 34.45 30.46 36.93 45.49 48.97 60.33 69.24 73.98 72.44 67.07 54.50 41.42 34.40 35.45 39.68 42.09 51.99 63.51 69.01 

[1243] 76.18 74.62 69.59 55.66 45.45 36.03 34.20 40.30 43.64 52.55 61.06 69.18 75.13 73.73 64.80 54.94 48.35 36.48 34.04 40.36 46.84 53.35 64.05 

[1266] 69.81 74.53 74.70 66.06 55.55 38.32 28.48 31.50 34.40 42.04 53.92 63.62 70.00 75.26 74.86 66.07 54.76 47.83 36.53 34.92 36.74 40.02 54.39 

[1289] 60.19 71.63 76.55 73.49 67.44 52.23 42.14 35.43 33.00 33.48 44.02 52.85 61.90 68.84 76.13 75.38 65.41 56.87 42.76 35.68 30.34 33.91 47.94 

[1312] 53.53 62.87 68.87 73.59 70.80 66.26 55.84 44.34 35.15 33.23 38.22 42.90 52.98 60.34 70.01 75.89 73.88 67.84 55.75 45.28 32.64 39.29 35.16 

[1335] 43.31 56.03 63.06 71.44 77.10 74.10 63.69 52.97 44.68 36.64 31.39 32.86 
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Appendix C2:  Monthly Temperature for 1895-2007 (Version 2 Dataset) 

     [1] 27.63 27.54 40.95 54.05 61.11 68.61 71.97 72.24 66.43 51.57 40.25 32.73 32.38 36.04 39.21 53.27 63.23 70.57 74.44 73.05 63.63 52.79 39.17 

   [24] 36.44 28.92 34.29 39.90 52.24 62.03 68.75 74.03 72.03 67.04 55.69 41.72 31.62 31.59 36.21 42.03 51.80 60.51 69.93 73.92 73.45 66.01 52.13 

   [47] 39.25 29.49 30.55 26.27 38.57 51.60 60.62 69.28 73.65 72.42 65.33 54.68 45.98 32.63 34.93 31.42 42.18 52.56 62.52 71.01 73.76 73.55 65.62 

   [70] 57.17 42.44 35.37 32.54 30.71 41.81 50.31 61.83 69.11 76.94 73.87 63.80 56.16 42.66 32.32 30.85 32.37 42.78 51.93 62.88 68.74 72.74 72.09 

   [93] 63.36 55.13 44.58 31.51 31.72 29.43 43.40 51.20 60.30 66.58 72.61 71.64 63.32 54.71 41.13 31.44 28.29 32.40 42.70 50.35 60.88 67.99 72.02 

 [116] 71.36 65.56 54.67 44.18 32.83 27.83 27.76 46.24 51.53 59.95 68.71 72.57 73.04 66.52 52.36 43.17 31.96 33.76 34.59 37.20 53.74 60.37 68.06 

 [139] 73.00 72.48 66.87 53.20 41.45 35.74 31.55 36.34 46.68 48.43 56.65 66.46 73.21 71.47 64.79 54.46 41.86 35.59 33.34 33.94 44.96 53.73 59.59 

 [162] 67.65 73.83 71.34 66.08 52.41 43.41 34.15 33.02 35.86 41.50 49.91 58.86 69.62 73.25 73.58 64.93 53.55 45.96 26.52 30.47 30.22 50.61 54.67 

 [185] 60.02 68.98 74.69 71.73 66.20 56.29 42.04 32.68 33.61 34.56 45.21 51.04 62.01 71.41 73.29 71.56 66.63 53.41 38.18 33.13 25.55 32.06 36.90 

 [208] 51.67 61.39 67.44 72.90 70.80 63.32 53.90 43.17 33.95 31.32 30.47 39.86 52.42 60.93 68.97 73.67 74.06 64.22 52.36 46.01 34.20 35.39 30.48 

 [231] 41.93 51.98 62.01 70.11 74.67 72.30 65.09 55.90 44.33 27.68 29.33 36.92 38.18 55.60 58.94 66.71 71.53 70.70 64.97 56.03 44.01 33.96 28.94 

