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Abstract. Solar bursts with superfine time structure observed
at 2.5 and 2.85 GHz at the Crimean Astrophysical Observa-
tory have been analyzed by means of statistical methods for
nonlinear dynamical systems. Finite values of the correlation
dimension have not been detected for all the studied events.
The presence of a 1/fγ component in many of the processed
events has been found by means of wavelet analysis and max-
imum likelihood technique. The model of uncorrelated pulses
is proposed as the one capable of producing a 1/fγ shape of
the power spectrum. A procedure is developed for extracting
the parameters of pulse sequences from the data, and the mag-
nitudes of pulse duration, amplitude, and repetition frequency
are estimated for the solar burst events.
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1. Introduction

Considerable recent attention has been focused on superfine
time structure of solar microwave emission and, in particu-
lar, on irregular pulsations with typical time scale of the order
of milliseconds (Slottje 1978; Dennis et al. 1987; Stepanov &
Yurovsky 1990; Benz & Aschwanden 1991; Vlahos et al. 1983;
Zaitsev et al. 1985; Aschwanden 1987; Isliker 1992, Barrow et
al. 1994). About ten years ago the hypothesis has been put for-
ward that the mechanism responsible for the formation of the
irregular behavior may be of deterministic nature. In accordance
with it, the complicated temporal structures in the solar emis-
sion detected in many observations have been suggested to be
chaotic processes, with finite value of the associated correlation
(fractal) dimension.

Preliminary reports (Kurths & Herzel 1987; Kurths & Kar-
licky 1989; Isliker 1992) were in favor of such a theory. How-
ever, more careful analysis (Isliker & Benz 1994) has revealed
that in almost all the cases the detected finite value of correlation
dimension was a spurious effect caused by intrinsic difficulties
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in the calculation process. At the same time, the absence of a
rigorous model for the emission mechanism does not permit one
to generalize the already obtained results concerning the high
dimensionality of dynamical processes in the solar corona to
wave bands not yet investigated. On the other hand, it should be
noted that any, even carefully checked, result revealing either
deterministic or noise nature of the studied signal in itself does
not allow one to understand in details the physics of the solar
microwave emission and does not clarify the mechanism re-
sponsible for the generation of the millisecond pulsations. This
fact requires alternative approaches to be used, together with
the correlation dimension analysis.

In the present work the analysis is carried out of several solar
radio bursts observed at the Crimean Astrophysical Observatory
(CrAO) at 2.5 and 2.85 GHz with millisecond time resolution
(sampling time ∆ts ≈ 8− 10 ms). To our knowledge, study of
dynamic properties of the flare process has not been conducted
before in this band.

As a first step in our study we calculate the correlation di-
mension ν, following the standard procedure of Takens, Grass-
berger and Procaccia. We introduce an error analysis of the cal-
culated value of ν which permits us to control the accuracy and
optimize the calculation procedure. We have demonstrated that
in this particular wave band the investigated processes are either
deterministic with the dimension at least greater than 10, or they
are of stochastic origin. Hence, our results are in agreement with
those reported in studies performed in different wave bands (Is-
liker & Benz 1994). In the following we develop the hypothesis
that such processes are stochastic ones and, moreover, belong to
the class of 1/f noise. We exploit the wavelet analysis together
with the maximum likelihood statistical technique (Wornell &
Oppenheim 1992) in order to detect the 1/f signal and separate
it from the background noise. It has turned out that in many of
the events under investigation a 1/f process was present with
rather high intensity, compared to the background. The detected
1/f nature of the flare emission enables us to propose an inter-
pretation of the millisecond temporal structure of the emission
in terms of uncorrelated pulses. We estimate the characteristic
time scale of an individual pulse and discuss possible physical
mechanisms responsible for the generation of pulsed radiation.
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Fig. 1a–e. Time profiles of bursts: a 12th of
March, 1989 at 2.85 GHz, b 17th of Novem-
ber 1991 at 2.5 GHz, c, d, e 17th of Novem-
ber 1991 at 2.85 GHz. The interval with a
spurious finite value of dimension is marked
by arrows.

The paper is organized as follows. Sect. 2 comprises the de-
scription of the experiment and observational data. In Sect. 3
the results of calculation of ν are given, with some discussion
and interpretation. Sect. 4 presents the wavelet analysis of the
data, and Sect. 5 contains the description of a possible scenario
for the generation of millisecond pulses. Sect. 6 presents the
discussion. Appendix A is devoted to the details of systematic
and random errors in correlation dimension algorithm. In Ap-
pendix B we give a sketch of the procedure for detecting a 1/f
signal on the white noise background and for evaluating the
qualitative characteristics of the signal.

2. Observational data

The data analyzed below have been obtained with the radio tele-
scope of CrAO which has the 3 m dish under a radio transparent

dome, at which the daily observations are performed in accor-
dance with the Solar Service program at frequencies 2.5 and
2.85 GHz. The radiometer bandwidth is 40 MHz, and sensitiv-
ity is 6% of the quiet Sun radio emission flux. The millisecond-
rate of recording is turned on automatically after detecting an
increase of the radio emission flux by 5% of the preburst level.

