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Characterization of the Western Antarctic Peninsula Ecosystem: Environmental   

Controls on the Zooplankton Community  

 

Marina Marrari 

 

ABSTRACT 

 

The zooplankton community of Marguerite Bay, western Antarctic Peninsula, was 

investigated in relation to variability in chlorophyll concentrations and sea ice dynamics, 

using a combination of satellite remote sensing techniques and plankton net data.  

SeaWiFS chlorophyll data were validated with concurrent in situ data measured by HPLC 

and fluoromentric methods, and results indicate that SeaWiFS chlorophyll is an accurate 

measure of in situ values when HPLC data are used as ground truth.  

Climatology data of SeaWiFS chlorophyll west of the Antarctic Peninsula showed 

that the Bellingshausen Sea and Marguerite Bay usually had higher and more persistent 

chlorophyll concentrations compared with northern regions.  These predictable 

phytoplankton blooms could provide the Antarctic krill, Euphausia superba, with the food 

required for successful reproduction and larval survival.  Unusually high krill 

reproduction in 2000/2001 was coincident with above-average chlorophyll concentrations 

throughout the study area and was followed by the largest juvenile recruitment since 

1981.  High larval densities at the shelf break along the Antarctic Peninsula may have 



x 

resulted, in part, from krill spawning in the Bellingshausen Sea.  Interannual differences 

in sea ice also probably contributed to the variability in larval krill abundances.   

 Interannual differences were observed in the species composition of the 

zooplankton of Marguerite Bay during fall, and these were linked to variability in the 

environmental conditions.  Thysanoessa macrura was the most abundant euphausiid in 

2001, while Euphausia crystallorophias dominated in 2002, and E. superba had 

intermediate densities during both years.  Copepods were more abundant in 2001 by a 

factor of 2.6.  Copepods and T. macrura showed a rapid population response to unusually 

high chlorophyll concentrations in the Bellingshausen Sea and Marguerite Bay during 

spring-summer 2000/2001, whereas E. superba and E. crystallorophias had a longer term 

response and showed increased recruitment in fall 2002.  There were no clear 

associations between the distribution of zooplankton and environmental conditions in 

fall; however there was a significant relationship between chlorophyll concentrations in 

the Bellingshausen Sea during the preceding spring and zooplankton patterns during fall.  
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CHAPTER ONE 

 

THE WESTERN ANTARCTIC PENINSULA: PHYSICAL AND BIOLOGICAL 

SETTING 

 

 The Southern Ocean covers approximately 10% of the world’s ocean, 

supporting large concentrations of zooplankton and higher trophic level organisms.  The 

region plays an important role in the world’s ocean biogeochemical cycle (Sarmiento et 

al., 1998) and has a profound influence on global circulation by connecting the Atlantic, 

Pacific, and Indian Ocean basins, and through deep water formation.  Based on 

biogeography, three main zones have been described for the Southern Ocean: (1) an ice-

free zone rich in nutrients, but relatively poor in primary production, with a zooplankton 

community dominated by copepods, salps and small euphausiids, (2) a productive 

seasonal pack-ice zone that includes the area covered by sea ice during winter, but mostly 

ice-free during summer and fall, where zooplankton may be dominated by the Antarctic 

krill, Euphausia superba, and (3) a permanent pack ice zone, with generally low 

zooplankton biomass, where E. superba is often replaced by the neritic euphausiid, 

Euphausia crystallorophias (Hempel, 1985). 

 Within the Atlantic sector of the Southern Ocean, the continental shelf along the 

western Antarctic Peninsula (WAP) includes waters of the seasonal and permanent pack 

ice zones (Fig. 1.1).  This region supports high concentrations of zooplankton and 
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predators, and is considered one of the most productive areas in Antarctic waters (Deibel 

and Daly, 2007).  The Antarctic Peninsula region also is of interest as it is warming more 

rapidly than almost any other place on the planet. A considerable increase in atmospheric 

and upper-ocean temperatures has occurred in the last 50 years, while ice shelves have 

retreated (King, 1994; Smith et al., 1996b; Vaughan and Doake, 1996; Vaughan et al., 

2003).  In addition, there have been marked changes in winter sea ice extent and duration 

(Parkinson 2002).  These changes have important implications for Antarctic organisms 

that rely directly on sea ice for reproduction, such as Adèlie penguins (Trivelpiece and 

Fraser, 1996), as well as for others that will suffer indirect effects through changes in 

prey populations (Costa and Crocker, 1996).  

 The Antarctic krill, E. superba, is a relatively large pelagic crustacean (up to 65 

mm in length) and a keystone species in the Antarctic ecosystem, acting as a primary 

grazer on phytoplankton and prey for a variety of higher trophic level predators.  Most 

Antarctic predators, including species of fish, seals, whales, penguins, and many seabirds, 

rely on zooplankton for survival, and in particular Antarctic krill (Lowry et al., 1988; 

Ainley and DeMaster, 1990; Costa and Crocker, 1996; Murase et al., 2002).  E. superba 

has a circumpolar distribution, with highest concentrations in the Atlantic sector of the 

Southern Ocean (Marr, 1962).  It is believed that krill originated in the WAP region are 

the source of large populations observed downstream in the Scotia Sea and at South 

Georgia Island (Fach and Klinck, 2006; Thorpe et al., 2007).  

 Since the Discovery expeditions in the 1920-30s, which surveyed almost the 

entire Southern Ocean and resulted in a large amount of information regarding the 

distribution, biology and ecology of Antarctic krill (Marr, 1962), research in the vicinity 
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of the WAP has been mostly restricted to northern waters along the continental shelf and 

downstream in the Scotia Sea.   

  

 

Figure 1.1. Map of the western Antarctic Peninsula (WAP) region and geographic 
references. The dotted line indicates the 1000 m isobath.  
  

 Some interdisciplinary programs that investigated the structure and dynamics of 

the marine ecosystem from the mid- to northern sectors of the WAP include BIOMASS 

Program (Biological Investigations of Marine Antarctic Systems and Stocks) in 1985/86 
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(El-Sayed, 1994), RACER (Research on Antarctic Coastal Ecosystem Rates) (Huntley et 

al., 1991), Palmer LTER (Long Term Ecological Research), which since the early 1990s 

has been dedicated to studying how physical forcing affects the structure and function of 

the ecosystem (Ross et al., 1996), and AMLR (Antarctic Marine Living Resources 

Program), established in 1990 to assess resources in the area around Elephant Island (e.g., 

Loeb et al., 1997; Siegel et al., 2002; Watkins et al., 2004).  The information resulting 

from these efforts, as well as from other field expeditions from the United Kingdom, 

Germany, Argentina, Poland, Russia, and Chile, among others, has greatly improved our 

understanding of the processes controlling populations in the area, and has provided 

insight into the dominant physical components, such as circulation, hydrography, nutrient 

distributions, and sea ice dynamics.  However, in spite of the significant amount of 

information available for the northern sectors, there have been few studies in southern 

regions of the WAP (Marguerite Bay and the eastern Bellingshausen Sea) (Atkinson, 

1995; Siegel and Harm, 1996; Lascara et al., 1999; Meyer et al., 2003). 

 The Southern Ocean Global Ocean Ecosystem Dynamics Program (SO 

GLOBEC) field efforts were focused in the vicinity of Marguerite Bay, as limited 

information suggested that it was an important overwintering site for upper trophic level 

predators and, therefore, probably of their food source, Antarctic krill (Hoffman et al., 

2004).  The primary goal of the U.S. SOGLOBEC Program was to investigate the 

physical and biological factors that influence the growth, recruitment, and overwintering 

survival of E. superba in the vicinity of Marguerite Bay as well as the associated 

predators and prey of krill (Hoffman et al., 2004). 

 Initial results of the US SOGLOBEC Program have described the general 
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circulation in Marguerite Bay.  There are two major currents: the wind-driven westerly 

Antarctic Circumpolar Current (ACC) that flows northward along the continental shelf 

break, and the buoyancy-driven Antarctic Peninsula Coastal Current (APCC), which 

flows southward along the coast (Moffat et al., 2008) (Fig. 1.2).  The APCC enters 

Marguerite Bay at the south end of Adelaide Island, flows clockwise along the coast and 

exits around the north end of Alexander Island. Mesoscale circulation features, such as 

gyres on the outer shelf and eddies within inner Marguerite Bay, contribute to making 

Marguerite Bay a favorable retention area for phyto- and zooplankton (Beardsley et al., 

2004; Klinck et al., 2004; Dorland and Zhou, 2008)  

 Marguerite Bay encompasses a relatively wide and deep continental shelf, with 

mean depths of ~ 400 m (Bolmer et al., 2004).  The bathymetry is influenced by 

Marguerite Trough, a deep canyon up to 1600 m deep, which intersects the continental 

shelf off Marguerite Bay, crosses the shelf, and extends into George VI Sound (Fig. 1.3).  

In addition, the area is characterized by numerous seamounts and depressions that result 

in a variable and complicated topography, particularly in the northern sectors, such as 

Laubeuf Fjord and Crystal Sound north of Marguerite Bay.  Intrusions of Upper 

Circumpolar Deep Water (UCDW), found at depths greater than 500 m in oceanic areas, 

have been observed on the continental shelf, supplying Marguerite Bay with warm and 

nutrient rich waters at depth.  These intrusions occur through Marguerite Trough, as well 

as in other shelf break areas such as those off Crystal Sound and west of Alexander Island 

(Fig. 1.2) (Dinniman and Klinck, 2004).  

The hydrographic structure of continental shelf waters along the Antarctic Peninsula has 

been previously described (Smith et al., 1999; Klinck et al., 2004).  The primary water 
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masses include Antarctic Surface Water (ASSW), characterized by temperatures and  

 

 
Figure 1.2. General circulation in Marguerite Bay, and schematic paths of the Antarctic 
Circumpolar Current (ACC) (blue) and Antarctic Peninsula Coastal Current (APCC) 
(red). The dotted blue line represents the approximate location of intrusions of Upper 
Circumpolar Deep Water (UCDW) onto the continental shelf (Dinniman and Klinck, 
2004). Sections of broken red line represent suggested paths of the APCC, not derived 
from observations (adapted from Moffat et al., 2008). The approximate location of a 
mesoscale clockwise gyre is indicated by the broken black line (Klinck et al., 2004) 
   

salinity ranges between -1.8 and 1 °C and 33.0 and 33.7, respectively. Beneath a 

pycnocline, generally established at ~ 100 - 120 m, is warm (1.5 °C) and salty (34.6 – 

34.73) water derived from Circumpolar Deep Water (CDW), which is typically present in 

waters over the outer shelf of the WAP at depths of 200 - 600 m.  During late fall, surface 
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completely cover the continental shelf. In recent years, however, a dramatic decline in sea  

ice extent has been observed in the WAP, resulting in areas of the northern WAP which 

may remain ice-free throughout the year.  However, in southern sectors, such as 

Marguerite Bay and the eastern Bellingshausen Sea, winter sea ice generally extends over 

most of the continental shelf and, thus, can be considered an important factor influencing 

marine organisms.  Extensive sea ice reduces the penetration of radiant heat into the 

water column during spring, summer, and fall, limiting phytoplankton growth and, thus, 

food available to zooplankton. 

 To summarize, the Marguerite Bay region is characterized by a complex 

seafloor topography, extreme variability in seasonal sea ice conditions, and circulation 

features, which include opposite flowing currents, intrusions of oceanic waters onto the 

shelf, and mesoscale gyres and eddies.  Given the rapidly changing conditions of this 

region and the potential effects on Antarctic organisms, understanding zooplankton 

population dynamics and their response to environmental variability is critical to 

predicting the effects of climate change on the Antarctic ecosystem as a whole. 

 This dissertation aims to investigate the effects of environmental variability on 

the population dynamics of phytoplankton and zooplankton in the vicinity of Marguerite 

Bay, with special emphasis on E. superba.  For this purpose, I use a combination of ocean 

color remote sensing techniques, zooplankton net data, and environmental information.  

The main objective of Chapter 2 is to evaluate the performance of the SeaWiFS satellite 

sensor (Sea-Viewing Wide Field-of-View Sensor) in estimating chlorophyll 

concentrations in the Southern Ocean.  Chapter 3 focuses on using SeaWiFS data to 

describe the temporal and spatial dynamics of chlorophyll distributions along the WAP 
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during spring and summer, and relate the interannual variability observed in chlorophyll 

dynamics to changes in the reproduction and recruitment success of E. superba.  Chapter 

4 investigates the patterns of abundance and distribution of the dominant zooplankton 

groups in Marguerite Bay, in relation to variability in environmental conditions, and a 

summary of the major findings and future direction is presented in Chapter 5.  
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CHAPTER TWO 

 

VALIDATION OF SEAWIFS CHLOROPHYLL A CONCENTRATIONS IN THE 

SOUTHERN OCEAN: A REVISIT 

 

INTRODUCTION 

 Since the launch of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, 

McClain et al., 1998) onboard the Orbview-II satellite in August 1997, ocean color data 

products, in particular concentrations of chlorophyll a (Ca, mg m-3) in the surface ocean, 

have been used to investigate a wide variety of fundamental topics including ocean 

primary productivity, biogeochemistry, coastal upwelling, eutrophication, and harmful 

algal blooms (e.g., Hu et al., 2005; Muller-Karger et al., 2004).  Other ocean color 

missions, such as the ongoing MODerate-resolution Imaging Spectroradiometer 

(MODIS, Esaias et al., 1998; Terra satellite for morning pass since 1999 and Aqua 

satellite for afternoon pass since 2002) or the future National Polar-Orbiting Operational 

Environmental Satellite System (NPOESS), assure the continuity of remotely sensed 

ocean color in assessing the long-term global change in several key environmental 

parameters, including Ca.  Quantitative use of ocean color data products requires a high 

level of accuracy.  During algorithm development, the errors in the Ca data products after 

logarithmic transformation were about 0.2 or less (O’Reilly et al., 2000), which 

corresponds to roughly 50% root mean square (RMS) relative error.  Global validation 

efforts show that in most ocean basins Ca errors are about 0.3 (Gregg and Casey, 2004) 
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although in regions such as the Southern Ocean, reported errors are significantly larger. 

 The Southern Ocean was defined by the International Hydrographic 

Organization in 2000 to encompass waters between the northern coast of Antarctica and 

60° S.  Oceanographers, however, traditionally have defined the northern limit of the SO 

as the Subtropical Front (at approximately 40º S) (Orsi et al., 1995).  Typical chlorophyll 

concentrations in the Southern Ocean range between 0.05 and 1.5 mg m-3 (Arrigo et al., 

1998; El-Sayed, 2005).  It is believed that the interaction of light and deep mixing, iron, 

and grazing limit phytoplankton growth throughout the Southern Ocean, in addition to 

low silicate concentrations which can limit diatom production north of the Polar Front 

(Moline and Prézelin, 1996; Daly et al., 2001; Boyd, 2002).  However, elevated 

chlorophyll concentrations (1 to > 30 mg m-3) are characteristic of many regions, 

including continental shelf and ice edge areas (Holm-Hansen et al., 1989; Moore and 

Abbott, 2000; El-Sayed, 2005), and even values of up to 190 mg m-3 have been reported 

(El-Sayed, 1971).  The Antarctic Peninsula region, in particular, supports large 

concentrations of phytoplankton, zooplankton, seabirds, seals and whales, and is 

considered one of the most productive areas of the Southern Ocean, for reasons that are 

not fully understood (Deibel and Daly, 2007). 

Several studies have relied on ocean color data to investigate phytoplankton 

spatial patterns (Moore and Abbott, 2000; Holm-Hansen et al., 2004a), interannual 

variability during summer (Smith et al., 1998a; Korb et al., 2004) and primary 

productivity (Dierssen et al., 2000; Smith et al., 2001) west of the Antarctic Peninsula 

and in the adjoining Scotia Sea.  These studies used in situ Ca determined from water 

samples using fluorometric methods (Ca
Fluor) to validate monthly/weekly averages of 
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SeaWiFS Ca (Ca
SWF) data product at ~ 9 x 9 km2 or ~ 4 x 4 km2 resolution and concluded 

that in the Southern Ocean, Ca
SWF values are significantly lower than those estimated 

from in situ water samples.  For example, Dierssen and Smith (2000) applied in situ bio-

optical data measured between 1991 and 1998 to the OC2v2 algorithm to test its 

applicability west of the Antarctic Peninsula in the Southern Ocean.  They concluded that 

Ca derived from the OC2v2 algorithm using in situ reflectance was 60% lower than in 

situ Ca (Ca between 0.7 and 43 mg m-3, median ~ 1 mg m-3).  Korb et al. (2004) reported 

that  Ca
SWF values were only 87% of Ca

Fluor for concentrations lower than 1 mg m-3 and 

only 30% for concentrations above 5 mg m-3 in the South Georgia area (54.5º S, 37º W).   

In addition, Moore et al. (1999) found a strong linear relationship between Ca
SWF and 

Ca
Fluor (R2 = 0.72, n = 84) in the Ross Sea, although they noted that SeaWiFS tended to 

underestimate Ca values between 0.1 and 1.5 mg m-3.   

The previous validation methods may present several limitations.  First, in situ 

samples are point measurements while satellite pixels cover a larger area (up to 9 x 9 

km2).  Patchiness within a pixel will affect the comparison of results between areas and 

over time (e.g., Hu et al., 2004).  Second, the in situ and satellite measurements are not 

strictly concurrent and the time differences can be large (up to a month).  Finally, and 

most importantly, previous validation studies used in situ Ca from fluorometric 

measurements, while it is now widely recognized that High Performance Liquid 

Chromatography (HPLC) may yield more accurate results in determining Ca from water 

samples.  Fluorometric methods may result in biased results, particularly in the presence 

of certain accessory pigments (Lorenzen, 1981; Welschmeyer, 1994).   

In a study that included three different areas of the world’s oceans, Trees et al. 
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(1985) reported that errors in the Ca
Fluor ranged between -68 and 53% with a mean of 

39%.  In addition, Bianchi et al. (1995) found that Ca
Fluor in the northern Gulf of Mexico 

was approximately 30% lower than Ca
HPLC, except in near coastal areas.  It is believed 

that the presence of significant amounts of chlorophyll b (Cb), characteristic of 

chlorophytes, prochlorophytes and prasinophytes, causes fluorometric techniques to 

underestimate Ca.  On the other hand, high concentrations of chlorophyll c (Cc), typically 

found in diatoms, dinoflagellates, cryptophytes, and haptophytes, lead to an 

overestimation of Ca with respect to fluorometric measurements.  The fluorescence 

emission spectra of degradation products (phaeopigments) of Ca and Cb overlap 

considerably, causing an overestimation of Ca phaeopigments and, thus, an 

underestimation of Ca.  On the other hand, Ca and Cc have partially overlapping 

fluorescence spectra, causing an overestimation of Ca and subsequent underestimation of 

phaeopigments a (Gibbs, 1979; Jeffrey et al., 1997).  The filters used in the standard 

fluorometric method (Lorenzen, 1981) cannot effectively discriminate between Ca, Cb, Cc 

and their degradation products; thus, depending on the type of phytoplankton present and 

their associated pigments, Ca may be overestimated or underestimated by fluorometric 

methods. 

Herein, I use concurrent HPLC and fluorometric data collected between 1998 and 

2002 in waters west of the Antarctic Peninsula, as well as high-resolution SeaWiFS data, 

to re-examine whether SeaWiFS Ca is underestimated in the Southern Ocean as reported 

in previous studies.  I also discuss possible explanations for the observed results and 

investigate the effects of different accessory pigments on Ca estimations. 



