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Abstract 

Bus systems in the United States are unattractive to many potential riders because 
of their lack of efficiency, especially with regard to travel time. One of the reasons 
services are not more efficient has to do with the spacing of bus stops. After using a 
nearest facility algorithm with an 800 m walking distance threshold to identify eli­
gible bus stops in the current bus system in the city of Fairfax, Virginia, the impacts 
of their elimination on operations, emissions, and coverage are estimated. Results 
indicate that eliminating some bus stops (about 40% of current stops) could improve 
travel times and reduce operating costs by the same percentage (23%). In addition, 
bus-related emissions such as CO (34%), VOC (18%), and NO x (10%) could all be sub­
stantially lower. Surprisingly, the loss in coverage due to eliminating stops would not 
be large (10% of the total population of the city of Fairfax). 

Introduction 
One of the reasons bus service in the United States is unpopular is because it is 
inefficient; it takes too long to get riders to their destinations. Many attribute this 
inefficiency to the spacing of bus stops (Furth et al. 2007). Densely-spaced bus 
stops improve geographic coverage and rider accessibility, but they also increase 
in-vehicle time and supply costs (Chien and Qin 2004). Sparsely-spaced bus stops, 
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on the other hand, yield faster services and lower operating costs even if ridership 
accessibility is lower (Murray and Wu 2003). 

This study focused on bus service in the city of Fairfax, Virginia, also known as the 
City-University-Energysaver (CUE) bus system, which serves George Mason Uni­
versity (GMU). Currently, the CUE bus provides service to local residents and GMU 
students in the city of Fairfax who need access to campus as well as other modes 
of transportation such as light rail. The primary objective was to estimate the oper­
ating costs savings and emission reductions that could be realized by eliminating 
some stops on CUE bus routes. The secondary objective was to determine if it is 
possible to eliminate some CUE bus stops without adversely affecting service cov­
erage. To meet the latter objective, equity and tradeoff analyses were performed 
by looking at the characteristics of stops and the people who would lose coverage 
if some of the stops on the current CUE bus routes were eliminated. 

The second section provides background on bus stop spacing and the costs and 
benefits (economic, environmental, and social) of eliminating some of them. The 
third section discusses the data used in the study and the study area. The fourth 
section discusses the methods used to identify bus stops eligible for elimination 
and explores the service improvements which could result from their elimination. 
The fifth section presents the results of the study and the effect that eliminating 
some stops could have on the populations currently served by the CUE bus. The 
last section presents the conclusions of the study and avenues for future research. 

Background 
Public Transportation Today 
The quality of bus service is perceived differently by different users. From the user’s 
perspective, bus service quality is usually based on availability, frequency, travel 
speed, reliability and safety (Pratt 2000; Rood 1999; Phillips et al. 2001; Kittelson 
& Associates 2003; Kihl et al. 2005; Marsden and Bonsall 2006; Litman 2007; 2008; 
Stradling et al. 2007; Kenworthy 2008). Although these are equally important for 
bus service evaluation, due to data availability and time constraints, this study 
evaluated the service quality improvements that could be realized by eliminating 
some stops on CUE bus routes in terms of travel time. In addition, it explored how 
operating costs, transit-based emissions, and population coverage would change if 
some CUE bus stops were eliminated. 
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Stop Spacing 
One way of improving the efficiency of bus service is via the appropriate spacing 
of stops. The proper spacing of stops can significantly improve the quality of bus 
service by decreasing travel times (Wirasinghe and Ghoneim 1981; Kocur and Hen­
drickson 1982; Fitzpatrick et al. 1997; Kuah and Perl 2001; Saka 2001; Chien and Qin 
2004; Alterkawi 2006; Ziari et al. 2007). One of the key issues for determining the 
appropriate locations of bus stops is to have an understanding of how far people 
are willing to walk to get to the facilities (Ziari et al. 2007). Determining walking 
distance to and from bus stops presents two issues: knowledge of rider origins 
and destinations, and feasible walking distances along street networks (Furth et 
al. 2007). 