We have processed the events whose characteristics are
given in the Table 1. In Fig. 1a–c the time profiles of the bursts
N1 and 5 (according to the Table numbering) are depicted as
examples. The feature of both realizations is their essential non-
stationarity which is known to hamper the investigations by both
traditional methods of correlation or spectral analysis and tech-
niques related to the dimension calculation.
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Fig. 1a–e. (Continued)

Table 1. List of events

No. Date Number of Frequency Start of End of Sampling
points (GHz) fragment fragment frequency

(UT) (UT) (Hz)
1 89/03/12 25000 2.85 08:17:36 08:20:50 125
2 89/09/01 12431 2.85 06:16:52 07:10:00 125
3 89/10/19 3125 2.85 12:48:34 13:15:00 115
4 90/02/12 4500 2.85 08:50:52 08:51:26 125
5 91/11/17 26387 2.5, 2.85 07:04:05 07:07:37 111
6 91/04/16 17400 2.5, 2,85 11:41:26 11:44:00 113
7 91/04/16 33400 2.5, 2.85 11:49:01 11:53:57 113

3. Correlation dimension analysis

We have calculated the value of correlation dimension for the
events mentioned above. The calculation procedure included
standard steps (Theiler 1990a; Abarbanel et al. 1993; Isliker &
Benz 1994) of the preliminary data analysis with stationarity
tests, the reconstruction of a multidimensional attractor from
the scalar data, and the correlation dimension estimation in dif-
ferent embedding dimensions. In addition, we have developed
an approach for the detailed error analysis in the estimation
procedure of the correlation dimension that enabled us to op-
timize calculation parameters such as the length of time series
and scaling interval. It is described in the Appendix A and it
is of particular interest not only for the processing of the solar
emission data, but also for other applications.

Every case, where we detected saturation in the plot of the
correlation dimension vs. embedding dimension, has been in-

spected by additional procedures to avoid false finite values of
ν. It has been found that, like in many other works dealing with
experimental data, the direct application of the procedure de-
scribed often leads to spurious results. For example, in Fig. 2a,b
we show the plots with clear saturation of the local slope curves.
These plots have been obtained from the time interval indicated
by arrows in Fig. 1c. In this case the saturation disappears after
applying the surrogate or the shuffle data test (Theiler 1990a).
However, we suppose that this saturation is solely defined by non
uniformity of the reconstructed object which originates from the
intermittency-like character of the time series investigated. This
effect is illustrated in Fig. 1d, e, where two enlarged fragments
of the processed interval, taken from its first and second halves,
respectively, are shown. It is clear that the fragment in Fig. 1d
contains temporal structures with much shorter characteristic
periods than the one of Fig. 1e. As the process of reconstructing
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Fig. 2a–d. Analysis of the fragment from
November 17, 1991 indicated by arrows in
Fig. 1c: a and c Local slope d[lnCn(r)]

d[ln r] vs.
ln[Cn(r)] for n = 2, 4, . . . , 20, b and d
correlation dimension νn vs. embedding di-
mension n. Whole fragment (a,b) and the
first half of it (c,d).

the attractor by the method of delays with subsequent correla-
tion dimension analysis is crucially dependent upon the time
delay, and the optimal value of the delay time, in its turn, is
defined by characteristic time scales of the investigated signal,
the dominance of different time scales at different subintervals
may lead to significant systematic errors in the final estimates of
the dimension. This point is confirmed by the fact that after re-
moval of the second half of the time interval from consideration
the saturation disappears, as shown in Fig. 2c,d. So, we come
to the conclusion that, for the time series investigated, there is
no evidence of the presence of chaotic dynamics with dimen-
sion less than 10. The limiting value about 10 is defined by the
length of time series used in our experiments (see Appendix A
and Nerenberg & Essex 1990).

Although our results are consistent with those obtained by
other authors for different wave bands, we would like to note
that the question about the presence of chaos in the processes re-
sponsible for the millisecond pulsations is not closed yet. Some
fundamental problems, still existing in the field of correlation
dimension analysis, such as, for instance, the absence of clear
ideas on how to obtain time series from experimental data which
adequately describe the spatially extended burst-process or the
influence of filtration usually performed in the receiver, do not
allow to make a final conclusion about the dynamic properties
of the studied signals. We now postpone this discussion until
Sect. 6.

4. 1/f processes in the solar emission

In order to get additional information about the nature of the
events studied, we exploit the recently proposed technique of
signal processing based on the notion of wavelets. This approach
is used for accepting or rejecting the hypothesis that the mea-

sured time profiles of the solar emission can be considered as a
1/f process with a background of white noise. Thus, we assume
that the recorded signal S(t) is approximated by

S(t) = f (t) + w(t) . (1a)

F (ω) ∝ σ2
f/ω

γ (1b)

Here f (t) is a flicker-type process with the power spectrum
approximated by the function (1b), σf is the standard deviation
of this component, and γ is the spectral exponent, w(t) is white
Gaussian noise with the dispersion σ2

w. It is important to note
that Eq. (1b) actually defines the magnitude of σf , which is not
the infinite variance of the 1/f process, but the value extracted
from the data, with the frequency spectrum confined within a
definite interval. So defined, σf is dependent upon the time step
and duration of the time series used, and is finite. Such a way of
treating 1/f signals is commonly accepted and directly follows
from their definition as the processes whose empirical power
spectrum has the form (1b) in a wide frequency range.

The problem thus consists in extracting the parameters
γ, σf , and σw from the data. We use for this purpose the variant
of the maximum likelihood estimation for wavelet coefficients
proposed by Wornell & Oppenheim (1992). The details of the
calculation procedure are given in the Appendix B. The algo-
rithm used turned out to be a robust one with respect to such
parameters as the length of time series, the starting time of the
analyzed fragment, and the intensity of the background noise.