14 

METHODS 

SeaWiFS daily Level 2 data between December 1997 and December 2004 were 

obtained from NASA Goddard Space Flight Center.  These data were derived from the 

high-resolution (~ 1 km/pixel near nadir) Level 1 data collected by ground stations, as 

well as occasional satellite onboard recording over the area using the most current 

algorithms and software package (SeaDAS4.8).  A total of 6606 data files were obtained 

and mapped to a rectangular projection with approximately 1 km2/pixel for the area 

between 45 - 75˚ S and 50 - 80˚ W west of the Antarctic Peninsula (Fig. 1.1).  The data 

product used in this study is the surface Ca estimated with the OC4v4 empirical algorithm 

(O’Reilly, 2000): 

 

432 532.1649.093.1067.3366.010 RRRR
aC −++−=  (1)  

    

where R = log10[(max(Rrs443, Rrs490, Rrs510))/Rrs555)] and Rrs is the remote sensing 

reflectance, a data product after atmospheric correction.  

 Chlorophyll fluorescence and HPLC pigment data were collected and analyzed 

by Drs Raymond Smith (University of California Santa Barbara) and Maria Vernet 

(University of California San Diego) as part of the Palmer Long Term Ecological 

Research (LTER) program during cruises west of the Antarctic Peninsula (see 

http://pal.lternet.edu/data/ for detailed methods).  The location of the LTER chlorophyll 

sampling stations between 1998 and 2002 are shown in figure 2.1.  Most of the samples 

were collected within the 2000 m isobath, although two transects were conducted across  

 



15 

Drake Passage in January-February 1999 and 2000 to measure Ca
Fluor.  At each station, 

water column samples were collected at discrete depths for both fluorometric and HPLC 

measurements.  Ca, Cb and Cc were obtained by HPLC from samples collected at fixed 

stations during January-February 1998 and 1999 following the methods of Wright et al. 

(1991), and during January-February 2000 and 2001 following the methods of Zapata et 

al. (2000).    

Ca and phaeopigment concentrations also were obtained by fluorometric methods 

by measuring total fluorescence and subtracting phaeopigments after acidification from 

samples collected during January - February 1998, 1999, 2000, 2001 and 2002 following 

Smith et al. (1981, 1996a, 1998).  Welschmeyer’s (1994) method, which effectively 

measures fluorescence from Ca only and reduces interference from Cb or its phaeo-

derivatives, was not applied (M. Vernet, pers. comm.).   

Because the signal detected by the satellite sensor is an optically-weighted 

function of signals at all depths (up to 50 - 60 m for clear waters), the method of Gordon 

(1992) was used to calculate a depth-weighted chlorophyll concentration, <C>, to 

compare with satellite estimates: 

∫
∫>=< z

z

dzzg

dzzCzg
C

0

0

')'(

')'()'(
      (2) 

where ]')'(2exp[)(
0∫−=
z

dzzKzg  and z is the depth.  K is the diffuse attenuation 

coefficient that is approximated by K (z) ≈ 0.121 C(z)0.428 (Morel, 1988).  The integration 

was from 0 to 50 m and included 5 or 6 vertical samples at most stations, although in 

some cases only 3 - 4 samples were available for the calculations.  A total of 189 HPLC 
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and 775 fluorometric Ca values were used in these analyses.  Because the weighting 

function, g(z), decreases exponentially with increasing depth, <C> is not very different 

from the surface value, at least for fluorometric Ca (ratio = 1.02 ± 0.15, p = 0.841).  For 

the HPLC samples, the differences between <C> and surface Ca are significant (ratio = 

1.05 ± 0.99, p = 0.022).  The daily, high-resolution SeaWiFS Ca data were queried to 

compare with the in situ data in the following manner.  To reduce errors caused by 

digitization and random noise, for each in situ data point, all valid satellite data from a 5 

x 5 pixel box covering the in situ location (except those cloud and land adjacent pixels) 

were used to compute the median value (Hu et al., 2001).  A rigorous comparison 

between satellite and in situ data should limit the time difference between the two 

measurements to within ± 2 - 3 hours.  Due to extended cloud coverage and the 

occasional presence of sea ice, however, only a small number of HPLC data points were 

obtained under such rigorous criteria, leading to statistically meaningless results.  

Therefore, the time difference between satellite and in situ measurements was relaxed to 

± 3 days.  

Estimating uncertainty in a satellite-derived parameter with log-normal 

distribution is not trivial, as discussed in Campbell (submitted).  Here, two estimates were 

used to assess the differences between the in situ and satellite-derived data.  First, the root 

mean square (RMS) and the mean difference (bias) in percentage were defined as: 
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where S is satellite data, I is in situ data, and n is the number of data pairs.  For a 

normally distributed x, RMS should equal the standard deviation.  Further, because the 

natural distribution of Ca is lognormal (Campbell, 1995), error estimates were also made 

on the logarithmically transformed (base 10) data:  
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=

−
=

∑

∑
                           (4) 

 

These error estimates have been used in recent publications to describe the performance 

of the ocean color algorithms (O’Reilly et al., 2000) and to validate SeaWiFS global and 

regional estimates of Ca (Darecki and Stramski, 2004; Gregg and Casey, 2004; Zhang et 

al., 2006).  Note that these latter error estimates cannot be expressed as percentages 

because they are logarithmically transformed (Campbell, submitted). 
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where Ca
Fluor was used to validate Ca

SWF and the same pattern of underestimation was 

observed (Moore et al., 1999; Dierssen and Smith, 2000; Korb et al., 2004).  In contrast, 

Ca
HPLC showed a more satisfactory agreement with Ca

SWF over a wide dynamic range (0.1 

– 4 mg m-3) (Fig. 2.3).  The mean ratio of Ca
SWF/Ca

HPLC is close to 1 (i.e. 1.12), in 

contrast to the lower ratio of 0.55 for Ca
SWF/Ca

Fluor. 

 

Table 2.1. Statistics for the comparisons between Ca
SWF and in situ Ca (Ca

Fluor, Ca
HPLC). n 

is the number of matching pairs, RMS is root mean square error, SD is standard deviation 
Parameter Ca

SWF vs. Ca
Fluor Ca

SWF vs. Ca
HPLC 

n 307 96 
Ratio ± SD 0.55 ± 0.63 1.12 ± 0.91 

RMS 77.2% 91.4% 
Bias -45.2% 12% 

log_RMS 0.44 0.34 
log bias -0.36 -0.07 

 

 

Although the RMS errors for the two comparisons are comparable (Table 2.1), 

Ca
HPLC is nearly equally scattered around the 1:1 line (Fig. 2.3), suggesting that the bias 

errors in Ca
SWF/Ca

HPLC are significantly smaller than those in Ca
SWF/Ca

Fluor.  Clearly, the 

agreement between Ca
SWF and Ca

HPLC is much improved over that between Ca
SWF and 

Ca
Fluor.  

Similar results were also obtained from the algorithm perspective.  By using the 

spectral remote sensing reflectance data (Rrs) derived from satellite measurements (Fig. 

2.4), the OC4v4 algorithm yielded comparable results to those obtained from HPLC 

measurements.  In contrast, Ca
Fluor values are significantly higher than those predicted by 

the OC4v4 algorithm for the entire range considered.     
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Are these results representative of the entire Southern Ocean?  Due to cloud 

cover, satellite data were not available for all pixels every day.  This reduced the number 

of Ca
SWF data points, which resulted in a limited number of matching pairs for comparing 

satellite and in situ data (307 for fluorometric and 96 for HPLC).  However, the in situ 

data itself comprised a much larger dataset that included 832 concurrent fluorometric and 

HPLC measurements.  When this in situ dataset was used to compare Ca
Fluor and Ca

HPLC, 

similar results were obtained, i.e., the mean ratio of Ca
Fluor/Ca

HPLC is 2.43 ± 3.37 (Fig. 

2.5).  The ratio of Ca
Fluor/Ca

HPLC appears to decrease with increasing concentrations 

(Table 2.2), although for Ca
HPLC <0.05 mg m-3 and Ca

HPLC >3.0 mg m-3 the statistical 

results may not be reliable because of the few matching pairs available and the scatter of 

the data (Fig. 2.5).  For Ca
HPLC between 1.5 and 3.0 mg m-3, the bias is small (15%) and 

the mean ratio of Ca
Fluor/Ca

HPLC is close to unity (1.15 ± 0.73).  Between 0.05 and 1.5 mg 

m-3, however, Ca
Fluor is much higher than CaHPLC (mean Ca

Fluor/Ca
HPLC = 2.48 ± 2.23, n = 

647).  This difference is believed to be due to errors in the CaFluor measurements as 

described above.  Because most (> 90%) of the waters in the Southern Ocean have 

surface Ca
SWF values between 0.05 and 1.5 mg m-3 (Fig. 2.6), this assessment can be 

generalized and applied to most regions. 
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Figure 2.3. Comparison between Ca

SWF (mg m-3, SeaDAS4.8, OC4v4 algorithm) and in 
situ Ca (mg m-3). Grey circles and line: Ca

Fluor, blue diamonds and black solid line: Ca
HPLC. 

The dashed line shows the 1:1 relationship. The statistics of the comparisons are listed in 
Table 1. 
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Figure 2.4. Comparison between Ca predicted by the OC4v4 algorithm (using SeaWiFS-
derived Rrs as input) and measured in situ Ca (mg m-3). Black broken line: OC4v4 
prediction (Ca

SWF); grey circles and solid line: Ca
Fluor, blue diamonds and thick line: 

Ca
HPLC. 
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Table 2.2. Statistics for the comparisons between Ca
Fluor and Ca

HPLC (mg m-3) for data shown in Figure 2.5. a0 
and a1 are the power fitting coefficients in the form of Ca

Fluor = a0 × (Ca
HPLC)a1, R2 is the corresponding 

coefficient of determination, n is the number of matching pairs, RMS is root mean square error, SD is 
standard deviation. 

 
Ca

HPLC range 0.01 - 15 < 0.05 0.05 – 1.5 1.5 – 3.0 > 3.0 
n 832 21 647 96 68 

a0, a1 1.40, 0.66 0.28, 0.14 1.34, 0.63 1.01, 0.96 2.15, 0.55 
R2 0.67 0.01 0.49 0.11 0.14 

Ca
Fluor/Ca

HPLC ± SD 2.43 ± 3.37 10.06 ± 15.21 2.48 ± 2.23 1.15 ± 0.73 1.37 ± 1.04 
RMS 366% 1739% 268% 74% 110% 
bias 143% 905% 148% 15% 37% 

log_RMS 0.40 0.87 0.40 0.23 0.34 
log bias 0.25 0.79 0.29 -0.01 0.02 
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Figure 2.5. Comparison between Ca
HPLC and Ca

Fluor (mg m-3) between January and 
February 1998 - 2001 (n = 832). Grey squares: Ca < 0.05 mg m-3, cyan circles: Ca 
between 0.05 - 1.5 mg m-3, green triangles: Ca between 1.5 - 3 mg m-3, blue diamonds: Ca 
> 3 mg m-3. The dashed line shows the 1:1 relationship. Statistics for the comparison are 
listed in Table 2.2. 
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Figure 2.6. Normalized histogram of Ca
SWF distributions (mg m-3) in the Southern Ocean 

during austral summer. (a) For the study region (Fig. 1.1) bound by 75 – 60o S and 75 – 
60o W; (b) for the entire Southern Ocean (south of 60oS). The y-axis shows the 
percentage surface area. 91% and 96% of the surface waters for (a) and (b), respectively, 
fall within the range of 0.05 to 1.5 mg m-3.  
 

 

DISCUSSION 

Although HPLC has been recommended as the most reliable method to determine 

Ca (e.g. Trees et al., 1985), most cruise surveys still use the fluorometric method because 

it is faster, requires less technical expertise and is less expensive than HPLC.  The Ca data 

originally used in the development of the OC4v4 algorithm (O’Reilly et al., 2000) 

included 2,853 in situ measurements from a variety of oceanic environments (but not the 

Southern Ocean), of which 72% were fluorometric and 28% were HPLC measurements.  

Therefore, the predicted Ca satellite measurements should naturally lean toward the 

fluorometric values.  However, this was not observed in the present study, suggesting that 

the species composition and their associated pigment absorption characteristics in waters 

west of the Antarctic Peninsula region may be different from the “mean” composition 

and absorption on which the original algorithm was based. 
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The large difference observed between Ca
Fluor and Ca

HPLC from the same water 

samples was likely due, in part, to interference of the fluorescence signal by chlorophyll 

accessory pigments (Cb, Cc and their degradation products).  In this study, Cb only 

occurred in low concentrations compared to Ca (mean ratio Cb/Ca = 0.023, n = 486); 

however, Cc was relatively high (mean ratio Cc/Ca = 0.25, n = 486) (Fig. 2.7).  The 

presence of significant amounts of Cc is known to cause an overestimation of Ca by the 

fluorometric method (Gibbs, 1979; Lorenzen, 1981). 

 Cb is an accessory pigment in prochlorophytes, chlorophytes and prasinophytes, 

while Cc is generally present in diatoms, dinoflagellates, cryptophytes and haptophytes 

(Parsons et al., 1984).  Diatoms are the dominant phytoplankton in waters west of the 

Antarctic Peninsula, with dinoflagellates being very abundant at times (Prézelin et al, 

2000, 2004).  Prochlorophytes, a type of cyanobacteria first identified in the late 1980s 

(Chisholm et al., 1988), have not yet been observed in the Southern Ocean, while 

chlorophytes can be abundant (Prézelin et al, 2000, 2004).  Similarly, cryptophytes are 

usually scarce in the water column, but can be very abundant in coastal surface melt 

water during spring and summer (Moline and Prézelin, 1996).  Alloxanthin, the 

biomarker pigment for cryptophytes (Prézelin et al, 2000), occurred in 91% (n = 516) of 

the pigment samples.  Hence, chlorophytes were probably the dominant source of Cb 

during our study period, while the dominant sources of Cc appear to be diatoms, 

dinoflagellates and cryptophytes, identified by the presence of fucoxanthin, peridinin, and 

alloxanthin in 99.5%, 53% and 91% of the samples, respectively.  

Cb and Cc vary widely throughout the world’s ocean (Jeffrey, 1976; Lorenzen, 

1981; Trees et al., 1985; Bidigare et al. 1986; Goericke and Repeta, 1993; Bianchi et al., 
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1995).  Overall, these studies found that Cb can cause an underestimation of Ca by the 

fluorometric method with ratios of Cb/Ca ranging from 0.15 to 0.51, while the presence of 

significant amount of Cc can lead to an overestimation of Ca.  Typical ratios of Cc/Ca for 

assemblages dominated by phytoplankton containing chlorophyll c range from 0.15 to 

0.44 (Bidigare et al., 1986; Bianchi et al., 1995; Lohrenz et a., 2003).  Results reported 

here are consistent with these previous findings. 

Can the presence of significant amount of Cc lead to overestimation of Ca when 

the latter is derived from remote sensing reflectance data?  The inversion of remote 

sensing reflectance to Ca is an implicit (e.g., OC4v4) or explicit (e.g., Maritorena et al., 

2002) function of phytoplankton pigment absorption.  Lohrenz et al. (2003) reported that 

even if the amount of accessory pigments (sum of carotenoids and Cb + Cc) is equal to Ca, 

the perturbation to the pigment absorption is < 30%, suggesting a relatively small error in 

the satellite-retrieved Ca.  Hence, the large differences between Ca
SWF and Ca

Fluor 

observed here cannot be explained by the additional absorption of accessory pigment, but 

can be explained by the interference of these accessory pigments to the fluorescence peak 

when Ca is determined using the fluorometric method. 
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Figure 2.7. Relationship between HPLC Cb/Ca and Ca
Fluor/Ca

HPLC (y = 4.36 x0.26, R2 = 
0.11, n = 482), and between HPLC Cc/Ca and Ca

Fluor/Ca
HPLC (y = 3.09 x0.39, R2 = 0.19, n = 

482). Note that the slope for the latter (0.39) is significantly larger than for the former 
(0.26). Here Cb/Ca = 0.023 ± 0.034 (n = 482) and Cc/Ca = 0.25 ± 0.59 (n = 482). 

 

In summary, contrary to previous reports that estimates of Ca
SWF in the Southern 

Ocean were significantly lower than those measured in situ, satellite estimates reported 

here agree with those determined from water samples for Ca between 0.05 and 1.5 mg m-3 

for January-February between 1998 and 2001.  This is primarily because the in situ Ca 

data were determined by HPLC (Ca
HPLC) rather than by fluorometric methods (Ca

Fluor), 

which are known to introduce significant errors in Ca estimates in the presence of certain 

accessory pigments.  
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CHAPTER THREE 

 

SPATIAL AND TEMPORAL VARIABILITY OF SEAWIFS CHLOROPHYLL A 

DISTRIBUTIONS WEST OF THE ANTARCTIC PENINSULA: IMPLICATIONS 

FOR KRILL PRODUCTION 

 

INTRODUCTION 

Chlorophyll distributions in the Southern Ocean show high spatial and temporal 

variability.  Most Antarctic open waters have relatively low chlorophyll concentrations 

despite the availability of nutrients and, thus, the Southern Ocean is generally considered 

to be a High-Nutrient Low-Chlorophyll region (Holm-Hansen et al., 1977).  Nevertheless, 

large phytoplankton blooms do occur during spring and summer, particularly in waters 

associated with ice edges, polynyas, islands, and continental shelves (e.g., Smith and 

Nelson, 1985; Sullivan et al., 1993; Moore and Abbott, 2000; Arrigo and van Dijken, 

2003).  Some of the largest blooms develop in the marginal ice zone (MIZ), in waters 

associated with the seasonal advance and retreat of sea ice.  As the ice edge recedes, low 

salinity meltwater produces a low density surface lens that reduces vertical mixing and 

shallows the mixed layer; consequently, phytoplankton are able to grow in a high 

irradiance stable environment.  This phenomenon is common in the MIZ of the Weddell 

and Ross Seas, as well as in other regions around Antarctica (El-Sayed, 1971; El-Sayed 

and Taguchi, 1981; Smith and Nelson, 1985; Sedwick and DiTullio, 1997), with reported 

chlorophyll concentrations up to 190 mg m-3 (El-Sayed, 1971).  
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Polynyas are areas of open water surrounded by sea ice, usually characterized by 

elevated surface chlorophyll concentrations.  Arrigo and van Dijken (2003) examined 

surface chlorophyll concentrations in 37 Antarctic polynyas and report values ranging 

from 0.24 to 7 mg chl m-3 during summer.  Maximum chlorophyll concentrations occurred 

in the Amundsen and Ross Seas, in agreement with previous reports of up to 40 mg m-3 in 

the Ross Sea polynya (Arrigo and McClain, 1994).  Antarctic islands can also be 

surrounded by chlorophyll-rich waters.  For example, the region around South Georgia 

has been characterized as highly productive, with high densities of phytoplankton and 

zooplankton, as well as large colonies of seals and seabirds (Atkinson et al., 2001).  

Phytoplankton blooms in this area have been observed from November to April with 

chlorophyll concentrations reaching 30 mg m-3.  The high productivity at South Georgia 

has been attributed to a combination of factors including enhanced supply of iron and 

rapid recycling of nitrogen, favorable temperatures, and a shallow stable inshore water 

column (reviewed in Atkinson et al., 2001).   

The continental shelf waters west of the Antarctic Peninsula (55 - 75 ºS, 50 - 80 

ºW) (Fig. 3.1) in particular, are considered to be one of the most productive regions of the 

Southern Ocean, supporting high densities of phytoplankton, zooplankton, and upper 

trophic level predators (e.g., Fraser and Trivelpiece, 1996; Arrigo et al. 1998; Deibel and 

Daly, 2007).  Chlorophyll concentrations in the northern sectors along the Antarctic 

Peninsula shelf have been reported to reach values up to 38 mg chl m-3 during December 

and January (Holm-Hansen and Mitchell, 1991; reviewed in Smith et al., 1996a; 

Rodriguez et al., 2002).  More recently, Arrigo and van Dijken (2003) reported that 

SeaWiFS chlorophyll in a phytoplankton bloom related to the Marguerite Bay polynya 
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averaged 2.30 mg chl m-3, while Garibotti et al. (2003) and Meyer et al. (2003) observed 

summer chlorophyll concentrations up to 17.86 mg m-3 in 1997 and 25 mg m-3 in 2000, 

respectively, within Marguerite Bay.  These findings suggest that the southern sector of 

the Antarctic Peninsula also may support large phytoplankton blooms. 