One common method of identifying origins and destinations within bus service 
areas is to use the centroid of the population in those areas (Murray 2001; Saka 
2001; Murray 2003; Furth et al. 2007). Because it is difficult to find the center of a 
population, the center points of individual blocks are often used to approximate 
population centers (Bielefeld et al. 1995; McElroy et al. 2003). Generating parcel-
based centroid points using the parcel-network method would provide a highly 
detailed level of spatial accuracy regarding population coverage (Biba et al. 2010). 
However, due to a lack of parcel-level data, this study used block-level data to cre­
ate service areas. Furthermore, unlike past research that used Euclidean distance 
to measure walking distances between origins and destinations (Okabe et al. 2008; 
Gutierrez and Gracia-Palomares 2008), the study used actual road network dis­
tances. 

Another key issue is the appropriate walking distance to the facility. Accessibility to 
public transit is typically characterized as a reasonable walk under normal condi­
tions (Murray 2003). Usually, facilities are located based on the simplified demand 
in the service areas (Wirasinghe and Ghoneim 1981; Brouwer 1983; Fitzpatrick et 
al. 1997). Others assume that it depends on population density—lower density 
corresponds to longer walking distances (Saka 2001; Ziari et al. 2007). Typical walk­
ing distances range from 400 m to 800 m. In this study, different walking distances 
between 400 m and 800 m were used to see how they impact bus service coverage. 

Calculating bus travel times is also important for measuring improvements in bus 
service. Two basic delay factors—dwell time and acceleration/deceleration time— 
make buses slower; that is, they increase total bus travel times (Saka 2001; Chien 
and Qin 2004; Ziari et al. 2007). Although Global Positioning Systems (GPS) and 
Geographic Information Systems (GIS) are frequently used to estimate these delays 
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(Srinivasan and Jovanis 1996; Hellinga and Fu 1999), the study used different delay 
variables to calculate them. 

Costs and Benefits 
Besides understanding the primary benefit of more efficient travel times that could 
be achieved by eliminating bus stops, it is also important to understand what other 
costs and benefits could be associated with this course of action (Savage 2009). 
This is known as impact analysis and entails an analysis of the impacts of changing 
transit services (Litman 2004). Research on public transit system improvements 
tends to adopt different perspectives. Most focus on the economic, environmental, 
and spatial effects of improving public transit service (Polzin 1999; Kennedy 2002; 
Bento et al. 2005; Brownstone and Small 2005; Harford 2006). Therefore, this study 
focused on the following tradeoffs of improved service on the CUE bus: economic 
effects (operating cost reductions), environmental effects (emission reductions), 
and spatial effects (residential service coverage). By analyzing the tradeoffs of 
reduced travel times that could be achieved by eliminating stops on the CUE bus 
routes, the study estimated the different impacts that could result from the change 
in transit service. 

Economic Effects: Operating Cost Reductions 
There are various ways to perform an economic analysis of a bus system. However, 
to estimate the financial impacts of two different routes, the differences in their 
operating costs provide a direct monetary comparison (Karlaftis and McCarthy 
1999). Benjamin and Obeng (1990) found that reductions in operating costs for 
public transit could be achieved by increasing vehicle efficiency. In the United 
States, all operating costs that are not covered by bus fares come from either 
taxation through dedicated revenues or local, state, and federal government tax-
derived monies (Harford 2006). It was, therefore, important to understand the 
financial savings that could be achieved by eliminating some stops on the CUE bus 
system. 

Environmental Effects: GHG Emissions Reductions 
Transportation is one of the major contributors to air pollution in the United 
States. Among the different sources of air pollution, on-road vehicle emissions are 
responsible for about 45 percent of the Environmental Protections Agency’s (EPA’s) 
6 criteria pollutants (National Research Council 1995). Of the different green­
house gases (GHGs) emitted by vehicles, carbon monoxide (CO), volatile organic 
compounds (VOCs), and nitrogen oxide (NOx) contribute the most (Grant et al. 
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2007). CO and VOCs are emitted from the incomplete combustion of fossil fuels, 
whereas NO  is the product of high-temperature chemical processes that occur 
during the combustion process in the engine itself (National Research Council 
1991). Even though emissions from diesel-fueled vehicles such as buses are only five 
percent of on-road vehicle emissions, emission rates for such heavy-duty vehicles 
are higher since they operate at higher combustion pressures and temperatures 
than gasoline-fueled vehicles (Lilly 1984). This means that even though their rela­
tive contribution to on-road vehicle emissions is limited, heavy-duty vehicles such 
as buses are highly hazardous to the environment. This study, therefore, explored 
the environmental benefits that could be realized by eliminating stops on CUE bus 
routes in terms of GHG emission reductions. 

