
Modeling of radiative transfer through a
spherical planetary atmosphere:

Application to atmospheric trace gases
retrieval from occultation- and

limb-measurements in UV–Vis–NIR

Dissertation
zur Erlangung des Grades Dr. rer. nat.

am Fachbereich Physik der Universität Bremen

vorgelegt von

Dipl. Phys. Alexei Rozanov

Institut für Umweltphysik
Universität Bremen

CORE Metadata, citation and similar papers at core.ac.uk

Provided by GEO-LEOe-docs

https://core.ac.uk/display/71917064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Objectives

During the last years and decades issues related to the physics and chemistry of the Earth’s
atmosphere have attracted much scientific and public interest. The most important prob-
lems are (i) stratospheric ozone loss and the “ozone hole” above Antarctica, (ii) global
warming and climate change, and (iii) tropospheric air pollution.

The understanding of the impact of human activities on the Earth’s atmosphere requires
measurements on a global scale. These enable the spatial and temporal variability of the
atmospheric constituents to be investigated.

Recently efforts have been made to establish a global observation system comprising
satellite instruments and ground-based networks. In order to process data supplied by the
instruments which belong to the global observation system, the development of radiative
transfer models and retrieval algorithms is essential.

This thesis contributes to the development of the radiative transfer models and re-
trieval algorithms intended to interprete measurements of the spectral radiance scattered
in the atmosphere or transmitted through the atmosphere in the ultra-violet, visible,
and near-infrared spectral regions performed by a new-generation remote sensing satellite
spectrometer SCIAMACHY. The objectives of this study are

• the investigation of radiative transfer through a spherical planetary atmosphere,

• the development and following validation of an efficient spherical radiative transfer model
intended to simulate SCIAMACHY limb measurements,

• the development of an approximate approach allowing the simulation of limb mea-
surements to be substantially accelerated and the investigation of the accuracy of this
approach,

• the development of a numerical radiative transfer model intended to simulate SCIA-
MACHY occultation measurements,

• the development of a retrieval code (software package) for the interpretation of SCIA-
MACHY occultation measurements coupling the radiative transfer model with an ap-
propriate selected inverse technique.





Introduction

In recent years, significant changes in the composition and behavior of the Earth’s atmo-
sphere have been reported. Most important of these are the stratospheric ozone loss in
Arctic and Antarctic regions [WMO, 1995; Newman et al., 1997; Müller et al., 1997], the
global increase of the tropospheric ozone [WMO, 1995], and the increase of tropospheric
“greenhouse gases” such as CO2, CH4, and N2O [IPCC, 1996]. In order to study these
changes, systematic information on the global distribution of atmospheric constituents and
its seasonal variations is required. Such information also enables the potential coupling be-
tween polar stratospheric ozone loss and increasing greenhouse gas concentrations reported
by Shindell et al. [1998] to be investigated.

Remote sensing of the Earth’s atmosphere in the UV–Vis–NIR spectral region by means
of ground-based and space-borne instruments can yield important information on the tem-
poral and spatial behavior of several atmospheric constituents (trace gases, aerosol, clouds)
on a global scale. The abundance of atmospheric trace gases in the stratosphere and the
troposphere as well as the stratospheric-tropospheric exchange can be investigated using
such measurements. Over the past two decades pioneering efforts have been made by the
scientific community to establish both ground-based networks and satellite projects that
will eventually result in an adequate global observation system.

The Solar Backscatter Ultraviolet (SBUV) [Heath et al., 1975; Fleig et al., 1990] and
Total Ozone Mapping Spectrometer (TOMS) [Heath et al., 1975; McPeters et al., 1996]
were launched on board NASA’s Nimbus-7 satellite in October 1978. SBUV observed in
the nadir direction with a field of view of 11.3◦ × 11.3◦ and measured the backscattered
ultraviolet solar radiation either in 12 wavelength channels with center wavelengths in
spectral range 255.65 – 339.89 nm or scanned continuously from 160 nm to 400 nm, whereas
TOMS measured the backscattered ultraviolet solar radiation in 6 wavelength channels,
namely, 312.51, 317.51, 331.25, 339.86, 359.96, and 380.01 nm, scanning in 3◦ steps from
nadir to 51◦ on each side of the sub-satellite point in a direction perpendicular to the
orbital plane.

The Stratospheric Aerosol and Gas Experiment (SAGE) [McCormick et al., 1979, 1984]
launched on board the Applications Explorer Mission-2 (AEM-2) satellite and SAGE-II
[Mauldin et al., 1985] launched on board the Earth Radiation Budget Satellite (ERBS)
(both NASA’s satellites) were designed to monitor globally the vertical distribution of
stratospheric aerosols, ozone, water vapor (SAGE-II only), and nitrogen dioxide by mea-
suring the solar radiation transmitted through the Earth’s atmosphere during the solar
occultations. SAGE is a four-channel instrument with center wavelengths at 1000 nm, 600
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nm, 450 nm, and 385 nm. SAGE-II is a seven-channel instrument with center wavelengths
at 1020, 940, 600, 525, 453, 448, and 385 nm.

NASA’s Solar Mesosphere Explorer (SME) [Mount et al., 1984] satellite was launched
in October 1981. One of the instruments on board SME was a visible spectrometer that
observed the solar radiance scattered in the Earth’s atmosphere in limb viewing geometry.
The measurements were performed in a spectral range from 312.6 to 647.2 nm. One of the
most important products deduced from the SME observations was NO2 vertical distribution
in the altitude range from 24 to 40 km.

The Global Ozone Monitoring Experiment (GOME) [Burrows et al., 1999] was launched
on board the European Space Agency’s (ESA) Second European Remote Sensing (ERS-2)
satellite in April 1995. The main scientific objective of the GOME mission is to determine
the global distribution of ozone and several other trace gases which play an important
role in the ozone chemistry of the Earth’s stratosphere and troposphere such as NO2,
BrO, ClO, SO2, and OClO. The GOME instrument measures the sunlight scattered in
the Earth’s atmosphere and reflected by the surface in nadir viewing mode in the spectral
region 240–790 nm.

In the near future, several new missions will be launched which will contribute signif-
icantly to research in the fields of atmospheric chemistry and physics. Some examples of
such missions and a short description of their capabilities follow.

The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument [Popescu
and Paulsen, 1999] and the Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY) are parts of the atmospheric chemistry payload on board
ESA’s Environmental Satellite (ENVISAT) which is planned to be launched in 2001. The
GOMOS instrument is designed to monitor trends in the stratospheric ozone with very high
accuracy and to observe several other atmospheric trace gases using the star occultation
technique. The GOMOS instrument will measure the stellar light transmitted through the
atmosphere in the spectral range 250–952 nm. During the day-side observations, measure-
ments of the solar radiation scattered in the atmosphere in limb viewing geometry will also
be performed in order to remove the background term from the stellar occultation signal.
The SCIAMACHY instrument is designed to measure the sunlight which is transmitted,
reflected and scattered by the Earth’s atmosphere or surface in the wavelength region from
240 to 2380 nm. Limb, nadir, and occultation measurements are planned to be made
during every orbit. The instrument is discussed in detail in Chapter 2.

Similar to the SCIAMACHY instrument, the Optical Spectrograph and InfraRed Imag-
ing System (OSIRIS) [Llewellyn et al., 1997], which was launched on board the Swedish
satellite ODIN in February 2001, measures scattered solar radiance in limb viewing geom-
etry in the spectral region from 280 nm to 800 nm. In addition, the atmospheric emission
features (airglow) in the wavelength range 280 – 800 nm and at particular wavelengths
near 1270 nm and 1520 nm are intended to be measured by the OSIRIS instrument.

