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Abstract

A stochastic numerical method is developed for simulation of flows and particle
transport in a 2D layer of porous medium. The hydraulic conductivity is assumed to
be a random field of a given statistical structure, the flow is modeled in the layer with
prescribed boundary conditions. Numerical experiments are carried out by solving
the Darcy equation for each sample of the hydraulic conductivity by a direct solver
for sparse matrices, and tracking Lagrangian trajectories in the simulated flow. We
present and analyze different Eulerian and Lagrangian statistical characteristics of
the flow such as transverse and longitudinal velocity correlation functions, longitu-
dinal dispersion coefficient, and the mean displacement of Lagrangian trajectories.
We discuss the effect of long-range correlations of the longitudinal velocities which
we have found in our numerical simulations. The related anomalous diffusion is also
analyzed.

1 Introduction

The main difficulty in evaluation of pollutant transport in porous medium (e.g., in aquifers,
filters, bio-materials, e.g., see [2], [7], [24]) is the extreme heterogeneity of the media. This is
a classical situation where there is a lack of knowledge about the local details of the spatial
structure, but without this structure details, it is no chance to describe the large scale behavior.
A natural approach is based on a stochastic description, where the heterogeneities are modeled
as random fields with given statistical properties (e.g., see [1]-[4]). In hydrology the stochastic
approach is often used for the flow analysis in saturated zone (e.g., see [6], [22]).

In the flow simulation through a porous medium, one uses in the hydrology an Ansatz experimen-
tally well supported that the hydraulic conductivity can be considered as a random field with a
lognormal distribution. To analyze the Darcy equation with the random hydraulic conductivity
in the case when its intensity of fluctuations is small, one applies the small perturbation method.
We are aware of two versions of this method. The first version deals mainly with the means
and variances, thus estimating only some deterministic scales of the process see (e.g., see [2],
[7]). The second version takes into account the spectral structure of the random solution, and
thus it is able to construct samples of the random solutions and to evaluate practically arbitrary
statistical characteristics of the solution (e.g., see [18], [21]). But since this approach works under
the assumption of small fluctuation intensities, only a Gaussian approximation to the solution
field is possible.

The case of large fluctuations is much more difficult, and can be treated by solving numerically the
Darcy equation, say, by a finite difference or finite element methods, often called also stochastic
finite element methods, e.g., see [1], [25], [8].

We mention also the polynomial chaos expansion approach, a method in which it is attempted
to reduce the original stochastic boundary value problem to a series of deterministic equations
(e.g., see [27], [28], [29]). This method however is applicable only if a small number of terms in
the series expansion is sufficient for a good approximation which is rather rare in practice.
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Important class of this type of methods is the Karhunen-Loève expansion. Generally, it is
computational demanding because it requires to solve numerically eigen-value problems of high
dimension. However in some practically interesting cases models with analytically solvable eigen-
value problem for the correlation operator can be obtained. This gives then a very efficient
numerical method because as a rule, the K-L expansions are fast convergent. An exactly solvable
case for the viscous flow simulation with random excitations of the velocities prescribed on the
boundary is given in the recent paper by K. Sabelfeld [17].

We develop in the present paper a direct stochastic simulation method which consists in a direct
numerical construction of an ensemble of solutions to the Darcy equation with the relevant sam-
ples of the hydraulic conductivity. The random field of the hydraulic conductivity is simulated by
the Monte Carlo Randomization Spectral algorithm, the finite-difference system approximating
the Darcy equation is solved by a direct sparse matrix inversion, and the transport of particles
is modeled by tracking the Lagrangian trajectories in the simulated velocity samples. It should
be noted that the direct inversion methods are very robust in this problem where the equation
coefficients are highly heterogeneous, but the main problem is to find an efficient solver for the
relevant linear systems. This is done in the present paper by using the sparse structure of the
relevant finite-difference system of equations.

The problem of evaluation of the diffusion regime is computationally very intensive since the
transport should be simulated for thousands of correlation length scales (e.g., see [21], [5]).
Therefore the problem was studied only with the first order approximation ([21], [4], [23]) which
is applicable under strong restrictions of small fluctuations of the log conductivity. In the long-
range transport most interesting is the case of large fluctuations. To our knowledge, there is
only one study [5] where the general case of large fluctuations was considered, and the long-
range transport was studied numerically for more than thousands of correlation length scales. In
this study, a 2D flow was simulated by an iterative multigrid method where the transport was
evaluated up to 1638 correlation length scales, but in this model, the dispersion coefficient was
defined by averaging over a discrete cloud of particles moving in one fixed sample of the flow.
This is different from the averaging over an ensemble of Lagrangian trajectories starting from a
fixed point. As to the interrelation of these two definitions, see e.g., [21], [5], [23].

We focus on the existence of a diffusion regime in the longitudinal dispersion, and study the long-
range transport and mixing of particles in layers with a length of thousands of log conductivity
correlation lengths. We present a numerical analysis of different Eulerian and Lagrangian statis-
tical characteristics of the flow such as transverse and longitudinal velocity correlation functions,
the diffusion coefficient, the mean displacement of Lagrangian particles, and the probability
density function of the transverse Lagrangian coordinate.

2 Simulation of flow and transport

2.1 Setting of the problem

We deal in this paper with the flow simulation and particle transport in a porous 2D layer
which is considered as a rectangular domain D = [0, Lx] × [0, Ly] of finite size. The hydraulic
conductivity K(x), x = (x, y) ∈ D is assumed to be a lognormal random field with a given
correlation function.