There are many ways to measure the amount of GHGs emitted by different types 
of vehicles. In fact, vehicle emissions are a function of several variables grouped 
into four main categories: travel-related factors, driver behavior, highway network 
characteristics, and vehicle characteristics (National Research Council 1995). In this 
study, only travel-related factors varied between the old (all current stops) and the 
new (without some stops) CUE bus routes, whereas the rest of the variables (driver 
behavior, highway network characteristics, and vehicle characteristics) remained 
the same. Travel-related factors included trip/vehicle use and speed/acceleration, 
which were used to calculate and compare the emissions between the two routes 
(National Research Council 1995). Trip/vehicle use emissions are simply a func­
tion of the total number of trips and total distance traveled by the vehicle. Speed/ 
acceleration emissions are a function of the speed and acceleration of the vehicle 
over the distance of the trip. Eliminating some bus stops will yield improvements 
only in the travel speeds of buses. This means that other travel-related factors such 
as vehicle miles traveled and numbers of trips will not be affected by eliminating 
some bus stops. This study, therefore, used only the speed/acceleration factor to 
calculate and compare the emissions differences between the old and the new CUE 
bus routes. 

Spatial Effects: Residential Service Coverage 
Eliminating some stops on the CUE bus routes could have an effect on residential 
service coverage. It was, therefore, important to explore the characteristics of 
riders who use the CUE bus to evaluate the costs of eliminating some of the bus 
stops that serve them. Exploring the demographic profiles of riders also helps to 
characterize the people who use public transit (Neff and Pham 2007) and derive 
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a relationship between public transit and the people that could be affected by 
changes in service (Polzin 1999). 

Data 
GMU Commuting Survey 
GMU conducted a survey of faculty/staff and students in 2007 to better under­
stand their commuting behavior. They were particularly interested in the factors 
that most influenced mode choices to campus for those living in the city of Fairfax. 
Results suggest that among 1,000 respondents, more than 75 percent of those who 
lived up to six miles from campus reported that commuting time was one of the 
main reasons for driving to campus. They further felt that current CUE bus service 
was not efficient enough, especially with respect to travel times. 

Data Sources 
Demographic data for the block groups in the study area are from the United 
States Bureau of the Census. Block group boundaries and road network data 
are from Environmental Systems Research Institute (ESRI). Two CUE bus routes 
(Gold and Green) along with their corresponding bus stops were created from the 
road network data from ESRI. Current CUE bus travel times and schedules were 
obtained from the City of Fairfax. Financial information on the CUE bus service for 
the year 2008 are from the National Transit Database (2008). The data include dif­
ferent operational and non-operational expenditures associated with the CUE bus 
service. Information on the fuel types used on the CUE buses was from the City of 
Fairfax. For the GHG emissions estimates, factors based on the speed of the CUE 
buses are from the Metropolitan Washington Council of Governments (MWCOG) 
(2010). 

Study Area 
The study area included the block groups served by the CUE bus routes within 
the city of Fairfax. In addition, several block groups from within the jurisdiction of 
Fairfax County were included because they are also served by CUE bus routes. Two 
of these block groups from within Fairfax County include GMU and the Vienna/ 
Fairfax-GMU Metro station, which is the last westbound stop on the Orange Line. 
Figure 1 is a map of the study area including the CUE bus routes. 
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Methods 
Equity Analysis 
It appeared that analyzing the tradeoffs of eliminating some stops on the CUE bus 
routes may be amenable to standard cost-benefit analysis (Litman 2009). How­
ever, further reflection revealed that some of the costs of eliminating some stops 
was not easily monetized. For example, costs attributable to shrunken residential 
service coverage are usually classified as social costs. Monetizing such social costs 
is difficult. Therefore, standard cost-benefit analysis may not provide an accurate 
estimate of the tradeoffs related to residential service coverage. 