Another important component of the global observation system is its network of ground-
based instruments. The data supplied by these instruments are of great importance for the
investigation of the diurnal and seasonal variations in atmospheric trace gas abundances as
well as for the validation of the satellite measurements. The commonly used technique to
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obtain the total column abundances of the atmospheric trace gases, such as O3, NO2, BrO,
OClO, etc., from ground-based measurements are the twilight observations of the zenith-sky
radiance. Examples of such observations and details on the measurement technique can be
found in [Noxon, 1975; Harrison, 1979;Mount et al., 1987; Sanders et al., 1989; Johnson et
al., 1992;Muthama et al., 1995; Richter et al., 1999]. Recently near simultaneous zenith-sky
and off-axis measurements, see, for example, [Wittrock et al., 1999], have also been carried
out in order to obtain information about the tropospheric abundances of atmospheric trace
gases. Performing such observations, the instrument line-of-sight points several degrees
above the horizon and the light scattered in the atmosphere is measured. This method will
be discussed in more detail in Section 8.2.

For the interpretation of satellite and ground-based measurements, complex and precise
radiation transfer models and retrieval algorithms are required. The simplest to interprete
are the occultation measurements as performed by SAGE, SAGE-II, GOMOS (stellar oc-
cultation mode) and SCIAMACHY (solar/lunar occultation mode). Radiative transfer
models for the occultation geometry are based on the Lambert-Beer law and the weighting
functions can be analytically derived, see, for example, [Chu and McCormic, 1979]. A
detailed discussion of such a model can be found in Section 5.1 where a radiative trans-
fer model and a retrieval algorithm developed to retrieve the vertical distributions of the
atmospheric trace gases from SCIAMACHY occultation measurements are discussed.

As shown in [Klenk et al., 1982; McPeters et al., 1996; Hoogen et al., 1999], satellite
measurements of the backscattered solar radiation in nadir viewing geometry, as performed
by SBUV, GOME, and SCIAMACHY (nadir mode), can be accurately simulated using
a pseudo-spherical radiative transfer model such as DISORT [Stamnes et al., 1988] and
SCIATRAN [Rozanov et al., 2000b]. However, the pseudo-spherical approximation is not
accurate enough for large viewing and solar zenith angles [Caudill et al., 1997], as occurs,
for example, in a TOMS scan. In limb viewing geometry, as shown in [Rozanov et al.,
1999a], pseudo-spherical radiative transfer models produce absolutely wrong results. Thus,
they are not appropriate to simulate limb measurements, as performed by SME, GOMOS
(background term), SCIAMACHY (limb mode), and OSIRIS. The radiative transfer models
commonly used for the interpretation of such measurements require an accurate calculation
of the single scattering term and any approximation for the multiple scattering term, see,
for example, [Naudet and Thomas, 1987; Anderson and Lloyd, 1990; McLinden et al.,
1999; Abreu et al., 1989]. However, the accuracies of the radiative transfer models used
in these studies have not been investigated and reported. Another example of such an
approximative model and the investigation of its accuracy in limb viewing geometry is
found in Section 7.5.

In order to obtain the total column abundances of the atmospheric constituents from
ground-based zenith-sky measurements, air mass factors have to be calculated using an
appropriate radiative transfer model, see, for example, [Solomon et al., 1987]. Air mass
factors are commonly calculated using either a single scattering [Mount et al., 1987] or
a pseudo-spherical radiative transfer model [Ridley et al., 1984]. However, under certain
conditions, see, for example, Section 8.3 or [Slusser et al., 1996], a spherical radiative
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transfer model is required to derive the trace gas vertical column abundances accurately
enough.

Thus, for the interpretation of the off-nadir, limb, and ground-based measurements, an
accurate radiative transfer model is required, which takes into account the spherical shape
of the atmosphere both for single and multiple scattering. A newly developed spherical
radiative transfer model which meets these requirements is described in Section 7. Although
the model was developed to simulate SCIAMACHY limb measurements, it can also be used
for the interpretation of measurements performed by GOMOS and OSIRIS as well as to
compute air mass factors for ground-based measurements.

The main objectives of this study can be summarized as follows. A radiative transfer
model and a retrieval algorithm intended to interprete SCIAMACHY occultation mea-
surements has been developed. The radiative transfer model is able to simulate solar
radiation transmitted through the atmosphere in the entire spectral range covered by
the SCIAMACHY instrument (240 – 2380 nm). Due to an appropriate selection of the
retrieval algorithm, a series of occultation measurements at various tangent heights in var-
ious spectral windows can be interpreted simultaneously. Furthermore, an appropriate
method to solve the radiative transfer equation in a spherical planetary atmosphere has
been selected. Based on this method, a fully spherical radiative transfer model to simulate
SCIAMACHY limb measurements has been developed. The model has been validated and
improved to achieve maximum computational efficiency. Possible approximations which
can be employed to accelerate forward modeling in a spherical planetary atmosphere have
been analyzed.



Part I

General considerations





Chapter 1

Relevant aspects of the atmospheric
physics and chemistry

1.1 Stratospheric ozone

1.1.1 The role of ozone in the atmosphere

Ozone plays an extremely important role in the Earth’s atmosphere absorbing virtually
all solar ultraviolet radiation in the spectral range 240 - 290 nm, which damages simple
unicellural organisms and surface cells of higher plants and animals. Of prime scientific
importance too is the fact that upper atmospheric meteorology is greatly influenced by the
heating that results from absorption by ozone of UV, visible, and thermal radiation. The
stratosphere is a consequence of this heating and the height of the tropopause plays an
important role in determining the weather and climate of the troposphere.

The scientific interest to the identification of the factors that control ozone concentra-
tions was stimulated by the recognition of declining amounts of the stratospheric ozone
over past decades and the dramatic depletions of ozone over the Antarctic as well as con-
cern that a variety of human influences might lead to detectable changes in the abundance
of stratospheric ozone.

1.1.2 Oxygen-only chemistry

A photo-chemical theory for formation and destruction of ozone based on an oxygen-only
chemical scheme was first proposed by Chapman [1930]. The reactions in the Chapman’s
scheme were

O2 + hν
λ < 214 nm−−−−−−−→ 2O (1.1)

O + O2 +M −→ O3 +M (1.2)

O3 + hν
λ < 310 nm−−−−−−−→ O+O2 (1.3)
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O+O3 −→ 2O2 (1.4)

O + O +M −→ O2 +M (1.5)

In the intervening years reaction (1.5) was shown to be too slow for it to play a part in
stratospheric chemistry. Both photolytic reactions (1.1) and (1.3) can also yield exited
fragments, but collisional deactivation to O(3P) is the almost exclusive fate of any O(1D)
formed in the upper atmosphere.

Ozone photolysis below ∼ 50 km (reaction (1.3)) represents a gross but not net loss
process over timescales of the order of minutes of more, since nearly all of the atomic oxygen
thus produced reforms ozone through the reaction (1.2) in a few seconds or less. Ozone
and atomic oxygen thereby cycle very rapidly between one another in the stratosphere. A
small fraction of the oxygen atoms produced from ozone photolysis can react with ozone
(reaction (1.4)) yielding a net loss of the sum of the two over extended timescales. Hence
it is conceptually useful to consider atomic oxygen and ozone together as an “odd oxygen”
family distinct from the much longer-lived form of “even oxygen”, O2.