We consider a stationary flow in a saturated porous media governed by the Darcy law

q(x) = θ(x)v(x) = −K(x)∇(φ(x)) (1)
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where q is the Darcy velocity, or the specific discharge, v is the pore velocity, θ, the porosity, φ,
the hydraulic head φ = z + p/(gρ), ρ, the fluid density, g, the standard gravity, z is the elevation
height. Fixed head conditions at the left and right boundaries and no flow conditions on the
up and bottom boundaries of the layer D are assumed. This leads to a uni-directional velocity
trend (mean velocity ) which is horizontal, i.e., parallel to the OX axis. Therefore we call x a
longitudinal, or horizontal, and y transverse, or vertical coordinates, respectively.

The functions θ and K are the key parameters of the flow. Experimental measurements show
a high heterogeneous behavior of K in space with the following remarkable property: when
considering K as a random field, its distribution is well approximated by the log-normal law
(e.g., see [2], [7]). Therefore, in models, the hydraulic log conductivity Y = ln K is commonly
considered as a statistically homogeneous random field. Let us denote the fluctuation of Y by
Y ′ = Y − 〈Y 〉, and let BY (r) = 〈Y ′(x + r)Y ′(x)〉 be the correlation function of the hydraulic
log conductivity. Here and throughout the paper the angle brackets stand for the expectation
over the relevant distribution of the random field Y , and the prime sign stands to indicate the
fluctuation part.

The porosity θ is considered in some models also as a random field. However its variability is
generally much smaller than that of K, and it is assumed to be constant in our study.

2.2 The Darcy equation

We will assume that there are no sources or sinkes in D, so ∇ · q = 0. Since the porosity is
constant, the velocity field v(x) = (u(x, y), v(x, y))) obeys

∂u

∂x
+

∂v

∂y
= ∇ · v(x) = ∇ ·

(
q(x)

θ

)
= 0, (2)

i.e., the flow is divergence free. Thus the coupled system (1)-(2) yields the second order elliptic
equation for the hydraulic head:

∂

∂x

(
K(x, y)

∂φ

∂x

)
+

∂

∂y

(
K(x, y)

∂φ

∂y

)
= 0 . (3)

Concerning the behaviour at the boundaries, we assume no flow boundary conditions on the up
and bottom borders of the layer D, i.e.,

∂φ

∂y
(x, 0) =

∂φ

∂y
(x,Ly) = 0, x ∈ (0, Lx). (4)

On the left and right ends of the layer D, fixed head boundary conditions are prescribed

φ(0, y) = 0, φ(Lx, y) = −J · Lx, y ∈ (0, Ly), (5)

where J > 0 is a dimensionless constant.

We assume throughout the paper that the log conductivity Y (x) = ln K(x) is an isotropic
Gaussian random field. Two typical variants of correlation functions BY (r) = 〈Y ′(x + r)Y ′(x)〉
are: the Gaussian correlation function (e.g., see [26], [4]):

BY (r) = σ2
Y exp

(
− |r|2

λ2

)
, (6)
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and the exponential correlation function [5], [19]:

BY (r) = σ2
Y exp

(
− |r|

λ

)
, (7)

where λ is the log conductivity correlation length scale.

It is convenient to choose the following dimensionless variables

x̃ =
x
λ

, ṽ =
θv

KGJ
, φ̃ =

φ

Jλ
,

where KG = e〈Y 〉.

Hence, ṽ(x̃) solves the problem (2)-(5), where the following changes have do be made: x is
changed with x̃, take J = 1, change Lx and Ly with the dimensionless variables L̃x = Lx/λ
and L̃y = Ly/λ; in addition, the log conductivity field Y should be taken so that 〈Y 〉 = 0 with
the correlation function (6) or (7) having the dimensionless correlation length scale λ = 1. The
dimensional velocity is then recovered by

v(x) =
KGJ

θ
ṽ(x/λ). (8)

Note that when dealing with the transport problem, we track the particles by solving the evolu-
tion equation where we choose the dimensionless time

t̃ =
KGJ

λθ
t.

Remark. In what follows we use throughout the paper the dimensionless variables only, so we
omit the sign ·̃ .

2.3 Finite-difference approximation

Let us introduce a uniform grid in our domain D by xi = (i − 1)hx, i = 1, ..., Nx, hx =
Lx/(Nx − 1); yj = (j − 1)hy, j = 1, ..., Ny , hy = Ly/(Ny − 1). Denote xi+1/2 = xi + hx/2,
i = 1, ..., Nx − 1; yj+1/2 = yj + hy/2, j = 1, ..., Ny − 1. We use the following conservative
finite-difference approximation of the Darcy equation (1)-(2) with the boundary conditions (4
)-(5) [20]:

ui+1/2, j − ui−1/2, j

hx
+

vi, j+1/2 − vi, j−1/2

hy
= 0, i = 2, ..., nx, j = 2, ..., ny ; (9)

ui+1/2, j − ui−1/2, j

hx
+

2 vi, j+1/2

hy
= 0, i = 2, ..., nx; j = 1; (10)

ui+1/2, j − ui−1/2, j

hx
− 2 vi, j−1/2

hy
= 0, i = 2, ..., nx; j = Ny; (11)

φ1, j = 0, φNx, j = −J Lx, j = 1, ..., Ny , (12)
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where we use the notation nx = Nx − 1, ny = Ny − 1. Here the velocity components in the grid
points (xi+1/2, yj) and (xi, yj+1/2) are

ui+1/2, j = −Ki+1/2, j
φi+1, j − φi, j

hx
, i = 1, ..., nx; j = 1, ..., Ny ; (13)

vi, j+1/2 = −Ki, j+1/2
φi, j+1 − φi, j

hy
, i = 1, ..., Nx; j = 1, ..., ny (14)

where φij are the values of the head function φ in the points (xi, yj), and Ki+1/2, j and Ki, j+1/2

are the values of the hydraulic conductivity in points (xi+1/2, yj) and (xi, yj+1/2), respectively.
Substituting of the equations (13) and (14) in the system (9)- (12) yields a system of N = Nx Ny

linear equations for the unknowns φij .