One way to account for such social costs is via equity analysis (Litman and Doherty 
2009). In simple terms, equity refers to the distribution of various social and/or 
economic impacts and whether those distributions are considered appropriate 
(Litman 2002). Equity analysis generally is considered a complicated procedure, as 
there is no single way to evaluate equity. Evaluation usually depends on the type 
of equity, the way people are categorized, which impacts are considered, and how 
equity is measured. 

In the study, transportation equity was measured by the reduction in operating 
costs, the reduction in GHG emissions and the improvement in overall fleet speed 
that could result from eliminating some stops on the CUE bus routes. Access to bus 
service was measured by estimating the extent of the changes in residential service 
coverage that could result from eliminating some stops on the CUE bus routes. 
Additionally, the demographic profiles of the residents who would no longer be 
serviced by the CUE bus routes after their stops had been eliminated was also taken 
into consideration in the equity analysis. This helped to assess the potential social 
costs of eliminating some of the stops on the CUE bus routes. 

Walking Distance Thresholds 
Using block group centroids to represent service areas and bus stops to represent 
facilities, a network analysis was undertaken to find the nearest facilities within 
different walking distances from the centroids. The network analysis used a short­
est path algorithm to find the closest facility for each service area. In less densely-
populated areas, such as the city of Fairfax, the most realistic walking distance 
threshold is 800 m (Demetsky and Lin 1982; Saka 2001; Ziari et al. 2007). It is also 
the most conservative walking distance threshold, given that most riders in North 
America (75–80%) walk 400 m or less to bus stops (Kittelson & Associates 2003). 
However, to better understand how different walking distances change residential 
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service coverage, walking distances of 200 m, 400 m and 600 m were also tested. 
In addition, the network analysis was undertaken without any walking distance 
threshold to ensure that all of the service areas were covered. This latter analysis 
offered a glimpse of the maximum number of facilities required to provide com­
plete coverage in the study area. 

Eliminating Bus Stops 
After undertaking the nearest facility analysis for all five walking distance thresh­
olds (200 m, 400 m, 600 m, 800 m and none), the minimum number of bus stops 
used at each walking distance was obtained. Those facilities that were not selected 
at any of the walking distance thresholds were assumed to be eligible for elimina­
tion. The reasons that some bus stops were never selected, no matter the walking 
distance threshold, was because some of the census block centroids were beyond 
the maximum walking distance threshold (800 m) or the closest census block cen­
troid was already served by another bus stop. In either case, those bus stops that 
were never selected were labeled as eligible for elimination. Figure 2 is a map of the 
study area including the CUE bus routes and the stops that were eliminated. 

Figure 2. CUE bus routes, stops, and eliminated bus stops 
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Based on previous research (Demetsky and Lin 1982; Saka 2001; Murray 2003; Ziari 
et al. 2007) and given that many of the block groups in the study area are sparsely 
populated, 800 m was an appropriate walking distance benchmark for the study. 
Using the 800 m walking distance threshold, therefore, those bus stops that were 
not selected were eliminated from the CUE bus routes. 

Bus Stop Delays 
Two factors that contribute significantly to time delays at bus stops are accelera­
tion/deceleration delay and dwell time delay. These delays can consume up to 26 
percent of total bus travel times (Rajbhandari et al. 2003). Acceleration/decelera­
tion delay occurs when the bus is pulling in or out of the bus stop. Dwell time delay 
refers to the time delay to load and unload riders at bus stops. The two factors are 
calculated from the following equations (Saka 2001; Chien and Qin 2004; Ziari et al. 
2007). The first equation calculates the time delay due to decelerating/accelerating: 

(1)
 

where 

Tacc/dec = acceleration/deceleration delay 

V = bus cruising speed (m/s)
 

acc = bus acceleration (m/s2)
 

dec = bus deceleration (m/s2)
 

