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A Nonlinear Approach to Robust Routing Based on
Reinforcement Learning with State Space Compression
and Adaptive Basis Construction

SUMMARY A robust routing algorithm was developed
based on reinforcement learning that uses (1) reward-weighted
principal component analysis, which compresses the state space
of a network with a large number of nodes and eliminates the ad-
verse effects of various types of attacks or disturbance noises, (2)
activity-oriented index allocation, which adaptively constructs a
basis that is used for approximating routing probabilities, and (3)
newly developed control space compression based on a potential
model that reduces the control space for routing probabilities.
This algorithm takes all the network states into account and re-
duces the adverse effects of disturbance noises. The algorithm
thus works well, and the frequencies of causing routing loops and
falling to a local optimum are reduced even if the routing infor-
mation is disturbed.

key words: robust routing, reinforcement learning, multivariate
analysis, function approrimation

1. Introduction

Advances in communications technologies have led not
only to the Internet but also to various types of net-
works such as sensor networks [1] and ad hoc networks
[2]. To enable effective use of these networks, various
dynamic routing algorithms have been developed [1],
[2], [3]. However, dynamic routing problems have not
been solved completely for these networks. This is be-
cause they are essentially equivalent to a large-scale
nonlinear control problem for a time-varying system
that has a great many state variables and control in-
puts. That is, not only traffic but also the network
structure frequently changes, and the routing prob-
lems have a high-dimensional state space and a high-
dimensional control space because the network has a
large number of nodes. As a result, it is difficult to con-
struct an effective mathematical model of the network,
and thus it is almost impossible to obtain the optimum
solution within the allowable time. Secure and robust
routing is also a difficult problem because of the grow-
ing number of attacks for which countermeasures have
not yet been implemented [1].

Reinforcement learning [4] has received much at-
tention because it can handle various types of envi-
ronments without using a mathematical model, and
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many routing algorithms based on reinforcement learn-
ing have been developed [5], [6], [7]. However, all pos-
sible state spaces and control spaces are not handled in
these algorithms because it is very difficult using rein-
forcement learning to handle environments with a high-
dimensional state space and a high-dimensional control
space. Thus, the effectiveness of these algorithms is
limited, and they frequently cause routing loops, which
makes it difficult to find the optimum route. Moreover,
most of these algorithms cannot take the adverse ef-
fects of various types of attacks or disturbance noises
into account.

A robust routing algorithm based on reinforcement
learning that uses three methods has been developed to
solve these problems. The first method is state space
compression based on reward-weighted principal com-
ponent analysis [8], which is used to extract the princi-
pal elements from a large number of state variables and
compress the state space. The second method is adap-
tive basis construction based on activity-oriented index
allocation [9], which is used to update the orthonormal
basis and to approximate a control function. These two
methods are effective for reinforcement learning with a
high-dimensional state space environment. Their use in
combination was investigated, and reinforcement learn-
ing using them is described in Sect. 2. The third
method is newly developed control space compression
based on a potential model described in Sect. 3. It is
used to reduce the control space for routing probabil-
ities and to reduce the frequencies of causing routing
loops and falling to a local optimum. The application
of these three methods to routing problems using a non-
linear approach is described in Sect. 3. Following a de-
scription of the routing algorithm in Sect. 4, it is shown
that the algorithm can identify the approximate opti-
mum route even if there are attacks that disturb the
routing information.

2. Reinforcement Learning in High-Dimensional
Continuous State Space

Two previously developed methods, state space com-
pression [8] and adaptive basis construction [9], are ef-
fective in reinforcement learning for a high-dimensional
state space environment. A structure of reinforcement
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learning that includes both methods was investigated
in detail. The structure is described and its efficiency
is clarified in this section.

2.1 Reinforcement Learning

A system with reinforcement learning [4] is divided into
two parts: agents and an environment. The former
provide control functions, and the latter is the target
system to be controlled. An agent observes the state
and the reward from the environment, updates a control
function accordingly, and outputs a new control input
to the environment. The control function and control
input are referred to as policy and action, respectively.

