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Why Would Financial Bubbles Evolve 

After New Technologies?* 

 

 

 

Haim Kedar-Levy** 

Ben-Gurion University of the Negev 

 

 

 
 This paper presents an equity market where the value of a new technology is infrequently 

observable while the equity claim of the asset is continuously traded. We clear the stock market 

between two optimal asset allocation strategies, speculative vs. fundamental, adopted by risk-averse 

investors who differ in their risk-aversion. The stock price path maintains a potential for endogenous 

bubbles or under-pricing vs. the asset as a function of total funds invested in the stock by each 

investor type. Bubbles grow exponentially if speculation dominates but if the fundamental strategy 

dominates, the stock’s growth rate and its volatility will decline.  

 

Introduction 

 Observed market prices of real and financial securities alike are probably not stationary and, 

according to many researchers diverge from fundamental valuation for periods that are too long to 

be explained by response to external shocks (Shiller, 1981, Summers, 1986). Such endogenous 

deviations, termed "bubbles," "booms and crashes" or "cycles" were attributed by the first 

researchers of the issue to speculation, which has been considered rational. Keynes, 1930 and Hicks, 

1946 addressed speculation as a byproduct of differences in risk aversion, where agents who are 

more risk-averse wish to "sell" some of the risk to less risk-averse ones. The more risk-averse agents 

will trade based on fundamental values of the risky asset while the less risk-averse agents will adopt 

speculative strategies. It turns out then that speculation is a tool to reallocate risk among trading 

agents, as our model captures.  

                                                           
* I am indebted to Profs. Dan Galai, Arie Gavius, Ben Z. Schreiber, Itzik Venezia and Zvi Weiner for helpful 

discussions. All remaining errors are mine.  
**  Dr. Kedar-Levy received his Ph.D. in Finance from the Hebrew University, Jerusalem Israel in 1999. Since 1998 he 

has been affiliated with Ben-Gurion University in Beer Sheva, Israel. He spent the period of September 2002 to August 

2004 visiting Temple University, Philadelphia. He is currently involved with the research of financial market anomalies, 

both theoretically and empirically. Since June of 2006 he has served as the Academic Director of the Honor MBA 

program at Ben-Gurion University. 
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 We present a model in which the real profitability rate of a new technology is unknown to 

investors, yet they need to assess the asset’s value in the stock market. The real asset reveals 

observations of its profitability infrequently, while the stock is traded more frequently. We find that 

there is a singular composition of weighted average risk aversions between speculation and 

fundamental strategies, for which the variability and return of the share price will be equal to those 

of the underlying asset. The solution complies with well-known dynamic models such as Merton, 

1971, where price-taking agents rebalance their portfolio when the price of the risky asset is 

stochastic. We solve the stock price periodically through trade between speculators and fundamental 

traders. The sequence of equilibrium prices generates a price process that evolves into bubbles if 

there is excess speculation or to under-pricing if fundamental strategies are dominant.  

 A rigorous analysis of economies with unobservable fundamentals has been presented by 

Kurz, 1996. According to Kurz, agents do not possess complete structural knowledge of the 

environment, and structural changes are not observable (p. 352). Agents can hardly predict changes 

in technology, tastes, economic institutions, or international balance of power. Thus, there is a 

question whether such changes are random deviations around a fixed mean value function of a 

stationary process, or whether they reflect changes in the mean value function itself.  

 Rational expectations models of bubbles are attractive as they adhere to core economic 

theory. This is probably the reason why these models were the first to appear in the late '70s - early 

'80s (e.g., Blanchard, 1979, Flood and Garber 1980, Blanchard and Watson 1982, Tirole, 1982). 

Blanchard comes to two clear-cut conclusions about rational bubbles, which are best summarized in 

his words: "…speculative bubbles followed by market crashes, are consistent with the assumption of 

rational expectations. …speculative bubbles may take all kinds of shapes. Detecting their presence 

or rejecting their existence is likely to prove very hard" (P. 387.) Bubbles in these models evolve 

based on a self-fulfilling rational expectations mechanism, which supports the bubble as long as it 

exists, and the price crashes when the mechanism disappears. The models do not specify what 

endogenous conditions must be satisfied for a bubble to evolve and under what inherent terms will 

the bubble blast.  

