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Introduction 1
1.1 Introduction to this Scientific Technical Report (STR)

For the motivation behind our investigations, we refer to the introduction of the first part of our report,
Hagedoorn & Geiner-Mai (2008). In this part, we will (i) give an analytical description of the topographic
surface of the core-mantle boundary (CMB) and derive an approximation for its normal unit vector con-
taining information about the CMB topography, and (ii) derive an expression for the topographic torque
as a function of the topographic height, h, and the velocity field, u. For this, we will check the assump-
tions made when applying the geostrophic approximation to the upper core-surface region. Finally, we
will derive analytical expressions for the torque components depending upon the spherical harmonic
(SH) coefficients of h and u in a cartesian geocentric coordinate system.

The velocity field will be conventionally inferred from the poloidal geomagnetic field, BP, at the CMB,
or strictly speaking from its radial component, BP

r, by inverting the so called frozen-field equation (see
e.g. Backus, 1969), which is an approximation of the geomagnetic induction equation of the core valid
for the decadal time scale considered here (10 to 100 years) and for spatial scales that are not too
small (equivalent degree of SH expansion not larger than 10). The calculation of the topographic torque
was the subject of several investigations in the past, e.g. Hinderer et al. (1987), Hide (1989), Jault &
LeMouël (1989), Hide et al. (1996), and Asari et al. (2006). What is new from our investigation and
outlined in this report, is that we infer BP at the CMB from the geomagnetic surface field by the non-
harmonic downward continuation (NHDC) developed recently by Ballani et al. (2002) and discuss the role
of the magnetic field and the Lorentz force in the geostrophic approximation on the basis of our newest
results of the computation of the toroidal field, BT, (Hagedoorn & Geiner-Mai, 2008). The velocity field
needed for the torque calculation will be derived from this Br-component (and its ”secular variation”
Ḃr) according to Wardinski (2005), who used the geostrophic constraint to determine a u-field, which
is then in accordance with the above mentioned use of the geostrophic approximation for the torque
computation. In this report, we will take the SH coefficients of the u-field as given input data. The same
applies to the SH coefficients of h, which we will take from literature (e.g. Morelli & Dziewonski, 1987;
Sze & van der Hilst, 2003; Steinberger & Holme, 2008).

Another difference to previous investigations is that we use, consistent with part I of our report,
the orthonormal SH base functions to derive analytical expressions of the torques. This requires us
to determine some transformations between them and those representations used in geomagnetism
(Ferrers-Neuman and Schmidt’s normalization) that are given in appendix A.

1.2 Introduction to topographic core-mantle coupling

The topographic core-mantle coupling torque is produced by the mechanical interaction of the fluid flow
of metallic core material with the CMB topography. The fluid flow relative to the solid mantle imposes
(dynamic) pressure upon the topographic surface of the CMB, which accelerates the overlying mantle,
resulting in the fluid flow losing angular momentum. From its physical nature, the topographic torque
is, therefore, a pressure torque. For the atmosphere, the corresponding torque is also known as moun-
tain torque, produced by pressure forces on mountains (as well as houses, trees etc.) when the wind
blows towards them. For the core, the corresponding ”mountains” are the so-called bumps of the CMB,
the corresponding ”metallic wind” is the fluid flow. Another mechanical coupling superimposed on this
process, the friction, will conventionally be neglected because it is very small for the outer core (see
e.g. Chap. 2.2).
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The basic equations to be used for the atmosphere and liquid outer core are quite similar, but the
approximations of them are based on other scales of the associated terms, in particular for the elec-
tromagnetic field and the related Lorentz force play a decisive role in the core but is negligible in the
atmosphere. The pressure torque is described by a surface integral over the topographic surface, S,
and the density of the pressure force, ∇p, acting on this topographic surface. This expression is de-
rived by integrating the associated torque density r ×∇p over the volume, V , containing the liquid, and
applying the integral theorem ∫

S

a× dS = −
∫
V

rotadV , (1.1)

which is a version of the integral theorem of Gauss (e.g. Smirnov, 1964). The pressure torque described
as surface and volume integral follows if we set a = r pu and use rot r pu = −r ×∇pu.

With respect to the sign used in the definitions, we find no standard rule in the literature (compare e.g.
Hide (1989) with Jault & LeMouël (1989)). The sign in fact seems to depend on whether the ∇p-term
appears on the right-hand or left-hand side in the individual notations of the Navier Stokes equation.
Therefore, it is important when comparing the different types of torques to check which sign will appear
on the ”torque side” in the respective notation. Here, we will follow Hide’s notation (e.g. Hide, 1989) who
introduces the torque independent of the equation in which it appears with +∇ pu.

In the following two chapters, we will re-examine and discuss some derivations of the final expression
of the vectorial representation of the topographic torque in dependence on u and h. The motivation
of this is to gain a better insight into some of the assumptions that are described in the literature as
being self-evident. In chapter 2.3, we present the way and results of the derivation of the analytical
expressions of the torque by SH coefficients of h and u. Finally, we present in chapter 3 a simple
example of topographic coupling for an ellipsoidal CMB and a non-axial rigid rotation of the fluid, know
within other contexts as inertial coupling. Additional derivations are provided in the appendix A.
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The topographic (TOP) core-mantle
coupling torque 2

2.1 TOP torque in dependence on the pressure gradient

In this report, we use for the topographic torque the symbol L without an additional index (like in part I
for the EM torque). Following Sec. 1.2, the topographic coupling torque on the mantle is defined by

L :=
∫

Vcore

r ×∇pudV = −
∫

Vcore

rot
(
rpu

)
dV =

∫
Score

r × pundS (2.1)

where n is the outward normal unit vector on the CMB and pu the dynamic pressure associated with
core motions just below the CMB (bulk stream). The topographic or pressure torque is a part of the total
torque on the mantle, caused by viscous (fν), electromagnetic (fB) and topographic (ftop) stresses at the
CMB