 [254] 33.80 43.24 51.25 60.07 66.96 74.92 72.44 64.06 52.81 41.06 29.73 29.13 30.89 39.54 49.64 55.92 67.65 75.22 71.63 64.71 51.05 44.44 30.33 

 [277] 24.69 34.74 46.84 50.03 61.62 71.80 73.02 73.21 62.41 56.86 41.37 35.26 32.62 33.10 41.94 52.28 60.80 70.04 74.97 72.86 66.19 53.27 40.15 

 [300] 29.55 30.00 34.46 41.38 47.73 60.12 68.07 73.35 71.31 65.90 55.32 40.54 33.93 35.12 37.81 47.64 51.95 60.87 71.08 75.34 72.68 67.20 56.07 

 [323] 43.45 35.88 27.70 32.84 41.55 51.33 62.02 70.94 73.64 73.45 67.83 55.70 42.78 34.23 35.40 30.48 39.44 50.92 60.27 68.82 74.44 71.79 65.63 

 [346] 51.97 43.66 36.92 27.06 36.08 38.33 51.25 58.69 69.29 72.51 72.75 63.34 55.69 43.34 28.25 29.82 39.19 45.35 55.67 60.80 70.57 74.76 72.05 
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 [369] 67.19 49.46 41.36 33.33 31.20 38.59 40.82 50.99 61.84 68.92 74.03 72.98 64.56 55.55 41.40 32.14 32.33 38.71 43.36 52.53 60.47 67.92 73.33 

 [392] 70.01 65.54 56.58 45.15 29.03 32.77 35.29 44.25 49.02 62.24 66.60 74.03 72.46 63.81 55.73 42.57 33.82 27.17 27.88 44.80 52.15 59.61 68.20 

 [415] 74.28 73.26 63.99 54.58 39.31 34.69 24.42 41.02 41.52 55.33 60.01 69.14 75.68 73.56 66.31 52.42 42.07 32.09 33.90 38.94 40.55 52.00 60.23 

 [438] 71.44 76.38 72.65 68.74 57.31 44.36 36.03 32.44 37.58 38.48 52.51 61.34 70.00 74.82 73.25 65.29 53.06 41.67 30.33 35.20 30.56 43.02 50.87 

 [461] 60.70 72.35 75.80 72.60 68.27 55.91 43.47 37.11 35.97 35.15 43.86 54.71 65.47 71.45 77.08 74.25 64.40 57.22 45.92 33.48 32.27 36.91 44.71 

 [484] 50.65 58.10 68.36 75.85 73.67 65.34 54.41 40.40 31.66 28.14 26.06 44.58 51.12 64.25 71.34 77.49 75.28 66.88 54.10 40.72 35.33 25.70 32.64 

 [507] 39.96 51.08 62.74 69.57 75.27 75.33 66.26 54.53 41.73 33.49 32.97 36.91 46.22 52.67 60.62 69.51 74.43 74.44 67.25 57.17 40.88 35.13 34.87 

 [530] 30.91 43.62 52.45 63.50 69.56 75.50 73.31 67.96 55.45 43.27 38.56 24.55 34.80 42.61 51.13 61.62 70.28 74.78 72.75 65.93 56.84 39.97 36.95 

 [553] 33.14 34.47 40.38 53.10 63.17 68.62 74.69 72.77 65.16 55.99 43.92 37.05 30.71 31.70 42.55 54.04 59.91 68.62 74.62 72.47 64.27 55.33 44.03 

 [576] 33.73 30.20 37.18 39.63 53.87 60.48 69.58 74.94 74.18 64.85 54.42 41.84 33.48 32.97 35.49 39.68 49.99 62.82 69.08 73.44 72.79 65.82 56.03 

 [599] 42.58 31.55 31.28 36.17 46.71 51.17 59.01 66.54 73.59 72.83 65.48 54.83 42.99 29.95 32.28 35.80 47.96 55.59 59.49 69.04 74.46 71.79 65.05 

 [622] 53.97 42.67 36.99 32.63 32.29 39.83 51.94 60.85 67.43 73.44 74.77 67.09 59.55 39.16 33.80 28.77 32.47 39.87 54.30 61.05 69.49 73.92 72.73 