 Starting from the mid '80s, efforts to map real life observations into equilibrium models of 

bubbles typically involve explicit or implicit assumptions of irrational behavior by a certain group of 

agents. Some models assume noise trading (e.g., Kyle, 1985, Black, 1986, De-long, Shleifer, 

Summers and Waldmann, 1990, and Binswanger, 1999), others assume overreaction to news 

(Jegadeesh and Titman, 1995, De-Bondt and Thaler, 1987, Kent, Hirshleifer and Subrahmanyam, 

1998) or inside information signaling between investors who have asymmetric information (Allen 

and Gale, 1992, Allen, Morris and Postlewaite, 1993). The economic meaning of such assumptions 

is that either fundamental information is available to some of the agents but not to others 

(asymmetric information), and/or information is processed differently by different agents (the noise-

trader approach). Binswanger, 1999 extends De-Long et al.'s model by allowing dynamic changes of 

the fundamentals due to technological changes. Zeira, 1999, asserts that fundamental information 

about the real economy is not acknowledged continuously by agents, thus when the true size of the 

economy is revealed share prices either jump or crash to reflect it. Such informational mismatch is 

assumed in this paper.  

 The economic setting is described in Section I, where optimal investment rules are defined 

for individual agents and institutions. In Section II marginal supply and demand functions for shares 

are derived, and in Section III equilibrium price for the stock is calculated and bubbles and under-

pricing are reasoned. Section IV concludes the paper.  
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I. The Economic Setting 

 Consider an economy in which atomistic, expected utility maximizing individual agents 

deposit their wealth with institutional agents for the purpose of portfolio management. The 

individual agents can be grouped based on similarity of tastes vs. risk as if each group is represented 

by its own "representative agent." Average tastes differ between groups in a way formalized below. 

The investment opportunity set is comprised of two assets, a riskless bond yielding exogenous, fixed 

rate of return r and a single stock for the single real capital asset in the economy. The total return 

generating process (i.e., including dividends) of the real capital asset is assumed by all agents to 

follow a Geometric Brownian Motion with drift  and standard deviation . 

 When fundamental information becomes available, the stock and the real capital asset values 

must be equal. If the shares are priced higher than the real asset, they should decline toward it, and if 

it was priced lower, it will jump once investors acknowledge the mis-pricing. These adjustments are 

assumed external to the model presented below; our focus is on the pricing processes that results 

above, at or below the value of the real asset through the trades of speculators and fundamentals. 

Finally, assume that there are no transactions costs, including payments for portfolio management, 

taxes, or restrictions on short sales, and total stock and bond holdings are, in aggregate, positive.  

 

 A. Individual investors  

 All agents in the economy make their investment decisions based on the expected  and  as 

the only relevant parameters of the new technology. Information (innovation) tdz  is observed when 

agents value the traded security. If the Geometric Brownian Motion of the traded security is  

 

 )( tdttt dzdtPdP    , (1) 

 

then the following is the wealth-accumulation process for each investor group K, (K=F,S, as will be 

elaborated below), 

 

   ttKtKtKtKdttK dzWdtrrWW  ,,,,, )((1  ,  (2) 

 

where, dt is a short time interval, W is the market value of both securities, tK ,  represents the 

proportion of wealth group K holds in the risky asset at time t. Using a Taylor series expansion to 

estimate )( , dttKWU  , where U is a von-Neumann-Morgenstern utility function defined over total 

wealth, and applying the expectation operator, we get 
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 In order to find the optimal proportion each group should invest in the risky asset, the first 

order condition of (3) with respect to K,t  is, 
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Solving for tK ,  from (4) we get  
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and using the Arrow-Pratt measure of relative risk aversion, 
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well known relationship (e.g., Merton, 1971) 
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 Now assume all individuals' utility function is hyperbolic in wealth, taking the form of the 

following HARA type 
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 It is advantageous to use this type of utility functions since we compare agents with different 

attitudes toward risk, which are readily available here. This function can produce relative or absolute 

measures of risk aversion, that both can be constant, decreasing or increasing in wealth. To obtain 

the explicit measures of risk aversion we find the first two derivatives  
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RW . Fixing RW in (6) we 

obtain the optimal investment rule for agents in group K, as a function of taste parameters KK   , , 

  KKtK

K

tKtK WW 



  ,,

*

, , (8) 

where KK  1  and 
2




r
 .  