LCMB =
∫

Score

r ×
[
fν + fB + ftop

]
dS, (2.2)

and gravitational coupling between inner core and the mantle. The topographic stress is due to the action
of normal pressure forces on bumps in the shape of the core-mantle interface, which are described by
a suitable model of the departure of the CMB from a reference sphere. The magnetic stress is due
to the Lorentz force on the mantle. The evaluation of the electromagnetic (EM) torque on the mantle
is described in detail in Hagedoorn & Geiner-Mai (2008). From the viscous torque on the mantle, it is
generally believed that its contribution to core-mantle coupling is marginal (e.g. Bullard et al., 1950), in
contrast to its effect at the inner-core / outer-core boundary.

One major point in solving the integral in eq. (2.1) is to express n by a parameter defining the CMB
topography. Let the CMB be described by the surface equation

r = F (ϑ, ϕ) = er

(
RCMB + h(ϑ, ϕ)

)
, (2.3)

where h(ϑ, ϕ) is the topographic height over a reference sphere (see Fig. 2.1), the radius of which is
the mean core radius, RCMB, and r, ϑ, ϕ are the spherical coordinates. The normal vector N on F is
then given by the vector product of the derivations of F (ϑ, ϕ) (tangential vectors) to its parameters (e.g.
Heuser, 1993, p. 503-504)

N =
∂F

∂ϑ
× ∂F

∂ϕ
. (2.4)

From eq. (2.3) follows that

∂F

∂ϑ
=

∂er

∂ϑ

[
RCMB + h(ϑ, ϕ)

]
+ er

∂[RCMB + h(ϑ, ϕ)]
∂ϑ

, (2.5)

∂F

∂ϕ
=

∂er

∂ϕ

[
RCMB + h(ϑ, ϕ)

]
+ er

∂[RCMB + h(ϑ, ϕ)]
∂ϕ

, (2.6)

with

∂er

∂ϑ
= eϑ,

∂er

∂ϕ
= sinϑ eϕ, (2.7)

where e... denotes the unit vectors in spherical coordinates we obtain for the normal vector N according

3
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CMBR

topographic height

reference sphere

topographic surface

h

r

Figure 2.1: Schematic illustration of the topographic surface and its parameters (r = position vector,
RCMB = mean core radius)

to eqs. (2.4) to (2.6), leading to

N = er

[
RCMB + h(ϑ, ϕ)

]2 sinϑ

− eϑ

[
RCMB + h(ϑ, ϕ)

]
sinϑ

∂h

∂ϑ

− eϕ

[
RCMB + h(ϑ, ϕ)

] ∂h

∂ϕ
. (2.8)

To calculate the unit vector n in eq. (2.1), we first must calculate the absolute value of N . For this, we
rewrite eq. (2.8) as

1
R2

CMB

N = er [1 + a]2 sinϑ− eϑ [1 + a] sin ϑ
1

RCMB

∂h

∂ϑ
− eϕ [1 + a]

1
RCMB

∂h

∂ϕ
(2.9)

with a = h/RCMB.
If we assume a maximum topographic height, h, of 10 km, then a ≈ 0.003. Furthermore, the change

of h with ϑ and ϕ cannot exceed the maximum value of h so that R−1
CMB · [∂h/∂(ϑ, ϕ)] ≤ a. The absolute

value, N , of N according to eq. (2.9), can then be approximated by R2
CMB sinϑ, and the normal unit vector

by

n =
N

N
= er − eϑ

1
RCMB

∂h

∂ϑ
− eϕ

1
RCMB sinϑ

∂h

∂ϕ
= er −∇H h. (2.10)

Note that the definition of ∇H used here contains R−1
CMB. The topographic torque (2.1) is then written as

L = −R2
CMB

∫
Ω

(
r × pu∇Hh

)
dΩ, (2.11)

where Ω = (ϑ, ϕ) and dΩ denote the infinitesimal surface element sinϑ dϑdϕ in spherical coordinates.
The dynamic pressure is determined by the Navier-Stokes equation, where its gradient appears. There-
fore, we will shift the ∇-term in eq. (2.11) from h to pu by partial integration,

L = −R2
CMB

∫
Ω

[
r ×∇H(pu h)

]
dΩ + R2

CMB

∫
Ω

[
r × h (∇Hpu)

]
dΩ. (2.12)

It can be shown that the first integral in (2.12) vanishes: The implementation of the vectorial product,
r ×∇H(puh), gives

−R2
CMB

∫
Ω

(
− eϑ

1
sinϑ

∂

∂ϕ
(pu h) + eϕ

∂

∂ϑ
(pu h)

)
dΩ =

−R2
CMB

∫
Ω

[
− ∂

∂ϕ

(
eϑpuh

sinϑ

)
+

puh

sinϑ

∂eϑ

∂ϕ
+

∂(eϕpuh)
∂ϑ

− puh
∂eϕ

∂ϑ

]
dΩ ,
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where
∂eϑ

∂ϕ
= cos ϑ eϕ,

∂eϕ

∂ϑ
= 0.

It therefore follows that

−R2
CMB

2π∫
0

π∫
0

[
−∂(eϑpu h)

∂ϕ
+ pu h cos ϑ eϕ + sinϑ

∂(eϕpu h)
∂ϑ

]
dϑ dϕ =

−R2
CMB

2π∫
0

π∫
0

[
−∂(eϑpuh)

∂ϕ
+

∂(sinϑ eϕpu h)
∂ϑ

]
dϑ dϕ = 0 , (2.13)

since the first product in parentheses in the integral (2.13) is unique, i.e. equal at ϕ = 0, 2π, and the
second one vanishes because sinϑ vanishes at ϑ = 0, π.