1.1.3 Catalytic cycles

At first sight, no trace component in the stratosphere could be responsible for loss of odd
oxygen, since the species involved would be rapidly consumed. This objection is removed
if the trace constituent participates in a catalytic process that removes odd oxygen. In the
40 years following Chapman’s groundbreaking work it has become clear that stratospheric
ozone is chemically destroyed not solely by reaction with atomic oxygen but also by hydro-
gen and nitrogen oxide chemistry [Bates and Nicolet, 1984; Crutzen, 1970]. Each of these
species may also be considered in terms of its own odd hydrogen and odd nitrogen families,
the members of which can interchange chemically with one another. The following reaction
cycles illustrate the fact that hydrogen and nitrogen oxides can destroy odd oxygen in a
catalytic fashion wherein the initiating active species are regenerated, so that even small
amounts of these gases can influence the much greater ozone abundances.

O + OH→ O2 +H

H+O2 +M→ HO2 +M

O+HO2 → O2 +OH


 Net Cycle: O + O +M→ O2 +M (1.6)

OH + O3 → HO2 +O2

HO2 +O3 → OH+ 2O2

}
Net Cycle: 2O3 → 3O2 (1.7)

NO + O3 → NO2 +O2

O+NO2 → NO+O2

}
Net Cycle: O + O3 → 2O2 (1.8)

Perturbations to the natural abundances of odd hydrogen may arise through human modi-
fications of source gases such as H2O and CH4, while natural odd nitrogen can be perturbed
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through direct emissions of aircrafts flying at high altitudes, by nuclear explosions, or by
changes of its primary source gas, N2O. Measurements from the Halogen Occultation Ex-
periment (HALOE) performed in the last decade have shown an increase in stratospheric
water vapor across the globe and this trend was found to be greater than expected [Evans
et al., 1998].

In 1974 it was shown that chlorine could also engage in a catalytic cycle resulting in
ozone destruction [Stolarski and Cicerone, 1974]. The main reactions forming chlorine
catalytic cycles are

Cl + O3 → ClO + O2

ClO + O→ Cl + O2

}
Net Cycle: O + O3 → 2O2 (1.9)

Cl + O3 → ClO + O2

ClO + ClO +M→ Cl2O2 +M

Cl2O2 + hν → Cl + ClO2

ClO2 +M→ Cl + O2 +M




Net Cycle: 2O3 → 3O2 (1.10)

As was shown by Wofsy et al. [1975]; Yung et al [1980] and McElroy [1986], bromocarbons
could also contribute to ozone depletion, particularly through the coupling of bromine and
chlorine chemistry. The following reactions illustrate the chlorine-bromine catalytic cycle:

Cl + O3 → ClO + O2

Br + O3 → BrO + O2

BrO + ClO→ Br + ClO2

ClO2 +M→ Cl + O2 +M




Net Cycle: 2O3 → 3O2 (1.11)

Collectively, the depletion of ozone by chlorine, bromine, and the interactions between them
are referred to as halogen chemistry. Although natural sources of chlorine and bromine
exist, the main source of halogen compounds in the stratosphere is found to be halocarbons
(see next Section) transported from the troposphere.

1.1.4 Halocarbons

Fluorinated chlorocarbons (CFCs) were developed in 1930 as a non-toxic non-flammable
refrigerant. Dichlorodifluoromethan, CF2Cl2, is a typical member of this class of com-
pounds. Chemical inertness has made the CFCs valuable as aerosol propellants, as boiling
agents for plastic form production, and as solvents, in addition to their use as refrigerants.
Other members of the halocarbon family are hydrogynated and brominated halocarbons,
i.e., CHF2Cl and CF2BrCl, respectively.

In 1973, the presence of halogenated hydrocarbons in the troposphere was reported by
Lovelock et al. [1973]. The CFCs was found to have solely anthropogenic origin and their
lifetimes to be of up to hundreds of years. As was emphasized by Molina and Rowland
[1974], the chlorofluorocarbons are not significantly soluble in water, nor do they react
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with ocean or soil surfaces or with any chemical species present in the lower atmosphere.
Their chemical destruction depends upon the ultraviolet light found in the stratosphere.
This radiation breaks up the chlorofluorocarbon molecules, yielding Cl atoms that can go
on to destroy ozone in catalytic cycles such as (1.9) and (1.10) as they move through the
stratosphere.

1.1.5 The antarctic ozone hole

Measurable ozone depletion was first documented in the Antarctic spring at the British
Antarctic Survey station at Halley [Farman et al., 1985]. It was shown that the ozone
hole is confined to particular seasons (spring) and to south polar latitudes. As the satellite
measurements confirmed that the depletion extended over roughly the entire continent, the
phenomenon became known as the Antarctic ozone hole.

As was noted by Dobson [1968], there is less ozone naturally present over Antarctica
than over the Arctic in winter and spring, but this climatological difference between the
natural ozone levels over the poles of the two hemispheres should not be confused with
the abrupt decline near the mid-1970s. Analyzing historical measurements of total ozone,
Newman [1994] shows that the ozone hole began in the last few decades.

There are two features of polar stratospheric meteorology and dynamics that appear
to have a close bearing on the interpretation of the ozone depletion. The very low tem-
peratures lead to the formation of high-altitude clouds: the so-called polar stratospheric
clouds which are considered to be involved in polar ozone destruction. They are much
more common in colder Antarctic than in Arctic regions. The second, and related, feature
of polar meteorology is that a vortex forms as air cools and descends during the winter.
The vortex develops a core of very cold air, and it is these low temperatures that allow
the polar stratospheric clouds to form in the lower stratosphere. During the winter and
early spring the air at polar latitudes is almost sealed off from that at lower latitudes due
to the vortex. There is a small downward circulation which drives the polar air through
the cold core of the vortex that contains the polar stratospheric clouds. As these clouds
are involved in heterogeneous chemistry, the downward circulation allows the core region
to act as a “chemical processor”.

The central feature of the perturbed chemistry of the polar stratosphere is the con-
version of reservoir compounds to catalytically active species (or their precursors) on the
surface of the polar stratospheric clouds. Most of the chlorine in the stratosphere is usually
bound up in the reservoir molecules hydrogen chloride and chloride nitrate, as a result of
the reactions

Cl + CH4 → HCl + CH3 (1.12)

ClO + NO2 +M→ ClONO2 +M (1.13)

Liberation of the active chlorine from the reservoirs is normally rather slow. But it turns
out that two reservoir molecules can react together in the presence of ice particles, such as
those that make up the polar stratospheric clouds, for example,

ClONO2 +HCl→ Cl2 +HNO3 (1.14)
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The outcome is that molecular chlorine is released as a gas, and the nitric acid remains in
the ice particles, which can ultimately transport water and nitric acid out of vortex. The
molecular chlorine is photodissociated to atoms

Cl2 + hν → Cl + Cl (1.15)

if sunlight is present. Thus, PSCs disturb the ballance between active and reservoir chlorine
in two related ways. Namely, they provide surfaces on which unusual chemical change can
occur and they transport active nitrogen out of the stratosphere in the form of HNO3

reducing the amounts of ClONO2 reservoir that can be formed in the first place.

1.2 Climate change

Although already discussed over a century ago by Arrhenius [1896] and others, the issue
of global warming caused by the injection of the so-called greenhouse gases such as CO2

into the atmosphere has become prominent in recent years. This is because of the rapid
increase of the atmospheric CO2 associated with the combustion of fossil fuels in the second
half of the twentieth century. The recognition that other species can behave in a similar
manner but often more effectively than CO2 has resulted in the definition of the “global
warming potential” of trace gases. The list of greenhouse gases now comprises many
species, including CO2, CH4, nitrous oxide (N2O), CFCs and tropospheric ozone.

Concern about increasing CO2 levels is directed first towards possible consequences
for out climate that would follow increased radiation trapping. Progressively more so-
phisticated and complete models of the climate system have shown that mean surface
temperatures rise by approximately 3◦C for a doubling in CO2 concentration. Positive
feedbacks, such as decreased albedo because of shrinkage of the polar snow caps, can
amplify small temperature changes.