It should be noted that generally, when the hydraulic conductivity and the head function are
smooth enough, the solution φi, j of the system of linear equations (9)-(12) approximates the
true solution φ(xi, yj) to within the approximation error of order O(h2

x + h2
y). In practical

problems however, when the hydraulic conductivity field is not smooth enough, the order of this
approximation can be lower.

The obtained linear system of equations (9)-(12) can be solved by different iteration methods,
e.g., the conjugate gradient methods, SOR, Krylov subspace projections, etc. However in this
problem, the iterative methods are generally slowly convergent (e.g., see [5], [26]). Iterative
methods of multigrid type are often efficient, well-suited to regular grids, but sensitive to con-
dition number. Note that the condition number in this problem is rapidly increasing with the
increase of the variance of the log conductivity, e.g., see [5].

Direct methods are highly efficient but require a large memory space. We however use the sparse
structure of the system of equations, and apply direct linear solvers for sparse matrices.

The choice of the discretization step h is not trivial since it depends on the smoothness of samples
of the coefficient K. For instance, the case when the correlation function of the log conductivity
is Gaussian, the samples are smooth enough, and our experiments show that the step h = 0.2
is already enough to ensure that the relative error is about of 1% when calculating the one-
and two-point statistical characteristics of the Eulerian velocity. For the exponential correlation
function, the step should be taken at least two times less, to provide the same accuracy.

To construct the sample functions of the hydraulic conductivity we use the Randomization spec-
tral method (e.g., see [10], [13], [16]), thus the simulation formula for the hydraulic conductivity
is K(x, y) = KG eY ′(x,y) where Y ′(x, y) is simulated according to the formula (24) presented in
the Appendix,

Y ′(x, y) =
σY√
n0

n0∑
j=1

(ξj cos θ̃j + ξ′j sin θ̃j) , (15)

where θ̃j =
√

2(ηjx + η′jy). In calculations, n0, the number of retained terms in (15) should be
chosen carefully since this choice has an essential impact on the simulation results. Indeed, if n0

is not large enough, the distribution of the simulated random field Y ′ may considerably deviate
from the Gaussian one. In addition, this leads to ignoring the influence of small spatial scales
of Y ′. Of course, this impact strongly depends on the statistical characteristics calculated. For
instance, for simple functions like the mean velocity and its variance n0 can be taken relatively
small; in our calculations we conclude that n0 = 10 and n0 = 40 lead to practically the same
results. However for more complicated functions, n0 should be taken much larger; for example,
for the velocity correlation function we have taken n0 equal to 100 and higher.
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3 Simulation results

In this section we present the simulation results for the Eulerian and Lagrangian statistical
characteristics, and compare our results with the data reported in [26]. We recall that the
problem is considered in the dimensionless form where the correlation length scale equals to 1.

3.1 The Eulerian velocity

Let v(x, y) = (u(x, y), v(x, y)) be the Eulerian velocity field. We calculate the mean velocities
〈u〉, 〈v〉, and the variances σ2

u = 〈u′2〉 = 〈u2〉 − 〈u〉2, σ2
v = 〈v′2〉 = 〈v2〉 − 〈v〉2, where u′ =

u − 〈u〉, v′ = v − 〈v〉, and

B1(x, x′; y) = 〈u′(x + x′, y)u′(x′, y)〉, B2(x, x′; y) = 〈v′(x + x′, y)v′(x′, y)〉,
are the Eulerian correlation functions of the longitudinal and transverse velocities, respectively.

We assume that the layer is long enough, so in our calculations we have taken Lx ∼ 1000, and
Ly ∼ 1 − 32. The flow can be obviously considered as approximately horizontally homogeneous
in a core region which is defined as D0 = {(x, y) ∈ D : a ≤ x ≤ Lx − a}, where a is about of
several units. In our calculations we have found that a = 10 was sufficient to have the horizontal
homogeneity in the core region D0.

In the core region, we have calculated the mean velocities and the variances. So due to homogene-
ity, these functions depend only on the transverse coordinate y. This property was conveniently
used in our calculations to improve the accuracy of evaluation of the averages by taking an ad-
ditional space averaging over the longitudinal direction in the core region, from a to Lx − a. So
the total statistical error is proportional to (NMC Lx)−1/2 where NMC is the number of Monte
Carlo samples.

In the case of correlation functions, the horizontal homogeneity means that Bi(x, x + ρ; y) =
Bi(ρ, y), i.e., horizontally, the correlation functions depend on the difference ρ = x − x′. The
space averaging is made here a bit more complicated. For a fixed ρ, the sum is taken over the
two sets of points, a, a + 1, . . . , a + np − 1, and a + ρ, a + 1 + ρ, . . . , a + np − 1 + ρ as follows:

1
np

np−1∑
i=0

u(a + i, y)u(a + i + ρ, y), where np is an integer number which we usually take equal

to Lx/10. The statistical error of such an averaging combined with the ensemble averaging is
proportional to (np NMC)−1/2.

3.2 Lagrangian statistical characteristics

The Lagrangian statistical characteristics are the most important functions in the analysis of
the particle transport. In particular, often used are the mean Lagrangian velocity of a particle,
the dispersion coefficient, the Lagrangian correlation function of the longitudinal and transverse
velocities, and the Lagrangian probability density function (pdf) of the particle displacement, so
in our calculations, we focus on these quantities.