From eq. (2.12), we can now derive the final expression

L = R2
CMB

∫
Ω

[
r × h (∇Hpu)

]
dΩ. (2.14)
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2.2 The geostrophic balance

The hydrodynamical equation of motions within the core (Navier-Stokes equation) is given by

ρ
∂u

∂t
+ ρ [u · ∇]u + 2ρ ω × u +∇p− ρg = j ×B + νρ∇2u, (2.15)

where ρ denotes the density, ν the dynamic viscosity, p the total pressure, u the Eulerian velocity in
a frame of reference that rotates with an angular velocity ω relative to an inertial frame, and g is the
gravitational acceleration. In eq. (2.15), the centrifugal force is included in ∇p.

According to e.g. Hide (1989), eq. (2.15) can be approximated by

2ρ ω × u +∇p− gρ ≈ j ×B, (2.16)

if the relative acceleration terms and the viscous term are negligible. Hereafter, we will give our own rea-
soning to this. Over decadal time scale (10 years), for spatial dimensions of the core radius (3485 km), for
velocities known from frozen-flux approximations of the geomagnetic secular variation (about 10 km a−1)
and for an upper bound of the viscosity (10−2 × m2s−1; Mound & Buffett, 2007), the acceleration, the
viscous and the Coriolis terms have order of magnitude values (O) of

O
(
ρ

∂u

∂t

)
= 1.0× 10−12 m s−2 × O(ρ), (2.17)

O
(
ρ [u · ∇]u

)
= 2.9× 10−14 m s−2 × O(ρ), (2.18)

O
(
νρ∇2u

)
= 1.1× 10−20 m s−2 × O(ρ), (2.19)

O
(
2ρ ω × u

)
= 4.6× 10 −8 m s−2 × O(ρ), (2.20)

where O(ρ) is the order of magnitude of the volume mass density. This comparison shows that the
acceleration and viscous terms can be neglected compared with the Coriolis term.

The density of the Lorentz force, j ×B (j is the density of electric currents, B is the magnetic flux),
on the rhs of eq. (2.16) is not marginal and its magnitude depends on the strength of the magnetic field,
which is not completely known at the top of the core, in particular the strength of its toroidal part. Recent
investigations of EM coupling (e.g. Greiner-Mai et al., 2003) argue for an electric conductivity, σM, of the
mantle (at least close to the CMB) of the same order of magnitude than that of the core. Therefore, the
induced electric currents, j, are not negligible. We will show such difficulties by a scaling consideration.
A rough estimate of the poloidal magnetic field, BP, gives a maximum value of the order of 1 mT at the
CMB (e.g. Ballani et al., 2002). Taking for j the Maxwell equation j = µ−1 rotBP, scaling the rot by
R−1

CMB, and assuming for the core a density of the order of 10 g cm−3 we obtain with µ = 4 π10−7Vs(Am)−1

O
(
µ−1 [rot BP]×BP

)
= 2.3× 10−10 ms−2 g cm−3

= 2.3× 10−11 ms−2 × O(ρ). (2.21)

Therefore, the effect of the poloidal part of the magnetic field is marginal compared to that of the Coriolis
force. For a weak-field dynamo, this is also true if the toroidal field, BT, is involved (for this type of
dynamo, BT is of the order of BP). For a strong-field dynamo, the toroidal field can exceed the poloidal
one by two orders of magnitude. So the combination (rot BT) × BP is only one order lower than the
Coriolis term, but the combination (rotBT)×BT can exceed it. Due to our poor knowledge of the actual
field strength of BT, the relevance of the Lorentz term in eq. (2.16) is uncertain, and to omit it is only
correct for particular models of the toroidal field.

To be in accordance with conventional procedures of approximation, we will bring another argument
into play. In Hagedoorn & Geiner-Mai (2008), the variation of the toroidal field caused by the electro-
motive force u ×B is evaluated to be less than the poloidal field. These variations are then consistent
with the frozen-field approximation of the secular variation of the poloidal field; the associated currents
have the same electric source field E = u ×B. The variations of both fields (for BT the modelled), are
then determined at the same level of approximation as the dynamic pressure pu, i.e. if we attribute the
tangential geostrophic equation (e.g. eq. (2.25)) to the dynamic part of the full problem, and consider
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the stationary part (with a much larger toroidal field) of the equation as a reference state (like hydrostatic
equilibrium), then the neglecting of the Lorentz force is reasonable.

By neglecting the Lorentz term, from eq. (2.16) it follows that

2ρ ω × u = −∇p + gρ. (2.22)

Assuming
ω ≈ ωez, 2ρ ωez × u ≈ −∇p + gρ, (2.23)

we explicitly obtain

2ρω(uϑ cos ϑ− ur sinϑ) = − 1
r sinϑ

∂p

∂ϕ
+ ρgϕ,

2ρωuϕ cos ϑ =
1
r

∂p

∂ϑ
− ρgϑ, (2.24)

2ρωuϕ sinϑ = −1
r

∂p

∂r
+ ρgr.