Consider a discrete-time, continuous-state, continu-

. . def
ous-action environment. Let s = (s1,--+,84,)" be the

state vector, u def (u1,--+,uq,)" be the action vector,
and superscript t denote transposition. An implemen-
tation of the actor-critic method [4], [8], which is used
to perform reinforcement learning, is summarized in
this section. The actor-critic method consists of two
parts: an actor and a critic. Let s; be the state vec-
tor at time ¢t and u; be the action vector at time t.
The actor observes state s; and decides on action wuy,
which is a sample value from the conditional Gaussian
distribution with density p(u;|s;) defined by

du
p(uls) = ] pa(udls), (1)
d=1

where pg(ug|s) is a one-dimensional conditional Gaus-
sian density function with mean pg(s) and standard
deviation o4(s).

The critic observes reward r; and updates pq(s)
and o4(s) so that discount return Ry, defined by

o0
def t
Ry = E Vpr Tt+t/+1,
t'=0

is maximized, where 1, is the discount rate (0 < v, <
1). The values of pg(s) and o4(s) are initially set
so that u; is distributed across the definition domain.
Thus, the critic can learn the relationships among r;, s¢,
and us. As the critic progresses in the learning, pq(s)
and o4(s) are updated so that R; becomes larger. For
1 <d < dy, pa(s) and o4(s) are expressed using the
following linear function approximations:

N
ta(s) o Zfdi@‘(s)’ (2)
1=0 N
0a(8) E himie (Y naii(s)), (3)
=0

where {¢;(s)} is a basis and hjmit(-) is a monotone
increasing function such that 0 < hymie(x) < oo for
—o00 < 2 < oo. The update of pg(s) and o4(s) can
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be done by adjusting parameters &y, - - -, gy, and 740,
-++, Nan using temporal-difference (TD) learning and
the steepest descent method.

When the dimension of s; is high, N, the degree
of expansion of u4(s) and o4(s), is too large to per-
form reinforcement learning. This problem, which is
the so-called “curse of dimensionality,” is the most se-
rious problem of function approximation and reinforce-
ment learning for a high-dimensional state space.

2.2 State Space Compression Based on Reward-
Weighted Principal Component Analysis

Let us consider an environment with a high-dimensional
state space. In such a case, it is difficult to perform re-
inforcement learning, as explained in Sect. 2.1. A state
space compression method based on reward-weighted
principal component analysis (RWPCA) [8], which was
developed to solve such problems, is summarized in this
section.

Let x; fof (1,4, -, Tayt)® be the state vector of
the environment at time ¢. The most simple solution
is to perform principal component analysis (PCA) [10],
which can extract the principal components from ;.
However, it is not always true that elements in x; with
large dynamics contribute to increasing the reward.
Some elements may be disturbance noises or attacks,
which adversely affect the system [1].

To eliminate such adverse effects from x; and to
construct principal axes that contribute to increasing
the reward, the resolution of x4+, resq, is introduced,
which represents the importance of x4,; with respect to
increasing the reward. Consider the following multiple
regression equations [10]:

dl] dX
Tarr = Pao+ Y Bugartiase + P BeaarTart, (4)

a'=1 d=1
dy dx

re41 = bo + Z buata;t + Z bdast, (5)
=1 d=1

where bo, bug, bxd, Bdos Buga» and Pxgq are the partial
regression coefficients. Because it is clear that |byg] is
proportional to the effect of x4+ on the reward and that
|Bugar| is proportional to the controllability of z4.44+1 by
Ugrit, T€Sq 1S set so that resy is proportional to |byy| and
wudd/ |

Let x, (déf (resixi, -+, resa,xa,+)") be the state
vector weighted by the resolution and e, ; be the dth
eigen vector obtained by PCA with respect to x,. Us-

ing principal axes matrix M def [er1, s €rq ], the
reward-weighted principal axes matrix M, can be de-
fined by

M,

RW

diag[resd]MR]‘lis, (6)

where dy < dy and [X]%* denotes the matrix that com-
prises the 1st- to dsth-column vector in matrix X. State
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s; used by reinforcement learning is set as
St = MRWtCEt. (7)

Because M., is composed of ds eigen vectors that affect
the reward significantly, we not only can compress the
dy-dimensional state, x;, to the ds-dimensional state,
s, but also eliminate the adverse effects of disturbance
noises from x; [8].

