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Abstract—The 2-hop relay algorithm and its variants have been
attractive for ad hoc mobile networks, because they are simple
yet efficient, and more importantly, they enable the capacity and
delay to be studied analytically. This paper considers the 2-hop
relay with f -cast (2HR-f ) under i.i.d. mobility model, a general
2-hop relay algorithm that allows one packet to be delivered to
at most f distinct relay nodes. The 2HR-f algorithm covers the
available 2-hop relay algorithms (f = 1,

√

n) as special cases.
Closed-form analytical models rather than order sense ones are
developed for the 2HR-f algorithm with a careful consideration
of important medium contention and queuing delay issues, which
enable an accurate delay and capacity analysis to be performed
for ad hoc mobile networks employing 2HR-f . Based on our
models and some typical settings off (say, f = 1,

√

n), one can
easily derive the corresponding order sense results.

I. I NTRODUCTION

Since the seminal work of Grossglauser and Tse (2001) [1],
the 2-hop relay algorithm and its variants have become a class
of attractive routing algorithms for ad hoc mobile networks,
because they are simple yet efficient, and more importantly,
they enable the capacity and delay to be studied analytically.
The 2-hop relay algorithm defines two phases for packet
transmission, where in phase 1 a packet is transmitted from
its source node to an intermediate node (relay node), and then
in phase 2 the packet is transmitted from the relay node to its
destination node. Since the source node can directly transmit
a packet to its destination node every time such transmission
opportunity arises, every packet goes through at most 2 hops
to reach its destination in a 2-hop relay network.

By now, extensive order sense results of delay and capacity
have been reported to illustrate the scaling laws of 2-hop
relay ad hoc mobile networks under various mobility models.
Grossglauser and Tse (2001) [1] showed that it is possible
to achieve aΘ(1) throughput per node under i.i.d. mobility
model. Later, Gamalet al. [2] showed that theΘ(1) throughput
is also achievable under a random walk model, but which
comes at the price of aΘ(n log n) delay. Mammenet al.
[3] proved that the same throughput and delay scaling are
also achievable even with a variant of the Grossglauser-Tse
2-hop relay and a restricted mobility model. The delay and
throughput trade-off has been further widely studied under
different mobility models, like the i.i.d. mobility model [4],
hybrid random walk and discrete random direction models
[5], Brownian motion model [6], [7], and correlated mobility

model [8]. These order sense results are helpful for us to
understand the general scaling laws of delay and capacity in
a 2-hop relay ad hoc mobile network, but they tell us a little
about the real end-to-end delay and capacity of such networks.
In practice, however, the real delay and capacity results are of
great interest for network designers.

It is notable that the relay algorithms discussed above
can be regarded as the basic 2-hop relay schemes without
packet redundancy (i.e., allowing redundant copies of each
packet). As throughput and delay can be traded with each
other in a multi-hop way, this trade-off can also be achieved
to somewhat extent via delivering redundant copies for each
packet. Neely and Modiano [9] considered a modified version
of the Grossglauser-Tse 2-hop algorithm for ad hoc mobile
networks, and proved that under i.i.d. mobility model it
achieveO(1/

√
n) throughput andO(

√
n) delay with exact√

n redundancy for each packet. Sharma and Mazumdar [10]
explored the order sense delay and capacity trade-off in ad hoc
mobile networks under random way-point mobility model and
multiple redundancy for each packet. The idea of using packet
redundancy has also been adopted to reduce average packet
deliver delay [11]–[13] in intermittently connected mobile
networks (ICMNs).

In this paper we consider the 2-hop relay withf -cast
(2HR-f ) under i.i.d. mobility model, a general 2-hop relay
algorithm that allows one packet to be delivered to at most
f distinct relay nodes, and develop closed form analytical
models rather than order sense ones for an accurate delay and
capacity analysis for 2HR-f -based ad hoc mobile networks.
With such closed form models and some typical settings of
f (say,f = 1,

√
n), one can easily derive the corresponding

order sense results for delay and capacity.