The non-penetration condition at the CMB reads as u ·n = 0, from which follows according to eq. (2.10)
ur − u∇Hh = 0, where ur = u∇Hh. The gradient ∇Hh is of the order of 3 × 10−3 and it is O(ur) =
3×10−3O(uH). Therefore, the ur-term can be neglected compared with the uϑ-term in the first eq. (2.24).
It is usually assumed that g points in er direction, i.e. (gϑ, gϕ) can also be neglected. The remaining
approximation is the conventional geostrophic equation, the horizontal part of which describes the so-
called tangential geostrophy

2ρ ω uϑ cos ϑ = − 1
r sinϑ

∂p

∂ϕ
,

2ρ ω uϕ cos ϑ =
1
r

∂p

∂ϑ
, (2.25)

whereas the last equation of (2.24) leads to the hydrostatic equation, obtained by leaving the uϕ-term
(ω uϕ is of the order of 10−9 m s−2, i.e. much smaller than gr). With the Coriolis parameter, f , eqs. (2.25)
can be written as

f uH = er × ∇p = − rot(erp), f = 2ρω cos ϑ, (2.26)

from which follows div(f uH) = 0. Assuming that the density variations are insignificant in the CMB
region considered, i.e. ρ = ρ̄, from this divergence condition follows the geostrophic constraint

div(cos ϑ uH) = 0 (2.27)

usually used as a dynamic constraint in the inversion of the frozen-field equation of the core motions for
u in geomagnetism. Eq. (2.25) can be rewritten as

∇Hp = −f er × uH. (2.28)

The relation of ∇Hp, e.g. in eq. (2.28), to the fluid motions of the core allows us to identify p with the
dynamic pressure pu of eq. (2.1), if ∇H is applied.

With eqs. (2.28) and (2.14), the topographic torque can be written as an integral about u and h(ϑ, ϕ)

L = R3
CMB

∫
Ω

f(ϑ) h(ϑ, ϕ) uH(RCMB, ϑ, ϕ, t) dΩ, (2.29)

which we can also find in e.g. Hide (1989).
Now, we will summarize the assumptions necessary to derive eq. (2.28), used to express ∇p in

eq. (2.14) by u. The following terms of the Navier-Stokes equation are neglected compared with the
Coriolis force

1. the Lorentz term;

2. the acceleration terms;
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3. the friction term;

from which the first cannot be neglected generally, but is insignificant in the dynamic part of the problem.
Further assumptions made are

a) ω points in z-direction;

b) ur is negligible compared with uH;

c) the vector of gravitational acceleration, g, points in r-direction;

d) the density variation along the CMB is negligible;

e) in eq. (2.10), ∇H is applied for the reference sphere, r = RCMB. By the definition of the torque in
eq. (2.1), it should be related to the real CMB, i.e. RCMB + h

Some of the used approximations/assumptions are well reasoned by scaling considerations, while some
of them are made without quantitative reasoning, i.e. for plausibility only.
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2.3 The componental form of the TOP torque

Using the relations between unit vectors in cartesian and spherical coordinates,

ex = er sinϑ cos ϕ− eϕ sinϕ + eϑ cos ϑ cos ϕ,

ey = er sinϑ sinϕ + eϕ cos ϕ + eϑ cos ϑ sinϕ,

ez = er cos ϑ− eϑ sinϑ, (2.30)

and assuming ρ = ρ̄ = const., we obtain for the components of the torque

Lx = a

∫
Ω

h (uϑ cos ϑ cos ϕ− uϕ sinϕ) cos ϑ dΩ

Ly = a

∫
Ω

h (uϑ cos ϑ sinϕ + uϕ cos ϕ) cos ϑ dΩ (2.31)

Lz = −a

∫
Ω

h uϑ cos ϑ sinϑ dΩ

a = 2 ρ̄ ω R3
CMB. (2.32)

It is easily shown that the equatorial components can be combined into one complex torque, L = Lx +
i Ly, given by

L = a

∫
Ω

h (uϑ cos ϑ + i uϕ) eiϕ cos ϑ dΩ, i =
√
−1 . (2.33)

For later numerical estimates of the torque, we will use values of uH inferred by Wardinski (2005) from
the C3FM geomagnetic field (Wardinski & Holme, 2006). Therefore, we will decompose the velocity field
in a manner consistent with these investigations. Assuming ∇u = 0, Wardinski (2005) decomposed uH

into poloidal and toroidal parts

uP = ∇H(rP ) =
(

0,
∂P

∂ϑ
,

1
sinϑ

∂P

∂ϕ

)
, (2.34)

uT = ∇H × (rQ) =
(

0,
1

sinϑ

∂Q

∂ϕ
,−∂Q

∂ϑ

)
, (2.35)

where P (r, ϑ, ϕ, t) and Q(r, ϑ, ϕ, t) are the defining scalar functions of the poloidal (superscript P) and
toroidal (superscript T) part of the velocity field, respectively. It should be mentioned that this decom-
position for the horizontal velocity field also follows for the general case ∇u 6= 0, for which the general
decomposition is given by Krause & Rädler (1980)

u = ∇ × (rQ) + rV + ∇W, (2.36)

if we set W = r P .
Inserting eqs. (2.34) and (2.35) into the torque expressions (2.31) and (2.33), we obtain the torque

components as a function of h and these defining scalars

LT = a

∫
Ω

h

[
cot ϑ

∂Q

∂ϕ
− i

∂Q

∂ϑ

]
eiϕ cos ϑ dΩ, (2.37)

LP = a

∫
Ω

h

[
cos ϑ

∂P

∂ϑ
+ i

1
sinϑ

∂P

∂ϕ

]
eiϕ cos ϑ dΩ, (2.38)

LT
z = − a

∫
Ω

h
∂Q

∂ϕ
cos ϑ dΩ, (2.39)

LP
z = − a

∫
Ω

h sinϑ
∂P

∂ϑ
cos ϑ dΩ. (2.40)
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To obtain the torque in terms of the spherical harmonic (SH) coefficients of the fields P,Q, h, we use the
fully normalized spherical harmonic functions described in Hagedoorn & Geiner-Mai (2008) [see also
Appendix A],