By multiplying the total number of riders by the dwell delay for each rider, the fol­
lowing equation calculates the total dwell time delay for each bus stop: 

(2)
 

where
 

Tw = dwell time delay (s)
 

Q = number of riders at the stop
 

w = time to board/unboard each rider
 

Cruise speed (V) and acceleration/deceleration (acc/dec) were from the current 
CUE bus schedule. The cruise speed was about 12 m/s (~27 mi/hr), and accelera­
tion and deceleration was about 2 m/s2 (Furth and SanClemente 2006). Data for 
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other time delay variables were from direct observation on the CUE bus: the aver­
age number of riders at the stops (Q) was 4; and the time to board/unboard each 
riders (w) was 5 s. Using the above equations and data, the time delay at each stop 
on the CUE bus route (Tw) was 20 s. It is important to note that this time delay was 
based on an observed number of riders per stop who on-boarded and off-boarded 
the CUE bus. Because it was an average for all stops, it masked differences between 
stops in the number of riders who on- and off-boarded the bus, the speed with 
which subsequent riders were able to board the bus after the initial rider boards the 
bus and the effects of near- and far-side stops on time delays. Each of these issues 
was important in the calculation and sensitivity of the time delay estimates and is, 
therefore, worthy of future research. 

Total Travel Time 
The following equation calculates total travel time for the new bus routes (Saka 
2001): 

(3)
 

where 

Tbus = total bus travel time 

N = total number of bus stops 

Tv = time for CUE bus to make a one-way trip at cruise speed (s) 

Total travel time is the time it took the CUE bus to make a one-way trip on the 
new and old routes. The first part of the equation calculated the total delay at each 
stop; multiplying that expression by the total number of stops (N) resulted in the 
total delay for a one-way trip. The total delay depends on the number of stops on 
the route. Using the network analyst tool in GIS, the total route distance estimate 
was 42,890 m (26.65 mi). Therefore, the time for the CUE bus to make a one-way 
trip at cruise speed (Tv) was 3,574.16 s. Using Eq. (3), the total travel time for both 
the old and the new CUE bus routes was calculated. The number of bus stops on 
the old CUE bus route was 121, and the number of bus stops on the new CUE bus 
route was 68. One assumption of Eq. (3) is that the CUE bus does not skip any of 
the available stops on either the new or the old routes—an assumption that is not 
realistic. This means that the total travel time estimates from Eq. (3) for the new 
and old routes would be higher than the observed total travel times, given that the 
CUE bus was already making one-way trips faster than expected. 
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Operating Cost Reductions 
Annual operating cost data for the CUE bus are from the National Transit Database 
(2008). The database includes operating costs for the CUE bus from 2001 to 2008. 
However, only operating costs for the year 2008 appear in the study to reflect the 
most recent expenditures. Annual operating costs are in four different categories: 
operations, maintenance, non-vehicle, and general administrative. Operations 
costs include operator’s wages, fringe benefits and services. Maintenance costs 
include fuel and lube, tires, and other. Non-vehicle costs include casualty and lia­
bilities and utilities. Administrative costs include other wages and salaries. Vehicle 
fleet size is the total number of vehicles available for operations in a given year. 
Vehicle revenue hour is the hours that vehicles are scheduled for or actually are in 
revenue service (including layovers and recovery times). 

A simple mathematical approach to estimate the total operating costs is to sum 
all of the costs and then divide by the Vehicle Revenue Hour (VRH), which was 
$34,602, to get the total cost per hour to operate the CUE bus (Bruun 2005). Fol­
lowing this approach, total operating costs (TOC) and total operating costs per 
hour (TOCH) were $2,980,627 and $86.14, respectively. TOCH provides a calcula­
tion of total operating costs for any given hour of operating the CUE bus. However, 
it may not accurately reflect total operating costs for the purposes of the study. 
One of the objectives of the study was to estimate the cost savings in operating 
the CUE bus that could be realized by eliminating some stops on the route. To that 
end, some of the subcategories of costs, such as administrative salaries, operations 
fringe benefits and non-vehicle casualties and liabilities would not be affected by 
the elimination of some CUE bus stops. The exclusion of the above costs from the 
calculation of the TOC and TOCH, therefore, provided a more accurate calculation 
of the costs of operating the CUE bus for the study. The more accurate TOC and 
TOCH were $1,791,127 and $51.76, respectively. 