2.3 Adaptive Basis Construction Based on Activity-
Oriented Index Allocation

Let {K(s,k)} be a multi-dimensional orthonormal ba-

sis and k < (k1,- -, ka,)'; k is referred to as the index
vector. Let ¢;(s) be defined as
def
¢1(8) = K(Sa k)v (8)
and basis {¢;(s)} be a subset of {K(s,k)}, where i

is referred to as the index of the basis [9]. Let Dk

denote a set of k that is used in Eq. (8). When

Dy def {0,1,---, Ny} and D is given by the Cartesian

product as Dk = Ty X ThaX,---, XDy, , the relation-
ship between k and i can be obtained using

i=S ka I N (9)

N=T[Ng+1)—1. (10)

It is clear from Eq. (10) that N geometrically in-
creases with respect to ds. Thus, if D, is given by
the Cartesian product of T),; and dg is large, N is too
large to perform reinforcement learning. If IV is small,
we may not obtain the required accuracy. This is the
curse of dimensionality.

Adaptive basis construction is another solution to
this problem. Various methods have been developed
for adaptively constructing a basis function, most of
which use the radial basis function (RBF) [4] and ad-
just the parameters of RBF [11]. However, orthonor-
mal bases are superior to non-orthogonal bases such as
RBF from the viewpoint of the trade-off between N
and the approximation error [12]. Thus, the activity-
oriented index allocation method (AIA) [9] is used here;
it adaptively constructs an orthonormal basis in accor-
dance with the changes in the environment so that re-
inforcement learning works well for a given N.

Let us introduce an index table, IDXT', defined by
an (N + 1) x ds matrix to express the relationship be-
tween ¢ and k. An example IDXT', when T is given by
the Cartesian product, ds = 2, N; = 1, and Ny = 2, is
shown in Fig. 1-a. Consider k1, - - -, kq, to be the coordi-
nates with respect to a rectangular coordinate system,
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Fig.1 Index table IDXT and index ¢ in k-coordinate system.

which is referred to as the k-coordinate system. Index
1 in Fig. 1-a is expressed in the k-coordinate system, as
shown in Fig. 1-b.

Although the accuracies of Eqs. (2) and (3) in-
crease as N increases, we cannot use an arbitrarily
large value of N. Therefore, when N and {K(s,k)}
are given, it is necessary to identify the elements in
{K(s,k)} that affect the accuracy. From this view-
point, the importance of an element in {K(s,k)} is
proportional to ||£]|, defined by

du
lel, > €3, (11)
d=1

and ATA updates IDXT so that ||€||, for 0 <i < N are
as large as possible. Let [|£]]; be the smallest one, [|][;,
be the largest one, the index vector corresponding ig be
ko, and the index vector corresponding i; be k;. AIA
replaces the elements in the igth row of IDXT, kg, with
konew. Here, konew is the index vector closest to ki
in the search space, which is a conical space spreading
in the k; direction in the k-coordinate system. Note
that the index vectors that are already in IDXT are
eliminated from the search space. An example of the
search space when ¢; = 5 is shown by the shaded area
in Fig. 1-b. An example of IDXT after updating when
1o = 4 and ¢; = 5 is shown in Fig. 2-a. The shaded area
in Fig. 2-a is the updated index vector, konew. Index ig
in the k-coordinate system after updating is shown by
the shaded area in Fig. 2-b.

With repeated updating of IDXT, basis {¢;(s)}
changes so that it contains significant elements in
{K(s,k)}. Therefore, the accuracies of the function
approximations in Egs. (2) and (3) increase as the critic
progresses in the learning.

2.4 Actor-Critic Method with State Space Compres-
sion and Adaptive Basis Construction

Because state space compression based on RWPCA and
adaptive basis construction based on AIA are effective
[8], [9], applying both methods to actor-critic meth-
ods should be more effective. An actor-critic method
with RWPCA and AIA is presented here. Figure 3
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Fig.2 Index table IDXT and index ¢ in k-coordinate system
after updating.

shows its structure. Although it is strikingly similar to
neural networks in its structure, there are many differ-
ences.

e The role of each stage is clear. The first stage per-

forms RWPCA (unsupervised learning) using Eq. (7)

to compress the state of the environment (x;) to a

reward-weighted principal component vector (s;) and

to eliminate the adverse effects of disturbance noises.

The second stage maps the principal component vec-

tor to the feature vector ((¢o(st), -+, dn(st))") us-

ing basis {¢;(s)} constructed by ATA, as described in

Sect. 2.3. The third and fourth stages compose the

actor-critic method described in Sect. 2.1. This is

like the role sharing between reinforcement learning

and unsupervised learning in our brain [13].