The rest of the paper is organized as follows. In Section
II, we provide the network model, interference model and
mobility model considered in our analysis. Section III intro-
duces the the 2-hop relay algorithmf -cast (2HR-f ) and the
corresponding scheduling scheme. We develop the closed-form
models in Section IV to analyze the expected end-to-end delay
and capacity, and finally we conclude the paper in Section V.



II. SYSTEM MODELS

A. Network Model

We assume the network is a square region of unit area,
with n mobile nodes which are initially independently and
uniformly distributed inside the network region. The unit
square is evenly divided into

√
n × √

n cells each of which
has an area of1/n. All the n mobile nodes are independently
roaming from cell to cell, and time is assumed to be slotted
so that each node remains in its current cell for one time slot.

We consider a bi-dimensional i.i.d. mobility model, or so-
called reshuffling model in this paper. At the beginning of
each time slot, every node independently selects a destination
cell and stays in it for the whole time slot, thus the position
of each node is updated every time slot. The destination cell
is chosen uniformly and randomly among alln cells, so each
cell would be chosen with same probability1/n.

We assume a time-scale of fast mobility [8] in this paper,
i.e., the mobility of nodes is at the same time-scale as the data
transmission. Thus, only one-hop transmissions are feasible
during any single slot, and the total number of bits that can
be transmitted in a time slot is a fixed constant independent
of n. We normalize this constant to 1 here.

B. Interference Model

Similar to [1], we assume a uniform communication range
r = Θ(1/

√
n) for all nodes, and adopt the protocol model

introduced in [14] to account for interference among simulta-
neous transmissions. Suppose nodei is transmitting to nodej
at some time slott, and their Euclidean distance isdij(t).
According to the protocol model, this transmission can be
successful if and only if the following two conditions hold:

(1) dij(t) ≤ r;
(2) dkj(t) ≥ (1+∆)r for every other nodek which transmits

simultaneously, where∆ is a protocol specified guard-
factor to prevent interference.

C. Traffic Model

Similar to previous works we consider permutation traffic
patterns, in which each node is a source and at the same time
a destination of some other node. Hence there aren source-
destination pairs in the network. For convenience of expres-
sion, we useS(K) andD(K) to denote the source node and
destination node of nodeK, respectively. We further assume
a homogeneous scenario in which the traffic originating at
each node is a Poisson stream with rateλ (packets/slot). We
also assume that the packet arrives at the beginning of time
slots, and the arrival process at each node is independent of
its mobility process.

III. 2HR-f ALGORITHM AND SCHEDULING SCHEME

A. 2HR-f Algorithm

We consider a generalization of the 2-hop relay algorithm
[9] with f -cast(2HR-f ), which allows up tof (1 ≤ f ≤ √

n)
relay nodes for a single packet. As we keep one copy at the

source node, so there are at mostf + 1 copies of a single
packet to coexist in the network.

As a node can be a potential relay for any of othern − 2
flows (except the two flows originating at and destined for
itself), we assume that every node maintainsn individual
queues at its buffer, one local-queue for storing its locally
generated packets waiting for copy-distribution, one already-
sent-queue for storing packets whosef replicas have already
been distributed but reception status are not confirmed yet
(from destination node), andn − 2 parallel relay-queues for
storing packets of other flows (one queue per flow). We further
assume all packets of one flow are labeled with sequence
numbers, so that a packet can be efficiently retrieved from the
queue buffers of its source node or relay node(s) according
to its sequence number and destination information. During
each time slot, a TCP-style handshake is proceeded before
packet transmission to indicate which packet the receiver
current needs. Now we are ready to formally define the 2HR-f
algorithm.