Studies of the spatial and temporal dynamics of phytoplankton along the northern 

part of the Peninsula reveal a pattern of chlorophyll accumulation in coastal areas over the 

summer, with lower concentrations offshore (Smith et al., 1998a; Garibotti et al., 2003).  

These studies also identify an alongshore gradient with higher biomass in the northern 

sectors of the Antarctic Peninsula earlier in the productive season, which later progresses 

to the southeast as the sea ice retreats in the same direction.  Most studies to date, 

however, have only dealt with chlorophyll distributions north of Marguerite Bay and, 

thus, information on phytoplankton dynamics in the vicinity of Marguerite Bay and to the 

south in the Bellingshausen Sea is scarce.  

The Southern Ocean Global Ocean Ecosystems Dynamics (SO GLOBEC) 

program investigated the physical and biological factors that influence the growth, 

recruitment, and overwintering survival of Antarctic krill, Euphausia superba, in the 

vicinity of Marguerite Bay (Fig. 3.1), west of the Antarctic Peninsula, during austral fall 

and winter of 2001 and 2002.  Krill play a key role in the Antarctic ecosystem as one of 

the primary pelagic herbivores and prey for many predators.  The large krill population 

west of the Antarctic Peninsula appears to be maintained by occasional strong year 

classes, with often poor recruitment in the intervening years (Siegel and Loeb, 1995; 

Hewitt et al., 2003; Quetin and Ross, 2003).  The suite of physical and biological factors 

that govern krill reproduction and recruitment, however, remain poorly known.  
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During the GLOBEC study, large differences in abundances of larval and juvenile 

krill were observed between the two years (Daly, 2004).  During fall 2001, larvae were 

very abundant (< 0.01 - 132 ind m-3), with younger stages dominant offshelf and older 

stages dominant onshelf (Fig. 3.2, see Fig. 3.1 for station locations). Offshore larval 

densities (up to 132 ind m-3) are amongst the highest reported for the area and are 

comparable to those reported by Rakusa-Suszczewski (1984) for 1981.  Few juveniles 

were observed anywhere in 2001.  During fall 2002, relatively high concentrations of 

young larvae were again detected in oceanic waters (< 0.01 - 211 ind m-3), although 

average abundances were significantly lower than in 2001 and all larval stages were 

scarce in coastal areas (Fig. 3.2).  In contrast, juveniles were relatively abundant on the 

middle and inner shelf in the vicinity of Marguerite Bay (< 0.01 - 2.37 ind. m-3), 

indicating a successful recruitment from the 2001 larval population.  These results led me 

to investigate the environmental conditions that contributed to the large krill reproduction 

during austral spring and summer 2000/2001, and subsequent high larval densities. 

Herein, I investigate chlorophyll dynamics west of the Antarctic Peninsula using 

SeaWiFS ocean color data between 1997 and 2004, with special emphasis on the 

Marguerite Bay region, to better understand the conditions that make it a suitable habitat 

for krill.  I also examine the effects of the retreat of the ice edge on the timing and 

location of phytoplankton blooms west of the Antarctic Peninsula.  Finally, I discuss the 

environmental mechanisms that potentially support successful krill reproduction and 

recruitment in this area.   
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METHODS 

The study area consisted of the coastal waters west of the Antarctic Peninsula, 

adjacent deep waters in the Drake Passage, and coastal and oceanic waters of the 

Bellingshausen Sea (55 - 75 °S and 50 - 80 °W), as chlorophyll concentrations in these 

areas are most likely to influence regional krill populations (Fig. 3.1). 

Krill were collected aboard the R.V. Lawrence M. Gould during austral autumn 

between 23 April and 6 June 2001 and between 7 April and 20 May 2002 as part of the 

US SO GLOBEC program.  A total of 18 and 16 net tows were done at several stations 

during 2001 and 2002 respectively.  Individuals were collected at eight discrete depth 

intervals using a 1-m2 MOCNESS (Multiple Opening-Closing Net and Environmental 

Sensing System) net system, with a 333 μm mesh.  Krill were identified for stages of 

larvae (calyptopis I - III, furcilia I - VI), juveniles, or adults (males or females) after 

Makarov (1980) and measured for total length (from the base of the eye to the tip of the 

telson, excluding setae).  Herein, the distribution of krill stage abundances are compared 

at two representative stations; one offshelf (Sta. 1) and one onshelf (Sta. 5) (Fig. 3.2).  

Abundances are the mean of four onshelf and two offshelf net tows in 2001, and three 

onshelf and two offshelf net tows in 2002.  Stage abundances (A, ind m-3) were calculated 

as a weighted mean for the sampling depth using:  

 

where i represents each of the eight nets (collections from different depth strata) in each 
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cast, x is the abundance of each krill stage in each net (ind m-3), and z is the depth interval 

of each stratum (m).   

A recruitment index (R1) for E. superba was calculated as the proportion of one 

year-old krill compared to age-class one plus all older age classes from all net samples for 

fall 2001 and 2002.  Age-class one was defined as juvenile krill with total length ranging 

from 20 - 30 mm following Siegel et al. (1998).  The total abundance (ind m-3) of 

juveniles 20 - 30 mm and of juveniles 20 - 30 mm plus all older stages was estimated for 

each net and summed over the entire cruise to estimate a recruitment index for each 

cruise.  Offshelf net tows (Sta. 1), which did not contain any juvenile or adult krill, were 

excluded from the recruitment calculation.  All except one of the onshelf stations were 

located in inner coastal waters; therefore, recruitment estimates were not biased as a result 

of migration of large krill to the inner shelf in late summer and fall (Siegel et al., 2003; 

Hewitt et al., 2003). 

The chlorophyll dataset includes 6606 SeaWiFS daily Level 2 files (~ 1 km/pixel 

near nadir) between September 1997 and December 2004 obtained from NASA Goddard 

Space Flight Center.  These data were collected by ground stations, as well as occasional 

satellite onboard recording over the area using the most recent algorithms and software 

package (SeaDAS4.8).  The level 2 data were mapped to a rectangular projection with 

approximately 1 km2/pixel for the western Antarctic Peninsula region (Fig. 3.1).  The 

parameter used in this study is the surface chlorophyll concentration derived from the 

OC4v4 empirical band-ratio (blue versus green) algorithm (O’Reilly et al., 2000).  

SeaWiFS chlorophyll estimates are biased toward surface values as the sensor only “sees” 

the first few meters of the water column.  Nevertheless, SeaWiFS chlorophyll provides a 
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good assessment of water column concentrations in the Southern Ocean, as maximum 

chlorophyll concentrations are near surface and surface chlorophyll is well correlated with 

depth integrated chlorophyll (Holm-Hansen and Mitchell, 1991; Holm-Hansen et al., 

2004a; Korb et al., 2004).  

The accuracy of the SeaWiFS algorithm in the Southern Ocean is being debated.  

Several studies using in situ chlorophyll fluorescence determined that the SeaWiFS 

algorithm underestimates chlorophyll a concentrations in the Southern Ocean (e.g., 

Dierssen and Smith, 2000; Korb et al., 2004).  However, recent results from more accurate 

in situ HPLC (High Performance Liquid Chromatography) values demonstrated that 

SeaWiFS chlorophyll a estimates are accurate (bias = 12%) for chlorophyll concentrations 

between 0.1 and ~ 4 mg m-3, which include > 90% of the waters in the Southern Ocean 

(Chapter 2; Marrari et al., 2006).  The mean ratio between SeaWiFS chlorophyll and in 

situ HPLC chlorophyll was close to unity (i.e., 1.12) (n = 96), indicating good agreement 

between the two sets of data.  Although these previous results could not verify the 

SeaWiFS algorithm for chlorophyll concentrations greater than ~ 4 mg m-3, here I use the 

algorithm to estimate a larger range of chlorophyll concentrations in order to investigate 

relative changes in chlorophyll spatial and temporal dynamics.  In addition, because 

colored dissolved organic matter (CDOM) may introduce significant errors to the 

estimation of surface chlorophyll a from ocean color remote sensing data (e.g., Carder et 

al., 1989), I measured CDOM absorption from 10 surface water samples collected in the 

study area between April 4 and May 10, 2002.  Absorbance spectra were obtained at 1 nm 

intervals from 200 to 750 nm with a Hitachi U-3300 double-beam spectrophotometer with 

10-cm quartz cells.  MilliQ water was used in the reference cell.  Three scans were run for 
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Figure 3.1.  (a) Map of the Antarctic continent showing the location of the study area and other geographic references.  The 
solid line represents the 1000 m isobath and the dashed line indicates the Antarctic Circle (66.3ºS).  (b) Details of the Antarctic 
Peninsula region and location of the US Southern Ocean GLOBEC offshelf (Sta. 1) and onshelf (Sta. 5) net sampling stations 
( ) represented in Fig. 2. 

(a) (b) 
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each sample and the resulting spectra were averaged to reduce noise.  Data were corrected 

for scattering by subtracting absorbance at 700 nm from all measurements.  Absorbance 

values were converted to absorption coefficients (Kirk, 1983).  The absorption coefficient 

at 375 nm, a(375), was used as an index of CDOM concentration. Because a(375) was low in 

all samples (0.02 - 0.148 m-1), I conclude that the accuracy of the SeaWiFS chlorophyll 

estimates is not affected by the presence of significant levels of CDOM.   

The Southern Ocean daily satellite images normally have missing data due to a 

relatively high percentage of cloud cover; therefore, at least weekly composites of data 

typically are needed to obtain good spatial coverage (e.g., Holm-Hansen et al., 2004a).  In 

this study, biweekly composites of SeaWiFS chlorophyll data are used.  A seven-year 

climatology of biweekly chlorophyll a concentrations (mean chlorophyll concentration at 

each pixel) was generated from the mapped Level 2 data from September 1997 through 

December 2004 and biweekly composite images were produced.  When calculating the 

mean value in either the climatology or the biweekly data, only valid data were used.  

Suspicious data identified by various quality flags associated with each pixel (for example 

cloud contamination, large solar/view angle, etc.) were excluded from the calculations. 

The study area was divided into fourteen subregions, each representing different 

oceanographic conditions in order to (1) investigate the initiation and progression of 

phytoplankton blooms, and (2) analyze the relative differences in chlorophyll 

concentrations between regions along the coastal Antarctic Peninsula and offshore areas.  

Regions 1 - 6 represent offshelf oceanic regimes with depths greater than 2000 m, while 

regions 7 and 8 are located over the continental shelf slope, defined as the area between 

500 and 2000 m.  Regions 9, 10 and 11 represent coastal waters along the Antarctic 
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Peninsula shelf and regions 13 and 14 are located in Marguerite Bay.  Region 12 includes 

both coastal and oceanic waters in the Scotia-Weddell confluence area.  The biweekly 

geometric mean chlorophyll concentrations between September - March 1997 to 2004 

were calculated for each region and the results plotted over time in relation to the 

climatology.  Although values up to 55 mg m-3 were estimated from SeaWiFS for 

Marguerite Bay during summer, concentrations lower than 0.01 mg m-3 and greater than 

20 mg m-3 were excluded from the geometric mean calculations, since the accuracy of 

these values could not be verified with concurrent in situ data.  However, as most of the 

SeaWiFS chlorophyll concentrations during the study period were within the 0.01 - 20 mg 

m-3 range, the geometric mean calculations were not significantly affected by excluding 

the few extreme values.  Gaps in the time series occurred when the available data points 

were < 10% of the total number of pixels within each region during the biweekly period 

of maximum spatial coverage.  

The mean location of the ice edge within the study area during October, 

November, and December of 2000 and 2001 was determined using a two-dimensional 

linear interpolation of monthly ice concentration on a 25 km resolution grid.  Monthly 

averaged gridded ice concentrations generated using the NASA Team algorithm and 

Nimbus-7 SMMR and DMSP SSM/I passive microwave data were obtained from the 

National Snow and Ice Data Center (Cavalieri et al., 2005).  The ice edge was considered 

to be the location where sea ice concentration was ≤ 15% (Gloersen et al., 1992).  The 

mean location of the ice edge during these months was superimposed over the concurrent 

biweekly SeaWiFS chlorophyll images.  In addition, the mean location of the ice edge 

during the preceding month also was plotted in order to evaluate changes in chlorophyll 
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concentrations within the region of ice edge retreat.  To examine whether there was a 

relationship between the retreat of the ice edge and the formation of phytoplankton 

blooms, chlorophyll concentrations along the location of the ice edge in September, 

October, and November 2000 and 2001 were extracted from the satellite data.  The 

chlorophyll values at the same locations were extracted for the subsequent 6-biweekly 

periods (three months).  Thus, at the September location of the ice edge, chlorophyll 

concentrations were analyzed during September - November and at the November ice 

edge location, chlorophyll was analyzed during December - January.  The median 

chlorophyll concentration for each biweekly period was estimated and plotted over time to 

generate a time series of chlorophyll concentrations at the ice edge location.  

The daily area free of sea ice (km2) in the northern and southern sections of 

Marguerite Bay was estimated from satellite data following the methods described in 

Arrigo and van Dijken (2003).  A daily climatology from 1997 through 2004 was 

calculated as the mean daily ice-free area within each subregion.  A running average was 

applied to reduce the daily variability (bandwidth = 9.1 days).  The time series of daily 

ice-free area from 1997 to 2004 were plotted in relation to the 8-year climatology with 

special emphasis on 2001 and 2002. 
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Figure 3.2.  Mean abundance (ind m-3) of development stages of Euphausia superba in 
offshelf waters (Sta. 1) west of the Antarctic Peninsula and coastal waters (Sta. 5) of 
Marguerite Bay during fall 2001 (light grey) and 2002 (dark grey).  CI - CIII = calyptopis 
1 - 3; FI - FVI = furcilia 1 - 6; juvs = juveniles ; males = adult males; females = adult 
females. 
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RESULTS 

Biweekly climatological patterns of chlorophyll a indicate that oceanic and coastal 

areas in the Bellingshausen Sea and coastal Marguerite Bay had persistently high 

chlorophyll concentrations (0.1 - > 7 mg m-3) during spring and summer in comparison 

with any other area west of the Antarctic Peninsula between September and March 1997 - 

2004 (Fig. 3.3).  Oceanic waters offshore of the northern Antarctic Peninsula typically had 

relatively low concentrations (0.1 - 0.2 mg m-3).  Intermediate values (0.1 - ~ 2 mg m-3) 

were generally observed over the more northern continental shelf regions west of the 

Antarctic Peninsula and downstream in the Scotia Sea, although small, short-lived blooms 

with chlorophyll values greater than 2 mg m-3 occurred nearshore in this region.   

The spatial and temporal changes in chlorophyll patterns suggest that biomass 

accumulations initially occurred during October and November in offshelf waters, mainly 

in the Bellingshausen Sea and to a lesser extent near the shelf break in the vicinity of the 

Shetland Islands at the northern end of the Antarctic Peninsula (Fig. 3.3).  As the season 

progressed (mid-December), phytoplankton blooms developed onshore, especially in the 

vicinity of Marguerite Bay and the coastal Bellingshausen Sea, where they remained well 

established until early April.  In contrast, there didn’t appear to be a significant seasonal 

increase in chlorophyll in northern Peninsula waters, except near some of the islands such 

as the South Shetlands and a few short-lived blooms nearshore. 

A cross-shelf gradient in chlorophyll concentrations (higher values in coastal areas 

to lower values at the shelf break) was observed for Marguerite Bay and to the south 

during summer (January - March).  Between Anvers and Adelaide islands, there was a 

similar cross-shelf gradient in January, but by late February maximum chlorophyll 
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concentrations had shifted to mid-shelf and outer shelf areas near Anvers Island.  At the 

northern end of the Peninsula, there was no apparent cross-shelf gradient.  Instead, 

maximum chlorophyll values occurred in the vicinity of the Shetland Islands and Elephant 

Island near the outer shelf. 

The geometric mean chlorophyll concentrations for the 14 subregions defined in 

the study area (Fig. 3.4a) illustrate the interannual (1997 - 2004) variability in patterns of 

chlorophyll distribution west of the Antarctic Peninsula.  Variations from the climatology 

were relatively small (maximum ± 0.4 mg m-3) in offshelf regions of the Antarctic 

Circumpolar Current (ACC), Drake Passage, and the Scotia Sea (regions 1 - 6), with the 

Bellingshausen and Scotia Sea regions having higher variability than the Drake Passage 

regions (Fig. 3.4b).  Regions 1 - 2 and 4 - 5 had a small chlorophyll peak in early 

November (year day 315), whereas the Scotia Sea generally sustained higher levels of 

chlorophyll for longer periods (until early April).  Variability in waters at the tip of the 

Peninsula (region 12) was influenced by the large chlorophyll concentrations to the east of 

the Antarctic Peninsula in the Weddell Sea.  Shelf slope waters (regions 7 and 8) had 

similar interannual ranges in chlorophyll, although the years with chlorophyll 

concentrations greater than climatology were not necessarily the same.  For waters over 

the continental shelf (regions 9 - 11), the southern Bellingshausen and Marguerite Bay 

shelf region had the highest chlorophyll concentrations and variability, with declining 

values to the northeast.  
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Figure 3.3.  Biweekly climatology (1997 - 2004) of SeaWiFS chlorophyll concentrations 
(mg m-3) between October and March.  The date range included in each image is indicated 
on the lower right hand corner. White areas indicate no data due to the presence of clouds 
and/or sea ice.  The white thin line represents the 1000 m isobath. 
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Figure 3.3.  (Continued) 

 

The highest chlorophyll concentrations at the northern tip of the Peninsula (regions 

3, 6, and 12) occurred during 1999/2000.  Elsewhere, 2000/2001 had substantially higher 

chlorophyll concentrations during summer (December - February) compared with most of 

the other years analyzed, particularly in the Bellingshausen Sea (regions 1, 4, 7 and 9) and 

Marguerite Bay (regions 13 and 14).  In waters over the continental shelf of the 

Bellingshausen Sea (regions 7 and 9), chlorophyll was generally elevated during the 

spring and summer seasons of both 2000/2001 and 2001/2002, with high variability 

observed both between and within years. During 2001/2002, however, these chlorophyll 

peaks did not occur for as extended a period of time as in 2000/2001.  Shelf break and 
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coastal regions along the Antarctic Peninsula (regions 8, 10 and 11) had elevated mean 

chlorophyll concentrations relative to offshore areas, although the variations (up to 0.41 

mg m-3) with respect to the climatology were less evident than in the Bellingshausen Sea 

(region 9, up to 0.97 mg m-3) or Marguerite Bay (up to 3.72 mg m-3), and mean values 

never exceeded 0.72 mg m-3 (note the different y-axis scales between plots).  Marguerite 

Bay had the highest chlorophyll concentrations in comparison with any other region 

analyzed.  In northern Marguerite Bay, average values during January for all years were 

1.24 - 1.31 mg m-3.  However, during January 2001, mean chlorophyll reached 4.95 mg m-

3, whereas 2002 values were consistently near or below the 7-year average.  In southern 

Marguerite Bay, 2000/2001 showed high mean values of up to 2.76 mg chl m-3 from late 

December through February, a factor of 2.5 higher than average (1.09 mg chl m-3) 

conditions.  The presence of sea ice prevented satellite chlorophyll data collection during 

most of the 2001/2002 summer.  