An example of our calculations is depicted in Fig. 3. It con-
tains the time profile and dependencies of the indexγ and the sig-
nal to noise ratio (SNR = σ2

f/σ
2
w) upon time. Since the studied

data are essentially non stationary, we estimated the value of γ
overN -point segments of different duration (N = 211, 212, 213).
By moving such segments along the realization or increasing
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Fig. 3. a Time profile of a solar burst of November 17, 1991, at the
frequency 2.85 GHz. b Value of the index γ vs. time. Points correspond
to the centers of analyzed segments: ∆ 4096 points, ◦ 2048 points. c
Values of the signal to noise ratio.

their length, we obtain the dependencies of γ on time or the
length of the time interval. Then, we find the intervals in these
dependencies where the r.m.s. deviation of γ (herefrom σγ) is
less than 10% of the mean value of γ; i.e. the regions with stable
estimate of γ with respect to dilations or translations. We ac-
cepted this as a test of stationarity of the intervals and consider
the value of σγ as a satisfactory estimate of the error of γ during
the given part of a burst. Within the stationary parts of studied
realizations we have also detected rather high value of SNR that
enabled us to conclude that the proposed idealized 1/f model
is an effective one for approximating the data.

The time profile in Fig. 3 has “quiet intervals” where the
intensity of the emission is around the background noise level.
When the flicker component is absent this manifests itself either
as the lack of convergence of the γ estimation algorithm, or the
obtained value of γ is accompanied by a low level of SNR. This
explains the presence of discontinuities in the plot of γ vs. time.

The comparison of the plots obtained at different frequencies
reveals a good correlation of the estimated values of γ for these

time series. It is worth noting that the SNR is somewhat higher at
the frequency 2.85 GHz, that is a technical effect resulting from
different noise levels in the recording channels of the measuring
device. Thus, in such a manner, the procedure described may
be also used for the calibration of equipment.

Thus, the results given above provide a strong evidence that
the so- called millisecond pulsations in the solar emission be-
long to the class of 1/fγ signals. The typical value of γ ob-
tained in our numerical experiments approximately belongs to
the interval [1; 2]. It is necessary to note, that in some cases the
calculated value of γ was much less than 1, say about 0.5. How-
ever, in these occasions the magnitude of SNR was found to be
much lower, compared to the results shown in Fig. 3, which did
not allow us to interpret the data as 1/f signals.

To illustrate the quality of the 1/f model used, we plot in
Fig. 4a the power spectrum of a part of the time profile shown
in Fig. 3, together with the calculated linear fit line. One can see
reasonably good agreement between both curves. In Fig. 4b,c
we show also an example in the time domain, where the case
(b) corresponds to the raw data, whereas (c) is the 1/fγ part of
the time series.

The application of the wavelet technique permits also to per-
form an effective filtration of the background white noise. The
procedure is based on the calculation of wavelet coefficients f̂mn
of the 1/f process from the estimated values of dispersions σ̂2,
σ̂2
w and the exponent γ̂ by using the formula (see Appendix B)

f̂mn =
σ̂22γ̂m

σ̂22γ̂m + σ̂2
w

smn

where smn are wavelet coefficients derived from the application
of the direct wavelet transform to the initial data. Then, us-
ing the inverse transformation we obtain the 1/f signal almost
without the noise component. An example of the application of
such a procedure is shown in Fig. 4, where the original data are
compared to the filtered time series.

5. Pulse model of 1/f processes

The above calculations enable us to make two definite conclu-
sions. First, pulsations of the solar emission during radio bursts,
recorded with millisecond time resolution, can be approximated
by 1/fγ processes with typical values of γ ∈ [1; 2]. Second,
the hypothesis about the low-dimensional deterministic origin
of such processes, as follows from the correlation dimension
analysis, can be rejected. The question naturally arises about
the model capable of producing 1/fγ spectra. We suppose that
a train of random pulses

ξ(t) =
N∑
k=1

akF (t− tk) (2)

may be considered as a good candidate for the modeling of the
observed signals. Here ak and tk are amplitudes and occurrence
times of the pulses, considered to be independent random vari-
ables, F (.) is the shape of an individual pulse. It is well known
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Fig. 4a–c. Quality of the fit of 1/fγ model: a Power spectrum of a part
of the fragment shown in Fig. 3 together with the linear approximation.
b,c Fragment of the event No.6 from Table 1 at the frequency 2.5 GHz:
b original data, c filtered component.

that under rather general assumptions concerning the distribu-
tion functions of ak and tk and suitable choice of the function
F (.), the process (2) belongs to the class of 1/fγ noises (Ry-
tov 1966) at intermediate and high frequencies. From the other
hand, the pulse-type model of the solar emission is one of the
most frequently discussed in the literature (Isliker 1996; Isliker
& Benz 1994; Barrow et al. 1994; Güdel & Benz 1990). In
particular, the direct measurements of the shape of individual
spikes in the frequency range 0.5–1 GHz demonstrate that they
are indeed pulses, with fast front and much slower exponen-

Fig. 5. Typical shape of an individual pulse forβ = 10, α = 1.

tial decay (Güdel & Benz 1990). The parameters defining the
shape of pulses can be determined directly if their characteristic
repetition time τr is greater than the pulse duration τp. How-
ever, if a different situation is met, i.e. the pulses overlap, that
is presumably the case for our data, then it appears impossi-
ble to measure the characteristic times of the pulses by using
conventional techniques.

Several approaches have currently been discussed for ex-
plaining the origin of pulsed structures in the solar emission.
The pulsed radiation may appear, for example, due to the pulsed
character of the injection of electrons into the solar magneto-
sphere. The generation of electron bunches may be related, in its
turn, to the sudden rupture of electric current filaments in mag-
netic arches, resulting in the acceleration of groups of electrons
(Parker 1979; Alfvén, 1981).