Yjm(Ω) := Pjm(cos ϑ) ei mϕ, (2.41)

where Pjm are the associated Legendre polynomials and Ω = (ϑ, ϕ). The used coefficients are defined
by the SH expansion of P,Q, h

P =
∑
jm

pjm(t)Yjm(Ω), Q =
∑
jm

qjm(t)Yjm(Ω), h =
∑
jm

hjmYjm(Ω), (2.42)

where it is assumed that the topographic height is independent of the time t over the time scales of
interest to this study. The torque components are then given by

LT = a
∑
jm

∑
kl

i qjmhlk

∫
Ω

Ylk

[
m cot ϑ Yjm − ∂

∂ϑ
Yjm

]
ei ϕ cos ϑ dΩ (2.43)

LP = a
∑
jm

∑
kl

pjmhlk

∫
Ω

Ylk

[
cos ϑ

∂

∂ϑ
Yjm − m

sinϑ
Yjm

]
ei ϕ cos ϑ dΩ (2.44)

LT
z = − a

∑
jm

∑
kl

im qjmhlk

∫
Ω

cos ϑ Ylk Yjm dΩ (2.45)

LP
z = − a

∑
jm

∑
kl

pjmhlk

∫
Ω

cos ϑ sinϑ Ylk
∂

∂ϑ
Yjm dΩ (2.46)

To solve the integrals in eqs. (2.43)-(2.46), we require a recurrence formulae for the SH expressions in
them and the normalization condition of the spherical harmonics. For the related derivations, we refer
the reader to the Appendix A. Below, we will give the resulting analytical expressions for the torques.

To solve the integrals in the z components, we need the relations (A.9) and (A.12) derived in Ap-
pendix A, and apply the normalization condition (A.2) and the complex conjugate (A.3). We obtain for
these torque components

LT
z = −i a

J∑
j=1

+j∑
m=−j

m (−1)mqjm

[
h(j+1)(−m)

√
(j + 1)2 −m2

(2j + 1)(2j + 3)
+ h(j−1)(−m)

√
j2 −m2

(2j + 1)(2j − 1)

]
(2.47)

LP
z = −a

J∑
j=1

+j∑
m=−j

(−1)m pjm

[
j h(j+2)(−m)

2j + 3

√
[(j + 2)2 −m2][(j + 1)2 −m2]

(2j + 1)(2j + 5)
−

(j + 1) h(j−2)(−m)

2j − 1√
[j2 −m2][(j − 1)2 −m2]

(2j + 1)(2j − 3)
+

hj(−m)

2j + 1

(
j[(j + 1)2 −m2]

(2j + 3)
− (j + 1)(j2 −m2)

(2j − 1)

)]
. (2.48)

It can be seen that for j = 1 negative degrees in h(j−2) m are excluded by the numerator under the
square root. The SH expansions for h and the defining scalars of u begin with j = 1, while the index in
in h(j−2)m becomes zero for j = 2. To solve this problem and that with the upper bound of summation
is a matter of implementation (the negative index −m can be removed by e.g. an index transformation
m := −q).

The analytical expressions for the equatorial torques is obtained in similar manner from eqs. (A.14)
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and (A.20):

LT = i a
J∑

j=1

+j∑
m=−j

(−1)m qjm

[
(j −m)h(j+1)(−m−1)

√
(j + m + 2)(j + m + 1)

(2j + 1)(2j + 3)

+ (j + m + 1)h(j−1)(−m−1)

√
(j −m)(j −m− 1)

(2j + 1)(2j − 1)

]
(2.49)

LP = − a
J∑

j=1

+j∑
m=−j

(−1)m pjm

[
j h(j+2)(−m−1)

2j + 3

√
[(j + 1)2 −m2][j + m + 2][j + m + 3]

(2j + 1)(2j + 5)

+
(j + 1) h(j−2)(−m−1)

2j − 1

√
[j2 −m2][j −m− 1][j −m− 2]

(2j + 1)(2j − 3)

+

√
(j −m)(j + m + 1) hj(−m−1)

2j + 1

(
j(j + m + 2)

2j + 3
+

(j + 1)(j −m− 1)
2j − 1

)]
. (2.50)

In eq. (2.50), the second term becomes zero for j = 2, 1, and 0. It is important for the numerical imple-
mentation of these expressions that h and u are given as real functions and their SH coefficients are
related to non-orthonormal SH base functions in Ferrers-Neumann and Schmidt’s normalization. The
related transformation of the SH coefficients are described in Part I (Hagedoorn & Geiner-Mai, 2008),
and the implementation of them is already completed in connection with the computation of the EM
coupling torques.
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First application for a non-axially
rotating core fluid in an ellipsoid 3

To obtain some idea about the order of magnitude of the topographic torque, we will derive an analytical
expression for the example of a fluid rotating rigidly within an ellipsoidal surface. The rotation of the fluid
can be interpreted as the first order of the SH harmonic expansion of a toroidal velocity field. The pure
toroidal property can be proved by the relation:

u = $ × r = rot r(r ·$) (3.1)

where $ = ($x, $y, $z) is the vector of the angular velocity of the fluid in a mantle-fixed coordinate
system, i.e. that of its rotation relative to the mantel. The relation (3.1) can easily be proven by, e.g. using
the Levi Civita formalism. It shows that the defining scalar function of the velocity field Q in eq. (2.35)
can be identified with the scalar product $ · r, which depends on the components of $ at r = RCMB as
follows

Q = RCMB ($x sinϑ cos ϕ + $y sinϑ sinϕ + $z cos ϑ)

=
RCMB

2

[
$x

(
ei ϕ + e−i ϕ

)
+ $y

(
ei ϕ − e−i ϕ

i

)]
sinϑ + RCMB $z cos ϑ

=
RCMB

2

[
ei ϕ ($x − i$y) + e−i ϕ ($x + i$y)

