The Effect of Shear Stress, Potassium, and Adenosine on α-1 Adrenergic Vasoconstriction of Rat Soleus Feed Arteries

Tanner J. Heckle and Jeffrey L. Jasperse Pepperdine University, Malibu, CA

Summer Undergraduate Research in Biology Pepperdine University

Blood Flow

Nervous System

SNA – "Fight or Flight"

Sympathetic Nervous System

Neurotransmitter:

 Norepinephrine (Adrenaline)

Receptor:

- Adrenergic Subtypes:
 Alpha (α)
 - *a*-1
 - α-2
 - Beta (β)
 - *β*-1
 - **β**-2

Sympathetic Nervous System

• β-2

Sympatholysis

- 1. Exercise is a fight or flight response.
- 2. SNA increases during exercise.
- 3. Norepinephrine (from SNA) constricts arteries.
- 4. Sympatholysis

"sympatho" – sympathetic

"lysis" – breaking

"The responsiveness of the vasculature to sympathetic stimulation diminishes during exercise."

Necessary Characteristics of a Sympatholytic Agent

- 1. Increase during exercise
- 2. Interfere with Sympathetic signaling

Possible Agents:

- 1. Acidosis (Ives S et al. J Physiol 2012; 113:1690-1698)
- 2. Temperature (Ives S et al. Exp Physiol 2012)
- 3. Shear Stress
- 4. Potassium
- 5. Adenosine

Proposed Sympatholytic Agents

1. Shear Stress

Connective Tissue

Smooth Muscle

Endothelium

Proposed Sympatholytic Agents

2. Potassium

Green S et al. J Physiol 2000;529:849-861

Proposed Sympatholytic Agents

3. Adenosine

Langberg H et al. J Physiol 2002;542:977-983

The Set-Up

•Rat -Anesthetized

•Artery

- Isolated
- Cannulated

Hypothesis

• Shear stress, potassium, and adenosine will cause a reduced α -1 mediated constriction.

Data Analysis

- Repeated Measures ANOVA
- Student's T-Test

RESULTS

Shear Stress

Figure 1: Shear Stress did not reduce constriction to Phenylephrine. Estimated shear stress values of o dy/cm², 25 dy/cm², and 135 dy/cm² were calculated for no, low, and high levels of shear stress, respectively (3). (N= 12 arteries from 12 rats)

Potassium

Figure 2: Potassium did not reduce constriction to Phenylephrine. Potassium concentrations of 5 mM, 7.5 mM, and 10 mM represent in vivo concentrations at rest, low-intensity exercise, and high-intensity exercise, respectively (6). (N= 17 arteries from 12 rats)

Adenosine

Figure 3: Adenosine (in vivo concentrations) did not reduce constriction to Phenylephrine. Adenosine concentrations of o μM, o.8 μM, and 1.6 μM represent in vivo concentrations at rest, low-intensity exercise, and highintensity exercise, respectively (7). (N= 12 arteries from 12 rats)

What's next?

•Not consistent with Ives et al.

Increased acidity is sympatholytic in alpha-1 receptors

•Consistent with Thomas et al.

• Slow-twitch muscle (e.g. soleus) is not sensitive to sympatholysis

Acidosis Study

Phenylephrine Concentration (M)

Figure 5: Increased acidity reduces vasoconstriction.

This line graph shows percent constriction curves of all four acidic solutions tested. (n = 22 rats)

Figure 6: Increased acidity reduces vasoconstriction.

pH 7.1

Level of Acidity

pH 6.8

pH 6.5

80

60

50

40

30

20

0 0

pH 7.4

cent Consi 70

Maximum

pH 7.4

pH 7.1

р́Н 6.8

pH 6.5

This bar graph shows the maximum constriction value of all four acidic solutions tested. (n = 22 rats)

Acidosis Study

Phenylephrine Concentration (M)

Figure 7: Increased acidity reduces vasoconstriction. This line graph shows percent constriction curves of the two significantly different solutions. (n = 22 rats)

Figure 8: Increased acidity reduces vasoconstriction. This

bar graph shows the maximum constriction value of the two significantly different solutions. (n = 22 rats)

Conclusions

- Shear stress, potassium, and adenosine are not sympatholytic in soleus feed arteries.
- Acidosis is mildly sympatholytic in soleus feed arteries.