If to accept the process (2) as a working model, one can
obtain some characteristic statistical properties of the pulsed
emission, such as the time scale of pulse duration, the average
repetition time, and the typical pulse amplitude. To determine
these parameters in the solar emission we have carried out a
series of numerical experiments with computer generated se-
quences of pulses of various shapes and characteristic times.
We use the wavelet transformation with subsequent maximum
likelihood estimation of the spectral index γ for the comparison
of the artificial time series with actual data. The model used
has the evident advantage of giving the possibility to analyti-
cally calculate the main characteristics of the resulting process
of type (2).

It is easy to show that processes with γ ≤ 2 arise if each
pulse from the sequence (2) has, for example, the shape shown
in Fig. 5. It is characterized by the presence of two significantly
different time scales, the pulse front duration τf and decay time
τd. We accept the following approximation for the pulse shape

F (t− tk) = e−α(t−tk) − e−β(t−tk) (3)

with β � α. It is characterized by two parameters: pulse raise
time τf ≈ 1/β, and decay time τd ≈ τp ≈ 1/α. As our calcula-
tions show, the specific functional form used for approximating
the actual pulse shape is not critical for the determination of
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physical parameters of the events. It is easy to show (Rytov
1966) that the power spectrum of the process (2) is given by

S(ω) = 2πn|a|2 (β − α)2

(α2 + ω2)(β2 + ω2)
(4)

where n is the number of pulses per unit time (repetition fre-
quency), |a|2 is the mean square amplitude of the pulses. Note,
that the frequency dependence in (4) is solely defined by the
power spectrum of an individual pulse of the form (3). For the
subsequent analysis we need also the mean value of the process
(2) and its dispersion

ξ(t) = na
β − α

αβ
D(ξ) = na2 (β − α)2

2αβ(α + β)
(5)

where a is the mean value of the pulse amplitude. In Fig. 6 the
examples of realizations generated numerically in accordance
with (2), (3) are given for the cases i) τr > τp and ii) τr � τp.
In our computer experiments we controlled the pulse repetition
time τr by fixing the total observation time T and changing the
number of generated pulses Np. The amplitude of pulses is put
equal to unity, and the occurrence times for each of them are
random variables uniformly distributed over the interval [0; T].
It is clear that in the case i) corresponding to Fig. 6a it is possible
to determine the characteristic time scales of an individual pulse,
whereas for the second situation ii) all the time scales present in
the realization are solely defined by the statistical properties of
the whole sequence of pulses, and individual pulses are visually
unresolved.

In our numerical experiments with solar data the value of γ
was as a rule within the interval [1, 2]. However, one can note
that there are different scaling regions in the power spectrum
(4). The first one is defined by the condition ω � α, where
S(ω) ≈ const and γ ≈ 0. The second subinterval is given by
α � ω � β, where S(ω) ∝ ω−2, with γ ≈ 2, and the third
one where ω � β and γ ≈ 4. It is evident, that if, for example,
α ≤ 2π/T and β ≥ 2π/ts, where ts is the sampling time,
then the value of γ is approximately equal to 2. So, we can
obtain close to 2 magnitude of γ if the frequency interval of our
calculation is

α <
2π
T
≡ ω1 ≤ ω ≤ ω2 ≡ 2π

ts
< β . (6)

To illustrate the interplay between these characteristic time
scales we plot in Fig. 7a schematic of the power spectrum (4)
where three characteristic regions are clearly seen, along with
the frequency interval of our study.

We are now in a position to calculate α, together with other
characteristics, such as the repetition time and the mean value of
the amplitude of pulses. We start by noting that we have never
observed a clear characteristic “knee” in the high-frequency part
of the power spectrum similar to that shown in Fig. 7 in any of
the power spectra obtained from the experimental data. This
means that the value of β lies outside the detectable frequency
range in our experiments, and we can put β = ∞ without intro-
ducing any additional errors. Such a conclusion enables us to get

Fig. 6a and b. Numerically generated time series at β = ∞ and
α = 10(τp = 0.1): a repetition time τr = 0.2, b τr = 0.0125.

Fig. 7. Power spectrum of the process defined by (2), (3) at α = 10,
β = 104.

a one to one correspondence between the value of γ extracted
directly from experimental data, by means of the wavelet trans-
form plus maximum likelihood techniques, and the parameterα
defining the shape of an individual pulse. For this purpose, we
have performed a series of numerical experiments with random
sequences of pulses of equal amplitude and various values of α
and n. These numerically generated time series have been pro-
cessed by the above technique, and for various α and Np ≡ nT
the magnitude of γ has been calculated. It has been found that
γ is only slightly dependent on Np if Np ≥ 100 (which was
always the case for the processed observational data). The re-
sulting curve is shown in Fig. 8, where we plot the dependency
averaged over hundreds of different pulse sequences. So, we
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Fig. 8. Reference curve for finding α values by calculated magnitudes
of γ.

can obtain the value of α by the calculated magnitude of γ by
using the plot of Fig. 8 as a reference curve.