Let us define these statistical characteristics. We denote by x0 the starting coordinate of a fluid
particle whose Lagrangian trajectory is X(t;x0), t ≥ 0, and V(t;x0) = (Vx(t;x0), Vy(t;x0)) =
u(X(t;x0)) is the Lagrangian velocity. By definition, X(t;x0) solves the following problem

dX
dt

= u(X), t > 0; X(0) = x0. (16)
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The Lagrangian processes X(t;x0) and (Vx(t;x0), Vy(t;x0)) depend on the starting point x0, i.e.,
on x0 = (x0, y0). As to the boundary conditions, the trajectory is reflected on the left and right
boundaries of the core region, while the upper and bottom boundaries are not reachable by the
trajectories due to the no flow condition. In the numerical scheme, the Lagrangian trajectory
can reach the upper and bottom boundaries. In these cases, we take a mirror reflection into
the core region. For solving the equation (16), we used a simple Euler scheme: X(t + Δt) =
X(t) + u(X(t))Δt where the integration step was taken equal to Δt = h/10. To calculate the
velocities for points inside the mesh we use a bilinear interpolation (e.g., see [15]).

Now we define the main Lagrangian statistical characteristics we deal with in this paper. Let
(x0, y0) be the starting point of a Lagrangian trajectory. In what follows we denote by X(t;x0, y0)
the longitudinal coordinate of the Lagrangian trajectory X(t;x0, y0). The mean displacement
in the longitudinal direction is 〈ΔX(t;x0, y0)〉 = 〈X(t;x0, y0)〉 − x0, and 〈X ′2(t;x0, y0)〉 is its
variance. The longitudinal dispersion coefficient, k(t;x0, y0) is defined as

k(t;x0, y0) =
1
2

d 〈X ′2(t;x0, y0)〉
dt

= 〈X ′(t;x0, y0) · V ′
x(t;x0, y0)〉.

The Lagrangian correlation functions of the longitudinal and transverse velocities are denoted
by B

(L)
1 (t;x0, y0) = 〈V ′

x(t;x0, y0)V ′
x(0;x0, y0)〉, and

B
(L)
2 (t;x0, y0) = 〈V ′

y(t;x0, y0)V ′
y(0;x0, y0)〉, respectively. Here X ′ = X −〈X〉, and V ′ = V −〈V 〉.

We consider also the normalized Lagrangian correlation functions:

R
(L)
1 (t;x0, y0) =

B
(L)
1 (t;x0, y0)(〈V ′2

x (t;x0, y0)〉〈V ′2
x (0;x0, y0)〉

)1/2
, (17)

R
(L)
2 (t;x0, y0) =

B
(L)
2 (t;x0, y0)(〈V ′2

y (t;x0, y0)〉〈V ′2
y (0;x0, y0)〉

)1/2
, (18)

and the Lagrangian pdf pL(y; t, x0, y0) defined as the probability density that a Lagrangian
particle started at the point y0 reaches the point y after the travel time t.

Note that due to the horizontal homogeneity, the above Lagrangian statistical characteristics do
not depend on the longitudinal coordinate of the starting position x0 in the core region. So it
remains the dependence on the transverse coordinate of the starting position y0, and we will
write k(t; y0) for the dispersion coefficient, pL(y; t, y0) for the Lagrangian pdf of the transverse
coordinate, and R

(L)
i (t; y0) for the normalized Lagrangian correlation functions.

Here we also used the additional averaging over the set of Lagrangian trajectories with starting
points whose longitudinal coordinates are a, a+1, . . . , a+np−1, with a fixed vertical coordinate.

3.3 Validation

To validate our stochastic simulation algorithm we first check the conservation law, and then
compare our calculations with the results due to Trefry et al. [26]. In all calculations, except
for the simulations presented in the last two figures, (Figures 11 and 12) we used the Gaussian
correlation function (6).

So let us start with the conservation law which has the form of continuity equation (2). From
this equation and the no flow conditions on the upper and lower borders of D one can derive the
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following important property: the cross averaged longitudinal velocity

Ux(x) =
1
Ly

∫ Ly

0
u(x, y) dy

is constant. The value of this constant depends on the parameters Lx, Ly, σY . It may also vary
from one sample to another.

The finite-difference counterpart of Ux is:

Uh,i =
1
Ly

(hy

2
ui+1/2, 1 +

Ny−1∑
j=2

hy ui+1/2, j +
hy

2
ui+1/2, Ny

)
, i = 1, ..., Nx − 1.

Indeed, multiplying the equation (9) by hy, and the equations (10)-(11) by hy/2, and then taking
the sum, we get Uh,i = Uh,i−1, i = 2, ..., Nx − 1, hence Uh,i does not depend on i. Thus the
numerically calculated cross averaged longitudinal fluxes should be all equal, to within the error
of calculations. The quadrature formula we used to calculate Uh,i is based on the trapezoidal rule,
which conserves exactly the cross averaged finite-difference flux Uh,i. Notice that the rectangular
quadrature formula does not have this nice property.

This property was used to validate our numerical scheme. In our calculations, the quantities
Uh,i, i = 1, . . . , Nx − 1, which theoretically should be all equal, were varying around the mean to
within a relative error of order 10−10. The high accuracy is explained by the fact that we have
used a direct solver for sparse systems.

Another validation can be carried out on the basis that the mean transverse velocity 〈v〉 should
be zero. Indeed, from the continuity equation (2) we get

∂

∂x
〈u(x, y)〉 +

∂

∂y
〈v(x, y)〉 = 0. (19)

In the core region D0, the mean 〈u(x, y)〉 does not depend on x, hence from (19) it follows that
〈v(x, y)〉 = Const. From this, using the no flow condition v(x, 0) = 0 we conclude that the
constant in the right-hand side of the last equality vanishes, i.e., 〈v(x, y)〉 = 0 for all y ∈ [0, Ly].
Our calculations confirm this conclusion with high accuracy.