Future

If soleus muscle arteries are sensitive to sympatholysis, do redundant mechanisms exist?

References

1. Ives, S.J., Andtbacka, R.H.I., Kwon, S.H., Shiu, Y.T., Ruan, T., Noyes, R.D., Zhang, Q.J., Symons, J.D., and Richardson, R.S. (2012). Heat of α 1-adrenergic responsiveness in human skeletal muscle feed arteries: the role of nitric oxide. *J Appl. Physiol.* 113: 1690-1698.

2. Ives, S.J., Andtbacka, R.H.I., Noyes, R.D., Morgan, R.G., Gifford, J.R., Park, S.Y., Symons, J.D., and Richardson, R.S. (2012). α 1-Adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH. Exp Physiol. 98.1: 256-267.

3. Jasperse, J.L., and Laughlin, M.H. (1997). Flowinduced dilation of rat soleus feed arteries. *Am. J. Physiol.* 273: H2423-H2427.

4. Jasperse, J.L. and Laughlin, M.H. (2006). Exercise and Skeletal Muscle Circulation. In Microvascular Research: Biology and Pathology 85: 553-564. Ed. By D. Shepro, Elsevier Academic Press.

5. Jasperse, J.L. Unpublished observations.

6. Juel, C., Pilegaard, H., Nielsen, J.J., and Bangsbo, J. (2000). Interstitial K+ in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 278: R400-R406.

7. Landberg, H., Bjorn, C., Boushel, R., Hellsten, Y., and Kjaer, M. (2002). Exercise-induced increase in interstitial bradykinin and adenosine concentrations in skeletal muscle and peritendinous tissue in humans. J. Physiol. 542.3: 977-983.

8. Moore, A.W., Jackson, W.F., and Segal, S.S. (2010). Regional heterogeneity of α -adrenoreceptor subtypes in arteriolar networks of mouse skeletal muscle. J. Physiol. 588.21: 4261-4274.

9. Murray, T., Jasperse, J., and Brewster, J. (2013). Distribution of α -adrenergic receptors in the arteriolar network of the gastrocnemius. (Pepperdine Research Banquet).

10. Thomas, G.D., Hansen, J., and Victor, R.G. (1994). Inhibition of α -2 adrenergic vasoconstriction during contraction of glycolytic, not oxidative, rat hindlimb muscle. *Am. J. Physiol.* 266: H920-H929.

11. Williams, D.A. and Segal, S.S. (1993). Feed artery role in blood flow control to rat hindlimb skeletal muscles. *J. Physiol.* 463: 631-646.

Acknowledgements

<u>Assistance</u>: Blanca Perez Samara Jasperse Michael Bottke Joseph Chin

Principal Investigator: Dr. Jeffrey Jasperse

<u>Funding</u>: NSF, REU-Site Grant #DBI-1062721 and Natural Science Division of Pepperdine University.

Dose-Response Curves

Conditions

1. Shear Stress Control: PE + No Flow

Treatment: PE + Low Shear Stress (25 dy/cm²) PE+ High Shear Stress (135 dy/cm²)

- 2. Potassium (No Flow) Control: PE + 5.0 Mm K Treatment: PE + 7..5 mM K+ PE + 10.0 mM K+
- 3. Adenosine (No Flow) Control: PE + 0 uM ADO Treatment: PE + 0.8 uM ADO PE+ 1.6uM ADO

Control Data

Alpha-1 Receptors are the only receptors responded to sympathetic signaling in the soleus. . Sympathetic constriction (NE) is controlled only by the alpa-1 receptors (agonist = PE) and not the alpha-2 receptors (agonist = UK). (n = 7 rats)