When getting theα−γ plot, we neglect the possible variation
in amplitudes ak and consider the process of the type (2) with
pulses of equal amplitude. This allows us to put a2 = a2 which
introduces not significant error compared to the case of a more
realistic assumption on ak distributed in accordance with the
Rayleigh distribution when

a2

a2 =
4
π

that is not considerably different from unity.
Now let us calculate other characteristics of pulse sequences,

such as the average repetition time and the mean amplitude. We
make use of the expressions for the mathematical expectation
and dispersion of (5) which are for β � α

ξ(t) =
na

α
; D(ξ) =

na2

2α
. (7)

Combining (7) with the value ofα derived from Fig. 8 we obtain
the algebraic equations relatingn anda to the values of ξ(t),D(ξ)
and α which can be directly calculated from the experimental
data and the calibration curve of Fig. 8.

a = 2
D(ξ)
ξ(t)

;n =
αξ(t)

2

2D(ξ)
. (8)

With the help of (8) and Fig. 8 we have carried out the calculation
for solar radio emission data. The results are summarized in the
Table 2 where the pulse durations have been calculated as the
inverse of α values found from Fig. 8.

Let us now dwell upon some major regularities in the cal-
culation results. The pulse durations, equal to the characteristic
decay time 1/α, range from 13 to 500 ms. So, some of the stud-
ied events (the first six in Table 2) are in rather good agreement
with the results reported by Güdel & Benz (1990). The remain-
ing ones have much longer duration. If one assumes that the
pulsed emission is produced by bunches of electrons moving
in the solar corona, then these time intervals may be associated
either with the lifetime of an individual bunch or the time of

Fig. 9 a and b. Intensity (arbitrary units) vs. time for original and cor-
responding artificial time series. Event No. 2 from Table 1: a original,
b artificial.

radiation to the direction of the Earth observer. The variation of
the repetition time is also rather high, from 500 to 0.1 ms, which
corresponds to the repetition frequency from 2 to 8000 Hz.

As the duration of an individual pulse is as a rule greater
than the repetition time, the observed variability in the time
series studied is mainly determined by the statistical effect of
superposition of many stochastically generated pulses. Thus,
the time series typically possess time scales which are not di-
rectly related to the characteristic times of pulsed emission. In
particular, the millisecond pulsations, intensively discussed in
the literature, may be solely the manifestation of the statistical
properties of the overlap of several pulses.

In the present work we have not analyzed in detail the accu-
racy of the estimates obtained for a and n. We performed only
a series of numerical tests to roughly evaluate the associated er-
rors. For every set of parameters found from the data processing
we generated some tens of artificial sequences of pulses with the
same parameters. As one can expect, the error values turn out
to be strongly dependent upon the magnitude of n, and the error
grows with decreasing n. For example, for n < 10, the error is
typically larger than 50%. So, in such cases, the obtained values
of parameters indicate only their orders of magnitude.
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Table 2.

Number of an Frequency Initial Number γ SNR, αγ τp, a, n,
event GHz point of points dB ms SFU pulse/
(see, Table 1) second
2 2.5 900 4096 0.9 31.3 58 17 3.1 5524
2 2.85 900 4096 1.1 27.7 40 25 1.18 7945
5 2.5 9000 4096 1.1 26.0 40 25 29.5 390
5 2.85 9000 4096 1.4 14.2 20 50 109.0 403
5 2.5 9500 1024 1.1 32.4 40 25 33.2 320
5 2.85 9500 1024 0.8 26.8 75 13 73.2 243
5 2.5 1000 2048 1.9 20.2 2 500 97.6 3.3
6 2.5 0 8192 1.7 9.2 6 167 94.7 5.0
6 2.85 0 8192 1.8 14.6 3.5 286 51.4 2.2
7 2.5 900 4096 1.8 12.1 3.5 286 68.1 4.2

Additional support for our model of the solar emission is
given by the numerically generated realizations given in Fig. 9.
Here we plot some of the studied events together with the sim-
ulated time series at the identical values of parameters defining
the pulse shapes and repetition times. Some additive noise has
been added, to keep the signal to noise ratio equal to the value
extracted from the raw data by means of wavelet analysis. In our
view, there is reasonably good agreement between the overall
appearance of the artificial and original data.

6. Discussion and conclusions

There are several fairly independent results in the paper which
may be considered as approximations of real events on the Sun
to different extents. First, we have demonstrated that the stud-
ied mcw-bursts at frequencies 2.5 and 2.85 GHz are not of low-
dimensional deterministic nature. We can interpret this result as
an additional confirmation of some similar conclusions of other
authors (Isliker & Benz 1994). At the same time, we think that
the question of deterministically chaotic vs. stochastic origin
of the measured time series from the solar radiation is not yet
closed. In the calculation procedure of the correlation dimen-
sion, there are several so far unsolved problems which turn out
to be crucial for the final conclusions. For example, the issue of
filtration of the data in the process of a measurement should be
mentioned. It is clear that the filtration, together with a nonlin-
ear transformation (say, in detector) may result in an essential
increase in the estimated dimension value, to the extent where
the deterministic signal can not be distinguished from stochas-
tic noise. This problem is closely related to another one, still
existing in the application of the correlation dimension analysis
to the investigation of spatially variable phenomena, like solar
flares, for example. Usually, the measurements of the radio flux
from the Sun are performed within a definite frequency band,
as the behavior at different frequencies is associated with pro-
cesses in spatially separated regions. It remains unclear how to
construct properly the time series for the correlation dimension
analysis. Whether it should be the output of the detector of a
narrow band receiver, or the frequency band taken into account
must be as wide as possible in order to include all spatial varia-

tions, or a “natural” frequency range associated with the given
phenomenon, has to be investigated.