The structure is based on unsupervised learning and

reinforcement learning, which can also perform su-

pervised learning. Thus, it can cope with a wider
variety of problems than neural networks based on
supervised or unsupervised learning.

The outputs from the second stage are orthogonal

and are not redundant while those in neural networks

are not orthogonal.

e The three methods with different aims (RWPCA in
the first stage, AIA in the the second stage, and the
actor-critic method in the third stage) complement
each other. Moreover, they work consistently be-
cause not only the actor-critic method but also the
other methods take the immediate reward into ac-
count.

This actor-critic method with RWPCA and AIA
was applied to routing problems, and its performance
was evaluated (Sect. 4).

3. Nonlinear Approach to Routing Problems

Network routing problems are generally high-dimensio-
nal and nonlinear. That is, the dimension of the state
is at least the number of nodes and that of the control
input is at least the sum of the output links from the
nodes. Thus, it is almost impossible to take all the
state space and control space into account. As a result,
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| Environment |

Fig.3 Structure of actor-critic method with state space com-
pression and adaptive basis construction.

routing algorithms frequently cause routing loops, and
the optimum route cannot always be found.

A potential model and a nonlinear approach are
thus proposed to solve these problems. The former is
used to reduce the control space. The latter is used to
apply the potential model and the actor-critic method
with RWPCA and ATA, which can reduce the state
space, to network routing problems.

3.1 Network Model and Routing Problems

Consider a packet network with a destination node and
Ngn source nodes. Nodes 1 to Ngy are the source
nodes, and the (Ngy + 1)th-node is the destination
node. They are distributed in a two-dimensional field
like sensor networks [1] or ad hoc networks [2]. Nany
nodes in the neighborhood of the ¢th node, which are
referred to as the adjacent nodes of the fth node, are
connected to the ¢th node. Let ng; be the node number
of the jth adjacent node of the ¢th node. Each node
has a buffer that can store b packets, the link that con-
nects two nodes is two-way, and the channel capacity
of each way is C.

To simplify performance evaluation, the following
example network is used. The source nodes are ar-
ranged in a rectangular lattice at regular intervals in
the (X,Y)-plane, where 0 < X < Xjax, 0 <Y < Yiax,
and the (X, Y)-plane denotes a field in which the source
and destination nodes are allocated. Let (X,,Y,) be
the coordinates of the destination node and (Xg¢, Yyr)
be the coordinates of the £th source node. The destina-
tion node is located at (X,,Y,) = (Xmax/2,0) and has
two links. Thus, the maximum packet arrival rate at
the destination node is 2C. This is a simple model of a
sensor network [1]. A network structure with Ngny = 16
is shown in Fig. 4. For the performance evaluation in
Sect. 4, four regions (Si, Sg, Sz, and Sy), into which the
(X,Y)-plane is divided by the lines X = Xyax/2 and
Y = Yiax/2, are introduced, as shown in Fig. 4.

The ¢th source node generates packets at rate Ay.
Let pem be the routing probability (0 < pgy, < 1) from
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Y-axis

: - X-axis

Fig.4 Example network structure (Ngn = 16).

the /th to the mth node. Packets generated and re-
ceived at the ¢th source node are stored once in the
buffer and sent to the adjacent nodes on the basis of
Dem- Let g be the queue length of the buffer in the
£th node and e, be the packet loss rate at the £th node.
In packet networks, the quality of communication (de-
lay time and error ratio) becomes worse as ¢, and ey
increase. Thus, > ¢, and ey should be sufficiently
small even if >~ Ay is large. However, ¢, and e, increase
with >~ Ap while they are affected by pg,,. Thus, the
aim of the routing problem is to take this trade-off into
account and to determine py,, so that > g, and > ey
are as small as possible. The environment of the net-
work routing problems considered in this paper is the
packet network described above. Let Az, qr:¢, and egy
be the values of Ay, q¢, and e, at time ¢, respectively.
Because Agt, geo;t, and eg,; are dependent on each other
in packet networks, the reward for routing problems is
defined using only ep,:

Nsn

def
e = — Zezt. (12)
=1

3.2 Potential Model for Routing Problems

The dimension of the control space spanned by all the
routing probabilities is Zf,\]:slN Nane. Thus, a rout-
ing algorithm has to search for a solution in a high-
dimensional control space when Ngy, the number of
nodes in the network, is large. As a result, the solution
almost always falls to a local optimum.