 [645] 66.64 53.97 42.68 33.45 26.96 32.84 41.98 53.08 62.59 70.02 74.87 72.81 64.32 54.81 46.23 34.20 31.30 36.45 40.02 49.71 60.29 68.70 71.89 

 [668] 70.68 64.13 58.15 41.59 33.83 31.11 35.40 39.67 50.72 61.53 67.32 74.27 72.50 64.60 54.74 39.06 32.12 32.85 36.46 38.89 52.65 61.38 71.50 

 [691] 74.70 73.45 66.45 53.61 40.97 34.30 37.20 36.84 44.85 49.69 59.97 70.87 74.74 72.76 66.67 56.94 44.83 34.58 31.56 42.26 40.38 55.08 59.33 

 [714] 69.57 76.11 72.83 67.02 55.39 44.96 34.81 30.28 32.00 41.13 53.83 62.12 67.26 75.09 74.53 66.44 55.74 39.09 32.38 31.75 33.08 41.81 50.37 

 [737] 62.56 71.07 73.73 72.35 65.63 56.89 41.28 36.96 27.90 38.86 42.41 51.68 60.53 69.48 74.98 72.39 64.77 52.42 41.27 37.88 32.47 32.86 38.81 

 [760] 51.33 63.29 68.72 73.29 73.98 66.07 55.47 43.94 32.91 30.23 33.36 42.61 52.59 61.70 70.71 74.25 73.88 65.30 53.98 39.50 36.77 30.24 31.51 
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 [783] 36.88 53.57 60.12 69.83 74.52 72.86 66.94 55.45 43.59 31.16 30.39 38.30 44.58 49.59 59.71 70.25 73.88 73.36 64.01 54.53 41.41 31.80 27.65 

 [806] 35.77 38.96 52.78 63.11 68.69 72.73 72.78 64.71 56.77 44.01 34.12 25.11 34.97 44.86 52.89 61.85 69.49 74.34 72.67 66.91 60.00 44.81 28.46 

 [829] 32.27 32.70 39.91 52.29 62.33 68.79 75.34 71.37 64.30 54.42 43.20 32.71 32.37 33.29 36.52 52.86 61.70 67.66 73.31 71.75 62.38 55.60 45.39 

 [852] 36.49 27.07 32.11 44.03 50.96 61.04 68.77 75.76 71.51 65.14 53.52 43.95 33.37 33.74 33.75 44.65 52.02 58.51 68.36 73.25 71.93 64.67 54.58 

 [875] 42.30 32.87 29.52 33.77 44.66 51.63 59.06 69.28 73.59 71.33 64.49 55.29 41.92 30.71 29.81 33.61 37.11 53.64 62.28 67.64 74.81 73.87 66.13 

 [898] 51.71 42.41 34.15 27.79 36.18 39.56 50.52 61.96 69.58 74.68 74.04 65.19 52.95 42.06 34.27 30.02 34.30 40.73 51.31 59.25 70.32 73.14 72.77 

 [921] 64.98 55.80 42.38 34.70 30.53 34.31 45.03 51.80 61.46 69.11 72.92 72.47 65.08 52.97 39.73 30.44 30.26 34.47 45.47 49.87 60.17 69.78 74.02 

 [944] 73.29 64.99 56.71 43.55 34.33 31.61 35.60 45.43 52.62 61.30 69.32 74.86 70.99 62.88 54.53 43.10 34.32 32.96 33.54 39.79 47.89 61.35 68.36 

 [967] 74.31 72.26 63.50 55.30 43.35 34.77 30.49 40.36 43.37 52.93 59.98 68.67 73.67 71.46 64.85 50.69 39.14 31.50 23.64 36.86 44.32 55.12 62.65 

 [990] 71.17 75.19 72.48 66.52 54.58 43.54 33.86 26.45 28.75 42.24 52.62 60.68 69.82 74.58 72.50 66.52 55.05 42.15 30.46 22.57 28.82 43.15 51.17 

[1013] 60.11 68.74 73.93 71.72 66.72 55.91 40.70 36.62 31.67 33.58 40.38 52.49 61.24 69.58 76.51 73.54 66.83 53.26 43.03 35.71 33.01 37.49 43.93 