Emissions Reductions 
To calculate CUE bus emissions at cruise speed, emissions factors for diesel buses 
from the Metropolitan Washington Council of Governments (2010) and the United 
States Environmental Protection Agency (2003) were used. MWCOG’s approach is 
based on the EPA’s Mobile6 emissions factors model, which estimates emissions 
factors based on the average speed of diesel buses. It calculates CO, VOCs, and 
NO x—including both NO and NO2—depending on average vehicle speed. Even 
though emissions factors were available from 1990 to 2005, only data for the most 
recent year were used to make it timelier. 
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The emissions analysis in the study would be more accurate if carbon dioxide (CO2) 
emissions were included. However, because sufficient information on the speed of 
the vehicle was not available, only CO, VOC, and NO x emissions were calculated in 
the study. Besides, CO, VOC, and NO x are the predominant air pollutants from road 
transportation sources (Grant et al. 2007). On average, in the United States, road 
transportation sources are responsible for 55 percent of CO, 27 percent of VOC, and 
35 percent of NOx towards overall GHG emissions. 

As mentioned above, the total, one-way route distance for the CUE bus was 42,890 
m (26.65 mi) and the total, one-way travel time for the CUE bus was 7,440 s (2.07 
hr). Therefore, the cruise speed of the bus was ~13 mi/hr. With this information and 
the emissions factors from MWCOG, the following equation calculated CO, VOC, 
and NO x emissions from the CUE bus at different cruise speeds: 

(4)
 

where 

E = CO, VOC, or NO x emissions (g) 

EF = CO, VOC, or NO x emissions factors at different speeds (g/mi) 

D = total CUE bus route distance (mi) 

The results section shows the calculations for emissions reductions that could be 
realized after eliminating some of the stops on the CUE bus route. 

Results 
Travel Time Reduction 
Table 1 shows how facility usage and service area coverage would change at differ­
ent walking distance thresholds. Clearly, eliminating some CUE bus stops has the 
potential to reduce travel times without unduly affecting service area coverage. At 
the ideal walking distance threshold (800 m), 56.2 percent of the available facilities 
were used, but fully 82.5 percent of the service area was covered. This translates to 
a potential travel time reduction of 23 percent (approximately 28 min) (Table 2). 
It is important to qualify this estimate because it assumes, as mentioned above, 
that the CUE bus stops at all available stops. This is not likely, especially during 
the summer when demand is lower than during the fall and spring semesters. This 
means that the potential travel time reduction would probably be less than 28 min 
because the CUE buses would already be skipping some stops. 
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Table 1. Facility Usage and Service Area Coverage at Different Walking 

Distance Thresholds
 

Walking Distance 
Threshold (m) 

Total 
Facilities 

Facilities 
Used 

Facilities 
Used (%) 

Total 
Area (acs) 

Service 
Area (acs) 

Service 
Area (%) 

200 121 29 24.0 251 51 20.3 

400 121 52 43.0 251 112 44.6 

600 121 66 54.5 251 177 70.5 

800 121 68 56.2 251 207 82.5 

None 121 71 58.7 251 249 99.2 

Table 2. Travel Time Reduction between Old and New CUE Bus Routes 

CUE Bus Route Stops (n) Total Delay (s) Total Travel Time (s) 

Old 121 3,872 7,446 

New 68 2,176 5,750 

Reduction (%) 23 

Operating Cost Reduction 
The impressive travel time reduction means that operating costs could also be 
reduced by eliminating some of the CUE bus stops. The total operating cost per 
hour (TOCH) for the CUE bus was $51.76. Multiplying TOCH by the old and new 
total travel times (2.07 hrs and 1.60 hrs, respectively), the old and new operating 
costs were $108.70 and $82.82, respectively. Overall operating costs for single, one-
way trips by CUE buses could therefore be reduced by $25.88 if some of the stops 
were eliminated. Because CUE buses made 312 trips per week, the total weekly 
projected operating cost reduction would be $8,074.56. 