Another result of the paper consists in the detection of a
1/fγ component in the emission. It is obtained via the well-
defined and justified technique based on wavelet transforma-
tion and maximum likelihood estimation. It is important that
the intensity of 1/fγ signal has been found to be much higher
than the background white noise. The high signal to noise ratio
enables us to make conclusions on the reliability of this result.
At the same time, we would like to note that 1/fγ spectral
component is present only approximately, and only within an
intermediate frequency range defined by the time resolution of
the experimental setup from the side of high frequencies and the
finite duration of observed events from the low frequency one.
It should also be mentioned that the presence of 1/fγ process
in the cases studied does not imply that the only possibility for
their origin is a stochastic noise. Chaotic oscillations can also
lead to the 1/fγ spectral behavior, as it has been shown by Ben-
Mizrachi et al. (1985) or Arecchi & Califano (1987). In such
case, the mechanism producing the 1/fγ shape of the spectrum
may be attributed to intermittency.

We have suggested a pulsed model of the solar emission dur-
ing mcw- bursts which satisfactory reproduces 1/fγ properties
of the measured signals for a specific choice of the shape of an
individual pulse. Such a description is, of course, not a unique
explanation for the 1/fγ character of the measured power spec-
trum and gives only a statistical approximation to the observed
time profiles. The motivation for our approach comes from two
main considerations. First, 1/fγ processes arise as a result of
the superposition of pulses in many physical situations (van der
Ziel 1979). Second, the conjecture about the pulsed nature of so-
lar mcw-emission has been put forward independently in many
other works. Our contribution to this field consists in the proce-
dure developed for extracting the parameters of pulses from the
raw data. The principal difficulty in such kind of a study is that
characteristic time scales of pulses are hidden because of the
substantial overlap of pulses. It is interesting that due to the sta-
tistical character of the process of pulses generation, almost any
time scale appears to be present in the data. Because of this, the
separation of millisecond time scales is not well defined since
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they are not distinguishable from other time scales present in
the data.

The proposed pulsed model also permits one to describe self
consistently the build-up process of the bursts, without making
any additional assumptions about the mechanisms underlying
the initial stage of burst development. In the framework of our
approach, the gradual increase in the mean intensity is mainly
determined by the process of pulses accumulation. That is why
the process of pulse generation starts before the stationary part
in the observed realizations. Along with the pulse duration τp,
which is assumed to be equal to the decay time, there are two
other time scales, the repetition time τr and the rise time of the
pulse τf . Our approach gives satisfactory estimates for τp and
τr, but does not allow us to extract the rise time. So far, only
a very rough estimate of τf is possible which comes simply
from the sampling rate of the measurement. It is clear that in
our model β should be much greater than α, which means that
the typical shape of a pulse is defined by the fast increase and
slow decay phases. Such a shape is consistent with the results
of direct measurements performed by Güdel & Benz (1990) in
another frequency band.

The model is also consistent with some of the physical mech-
anisms of burst generation discussed in the literature. It is now
commonly accepted that the pulsed character of the emission is
related to the particle acceleration in magnetic fields generated
by electric currents in the solar corona. At the same time, the
physical conditions in the emitting region are not well under-
stood. A frequently discussed mechanism is the sudden disrup-
tion of electric current filaments due to plasma instabilities. An-
other possibilities are pulsed injection of electron beams into the
coronal arches, synchronized by magneto hydrodynamic oscil-
lations or nonlinear relaxation oscillations due to wave-particle
interactions. We suppose that the results of our study can be
used in a detailed analysis of some of these mechanisms.

We would also like to note the apparent similarity in 1/fγ

spectral behavior of the studied events with the pulsations of
solar emission of the noise-storm type (Takakura 1959). This
shows that the decimeter and meter pulsations may have similar
properties in spite of considerable differences in characteristic
time scales: decimeter pulsations arise during bursts and last for
about 1 minute, whereas noise storms occur in meter waveband
and have the duration of the order of some weeks, without any
clear relation to flares.

Acknowledgements. V.B. Ryabov acknowledges support from INTAS
(contract INTAS-94-1296) and NATO Science Fellowship. This re-
search was also supported by the International Science Foundation
(grant # U33000). We thank Dr. H. Isliker for a critical reading of the
paper resulted in a substantial improvement of the article, and Prof. P.
Robinson for his helpful comments.

Appendix A: hypercube model and errors of calculations

To evaluate the accuracy of correlation dimension estimates,
the n- dimensional hypercube model is commonly used. It is
assumed in the framework of this model that N points are uni-
formly distributed (in the sense of constant probability density)

over an-dimensional unit cube. Such an approach permits one to
obtain the estimate for two kinds of errors, namely, the system-
atic bias defined by boundary effects and random uncertainties
originating from the finiteness of the number of points N . Al-
though such a model does not take into account a nonuniformity
in the distribution of points, which is always the case in any cal-
culation, it gives a sufficiently exact estimate in the spaces of
dimension less than the correlation dimension of the explored
signal.

The correlation dimension ν was introduced as an exponent
in the power law (Grassberger & Procaccia 1983)

Cn(r) ∼ rν

as r → 0, where Cn(r) is the correlation integral in the n-
dimensional space. For the initial data set, the experimental
time series (signal record) in the form of M discrete scalar
points {xi}(i = 1, 2, . . . ,M ), sampled with the time interval
∆ts, is usually considered. Then, the reconstruction of the n-
dimensional vector signal Yk from the scalar data {xi} is per-
formed. As a result, the set of N = M − mn − 1 points is
defined in the n-dimensional space where m is an integer. The
Packard-Takens procedure is usually used for such a reconstruc-
tion, utilizing the time-delayed x values as the components of
an n- dimensional vector Yk, with the time delay τ = m∆ts

Yk = (xk; xk+m; . . . ;xk+(n−1)m), k = 1, 2, . . . , N

When the process is generated by a dynamical system with small
number of degrees of freedom, the reconstructed object is topo-
logically equivalent (in the sense of equality of fractal dimen-
sion) to the attractor of this system.