]
sinϑ + RCMB $z cos ϑ (3.2)

=
RCMB

2

√
8π

3

[
−Y11 ($x − i$y) + Y1−1 ($x + i$y)

]
+ RCMB

√
4π

3
$zY10

The comparison with the SH expansion of Q results in its non-zero SH coefficients, qjk, in eq. (2.42)
being given by:

q10 = Rc

√
4π

3
$z, q11 = −RCMB

√
2π

3
($x − i$y), q1(−1) = RCMB

√
2π

3
($x + i$y). (3.3)

Next, we will determine the topographic height for the surface of an axial rotational ellipsoid, i.e. the
departure of this surface from a spherical surface with the radius RCMB, which is assumed to be the minor
semi axis, as shown in the sketch below. The equation for its surface is given by

x2 + y2

a2
+

z2

b2
= 1 =

r2 sin2 ϑ

a2
+

r2 cos2 ϑ

R2
CMB

(3.4)

from which follows

r =
RCMB√

1− ε2 sin2 ϑ
, ε2 =

a2 −R2
CMB

a2
. (3.5)

Due to the fact that ε is very small for the core, we can apply a Taylor approximation of first order,
obtaining

r = RCMB (1 +
1
2
ε2 sin2 ϑ). (3.6)

The topographic height h and its non-zero SH coefficients are obtained by comparison of eq. (3.6) with
the surface equation (2.3) and the SH expansion, respectively, as

h =
RCMB

2
ε2 sin2 ϑ = RCMB ε2

√
4π

9
(Y00 −

1√
5
Y20) =⇒ h00 = RCMB ε2

√
4π

9
, h20 = −RCMB ε2

√
4π

45
,

(3.7)
where the representations of Y20 by sin2 ϑ and Y00 by 1/

√
4π were used (for this expression see Hage-

doorn & Geiner-Mai (2008) eqs. A.8 and A.11).

15
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CMBRb=
h

a

r
RCMB

Figure 3.1: Schematic illustration of the axial rotational ellipsoid and its parameters (r = position vector,
RCMB = mean core radius as the minor semi axis, h = topographic height with respect to the
reference sphere, a = major semi axis)

Now, we can derive the associated torque expressions. The division of the torque in toroidal and
poloidal parts is made with respect to that of the velocity field, therefore, a poloidal torque does not
exist (u is purely toroidal). The z-component of the toroidal part contains no axial modes and therefore
vanishes. The non-zero contributions of hjm to the non-axial torque in eq. (2.49) are those for the pairs
(j = 1,m = −1) and (j = 3,m = −1). From eq. (2.49) we then obtain as the topographic torque

LT = −i aRCMBε
2 2
√

2π

15

(
2√
3

q1(−1) + 3

√
6
7

q3(−1)

)
. (3.8)

A q3m does not exist [see eq. (3.3)], therefore, the final expression for the complex non-axial torque is
given by

LT = −i aRCMBε
2 4
15

√
2π

3
q1(−1) = −i aR2

CMBε
2 8π

45
($x + i$y), (3.9)

and its real components by

LT
x = aR2

CMBε
2 8π

45
$y, LT

y = −aR2
CMBε

2 8π

45
$x, a = 2ρω R3

CMB. (3.10)

Another choice of the reference sphere (crossing the ellipsoid, allowing also negative values of h) would
slightly modify the formulae, but not the magnitude of the torque.

We will now give an estimate of LT using values of the parameters involved in eqs. (3.10); the mean
values of which are

ρ = 104 Kg m−3 (e.g. Denis et al., 1997)

ω = 7.27× 10−5 s−1 2π

86400 s
RCMB = 3.485× 106 m

a = 3.494× 106 m flattening : f =
1

390
, (e.g. Denis et al., 1997)

ε2 = 0.0051 eq. (3.5). (3.11)
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These values give the toroidal torque its scaling factor:(
LT

x, LT
y

)
= 2.13× 1030 Nm s× ($y,−$x). (3.12)

In Greiner-Mai (1990), the non-axial components of the vector of relative core rotation are estimated by
the frozen-flux approximation. This shows that a representative value for ωx,y is about 10−11 s−1, and we
can conclude that a topographic torque of about 1019 Nm is possible in this simple case of a non-axial
rigid rotation of the core fluid.

Finally, we will give the scaling unit for the numerical estimation of the torque. If h is measured in
km and u in km a−1, then the value of the torque will be 1.95 × 1018 Nm for each 1 km of topography
and each 1 km a−1 of surface flow velocity. This also shows that values of 1019 Nm are possible if the
summation over smaller contributions of related modes of h and u is considered.

This consideration shows that the ellipsoidal part of the CMB topography must also be considered, if
the CMB tomography inferred from seismic investigations refers to an ellipsoidal reference surface.
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Hinderer, J., Legros, H., Gire, H., LeMouël, J.-L., 1987. Geomagnetic secular variation, core motions
and implications for the earth’s wobble. Phys. Earth Planet. Inter. 59, 329–341.
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Spherical harmonic (SH) functions A
The fully normalized SH functions according to Varshalovich et al. (1989) and some relations between
them are shown in Hagedoorn & Geiner-Mai (2008). In this report, we will repeat some basic relations
and derive the expressions used in section 2.2 for the torque components.