 This type of utility functions embodies a displacement factor, KK  that, if negative, 

represents a demand for a minimum portfolio value required by the investor. Models based on a 

single representative agent conclude that (8) is the solution for the asset allocation problem, which 

may be referred to as an "investment rule" or "strategy." In models with atomistic investors, the 

stochastic price path is exogenous, observable and unaffected by the agent's trade, thus the 

equilibrium path will be the stochastic process itself. In this model however, as long as expected 

utility maximizing investors determine the equilibrium price, it will not be stochastic. For a two 

agents case, termed S and F (Speculative and Fundamental investors as elaborated below), (8) will 
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be 
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of shares in the market, thus the expected share price will be a function of the absolute differences of 

both K  from , together with the aggregate effect of FS   . If the weighted average of risk 

tolerance (the reciprocal of risk aversion) is less than  (weighted by wealth) then the price process 

)( *

tPE  will grow at an exponential rate greater than , and vice versa. Only when the weighted 

average of risk tolerance equals , will the value of the stock market grow at rate . We will show 

below that  ,  ,   FS and for the simple case when displacement factors are zero we obtain an 

amplifying effect of stock prices when S are dominant and a dimming effect when F are dominant. 

Figure 1 illustrates these three generic possibilities.  

 

 B. Institutional Investors 

 We classify institutional agents by two rebalancing strategies. The first institutional agent 

will increases holdings of the risky asset with an increase in the value of its portfolio denoted the 

"Speculative" (S), strategy (Badrinath and Wahal, 1999, Goetzmann and Massa, 2000). The general 

form of this strategy in equilibrium is 

 

 )( FWmS tt  , (9) 

 

where S is the amount held in the risky asset, m is a multiplier that must be strictly greater than 

unity, W is total assets value and F is the required protection level for total assets (Floor), which may 

be a function of time. By presenting W as the sum of stock (S) and riskless debt (D) as a 

multiplication of the number of securities held at t-dt ( dttSN ,  and dttSQ ,  respectively) by their 

current prices ( tP  and tB  respectively), we obtain the rebalancing rule of the Speculative strategy, 

 

 )( ,,, StdttStdttSSttS FBQPNmPN   .  (10) 

 

 The second institutional agent decreases exposure to the risky asset with an increase in the 

value of its managed assets, being the "Fundamental" (F) strategy. Its dynamic rebalancing rule is 

 

 )( ,,, FtdttFtdttFFttF FBQPNmPN   . (11) 

 

 Thus, at each period, the institutional agents S and F need to rebalance the portfolios they 

manage based on their strategy. However, since the real capital assets' price is not observable and 

because the institutions are not price-takers, they price the stock by matching supply and demand 

functions for units of shares due to their rebalancing requirements. They do so by submitting a 

vector of quantity of shares matched by a set of prices to a clearing agency, assumed to operate in a 

standard tâtonnement procedure. The tâtonnement will clear excess demand and set an equilibrium 

price for which only marginal rebalancing requirements will be traded.  

 

II. Marginal Supply and Demand Functions for Shares 

 Comparing (10) and (11) with (8) we may conclude by structural resemblance that the 

coefficients for the Speculative and Fundamental strategies matches the optimal investment strategy 



)Levy-Kedar(  ter New Technologies?AfWhy Would Financial Bubbles Evolve  88 

of individual investor K if KKK

K

K Fm 



   , . In order to establish clientele, the institutional 

investors must adjust their strategy parameters to match the tastes of the specific group of individual 

investors. For each strategy, we now define specifically those taste parameters that satisfy a concave 

payoff schedule for F and a convex one for S. Incrementing (2) backwards in time and replacing it 

with tKW ,  in (8) we obtain the wealth accumulation process of the institutional investors 
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for K=S,F and f=s,d for the marginal supply and demand functions that will be constructed for both 

agents. Let tPNS ttktK   ,,, , tBQD ttKtK    ,,, , dttKdttKdttK WS   ,,, / , dttKdttKdttK WD   ,,, /-1  ,  

then (12) becomes 
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(13) is equivalent to equation [10] in Merton's 1971 discrete time prolog to the continuous time 

model. In the next section, we solve for tP  using the marginal supply and demand functions for 

shares that we develop below and match them with individual tastes.  