The following potential function is presented for
reducing the control space and solving this problem.

pot(X,Y, Xp, Ys) = exp(—c((X—X,)* + (Y=Y;,)?))
—exp(—c((X—XB)* + (Y-Y)?)), (13)

where ¢ is a constant (set to 0.1 here) and (Xp,Yp)
is the coordinate that gives the minimum value of
the potential function. The potential function for
(XB,Ys) =(1.0,8.0) and (X,,Y,) = (5.0,0.0) is shown
in Fig. 5 as an example. Routing probability pg,, for
m € {€,np1,Mp2, -+ NeNsx, } 1S given by
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Y-axis
Fig.5 Example potential function.
maX(pOgnI;O_t Pot:0) i Apot, > 0
— l
Ptm =91 if Apot,=0 and m ="/ (14)

0 if Apot,=0 and m#/,
where Apot, o Z;V:Alm

def
= pOt(Xsea }/sea XB; YB)

The potential function denotes relative routing
probabilities. This means that packets are transmitted
from a node with a lower potential to one with a higher
potential. On the basis of the potential function in Eq.
(5), the routing probabilities ps,, for all nodes are deter-
mined by setting only two variables (Xp,Yg). Thus,
by applying Eqs. (13) and (14) to routing problems and
setting control input u to (Xg, Yg)?, we can reduce the

max(pot,,, — potg,0) and pot,

dimension of the control space from ZéV:SIN Nany to 2.
3.3 Nonlinear Approach to Robust Routing

Consider a time-invariant environment in which A, for
V¢ is a constant. In this environment, gy and ep;; con-
verge to constants if the routing probabilities are fixed.
Thus, the routing problem is reduced to the problem
of maximizing lim; .., r; with respect to the routing
matrix:

max lim 7, (15)
where P is the Ngn X (Ngn + 1)-routing matrix with
elements Py, .

Next let us consider an environment in which the
Ag;¢ vary with time. Let x; be a state variable com-
prised of some or all of Ap;, g, and ey, and let the
routing matrix be the control input. The dynamic rout-
ing problem is thus reduced to a nonlinear control prob-
lem:

max Ry
Py (16)
Ti41 = fnet(mta Pt)a

where R, is the discount return defined by Eq. (2), P,
is the routing matrix at time ¢, and fre(-) denotes the
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environment.

The dimension of the control space in Egs. (15)
and (16) is ZévzslN Nane, which is too large to obtain
the optimum route, as mentioned above. By applying
Eq. (14) to Egs. (15) and (16) and setting control input
u to (Xg,Ys)?, we obtain the following equations:

max tlgrolo Tt (17)
maxR;
Uy (18)
Tiy1 = fret (Tt up).

Using these equations, we can search for the opti-
mum route in the two-dimensional control space. Al-
though the dimension of the state space in these equa-
tions remains high, we can use the actor-critic method
with RWPCA and AIA, which works well in a high-
dimensional state space, to solve them. The perfor-
mance of the routing algorithms with the potential
model and the actor-critic method with RWPCA and
ATA is presented in the next section.

4. Performance Evaluation
4.1 Static Routing for Time-Invariant Environment

Three routing strategies for a time-invariant environ-
ment were examined using the network model described
in Sect. 3.1 to evaluate the effect of the potential model
presented in Sect. 3.2.

e Steepest descent method for routing matrix: In a
time-invariant environment, it is not necessary to use
reinforcement learning because the problem can be
solved, as shown in Eq. (15), by searching for the
value of the routing matrix that provides the max-
imum value of lim; .., ;. Thus, a simple nonlinear
programming technique can be applied to the prob-
lem. In this paper, the steepest descent method is
used because it is used in the actor-critic method to
update &g; and ng; in Egs. (2) and (3).

e Steepest descent method for potential model: Equa-
tion(17), which is based on the potential model de-
scribed in Sect. 3.2, is solved using the steepest de-
scent method.

e Thorough search method for routing matrix: For pg,,
€ {0,1}, the optimum solution for Eq. (15) is ob-
tained by conducting a thorough search for all com-
binations of pg,.