The location, timing, and extent of sea ice during 2000/2001 and 2001/2002 were 

examined in relation to chlorophyll concentrations to better understand the relationship 

between sea ice and phytoplankton blooms (Fig. 3.5).  Chlorophyll concentrations were 

highly variable in relation to the receding ice edge in our study area.  During September 

2000 and 2001, the ice edge was located in oceanic waters of the ACC.  By October, the 

ice margin had retreated considerably and occurred closer to the coast at its eastern extent, 

but chlorophyll had not increased significantly at the September ice edge locations (Fig. 

3.5a and 3.5b, top 2 panels).  This suggests that October was too early in the productive 

season for any significant chlorophyll accumulations to occur within the ice edge zone.  In 

November, the ice edge had receded onshelf in the mid-Antarctic Peninsula, but in the 
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Bellingshausen Sea the ice edge remained offshore in 2000 and approximately at the shelf 

break in 2001. Chlorophyll concentrations increased significantly in this region, reaching 

~ 5 mg m-3 (Fig. 3.5a and 3.5b, center panels).  Although ice edge blooms appear to have 

occurred in some parts of the Bellingshausen Sea during November and December, most 

of this region of enhanced chlorophyll was presumably too far from the ice edge to have 

been influenced by ice melt processes.   

 

 

 
Figure 3.4a. Location of the 14 subregions along the western Antarctic Peninsula 
superimposed over the climatology (1998 - 2004) of SeaWiFS chlorophyll concentrations 
(mg m-3) for January 1 - 14.   
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Figure 3.4b. Time series of geometric mean chlorophyll concentrations in each subregion 
for each biweekly period during 1997 - 2004.  The 7-year climatology is also included for 
each region (thick black line with circles).  Note the difference in scale of the y-axis for 
the different regions.  The 2000/2001 (red squares), 2001/2002 (blue circles), 2002/2003 
(cyan broken line), and 2003/2004 (green dotted line) spring-summer seasons are 
highlighted in color.   
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Figure 3.5a.  Biweekly SeaWiFS chlorophyll concentrations (Chl, mg m-3) in October 
(Oct), November (Nov) and December (Dec) of 2000.  The mean monthly location of the 
ice edge is also shown: the red line indicates the location of the ice edge during the 
preceding month, the yellow line represents the current month.  The 1000 m isobath is 
indicated by the white line.  
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Figure 3.5b.  Biweekly SeaWiFS chlorophyll concentrations (Chl, mg m-3) in October 
(Oct), November (Nov) and December (Dec) of 2001. The mean monthly location of the 
ice edge is also shown: the red line indicates the location of the ice edge during the 
preceding month, the yellow line represents the current month.  The 1000 m isobath is 
indicated by the white line.  
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The analysis of chlorophyll buildup during the weeks following the retreat of the 

ice edge reveals an increase in chlorophyll concentrations in the vicinity of the October 

and November ice edge locations, both in 2000 and 2001; however, values usually 

reached a maximum 4 - 6 weeks after the ice had receded (Fig. 3.6).  In addition, other 

areas along the Antarctic Peninsula that were never influenced by sea ice also showed a 

similar increase during our study period.  For example in November and December of 

2001 (Fig. 3.5b), the ice edge occupied coastal areas of the Bellingshausen Sea and along 

the Antarctic Peninsula to Anvers Island (see Fig. 3.1 for site locations).  Even though ice 

never occupied the northern end of the Peninsula, elevated chlorophyll concentrations 

were observed along the shelf break and in coastal areas.  Thus, processes other than the 

retreat of the ice edge likely influenced phytoplankton dynamics in this more northern 

area.  
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Figure 3.6.  Biweekly time series of chlorophyll accumulation after the ice had receded at 
the September, October, and November 2000 and 2001 locations of the ice edge shown in 
figure 3.5. 
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Sea ice coverage in Marguerite Bay also showed strong variability between the 

years analyzed and these differences are particularly marked between 2000/2001 and 

2001/2002.  During summer and early fall (January - April), typical values of ice-free 

areas range from approximately 9,000 to 11,000 km2 in northern Marguerite Bay and from 

~ 4,500 to 7,500 km2 in southern Marguerite Bay (Fig. 3.7c).  A comparison of the 

climatology and 2001 and 2002 daily ice-free areas (km2) indicates that 2002 had above 

average sea ice in both the northern and southern sectors throughout the spring, summer, 

and fall (Fig. 3.7a and 3.7b).  In addition, ice formed earlier in 2002 than in 2001.  In 

contrast, 2001 had sea ice values significantly below the 8-year mean, particularly from 

January through July, as indicated by the unusually large ice-free areas observed both in 

the northern and southern sectors.  In 2001 these values reached approximately 12,000 

and 11,500 km2 in the northern and southern regions respectively.  On the other hand, the 

areas free of ice only reached 6,000 - 9,000 km2 in the northern and 0 - 2,000 km2 in 

southern sectors during the same months in 2002, suggesting an especially extensive sea 

ice cover.  During winter (starting in mid-July or year day ~ 200), sea ice conditions were 

similar for both years, although, as mentioned above, ice occupied both the northern and 

southern sectors considerably earlier in 2002.  Other years with above-average sea ice 

cover were 1997/1998 and 1999/2000, while during 1998/1999 and 2003/2004 sea ice was 

lower than normal. 

Recruitment indices (R1) for E. superba collected during fall in the GLOBEC 

study area were 0 for 2001 and 0.4 for 2002, representing no juvenile recruitment from the 

1999/2000 larval year class and significant recruitment from the 2000/2001 larval year 

class, respectively.  Published krill recruitment index values for years of elevated 
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recruitment west of the Antarctic Peninsula between 1975 and 2002 are provided for 

comparison (Table 3.1).  

 

 

 
Figure 3.7.  Daily ice-free area (km2) in (a) northern and (b) southern Marguerite Bay 
during 1997 - 2004.  The 8-year climatology also is shown (black thick line).  (c) 
Location of the northern (dark grey) and southern (light grey) Marguerite Bay regions. 

(a) 

(b) 

(c) 
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Table 3.1.  Years of elevated krill recruitment between 1975 and 2002.  Source publications are 
designated by symbols in the table.  Recruitment indices (R1) were estimated from the 
proportion of one year-old krill compared to age-class one plus all older age classes.  Year class 
is the year larvae were produced; whereas recruitment to the juvenile stage occurs the following 
year.  All krill were collected during austral summer (January - March) in waters west of the 
Antarctic Peninsula, except this study when krill were collected during austral fall (April - 
June).  Only years of high recruitment (R1> 0.5) are shown 

 
Year class R1 Location Study period 
1979/1980 0.559 Elephant Island area * 1975 - 1996 
1980/1981 0.757 Elephant Island area * 1975 - 1996 
1987/1988 0.651 Elephant Island area * 1977 - 1997 
1994/1995 0.622 Elephant Island area * 1975 - 1996 

 0.639 Western Antarctic Peninsula # 1985 - 2002 
1999/2000 0.573 

0 
0 

Elephant Island area * 
Western Antarctic Peninsula # 

Marguerite Bay region § 

1975 - 2000 
1985 - 2002 
2001 - 2002 

2000/2001 0.748 Western Antarctic Peninsula # 1985 - 2002 
 0.400 Marguerite Bay region § 2001 - 2002 

* Siegel et al. (2002); # Siegel et al. (2003); § this study 
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DISCUSSION 

Chlorophyll concentrations showed considerable temporal and spatial variability 

in waters west of the Antarctic Peninsula during austral spring and summer between 1997 

and 2004, with the largest and most persistent phytoplankton blooms consistently 

occurring in Marguerite Bay and the Bellingshausen Sea areas.  The climatology showed 

a cross-shelf chlorophyll gradient in early summer in the middle and southern regions of 

the Peninsula.  Investigators from the Palmer Long Term Ecological Research (LTER) 

program have reported a similar gradient in chlorophyll concentrations for January 1991 - 

1995 (Smith et al., 1998a) and January 1997 (Garibotti et al., 2003) between Anvers and 

Adelaide islands, suggesting that this pattern of chlorophyll distribution has remained 

relatively constant in this area for about two decades.  In 1997, average chlorophyll 

concentrations in coastal areas were an order of magnitude greater than those in the 

vicinity of the shelf break (4.38 mg m-3 vs. 0.22 mg m-3) and corresponded to a shallower 

mixed layer and greater vertical stability of the water column in coastal waters (Garibotti 

et al., 2003).  Climatology results presented here indicate that these environmental 

conditions may usually change by mid- February in the middle region of the Peninsula 

(Anvers to Adelaide islands) as this cross-shelf pattern was no longer present, except in 

Marguerite Bay and to the south.      

The above mentioned studies also describe an alongshore gradient in chlorophyll 

concentrations with higher values in the northern sectors of the Peninsula earlier in the 

season possibly associated to the seasonal alongshore retreat of the sea ice and/or to 

latitudinal differences between areas.  Present results, however, indicate that chlorophyll 

concentrations in the southern sectors are consistently higher than in any other area 
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analyzed west of the Antarctic Peninsula.  In addition, chlorophyll accumulations in these 

areas occur earlier in the spring and persist longer throughout the summer than most areas 

in the northern regions.  Thus, the southern areas are vitally important to the Antarctic 

Peninsula ecosystem in terms of overall chlorophyll standing stock and the phytoplankton 

blooms are likely to play an important role in supporting higher trophic level dynamics.   

Few studies provide information on phytoplankton dynamics in the Bellingshausen 

Sea (Savidge et al., 1995; Barlow et al., 1998).  SeaWiFS images of the circumpolar 

distribution of mean annual chlorophyll concentrations show that the Bellingshausen and 

Amundsen Seas support large phytoplankton blooms (Fig. 1 in El-Sayed, 2005).  Satellite 

derived estimates of primary productivity also indicate that the Bellingshausen/Amundsen 

Sea area is one of the most productive in Antarctic waters, only exceeded by the Ross and 

Weddell Seas (Arrigo et al., 1998).  Typically, ice edge blooms are tightly coupled to 

spring ice edge retreat in Antarctic waters (Sullivan et al., 1993; Arrigo and McClain, 

1994; Garibotti et al., 2005), where blooms develop within about two weeks after the ice 

recedes from a particular location.  During austral spring 1992, investigators from the UK 

STERNA Program observed elevated chlorophyll concentrations in oceanic waters of the 

Bellingshausen Sea in late November (up to > 7 mg m-3) and early December (up to 2.4 

mg m-3), but reported that they were not related to sea ice retreat (Savidge et al., 1995; 

Barlow et al., 1998).  During the present study, some blooms appeared to occur along the 

ice edge in the Bellingshausen Sea; however, most blooms occurred with approximately a 

4 - 6 week lag and, therefore, probably were not related to the ice retreat, in agreement 

with the STERNA Program observations.  Clearly, there is a need for future 

phytoplankton studies in the Bellingshausen Sea in order to elucidate the factors that 
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control the formation and persistence of spring blooms in the region.  

Ice edge blooms have been suggested to be an important feature in the northern 

Antarctic Peninsula region (e.g., Siegel and Loeb, 1995; Smith et al., 1998b).  In contrast, 

findings reported herein indicate that the formation of spring blooms was not necessarily 

coupled to the retreat of the ice edge in the vicinity of the northern Peninsula between 

1997 - 2004.  Instead, blooms first appeared near the shelf break and gradually progressed 

to more coastal areas, suggesting that shelf break processes were likely an important 

factor influencing phytoplankton growth in the northern Peninsula region.  The strong 

currents of the eastward flowing ACC interact with the bathymetry when it encounters the 

shelf break, generating meanders that usually can be detected at the surface.  Antarctic 

surface waters are rich in macronutrients; however, iron deficiency has been proposed as a 

factor limiting phytoplankton growth (De Baar et al., 1995; Holm-Hansen et al., 2004b; 

2005).  The importance of upwelled iron-rich deep ACC waters to chlorophyll 

aggregations has been described for several regions of the Southern Ocean, including the 

Scotia Sea, the Polar Front region downstream of South Georgia, the Ross Sea, and the 

Antarctic Peninsula shelf break (De Baar et al., 1995; Measures and Vink, 2001; Prézelin 

et al., 2000; 2004; Holm-Hansen et al., 2005).  Hence, upwelling of iron-rich deep water, 

rather than the retreat of the ice edge, may be a major factor controlling phytoplankton 

bloom development during spring and summer in the vicinity of the shelf break, and in 

coastal waters along the northern Antarctic Peninsula. 

Although sea ice extent and duration in the Bellingshausen Sea and along the 

Antarctic Peninsula has decreased over the past 25 years (Parkinson, 2002; Ducklow et 

al., 2006), high interannual variability in sea ice is still observed.  Ducklow et al. (2006) 
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analyzed 14 years (1991 - 2004) of sea ice extent data near Palmer Station in the vicinity 

of Anvers Island, and found that 2001 had the lowest (69,932 km2) winter sea ice extent 

of all years analyzed, while 2002 had the highest (109,936 km2) (mean = 91,112 km2).  

The early retreat of sea ice in Marguerite Bay in spring of 2001 resulted in large 

phytoplankton blooms in ice-free waters during summer.  In contrast, the persistent 

presence of sea ice in Marguerite Bay during summer - fall 2002 resulted in overall lower 

chlorophyll concentrations in coastal surface waters.  The positive relationship between 

sea ice cover and chlorophyll concentrations is further supported by observations during 

other years of this study.  For example in 2003/2004, peaks of above-average chlorophyll 

concentration in northern and southern Marguerite Bay during January (Fig. 4b; regions 

13 and 14) coincided with an early retreat of the sea ice in late 2003 and lower than 

normal sea ice extent during late 2003 - early 2004, particularly in the northern region 

(Fig. 3.7).  In addition, the ice-free area in northern Marguerite Bay during late 1998 - 

early 1999 was larger than average, concurrent with high chlorophyll concentrations in the 

region during December - January 1998/1999. 

Several investigations have suggested that sea ice extent and duration are the 

primary environmental factors influencing krill recruitment in the northern regions of the 

Antarctic Peninsula, as spring - summer ice edge blooms were believed to support krill 

reproduction and winter sea ice biota to provide food for overwintering larvae 

(Kawaguchi and Satake, 1994; Siegel and Loeb, 1995; Quetin and Ross, 2003).  Results 

from this study, however, indicate that ice edge blooms are not prevalent in this region 

and, thus, may not be a primary source of food for reproducing krill.  In addition during 

both winters of the GLOBEC study, sea ice biota concentrations were very low (0.05 - 
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0.07 mg chl m-3) at the ice-water interface where larval krill feed (Daly, 2004).  Indeed, a 

large percentage of larvae were not even associated with the undersurface of sea ice and 

instead remained in the water column, particularly in 2002.  Also in both winters, larvae 

showed evidence of food limitation, as indicated by delayed development, decrease in 

growth rates, increased intermolt period, and decrease in dry weight, body carbon, and 

nitrogen (Daly, 2004).  Hence, the presence of extensive sea ice during winter is not 

necessarily a good predictor of food availability for overwintering larvae and, 

environmental factors other than winter sea ice conditions must play an important role in 

recruitment.  

Krill typically reproduce during late spring and summer (November - March) west 

of the Antarctic Peninsula (Siegel, 1988).  Results from net samples suggest that the 

majority of the females migrate near the vicinity of the shelf break where they spawn in 

oceanic waters (e.g., Siegel, 1992; Hoffman et al., 1992), possibly owing to the 

predictable shelf break blooms that occur early in the productive season as observed in the 

climatology (Fig. 3.3).  Successful krill reproduction and larval survival require an 

adequate food supply (Ross and Quetin, 1983; 1989).  Adult females may require above 

average phytoplankton concentrations (1 - 5 mg chl m-3) to initiate reproduction (Ross and 

Quetin, 1986) and relatively high chlorophyll concentrations (> 0.5 mg chl m-3) to sustain 

multiple spawning throughout the summer (Nicol et al., 1995).  It also is critical for the 

first-feeding larvae (calyptopis I) to encounter an adequate food supply in the euphotic 

zone within 10 - 14 days, otherwise they will not survive (Ross and Quetin, 1986).  

Hence, knowledge about differences in the timing, extent, and evolution of phytoplankton 

blooms is critical for understanding the interannual variability observed in krill 
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recruitment success. 

The recruitment indices in Table 1 indicate that only six out of 27 years had 

successful recruitment.  Our fall (April - May) estimated recruitment (R1 = 0.4) for 

2000/2001 is lower than the 0.748 reported for summer by Siegel et al. (2003) (Table 3.1).  

A decrease in krill recruitment indices is commonly observed between summer and fall 

(Siegel and Loeb, 1995), owing to the seasonal decline in krill population abundance 

(Lascara et al. 1999).  The lower fall indices correlate with summer values and, therefore, 

can still serve as a relative indicator of recruitment.  The two highest recruitment years 

resulted from high reproduction in 1980/1981 and 2000/2001.  Elevated recruitment from 

2000/2001 larvae also was observed downstream at South Georgia (Siegel et al., 2003).  

In contrast, conditions during 2001/2002 were not as favorable for a successful 

reproduction, as evidenced by the lower number of larvae recorded during fall 2002 (this 

study; Daly, 2004) and the subsequent low numbers of krill observed during January 2003 

along the Peninsula (Ducklow et al., 2006).   

Results reported herein suggest that seasonal persistence of elevated food 

concentrations from phytoplankton blooms during spring and summer likely were a strong 

influence on krill reproduction and recruitment, particularly in 2001.  Recruitment also 

may vary along the Peninsula depending on the location of phytoplankton blooms.  For 

example during 1999/2000, higher chlorophyll concentrations occurred in the Elephant 

Island - Scotia Sea areas relative to any other year analyzed (Fig. 3.4b: regions 3, 6, and 

12).  Published krill recruitment index values indicate that elevated recruitment occurred 

in 2001 from the 1999/2000 larvae (R1 = 0.573) in this area (Siegel et al., 2002).  On the 

other hand, chlorophyll concentrations in the southern sectors of the western Antarctic 
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Peninsula were average or below-average in coastal waters including Marguerite Bay 

early in the season (regions 7, 8, 9, 10, 11, 13), although by February an increase could be 

observed in most regions along the continental shelf.  Consistent with the lower 

availability of food during the critical early reproductive period, recruitment indices in the 

southern part of the study area for the 1999/2000 larvae were low [R1 = 0.076 in summer; 

(Siegel et al., 2003) and R1 = 0 in fall (this study)].  

Chlorophyll concentrations in the Bellingshausen may have influenced 

downstream densities of larval krill in the vicinity of Marguerite Bay, especially at the 

offshelf station in the ACC.  Recent modeling studies suggest that krill spawned in the 

Bellingshausen Sea are transported downstream to the Western Antarctic Peninsula area 

and into the Scotia Sea (e.g., Thorpe et al., 2007).  The wide range of larval stages 

observed in offshelf waters during fall 2001 indicated that krill reproduction started 

relatively early in the season and continued for an extended period.  The dominant larval 

modes included CIII, FI, and FII, in addition to considerable numbers of late stage 

furcilia.  Based on experimentally determined growth rates (Ikeda, 1984), these larvae 

represent a range of spawning episodes between mid-December (FVIs: ~ 127 days old) 

and early to late-March (CIIs: ~ 44 days old).  Assuming that most reproducing adult 

females released eggs in the vicinity of the shelf break (Siegel, 1988), the approximate 

location of the spawning population upstream in the ACC may be estimated from the age 

of larvae and the transport rate of the current.  For example, the dominant FI mode in 

2001 is estimated to be about 63 days old and, therefore, likely originated from a late 

February - early March reproductive event.  Surface velocities in the ACC reach 0.25 - 0.4 

m sec-1, but decrease monotonically with depth (Klinck and Nowlin, 2001).  Mesoscale 
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meanders and eddies also may act to reduce the transport rate.  Assuming an average 

eastward current velocity of the ACC of ~ 0.1 - 0.2 m sec-1, the spawning location 

possibly occurred in offshelf waters of the Bellingshausen Sea between 83 - 94 °W (Fig. 