2HR-f Algorithm: Every time a node (sayK) gets a
transmission opportunity, it operates as follows:

Step 1: (Source-to-Destination) Check if nodeD(K) is
among its one-hop neighbors. If so, a handshake goes as
follows: D(K) first sends its currentrequest numberRN to
K, thenK comparesRN with the send numberSN(Ph) of
the packetPh at the head of its local-queue.

• If SN(Ph) > RN , K retrieves from its already-sent-
queue the packet withSN = RN , and deletes all packets
with SN ≤ RN inside the already-sent-queue;

• If SN(Ph) = RN , K sendsPh directly toD(K), moves
ahead remaining packets waiting at its local-queue and
deletes all packets withSN < RN in its already-sent-
queue;

• If SN(Ph) < RN (thenRN = SN(Ph) + 1), K sends
the packet behindPh with thesend numberequal toRN
directly to D(K), steps ahead remaining packets inside
its local-queue (by two packets) and empties its already-
sent-queue.

Step 2: Otherwise,K flips a unbiased coin, and choose
either one from the following:

• (Source-to-Relay)K randomly selects one node as re-
lay from its current one-hop neighbors, and a similar
handshake between them proceeds to indicate whether
the selected node, sayR, has received one copy ofPh,
i.e., the packet for which nodeK is distributing copies.
If so, K remains idle for this time slot. Otherwise,K
sends a copy ofPh to R, and checks whetherf copies
has already been delivered out forPh, if yes, K move
ahead its local-queue and putPh to the end of its already-
sent-queue. At the relay node,R addsPh to the end of
its relay-queue specified for nodeD(K).

• (Relay-to-Destination)K acts as a relay and randomly
selects one node as receiver from its one-hop neighbors.
The selected receiver, sayV , sends itsrequest number
RN(V ) to K, and K checks whether a packet with



SN = RN(V ) exists inside its relay-queue destined for
V . If found, K sends it directly toV , and deletes all
packets withSN ≤ RN(V ) from its relay-queue forV .
Otherwise,K remains idle for this time slot.

Note that in both of the above two steps, every time a node
moves ahead its local-queue by one packet (or receives a
packet destined for itself), it increases itssend number(or
request number) by one.

Remark 1:Although we allow multiple copies of a single
packet to coexist in the network, each copy travels at most
two hops, from source to a relay node, and from relay node
to the destination. Actually only the copy which reaches
the destination at the first time will travel two hops, the
other f copies will be flushed out from their queue buffers
after receiving confirmation from the destination node. Thus
the queue sizes of the already-sent-queue andn − 2 relay-
queues will not grow indefinitely. And according to therequest
numbersequence, all packets are received in order by their
destinations.

Remark 2: It takes up at mostf + 1 transmission oppor-
tunities for each packet to reach its destination, and nearly
every packet received at its destination will consume exact
f + 1 transmission opportunities. There are only two ways in
which a packet will take less thanf + 1 transmissions, (1)
node D(K) receives this packet directly from nodeK, (2)
D(K) first receives this packet from one of its relay nodes
and then crashes intoK (to notify K to stop delivering out
remaining copies). Note that either of these two events should
happen beforeK finishes the distribution of allf copies,
which happens with a vanishingly small probability (as we
show later). So in the actual case, asn scales up every packet
takes upf +1 transmissions to reach its destination with high
probability.

B. A Scheduling Scheme

As we assume a cell-partitioned network and a time slotted
system, we make the following restrictions on the transmis-
sions during each time slot:

• For each time slot, we allow at most one transmitter inside
each cell, if there are more than one nodes inside a cell
then a transmitter is chosen randomly.

• If some node, sayK, wins the transmission opportunity in
its cell for the current time slot, it can send packets only to
nodes in the same cell or its eight adjacent cells. Two cells
are said to be adjacent if they share a common points.
Thus, the maximum distance between a transmitter and
receiver is

√

8/n, then we set the communication range
asr =

√

8/n.
• Every time a node gets a transmission opportunity, it

follows 2HR-f .