Let A def Zévzsi“ A¢ be the total packet generation
rate and Ay be constant. Set A\, of the source nodes in
S1 and Sy to 1.9 X Aun/Nsn, A¢ of the source nodes
in Sy and S to 0.1 X Aan/Nsn, Aan to 3.6, C to 2,
and b to 32. If py,, are appropriately determined, it
is clear that most packets generated at the nodes in
S1 are transmitted through S, and S3 and that the
packets generated at the nodes in S, are transmitted
to the destination node without passing through other
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---O0--- : Steepest descent method for routing matrix
1074 —o— : Steepest descent method for potential model
—v— : Thorough search method for routing matrix

Packet loss ratio

0 10 20 3 40 50 60 70
Number of source nodes N

Fig. 6 Effect of potential model on static routing.

regions. It is also clear that all packets arrive at the

destination node without any loss because Zé\g\' Ae =

Aall = 3.6 < 2C.

The packet loss ratios obtained using the three
strategies for a time-invariant environment are shown
in Fig. 6. The thorough search method provided the op-
timum solution although it worked only for Ngn < 36
because of the calculation cost. The steepest descent
method for the routing matrix worked well (i.e., the
packet loss ratio was sufficiently small) for Ngny = 4,
but the solutions for Ngn > 16 were not optimum. This
is because the dimension of the control space is too high
when Ngy is large, so the method causes routing loops
and falls to a local optimum. While the packet loss ratio
of the steepest descent method for the potential model
was not optimum for Ngny = 4, those for Ngy > 16
were sufficiently small. This is because the dimension
of its solution control space remains two independent of
Ngsn. Thus, the potential model is effective for solving
the routing problem except when Ngy is small.

4.2 Dynamic Routing for Time-Varying Environment

Consider a time-varying environment in which two re-
gions are randomly selected from Si, S3, S3, and Sy
at periodic intervals of 7). The A, of the nodes
in the selected regions are set to 1.9 x Aa/Nsn, the
Ag;¢ of the nodes in the other two regions are set to
0.1 X Aan/Nsn, Aan is set to 3.6, C to 2, b to 32, and
Ty to 100. Although Ay varies at intervals of Ty, P;
can be determined without any packet loss because
éV:ST Ae;t = Aan = 3.6 < 2C in the same manner as
in the time-invariant environment. To evaluate the ro-
bustness of routing algorithms, a disturbance noise was
introduced at a node adjacent to the destination node.
The noise was a random variable from 0 to buffer length
b and changed with period Ty,oise. It prevented the other
nodes from observing the queue length of the adjacent
node.
Because the potential model is effective, as shown
in Sect. 4.1, the effect of RWPCA and that of AIA
were evaluated using the following three routing strate-
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104
---A--- Actor-critic method with ATA
—-0-- : Actor-critic method with RPCA
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Fig.7 Effect of RWPCA and AIA on packet loss ratio (Ngn =
16a Tnoisc = 8)

gies based on the actor-critic method. They observe

def t .
Ty = (Al;tv qiits s )\NSN;t7 QNSN;t) ) and rOUtlng prOb'

lems are solved using Eq. (18), which is based on the

potential model. Routing matrix P, is determined by

Eq. (14). Q-routing [5] was also evaluated to isolate the

effect of RWPCA and AIA.

e Actor-critic method with RWPCA and ATA: As sho-
wn in Sect. 2.4, RWPCA transforms x; to s; us-
ing Eq. (7) and basis {¢;(s)} is constructed by AIA.
Control input w is determined using the actor-critic
method.

e Actor-critic method with RWPCA [8]: This strategy
does not use ATA. Basis {¢;(s)} is constructed on
the basis of Dk given by the Cartesian product as
D = Dy X Do X, -, xRy, and Ny is determined
on the basis of the standard deviation in s;.

e Actor-critic method with ATA [9]: This strategy does
not use RWPCA and thus sets x; to s;.

e Q-routing: Q-routing [5] is the most well-known rout-
ing method based on reinforcement learning. It as-
signs a Q-value to each adjacent node on the basis
of Q-learning [4] and selects the route using the Q-
value. The Q-value of each node is updated with
step size (, on the basis of the queue length of the
adjacent nodes.