3.8; white box).  Although this spawning location is west of our study area, larger scale 

ocean color imagery (Fig. 3.8a) shows large blooms in this region in 2001, which would 

provide adequate food for an early and extended reproduction by adults and provide food 

for larvae transported to the east.  In contrast during 2002 chlorophyll concentrations 

during summer were relatively low (Fig. 3.8b) and, thus, there was less food available for 

reproduction or larval growth.  

The results obtained during the present study indicate that spring and summer 

phytoplankton blooms appear to be a significant factor influencing krill recruitment in the 

vicinity of the Antarctic Peninsula.  Clearly, further studies of the factors controlling 

phytoplankton blooms in waters adjacent to the southern Antarctic Peninsula and in the 

Bellingshausen Sea are warranted, especially since this area may play a major role in krill 

reproduction and influence other components of the Antarctic food web.  In addition, 

further physiological-based krill studies are needed to better understand the relative 

impact of summer phytoplankton blooms versus winter sea ice cover in governing 

recruitment, particularly in light of the regional decline in sea ice.  
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Figure 3.8.  Monthly mean SeaWiFS chlorophyll concentrations in the Bellingshausen 
Sea during February (a) 2001 and (b) 2002.  The white box represents the area of potential 
krill spawning.  The red star indicates the location of the US SO GLOBEC sampling 
Station 1 where krill were collected.  Images correspond to the level-3 standard mapped 
images (resolution of 9 km/pixel) and were obtained from the global ocean color imagery 
(http://oceancolor.gsfc.nasa.gov/cgi/level3.pl). 
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CHAPTER 4 

 

PHYSICAL AND BIOLOGICAL CONTROLS ON INTERANNUAL 

VARIABILITY OF ZOOPLANKTON IN MARGUERITE BAY, WESTERN 

ANTARCTIC PENINSULA, AUSTRAL FALL 2001 AND 2002 

 

INTRODUCTION 

Zooplankton are a key component of marine ecosystems, acting as the link 

between primary producers and higher trophic levels.  In the Southern Ocean, the 

Antarctic krill, Euphausia superba, often dominates zooplankton biomass and is 

considered a keystone species.  It is a relatively large euphausiid, up to 65 mm in length, 

and an important phytoplankton grazer, particularly during spring and summer, and prey 

for many upper trophic level predators, including fish, penguins, seals, and whales.  E. 

superba has a circumpolar distribution and in deep water can often be observed in dense 

aggregations over the continental shelf.  Due to its vital role in the Antarctic ecosystem, 

the zooplankton literature is dominated by studies of this species.  Extensive research has 

focused on examining the distribution and abundance of E. superba (e.g., Marr, 1962; 

Siegel, 1992), its reproduction and growth (Ross and Quetin, 1983; Brinton et al., 1986; 

Daly, 1990; Quetin et al., 2003), behavior (e.g., Hamner et al., 1983; Marschall, 1988) 

and role in the Antarctic foodweb (Hempel, 1985; Laws, 1985).  In addition to this 

species, other zooplankton, including other euphausiid species and copepods, are 
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important components of the Antarctic ecosystem.  Nonetheless, the information 

available on their role in the ecosystem, population dynamics, and ecology is limited 

compared to that of E. superba.  

Thysanoessa macrura, an omnivorous euphausiid up to ~ 29 mm in length 

(Nordhausen, 1992), is broadly distributed in coastal and oceanic waters of the Southern 

Ocean and at all temperature and salinity ranges (Hempel and Marschoff, 1980).  Its 

distribution overlaps that of E. superba and both species often co-occur.  The larvae of T. 

macrura are herbivorous and graze on phytoplankton during spring and summer, whereas 

the adults prey mainly on copepods (Hopkins, 1985).  E. crystallorophias is another 

relatively small euphausiid (up to ~ 36 mm) found exclusively in neritic waters, where it 

either co-exists or replaces E. superba (Daly and Zimmerman, 2004).  E. crystallorophias 

is mainly herbivorous throughout its life cycle.  Both E. cyrstallorophias and T. macrura 

can be a significant food item for higher trophic level predators, including penguins, fish 

and whales and, thus, are also important members of the Antarctic foodweb (Croxall, 

1984; Nemoto and Nasu, 1958; Ainley and DeMaster, 1990). 

 Copepods dominate zooplankton abundance in many regions of the Southern 

Ocean and their biomass may exceed that of krill at times (Schnack-Schiel and Mujica, 

1994).  The dominant species include the herbivore Calanoides acutus and several 

omnivorous species, including Metridia gerlachei, Calanus propinquus and 

Ctenocalanus spp.  Several studies have analyzed the patterns of distribution and 

abundance of the dominant copepods in different areas of the Southern Ocean and have 

emphasized their critical role in the zooplankton community, both as prey for carnivorous 

zooplankton and fish, and also as predators of phytoplankton and microzooplankton (e.g. 
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Hopkins, 1985; Conover and Huntley, 1991; Schnack-Schiel et al., 1991; Lopez and 

Huntley, 1995; Atkinson, 1998; Voronina, 1998; Schnack-Schiel, 2001).  In addition, 

other zooplankton, such as E. superba, have been observed to rely on copepods during 

fall and winter when phytoplankton is scarce in the water column (Hopkins, 1985; Daly, 

pers. comm.). 

The western Antarctic Peninsula (WAP) is one of the most productive areas of the 

Southern Ocean, supporting high concentrations of phytoplankton, zooplankton and 

upper trophic level predators (Deibel and Daly, 2007).  This area also is of interest due to 

its rapid warming relative to any other area in the world’s ocean (Vaughan and Doake, 

1996) and the dramatic decline in sea ice cover observed in recent decades (Parkinson, 

2002), which in turn has important implications for Antarctic organisms.  Although 

elevated chlorophyll concentrations have been observed along the continental shelf of the 

northern WAP during austral spring and summer (Moline et al., 1997; Smith et al., 

1998a; Garibotti et al., 2003), recent results have shown that phytoplankton blooms are 

particularly large and persistent in the southeastern sectors, including Marguerite Bay and 

the western Bellingshausen Sea (Chapter 3; Marrari et al., 2008).  The factors that 

contribute to the relatively high productivity of this region include its northern location 

relative to other Antarctic shelf areas, a relatively wide continental shelf, and the 

intrusion onto the shelf of nutrient-rich Upper Circumpolar Deep Water (UCDW) (Deibel 

and Daly, 2007).  Numerous studies also have examined zooplankton in the WAP region, 

which have improved our understanding of the patterns of abundance, distribution and 

reproduction of the dominant taxa (e.g. Hopkins, 1985; Siegel, 1988; 1992; Mujica, 1989; 

Schnack-Schiel and Mujica, 1994; Ross et al., 1996; Siegel and Harm, 1996; Loeb et al., 
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1997).  However, these studies almost exclusively took place in the northernmost sectors 

of the Peninsula, from Adelaide Island toward the northeast, and only a few extended 

further south to the outer shelf off Marguerite Bay (Lascara et al., 1999, Meyer et al., 

2003).  Despite the critical role of the southern sector in the ecosystem of the WAP, 

studies of zooplankton from Marguerite Bay and the Bellingshausen Sea have been 

scarce (Atkinson, 1995; Siegel and Harm, 1996; Meyer et al., 2003).  

The Southern Ocean Global Ocean Ecosystem Dynamics Program (SO 

GLOBEC) focused its study in the vicinity of Marguerite Bay, as this region was 

believed to be an important overwintering habitat for E. superba based on observations of 

predators during winter (Hofmann et al., 2004).  The main objective of SO GLOBEC was 

to investigate the physical and biological factors that influence the growth, recruitment 

and overwintering survival of E. superba (Hoffman et al., 2004).  The program supported 

two ships operating simultaneously during two fall and winter cruises in the vicinity of 

Marguerite Bay in 2001 and 2002.  In addition to krill data, an extensive dataset 

involving other important zooplankton groups was generated from net samples. 

Marguerite Bay should be a favorable environment for zooplankton owing to 

persistent elevated concentrations of phytoplankton, the availability of protected areas 

such as fjords and bays that serve as refuge from advection out of the area, and the 

intrusion of UCDW onto the shelf through Marguerite Trough, a deep canyon (> 500 m) 

that intercepts the continental shelf break off Marguerite Bay.  In addition, the flow of the 

Antarctic Peninsula Coastal Current (APPC) (Beardsley et al., 2004; Klinck et al., 2004; 

Moffat et al., 2008) in this area involves a gyre-like feature that contributes to making 

Marguerite Bay a favorable retention area for both phyto- and zooplankton, and thus a 
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potentially favorable feeding ground for predators.  

Understanding the dynamics of zooplankton populations and how they respond to 

environmental change is critical to assessing the impact that these changes will have on 

the Antarctic ecosystem as a whole, and in particular on upper trophic level predators that 

rely on zooplankton as a food source.  Herein, I investigate the patterns of abundance and 

distribution of dominant zooplankton in Marguerite Bay during austral fall 2001 and 

2002 in relation to the interannual variability of environmental conditions, and examine 

possible ecological relationships within and between groups.  

 

METHODS 

 The study area consisted of coastal waters in the vicinity of Marguerite Bay along 

the western Antarctic Peninsula region between 66 - 70 °S and 67 - 73 °W.  Zooplankton 

and environmental data were collected between 23 April and 6 June 2001 and 7 April and 

20 May 2002 during process cruises onboard the R.V. Lawrence M. Gould, as part of the 

SO GLOBEC Program.  The process cruises occupied six coastal stations and samples 

from a total of 12 zooplankton net hauls were obtained during each cruise (Fig. 4.1).  In 

addition, Video Plankton Recorder data of zooplankton were obtained aboard the R.V. 

Nathaniel B. Palmer during survey cruises along 13 transects spaced 40 km apart on the 

mid to outer shelf off Marguerite Bay (Ashjian et al., 2008). Results reported here are 

derived from net samples obtained suring survey cruises. 

Zooplankton samples were collected at eight discrete depth intervals using a 1m2 

Multiple Opening-Closing Net System and Environmental Sensing System (MOCNESS), 

having 333 μm mesh.  Maximum sampling depths ranged between 200 and 800 m, 
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depending on bathymetry.  Samples were preserved in 10% formalin and stored for 

analysis in the laboratory.  Samples were initially split to include approximately 100 

individuals of the dominant euphausiid species.  For copepod counts and identification, 

samples were split further to include approximately 100 individuals of the dominant 

copepod.  All zooplankton taxa present in the subsamples were identified and counted. 

Euphausiids were identified to species and developmental stage (larval stages, juveniles, 

adult females and adult males) after Makarov (1981) and Mauchline (1981), and 

measured for total length to the nearest half mm (from the base of the eye to the tip of the 

telson, excluding setae).  For plotting purposes, length data were grouped in 1 mm length 

bins.  Only data for juveniles > 20 mm total length and adults are included in this study. 

Copepods were identified for species and enumerated.  For Euchaetidae, the designation 

of Park (1994) was followed, who ascribed the Antarctic species to the genus 

Paraeuchaeta.  All other zooplankton groups were identified, counted, measured, and 

classified into > 15 mm or < 15 mm total length; however, analyses in this study 

combined the abundances of these size categories.  
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closed and the depth at which it was opened (e.g., if stratum sampled was 100 - 150 m, z 

is 50 m).  A mean water column integrated abundance was estimated for each taxa during 

each year (n = 12).  In addition, a mean integrated abundance was calculated for all taxa 

at each station, when multiple net hauls were done at a station.  

The depth of maximum abundance (Z) was obtained for each taxa in each net haul 

by calculating the center-depth of the stratum with the highest abundance at a given 

location.  A mean depth of maximum abundance was calculated for each taxa during each 

year.  

Abundances and depth distributions for all taxa were tested for normality 

(Shapiro-Wilk W Test) (Shapiro et al., 1968).  Abundances (A) and depths of maximum 

abundance (Z) for all dominant copepod species followed a normal distribution; 

therefore, statistical analyses for copepod parameters included arithmetic means, 

Student’s t-Test, and one-way ANOVA at α = 0.05 (Zar, 1984).  Abundances and vertical 

distributions of all other groups, including euphausiids, were not normally distributed; 

thus, statistical analyses reported here are nonparametric and included geometric means, 

Mann-Whitney U Test, and Kruskall-Wallis ANOVA at α = 0.05 (Zar, 1984).  

Vertical profiles of conductivity, temperature, and density were obtained with a 

CTD mounted on the MOCNESS during all net hauls.  In addition, water column 

chlorophyll samples were collected at several CTD stations in proximity to the 

MOCNESS locations.  A total of 15 and 6 casts are available for fall 2001 and 2002, 

respectively.  At each CTD station, chlorophyll samples for 4 - 9 depths were collected 

using 10-L Niskin bottles mounted on a rosette.  Water was filtered onto GF/F filters and 

pigments were extracted in 90% acetone at -20 °C in the dark for at least 24 hours.  
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Chlorophyll fluorescence was measured on a Turner Design Digital 10-AU-05 

fluorometer calibrated prior to each cruise.  MOCNESS tows were matched to the 

geographically closest CTD cast for comparisons between zooplankton and 

environmental data (Fig. 4.1).  Spearman rank order correlations were calculated between 

the vertically integrated abundance of all zooplankton taxa and several environmental 

variables: vertically integrated pigment concentrations (chlorophyll + phaeopigment; mg 

m-2), bottom depth (m), and salinity at 10 m. 

 In addition to the concurrent environmental variables measured during fall, 

monthly mean chlorophyll concentrations between 45 - 75 °S and 50 - 80 °W were 

obtained from SeaWiFS for the preceding summer season.  More detail on the processing 

of SeaWiFS data are presented in Chapters 2 and 3.  Analyses in this chapter include five 

of the subregions defined in Chapter 3 (Fig. 3.4a), which represent oceanic and coastal 

waters of the Bellingshausen Sea and Marguerite Bay.  The geometric mean chlorophyll 

for the five subregions was calculated for each biweekly period from October - April 

during spring-summer 2000/2001 and 2001/2002.  Data are presented in relation to the 

seven-year climatology calculated as the geometric mean for 1997 - 2004 at each 

subregion.  

 

 

RESULTS 

 

Abundance and Percent Contribution 

The zooplankton of Marguerite Bay comprised 13 major taxonomic groups, 
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including 12 species of copepods, three species of euphausiids, and 10 other taxa (Tables 

4.1 and 4.2).  The dominant copepods included Calanoides acutus, Metridia gerlachei, 

Ctenocalanus spp., and Paraeuchaeta spp. Oithona spp., Oncaea spp., Calanus 

propinquus, Rhincalanus gigas, Gaidius tenuispinus and Scolecithricella minor were 

present in generally lower numbers.  Aetidopsis antarctica and Metridia curticauda were 

present only occasionally in low abundances and, therefore, were excluded from the 

remaining analyses.  Overall, copepods were significantly more abundant in fall 2001 

(24,362 ± 11,948 ind m-2) than 2002 (9,496 ± 6,450 ind m-2) (Student’s t-Test; p < 0.001) 

(Fig. 4.2a).  During 2001, abundances were highest in Laubeuf Fjord (Sta. 5), at the 

northern end of Alexander Island (Sta. 4a), George VI Sound (Sta. 4b), Lazarev Bay (Sta. 

3), and Neny Fjord (Sta. 6).  In 2002, copepods were most abundant in the vicinity of 

Alexander Island and southern Laubeuf Fjord.  Densities were lowest in Crystal Sound 

(Sta. 7), Bourgeois Fjord (Sta. 5), and at the southern end of Adelaide Island (Avian 

Island).  Abundances also were low in northern Laubeuf Fjord during 2002.  In addition, 

copepod species percent composition showed interannual differences (Fig. 4.2b).  In 

2001, C. acutus and M. gerlachei dominated the community (mean = 52 and 38% of the 

total copepod abundance, respectively), followed by Paraeuchaeta spp. (5%).  In 

contrast, during 2002 the number of relatively abundant species (> 5%) was higher and 

included M. gerlachei (32%) Ctenocalanus spp. (27%), C. acutus (18%), Oithona spp. 

(10%), and Paraeuchaeta spp. (8%).  C. propinquus and R. gigas, two relatively large 

species frequently found in high abundances in the Southern Ocean, only accounted for < 

3% of total copepod abundance during both years.  Oncaea spp., a frequently dominant 

small copepod (< 1 mm) was generally present in low abundances throughout the study 
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area, and only accounted for 1.4% and 2.6% of total copepods during 2001 and 2002, 

respectively.  

 

Table 4.1. Copepod abundance (ind m-2) in the vicinity of Marguerite Bay during 
austral fall 2001 and 2002. Mean = arithmetic mean, SD = standard deviation, n = 
number of net hauls in which a species was present 

 
 

Taxonomic group 
Fall 2001 Fall 2002 

Mean SD n Mean SD n
Copepods       
     Aetidopsis antarctica 10.9 37.9 1 6.29 21.8 1
     Calanoides acutus 13358 7979 12 1909 1891 12
     Calanus propinquus 145 121 10 173 174 11
     Ctenocalanus spp. 263 174 12 2497 1856 11
     Gaidius tenuispinus 79.8 75.9 9 32.9 36 7
     Metridia curticauda 0 0 0 7.87 27.3 1
     Metridia gerlachei 8883 5487 12 3153 2390 12
     Oithona spp. 55.2 55.9 12 908 994 12
     Oncaea spp. 274 286 12 239 264 10
     Paraeuchaeta spp. 1165 696 12 560 440 12
     Rhincalanus gigas 58.6 67.0 10 12.4 30.0 7
     Scolecithricella minor 67.7 121 4 13.2 39.6 3
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Table 4.2. Zooplankton abundance (ind m-2) in the vicinity of Marguerite Bay during austral fall 2001 and 
2002. Geo mean = geometric mean, Range = minimum - maximum, n = number of net hauls in which a 
taxon was present 

 
 Fall 2001 Fall 2002 

Taxonomic group Geo mean Range n Geo mean Range n
Ostracods 775 32.4 - 4728 12 788 83.6 - 2517 12
Euphausiids 

Euphausia crystallorophias 2.78 0.24 - 13.2 10 18.5 1.93 - 137 12
Euphausia superba 6.22 0.24 - 72.6 11 14.8 1.63 - 117 11
Thysanoessa macrura 45.9 7.19 - 266 12 16.2 4.27 - 51.9 12

Amphipods 15.11 5.63 - 91.5 12 12.7 6.77 - 86.6 12
Mysids 1.73 0.23 - 34.9 11 4.26 0.75 - 29.8 10
Medusae 13.3 0.27 - 520 9 0.39 0.12 - 1.47 6
Siphonophores present - 12 present - 11
Polychaetes 136 0.65 - 1110 10 11.9 0.48 - 279 11
Pteropods 254 2.33 - 2119 12 273 7.63 - 1556 11
Chaetognaths 57.0 3.05 - 687 12 31.3 4.23 - 161 12
Appendicularians 4.46 0.78 - 32.3 3 1447 147 - 5693 4
Salps 3.22 0.61 - 43.9 3 0.22 0.15 - 0.27 3
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Figure 4.2a. Water column integrated abundance (ind m-2) of copepods from net hauls in 
the vicinity of Marguerite Bay during austral fall 2001 (top) and 2002 (bottom). 
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Figure 4.2b.  Percent composition of copepods at coastal stations in Marguerite Bay 
during austral fall 2001 (top) and 2002 (bottom). Color legend as in Figure 4.2a. 
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The overall geometric mean abundance of total euphausiids was very similar 

during both years: 66.3 and 66.8 ind m-2 in 2001 and 2002, respectively (Mann Whitney 

U; p = 1.00) (Fig. 4.3a).  Although abundances were variable within sampling locations 

and over the study area, distribution patterns were consistent between years.  Northern 

areas, such as Laubeuf Fjord and Crystal Sound, consistently had the highest integrated 

total euphausiid abundances.  The southern sectors, including Neny Fjord, inner 

Marguerite Bay and near Alexander Island, had relatively lower euphausiid abundances 

during both years. George VI Sound and Lazarev Bay were only sampled during 2001 

and had the lowest abundances of all areas surveyed.  