Similar to CO2, the atmospheric methane levels have been rapidly increasing during
the last few decades due to human activities. Atmospheric methane has largely biogenic
sources, arising from bacterial fermentation in swamplands, tropical rain forests, and the
intestinal tracts of livestock and termites. The growth in rice paddy cultivation and in
cattle farming, which are a response to a population growth, could account for increased
methane production.

Input of nitrogen into cropland is an additional way in which average world tempera-
tures might be raised in the future. Commercial fertilizers and nitrogen-fixing leguminous
crops both have the potentiality of increasing emissions of N2O from soils. The nitrogen
fixed annually by combustion and in manufacturing fertilizers has now reached half of what
plants produce naturally.

Concern also arises over the release by man of CFCs to the atmosphere. These com-
pounds possess strong absorption bands in the infra-red region that, by chance, coincide
with regions where CO2 itself has relatively weak absorption. The CFCs thus have the
potential of closing the atmospheric “windows” through which radiation could escape to
space, and the contribution of such compounds to greenhouse warming may consequently
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be much greater than the simple additive effect of the radiation trapped by the CFCs
themselves.

A warmer Earth will have a smaller equator-to-pole temperature contrast, because
the excess heating is concentrated in polar regions. Seasonal contrasts will become less
pronounced. With less potential energy available in the system to convert to kinetic energy,
the atmospheric heat engine will run more slowly. Large-scale circulation patterns will be
influenced, and some regional climatic changes may be larger than the average. A warmer
atmosphere and ocean will result in more evaporation and precipitation. Warming in the
polar regions could approach as much as 10◦C by the middle of the next century. Formation
of sea-ice will be reduced in both polar regions, and climatologists are tantalized by the
possibility that Arctic Ocean ice might disappear and not return. Modification of the entire
climate of the Arctic Basin would ensue, with profound ecological consequences on land and
in the sea, and with possible release of much CH4 from methane hydrate which is known as
the permafrost. The ice sheets of the Antarctic and Greenland are more likely geological
formations than components of the hydrologic system. Since they rest on solid bedrock,
their melting, or sliding into the ocean, would cause a rise in sea-level. Straightforward
melting of the enormous masses of ice would probably take many thousands of years, but
another mechanism could accelerate the process. Much of the West Antarctic ice sheet
rests on bedrock that is below sea-level. Warmer ocean water would work its way under
the ice sheet, separating it from the bedrock and causing it to slide towards the ocean.
Disintegration and melting of the ice would then be relatively rapid because of the more
intimate contact with the water and because of diminished thermal insulation. If the entire
West Antarctic ice sheet were to disappear, a rise in sea-level of 5 to 7 m would result,
with a serious impact on all the shorelines of the world. The best estimates given by IPCC
[1990] for sea level rises are 0.2 m by 2020 and 0.4 m by 2070.

The governments of the world, concerned with the potentially negative consequences of
global warming, have mandated that evaluations be made to provide national and interna-
tional policy-makers with an accurate assessment of our current understanding of climate
change. At the recent Earth Summit at Kyoto, one of the most important topics on the
agenda was concerned with this issue. A number of international agreements resulted which
intend to decrease the atmospheric loading of the greenhouse gases.

1.3 Stratosphere-troposphere exchange

Dynamical, chemical, and radiative coupling between the stratosphere and troposphere are
among the many important processes that must be understood for prediction of global
change. Of special significance is the transport of trace chemical species, natural and
anthropogenic, between the stratosphere and troposphere. For instance, anthropogenic
species transported from the troposphere into the stratosphere initiate much of the chem-
istry responsible for stratospheric ozone depletion [WMO, 1995]. Conversely, downward
transport from the stratosphere not only constitutes the main removal mechanism for many
stratospheric species, including those involved in ozone depletion, but also represents a sig-
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nificant input of ozone and other reactive species into the tropospheric chemical system
[Levy et al., 1980]. Chemical effects from stratosphere-troposphere exchange can, in turn,
influence the radiative flux balance in the troposphere and lower stratosphere [Ramaswamy
et al., 1992; Toumi et al., 1994]. Stratosphere-troposphere exchange can therefore have a
significant role in the radiative forcing of global climate change.

It is now widely appreciated that the dynamics of the troposphere and the stratosphere
are, in principle, inseparable. However, there are strong reasons why the distinction be-
tween troposphere and stratosphere remains useful. One of them is that vertical transport
of air and chemical species through the depth of the troposphere can occur on timescales
as short as a few hours via moist convection and on timescales of days via baroclinic eddy
motions in middle latitudes. By contrast, vertical transport through a similar altitude
range in the stratosphere takes months, indeed a year or more in the lower stratosphere,
and this vertical transport must be accompanied by radiative heating or cooling. There
are important implications therefore both for chemistry and for radiative flux balances.
The difference between the vertical transport time scales in the stratosphere and tropo-
sphere is a part of what lies behind, for instance, the rapid increase in ozone mixing ratio
and the rapid decrease in water vapor mixing ratio with altitude observed just above the
tropopause.

As pointed out by Holton et al. [1995], due to relatively long timescales for vertical
transport within the stratosphere and the inhomogeneity of the stratospheric photochemi-
cal environment, as regards both actinic radiative fluxes and chemical tracer distributions,
stratosphere-troposphere exchange cannot be thought of in terms of slow transport between
two well-mixed boxes; single-number measures of exchange are therefore, by themselves, of
limited utility. More useful measures of stratosphere-troposphere exchange must concern
not only the transport across the tropopause but also the rate at which tropospheric ma-
terial is supplied to and removed from the regions in the stratosphere in which there are
chemical sources and sinks, for whichever chemical species are of interest. It is necessary
therefore to take into account the species photochemical sensitivities at different altitudes
and latitudes, and the global-scale circulation including the spatiotemporal structure of
transport within the stratosphere.

1.4 International efforts to control substances re-

sponsible for ozone depletion and greenhouse

constituents

1.4.1 Montreal Protocol

An important step to reduce the emission of ozone depleting substances was made in
the “Montreal Protocol on Substances that Deplete the Ozone Layer” that was agreed
in September 1987 at the Headquarters of the International Civil Aviation Organization
in Montreal, and proved to be far tougher than anyone had thought possible only a few
months before.
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The Protocol came into force on January 1st, 1989, by which time 29 countries and the
EEC representing approximately 82 percent of world consumption had ratified it. Since
then several other countries have joined. 155 countries are now Parties to the Convention
and the Protocol, of which well over 100 are developing countries. Each party of the
Protocol was obliged to freeze, and then reduce according to an agreed timetable, its
production and consumption of CFCs as well as to freeze consumption and production of
halons and some other species contributing to ozone depletion. As ”final objective” of the
Montreal Protocol the ”elimination” of ozone-depleting substances production was set.

Recently, reports have shown that, owing to the Montreal Protocol and its subsequent
adjustments and amendments (the revised Montreal Protocol), growth rates and abun-
dances of chlorine and bromine containing compounds have noticeablely decreased [Elkins
et al., 1993; Montzka et al., 1996; Anderson et al., 2000].

1.4.2 Kyoto Protocol

At a conference held December 1 - 11 1997, in Kyoto, Japan, the Parties to the UN Frame-
work Convention on Climate Change agreed to an historic Protocol to reduce greenhouse
gas emissions by harnessing the forces of the global marketplace to protect the environ-
ment. A central feature of the Kyoto Protocol is a set of binding emissions targets for
developed nations. An entitlement was assigned to each country to emit not more than
a fixed quantity of greenhouse gases (CO2, CH4, N2O, Hydrofluorocarbons, etc.) during
a 5-year commitment period commencing in 2008. The specific limits vary from country
to country, though those for the key industrial powers of the European Union, Japan, and
the United States are similar – 8% below 1990 emissions levels for the EU, 7% for the U.S.,
6% for Japan.