As the wireless transmissions interfere with each other,
only cells that are sufficiently far away could simultaneously
transmit without interfering each other. In our scheme we
allow a receiver to be selected among any of the eight adjacent
cells, thus the maximum number of cells that support a

Fig. 1. An example of a transmission-group of cells withα = 4. The shaded
cells all belong to the same transmission-group.

transmitting node during every time slot is finite. Toward
this end, we define “transmission-group” of cells such that
one node in each cell of the transmission-group can transmit
simultaneously without interfering with one another.

Transmission-group: A transmission-group is defined to be
a subset of cells, which keeps a neighboring distance of some
constant number of cells, sayα (an integer), in both vertical
and horizontal directions. The shaded cells in Fig. 1 represent
one such transmission-group.

Now we are able to determine the value ofα for our
scheduling scheme. Suppose during some time slot, nodeV is
scheduled to receive a packet. Then, according to the defini-
tion of “transmission-group”, the closest another simultaneous
transmitting node (other thanV ’s transmitter), sayK, is at a
distance of at least(α − 2)/

√
n away fromV . The condition

that K will not interfere the reception atV is that,

(α − 2)/
√

n ≥ (1 + ∆) · r

substitutingr =
√

8/n, we obtain that

α ≥ (1 + ∆)
√

8 + 2.

As α is an integer, we takeα = ⌈(1+∆)
√

8⌉+2, where⌈x⌉
returns the smallest integer not smaller thanx.

Note that there are only a finite number of transmission-
groups, i.e.,α2, and each cell belongs to an individual
transmission-group. If we let each transmission-group become
active (have transmission opportunity) alternatively, then each
transmission-group will be active in everyα2 time slots. In
other words, each cell is activated in everyα2 time slots.

C. Probability of Medium Contention

We show here explicitly the probability of contending for a
transmitting or receiving opportunity.

Lemma 1:During any time slot, consider some active cell,
asn approaches infinity, there exists contention for a transmit-
ting opportunity with probability not smaller than1 − 2e−1;
and there exists contention for a receiving opportunity with
probability not smaller than1 − e−1 − 19

2 e−9.



Proof: For a given active cell, it has a contention for a
transmitter, i.e., at least two nodes appear inside simultane-
ously. It happens with

1 − (1 − 1

n
)n −

(

n

1

)

1

n
(1 − 1

n
)n−1

= 1 − (1 − 1

n
)n−1(2 − 1

n
) → 1 − 2e−1.

Similarly, the probability of having a contention for a receiver
can be expressed as

1 − (1 − 1

n
)n −

2
∑

k=1

(

n

k

)

(
1

n
)k(1 − 9

n
)n−k

−
(

n

2

)(

2

1

)

1

n
· 8

n
(1 − 9

n
)n−2

= 1 − (1 − 1

n
)n − (1 − 9

n
)n−2(

19

2
− 35

2n
)

→ 1 − e−1 − 19

2
e−9.

IV. EXPECTEDEND-TO-END DELAY AND THROUGHPUT

CAPACITY

Before we move on with our main results, we first present
some basic probability results under 2HR-f and the scheduling
scheme introduced in Section III.

Lemma 2:For any time slot, consider some node, sayK,
we denote byp1 the probability ofK conducting a packet
transmission, byp2 the probability ofK conducting a source-
to-destination transmission, and byp3 the probability ofK
conducting a source-to-relay or relay-to-destination transmis-
sion. If we assume a saturate traffic and the local-queue of
K always has waiting packets, then we have the following
expressions forp1, p2, p3 under 2HR-f and our scheduling
scheme,

p1 =
1

α2

(

1 − (1 − 1

n
)n − (1 − 9

n
)n−1

)

(1)

p2 =
1

α2

( 8

n − 1
− (1 − 1

n
)n−2(

7

n
+

1

n2
)
)