The scalar spherical harmonics, Yjm, of degree j and order m are defined by:

Yjm(Ω) := Pjm(cos ϑ) ei mϕ (A.1)

where i =
√
−1, Ω = (ϑ, ϕ) and Pjm are the associated Legendre-polynomials, which are orthonormal

on the unit sphere, ∫
Ω0

Yjm(Ω)Y ∗
j′m′(Ω) dΩ = δjmδj′m′ . (A.2)

δjm is the Kronecker’s symbol and the asterix ∗ denotes the complex conjugate,

Y ∗
jm(Ω) = (−1)m Yj−m(Ω). (A.3)

For our derivations, we also need the transformation between fully othonormal Legendre-polynomials,
Pjm and the Ferrers-Neuman representations, P̃jm. This is given by:

P̃jm(cos ϑ) = λjm Pjm(cos ϑ) (A.4)

with

λjm = (−1)m

√
4π

2j + 1
(j + m)!
(j −m)!

, (A.5)

To solve the integrals in eqs. (2.43)-(2.46) by applying the normalization condition (A.2), we require
some relations between the SH functions, which we will derive here. Those are not standard according
to Varshalovich et al. (1989), therefore, we use some expressions from Kautzleben (1965) that are valid
for the Legendre-polynomials in Ferrers-Neumann normalization and transform them back to the fully
normalized representations by using the definition (A.1) and the transformations (A.4) and (A.5). For
the toroidal z-component of the torque in eq. (2.45), the derivation of the needed relations between SH
functions is given by

cos ϑ Yjm = ei mϕ λ−1
jm

(
cos ϑ P̃jm

)
= ei mϕ λ−1

jm

[
j −m + 1

2j + 1
P̃(j+1)m +

j + m

2j + 1
P̃(j−1)m

]
= ei mϕ

[
λ(j+1)m

λjm

j −m + 1
2j + 1

P̃(j+1)m +
λ(j−1)m

λjm

j + m

2j + 1
P̃(j−1)m

]
=

[
λ(j+1)m

λjm

j −m + 1
2j + 1

Y(j+1)m +
λ(j−1)m

λjm

j + m

2j + 1
Y(j−1)m

]
(A.6)

where the second line is obtained according to Kautzleben (1965, eq. 256a). The λ-factors can be
evaluated according to eq. (A.5) [4π and (−1)m cancel out]

λ(j+1)m

λjm
=

√
(2j + 1)(j + m + 1)!(j −m)!
(2j + 3)(j −m + 1)!(j + m)!

=

√
(2j + 1)(j + m + 1)
(2j + 3)(j −m + 1)

, (A.7)

λ(j−1)m

λjm
=

√
(2j + 1)(j + m− 1)!(j −m)!
(2j − 1)(j −m− 1)!(j + m)!

=

√
(2j + 1)(j −m)
(2j − 1)(j + m)

. (A.8)
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Applying (A.7) and (A.8) to eq. (A.6) gives

cos ϑ Yjm =

√
(j + 1)2 −m2

(2j + 1)(2j + 3)
Y(j+1)m +

√
j2 −m2

(2j + 1)(2j − 1)
Y(j−1)m (A.9)

To derive the relation for the axial poloidal torque (2.46), we use the formula (A.21) derived by Hagedoorn
& Geiner-Mai (2008):

sinϑ
∂

∂ϑ
Yjm = j

√
(j + 1)2 −m2

(2j + 1)(2j + 3)
Y(j+1)m − (j + 1)

√
j2 −m2

(2j + 1)(2j − 1)
Y(j−1)m. (A.10)

The necessary relation is then obtained, if we apply (A.9) to (A.10)

cos ϑ sinϑ
∂

∂ϑ
Yjm = j

√
(j + 1)2 −m2

(2j + 1)(2j + 3)
(
cos ϑ Y(j+1)m

)
− (j + 1)

√
j2 −m2

(2j + 1)(2j − 1)
(
cos ϑ Y(j−1)m

)
= j

√
(j + 1)2 −m2

(2j + 1)(2j + 3)

[√
(j + 2)2 −m2

(2j + 3)(2j + 5)
Y(j+2)m +

√
(j + 1)2 −m2

(2j + 1)(2j + 3)
Yjm

]

− (j + 1)

√
j2 −m2

(2j − 1)(2j + 1)

[√
j2 −m2

(2j − 1)(2j + 1)
Yjm +

√
(j − 1)2 −m2

(2j − 1)(2j − 3)
Y(j−2)m

]
(A.11)

from which follows

cos ϑ sinϑ
∂

∂ϑ
Yjm =

j

2j + 3

√
[(j + 2)2 −m2][(j + 1)2 −m2]

(2j + 1)(2j + 5)
Y(j+2)m

− (j + 1)
2j − 1

√
[j2 −m2][(j − 1)2 −m2]

(2j + 1)(2j − 3)
Y(j−2)m

1
2j + 1

(
j[(j + 1)2 −m2]

(2j + 3)
− (j + 1)(j2 −m2)

(2j − 1)

)
Yjm (A.12)

which is used to solve the integral in eq. (2.46).
To derive the relation for the equatorial toroidal torque (2.43), we transform the integrand to P̃jm and

use eq. (260a) from Kautzleben (1965) to express ∂Yjm/∂ϑ by SH functions, as follows(
m cot ϑ Yjm − ∂

∂ϑ
Yjm

)
ei ϕ cos ϑ =

[(
m cot ϑ Pjm − ∂

∂ϑ
Pjm

)
cos ϑ

]
ei (m+1)ϕ

=
ei (m+1)ϕ

λjm

(
m cot ϑ P̃jm − ∂

∂ϑ
P̃jm

)
cos ϑ

=
ei (m+1)ϕ

λjm
P̃j(m+1) cos ϑ

=
λj(m+1)

λjm
Yj(m+1) cos ϑ

= −
√

(j −m)(j + m + 1)Yj(m+1) cos ϑ. (A.13)

To involve the cos-function, we apply the relation (A.9) and obtain(
m cot ϑ Yjm − ∂