The calculation of correlation integrals is subsequently per-
formed in accordance with the formula

Cn(r) =
1
n0

N−q−1∑
i=1

N∑
j=i+1+q

θ
(
r − ||Yi − Yj ||

)
where θ(.) is the Heaviside function, n0 ≈ N 2 is the number of
interpoint distances, q is the integer defining the minimal time
separation between points (Theiler, 1990a), |.| the norm in the
n-dimensional space in the general case defined by

||Yi − Yj || =

[
n∑
k=1

|yik − yjk|γ
]1/γ

where γ is a positive number, yik is the k-th coordinate of the
i-th point. The case of γ = 2 corresponds to the usual Euclidean
distance. νn value is estimated as the slope of a straight line in
the coordinates log[Cn(r)]− log(r).

νn(r) =
d[lnCn(r)]
d[ln(r)]

; ν = lim
r→0
n→∞

νn(r)

By definition, the correlation integral is the probability dis-
tribution function for interpoint distances. If one assumes the
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statistical independence of all the n0 distances, then the mag-
nitude of the error in the estimate of correlation integral can
be derived from the fact that the calculated value C?

n(r0) for
arbitrary r0 is a random variable with the binomial distribution
defined by its mathematical expectation Cn(r0) and dispersion
D = Cn(r0)[1 − Cn(r0)]/n0. If Dn2

0 ≥ 9, the binomial dis-
tribution can be well approximated by the Gaussian one with
the same parameters. This permits one to find the confidence
interval [C (1)

n , C (2)
n ] that covers the value obtained C?

n(r0) with
a probability PC :

C (1,2)
n =

2n0C
?
n(r0) + t2 ± t

√
4n0C+

n(r0)[1− C?
n(r0)] + t2

2(n0 + t2)
(A1)

The parameter t is defined by PC and can be found in refer-
ence tables (e.g. at t = 1, PC = 0.68; at t = 2, PC = 0.95; etc.).
As N � 1, the Eq. (A1) can be considerably simplified, and
the approximate value of the absolute error in the correlation
integral can be easily deduced and taken equal to the half of the
confidence interval [C (1)

n , C (2)
n ]

∆C (R)
n ≡ C (2)

n − C (1)
n

2
≈ t
√
C?
n(r0)

n0
≈ t

√
C?
n(r0)
N

(A2)

As one could expect, the magnitude of the random error de-
creases as 1/N (Theiler 1990b). The relative error ∆Cn/C

?
n(r)

increases with observational resolution.
To evaluate the systematic bias value let us make use of the

expression for the correlation integral obtained by Litvinenko
et al. (1992) for a hypercube

Cn(r) = rn
n∑
k=0

ankr
k, (r < 1)

ank = (−1)k
n!

k!(n−K)!
2π(n−k)/2

(n + k)Γ((n + k)/2)
, (A3)

where Γ(.) is the gamma-function, and distances are assumed
to be Euclidean. For the hypercube considered, the correlation
dimension equals the space dimension n. In formula (A3) all
terms in the sum beginning from k = 1 contribute to the error.
Its magnitude grows with r and tends to zero as r → 0, with

∆C (B)
n = rn

n∑
k=1

ankr
k . (A4)

Consider now how the errors in the correlation integral de-
fined by Eqs. (A2), (A4) influence the νn value. For this purpose
we take the following formula for the dimension estimate

ν?n =
ln[Cn(r2)]− ln[Cn(r1)]

ln r2 − ln r1
(A5)

where r1, and r2 are arbitrary. Since the exact value of νn is
known and equals n, the magnitude of systematic bias can be
estimated as n− ν?n ≡ ∆(B)

ν .

Fig. A1. Minimal error in νn estimate at n = 3 (crosses), 7 (circles),
11 (triangles), 15 (squares) for t = 3.

The contribution from random errors is defined by

∆(R)
ν =

1
ln(r2)− ln(r1)

× ln
[Cn(r2) + ∆C (R)

n (r2)][Cn(r1) + ∆C (R)
n (r1)]

[Cn(r2)−∆C (R)
n (r2)][Cn(r1)−∆C (R)

n (r1)]
(A6)

By virtue of the fact that, with a decrease in r2 and r1, the
random error grows and the systematic one decreases, there
exist optimal values of r2 and r1 at which the total error ∆Σ =
∆(B)
ν +∆(R)

ν is minimal. In Fig. A1 the dependencies are given of
the minimal total error ∆Σ on the embedding space dimension
n at different values of N .

It should be noted that the main contribution to the total er-
ror is made by the systematic bias, and it can reach significant
values, making impossible the reliable detection of the deter-
ministic signal with the dimension larger than 8–10 in the time
series shorter that 105−106. Moreover, the given above value of
errors underestimates the uncertainty, and the restrictions on the
length of time series may turn out to be much more substantial.

Appendix B: wavelet analysis and maximum likelihood es-
timation

The method of obtaining the estimate of the parameters γ, σ2
f ,

and σ2
w has been proposed by Wornell and Oppenheim and is

based on the maximization of the maximum likelihood function
for wavelet coefficients smn of the signal (1). The coefficients are
derived from the orthonormal discrete wavelet transformation.