To show compliance with the agreed aims of the Kyoto Protocol and to establish the
processes responsible for the changes in the abundance of other greenhouse gases the anthro-
pogenic emissions of greenhouse gases from continents or countries have to be monitored.
Therefore global measurements of these species, which can only be performed by means of
space-borne instruments, are of great significance.



Chapter 2

The SCIAMACHY instrument

2.1 Scientific objectives and targeted constituents

The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIA-
MACHY) is a space-based spectrometer designed to measure the scattered and reflected
solar radiation in nadir and limb viewing geometry as well as the radiation transmitted
through the atmosphere in solar and lunar occultation geometry. Moreover, the extrater-
restrial solar irradiance and the lunar radiance will be measured. The measurements will
be performed in the ultraviolet, visible and near infrared spectral regions (240 – 2380
nm) at moderate spectral resolution (0.2 – 1.5 nm). As mentioned in the Introduction,
the SCIAMACHY instrument is intended to be launched in 2001 on board the European
Space Agency’s Environmental Satellite. Details on the SCIAMACHY instrument concept
and technical parameters can be found in [Burrows and Chance, 1991; Goede, 1994;Mager,
1997; Goede, 1999]. A small-scale version of SCIAMACHY, the Global Ozone Monitoring
Experiment (GOME) [Burrows et al., 1999], was successfully launched on board the ERS-2
satellite in April 1995.

The overall mission objective of the SCIAMACHY mission is to determine globally the
amounts and distributions of atmospheric constituents and thereby improve our knowledge
of global atmospheric change and related issues of importance to the chemistry and physics
of our atmosphere. More specifically, main scientific studies and areas of applications to
be pursued using SCIAMACHY data are as follows [Bovensmann et al., 1999]:

• the impact of tropospheric pollution arising from industrial activity and biomass burn-
ing,

• exchange processes between the stratosphere and the troposphere,

• stratospheric chemistry in the polar regions, e.g., under “ozone hole” conditions, and at
mid-latitudes,

• modulation of atmospheric composition resulting from natural phenomena such as vol-
canic eruptions, solar output variations, e.g., solar cycle, or solar proton events.
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Figure 2.1: Spectral range covered by GOME and SCIAMACHY and spectral windows
where atmospheric constituents are to be retrieved.

Figure 2.1 shows the wavelength range to be observed by the SCIAMACHY instrument
in comparison to the spectral range covered by the GOME instrument as well as positions of
spectral windows where atmospheric constituents are to be retrieved. Figure 2.2 depicts the
altitude ranges where the measurements are to be made to retrieve the vertical distribution
of the atmospheric constituents targeted by SCIAMACHY. Due to higher signal to noise
ratio, the retrieval from the occultation measurements yields information over a wider
altitude range then from the limb measurements. The combined use of nadir and limb
measurements is assumed to yield tropospheric amounts of the trace gases down to the
ground or the cloud top, depending on cloud cover.

The trace gases tropospheric amounts as well as surface spectral reflectance, aerosol
and cloud parameters retrieved form the combined limb-nadir measurements can be used
for studies of the oxidizing capacity of the troposphere, photochemical O3 production and
destruction, and tropospheric pollution. The measurements of the high-resolved profiles of
the tracers O3, H2O, N2O, CH4, and aerosol performed by SCIAMACHY are of primary
significance for the investigation of stratosphere-troposphere exchange [Holton et al., 1995].

In general, SCIAMACHY measurements will yield detailed information about the de-
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Figure 2.2: Altitude ranges of the atmospheric constituents targeted by SCIAMACHY.

velopment of stratospheric ozone above the Arctic and Antarctica, the global stratospheric
active halogen species (BrO, ClO, OClO), and the global ozone budget as a function of
the height in the atmosphere. The vertical distribution in the stratosphere of other tracers
(NO2, BrO, CH4, N2O, etc.) on a global scale will be obtained as well. These measure-
ments will be of utmost significance to study the stratospheric chemistry and dynamics.
This information is also required to test accuracy of current stratospheric photochemical
models and their predictive capability.

The profiles of O3, H2O, N2O, NO, O2, and O2(
1∆) in the upper stratosphere and

lower mesosphere retrieved from the SCIAMACHY measurements will be used to study an
opportunity for the early detection of climate change [Chandra et al., 1997] as well as the
ozone destruction by the mesospheric and upper-stratospheric NO. Using these data, the
mesospheric source of stratospheric NOx will be quantified. Moreover, the combination of
the height-resolved O3, O2(

1∆), and UV radiance products from SCIAMACHY provides
detailed information about the photolysis of O3 in the upper stratosphere and mesosphere.

For use in climate research, SCIAMACHY measurements will provide the distributions
of several important greenhouse gases (O3, H2O, CH4, N2O, and CO2), aerosol and cloud
data, surface reflectance, the incoming solar irradiance and the outgoing radiance, as well as
profiles of pressure and temperature (via O2 and CO2). As it is intended that SCIAMACHY
observations are to be made for many years, this long-term dataset will provide much unique
information useful for the study of the earth-atmosphere system as well as variations of
solar output and its impact on climate change.



20 The SCIAMACHY instrument

2.2 Instrument design

The SCIAMACHY instrument is a passive remote sensing moderate-resolution spectrome-
ter. It comprises a mirror system, a telescope, a spectrometer, and thermal and electronic
subsystems. Except for scan mirrors, all spectrometer parts are fixed. The spectra are
recorded simultaneously in the spectral range from 240 nm to 1750 nm and in two selected
spectral windows in near infrared spectral region, namely, 1940 – 2040 nm and 2265 – 2380
nm. To suppress any stray light within the instrument the double spectrometer design
was selected. Initially, light from the spectrometer slit is collimated and directed into a
pre-dispersing prism. The light leaving the pre-dispersing prism is then separated into
four parts using reflective optics. The shorter wavelengths of the spectrum are directed
to channel 1 (240 – 314 nm) and channel 2 (314 – 405 nm) respectively. The majority
of the light in the spectrum (405 – 1750 nm) passes without reflection to channels 3 – 6.
The infrared part of the spectrum (1940 – 2380 nm) is reflected toward channels 7 and 8.
Dichroic mirrors are used to select the wavelength ranges for channels 3, 4, 5, 6 and to sep-

Table 2.1: Spectral coverage and resolution of SCIAMACHY channels.

Channel Spectral Range [nm] Spectral resolution [nm]

1 240 - 314 0.24

2 309 - 405 0.26

High 3 394 - 620 0.44

Resolution 4 604 - 805 0.48

Channels 5 785 - 1050 0.54

6 1000 - 1750 1.48

7 1940 - 2040 0.22

8 2265 - 2380 0.26

PMD1 310 - 377 broadband

PMD2 450 - 525 broadband

Polarization PMD3 617 - 705 broadband

Measurement PMD4 805 - 900 broadband

Devices PMD5 1508 - 1645 broadband

PMD6 2265 - 2380 broadband

45 deg 802 - 905 broadband
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arate light for channel 7 from that for channel 8. Further, in each individual channel, the
light is dispersed by the grating and focused then into linear 1024 pixel detector array. To
minimize detector noise and dark current, the diode arrays are cooled. The SCIAMACHY
instrument is also equipped with seven broadband detectors, polarization measurement
devices (PMD), which will be used to determine the polarization characteristics of the
incoming light. The spectral coverage of the SCIAMACHY channels and corresponding
spectral resolutions are summarized in Table 2.1.