Let us present a comparison of our calculations with the results reported in [26] where the flow
was simulated in the region D = [0, 256]× [0, 64], the grid step was taken as h = hx = hy = 1/8.
In Figure 1 we show the mean longitudinal velocity 〈u〉 (left panel) and the root mean square
(rms) σu (right panel), as functions of y, for different values of σY : σY = 0.5, 1,

√
2.5, 2. The

number of the Monte Carlo samples was NMC = 1000, combined with the space averaging along
the longitudinal direction, in the interval [10, 246]. In Figure 2 (left panel) we plot σv, rms of
the transverse velocity, versus the transverse coordinate y.

These results clearly show that the flow is not only horizontally homogeneous in the core region,
but homogeneous with respect to both coordinates in an inner part of the core region D1 ⊂ D0

which is separated from the upper and bottom boundaries by a distance of several correlation
lengths. Notice that the region D1 where the flow is homogeneous becomes thinner (in the
vertical direction) as σY increases. It is also seen that if we take the region D1 by separating at
the distance of about 10 correlation lengths, the homogeneity is ensured for all considered values
of σv. This makes possible to evaluate the statistical characteristics 〈u〉, σ2

u, and σ2
v with high

accuracy by taking both the spatial averaging over D1 and ensemble averaging over NMC = 1000
samples.
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Figure 1: The mean longitudinal velocity 〈u〉 (left panel), and its root mean square σu (right
panel) versus the transverse coordinate y, for four values of σY . Sizes: Lx = 256, Ly = 64, grid
step h = 1/8, MC statistics NMC = 1000.

The results presented in the Figure 1 and in the left panel of Figure 2 show that the mean velocity
is constant in the inner core region D1 while the relevant rms σu and σv are monotonically
increasing as σY increases.

In the right panel of Figure 2 we plot the mean longitudinal velocity versus σ2
Y (which theo-

retically should be a constant), obtained by our calculations, and compared against the results
reported in [26] which we present in a nondimensional form. Both results confirm that the mean
velocity is practically independent of the variance of the log conductivity. More stable results of
our calculations are explained by the method of combined averaging we used. Analogous com-
parisons are also given in Figure 3 for σ2

u and σ2
v . Thus our calculations are in a good agreement

with the results of [26].

3.4 Eulerian statistical characteristics of the velocity field

We are dealing with the problem of long-range transport in the horizontally stretched layer
where the length is about 1000 correlation lengths, so the typical values chosen were Lx ∼
1000, Ly ∼ 1 − 10. We study the flow in the core region D0 where the velocity field can
be considered horizontally homogeneous. It is therefore to expect a diffusion regime in the
longitudinal direction, so we focus on the longitudinal correlations of the flow field.

It should be mentioned that to ensure that we have reached stable results we have carried out the
simulations for Lx = 200, 500, 1000, and 6000. The results show that the statistical characteristics
of the flow were practically not changing after Lx reaches 1000, so we have fixed Lx = 1000 in
our calculations.

We present now the calculation results for the vertical profiles of the mean longitudinal ve-
locity, the root mean squares of the transverse and longitudinal velocities, and the longitu-
dinal behaviour of the normalized correlation functions of the Eulerian velocities defined by
Ri(ρ; y) = Bi(ρ; y)/Bi(0; y).
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of the transverse coordinate y for different values of σY ; Lx = 1000, Ly = 2, h = 0.1, NMC =
2500.

In Figure 4 we plot the mean longitudinal velocity 〈u〉 (left panel) and the rms σu (right panel)
as functions of the transverse coordinate y, for different values of σY , and Lx = 1000, Ly = 2.

From these curves we can make the following conclusions: (1) the velocity field is inhomogeneous
in the vertical direction, (2) the mean velocity 〈u〉 is decreasing as the variance of the log
conductivity is increasing (the same for the rms, see the right panel of Figure 4). The same
behaviour for σv is seen in the left panel of Figure 5. For large values of σY (see the curves for
σY = 4) the transverse profiles of all these curves are getting more uniform. Note that when
compared to the relevant results calculated for a thick layer (see the comments to the Figures 1,
2) we notice that the character of the transmission of the horizontal flux is different: for thick
layers, the mean flux is almost constant, while for the thin layer it is decresaing with the increase
of the log conductivity variance. Note also that thick and thin layers show an opposite character
of the velocity fluctuations: in thick layers, the fluctuations increase with the increase of σY ,
while in thin layers, they are decreasing. This can be seen by comparing the results of Figure 1,
right panel, and Figure 2, left panel, with the results presented in the Figure 4, right panel, and
Figure 5, left panel. It should be however noticed that when we turn to the fluctuation intensity
Iu = σu/〈u〉, then for both thin and thick layers, Iu increases as σY increases.

In the right panel of Figure 5 the normalized correlation functions of the longitudinal R1(ρ; y)
and transverse velocity R2(ρ; y) are plotted versus the longitudinal displacement ρ, along the
line y = 1. A remarkable property in the behaviour of R1(ρ; y) is that the correlations do not
vanish, and tend to a constant which is increasing with the increase of the variance of the log
conductivity. It should be noted that this long-range correlation property holds also for other
values of y, but at y = 1 it is more pronounced. This can be explained by the conservation law
which ensures that the cross averaged longitudinal velocity Ux does not depend on x, hence they
are 100% correlated. The vanishing correlations however would imply that the corresponding
cross-averaged velocities would also tend to decorrelate which is not the case.

Another feature of R2(ρ; y) structure is the appearance of negative correlations which indicate
the vertical exchange of vortices of a horizontal size compared with the correlation length scale of
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Figure 5: Left panel: rms of transverse velocity, σv as a function of the transverse coordinate y for
different values of σY . Right panel: normalized Eulerian correlation function of the longitudinal
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longitudinal displacement ρ along the line y = 1, for different values of σY ; Lx = 1000, Ly = 2,
h = 0.1, NMC = 2500.

log conductivity. Note that with the increase of the variance of Y the intensity of this exchange
decreases.