Emissions Reductions 
Using Eq. (4) and the emissions factors for diesel buses, the GHG emissions reduc­
tions that could be realized by eliminating some CUE bus stops are as follows. For 
the old route with a cruise speed of 13 mi/hr, emissions of CO, VOC, and NO x are 
1.23 lb, 0.11 lb, and 1.21 lb, respectively. For the new route with a cruise speed of 17 
mi/hr, emissions of CO, VOC, and NO x are 0.82 lb, 0.09 lb and 1.09 lb, respectively. 
GHG emissions could, therefore, be reduced by eliminating some of the stops on 
the CUE bus—CO could be reduced by 33.34 percent, VOC could be reduced by 
18.18 percent, and NO x could be reduced by 9.92 percent. Interestingly, Table 3 and 
Figure 3 show that annual emissions of the GHG emissions CO and NOx would 
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decrease the most over the range of eliminated stops on the CUE bus (0 to 53 stops 
eliminated). 

Table 3. Number of Stops Eliminated and Changes in Population, Costs, 

Travel Times, and Emissions
 

Stops 
Eliminated 

(n) 

Population 
Coverage 

(%) 

Annual Cost 
Reduction 

($) 

Travel Time 
Reduction 

(min) 

Emissions (lb/yr) 

CO VOC NO x 

53 89 407,517.59 29 12,292.60 1,360.97 16,252.57 

50 99 384,450.56 27 13,610.76 1,402.32 16,549.06 

30 99 230,670.34 16 16,896.57 1,506.39 17,280.78 

20 99 153,780.22 11 17,508.31 1,543.10 17,589.71 

10 99 76, 890.11 5 18,065.10 1,576.50 17,870.89 

5 99 38,445.06 3 18,325.16 1,592.11 18,002.22 

0 99 0.00 0 18,472.43 1,600.94 18,076.59 

Figure 3. Changes in annual emissions by number of stops eliminated 
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Tradeoffs 
Eliminated Bus Stops by Category 
All of the CUE bus stops, both eliminated and retained, were categorized as either 
commercial, recreational, residential or shopping stops. The categorization of bus 
stops was based on inspection of the CUE bus route map and observations from 
riding the CUE bus. Stops close to major commercial landmarks such as restau­
rants, banks, metro stations and schools were categorized as commercial stops. 
Stops close to housing units were categorized as residential stops and stops close 
to park and recreational facilities are categorized as recreational stops. Finally, stops 
close to shopping centers were categorized as shopping stops. Table 4 shows the 
tally of these bus stops. Among the 53 bus stops that were eliminated from the old 
route, 15 were commercial, 21 were recreational, 3 were residential, and 14 were 
shopping stops. Similarly, among the 68 bus stops that were retained from the old 
route, 35 were commercial, 10 were recreational, 3 were residential, and 20 were 
shopping stops. 

Table 4. Categorization of Eliminated and Retained Stops 

Category Stops 

Eliminated Retained Total 

Commercial 14 20 34 

Recreational 3 3 6 

Residential 15 35 50 

Shopping 21 10 31 

Total 53 68 121 

Looking further into the categories of bus stops that were eliminated, 68 percent 
([21 ÷ 31] × 100%) of the shopping stops were eliminated. Furthermore, 41 percent 
([14 ÷ 34] × 100%) and 30 percent ([15 ÷ 5] 0 × 100%) of the commercial and resi­
dential stops, respectively, were eliminated. Fifty percent ([3 ÷ 6] × 100%) of the 
recreational stops were eliminated, but because recreational stops make up such 
a small percentage of all CUE bus stops ([6 ÷ 121] × 100% = 5%), the loss of recre­
ational stops was actually small. The loss of shopping stops means that residents 
would have to walk further to either the next nearest bus stop or to the shopping 
center itself. However, because most people do not use public transit for shopping 
trips, particularly food shopping trips, the elimination of these stops would not be 
as significant as it first appears. 
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Residential Service Coverage 
One difficulty of capturing the residential population that lives within proximity 
of the eliminated bus stops was choosing the appropriate buffer distance between 
the bus stop and the population center. Murray (2003) suggested that 400 m 
would be an ideal buffer distance for a city area to estimate the effect of eliminat­
ing bus stops. Others have suggested suitable buffer distances from 200 m to 300 
m (Ziari et al. 2007). In this study, a middling buffer distance of 300 m was used to 
capture the population that would be most affected by the elimination of some 
CUE bus stops. 