[1036] 56.19 59.94 70.68 74.68 72.77 65.52 52.97 45.43 34.20 26.65 33.29 42.98 49.69 61.78 67.12 73.95 72.78 64.66 53.94 41.86 36.47 33.64 37.75 

[1059] 43.45 48.08 58.90 67.99 74.79 75.84 66.22 55.63 43.78 25.95 29.35 38.24 41.08 50.66 61.03 69.46 73.91 73.89 63.75 54.33 42.31 35.16 26.80 

[1082] 31.65 44.54 55.36 63.01 68.92 74.78 71.70 63.39 54.94 40.14 29.11 35.17 36.64 47.15 53.88 62.05 71.30 74.33 72.38 64.42 54.63 42.03 34.93 

[1105] 31.99 38.26 43.56 54.47 63.97 71.09 74.07 72.55 65.80 53.43 44.69 35.24 28.26 34.27 43.43 52.80 62.19 71.73 75.57 74.42 65.21 54.34 44.05 

[1128] 33.97 34.43 29.69 43.48 53.79 61.42 69.03 74.94 72.07 64.66 54.96 43.47 28.00 37.17 37.46 45.64 53.47 59.86 71.03 74.06 73.02 67.96 54.65 

[1151] 45.59 31.31 29.74 40.41 44.41 53.59 62.95 69.98 74.69 73.73 65.51 55.24 40.05 36.15 34.00 40.44 45.60 53.45 62.05 68.29 72.03 70.47 65.22 

[1174] 55.01 40.79 32.26 30.76 31.67 42.48 50.89 61.86 68.16 73.02 72.68 63.86 53.57 39.74 34.76 29.84 32.56 45.38 53.65 61.67 71.70 74.29 72.88 
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[1197] 66.07 54.87 43.42 36.74 33.58 37.95 44.33 50.45 59.62 68.50 74.36 74.98 65.28 55.04 42.52 33.99 30.22 36.21 39.83 51.63 61.87 70.62 74.28 

[1220] 73.03 64.13 54.28 40.11 34.49 30.48 36.91 45.48 48.96 60.28 69.27 74.02 72.48 67.13 54.55 41.46 34.51 35.53 39.75 42.13 52.03 63.51 69.03 

[1243] 76.25 74.70 69.63 55.76 45.58 36.10 34.29 40.36 43.68 52.55 61.07 69.23 75.17 73.75 64.88 55.06 48.46 36.59 34.11 40.47 46.89 53.41 64.03 

[1266] 69.83 74.62 74.75 66.18 55.66 38.49 28.59 31.63 34.49 42.15 53.98 63.63 70.05 75.32 74.93 66.17 54.89 47.98 36.67 35.03 36.95 40.20 54.33 

[1289] 60.13 71.67 76.62 73.54 67.49 52.31 42.33 35.65 33.01 33.53 44.05 52.84 61.88 68.89 76.21 75.44 65.51 57.03 42.92 35.91 30.45 34.07 48.05 

[1312] 53.57 62.88 68.93 73.69 70.95 66.40 56.02 44.54 35.42 33.45 38.45 43.10 53.18 60.47 70.13 76.02 73.98 67.98 55.93 45.46 32.91 39.53 35.35 

[1335] 43.45 56.12 63.12 71.55 77.22 74.19 63.86 53.13 44.58 36.79 31.46 32.86 
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Appendix D:  Monthly CO2 Emission 1981-2003 

    [1] 125.4146 105.9197 107.1396  94.9415  95.2932  96.8175 101.4611  99.1624  94.7263 100.2223  99.5731 115.2323 120.7643 104.9733 104.5716 

  [16]  96.7353  89.5450  88.4151  93.3538  93.7069  88.7784  91.4506  95.8438 103.4164 109.8079  95.9954 102.0473  92.6503  89.7150  90.0224 

  [31]  96.1035  99.8732  92.1287  91.9029  95.5590 111.6509 123.0677 105.0796 109.5487  99.4655  97.1149  96.6004  98.8165 102.1989  92.3669 