So far we have presented the results for Ly = 2. We have made the above reported simulations
also for layers with Ly = 1, 4, 8 and 32, where we have taken h = 0.1, and the number of Monte
Carlo samples was NMC = 2500 except for the case Ly = 32 where h = 0.2 and NMC = 1500 were
chosen. In Figure 6 we present the mean longitudinal velocity (left panel) and the relevant rms
(right panel) for different values of Ly versus y/Ly. It is clearly seen that with the increase of the
vertical length Ly there appears a region in the center of the flow where it becomes homogeneous.
Moreover, with the increase of Ly, the mean velocity tends to its asymptotic value equal to 1.

It is interesting to notice that the increase of rms’ σu and σv with the increase of Ly (see Figure
6, right panel, and Figure 7, left panel) to the asymptotic value is stabilized after Ly = 32,
compare the relevant curves in Figure 1, right panel, and Figure 2, left panel.

As to the function R1(ρ; y), it is seen from the Figure 7, right panel, that the asymptotic values
of the correlation function at large values of ρ become smaller as Ly increases. The transverse
correlation function R2(ρ; y) is also presented in this panel. It is seen that with the increase of
Ly the minimal values increase while the interval of the negative correlations is broadened, and
the functions R2(ρ; y) tend to one stable curve.

3.5 Lagrangian statistical characteristics of the velocity field

In this section we deal with the transport problem where the main focus is the question weather
there is a diffusion regime in the longitudinal direction. To study the vertical mixing of the flow
we analyze the probability distribution functions of the transverse coordinate of the Lagrangian
trajectories.
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is plotted to compare the curves with the linear law. The sizes Lx = 1000, Ly = 2, step h = 0.1,
and NMC = 2500.

In Figure 8, left panel, the mean longitudinal displacements are presented as functions of the
travel time for different values of σY (boldface curves). For comparison, thin lines of the form
〈Ux〉 t are shown. Notice that the tangent of the boldface curves is the mean of the Lagrangian
longitudinal velocity, and of the thin lines, it is the mean of the cross averaged Eulerian velocity.
From these plots we see the well expected linear law for the mean displacement thus the mean
Lagrangian longitudinal velocity becomes independent of time. More interesting is the effect
that the mean Lagrangian longitudinal velocity is larger than the mean of the cross averaged
Eulerian velocity 〈Ux〉. This can be explained by the transverse inhomogeneity of the flow. It
should be added that this effect becomes less pronounced for thicker layers. Notice by the way
that the curve 〈ΔX(t)〉 for σY = 1 on the Figure 8, left panel, has a small region at the end of
the time interval where it starts to deviate from the straight line. This is explained by the fact
that in the case σY = 1 the particles reach the right end of the core region faster, and then, they
are stopped there.

Let us discuss now the problem of an existence of a diffusion regime in the longitudinal dispersion.
The existence of a diffusion regime means that there is a time interval, which is assumed to be
large enough, where the dispersion 〈X ′2(t)〉 becomes a linear function of time. This in turn
implies that the dispersion coefficient k(t) tends to a constant value.

Let us recall the well known formula which relates the dispersion coefficient k(t) and the La-
grangian correlation function of the velocity [14]

k(t) =

t∫
0

B
(L)
1 (τ) dτ = B

(L)
1 (0)

t∫
0

R
(L)
1 (τ) dτ (20)

which is true if the Lagrangian velocity is a stationary random process.
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Figure 9: Left panel: The normalized Lagrangian correlation function of the longitudinal ve-
locity, R

(L)
1 (t; y0) (non marked curves) and the transverse velocity, R

(L)
2 (t; y0) (marked curves)

for y0 = 1 as functions of travel time t, for different values of σY ; The sizes Lx = 1000, Ly = 2,
step h = 0.1, and NMC = 2500. Right panel: the longitudinal dispersion coefficient k(t; y0) for
y0 = 1, as a function of travel time t; Lx = 6000, Ly = 2, σY = 1, h = 0.1, NMC = 1000.

We deal with a quite long time interval, (0, 103), so the longitudinal Lagrangian velocity Vx(t)
can be considered as an approximately stationary process, of course, beginning from a time t1
which is large enough. So keeping in mind the relation (20), let us analyze the curves in Figure 8,
right panel, and Figure 9, left panel. In Figure 8, right panel, we present the dispersion coefficient
k(t) as a function of time for three different values of σY . The behaviour of these curves is not
simple to explain: for σY = 2 and σY = 4 there is no evidence of a diffusion regime; for σY = 1
there appears a time interval (2, 20) where k(t) is little varying, but for t > 20 it starts again to
increase. Let us give a possible explanation of this interesting behaviour.

The monotonic increase of k(t) for σY = 4 on the whole time interval can be understood when
looking at the relevant curve R

(L)
1 in Figure 9, left panel. Indeed, the long and heavy tail of R

(L)
1

gives a considerable contribution to the integral in the representation (20). The same is true for
the case σY = 2 but the contribution is smaller since the tail of R

(L)
1 is not so heavy. As to the

case σY = 1, it is of particular interest. Here the tail is relatively light, and during a certain time
the correlations are almost not increasing, but after the time instant t ∼ 20 the contribution
leads to a new increasing of the correlations.

Note that the discussed long and heavy tails of R
(L)
1 and the features of the dependence of R

(L)
1 on

σY are similar to that of the correlation R1 of the Eulerian velocity. The main difference, which
is important for transport phenomena, is that the tails of R

(L)
1 are lying higher that the tails of

R1 which implies that the long correlations have a more pronounced impact on the Lagrangian
correlations and hence on the long-range transport.