2.3 Observational modes

2.3.1 Nadir mode

In nadir mode (Fig. 2.3, upper plot) the solar radiation scattered in the atmosphere and
reflected from the Earth’s surface is collected by the detector. In this mode, the atmospheric
volume beneath the spacecraft is observed. The radiation from the Earth’s scene is directed
by the nadir mirror into a telescope which focuses the beam onto the entrance slit of
the spectrometer. During nadir measurement the scans across the satellite track will be
performed. Each scan covers an area on the ground of approximately 30 km along track by
960 km across track. The spatial resolution in the nadir scan mode is determined by the
combination of the scan speed and the integration time of the detectors. The scan speed
along track is determined by the spacecraft speed and the across-track speed is determined
by the nadir scan mirror rate. A typical spatial resolution in nadir mode is approximately
30 km along track by 240 km across track. To minimize the loss of spatial information, an
alternative data processing can be used in selected spectral windows resulting in a higher
spatial resolution for important constituents such as O3, NO2, H2O, aerosols, and clouds
of 30 km along track by 60 km across track.

2.3.2 Limb mode

In limb mode (Fig. 2.3, middle plot) the solar radiation scattered in the atmosphere is
observed by the instrument. The incoming radiation is reflected by the limb mirror to
the nadir mirror and then into the telescope which focuses the beam onto the entrance
slit of the spectrometer. In this measurement mode the spectrometer slit is projected
parallel to the horizon by a combination of the limb and nadir mirrors. Performing limb
measurements, the limb mirror scans the atmosphere in horizontal (azimuth) direction,
whereas appropriate movement of the nadir mirror results in a vertical (elevation) scan
direction. A typical limb scan cycle comprises 34 horizontal scans at different tangent
heights starting 3 km below the horizon. After each horizontal scan, which has a duration
of 1.5 s, a step of 3 km in the tangent height is made by the evaluation mirror. Each
horizontal scan of the atmosphere covers 960 km in the horizontal (across-track) direction.
The vertical resolution is approximately 3 km. The latter is determined by the geometrical
field of view and pointing stability of the instrument as well as by the multiple scattering in
the atmosphere. The individual spatial resolution within a 960-km scan in the horizontal
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Figure 2.3: Observational geometries of the SCIAMACHY instrument.
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Figure 2.4: Typical sequence of SCIAMACHY measurements performed during one orbit
of ENVISAT.

direction across track is typically 240 km, being determined by the integration time. The
spatial resolution and the spatial coverage of the horizontal scan refer to the tangent point.

2.3.3 Occultation mode

Occultation measurements (Fig. 2.3, lower plot) are performed using the elevation and
azimuth scan mirrors in a manner similar to that for the limb mode but with the Sun
or Moon in the instrument’s field of view. In this measurement mode the solar/lunar
radiation transmitted through the atmosphere is collected by the detector. Solar occul-
tation measurements are planned to be performed at each orbit during sunrise. For the
ENVISAT orbit solar occultation is restricted to latitudes between 65◦ and 90◦N. Lunar
occultation will be performed from half Moon to full Moon. For periods of 5 – 8 days per
month lunar occultation measurements will provide latitudinal coverage from 30◦ to 90◦S.
During the sunrise SCIAMACHY scans several times over the full solar disk, whereas for
the lunar measurement longer integration times are necessary and a “stare” mode similar
to that used on the Halogen Occultation Experiment (HALOE) [Russel et al., 1993] is
implemented. Due to the strong signal the integration time for solar occultation measure-
ments can be substantially reduced allowing a horizontal resolution of 30 km and a vertical
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resolution of 2.5 km to be achieved. Similar to the limb measurements, the resolution at
tangent point is meant.

2.3.4 Sequence of measurements in orbit

ENVISAT will fly in a near polar (98.55◦ inclination) sun-synchronous orbit with an orbital
period of about 100 min. A typical sequence of measurements which will be performed by
SCIAMACHY during one orbit is shown in Figure 2.4. A typical orbit starts with a limb
measurement of the twilight atmosphere followed by the solar occultation measurement
during sunrise over the North Pole and an optimized limb-nadir sequence. If the Moon
is visible, lunar occultation measurements will be performed in the Southern Hemisphere
(30◦ – 90◦S) every second orbit. All these measurements, with the exception of lunar
occultation, will be performed every orbit, that is, 14 orbits per day. In addition to
the above mentioned measurements, the solar irradiance measurements and a number of
calibration measurements will be performed. Details on the calibration measurements can
be found in [Frerick et al., 1997]. Most of these calibration measurements will be performed
during the eclipse part of the orbit.
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The radiative transfer theory

3.1 Radiative transfer equation

Intensity is the basic quantity characterizing the radiation field. In common with astro-
physical usage the word intensity denotes specific intensity of radiation, i.e., the flux of
energy in a given direction per second per unit wavelength range per unit solid angle per
unit area perpendicular to the given direction [Goody, 1964]. According to Sobolev [1975],
the intensity at a given place in space in a particular direction is defined in the following
manner. If dσ is an elementary area which is perpendicular to the chosen direction es and
the radiation falls in the frequency interval from ν to ν + dν in the solid angle dω in the
time dt, then the amount of radiant energy E falling on the area from the given direction
es will be proportional to dσ dν dω dt, i.e.,

E = I dσ dν dω dt . (3.1)

The proportionality coefficient I is called the intensity of radiation. Generally speaking,
quantity I depends on the coordinates of the given point, on direction, on the frequency
ν, and eventually on the time. Possible time dependence will not be considered below, i.e.,
the radiation field will always be considered to be stationary. For simplicity, dependence of
the intensity as well as of all medium characteristics on the frequency will not be indicated
below.

An important characteristic of radiation intensity is the fact that in empty space it does
not change along a ray with distance from the source. The totality of interactions between
radiation and medium is classed as either extinction or emission. The two processes are
distinguished by the sign of the change of radiation intensity as a result of interaction.

Extinction refers to any process which reduces the intensity in the direction under con-
sideration, and thus includes both scattering from the direction es into another directions
as well as absorption. The fraction of the energy incident on the plane layer of infinitesimal
thickness ds which is removed from the original beam can be written as a formal statement
defining the extinction coefficient α in the following manner:

Eext = α dsE . (3.2)
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The extinction coefficient depends on the frequency of the radiation and coordinates of
the given point. Thus, the energy removed in the volume element dV = ds dσ from the
ray falling on this volume element from the given direction in the solid angle dω in the
frequency interval from ν to ν + dν in the time period dt is given by

Eext = α ds I dσ dν dω dt . (3.3)

Emission refers to any process which increases the intensity in the direction under
consideration, and thus includes both scattering into the beam from other directions, as
well as thermal or other emission processes within the volume. The energy emitted by the
volume element dV within the solid angle dω in the frequency interval from ν to ν + dν in
the time period dt can be written as a formal statement defining the source function J in
the following manner:

Eemit = α J ds dσ dν dω dt . (3.4)

Considering the radiation entering and leaving the volume element dV within a solid
angle dω in the frequency interval from ν to ν + dν in the time period dt, the follow-
ing relation for the difference between energy leaving and entering the volume element is
obtained:

dE = dI dσ dν dω dt . (3.5)

Here, I and I+dI are assumed to be the intensity where the ray enters the volume element
and the intensity leaving the volume element, respectively.