(2)

p3 =
1

α2

(n − 9

n − 1
− (1 − 9

n
)(1 − 1

n
)n−2 − (1 − 9

n
)n−1

)

.(3)

Proof: Under 2HR-f and our scheduling scheme,K
conducts a packet transmission iff the following three events
happen simultaneously,K appears in some active cell,K is
selected as the transmitter, and there is at least one other node
inside the corresponding nine cells. Thus, we have

p1 =
1

α2

( n−1
∑

k=1

(

n − 1

k

)

(
1

n
)k(1 − 1

n
)n−1−k 1

k + 1

+

n−1
∑

k=1

(

n − 1

k

)

(
8

n
)k(1 − 9

n
)n−1−k

)

. (4)

Similarly, K conducts a source-to-destination transmission iff
the following three events happen simultaneously,K appears
in some active cell,K is selected as the transmitter, and node

D(K) appears inside the corresponding nine cells. Thus, we
have

p2 =
1

α2

( n−2
∑

k=0

(

n − 2

k

)

(
1

n
)k(1 − 1

n
)n−2−k 1

k + 2

1

n

+

n−2
∑

k=0

(

n − 2

k

)

(
1

n
)k(1 − 1

n
)n−2−k 1

k + 1

8

n

)

.(5)

K conducts a source-to-relay or relay-to-destination trans-
mission iff the following four events happen simultaneously,
K appears in some active cell,K is selected as the transmitter,
there is at least one other node (exceptK andD(K)) inside
the corresponding nine cells, and nodeD(K) appears in one
of the othern − 9 cells. Thus, we have

p3 =
1

α2
(1 − 9

n
)

( n−2
∑

k=1

(

n − 2

k

)

(
1

n
)k(1 − 1

n
)n−2−k 1

k + 1

+
n−2
∑

k=1

(

n − 2

k

)

(
8

n
)k(1 − 9

n
)n−2−k

)

. (6)

After several basic algebraic operations, (1), (2) and (3) can
be derived with (4), (5) and (6) respectively.

Remark 3:As a verification of the expressions ofp1, p2,
andp3, one can easily prove thatp1 = p2+p3. As discussed in
Remark 2, we can verify thatp2 vanishes quickly asn scales
up.

Lemma 3:For some node, sayK, consider the packet at
the head of its local-queue, i.e., packetPh. Given that there
are alreadym (m ≤ f + 1) copies ofPh inside the network
and SN(Ph) = RN(D(K)), we assume in next time slot,
nodeD(K) will receive Ph with probability pa(m), and K
will successfully deliver out a new copy ofPh (if m ≤ f )
with probability pc(m). Then we have the following results
for pa(m) andpc(m),

pa(m) = p2 +
m − 1

2(n − 2)
· p3 (7)

pc(m) =
n − m − 1

2(n − 2)
· p3. (8)

Proof: Given that there are alreadym copies of packetPh

inside the network, i.e.,m − 1 replicas have been distributed
by nodeK to distinct relay nodes. We further assume that
in next time slot, nodeD(K) will directly receivePh from
K with probability ps→t(m), and from some relay node with
probability pr→t(m). Then we have

ps→t(m) = p2 (9)

pr→t(m)

= φ1

n−3
∑

t=0

(

n − 3

t

) t
∑

k=0

(

t

k

)

(
1

n
)k+1(

8

n
)t−k(1 − 9

n
)n−3−t·

· 1

t + 1
(

1

k + 2
+

8

k + 1
) (10)

= φ1
1

n − 2

( n

n − 1
− (1 − 1

n
)n−2 − (1 − 9

n
)n−2

)

=
p3

2(n − 2)
(11)



whereφ1 = 1
2α2 (1 − 9

n
) and (10) follows directly from the

definition of 2HR-f and our scheduling scheme in Section III.
As in the next time slot,D(K) either receives packetPh

from K directly or from one of otherm− 1 relays. Note that
these are mutually exclusive events, thus we have

pa(m) = ps→t(m) +

m−1
∑

i=1

pr→t(m). (12)