The wavelet coefficients smn of the process s(t)εL2(R) are
the projections of the function s(t) to the full orthonormal basis
ϕmn (t) in L2(R)

smn =

∞∫
−∞

s(t)ϕmn (t)dt. (B1)

The functions ϕmn (t) are called wavelets and possess the basic
property of being derived from dilations and translations of one
and the same basic wavelet ϕ(t):
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ϕmn (t)=2−m/2ϕ
(
2−mt− n

)
m,nε{. . . ,−2,−1, 0, 1, 2, . . .}′ (B2)

where m is the scaling index, and n is the translation one.
The function ϕ(t) must satisfy certain conditions which are
discussed in detail, for example, by Daubechies (1988). Since
ϕmn (t) constitute a full basis in L2, the process s(t) can be re-
stored by its wavelet coefficients:

s(t) =
∑
m

∑
n

smn ϕ
m
n (t) (B3)

So, the wavelet transformation performs the time-scale decom-
position of the signal s(t). Since we have a discrete and finite
version of the signal S(t) as an input for the processing, it is
convenient to use the theory of multiple scale analysis (Mallat
1989) and discrete wavelet transformation algorithms (Mallat
1989; Rioul & Duhamel 1992) for the computation. To get the
coefficients smn in our work, we use the pyramidal algorithm
(Mallat 1989) which is one of the most efficient numerical al-
gorithms for the discrete wavelet transformation.

Because of the linearity of the wavelet transformation, the
wavelet coefficients smn for the process (1) are also the sum of
two components

smn = fmn + wm
n (B4)

If f (t) is a 1/f process with the power spectrum of the form
Sω ≈ 1/ωγ , the wavelet coefficients constitute a progression
(Wornell 1990, 1991)

Var
(
fmn
)

= σ22mγ , (B5)

where σ2 is the constant, proportional to the signal variance σ2
f ,

and γ is the index of 1/f process. For the variance Var
(
smn
)

=
σ2
m, we have

σ2
m = σ22mγ + σ2

w (B6)

by taking (B5) and the mutual independence of the processes
f (t) and w(t) in (1) into account. It is assumed that the wavelet
coefficients fmn of the 1/f process are independent or have at
most a small correlation in both indexes n and m (Wornell &
Oppenheim 1992; Wornell 1990, 1991). Therefore, if to assume
f (t) andw(t) in (1) to be Gaussian, the estimate of the unknown
parameters σ2, γ, σ2

w in (B6) can be obtained by the maximum
likelihood technique. The logarithmic likelihood function has
the form (Wornell & Oppenheim, 1992)

L
(
smn ;σ2, γ, σ2

w

)
= −1

2

∑
m

n(m)
σ̂2
m

σ2
m

+ ln
(
2πσ2

m

)
(B7)

where σ̂2
m = 1

n(m)

∑
n

(
smn
)

are m calculated variances.
The numerical algorithm for the estimation of the maximum

of the function (B7) may be found in (Wornell & Oppenheim,
1992), and it provides the estimates σ̂2, γ̂, σ̂2

w of the sought-for

parameters. The results obtained with the method of maximum
likelihood are asymptotically stable and robust. The errors may
be calculated from Fisher’s information matrix, which also gives
the lower limit for the variance of the estimates.

From σ̂2, γ̂, σ̂2
w, the wavelet coefficients fmn of the 1/f pro-

cess in (B4) can be found. By using the method of maximum
likelihood we have the following estimate

f̂mn =
σ̂22−mγ̂

σ̂22−mγ̂ + σ̂2
w

smn (B8)

The Eq. (B8) gives the ratio of variance of wavelet coefficients
of the 1/f process to the variance of the coefficients of the
signal s(t) at m-th step of approximation. It can be used for
estimating the efficiency of approximating s(t) with the flicker
noise model, which is accomplished by calculating the signal to
noise ratio, regarding f (t) as the signal in (1). To obtain this es-
timate, we have to evaluate the variance σ2

f of the signal f (t). It
seems natural to use for this purpose the inverse discrete wavelet
transformation of the coefficients (B14), which is a better way
of getting the estimate for σ2

f than, for example, using the mag-
nitude of σ̂2 which is proportional to σ2

f . It is not convenient to
use σ̂2 for computing the σ2

f for two reasons. First, the exact
relation between σ̂2 and σ2

f depends both on absolute values of
an index m and on the shape of the wavelet function. Second,
the maximum likelihood estimate σ̂2 is rather uncertain, due to
the exponential dependence on γ in (B7).

References

Abarbanel H.D.I., Brown R., Sidorowich J.J., Tsimring L.Sh., 1993,
Rev. Mod. Phys. 65, 1331

Alfvén H., 1981, Cosmic plasma. D.Reidel Publ. Co., Dordrdecht, Hol-
land

Arecchi F.T, Califano A., 1987, Europhys. Lett. 3, 5
Aschwanden M.J., 1987, Solar Phys. 111, 113
Barrow C.H., Zarka P., Aubier M.G., 1994, A&A 286, 597
Ben-Mizracchi A., Procaccia I., Rosenberg N., Schmidt A., 1985, Phys.

Rev. A 31, 1830
Benz A.O., Aschwanden M.J., 1991, Characteristics of the impulse

phase of flares. In: Lecture Notes in Physics. IAU Coll., p.133
Daubechies I., 1988, Commun. Pure Appl. Math. 41, 909.
Dennis B.R., Orwig L.E., Kiplinger A.L. (eds.), 1987, Rapid fluctua-

tions in solar flares. NASA Conf. Publ. NASA CP 2449. 1987
Grassberger P., Procaccia I., 1983, Physica 9D, 189
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