On the other hand, employing the energy conservation law, the difference between the
energy leaving and entering the volume element can be written as

dE = −Eext + Eemit . (3.6)

Substituting Eqns. (3.3)–(3.5) into Eq. (3.6) results in

dI dσ dν dω dt = −α I ds dσ dν dω dt+ α ds J dσ dν dω dt . (3.7)

It follows that
dI

ds
= −α (I − J) . (3.8)

Equation (3.8) is the radiative transfer equation which determines changes in the intensity
of radiation as it passes through an absorbing and emitting medium.

In UV–Visible–near IR spectral region the contribution of thermal emission processes
to the source function is negligible and, thus, the source function comprise only scattering
processes. However, in the case of a medium which scatters radiation, the quantity J
depends on the intensity falling on the elementary volume from all directions.

Let an intensity I fall on an elementary volume with a cross section dσ and a height
dh within the solid angle dω̃ in the direction forming an angle Θ̃ with the normal to the
base, see Fig. 3.1. It is apparent that the energy falling on the volume per unit frequency
interval is given by

E = I dω̃ dσ cos Θ̃ . (3.9)
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Figure 3.1: Interaction of a beam of light with an element of volume dV = dσ dh

Since the path traveled by the radiation in the volume is dh sec Θ̃, a fraction αdh sec Θ̃ of
the energy falling on the volume is absorbed by it, i.e., removed from the incident beam,
so that the following relation for the absorbed energy is appropriate:

Eabs = αdh dσ I dω̃ . (3.10)

The energy scattered by the volume within the solid angle dω in a given direction
is found by multiplying the absorbed energy by the quantity �p(γ) dω/4π, where γ is
the angle between the directions of the incident and scattered radiation. The quantity
� represents the probability that a photon which interacts with an element of volume
will be scattered rather then absorbed. It is called the single scattering albedo. The term
p(γ) dω/4π denotes the probability that the radiation is scattered into a solid angle dω
about a direction forming an angle γ with the direction of the incident radiation. The
quantity p(γ) is called the phase function. Clearly,∫

p(γ)
dω

4π
= 1 , (3.11)

where the integration is carried out over all directions. Taking into account that dω =
2π sin γ dγ, Eq. 3.11 can be rewritten as follows:

1

2

π∫
0

p(γ) sin γ dγ = 1 . (3.12)

The quantities � and p(γ) depend on the frequency of the radiation and coordinates of
the given point.
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As a result, the following expression for the energy scattered within the solid angle dω
in a given direction, Θ, is obtained:

Escat = �p(γ)
dω

4π
α dh dσ I dω̃ . (3.13)

Since the radiation falls on the elementary volume from all sides, this expression has to be
integrated over all directions of the incident radiation. It is evident that the result of this
integration has to be equated to the total energy emitted within the solid angle dω in the
direction under consideration per unit frequency per unit time, i.e.,

�αdh dσ
dω

4π

∫
p(γ) I dω̃ =

Eemit

dν dt
, (3.14)

where Eemit is given by Eq. (3.4). Thus, combining Eqns. (3.4) and (3.14), the following
equation for the scattering source function can be obtained:

J =
�

4π

∫
p(γ) I dω̃ . (3.15)

Substituting Eq. (3.15) for the scattering source function into Eq. (3.8) leads to the integro-
differential radiative transfer equation in a medium that absorbs and scatters radiant
energy:

dI

ds
= −α I + α

�

4π

∫
p(γ) I dω̃ . (3.16)

Here, the thermal emission processes as well as the inelastic scattering were neglected.
In any planetary atmosphere the radiation field I can be split into two components: the

direct radiation, which is never scattered in the atmosphere or reflected from the planetary
surface, and the diffuse radiation, which is scattered or reflected at least once:

I = Idir + Idif . (3.17)

Since there is no process in the atmosphere which increases the intensity of the direct solar
radiation, the radiative transfer equation for the direct radiation leads to the homogeneous
differential equation,

dIdir(r, es)

ds
= −α(r) Idir(r, es) , (3.18)

having the following formal solution:

Idir(r, eo) = C0 exp


−

s∫
0

α(ŝ) dŝ


 . (3.19)

Here, the integration is performed from point r to the top of the atmosphere along the
direction eo, i.e., along the direct solar beam, s is the full path-length along the integration
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line, and C0 is an arbitrary constant. This constant can be determined using the following
boundary condition at the top of the atmosphere:

Idir(r
toa, eo) = Iirr , (3.20)

where Iirr is the solar irradiance at the top of the atmosphere traveling in the direction
eo. Substituting Eq. (3.20) into Eq. (3.19), the following general expression for the direct
radiation, which is known as Lambert–Beer law, can be obtained:

Idir(r, es) = Iirr exp


−

s∫
0

α(ŝ) dŝ


 , (3.21)

If the Sun as a light source is assumed to have infinitesimal size, there is no direct radiation
traveling in directions different from eo and Eq. (3.21) can be rewritten as follows:

Idir(r, es) = F0 δ(es − eo) exp


−

s∫
0

α(ŝ) dŝ


 , (3.22)

where F0 is the incident solar flux and δ(es − eo) is the Dirac delta function.
Substituting Eq. (3.17) into Eq. (3.15), the following relation for the total source

function, J(r, es), can be obtained:

J(r, es) =
�

4π

∫
p(r, γ) Idif(r, es) dω̃ +

�

4π
F0 p(r, γo) exp


−

s∫
0

α(ŝ) dŝ


 , (3.23)

where γo is the angle between the directions of the incident direct solar beam and scattered
radiation. Introducing the multiple scattering and the single scattering source functions as

Jms(r, es) ≡ �

4π

∫
p(r, γ) Idif(r, es) dω̃ (3.24)

and

Jss(r, es) ≡ �

4π
F0 p(r, γo) exp


−

s∫
0

α(ŝ) dŝ


 , (3.25)

respectively, the following formal statement is obtained from Eq. (3.23):

J(r, es) = Jms(r, es) + Jss(r, es) . (3.26)

Thus, the total source function is split into two terms: the multiple scattering and the
single scattering source function.

Since direct radiance contains a delta function, it is more convenient to solve the
radiative transfer equation, Eq. (3.8) or Eq. (3.16), only for diffuse radiance to avoid
discontinuity, i.e., the following equation has to be solved to obtain the diffuse radiation
field in the atmosphere:

dIdif(r, es)

ds
= −α (Idif (r, es)− Jms(r, es)− Jss(r, es)) . (3.27)
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3.2 Radiative transfer equation in orthogonal curvi-

linear coordinates

A numerical solution of the radiative transfer equation, Eq. (3.27), is only possible if
a coordinate system is specified. The choice of the coordinate system depends on the
medium curvature, the medium and the radiation field symmetry, and eventually several
other conditions [Jones and Bayazitoglu, 1992]. In any coordinate system each point r is
defined by three coordinates x1, x2, and x3, and each direction es by two angles Θ and ϕ.
Thus, the intensity in Eq. (3.27) is a function of five variables.