Despite the similarity in total euphausiid abundance and distribution between 

years, there were significant interannual differences in species percent composition (Fig. 

4.3b).  T. macrura was the most abundant species during 2001 with a geometric mean 

abundance of 45.9 ind m-2, whereas E. crystallorophias had overall low abundances (2.78 

ind m-2), and E. superba had intermediate values (6.22 ind m-2).  During fall 2002, 

abundances were similar among species, with E. crystallorophias having the highest 

mean value (18.5 ind m-2), followed by T. macrura (16.2 ind m-2), and finally E. superba 

with the lowest abundance (14.8 ind m-2).  Interannual differences in abundances of T. 

macrura (Mann Whitney U; p = 0.020) and E. crystallorophias (Mann Whitney U; p = 

0.004) were significant, whereas values for E. superba were not significantly different 

between years (Mann Whitney U; p = 0.200).  
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Figure 4.3a. Water column integrated abundances of euphausiids (ind m-2) from net hauls 
in the vicinity of Marguerite Bay during austral fall 2001 (top) and 2002 (bottom). 

0

50

100

150

200

250

300

Crystal
 Sound

N. Laubeuf Fjord

S. Laubeuf Fjord

Bourgeois F
jord

Neny Fjord

N. Alexander Is.

N. Alexander Is.

N. Alexander Is.

N. George V
I Sound

S. George VI Sound

S. George VI Sound

Lazarev Bay

In
d 

m-2

ES EC TM

0

50

100

150

200

250

300

Crystal
 Sound

Crystal
 Sound

N. Laubeuf Fjord

S. Laubeuf Fjord

S. Laubeuf Fjord

S. Adelaide Is.

inner M
arguerit

e B
ay

Marguerite
 Trough

Marguerite
 Trough

N. Alexander Is.

N. Alexander Is.

N. Alexander Is.

In
d 

m-2



80 

 

 
 
Figure 4.3b. Percent composition of euphausiids from net hauls in the vicinity of 
Marguerite Bay during austral fall 2001 (top) and 2002 (bottom). Color legend as in 
Figure 4.3a. 
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 Even though abundances of E. superba were comparable between years, there 

were key interannual differences in developmental stage composition (Fig. 4.4).  During 

2001, non-larval E. superba were almost exclusively adult males and females and 

juveniles were essentially absent.  Only a few year-two juveniles, 34 mm total length 

(TL), were observed at one station in Laubeuf Fjord (0.08 ind m-3).  Overall, juveniles 

accounted for only ~ 2% of the postlarval E. superba densities in 2001.  In contrast, year-

one juveniles were abundant and constituted ~ 41% of the populations in 2002, 

suggesting a successful recruitment from 2001 larvae.  Postlarval T. macrura were mostly 

juveniles 8 - 10 mm TL during 2001 and 2002 (Fig. 4.5).  Juveniles comprised 91% of 

individuals in fall 2001, and ~ 69% in 2002, when the remaining 31% were adults 

ranging primarily between 16 - 20 mm TL.  During 2001, E. crystallorophias juveniles 

(10 - 18 mm TL) comprised 11% of the population, while the remaining fraction (89%) 

included adults 20 - 36 mm TL (mode: 29 mm TL) (Fig. 4.6).  In 2002, juveniles were a 

larger fraction of the population (28%), while the adults had a bimodal distribution, with 

a larger mode at 20 mm TL, and lower proportions of larger individuals between 29 - 33 

mm TL.  Even though the percent composition of postlarval E. crystallorophias was 

comparable between years, larval abundances showed marked interannual differences, 

with higher values in 2001 throughout the study area.  Maximum abundances in 2001 

were 829 ind m-2 in Neny Fjord, whereas the highest values recorded in 2002 were ~ 18 

ind m-2 in northern Laubeuf Fjord (data not shown).  

In addition to copepods and euphausiids, other dominant zooplankton groups 

included ostracods, pteropods, polychaetes, chaetognaths, appendicularians, amphipods, 

and mysids (Fig. 4.7a and b).  Ostracods and pteropods were numerically dominant 



82 

during both years and showed no significant interannual differences (Mann Whitney U 

test, p = 1.00 for ostracods, p = 0.805 for pteropods).  Appendicularians were more 

abundant during 2002 (geometric mean = 1447 ind m-2) although their distribution was 

very patchy and they were present in only four net hauls.  During 2001, they were present 

at three locations, but in very low abundances.  Polychaetes and chaetognaths were 

relatively abundant during 2001, but had lower densities in 2002.  Abundances for 

amphipods and mysids were not significantly different between years (Mann Whitney U 

test, p = 0.32 for amphipods, p = 0.204 for mysids).  Gelatinous zooplankton were 

generally rare.  Siphonophores could not be numerically quantified due to the presence of 

only fragments of colonies in the samples; however, fragments were classified as “few” 

or “numerous” and were frequent throughout the water column at most locations during 

both years, particularly in the upper 300 m.  

Laubeuf Fjord had the highest abundances of these groups of zooplankton, 

followed by the areas in the vicinity of Alexander Island and Neny Fjord/inner 

Marguerite Bay (Sta. 6) during both years (Fig. 4.7a).  In 2001, abundances were lowest 

in Bourgeois Fjord, one station in southern George VI Sound, and Lazarev Bay, while 

during the following fall, densities were lowest in Crystal Sound and south of Adelaide 

Island.  In terms of percent composition, during 2001 ostracods, pteropods and 

polychaetes dominated at all stations except in Lazarev Bay.  At this location, these 

groups were scarce or absent, and the community was composed primarily of medusae, 

chaetognaths, and salps (Fig. 4.7b).  Although ostracods dominated the zooplankton 

numerically at most locations in 2001, their percent contribution varied among stations.  

Their contribution was maximum in Crystal Sound, Laubeuf Fjord, and George VI 
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Sound, and minimum in the vicinity of Alexander Island and Lazarev Bay.  In 2002, 

ostracods again dominated numerically at most locations, but were only a minor fraction 

of zooplankton in some net hauls in Laubeuf Fjord, Adelaide Island, and Marguerite 

Trough, where appendicularians were most important. 
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Figure 4.4. Length-frequency of E. superba juveniles and adults during fall 2001 (top) 
and 2002 (bottom). Data represent all coastal net hauls for each year. Only juveniles ≥ 20 
mm are included.  
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Figure 4.5. Length-frequency of T. macrura juveniles and adults during fall 2001 (top) 
and 2002 (bottom). Data represent all coastal net hauls for each year.  
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Figure 4.6. Length-frequency of E. crystallorophias juveniles and adults during fall 2001 
(top) and 2002 (bottom). Data represent all coastal net hauls for each year.  
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Figure 4.7a. Water column integrated abundances of zooplankton other than copepods 
and euphausiids (ind m-2) from net hauls in the vicinity of Marguerite Bay during austral 
fall 2001 (top) and 2002 (bottom). 
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Figure 4.7b. Percent composition of zooplankton other than copepods and euphausiids 
from net hauls in the vicinity of Marguerite Bay during austral fall 2001 (top) and 2002 
(bottom). Color legend as in Figure 4.5a. 
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Vertical Distribution 

Overall, the mean depth of maximum abundance for all copepods was 

significantly deeper in the water column during May - June 2001, than in April - May 

2002 (2001:  252 m; 2002: 75 m; Student’s t-Test; p < 0.001) (Fig. 4.8).  Looking at 

individual species, only depths of Paraeuchaeta spp., Oithona spp., and R. gigas were 

significantly different between years (ANOVA, p < 0.05), although other species such as 

M. gerlachei, Oncaea spp., and S. minor also had somewhat shallower distributions in 

2002.  Copepod species occurred within three depth ranges: shallow (0 - 100 m), 

intermediate (100 - 150 m), and deep (> 150 m) water groups (Table 4.3).  In 2001, 

shallow species included Ctenocalanus spp. and C. propinquus, while Oithona spp., S. 

minor, Paraeuchaeta spp., M. gerlachei, C. acutus, G. tenuispinus and Oncaea spp. were 

identified as deep species.  Only R. gigas was intermediate during the first year.  In 

contrast, Oithona spp., R. gigas, and Paraeuchaeta spp. were grouped as shallow species 

during 2002, while M. gerlachei and S. minor were intermediate.  Oncaea spp., C. acutus, 

and G. tenuispinus remained deep species during fall 2002. 

 The vertical distributions of euphausiids were similar within and between years 

(Table 4.4) and geometric mean depths of maximum abundance for all species were in 

the upper 100 m (65 - 84 m).  Mysids were distributed the deepest during 2001 (249 m) 

and 2002 (224 m), while amphipods were located at intermediate depths in 2001 (125 m) 

and represented the shallowest group during 2002 (55 m).  The depths of maximum 

abundance for E. superba, E. crystallorophias, and T. macrura were not significantly 

different within or between years (Kruskall-Wallis ANOVA; p = 0.882 in 2001, and p = 

0.873 in 2002).  However, even though their general depth ranges overlapped throughout
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Table 4.3. Mean depth of maximum abundance (Z, m) of copepods in 2001 and 2002. Species in bold indicate those that 
were classified in the same depth category during both years. The range represents the shallowest and deepest depth (m) 
at which each species was present. Depth categories were based on the general hydrography of the area. At most net 
hauls, the upper mixed layer ranged between 0 - ~100 m, with a thermocline/pycnocline generally between ~100 - 150 
m, and warmer saltier water below ~150 m 

 
Fall 2001 

Shallow Z Range Intermediate Z Range Deep Z Range 
Ctenocalanus spp. 51 0 - 500 R. gigas 147 0 - 800 Oithona spp. 162 0 - 525 
C. propinquus 80 0 - 525    S. minor 184 0 - 350 
      Paraeuchaeta spp. 201 0 - 800 

      M. gerlachei 213 0 - 800 
      C. acutus 213 0 - 800 
      G. tenuispinus 249 0 - 800 
      Oncaea spp. 348 0 - 800 

 
 

Fall 2002 
Shallow Z Range Intermediate Z Range Deep Z Range 

Ctenocalanus spp. 39 0 - 500 M. gerlachei 142 0 - 500 C. acutus 226 0 - 500 
Oithona spp. 63 0 - 500 S. minor 149 100 - 200 G. tenuispinus 230 0 - 500 
C. propinquus 71 0 - 460    Oncaea spp. 243 0 - 500 
R. gigas 77 0 - 200       
Paraeuchaeta spp. 100 0 - 500       
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Figure 4.8. Mean depth of maximum abundance (m) of copepods during 2001 (black) and 
2002 (grey). Values represent the arithmetic mean of the depth of maximum abundance 
of a species for all net hauls. Vertical bars represent 1 standard deviation. Dotted 
horizontal lines represent the limits of the 0 - 100, 100 - 150, and > 150 m depth ranges. 
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E. crystallorophias occurred primarily at 100 m. In the vicinity of Alexander Island 

during fall 2001, E. superba could be found mostly at 50 m, while T. macrura was 

mainly at 100 m (Fig. 4.9c).  Finally, south of Adelaide Island, elevated abundances of E. 

superba were located at shallow depths in 2002 (0 - 100 m, maximum at 50 m), while T. 

macrura showed a smaller peak at 150 m, and E. crystallorophias was not present in 

significant numbers. 

The geometric mean depths of maximum abundances of all euphausiid species 

ranged between 65 - 73 m in 2001, while the majority of copepods were located at 252 m 

during the same year.  Looking at individual net hauls for 2001, the maximum 

abundances of both groups did not overlap at almost any location, with the bulk of the 

copepod community located consistently deeper than the mode of the euphausiids 

(Appendix 1).  On the other hand, during 2002, euphausiids were observed at similar 

depths as the previous fall, with maximum abundances between 70 - 84 m (Table 4.4), 

while copepods were significantly shallower than in 2001, mostly at 75 m (Appendix 2).  

 
 
Table 4.4. Mean depth of maximum abundance (m) of euphausiids, amphipods, and 
mysids during fall 2001 and 2002. Data include all coastal stations for each cruise. 
Values represent the geometric mean depth of maximum abundance of each group for all 
net hauls during each year (n = 12). The range (m) represents the range of depths in the 
water column that were occupied by each taxon 
 

 Fall 2001 Fall 2002 
 Depth (m) Range Depth (m) Range 
E. crystallorophias 65 0 - 500 70 0 - 500 
E. superba 73 0 - 500 78 0 - 500 
T. macrura 68 0 - 800 84 0 - 500 
Amphipods 125 0 - 800 55 0 - 500 
Mysids 249 0 - 500 224 0 - 500 
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Figure 4.9a. Vertical distribution of euphausiids, amphipods, and mysids (ind m-3) in 
Crystal Sound during austral fall 2001 (top) and 2002 (bottom).  
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Figure 4.9b. Vertical distribution of euphausiids, amphipods, and mysids (ind m-3) in 
Laubeuf Fjord during austral fall 2001 (top) and 2002 (bottom).  
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Figure 4.9c. Vertical distribution of euphausiids, amphipods, and mysids (ind m-3) in the 
vicinity of Alexander Island during austral fall 2001 (top) and south of Adelaide Island in 
fall 2002 (bottom). 
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Horizontal Distribution 

The horizontal distribution of zooplankton varied within the study area.  In 

general, in areas where euphausiids, amphipods, and mysids (i.e. macrozooplankton) 

were abundant, copepod densities were low, and vice versa (Fig. 4.10a).  

Macrozooplankton were most abundant in northern sectors, whereas copepod abundances 

were highest in southern sectors, such as inner Marguerite Bay, the vicinity of Alexander 

Island, George VI Sound and Lazarev Bay (Fig. 4.10b).  Exceptions to this pattern were 

observed in fall 2001 in northern Laubeuf Fjord, where copepods and macrozooplankton 

were highly abundant, in Bourgeois Fjord, where all zooplankton were scarce, and south 

of Adelaide Island in 2002, where copepod and macrozooplankton abundances were low.  

 

Figure. 4.10a. Linear correlation between integrated abundances (ind m-2) of total 
macrozooplankton (euphausids, amphipods, and mysids) and copepods at different 
stations during fall 2001 and 2002 (n = 12; r = -0.39; p = 0.208). When multiple net hauls 
were sampled, values represent the mean. Plot includes data for stations in Crystal Sound 
(Sta. 7), Laubeuf and Bourgeois fjords (Sta. 5), Neny Fjord/inner Marguerite Bay (Sta. 
6), Marguerite Trough (Sta. 2), S. Adelaide Island (Avian Is.), Alexander Island (Sta. 4a), 
George VI Sound (Sta. 4b), and Lazarev Bay (Sta. 3). Data for Laubeuf Fjord in 2001 
were excluded (outlier). 
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Figure 4.10b. Mean water column integrated abundance (ind m-2) of macrozooplankton 
(euphausiids, amphipods, and mysids) (grey bars, left axis) and copepods (black circles, 
right axis) at different stations within Marguerite Bay during fall 2001 (top) and 2002 
(bottom). 
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Fall Environmental Parameters 

The environmental parameters investigated here were chosen based on their 

potential influence on zooplankton distributions: vertically integrated pigment 

concentrations (chlorophyll + phaeopigment, mg m-2), surface salinity, and bottom depth.  

Integrated pigment represents food availability, while surface salinity is an indicator of 

sea ice formation and melting, and the presence of glacial meltwater nearshore, which 

affects the type of phytoplankton present in the water column.  Relationships between 

zooplankton and bottom depth potentially indicate concentration of organisms nearshore 

or in association with Marguerite Trough, or deep shelf depressions.  Fall integrated 

pigment concentrations in Marguerite Bay ranged between 9.6 - 33 mg m-2 in 2001, and 

72.4 - 236 mg m-2 in 2002.  Maximum pigment concentrations were located in Laubeuf 

Fjord during both years, while lowest values were observed in the in George VI Sound 

during fall 2001, in Crystal Sound during fall 2002, as well as in the vicinity of 

Alexander Island during both years.  Even though pigment concentrations were lowest in 

Crystal Sound during 2002, values were more than double those observed in the same 

area during the previous year.  Surface salinity values were similar between years and 

ranged between 33.04 - and 33.55.  The shallowest stations had bottom depths of ~ 300 - 

400 m and were located near the coast of Alexander Island, the northern edge of 

Marguerite Trough in central Marguerite Bay, southern Adelaide Island, and inner 

Marguerite Bay, while the deepest areas, with bottom depths > 800 m, were in northern 

George VI Sound, Lazarev Bay, and a location in the vicinity of Alexander Island. 

Overall, there were no clear associations between the horizontal distribution of 

zooplankton (ind m-2) and concurrent environmental variables, including vertically 
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integrated pigment concentrations (chlorophyll + phaeopigment, mg m-2), surface 

salinity, and bottom depth (Table 4.5).  In general, only a few copepods showed a 

significant correlation with environmental variables.  During 2001, Ctenocalanus spp. 

showed a positive correlation with pigment concentrations, Oithona spp. showed a 

negative relationship, and G. tenuispinus was positively correlated with bottom depth.  

During fall 2002, Paraeuchaeta spp. showed a positive correlation with pigment 

concentrations, while C. acutus and Oncaea spp. were positively correlated with bottom 

depth.  Only two other zooplankton taxa showed significant relationships with pigment 

concentrations: T. macrura in 2001 and mysids in 2002. Only two groups, E. superba and 

the copepod R. gigas, showed significant relationships with surface salinity, and these 

were only observed during 2002.  Of the 138 relationships examined between 

zooplankton abundance and environmental variables, 11 were significant, which is only 

slightly higher than the number that would be expected with 95% confidence if all 

relationships were statistically insignificant (i.e., seven).  

At many locations there was a negative trend between the vertical distribution of 

macrozooplankton (i.e., euphausiids, amphipods, and mysids) and gradients in 

temperature, salinity, and density (examples in Appendix 3).  E. superba was located 

either above or below the thermocline/pycnocline in 92% of the net hauls in which the 

species was present, while corresponding values for E. crystallorophias and T. macrura 

were 77% and 60% respectively (Table 4.6).  However, euphasuiids coincided with 

physical gradients at 8 - 23% of the locations sampled (examples in Appendix 4).  Most 

amphipods and mysids were located primarily deeper than the thermocline/pycnocline, 

with only smaller fractions present at the depth of the temperature/density gradient.  In 
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general, no patterns were observed in the vertical distribution of zooplankton in relation 

to fall pigment concentrations. 