 Denote the total relevant number of shares in the market FSKtNN
K

tK ,,  ,   (new 

issues and buy-back of shares are ignored). By definition, the number of shares held by K at t equal 

the number of shares they held at t-dt plus an optimal, unknown at that stage, marginal trade over dt, 

tKdttKtK dNNN ,,,   . Marginal supply and demand functions for shares can now be formed; a 

marginal supply function by agents S and a marginal demand function by agents F, in the plane 

tK

f

t dNP ,, .  

 

 Type F Agents: 

 By replacing tFdttFtF dNNN ,,,    in (13) and solving for tFdN ,  we obtain 
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where tdttKtK BQD  ,,

~
 and d

tP  represents the marginal demand function for shares. The marginal 

demand function can be represented as a function of price in the following manner,  

 



1, Iss. 2The Journal of Entrepreneurial Finance & Business Ventures, Vol. 1 89 

 

 

tF

F

dttF

FFtF

Fd

t

dNN

D

P

,,

,

1

~

























. (15) 

 

 Define type F individual agents as agents whose taste parameters FF    ,  result is a concave 

payoff function, i.e., as implementing an investment rule whereby an increase in the stock price 

results in selling some shares and vice versa. The marginal demand function for shares must 

therefore maintain a negative slope, i.e., we require 
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 Since the market price for risk is ex-ante positive and F  must be strictly positive to assure 

risk aversion, than 0
~

,  FFtFD   (or FtFF D  /
~

, ) must hold. By restricting F , we implicitly 

limit F  as well. Solving (8), the continuous time version of the asset allocation problem, for 
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and replacing tFtFtF DSW ,,,   and tFtFtF SW ,,,  , we find that  
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 That is, 0,  FFtFD   imply  F . Convexity of the marginal demand function for 

shares will be satisfied if the second derivative is positive,  
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 This condition will be satisfied iff 
FdttF
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,
1 , which holds for all positive marginal 

changes, but will be altered when the marginal trade is negative and greater in absolute terms than 

1
F


. We can now propose the following relationship between strategy and tastes for agent F: 
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Proposition 1 (Marginal demand function for stock)  

a) Assume the economy is structured as illustrated above whereby some of the individual 

agents, termed Type-F, posses a HARA type utility function as in (7), and their tastes 

parameters satisfy  F , and 
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 ,
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 . Then, their strategy implies a preference for the 

monotone marginal demand function for shares (15) offered by institutional agent F with a 

negative slope as in (16) that is strictly convex iff 
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, their risk aversion will satisfy CRRA.  

b) By clientele preferences, all individual investors of Type-F will deposit their wealth for 

management with institutional investor F, if its strategy's parameters equal the individual's 

tastes.  

 

 Type S Agents:  

 Let type S individual agents have a convex payoff schedule i.e., they desire an investment 

rule whereby an increasing share price result in an increasing exposure to shares in their portfolio, 

and vice versa. Following the same procedure as above, their marginal trade preference is  
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where s

tP  is the marginal supply function for shares that may be phrased as a function of price, 
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 Here we wish to define those taste parameters that satisfy a Speculative investment strategy. 

Upward slope of the payoff schedule requires 0
,



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P
, i.e., 
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which implies 0
~

,  SStSD   for a positive measure of risk aversion S . If agents S are net 

borrowers in aggregate terms, than S  must be strictly negative, and if they are net lenders it may be 

either negative or positive, as long as StSS D  /
~

, . For simplicity and without loss of generality, 

these investors will be referred to herein as net borrowers, unless otherwise indicated. In order to 

define the conditions on S , solve (8) for 
S


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 Based on 0,  SStSD  , the fraction 
S


 must be greater than unity, which implies  S , 

and by the assumption of risk aversion, it must be positive. In order to assess convexity, the 

derivative of (21) must be positive, 
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 This condition on the second derivative of the supply function for shares is satisfied when 

SdttS

tS

N

dN






,

,
1 , a condition that will hold for all negative trades but might be violated if the 

proportional marginal trade exceeds 1
S


. The following proposition can therefore be phrased. 