After substituting (9) and (11) into (12), it follows (7).
According to Step 2 in 2HR-f , a relay node is chosen

randomly from the one-hop neighbors of nodeK. Thus K
will successfully deliver out a new copy of packetPh, equals
that a node other than them−1 relay nodes (who already owns
a copy ofPh) will be chosen as receiver in Step 2. Hence we
have

pc(m)

= φ2

n−2
∑

k=1

(

n − 2

k

) k
∑

j=0

(

k

j

)

(
1

n
)j(

8

n
)k−j(1 − 9

n
)n−2−k 1

j + 1

=
n − m − 1

2(n − 2)
· p3 (13)

whereφ2 = 1
2α2 (1 − 9

n
)n−m−1

n−2 .
As indicated in former section, some packet at the head of

its local-queue, sayPh, might successfully reach its destination
with less thanf + 1 transmission opportunities consumed,
although with vanishingly small probability. However, even
this case happens, it does not necessarily mean the packet
waiting just behindPh in the local-queue, will move ahead
into the head of line and get service immediately. Actually if
the destination node receives a copy ofPh from one of its
relay nodes rather than the source node, the source node will
continue to deliver out the remaining copies forPh, unless
the destination node crashes into it and request for the next
packet before remaining copies are delivered. Obviously, this
happens with a much smaller probability.

The above analysis allows us to assume a fixed service rate
for the local-queue at each node, i.e., exactf copies for each
packet waiting in the local-queue are delivered to distinctrelay
nodes, and the destination starts to receive some packet after
f+1 copies already exist in network. Obviously, the mean end-
to-end delay derived under this assumption naturally becomes
an upper bound for the actual expected end-to-end delay of
2HR-f , and the whole system can further be treated as two
single-server queues in tandem. Hence we have the following
result.

Theorem 1:If we denote byS1 the time it takes some node
to deliver outf copies of the head-of-line packet at the local-
queue, andS2 the time it takes the destination node to receive
one of thef +1 copies,E{Te} the actual expected end-to-end
delay per packet of 2HR-f , and µ the per-node throughput
capacity of 2HR-f , then the network can stably support rates

λ < µ, and we have

µ = min{ 1

E{S1}
,

1

E{S2}
} (14)

E{Te} ≤ E{S1}
1 − ρ1

+
E{S2}
1 − ρ2

− ρ2

2(1 − ρ2)
(15)

E{S1} =
2(n − 2)

p3

f
∑

m=1

1

n − m − 1
(16)

E{S2} =
1

p2 + f
2(n−2) · p3

(17)

whereρ1 = λE{S1} andρ2 = λE{S2}.
Proof: We first derive the expected time it takes some

node to deliver outf copies of the head-of-line packet at its
local-queue, i.e., the expected service timeE{S1}.

E{S1} =

f
∑

m=1

1

pc(m)
(18)

and (16) follows after substituting (8) into (18).
Note that given there aref +1 copies of some packet (with

a send numberequalsrequest numberof its destination node)
inside the network, then this packet will arrive at its destination
with a probabilitypa(f + 1) during next time slot. Hence we
have

E{S2} =
1

pa(f + 1)
(19)

and (17) follows after substituting (7) into (19).
The proof of (15) is similar to the derivation of the standard

Pollaczek-Khinchinformula for mean waiting time in an
M/G/1 queue. Consider some tagged packet, arriving to the
local-queue of some node, sayK, at the beginning of some
time slot. First it has to wait (if the queue is not empty) in the
local-queue for service, i.e., to be replicated and delivered to
f distinct relays. LetW1 denote the time this packet spends
waiting in the local-queue before getting service, hence we
have