The coverage analysis using a 300 m buffer distance around the 15 residential 
bus stops that were eliminated shows that 3,588 residents (approximately 10% 
of the city of Fairfax’s population) would be affected. The demographic analysis 
on the residential population was further broken down into various racial groups 
living within proximity of the eliminated bus stops. White residents (57%) would 
be most affected, followed by Hispanic (20%), Asian (15%), and African American 
(5%) residents. Other residents, including Native Americans and Asian and Pacific 
Islanders, made up the remaining 3 percent of the affected resident population. 
Further demographic analysis shows that none of these racial groups would be 
disproportionately affected by eliminating those 15 bus stops. 

Residents living within proximity of the eliminated bus stops who are members 
of other groups may also be adversely affected. In particular, residents who are 65 
years of age or older and no longer participating in the labor force may prefer more 
accessible stops over faster bus service. For these residents, time is not as impor­
tant as access. Demographic analysis on the resident population, however, showed 
that few residents in the study area were 65 years or older. This is consistent with 
the housing pattern at the Fairfax campus of George Mason University, where off-
campus accommodations for undergraduate and graduate students makes up for 
a lack of on-campus accommodations. This also makes the results of the study less 
generalizable to different geographies with a more balanced demographic profile 
of younger and older residents. 

Conclusions 
According to our model, eliminating some of the stops on the current CUE bus 
route could reduce one-way travel times and operating costs by a projected 23 
percent. The observed magnitude of the travel time reductions needs to be verified 
with data on speed differences based on bus stop densities; however, improving 
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travel times would boost ridership. In addition, savings from lower operating costs 
could be used to improve other aspects of the CUE bus service (for example, reduc­
ing fares or improving bus stop facilities) to further boost ridership. In addition to 
the operations benefits, eliminating some bus stops would be good for the environ­
ment. The new route could reduce GHG emissions of CO, VOC, and NO x by 34, 18 
and 10 percent, respectively. On average, the new route could reduce annual GHG 
emissions of CO, VOC, and NO x by 6,278, 241, and 1,789 lbs, respectively. For year 
2008, the total amount of on-road vehicle emissions nationwide of CO, VOC and 
NO x was approximately 38, 2.5 and 4.2 mil tons (United States Environmental Pro­
tection Agency 2009). While the potential GHG emissions reductions that could 
result from eliminating some stops on the CUE bus route may pale in comparison 
to nationwide GHG emissions, these reductions would be significant for the city 
of Fairfax. Finally, only 10 percent of the resident population of Fairfax would be 
directly affected by eliminating some of the CUE bus stops. This latter finding sug­
gests that resident service coverage would likely not be a problem. 

Transit riders are sensitive to comfort and convenience improvements in service 
(Phillips et al. 2001; Litman 2004; Litman 2008). And, surely, they are sensitive to the 
elimination of service. One limitation of the study, therefore, is that the tradeoff 
of lost ridership due to the elimination of more accessible bus stops was not taken 
into consideration. For example, the policy of the CUE bus is not to stop between 
stops to load or unload riders. This policy could raise objections from riders who 
are fearful of walking longer distances to the next nearest bus stop, especially 
in the dark (though adoption of a more flexible policy to stop at night between 
stops could address such objections). Another limitation is that the study did not 
attempt to account for the potentially adverse effects that eliminating some CUE 
bus stops could have on commercial, recreational and shopping trips by residents. 
These trips are important for households in the service area who do not have 
private vehicles. Surveys of CUE bus riders could help to address these limitations 
and ultimately provide a more detailed assessment of the potential tradeoffs of 
eliminating some CUE bus stops. 
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