 

Proposition 2 (Marginal supply function for shares)  

a) Assume the economy is structured as illustrated above whereby some of the individual 

agents, termed Type-S, posses a HARA type utility function as in (7), and their tastes 

parameters satisfy  S  and 
S

tS

S

D


 ,

~

 . With such taste parameters the speculative 

strategy offered by institutional agent S yield a monotone marginal supply function for 
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shares with a positive slope as in (21) that is strictly convex iff 
SdttS

tS

N

dN






,

,
1 . Type-S 

individual agents' measure of risk aversion complies with DRRA and DARA attitude toward 

risk since 
















S

S 0
 but it will not be CRRA or CARA. 

b) By clientele preferences, all Type-S individual investors will deposit their wealth for 

management with institutional investor S, iff the institutional investors' strategy parameters 

comply with their taste parameters.  

 

 The marginal supply and demand functions for shares, being the tool for conveying 

information regarding asset re-allocation preferences by the institutional investors, provide the basis 

for trade. Trade will be executed between the institutional agents, though they have identical 

expectations about ex-ante return  and variability  . We now turn to establish Walrasian 

equilibrium and demonstrate the conditions for bubbles and under-pricing.  

 

III. Equilibrium and Mis-Pricing 

 A. Equilibrium 

 At each t both institutional agents must trade in order to optimally rebalance their portfolio 

according to their clients' tastes. Walrasian equilibrium conditions are  
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By using tNNN tStF   ,,,  in (14) and (19) we can solve for the equilibrium price of shares *

tP , 
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Note that the equilibrium price depends on the amount of shares held by each agent, weighted by 

their measure of risk aversion. The variance of the stock price process, (25) is  
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or, by replacing dttSdttdttF SSS   ,, , and 
N
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, , it may be rewritten as  
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 The positive relationship between the proportion of shares held by agent S to the stock price 

variance (since 









FS 

11
>0) implies that the larger the proportion of speculative agents operating 

in the market, the higher will be the variance of the share price. If we replaced the terms above to 

show how the variance corresponds to the presence of agents F, we will find that the variance 

declines with their presence in the economy. The effect on equilibrium price will be an amplification 

of the stochastic information process in the first case and it will be dimmed in the second case. Since 

S buy shares from F as price increases, S will crowd-out F and both share price and its variance will 

grow in time. The base stochastic process variability will not be altered when   FS .  

Taking (25) to the limit ( 0dt ), the market value of the stock in continuous time becomes 
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 If 0 FS   then, by Merton (1971), (27) reduces to the CRRA case. Thus, this solution 

for the HARA-type utility function is a generalization of Merton (1971) for multiple agents. Further, 

if we assume that all assets are held by a single agent, ( FFS   S   ; ), (27) reduces to 

Merton's result of optimal investment rules (ibid. equation 49). Though (27) is similar in form to the 

ones derived under the assumptions of exogenous price process with a single, price-taking investor, 

it differs in its meaning. It shows that the equilibrium price of the traded share satisfies the 

individual investors' optimum asset-allocation rules but this price might differ from the real capital 

asset value under incomplete information. As we shall see, the traded asset price may be lower, 

equal to, or higher than the real capital asset value under different attitudes toward risk, mainly as 

measured by their absolute dispersion from .   

 

 B. Long Term Paths 

 In order to evaluate the effect of dissimilar tastes on the expected equilibrium price, take the 

expected value of (25) and find the change in the expected equilibrium price with respect to time,  
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 Assume for simplicity that the information process remains with stable parameters, i.e., there 

are no fundamental changes in the real economy. Than, (28) set the basis to compare expected 

growth rate of the traded stock with that of the real asset. Since dttKD ,  changes with the amount held 

in shares, it must be replaced with KK
K

dttKdttK SD 












  1,, , which is a reorganization of (8), 

being the investment strategy denoted in terms of the amount held in bonds. Replacing this strategy 

into (28) after multiplying by dt and dividing through by dttP , we obtain1 

 

                                                           
1 Kedar-Levy (2002) analyzed the dynamic stability properties of a similar structure in a different model.  
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 If the traded share is priced equal to the real capital asset, (29) must be equal to dt. There 

are three specific cases of interest with that regard: 

 

a) Assume both measures of risk aversion are equal to the market price of risk,   FS  

and displacement parameters unspecified. Thus, (29) become 
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which implies the following Proposition:  

 

 Proposition 3: 

3.a)  If   FS  and there is no excess displacement in both utility functions, ( 0 FS  ), 

than the growth path of the traded stock will be equal to that of the real capital asset, dt.  