∂ϑ
Yjm

)
ei ϕ cos ϑ = −

√
(j −m)(j + m + 1)Yj(m+1) cos ϑ (A.14)

= −
[
(j −m)

√
(j + m + 2)(j + m + 1)

(2j + 1)(2j + 3)
Y(j+1)(m+1)

+ (j + m + 1)

√
(j −m)(j −m− 1)

(2j + 1)(2j − 1)
Y(j−1)(m+1)

]
.
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To derive the relation for the equatorial poloidal torque (2.44), we modify at first eq. (260a) in Kaut-
zleben (1965). From this equation,

sinϑ
∂

∂ϑ
P̃jm = m cos ϑ P̃jm − sinϑ P̃j(m+1), (A.15)

which we multiplying by cos ϑ sin−1 ϑ follows that

cos ϑ
∂

∂ϑ
P̃jm = m

cos2 ϑ

sinϑ
P̃jm − cos ϑ P̃j(m+1)

=
m

sinϑ
P̃jm −m sinϑ P̃jm − cos ϑ P̃j(m+1), (A.16)

so that we find for the integrand in eq. (2.44)

Ajm =
[
cos ϑ

∂

∂ϑ
Yjm − m

sinϑ
Yjm

]
ei ϕ cos ϑ

=
ei (m+1)ϕ

λjm

[
cos ϑ

∂

∂ϑ
P̃jm − m

sinϑ
P̃jm

]
cos ϑ

= −ei (m+1)ϕ

λjm

(
m sinϑ P̃jm + cos ϑ P̃j(m+1)

)
cos ϑ. (A.17)

Applying eqs. (257a) and (259a) of Kautzleben (1965) gives

Ajm = −ei (m+1)ϕ

λjm

1
2j + 1

(
m

[
P̃(j+1)(m+1) − P̃(j−1)(m+1)

]
+ (j −m)P̃(j+1)(m+1) + (j + m + 1)P̃(j−1)(m+1)

)
cos ϑ

= − ei (m+1)ϕ

(2j + 1)λjm

[
j P̃(j+1)(m+1) + (j + 1) P̃(j−1)(m+1)

]
cos ϑ. (A.18)

Applying eq. (259a) of Kautzleben (1965) for the product of P̃... and cos again, and using the back
transformation according to eq. (A.3) gives

Ajm =
j(j −m + 1)λ(j+2)(m+1)

(2j + 1)(2j + 3)λjm
Y(j+2)(m+1)

−
(j + 1)(j + m)λ(j−2)(m+1)

(2j − 1)(2j + 1)λjm
Y(j−2)(m+1)

−
λj(m+1)

(2j + 1)λjm

[
j(j + m + 2)

2j + 3
+

(j + 1)(j −m− 1)
2j − 1

]
Yj(m+1). (A.19)

Evaluating the ratio of the λ-factors according to eq. (A.5) gives the final expression

Ajm =
j

2j + 3

√
[(j + 1)2 −m2][j + m + 2][j + m + 3]

(2j + 1)(2j + 5)
Y(j+2)(m+1)

+
(j + 1)
2j − 1

√
[j2 −m2][j −m− 1][j −m− 2]

(2j + 1)(2j − 3)
Y(j−2)(m+1)

+

√
(j −m)(j + m + 1)

2j + 1

[
j(j + m + 2)

2j + 3
+

(j + 1)(j −m− 1)
2j − 1

]
Yj(m+1). (A.20)
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List of symbols L
Symbol Explanation Page
a major semi-axis of the core-mantle boundary (CMB) approx. ellipsoid 15
b minor semi-axis of the core-mantle boundary (CMB) approx. ellipsoid 15
B magnetic flux vector 7
BP poloidal magnetic flux 7
BT toroidal magnetic flux 7
dS infinitesimal surface element 3
dV infinitesimal volume element 3
dΩ infinitesimal surface element (in spherical coordinates) 4
ei unit-base vector 3
f Coriolis parameter 8
F geomertical surface of the CMB 3
g gravitational acceleration 7
h topographic height of the CMB (with respect to a reference sphere) 3
hjm SH coefficient of h 12
j electric current density 7
L topographic core-mantle coupling (TOP) torque 3
LP complex combination of non-axial components of the poloidal TOP torque 11
LP

z axial component of the poloidal TOP torque 11
LT complex combination of non-axial components of the toroidal TOP torque 11
LT

z axial component of the toroidal TOP torque 11
n outward normal unit vector 3
N normal vector on CMB topography F 3
p total pressure in the outer core fluid 7
pu dynamic pressure of outer core fluid 3
pjm SH coefficient of P 12
P defining scalar function of uP 11
Pjm(cos ϑ) associated Legendre function 12
P̃kl(cos ϑ) associated Legendre function in Ferrers-Neumann normalization 21
qjm SH coefficient of Q 12
Q defining scalar function of uT 11
r position vector 3
RCMB radius of the CMB reference sphere 3
u fluid-flow velocity of the outer core fluid 7
uH tangential part of u 8
uP poloidal part of u 11
uT toroidal part of u 11
x, y, z geocentric, mantle-fixed Cartesian coordinates 11
Yjm(Ω) orthonormal scalar spherical harmonics 12
ε ellipticity of the CMB 15
ϑ spherical coordinate: co-latitude 3
λjm normalization factor between different Legendre functions 21
ν dynamic viscosity 7
ρ volume mass density 7
ϕ spherical coordinate: longitude 3
ω angular velocity relative to inertial frame 7
$ angular velocity of the core fluid in mantle-fixed coordinate system 15
Ω := (ϑ, ϕ) 4
∇ nabla operator 3
∇H tangential part of the nabla operator 4
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