 
 
Table 4.5. Spearman rank order correlations between integrated abundance of 
zooplankton (ind m-2) and vertically integrated pigment concentrations (chlorophyll 
+ phaeopigment; mg m-2), salinity at 10 m (S10), and bottom depth (bottom Z). 
Significant correlations (p < 0.05) are in bold 
 

 Fall 2001 Fall 2002 
Taxonomic group Pigment S10 Z Pigment S10 Z 

Copepods       
    C. acutus 0.415 -0.021 -0.147 0.262 -0.161 0.630
    C. propinquus 0.085 0.385 -0.403 0.582 0.301 -0.144
    Ctenocalanus spp. 0.799 -0.063 0.028 0.000 0.210 0.256
    G. tenuispinus -0.257 0.211 0.641 0.077 -0.500 0.004
    M. gerlachei 0.427 -0.126 -0.077 0.211 0.049 0.441
    Oithona spp. -0.701 0.266 0.182 0.143 0.189 0.014
    Oncaea spp. -0.463 -0.161 0.280 0.152 -0.378 0.635
    Paraeuchaeta spp. -0.018 0.154 -0.336 0.743 -0.223 0.217
    R. gigas -0.300 0.413 -0.039 0.536 0.609 0.004
    S. minor -0.173 0.295 -0.033 -0.081 0.037 0.221
    TOTAL copepods 0.543 -0.049 -0.147 0.397 0.203 0.497
Ostracods 0.341 -0.126 -0.049 0.379 -0.132 0.382
Euphausiids  
    E. crystallorophias -0.355 -0.487 0.249 0.110 -0.657 -0.060
    E. superba 0.220 -0.273 -0.427 0.110 -0.582 -0.109
    T. macrura 0.707 -0.133 -0.287 -0.633 0.217 0.193
Amphipods 0.628 -0.035 -0.517 0.008 -0.356 -0.199
Mysids 0.567 -0.028 -0.028 0.802 -0.347 -0.091
Medusae -0.300 0.099 0.218 0.206 -0.250 0.411
Polychaetes 0.122 -0.553 0.039 0.649 -0.189 0.466
Pteropods -0.311 0.434 -0.301 0.253 0.580 0.311
Chaetognaths -0.280 0.203 -0.028 -0.084 0.308 -0.045
Appendicularians -0.165 0.340 -0.119 0.556 0.104 -0.025
Salps 0.009 0.431 -0.211 -0.055 -0.257 0.354
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Table 4.6. Percentage of net hauls in which macrozooplankton were located primarily 
shallower, deeper, or at the same depth as the thermocline/pycnocline. Percentage of net 
hauls with widespread vertical distributions are also indicated. n is the total number of net 
hauls in which a taxon was present during 2001 and 2002 combined. A total of seven net 
hauls were excluded from the calculations due to a vertically uniform water column (four 
net hauls in 2001) or lack of concurrent CTD data (three net hauls in 2002) 
 

 Shallower 
(%) 

Deeper 
(%) 

Same depth 
(%) 

Widespread 
(%) 

n 

Euphausiids      
     E. crystallorophias 54  23 23 0 13 
     E. superba 58  33 8 0 12 
     T. macrura 33  27 13 27 15 
Amphipods 19 56 6 19 16 
Mysids 0 89 11 0 9 

 
 
 

Summer Chlorophyll Concentrations and Krill Recruitment 

Surface chlorophyll concentrations in the Bellingshausen Sea and Marguerite Bay 

during the spring and summer influenced the abundance and composition of the 

zooplankton during fall (Fig. 4.11a).  In oceanic waters of the Bellingshausen Sea (Fig. 

4.11b and c), chlorophyll concentrations were above average during austral spring-

summer 2000/2001 (November - January).  As the summer progressed, phytoplankton 

blooms moved onshore and above average chlorophyll concentrations were observed in 

the coastal Bellingshausen Sea during January - March 2001 (Fig. 4.11d).  During the 

2001/2002 season, conditions offshore were average between November and January 

(Fig. 4.11b and c), while in coastal waters, above normal chlorophyll concentrations were 

primarily observed by late February (Fig. 4.11d).  Within Marguerite Bay, the interannual 

differences were even more striking, with extremely high chlorophyll concentrations 

during austral summer - fall 2001 and below average conditions in 2002 (Fig. 4.11e - f).   
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There was a strong correlation (Spearman R = 0.81, p < 0.05) between geometric 

mean chlorophyll concentrations in the Bellingshausen Sea during November and 

summer recruitment indices for E. superba previously reported for the western Antarctic 

Peninsula region (Fig. 4.12a).  Geometric mean chlorophyll concentrations for November 

1997 - 2004 in oceanic waters of the Bellingshausen Sea were highest during the spring - 

summer 2000/2001 season (n = 8), coincident with the highest recruitment index (R1) 

observed for E. superba during all years for which data are available (1997/1998 - 

2002/2003) (Fig. 4.12b).  Relatively low chlorophyll concentrations were registered 

during November 1997, 1998, and 2002, when low recruitment values also were 

recorded.  
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Figure 4.11. (a) Location of the subregions analyzed for median SeaWiFS chlorophyll 
concentrations (chl, mg m-3) in (b, c) oceanic and (d) coastal waters of the Bellingshausen 
Sea, (e) northern, and (f) southern Marguerite Bay in spring/summer 2000/2001 (grey) 
and 2001/2002 (black). A climatology for spring/summer 1997/1998 - 2003/2004 is 
represented by the red line and corresponds to the median chlorophyll in each subregion 
for the seven seasons analyzed. 
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Figure 4.11. (Continued)  

Region 3

0.00

0.30

0.60

0.90

1.20

1.50

1.80

Septem
ber

October

November

December
January

February
March April

m
ed

ia
n 

ch
l (

m
g 

m-3
)

2000/2001
2001/2002
climatology

Region 4

0

1

2

3

4

5

6

Septem
ber

October

November

December
January

February
March April

m
ed

ia
n 

ch
l (

m
g 

m-3
)

2000/2001
2001/2002
climatology

Region 5

0

1

2

3

4

Septem
ber

October

November

December
January

February
March April

m
ed

ia
n 

ch
l (

m
g 

m-3
)

2000/2001
2001/2002
climatology

(e) 

(f) 

(d) 



 

105

 

  

Figure 4.12. (a) Spearman R correlation between geometric mean chlorophyll 
concentrations (Chl, mg m-3) in oceanic waters of the Bellingshausen Sea during 
November 1997 - 2004 and recruitment of E. superba (R1) in waters west of the the 
Antarctic Peninsula, for the period 1997/1998 - 2002/2003; n = 6; R = 0.81; p < 0.05). (b) 
Time series of geometric mean chlorophyll concentration in oceanic waters of the 
Bellingshausen Sea during November 1997 - 2004 (grey bars) and recruitment of E. 
superba (R1) (black circles) in waters west of Antarctic Peninsula. Chlorophyll estimated 
as geometric mean SeaWiFS chlorophyll concentration during late November in 
subregion 2 of Fig. 4.11a. Recruitment indices (R1) for 1997/1998 - 1999/2000 from 
Siegel et al. (2002); for 2000/2001 from Siegel et al. (2003); and for 2001/2002 and 
2002/2003 from the Palmer LTER DataZoo database (data provided by L. Quetin and R. 
Ross). 
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DISCUSSION 

 

Composition and Abundance of Zooplankton in Marguerite Bay 

Total zooplankton abundances in the WAP, and Marguerite Bay in particular, are 

generally higher than those reported for other areas of the Southern Ocean.  Deibel and 

Daly (2007) summarized zooplankton abundance data for continental shelf regions 

around Antarctica and report that values in Marguerite Bay and Crocker Passage are one 

or two orders of magnitude higher than in any other area considered, including the 

Weddell and Ross seas.  Copepods numerically dominated the zooplankton community of 

Marguerite Bay during fall, with a mean abundance of 24,362 ind m-2 in 2001, and values 

up to 44,135 ind m-2 in Laubeuf Fjord.  Also during SO GLOBEC, Ashjian et al. (2008) 

investigated zooplankton on the outer continental shelf of Marguerite Bay using Video 

Plankton Recorder (VPR) data, and estimated copepod mean integrated abundances of 

2,832 ± 2,983 ind m-2 for fall 2001, only ~ 10% of the estimates reported here for coastal 

waters in Marguerite Bay.  In comparison, near South Georgia in the Scotia Sea, total 

copepod abundances during summer 1994 - 1996 were up to an order of magnitude 

higher than those calculated here for fall, with median values ranging between 66,684 

and 235,793 ind m-2 for the upper 200 m of the water column (Atkinson et al., 1999).  

Copepod species composition in Marguerite Bay was comparable to that 

described for other Antarctic areas, including waters west of the Antarctic Peninsula (e.g., 

Hopkins, 1985; Schnack-Schiel and Mujica, 1994), the Bellingshausen Sea (Atkinson, 

1995; Siegel and Harm, 1996), and western Weddell Sea (Hopkins and Torres, 1988).  

However, during SO GLOBEC, C. acutus, M. gerlachei, Ctenocalanus spp., and C. 
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propinquus dominated total copepod abundance and, the smaller Oncaea spp. and 

Oithona spp. did not represent a major fraction of the community, in contrast to previous 

results.  A study in Crocker Passage, on the northern Antarctic Peninsula shelf, reported a 

similar fall copepod species composition, but observed that Oncaea curvata comprised 

over half of the total abundance (Hopkins, 1985).  Other results from the WAP also 

indicate that these smaller copepods generally outnumber larger species (Schnack-Schiel 

and Mujica, 1994; Cabal et al., 2002).  In contrast to the relatively finer mesh used during 

these previous studies (162 - 200 μm), zooplankton were sampled with 333 μm mesh 

during SO GLOBEC; thus, it is possible that abundances of smaller cyclopods, including 

Oncaea spp. (0.6 - 1.1 mm in length) and Oithona spp. (0.7 - 1.2 mm), were 

underestimated.  

T. macrura was the most abundant euphausiid in 2001, with integrated 

abundances up to 266 ind m-2.  These values are higher than maximum integrated 

abundances of 78 ind m-2 reported during spring 1989 for Gerlache Strait, at the northern 

end of the WAP (Nordhausen, 1994).  Mean abundances of T. macrura during fall in 

Marguerite Bay (2001: 45.9 ind m-2; 2002: 16.2 ind m-2) also were higher than average 

spring values in the Weddell Sea, which ranged between 0.75 and 2.98 ind m-2 in the 

upper 200 m (Donnelly et al., 2006).  E. superba is often a major fraction of the 

macrozooplankton community, comprising up to 95% of the larger zooplankton in waters 

along the northern WAP (Lancraft et al., 2004).  This species was observed at almost 

every location surveyed during the present study; however, abundances did not exceed 

those of other euphausiids and macrozooplankton groups, particularly during 2001.  The 

distribution of E. superba is patchy, with post larval individuals usually aggregated in 
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compact and dense swarms that can often be undersampled by plankton nets (Wiebe et 

al., 2004); thus, the relatively low abundances reported here should be interpreted with 

caution.  Densities of E. superba estimated from acoustic surveys during the fall survey 

cruises in Laubeuf Fjord and Crystal Sound were approximately an order of magnitude 

higher than those from net samples in the same area, and the difference was attributed, in 

part, to krill net avoidance (Lawson et al., 2008).  T. macrura forms more diffuse 

aggregations and is more evenly distributed throughout the water column, which allows 

for more accurate abundance estimates from net data.  Despite being likely 

undersampled, E. superba still comprised a major fraction of the fall zooplankton 

biomass in Marguerite Bay (see estimates below).  Mean integrated abundances of 

juvenile and adult E. superba in Marguerite Bay were 6.22 and 14.8 ind m-2 in 2001 and 

2002, respectively, with maximum values up to 117 ind m-2 in Crystal Sound during 

2002.  These abundances are in the same order of magnitude as values reported for other 

areas of the WAP.  In a review of data for Elephant Island between 1977 and 2004, 

Siegel (2005) reports abundances ranging between 1.4 and 336 ind m-2 (median for all 

years = 9.1 ind m-2), while Lancraft et al. (2004) estimated fall abundances of 788 ind m-2 

for the upper 200 m of the water column in Crocker Passage. 

Although T. macrura may at times outnumber E. superba, the latter is generally 

more important in terms of biomass.  For the present study, biomass data are not 

available; however, some simple calculations can provide useful estimates of 

interspecific biomass differences.  During 2001, the overall geometric mean abundance 

of T. macrura in Marguerite Bay was 45.9 ind m-2, with most individuals at 9 - 10 mm 

TL (Fig. 4.5).  In the case of E. superba, the average abundance was 6.22 ind m-2 during 
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the same year, with a mode at 51 mm TL (Fig. 4.4).  The mean biomass for T. macrura in 

2001 was 0.68 g WW m-2, while the corresponding value for E. superba was 9.11 g WW 

m-2, based on the length frequency distributions for both species during fall 2001 and a 

length-wet weight relationship from Ashjian et al. (2004) (wet weight = 0.0054 x 

Length3.214).  These biomass estimates are within the range of values reported for 

euphausiids in other Antarctic areas.  In the western Antarctic Peninsula shelf region, 

mean fall biomass of krill estimated from acoustic data was 12 g m-2 (Lascara et al., 

1999), whereas summer estimates for krill around Elephant Island in 1978 - 2004 ranged 

between 0.76 and 75.2 g m-2 (Siegel, 2005).  In addition, Voronina (1998) summarized 

published biomass estimates for E. superba from plankton nets in different areas of the 

northern WAP and reported values generally ranging between 0.2 and 54 g WW m-2, 

although biomass at Crocker Passage during fall 1983 reached 229 g WW m-2.  In the 

Weddell Sea, average spring biomass for E. superba ranged from 0.54 g WW m-2 in open 

waters, to 1.2 g WW m-2 in the vicinity of the ice edge, while corresponding values for T. 

macrura were 0.57 and 1.4 g WW m-2, respectively (Donnelly et al., 2006).  Despite the 

rapid population response to elevated food concentrations and numerical dominance of T. 

macrura during fall 2001, E. superba was still the dominant euphausiid in terms of 

biomass.  

Other numerically important taxa observed in Marguerite Bay during fall 2001 

and 2002, such as ostracods, pteropods, polychaetes, and chaetognaths, are common 

members of the zooplankton of the WAP (Schnack-Schiel and Mujica, 1994; Siegel and 

Harm, 1996).  Pteropods and ostracods constituted the most abundant non-copepod 

zooplankton in the study area during both years analyzed.  Pteropod abundances recorded 
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during this study did not vary interannually, and are similar to other SO GLOBEC values 

reported for the outer shelf off Marguerite Bay, which reached ~ 1200 ind m-2 in the 

vicinity of Marguerite Trough (Ashjian et al., 2008).  Small pteropods (< 15 mm), which 

dominated numerically in Marguerite Bay with values up to 2,119 ind m-2, are mostly 

herbivores (Hopkins, 1985).  Ostracods abundances reached 4,728 ind m-2 in southern 

Laubeuf Fjord during 2001, which comprised ~ 76% of the non-copepod zooplankton at 

this location.  Ostracods are generally omnivores and feed primarily on debris of E. 

superba, phytoplankton, and copepods (Hopkins, 1985).  To the author’s knowledge, 

other ostracod integrated abundances have not been reported for the Marguerite Bay area, 

and VPR results indicated that they were not a dominant component of the zooplankton 

of the mid and outer shelf of Marguerite Bay (C. Ashjian, pers. comm.).  A study in the 

Weddell Sea observed that ostracods comprised 5.4% of total zooplankton biomass under 

the ice, and 2.6% in open waters (Hopkins and Torres, 1988). 

Chaetognaths were more abundant in Marguerite Bay than in other Antarctic 

areas, with mean integrated abundances of 57 and 31.3 ind m-2 in 2001 and 2002 

respectively, although values reached 687 ind m-2 in the vicinity of Alexander Island 

during 2001.  Donnelly et al. (2006) report mean values of 1.75 ind m-2 for the Weddell 

Sea, while Lancraft et al. (2004) estimated mean integrated abundances of 6.37 ind m-2 

for Crocker Passage during fall.  During SO GLOBEC, chaetognaths comprised, on 

average, 8% of the non-copepod zooplankton during 2001, with values up to 42% in 

Lazarev Bay, and 23% around Alexander Island.  The mean percent composition reported 

here agrees well with values from the Weddell Sea ranging between 3.8 and 29.3% 

(Hopkins and Torres, 1988; Donnelly et al., 2006).  Chaetognaths are predators and feed 
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mostly on copepods, although the larger species also have been observed to prey on 

mysids and amphipods (Hopkins, 1985).  Thus, high abundances of chaetognaths in 

copepod-rich waters near Alexander Island are not surprising.  

Polychaetes were more abundant in fall 2001 relative to 2002.  This group 

includes mostly herbivorous species in Antarctic waters (Hopkins, 1985) and, thus, 

higher densities in fall 2001, when chlorophyll concentrations were higher, are expected.  

Vertically integrated abundances reported for the outer shelf off Marguerite Bay reached 

~ 2,300 ind m-2 west of Alexander Island in 2001 (Ashjian et al., 2008), more than double 

the maximum values of 1,110 ind m-2 estimated here in coastal Marguerite Bay during 

the same year. 

 

Variability in Euphausiid Life History Strategies 

Variability in life history strategies between euphasuiid species resulted in 

interannual differences in species percent composition.  During the chlorophyll-rich 2001 

season, the ubiquitous T. macrura dominated the euphausiid community, followed by E. 

superba, and E. crystallorophias.  The numerical dominance of T. macrura has been 

previously reported as well for other areas of the Southern Ocean (e.g., Atkinson and 

Peck, 1988; Mujica, 1989).  There exist marked differences in the timing of the onset of 

reproduction between species of Antarctic euphausiids.  T. macrura is the first species to 

start reproducing, with spawning as early as September (Makarov, 1979).  Later in 

spring, E. crystallorophias reproduction begins, followed by E. superba, which spawns 

mainly between November and March (Marr, 1962).  

Most individuals of T. macrura observed during fall 2001 were juveniles between 
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8 - 11 mm TL (87% total) (Fig. 4.5).  T. macrura has a more rapid development than the 

Euphausia species.  Although information on larval growth rates is available for T. 

macrura (Nordhasuen, 1992, Siegel, 1987), juvenile development has not been described. 

Nordhausen (1992) reports that it takes 90 days for calyptopis II (C2) to develop into the 

last larval stage, furcilia VI (F6).  In addition, Makarov (1979) estimates that it takes 15 - 

20 days for eggs to change into C2, indicating a total larval development time of 105 - 

110 days.  Siegel (1987) estimated age and growth of T. macrura in the Weddell Sea 

from length-frequency data and suggested that larvae can first develop into juveniles at 8 

mm in length, during the second half of their first year of life.  If reproduction of T. 

macrura along the western Antarctic Peninsula starts in September - October, individuals 

observed during fall could be up to seven or eight months old.  Development estimates 

suggest that the T. macrura juveniles observed during fall 2001 originated from a 

reproductive event(s) during spring-summer 2000/2001 (age-class 0+), when chlorophyll 

concentrations were above climatology values.  

Development of E. superba and E. crystallorophias is slower and, therefore, 

populations take longer to respond to environmental changes.  In contrast to the 105 - 110 

days estimated for larval development of T. macrura, laboratory experiments indicate 

that E. superba can develop from an egg to F6 in approximately 127 days (Ikeda, 1984), 

while the larval development time for E. crystallorophias is even longer (Ikeda, 1986; 

Brinton and Townsend, 1991).  This longer development coupled with a later onset of 

reproduction in November - March suggest that juveniles of E. superba and E. 

crystallorophias will not be present in the water column of the western Antarctic 

Peninsula region until the spring of their second year (age class 1+), which is supported 
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by field observations (Daly 2004; Daly and Zimmerman, 2004).  During SO GLOBEC, 

elevated chlorophyll concentrations in 2001 supported a successful reproduction of E. 

superba and E. crystallorophias during spring-summer 2000/2001, as evidenced by the 

presence of numerous larvae in fall 2001 and juveniles during 2002.  Hence, T. macrura 

had a rapid population response to elevated chlorophyll concentrations, demonstrated by 

the large numbers of juveniles present in fall 2001 (Fig. 4.5), whereas E. superba and E. 

crystallorophias showed a slower population response, supported by the scarcity of 

juveniles of either species during fall 2001 and the high proportion of juveniles present 

during fall 2002 (Figs 4.4 and 4.6).  