The three routing algorithms based on the actor-
critic method were evaluated for Ngn = 16, Thoise = 8,
and various values of N in an environment with distur-
bance noise. As shown in Fig. 7, the packet loss ratios
obtained were sufficiently small when N was 256, and
those obtained by the actor-critic method with RW-
PCA and AIA were the smallest except when N was
16. These results show that the adverse effect of dis-
turbance noise can be effectively eliminated by using
both RWPCA and ATA except when N = 16 compared
with using only RWPCA or ATA. This is because the
states of all the nodes are taken into account, RWPCA
and ATA complement each other, and they work con-
sistently by taking the immediate reward into account.

In an environment with disturbance noise, the
packet loss ratio was evaluated for Ngy = 16, N = 256,

1739
10°4
0= Q-routing (§Q=10*‘)
---v--- 1 Q-routing (I;Q:lO'z)
1
g
E
Z
2
3
M .
%—3 3 / e . -1
A 1009/ L ---0--- : Q-routing (§Qz3><10)
,/O D/ ---0--- : Q-routing (CQ:I.O)
::O / —O— : Actor-critic method with RPCA and AIA
0.0 foo-o0—-o— . —O
0 10 20 30
Period of disturbance noise T,
Fig.8 Effect of disturbance noise on packet loss ratio (Ngn =
16, N = 256).
10°4
---0=+ : Q-routing (§ Q:10"‘)
---v--- 1 Q-routing (CQ=10'2)
1
S
g
w
172}
S
3 I
2 10° A o=+ : Qrouting (,=3x10")
o / ---0-=- & Qurouting (§,=1.0)
1/ / —o—:Actorcritic method with RPCA and ATA
0.0 foo-d—o— . —O
0 10 20 30
Period of disturbance noise T _
Fig.9 Effect of disturbance noise on packet loss ratio for dif-

ferent traffic pattern (Ngny = 16, N = 256).

and various values of Tjise to investigate the robust-
ness of Q-routing and the effectiveness of the actor-
critic method with RWPCA and AIA. Figure 8 shows
that the packet loss ratios obtained by the actor-critic
method with RWPCA and AIA were sufficiently small
regardless of Thoise although the packet loss ratios of
Q-routing increased as Tyise increased. Figure 9 shows
the packet loss ratios evaluated for a traffic pattern
different than that used for Fig. 8 Ngn/2 source
nodes were randomly selected, their \y; were set to
1.9 x Aan/Ngn, and the Ag,; of the other source nodes
were set to 0.1 X Ay/Ngn. Figure 9 shows that the
actor-critic method with RWPCA and ATA was robust
in the same manner as in Fig. 8. The reason Q-routing
was affected by the disturbance noise is that Q-routing
directly uses the queue length, which was disturbed by
the noise. In contrast, the actor-critic method with
RWPCA and AIA eliminates the effect of noise from
the state by using RWPCA and ATA. We can thus con-
clude that the actor-critic method with RWPCA and
ATA is robust and able to cope with various traffic pat-
terns.

Figure 10 shows the packet loss ratio for N = 256
and various values of Ngn when a disturbance noise was
not introduced. The packet loss ratios were sufficiently
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small when 16 < Ngn < 36 except for Q-routing with
Cq = 10~3. However, when Ngy was large, the packet
loss ratios of both algorithms were higher; that is, it is
difficult to keep the packet loss ratio small when Ngn
is large, apparently because the packets are stored in
more nodes when Ngy is large, making it more difficult
to control them. Although the packet loss ratio can be
reduced by increasing buffer length b of each node, this
is problematic because it causes a longer delay time.
The potential function in Eq. (13) is very simple
and has only one maximum value and one minimum
value. This is because it was made for a network that
has only one destination node and packet traffic that is
not complicated. Thus, it cannot express the compli-
cated packet traffic that arises in a network when Ngn
is large. This problem could be solved by improving the
potential function, which remains for a future study.

5. Conclusion

Routing problems were formulated as nonlinear con-
trol problems, and the high-dimensional control space
of the problem was reduced to a two-dimensional con-
trol space by using newly developed control space com-
pression based on a potential model. The state space
of the problem was compressed using reward-weighted
principal component analysis, and a basis for approx-
imating a control function was adaptively constructed
using activity-oriented index allocation. A routing al-
gorithm based on these methods and the actor-critic
method can efficiently search for an approximate opti-
mum route even if the routing information is disturbed.
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