One may suspect that the time interval (0, 103) was not large enough to ensure an appearing of the
diffusion regime. We have made calculations of k(t) for the time interval (0, 5500), see Figure 9,
right panel. These results confirm that there is no diffusion regime in the longitudinal dispersion.
So we conclude that we deal here with an anomalous diffusion which is in the considered case a
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Figure 10: The probability density function of the transverse coordinate, pL(y; t, y0) for y0 = 1
(boldface line) and y0 = 0.2 (thin line), for the travel time t = 400 (left panel) and t = 800 (right
panel) as functions of the transverse coordinate y, for different values of σY ; the sizes Lx = 1000,
Ly = 2, step h = 0.1, and NMC = 2500.

superdiffusion with the dependence 〈X ′2(t)〉 ∼ c t2 true for the time intervals large enough.

Let us discuss the transverse mixing of particles in the layer. It is convenient to characterize
the transverse mixing by the transition probability density function pL(y; t, y0) which is the
probability density that a Lagrangian particle started at the point y0 reaches the point y after
the travel time t. In Figure 10 we plot the function pL(y; t, y0) for two starting positions, y0 = 0.2
(close to the bottom), and y0 = 1 (center of the layer), for the time t = 400 (left panel), and
t = 800 (right panel).

It is reasonable to say that the particles become well mixed in the transverse direction if the
function pL(y; t, y0) looses its dependence on y0, i.e., the Lagrangian particle has forgotten its
starting position y0. So in our calculations, it means that the pdf’s of our two particles become
almost coincident. From the Figure 10, left panel, it is seen that to the time t = 400, for σY = 2,
the mixing is obvious, while for σY = 1 and σY = 4, this is not the case. To the time t = 800,
the mixing happens for σY = 1, too, but for σY = 4 there is no mixing.

A remarkable feature of the steady state density pL is that unexpectedly, it is not uniform over
the transverse coordinate, even for large values of σY . Recall that we discuss here the case of a
thin layer of height LY = 2. For larger heights the density PL becomes more uniform, and the
mixing happens after longer times.

Another interesting property of the transverse dispersion is that the probability to reach the
upper or the lower boundary of the layer is very small, and the smaller the value of σY , the
smaller is this probability. In a sense, the particles are pushed away from the boundaries. This
is related to the transverse profiles of σv near the boundaries. There is an analogy with the
turbulent boundary layer flows where there is a vertical exchange increasing with the distance to
the boundary which leads to a non-zero vertical Lagrangian velocity pushing the particles away
from the boundary (e.g., see [14]).
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As already mentioned we have carried out calculations also for larger heights of the layer. We
were expecting to observe a diffusion regime as the layer height increases. This is generally true
but even for heights up to 32 there was no clear diffusion regime, see Figure 11, left panel. For
larger heights, the time interval where the diffusion regime exists is getting broader.

Finally we mention that all the above simulation results were carried out for the Gaussian
correlation function of Y , but the main conclusions were confirmed in our simulation with the
exponential correlation function. In Figure 11, right panel, we show a comparison of k(t) for these
two cases. It is seen that the difference is quite small. As to the mean velocities, variances, and
the correlation functions, (see the comparison presented in Figure 12), there are some differences
which however do not change our conclusions about the anomalous diffusion and long-range
correlations.

In conclusion let us give the information on the computer resources used in our calculations.
The simulations have been carried out on the Workstation HP BL 480C with processor Dual
Core Intel Xeon 5160 (3Ghz) and 24 Gbt RAM. A characteristic time of the flow simulation for
a grid of 106 nodes has taken about of 1 minute. The cost of the method is linear increasing
with the number of grid points, and for a fixed grid, it does not depend on the variance of the
log conductivity.

4 Appendix: some simulation formulae

4.1 Simulation of log conductivity

Assume that a zero mean homogeneous Gaussian random field u(x) is defined by its spectral
function F (k), k ∈ IRd, so that the correlation function is

B(r) = 〈u(x + r)u(x)〉 =
∫

IRd

ei2πk·rF (k) dk.

The field u(x) can be simulated by the Randomization spectral method (e.g., see [10], [13], [16]):

un0(x) =
1√
n0

n0∑
j=1

(
F (kj)
p(kj)

)1/2 {
ξj cos θj + ξ′j sin θj

}
(21)

where ξj, ξ′j, j = 1, ..., n0 are mutually independent, standard Gaussian random variables, kj , j =
1, ..., n0 are mutually independent and independent of ξj, ξ′j, j = 1, ..., n0, d-dimensional random
vectors with the common pdf p(k) (satisfying the consistency condition p(k) > 0 if F (k) > 0),
θj = 2π(kj · x).

It is worth mentioning that for any n0, the random field un0(x) has the desired target correlation
function. To ensure that the distributions of the random field un0(x) are close to Gaussian one
should take n0 large enough.

It is to mention that in (21), one can take arbitrary random variables ξj , ξ′j , j = 1, ..., n0 satisfying
the conditions

〈ξj〉 = 〈ξ′j〉 = 0, 〈ξiξj〉 = 〈ξ′iξ′j〉 = δij , 〈ξiξ
′
j〉 = 0.

For example one can choose ξj =
√

2 cos(2πγj), ξ′j = −√
2 sin(2πγj), where γj, j = 1, ..., n0 are

independent random variables uniformly distributed in [0, 1]. Then (21) can be represented in a
form which is probably more conventional in the hydrogeology community (e.g., see [4])

un0(x) =
√

2√
n0

n0∑
j=1

(
F (kj)
p(kj)

)1/2

· cos(θj + 2πγj). (22)

18



If we apply the commonly used simulation formulae for two independent standard gaussian
variables

ξ =
√

−2 ln γ cos(2πγ′), ξ′ =
√

−2 ln γ sin(2πγ′),

where γ and γ′ are two independent random variables uniformly distributed on [0, 1], then the
representation (21) can be simplified to

un0(x) =
1√
n0

n0∑
j=1

(
F (kj)
p(kj)

)1/2

· √−2 ln γj cos(θj + 2πγ′
j). (23)

Here γj , γ′
j , j = 1, ..., n0 are mutually independent and independent of kj , j = 1, ..., n0, random

variables uniformly distributed on [0, 1].