  [46]  96.5541  99.2773 107.1774 118.5610 109.6339 104.9004  97.7826  95.9263  93.8377  99.2186 100.9150  91.7477  96.6222  97.1792 116.6590 

  [61] 119.0228 106.0296 107.9398  96.3769  96.1893  96.1216 102.9323  99.8575  92.0380  95.7214  97.5536 112.3446 119.0369 107.0488 107.1302 

  [76] 100.2641  98.5374 101.2423 107.7090 105.7530  97.7900 102.1821 101.9277 117.4361 125.3272 117.3372 116.2031 102.3907 100.7750 104.1288 

  [91] 108.4163 112.9515 100.5518 105.7330 107.9122 122.1634 121.3611 116.2543 120.0471 105.3687 103.7629 105.2683 107.0433 109.7045 101.6754 

[106] 106.8046 109.6547 132.4097 122.7457 109.3402 114.3499 106.5081 105.7040 106.4926 110.1887 114.3188 103.9005 108.1243 106.9206 118.8626 

[121] 126.0021 106.8170 110.8317 101.5886 102.7917 103.2419 109.4145 110.2427 102.5933 107.0639 110.2982 124.6845 123.6433 112.3913 115.6407 

[136] 107.3133 104.4047 102.8995 111.4495 108.3450 103.9191 107.7787 109.6073 124.7419 122.3291 116.2767 123.0597 107.9980 103.0110 106.5694 

[151] 115.2173 115.0036 107.1554 110.2313 114.9989 127.2304 136.3117 123.5147 121.0627 110.0240 108.2796 113.2922 115.1996 117.1827 107.7320 

[166] 110.8785 111.2215 125.6154 128.5581 119.5553 120.9017 109.9400 110.1609 111.9193 117.5974 123.0613 110.9679 112.1697 118.6156 132.1565 

[181] 137.3295 127.4181 127.3773 114.5245 114.7983 114.7599 120.0355 122.1473 111.5481 119.6606 123.3725 132.9810 139.4169 122.3559 124.9457 

[196] 117.3911 116.4253 116.2448 126.3987 123.1898 116.6263 121.5586 123.3120 137.4636 136.2017 121.1348 128.8153 118.6826 118.2228 121.3047 

[211] 129.6144 129.3553 120.1381 120.3204 119.3293 134.2790 139.6680 122.5791 131.1086 120.0453 118.1919 121.0179 130.0581 130.0953 119.2973 

[226] 122.7435 120.5918 138.3181 140.7672 132.3686 129.4892 118.8712 123.8231 125.0370 128.5651 134.8708 123.4820 126.2876 128.2345 149.5021 

[241] 147.4769 128.7643 135.0432 121.4761 121.8473 121.3621 131.0966 133.6699 118.2129 122.7140 119.8921 130.9794 138.8554 123.7673 132.4239 
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Appendix D:  (Continued) 

[256] 122.5456 122.7795 124.5207 133.8627 133.4808 123.0272 125.6926 128.2429 141.2141 147.6298 134.1716 133.6979 121.0047 120.4789 120.7394 

[271] 132.4187 135.1314 121.7753 125.2487 126.2127 143.1509 
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Appendix E:  Monthly CO2 in the Atmosphere 1965-2004 

    [1] 319.44 320.44 320.89 322.13 322.16 321.87 321.21 318.87 317.81 317.30 318.87 319.42 320.62 321.59 322.39 323.70 324.07 323.75 322.40 320.37 318.64 

  [22] 318.10 319.79 321.03 322.33 322.50 323.04 324.42 325.00 324.09 322.55 320.92 319.26 319.39 320.72 321.96 322.57 323.15 323.89 325.02 325.57 325.36 

  [43] 324.14 322.11 320.33 320.25 321.32 322.90 324.00 324.42 325.64 326.66 327.38 326.70 325.89 323.67 322.38 321.78 322.85 324.12 325.06 325.98 326.93 

  [64] 328.13 328.07 327.66 326.35 324.69 323.10 323.07 324.01 325.13 326.17 326.68 327.18 327.78 328.92 328.57 327.37 325.43 323.36 323.56 324.80 326.01 