3.b) In this particular case only, the proportional share holdings of both agents will be fixed in 

time, equal to those at t=0 and there will be no trade since these conditions reduce the 

economy to a single representative agent.  

3.c) If there are non-null displacements to the utility functions as required by both optimal 

strategies ( 0,0  FS  ) than the expected growth rate of the stock will be higher than that 

of the real capital asset if FS    and lower than dt if FS   .  

 

 Conditions   FS  and 0 FS   are simulated in Figure 2a, conditions 

  FS  and FS    in Figure 2b and conditions   FS  and FS    in Figure 2c.  

 

b) Assume   SF   , , that is, the speculative strategy is the dominant trading rule in the 

market. After replacing dttSdttdttF SSS   ,, , (29) become 
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where 
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, . (31) implies: 

 

b.1) The coefficient of (rdt is strictly greater than unity when S hold the stock long since 

10  ,1 ,  dttSS  .  

b.2) The coefficient of rdt may be positive if FS    or negative if FS    (disregarding the 

preceding "-" sign).  

From b.1 and b.2 we get Proposition 4: 
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 Proposition 4: 

 When the individual agents' risk aversions are such that speculation dominates the market, 

  SF ,  and FS   , than expected return on the traded share will be higher than that of the 

real capital asset. If 0 FS  , the fundamental strategy is more dominant, thus the gap between 

the return on the traded stock and dt will decline, possibly to levels lower than dt. The traded 

stock variability will be higher than that of the real capital asset regardless of displacement factors.  

 

 The case where   SF   ,  and 0 FS  , illustrating over-pricing of the stock vs. 

the real asset, is presented in Figure 3a and in Figure 3b we show that if the displacements satisfy 

0 FS  , this difference offsets the bubble presented in Figure 3a.  

 

c) Assume   SF   , , i.e., the fundamental strategy is the dominant one among traders in 

the market. Replace dttFdttdttS SSS   ,,  in (29) and find that  

 

 

 rdt
S

dtrdt
P

dPE

dtt

FS

F

dttF

dtt

t








 

















)(
)(1

)(
,

* 





  (32) 

 

 From (32) we can draw the following conclusions: 

c.1)  The coefficient of (rdt is strictly positive (excluding the preceding "-" sign) for long 

position of shares by agents F since 10 ,1 ,  dttFF  .  

c.2)  The coefficient of rdt (excluding the preceding "-" sign) may be either positive or negative. 

If FS    the coefficient will be negative and the stock’s expected return will increase, and if 

FS    it will be positive, thus the expected stock return will decline.  

Based on c.1 and c.2 we draw Proposition 5: 

 

 Proposition 5: 

For   SF   , , let the condition FS    be a benchmark. Then, dominance of the 

fundamental strategy results in a lower expected growth rate of the traded asset vs. the real asset. 

From this benchmark, increase S  and see that it increases the expected growth rate of the stock 

and may exceed that of the real capital asset.   

 

Both cases are presented in Figures 4a and 4b. 

 

IV. Concluding Remarks 

 The model suggested in this paper combines individual and institutional investors in a 

dynamic asset market where a new technology real asset should be priced in a continuously 

operating stock exchange. Since the value of the asset is not observable between revelations of 

fundamental information, the value of the stock price might diverge from the value of the real asset. 