It should be mentioned that the one-point distribution of the random field model (23) is exactly
Gaussian for any integer n0. Notice that the model (22) has not this nice property.

4.2 Simulation of random fields with the Gaussian correlation
function

Let u(x1, x2) be a 2D zero mean homogeneous Gaussian random function with the Gaussian
correlation function

B(r1, r2) = σ2e−r2
1/λ2

1−r2
2/λ2

2 .

Here λi, i = 1, 2 are the correlation lengths, σ2 is the variance. Then the spectral function of
the field reads

F (k1, k2) = σ2πλ1λ2e
−π2(k2

1λ2
1+k2

2λ2
2).

Let us choose
p(k) = πλ1λ2e

−π2(k2
1λ2

1+k2
2λ2

2).

Then the random vector k with this pdf can be simulated by the formula k = 1√
2π

(η/λ1, η′/λ2)
where η, η′ are independent standard Gaussian random variables. Therefore,

u(x1, x2) =
σ√
n0

n0∑
j=1

(ξj cos θ̃j + ξ′j sin θ̃j) (24)

where θ̃j =
√

2(ηjx1/λ1 + η′jx2/λ2), and ξj, ξ′j , ηj , η′j, (j = 1, ..., n0) are mutually independent
standard Gaussian random variables.

4.3 Simulation of random fields with the exponential correlation
function

The correlation function B(x, ρ) = σ2e−(x2/λ2
1+ρ2/λ2

2)1/2 has the spectral function

F (k1, k2) = 2πλ1λ2σ
2
(
1 + (2πk1λ1)2 + (2πk2λ2)2

)−3/2
.

If we take p(k) = 2πλ1λ2

(
1 + (2πk1λ1)2 + (2πk2λ2)2

)−3/2
, then the simulation formula for

k = (k1, k2) with this probability density function is k1 = (1/γ2
2 − 1)1/2 cos(2πγ1)/(2πλ1), and

k2 = (1/γ2
2 − 1)1/2 sin(2πγ1)/(2πλ2), where γ1, γ2 are two independent random variables uni-

formly distributed in [0, 1]. Therefore, the random field u(x1, x2) with the exponential correlation
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function (7) can be simulated by the formula (24) where ξj and ξ′j, j = 1, ..., n0 are mutu-
ally independent standard Gaussian random variables; θ̃j = (1/γ2

2,j − 1)1/2[cos(2πγ1,j)x/λ1 +
sin(2πγ1,j) ρ/λ2], and γ1,j, γ2,j, j = 1, ..., n0 are mutually independent and independent of ξj

and ξ′j, j = 1, ..., n0 random variables uniformly distributed in [0, 1].

It should be mentioned that the examples we present here include correlation functions with
rapidly decreasing tails, thus the log conductivity length scale λ is the only one parameter which
characterizes the correlation structure. In more complicated cases the correlation functions may
have heavy tails, for instance decreasing according to the power law (as in the fractal media with
multiscale heterogeneities, e.g., see [9]). In this cases, a detailed representation of all the scales
is a difficult problem, and a modification of the Randomization spectral models called Stratified
Randomization spectral models can be successfully applied (e.g., see [12] and [11]).

5 Conclusion

We have presented results of stochastic simulations of flows and particle transport in a 2D layer
of random porous medium. The porous medium is characterized by a hydraulic conductivity
which is assumed to be a lognormal random field. Numerical experiments are carried out by
solving the Darcy equation for each sample of the random hydraulic conductivity by a direct
solver for sparse systems, and tracking Lagrangian trajectories in the simulated flow.

We present a numerical analysis of different Eulerian and Lagrangian statistical characteristics
of the flow such as the transverse and longitudinal velocity correlation functions, the diffusion
coefficient, the mean displacement of Lagrangian particles, and the probability density function
of the transverse Lagrangian coordinate.

We focus on the existence of a diffusion regime in the longitudinal dispersion. It was found
that even for long layers of about 103 log conductivity correlation lengths and heights up to 32
correlation lengths there is no diffusion regime. This is true both for moderate (σY ∼ 1) and
large (σY ∼ 4) fluctuations of the log conductivity. This is related to the long and heavy tails of
the correlation functions of the longitudinal velocities which in turn is related to the divergence
free property of the velocity field, and to the no flow boundary conditions.

Important feature of the flow is that the steady state mean Lagrangian longitudinal velocity
is higher than the mean cross averaged Eulerian longitudinal velocity. This effect is more pro-
nounced for larger fluctuation intensities of log conductivity, and less pronounced for thicker
layers.

The impact of the intensity of log conductivity fluctuations on the flow is different for thick and
thin layers. In the case of thin layers with the height compared to one correlation length, an
increase of the log conductivity fluctuations leads to a decreasing of the mean and variance of
the longitudinal velocity. For thick layers this dependence is converse.

A remarkable feature of the transverse mixing of particles is that even after thousands of corre-
lation times the transverse distribution is not uniform, having a stable transverse profile. This
is caused by the no flow boundary conditions and the relevant vertical gradient of the transverse
velocity variance.

Finally we remark that we believe that the main conclusions of this study remain true also for
3D layers, but in some details the long-term transport in 3D flows may be of course different, so
we are going to made the relevant 3D simulations.
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