  [85] 326.77 327.63 327.75 329.72 330.07 329.09 328.05 326.32 324.84 325.20 326.50 327.55 328.54 329.56 330.30 331.50 332.48 332.07 330.87 329.31 327.51 

[106] 327.18 328.16 328.64 329.35 330.71 331.48 332.65 333.09 332.25 331.18 329.40 327.44 327.37 328.46 329.58 330.40 331.41 332.04 333.31 333.96 333.59 

[127] 331.91 330.06 328.56 328.34 329.49 330.76 331.74 332.56 333.50 334.58 334.87 334.34 333.05 330.94 329.30 328.94 330.31 331.68 332.92 333.42 334.70 

[148] 336.07 336.74 336.27 334.93 332.75 331.58 331.16 332.40 333.85 334.97 335.39 336.64 337.76 338.01 337.89 336.54 334.68 332.76 332.54 333.92 334.95 

[169] 336.23 336.76 337.96 338.89 339.47 339.29 337.73 336.09 333.91 333.86 335.29 336.73 338.01 338.36 340.08 340.77 341.46 341.17 339.56 337.60 335.88 

[190] 336.01 337.10 338.21 339.23 340.47 341.38 342.51 342.91 342.25 340.49 338.43 336.69 336.85 338.36 339.61 340.75 341.61 342.70 343.56 344.13 343.35 

[211] 342.06 339.82 337.97 337.86 339.26 340.49 341.37 342.52 343.10 344.94 345.75 345.32 343.99 342.39 339.86 339.99 341.16 342.99 343.70 344.51 345.28 

[232] 347.08 347.43 346.79 345.40 343.28 341.07 341.35 342.98 344.22 344.97 346.00 347.43 348.35 348.93 348.25 346.56 344.69 343.09 342.80 344.24 345.56 

[253] 346.29 346.96 347.86 349.55 350.21 349.54 347.94 345.91 344.86 344.17 345.66 346.90 348.02 348.47 349.42 350.99 351.84 351.25 349.52 348.10 346.44 

[274] 346.36 347.81 348.96 350.43 351.72 352.22 353.59 354.22 353.79 352.39 350.44 348.72 348.88 350.07 351.34 352.76 353.07 353.68 355.42 355.67 355.13 

[295] 353.90 351.67 349.80 349.99 351.30 352.53 353.66 354.70 355.39 356.20 357.16 356.22 354.82 352.91 350.96 351.18 352.83 354.21 354.72 355.75 357.16 

[316] 358.60 359.34 358.24 356.17 354.03 352.16 352.21 353.75 354.99 355.98 356.72 357.81 359.15 359.66 359.25 357.03 355.00 353.01 353.31 354.16 355.40 

[337] 356.70 357.16 358.38 359.46 360.28 359.60 357.57 355.52 353.70 353.98 355.33 356.80 358.36 358.91 359.97 361.26 361.68 360.95 359.55 357.49 355.84 
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[358] 355.99 357.58 359.04 359.96 361.00 361.64 363.45 363.79 363.26 361.90 359.46 358.06 357.75 359.56 360.70 362.05 363.25 364.03 364.72 365.41 364.97 

[379] 363.65 361.49 359.46 359.60 360.76 362.33 363.18 364.00 364.57 366.35 366.79 365.62 364.47 362.51 360.19 360.77 362.43 364.28 365.32 366.15 367.31 

[400] 368.61 369.29 368.87 367.64 365.77 363.90 364.23 365.46 366.97 368.15 368.87 369.59 371.14 371.00 370.35 369.27 366.94 364.63 365.12 366.67 368.01 

[421] 369.14 369.46 370.52 371.66 371.82 371.70 370.12 368.12 366.62 366.73 368.29 369.53 370.28 371.50 372.12 372.87 374.02 373.30 371.62 369.55 367.96 

[442] 368.09 369.68 371.24 372.43 373.09 373.52 374.86 375.55 375.40 374.02 371.49 370.71 370.24 372.08 373.78 374.68 375.63 376.11 377.65 378.35 378.13 

[463] 376.62 374.50 372.99 373.00 374.35 375.70 376.79 377.37 378.41 380.52 380.63 379.57 377.79 375.86 374.06 374.24 375.86 377.48 
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