E. superba females are believed to spawn offshore in the vicinity of the shelf-

break (Marr, 1962; Siegel, 1988; 1992).  Because eggs are denser than seawater, they 

sink and hatch at depths of 800 - 1000 m.  The young larvae then swim to the surface 

before turning into the first feeding stage, calyptopis I (Marr, 1962), at which point they 

need to find food within approximately 10 days or otherwise will not survive (Ross and 

Quetin, 1986).  This life strategy is hypothesized to have several ecological advantages, 

including preventing the eggs from reaching the seafloor and becoming unviable or eaten 

by benthic organisms.  In addition, the larvae produced at these depths will develop in 

warmer (> 1 °C) Circumpolar Deep Water (CDW) found below 500 m, thus reducing the 

risk of predation by epi- and mesopelagic fauna.  The developmental ascent described by 

Marr (1962) for E. superba also has been reported for larvae of T. macrura (Makarov, 

1979).  These two species share several ecological characteristics, such as a common 

widespread distribution, a similar reproductive strategy involving deep hatching of eggs 

and larval ascent, and a primarily herbivorous larval phase.  Their similar life strategies 
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would indicate that these euphausiids are strong competitors; however, it has been 

suggested that the two month separation between the onset of reproduction is an 

adaptation to avoid competition for food between their larvae (Makarov, 1979).  In 

addition, during the postlarval stages, when both species coexist, E. superba are mainly 

herbivores during spring and summer, while adult T. macrura have been described as 

omnivores, feeding mostly on large copepods, such as C. acutus and M. gerlachei 

(Hopkins, 1985).  Additionally, their depths of maximum abundances in the water 

column generally do not overlap.  In summary, although E. superba and T. macrura share 

a common distribution and similar life history strategies, they have developed individual 

adaptations to minimize competition between them, allowing them to coexist as 

widespread, successful, Antarctic species.  

 

Summer Chlorophyll and Zooplankton Population Response 

Interannual variability in chlorophyll concentrations strongly influences 

zooplankton populations.  Population responses for T. macrura, E. crystallorophias, and 

E. superba were described above.  In addition, the influence of spring/summer 

chlorophyll concentrations is demonstrated by the strong correlation observed between 

November chlorophyll concentrations in the Bellingshausen Sea and recruitment of E. 

superba along the WAP during the following year.  Previous studies reported correlations 

between sea ice extent during winter and successful juvenile recruitment of E. superba 

during the following spring (Kawaguchi and Satake, 1994; Siegel and Loeb, 1995; Hewitt 

et al., 2003).  Sea ice biota on the undersurface of sea ice constitutes an alternative food 

source for overwintering larval krill, while sea ice provides refuge from predators, which 
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further reduces winter larval mortality (Daly 1990; Daly and Macaulay, 1991).  During 

SO GLOBEC, there were interannual differences in the extent and timing of the advance 

and retreat of sea ice (Chapter 3; Parkinson, 2002; Marrari et al., 2008); however, winter 

sea ice conditions were similar in 2001 and 2002, and sea ice biota concentrations were 

low at the ice-water interface during both years (0.05 - 0.07 μg l-1) (Daly, 2004).  Despite 

similar winter sea ice, krill recruitment showed marked interannual differences, 

suggesting that other processes influence recruitment of E. superba in this area.  It is here 

hypothesized that the early and persistent availability of phytoplankton in offshore waters 

of the Bellingshausen Sea supports early and repeated reproductive events during spring 

and summer and results in a high reproductive output.  In addition, high concentrations of 

phytoplankton in offshore and coastal areas during summer and fall will lead to faster 

growth and development of larvae, which will be in better condition to survive 

overwinter.  Low food conditions or the late onset of blooms will lead to late and/or poor 

reproduction and smaller/weaker larvae which may not be able survive overwinter.  

Although phytoplankton blooms in the Bellingshausen Sea and Marguerite Bay were 

spatially variable, spring chlorophyll concentrations exceeded minimum values (1 - 5 mg 

m-3) required to initiate reproduction of E. superba (Ross and Quetin, 1986) during both 

SO GLOBEC years.  It is the variability in the timing and persistence of these blooms, 

rather than the absolute chlorophyll concentrations, what will influence the reproduction 

and recruitment success of euphausiids.  

The composition of the copepod community also showed marked interannual 

differences, which appear to be related to variability in food availability.  During the 

chlorophyll-rich 2001 season, C. acutus dominated, comprising 52% of the total 
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copepods.  C. acutus has been described as the only true herbivore in Antarctic waters 

(Conover and Huntley, 1991; Atkinson, 1998), feeding mainly on phytoplankton during 

spring and summer.  This species spawns over a short time and produces one distinct 

cohort.  Maximum densities can be observed in the surface layer during summer, when 

the population reaches stage copepodid V (C5).  In areas of deep bathymetry, C. acutus 

undergoes a seasonal ontogenetic migration, moving to deep waters during the fall and 

winter, where individuals do not feed (Schnack-Schiel and Mujica, 1994), whereas in 

shallower coastal areas, C. acutus moves to intermediate depths.  M. gerlachei, the 

second numerically dominant species during 2001 and most abundant copepod in 2002, is 

primarily omnivorous and its success does not rely heavily on high phytoplankton 

concentrations.  This species starts to spawn in December and continues during summer. 

M. gerlachei does not undergo a seasonal ontogenetic migration and is more widely 

distributed throughout the water column (Atkinson and Peck, 1988; Schnack-Schiel and 

Hagen, 1995).  The elevated phytoplankton concentrations observed in Marguerite Bay 

throughout the summer of 2001 likely favored the reproduction of C. acutus, which 

reached relatively high abundances and dominated the copepod community during fall. 

Lower chlorophyll concentrations during 2002 resulted in lower abundances of copepods.  

The copepod community was dominated by omnivorous species, such as M. gerlachei 

and Ctenocalanus spp., which together accounted for ~ 60% of total copepods, whereas 

C. acutus had an 85% population reduction relative to 2001.  

 

Controls on Zooplankton Spatial Patterns in Marguerite Bay 

Copepods and macrozooplankton showed opposite horizontal distributions in 
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Marguerite Bay, with higher abundances of macrozooplankton in the northern sectors of 

the study area, and greatest densities of copepods in southern areas.  These distinct 

distributions are likely the result of a combination of circulation features and seasonal 

predation.  The general circulation in Marguerite Bay (Fig. 1.2) involves a coastal current 

(APCC) that enters Marguerite Bay at the northern end, flows along the coast in a 

clockwise direction (Moffat et al., 2008), and exits Marguerite Bay along the outer coast 

of Alexander Island.  In addition, drifter data revealed a clockwise gyre-like circulation in 

the central areas of Marguerite Bay during fall 2001 and 2002 (Beardsley et al., 2004), 

while ADCP results showed the presence of two eddies in George VI Sound during fall 

2001 (Dorland and Zhou, 2008).  These features, in combination with the general 

circulation of the APCC, contribute to creating a favorable retention habitat for 

zooplankton in Marguerite Bay.  These circulation features can transport zooplankton 

within coastal Marguerite Bay, particularly smaller taxa such as copepods, which are 

unable to swim against currents.  The northern sectors of the study area, such as southern 

Crystal Sound, had a more sluggish flow than that observed for the APCC (Zhou et al., 

2004).  Given the capabilities of euphasuiids to swim at cruising speeds of 10 - 15 cm 

sec-1 (Hamner et al., 1983; Zhou and Dorland, 2004), it is likely that these larger 

organisms are able to maintain their distributions preferentially in these quieter northern 

areas, resulting in the higher abundances observed relative to the southern sectors.  In a 

study from the Crystal Sound area using Acoustic Doppler Current Profiler (ADCP) data, 

Zhou and Dorland (2004) demonstrate that the swimming capabilities of E. superba can 

determine the maintenance of aggregations in the mesoscale circulation field of the area.   

The effects of predation are cumulative over the summer productive period and 
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may have contributed to the different spatial distributions observed between copepods 

and euphausiids in Marguerite Bay during fall.  Predation during fall was likely not 

strong enough to significantly reduce copepod abundances in the northern sectors, 

particularly given that the much of the euphausiid and copepod populations occurred at 

different depths in the water column.  A negative correlation between abundances of 

copepods and euphausiids was reported for summer in waters around South Georgia, 

where predation pressure of euphausiids was found to determine, at least in part, copepod 

distributions (Atkinson et al., 1999).  In summary, the combined effects of currents and 

retention features, seasonal predation, and behavior of macrozooplankton, likely 

determined the distinct spatial distributions observed for these taxa during fall in 

Marguerite Bay.  

Vertical distribution of euphausiids and other zooplankton, including copepods, 

amphipods and mysids, rarely overlapped throughout Marguerite Bay during 2001.  All 

euphausiids were consistently shallower than the most abundant copepods species, C. 

acutus and M. gerlachei, and these vertical distributions are consistent with other results 

for euphausiids of the continental shelf of Marguerite Bay (e.g., Lawson et al., 2008; 

Ashjian et al., 2008).  Considering that the fall 2001 cruise took place during May - June, 

after C. acutus has normally started its seasonal descent into deeper waters, the vertical 

separation of the two groups could be attributed to differing winter behaviors.  However, 

the omnivore M. gerlachei, which also comprised a major fraction of total copepods, does 

not undergo seasonal vertical migrations and is known to feed throughout the year.  Thus, 

the deep distribution of this species relative to euphausiids could be the result of 

accumulated predation pressure.  In contrast to the vertical depth partitioning observed in 



 

119

2001, euphasuiids and copepods had an overlapping distribution during 2002.  The 

overall shallower distribution of copepods in 2002 could have resulted from a 

combination of factors, including (1) an earlier fall cruise (April - May) relative to 2001 

(May - June), (2) a smaller contribution of C. acutus to the total copepod abundance with 

higher proportions of surface-dwelling species such as Ctenocalanus spp and Oithona 

spp., and (3) reduced predation pressure during fall 2002, a consequence of E. superba 

not feeding on copepods (K. Daly, pers. comm.), as well as lower densities of other 

omnivorous and carnivorous zooplankton, such as T. macrura, chaetognaths and 

medusae. 

Studies of mysids from the Southern Ocean are few; however, Brandt et al. (1998) 

described 37 species of Antarctic mysids, 19 of which are endemic, and reviewed 

information on their biogeography and vertical distributions.  Mysids are generally 

hyperbenthic or bathypelagic, and prefer an omnivorous diet, feeding on phytoplankton 

and a variety of zooplankton, including copepods, coelenterates, and euphausiid molts 

(Hopkins, 1985).  During our study, mysids were located consistently deeper than 

euphausiids and amphipods, with some individuals recorded at depths of up to 800 m, the 

maximum depth sampled during SO GLOBEC.  These distributions are consistent with 

previous coastal studies, while in deep-waters, Antarctic species have been recorded at 

depths of up to 4500 m (Torres and Hopkins, 1988; Brandt et al, 1998).  Although depths 

in Marguerite Bay reach ~ 1,600 m at a few locations, the mean depth of the area is ~ 400 

m (Bolmer et al., 2004) (Fig. 1.1).  In deeper areas of the WAP, such as the vicinity of the 

shelf break, vertical distributions of mysids may extend to greater depths than those 

reported herein.  
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Amphipods were located at intermediate depths between euphausiids and mysids 

in 2001, but were shallower than both groups during 2002.  Although data on the species 

composition of the amphipod community during SO GLOBEC are not currently 

available, the distinct vertical distributions observed could be related to interannual 

variability in the percent contribution of different species.  For example, in 2001 deeper 

living large gammarid amphipods appear to have dominated, while smaller hyperiid 

amphipods, such as Themisto gaudichaudii, which are known to inhabit shallower waters 

(Hopkins, 1985; Torres and Hopkins, 1988), may have been more important in 2002.  

 

Relationship between zooplankton and fall environmental parameters  

There were no clear trends between zooplankton spatial distributions and fall 

environmental variables in Marguerite Bay.  The positive correlation observed in 2001 

between pigment concentrations and abundances of Ctenocalanus spp. could be the result 

of the mainly herbivorous diet of this species (Hopkins, 1985); however, no other 

herbivores had positive correlations with this parameter.  The positive relationship 

between the carnivore Paraeuchaeta spp. and pigment concentrations during 2002 is 

even less evident.  Paraeuchaeta spp. are raptorial predators, feeding primarily on 

smaller copepods, such as Oncaea spp. and copepodites of M. gerlachei (Hopkins 1985), 

which are omnivores and may ingest significant amounts of phytoplankton.  However, 

these prey species did not show positive relationships with pigment concentrations.  

Moreover, only a weak positive trend (not statistically significant) was observed between 

Paraeuchaeta spp. and their main prey, Oncaea spp. (r = 0.39; p = 0.216) and M. 

gerlachei (r = 0.32; p = 0.308) during 2002.  The overall lack of relationship between 
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pigment concentrations and grazers is likely due to the fact that herbivorous/omnivorous 

copepods may not have been feeding on phytoplankton during mid to late fall.  Among 

the macrozooplankton, only the omnivores T. macrura and mysids showed positive 

correlations with pigment concentrations in 2001 and 2002 respectively, but these 

relationships were not consistent interannually.  

Relationships between copepod abundances and bottom depth are consistent for 

some copepod species (Table 4.4).  For example, G. tenuispinus, C. acutus, and Oncaea 

spp. were classified as deep species during both years, and also showed a significant 

tendency for higher abundances at locations of deeper bathymetry, such as those in the 

vicinity of Marguerite Trough and southern Laubeuf Fjord (Fig. 1.3).  

 

Summary 

 The variability observed in total abundance and percent composition of the 

zooplankton of Marguerite Bay during fall can be linked directly to the contrasting 

environmental conditions that prevailed during the preceding spring-summer seasons.  

During spring-summer 2000/2001 a combination of warmer sea surface temperatures, 

higher than normal chlorophyll concentrations, and low sea ice cover resulted in a 

favorable environment for zooplankton reproduction and larval growth, which led to the 

distinctive composition and overall higher abundances observed during fall 2001.  Above 

average concentrations of chlorophyll in many areas, including the Bellingshausen Sea 

and Marguerite Bay, led to high concentrations of copepods, juvenile T. macrura, and 

larval Euphausia spp. during fall 2001, and subsequent elevated numbers of juvenile and 

adult E. superba and E. crystallorophias in fall 2002.  On the other hand, lower surface 
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temperatures, extensive and persistent sea ice cover and, consequently, lower than normal 

chlorophyll concentrations during spring-summer 2001/2002, resulted in lower plankton 

abundances in Marguerite Bay during fall 2002, particularly copepods, larval 

euphausiids, herbivorous macrozooplankton and juvenile T. macrura.  For other groups 

that do not rely heavily on phytoplankton for reproduction and survival, such as 

ostracods, pteropods, chaetognaths, amphipods and mysids, the interannual 

environmental variability did not have as large an impact on their populations, which is 

evidenced by the smaller interannual differences observed in their abundances. 
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CHAPTER FIVE 

 

SUMMARY AND CONCLUDING REMARKS 

 

Validated satellite chlorophyll data offer great insight into the temporal and 

spatial variability of phytoplankton dynamics in remote and difficult to access areas, such 

as the Southern Ocean.  The high resolution and synoptic nature of these datasets are 

unattainable using traditional ship-based measurements.  Validation results confirm that 

SeaWiFS surface chlorophyll concentrations derived for the Southern Ocean are an 

accurate measure of in situ values between 0.05 - 1.5 mg m-3.  These findings contradict 

previous results that report an underestimation of SeaWiFS chlorophyll in Antarctic 

waters.  The good agreement between SeaWiFS and in situ chlorophyll concentrations 

reported here was based on the use of chlorophyll data determined by HPLC as ground 

truth, instead of chlorophyll concentrations estimated from fluorescence, which has been 

shown to introduce significant errors when certain accessory pigments are present in the 

water column.  Because more than 90% of the Southern Ocean has chlorophyll values in 

the 0.05 - 1.5 mg m-3 range, it is not necessary to develop an alternative bio-optical 

algorithm for this region.  However, if computer models (e.g., to estimate primary 

production or eutrophic depth) have been developed using fluorometric methods as input, 

then the satellite estimates of chlorophyll concentrations will need adjustment to be 

consistent with these models.  

A major finding of this dissertation is the presence of predictable and persistent 
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phytoplankton blooms in the Bellingshausen Sea and Marguerite Bay areas between 1997 

and 2004, and the strong influence that environmental variability in these areas has on the 

zooplankton community of the WAP.  The lack of field sampling in this region may 

partly explain why the magnitude of phytoplankton aggregations has been previously 

overlooked.  Chlorophyll concentrations in the southern sectors are consistently higher 

than in any other part of the WAP.  The climatology of chlorophyll concentrations for the 

period between 1997 and 2004 indicated that chlorophyll values were elevated during 

2001 in comparison to all other years, particularly in the vicinity of Marguerite Bay.  

Zooplankton composition in the vicinity of Marguerite Bay was similar to that 

reported for previous WAP studies, and included 12 species of copepods, three species of 

euphausiids, and ten other groups.  The observed variability in total abundance and 

percent composition of the zooplankton during fall was strongly influenced by the 

contrasting environmental conditions that prevailed during the preceding spring-summer 

seasons.  During spring-summer 2000/2001 warmer sea surface temperatures, higher than 

normal chlorophyll concentrations, and low sea ice cover created a favorable 

environment for zooplankton reproduction and larval growth.  Above average chlorophyll 

concentrations in 2001 led to high concentrations of copepods, juvenile T. macrura, and 

larval Euphausia spp. during fall 2001, and subsequent elevated abundances of juvenile 

and adult E. superba and E. crystallorophias during fall 2002.  In contrast, lower surface 

temperatures, extensive and persistent sea ice cover, and consequently lower than normal 

chlorophyll concentrations during spring-summer 2001/2002 resulted in lower plankton 

abundances in Marguerite Bay during fall 2002, particularly copepods, larval 

euphausiids, herbivorous macrozooplankton and juvenile T. macrura.  For other groups 
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that do not rely heavily on phytoplankton for reproduction and survival such as ostracods, 

pteropods, chaetognaths, amphipods and mysids, environmental variability did not have a 

large impact on their populations, which is evidenced by the small interannual differences 

observed in their abundances.   

Zooplankton, particularly E. superba, originating in the Bellingshausen Sea and 

southern areas along the WAP may be a significant source for populations found 

downstream in shelf waters of the northern Antarctic Peninsula, the Scotia Sea, and South 

Georgia (Fach and Klinck, 2006; Thorpe et al, 2007).  Thus, variability in the timing and 

persistence of phytoplankton in the southern WAP will not only affect local zooplankton 

and predators, but ultimately may impact the entire ecosystem of the WAP and adjacent 

Scotia Sea.  The pivotal role that environmental variability in Marguerite Bay and the 

Bellingshausen Sea plays in structuring the zooplankton community is demonstrated by 

the results presented here.  Given the few datasets currently available, and the poor 

understanding of the processes than control environmental variability in these regions, 

particularly chlorophyll dynamics, future studies of ecosystem dynamics along the WAP 

should include the Marguerite Bay and Bellingshausen Sea regions. 
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Appendix 2. Vertical distribution of euphausiids (left column) and copepods (ind m-3) 
(right column) in Marguerite Bay during fall 2002. The black broken line indicates the 
maximum sampling depth when a net haul was sampled to depths shallower than 500 m. 
Color legend as in Appendix 1. 
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Appendix 2. (Continued) 
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Appendix 2. (Continued) 
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Appendix 2. (Continued) 
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Appendix 3. Vertical distribution of macrozooplankton (ind m-3) in Marguerite Bay, in 
relation to environmental parameters. Pigment (mg m-3) represents chlorophyll + 
phaeopigment concentrations. 
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Appendix 3. (Continued) 
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Appendix 3. (Continued) 
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Appendix 3. (Continued) 
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Appendix 3. (Continued) 
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Appendix 3. (Continued) 
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Appendix 4. Vertical distribution of macrozooplankton (ind m-3) in Marguerite Bay, in 
relation to environmental parameters. Pigment (mg m-3) represents chlorophyll + 
phaeopigment concentrations. 
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Appendix 4. (Continued) 
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