This diversion will be upward, a positive bubble, if low risk-averse investors apply an optimal 

speculative dynamic asset allocation strategy, in which case return volatility will increase as well. 
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However, if fundamental strategists dominate the market, their optimal asset allocation strategies 

will act to reduce the rate of return volatility and its average growth rate. We conclude that frequent 

revelations of the fundamental value of new technology assets will serve best the goal of fair 

valuations in the stock market. 
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Figure 1 

Expected Share Price with Individual Agents Only 

 
Figure 1 presents the expected share price path that will prevail when either group dominates.  
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Figure 2a 

Equilibrium Price Dynamics (top) and 

 Share Holdings and Trade (bottom) for  

Tastes:   FS  and 0 FS   

 
In this simulation, a vector of random numbers drawn from a standard normal distribution has been used to 

generate a path that represents the real capital asset value (Random Index). The calculated stock price (P*t) 

coincides with the Random Index thus a single line is visible. In the lower figure, we see that the proportional 

holdings between both agents are fixed throughout the simulation and there is no trade. Other parameters are: 

100,0 5.0,875.1  FSFSFS SSDD,NN .   
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Figure 2b 

Equilibrium Price Dynamics (top) and 

 Share Holdings and Trade (bottom) for  

Tastes:   FS  and FS    

 
The same vector of random numbers as in Figure 2a that represents the real capital asset value (Random 

Index) has been used here. The calculated stock price (P*t) is higher than the Random Index, representing a 

higher average rate of return on the stock, as compared with that of the real capital asset. In the lower figure, 

we see that the proportional holdings between both agents are not fixed in time, yet asymptotically get stable. 

There is little trade at the beginning of the simulation, but as holdings become stable, trade vanishes. Other 

parameters include the following: .0,40,875.1  FS   Note: Trade is presented in quantity of shares 

traded by agent S. 
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Figure 2c 

Equilibrium Price Dynamics (top) and 

 Share Holdings and Trade (bottom) for  

Tastes:   FS  and FS    

 
This figure uses the same vector of random numbers as in Figures 2a and 2b to represent the real capital asset 

value (Random Index). The calculated stock price (P*t) here is lower than the Random Index, representing a lower 

average rate of return on the stock, as compared with that of the real capital asset since the speculative strategy 

dominates the stock market. In the lower figure, we see that the proportional holdings between both agents, again, 

change in time, and asymptotically get stable. There is little trade, which is not visible graphically. Main parameters 

include: .40,0,875.1  FS   Trade is presented in quantity of shares traded by agent S. 



1, Iss. 2The Journal of Entrepreneurial Finance & Business Ventures, Vol. 1 103 

Figure 3a 

Equilibrium Price Dynamics (top) and 

 Share Holdings and Trade (bottom) for  

Tastes:   SF , and 0 FS   

 
In this figure, we use the same vector of random numbers as in Figures 2a-c, representing the real capital asset 

value (Random Index). The calculated stock price (P*t) here is significantly higher than the Random Index, 

representing a speculative bubble. This bubble is more significant than the one presented in Figure 2a since the 

excess supply of speculation that stems from the diversion  S
 increases the impact on trade. This can be 

seen in the lower figure, where the proportional holdings between the agents changes faster with much more 

trade. The main parameters here are: .0,67.66,875.1,25.1,875.1  FSFS   Trade is presented in 

quantity of shares traded by agent S. 
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Figure 3b 

Equilibrium Price Dynamics (top) and 

 Share Holdings and Trade (bottom) for  

Tastes:   SF , and 0 FS   

 
Using all data as in Figure 3a but 400F , we see that as Proposition 4 states, 0 FS   may reduce the 

bubble below the real capital asset path (Random Index). Trade volume (measured in quantity of shares) reduces 

significantly. 
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Figure 4a 

Equilibrium Price Dynamics (top) and 

 Share Holdings and Trade (bottom) for  

Tastes:   SF , and 0 FS   

 
As in all simulations, we use the same random path for the real capital asset as presented in previous figures. 

Here we see that dominance of the fundamental strategy reduces the expected growth rate and volatility of the 

traded stock. The parameters here are:  .0,0,3,875.1,875.1  FSFS   
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Figure 4b 

Equilibrium Price Dynamics (top) and 

 Share Holdings and Trade (bottom) for  

Tastes:   SF , and 0 FS   

 
Using the same random path for the real capital asset as before, we see that although   SF , , there exist 

values 0 FS   for which the speculative strategy more than offsets the effect of the fundamental strategy 

through the displacement factor. The parameters here are: .0,50,3,875.1,875.1  FSFS   
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