W1 =

Lq
∑

i=1

Xi + R (20)

where variableR denote the residual service time,Lq represent
the number of packets waiting in the queue, andXi denote the
service time of theith packet. As the service times{Xi} are
independently in expectation bounded byE{S1}, thus we have
E{Xi} ≤ E{S1}. If we let ρactual represent the probability
that the node is busy with delivering copies of some packet,
and let E{X} represent the actual mean time it takes the
node to service a generic packet, sinceR = ρactualE{X}
and by Little’s law (applied to the server)ρactual = λE{X},
it follows that ρactual ≤ ρ1 and R ≤ ρ1E{S1}. It yields by
taking expectations of the both sides of (20):

E{W1} ≤ E{Lq}E{S1} + ρ1E{S1}
= λE{W1}E{S1} + ρ1E{S1}
= ρ1E{W1} + ρ1E{S1}.

(21)



We thus have

E{W1} ≤ ρ1E{S1}
1 − ρ1

(22)

whereλ < 1/E{S1} andρ1 = λE{S1}.
Note that we say the packet enters the second queuing

process as soon asf copies of this packet have been delivered
(i.e., as soon as this packet finishes its service in its local-
queue and departs its source node). As the time required to
deliver out the(m + 1)th copies of this packet has a geo-
metric distribution with mean1/pc(m), S1 can be interpreted
as a sum off mutually independent, identically distributed
geometric random variables. According to theory of departure
processes in [15], the input to the second queuing process can
be approximated as a Poisson stream with arrival rateλ. Recall
that in 2HR-f destination node receives packets inrequest
numberorder, thus in the second queuing process, a packet
has to wait until itssend numberequals therequest number
of its destination node (i.e., the destination node has received
all the preceding packets). We denote byW2 this waiting time,
using thePollaczek-Khinchinformula, we have

E{W2} =
ρ2E{S2}
1 − ρ2

− ρ2

2(1 − ρ2)
(23)

whereλ < 1/E{S2} andρ2 = λE{S2}.
When a new packet reaches the head-of-line at its local-

queue, and itsSN equals theRN of its destination node, the
time required for the packet to reach its destination is at most
S1 + S2, thus we have

E{Te} ≤ E{W1} + E{S1} + E{W2} + E{S2} (24)

whereE{Te} denotes the actual expected end-to-end delay per
packet of 2HR-f . After substituting (22) and (23) into (24), it
follows (15).

Remark 4:Theorem 1 provides a closed-form (rather than
order sense) results for the achievable throughput per nodeand
the expected end-to-end delay per packet in 2HR-f -based ad
hoc mobile networks. Based on Theorem 1 and some typical
settings off , one can easily derive the corresponding order
sense results. For example, by settingf = 1 one can obtain
a Θ(1/n) throughput andO(n) delay; by settingf =

√
n,

one can easily recover the order sense results (O(1/
√

n)
throughput andO(

√
n) delay) reported in Theorem 6 of Neely

and Modiano [9].
Remark 5:One may also notice that when settingf = 1,

Theorem 1 results in aO(n) delay and aΘ(1/n) throughput,
which is different from the throughput resultΘ(1) reported in
[1]. This reduced throughput is due to the rule of “reception
in order” employed in 2HR-f . The restriction of receiving
packets according torequest numberensures that all packets
arrive at the destination in order, but it wastes a lot of
opportunities to receive “out of order but fresh” packets (i.e.,
packets withsend numberlarger than the currentrequest
numberof destination node). Thus the benefits of receiving all
packets in order comes at the price of a reduced throughput
per node.

V. CONCLUSION

We extend the classic 2-hop relay algorithm under a general
setting, i.e.,f -cast, and propose a 2-hop relayf -cast algorithm
(2HR-f ) and a corresponding scheduling scheme. We develop
closed form upper bounds for the expected end-to-end delay
and obtainable throughput in a 2HR-f -based ad hoc mobile
network. Furthermore, our closed form bound covers a range
of models, from which one can easily derive the order sense
results.
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