According to [Korn and Korn, 1968], the general expression for the path-length deriva-
tive along an arbitrary direction es is

d

d s
= es · ∇ . (3.28)

The nabla operator ∇ and the unit vector es are written in orthogonal curvilinear coordi-
nates as follows:

∇ =

3∑
i=1

1

hi
ei

∂

∂ xi
, (3.29)

and

es =

3∑
i=1

ξi ei , (3.30)

where ei are unit vectors tangential to the coordinate lines xi, ξi are the direction cosines
of the unit vector es in the selected curvilinear coordinate system, and hi are metric
coefficients given by

hi =

√(
∂x

∂xi

)2

+

(
∂y

∂xi

)2

+

(
∂z

∂xi

)2

. (3.31)

Here x, y, and z are the associated Cartesian coordinates. Thus, Eq. (3.28) for the path-
length derivative along an arbitrary direction es in orthogonal curvilinear coordinates is
written as follows:

d

d s
=

3∑
i=1

ξi
hi

∂

∂ xi
(3.32)

Taking into account that the intensity is a function of five variables, i.e.,

I = I(x1, x2, x3, Θ(x1, x2, x3), ϕ(x1, x2, x3)) ,

each derivative in Eq. (3.32) may be split into

∂

∂ xi

≡ ∂

∂ xp
i

+
∂ Θ

∂ xi

∂

∂ Θ
+

∂ ϕ

∂ xi

∂

∂ ϕ
, (3.33)
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Figure 3.2: Definition of spherical coordinates.

where superscript p denotes a variation of xi at Θ and ϕ constant. As a consequence,
rewriting Eq. (3.32), the following general expression for the path-length derivative of the
radiation intensity in an orthogonal curvilinear coordinate is obtained:

d I

d s
=

3∑
i=1

ξi
hi

∂ I

∂ xi
+

3∑
i=1

ξi
hi

(
∂ Θ

∂ xi

∂ I

∂ Θ
+

∂ ϕ

∂ xi

∂ I

∂ ϕ

)
. (3.34)

The second two terms in Eq. (3.34) are commonly referred to as the angular redistribution
terms.

3.3 Radiative transfer equation in spherical coordi-

nates

In most publications on radiative transfer in a spherical atmosphere a spherical geocentric
coordinate system depicted in Fig 3.2 is used to solve the radiative transfer equation, see,
for example, [Smokty, 1967; Germogenova et al., 1969; Sobolev, 1975; Wilson and Sen,
1980b; Balluch, 1996]. In this coordinate system, each point r is defined by the coordinates
x1 = Ψ , x2 = Φ and x3 = r in the global (spatial) coordinate system (XYZ), and each
direction es is defined by the angles Θ and ϕ in the local (directional) coordinate system.
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In this case, the direction cosines of the unit vector es in the directional coordinate system
are given by

ξΨ ≡ η = sinΘ cosϕ , (3.35)

ξΦ ≡ ξ = sinΘ sinϕ , (3.36)

ξr ≡ ζ = cosΘ . (3.37)

As discussed in Appendix A, if the direction cosines of the unit vector es in the global
coordinate system (η0, ξ0, and ζ0) are known the local direction cosines can be obtained as
follows:

η = cosΨ cosΦη0 + cosΨ sinΦ ξ0 − sinΨ ζ0 , (3.38)

ξ = − sinΦη0 + cosΦξ 0 , (3.39)

ζ = sinΨ cosΦη0 + sinΨ sinΦ ξ0 + cosΨ ζ0 . (3.40)

According to [Vaillon et al., 1996], the derivatives ∂ Θ/∂ xi and ∂ ϕ/∂ xi in Eq. (3.34) can
be easily obtained from Eqns. (3.35)–(3.40) as discussed below.

Obviously, angles Θ and ϕ do not vary with the spatial variable r, therefore,

∂ Θ

∂ r
= 0 and

∂ ϕ

∂ r
= 0. (3.41)

Differentiating Eqns. (3.38) and (3.40) with respect to Ψ and taking into account that the
direction cosines η0, ξ0, and ζ0 do not depend on spatial coordinates, the following equations
are obtained:

∂ η

∂ Ψ
= − sinΨ cosΦη0 − sinΨ sinΦ ξ0 − cosΨ ζ0 , (3.42)

∂ ζ

∂ Ψ
= cosΨ cosΦη0 + cosΨ sinΦ ξ0 − sinΨ ζ0 . (3.43)

Comparing Eqns. (3.42) and (3.43) with Eqns. (3.40) and (3.38), respectively, and taking
into account Eqns. (3.35) and (3.37) yields

∂ η

∂ Ψ
= − ζ = − cosΘ , (3.44)

∂ ζ

∂ Ψ
= η = sinΘ cosϕ . (3.45)

On the other hand, the derivatives given by Eqns. (3.44) and (3.45) can be obtained
differentiating Eqns. (3.35) and (3.37) with respect to Ψ , i.e.,

∂ η

∂ Ψ
= cosΘ cosϕ

∂ Θ

∂ Ψ
− sinΘ sinϕ

∂ ϕ

∂ Ψ
, (3.46)

∂ ζ

∂ Ψ
= − sinΘ ∂ Θ

∂ Ψ
. (3.47)
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Combining Eqns. (3.44)–(3.47), the following expressions for the derivative ∂ Θ/∂ Ψ and
∂ ϕ/∂ Ψ are obtained

∂ Θ

∂ Ψ
= − cosϕ , (3.48)

∂ ϕ

∂ Ψ
=
cosΘ sinϕ

sinΘ
. (3.49)

Analogously, differentiating Eqns. (3.38) and (3.40) with respect to Φ, comparing the
resulting equations with Eq. (3.39), and taking into account Eq. (3.36) leads to

∂ η

∂ Φ
= ξ cosΨ = sinΘ sinϕ cosΨ , (3.50)

∂ ζ

∂ Φ
= ξ sinΨ = sinΘ sinϕ sinΨ . (3.51)

It follows from Eqns. (3.35) and (3.37) that

∂ η

∂ Φ
= cosΘ cosϕ

∂ Θ

∂ Φ
− sinΘ sinϕ

∂ ϕ

∂ Ψ
, (3.52)

∂ ζ

∂ Φ
= − sinΘ ∂ Θ

∂ Φ
. (3.53)

Combining Eqns. (3.50)–(3.53), the following expressions for the derivatives ∂ Θ/∂ Ψ and
∂ ϕ/∂ Ψ are obtained

∂ Θ

∂ Φ
= − sinϕ sinΨ , (3.54)

∂ ϕ

∂ Φ
= − cosΘ cosϕ sinΨ + sinΘ cosΨ

sinΘ
. (3.55)

The transformation of the spherical coordinates into Cartesian is performed as follows:

X = r sinΨ cosΦ , (3.56)

Y = r sinΨ sinΦ , (3.57)

Z = r cosΨ . (3.58)

Therefore, using Eq. (3.31), the metric coefficients can be calculated in the following
manner:

hr =
√
sin2 Ψ cos2 Φ+ sin2 Ψ sin2 Φ+ cos2 Ψ = 1 , (3.59)

hΨ =
√

r2 cos2 Ψ cos2 Φ+ r2 cos2 Ψ sin2 Φ+ r2 sin2 Ψ = r , (3.60)

hΦ =
√

r2 sin2 Ψ sin2 Φ+ r2 sin2 Ψ cos2 Φ = r sinΨ . (3.61)

Substituting Eqns. (3.35)–(3.37), (3.48), (3.49), (3.54), (3.55), and (3.59)–(3.61) into
Eq. (3.34), the following expression for the path-length derivative of the radiation intensity
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in spherical coordinates is obtained:

d I

d s
= cosΘ

∂ I

∂ r
+
sinΘ cosϕ

r

∂ I

∂ Ψ
+
sinΘ sinϕ

r sinΨ

∂ I

∂ Φ
+
sinΘ cosϕ

r
(− cosϕ) ∂ I

∂ Θ
+

sinΘ cosϕ

r

cosΘ sinϕ

sinΘ

∂ I

∂ ϕ
+
sinΘ sinϕ

r sinΨ
(− sinϕ sinΨ ) ∂ I

∂ Θ
+

sinΘ sinϕ

r sinΨ

(
− cosΘ cosϕ sinΨ + sinΘ cosΨ

sinΘ

)
∂ I

∂ ϕ
. (3.62)

As a result, the general form of the radiative transfer equation, Eq. (3.27), in spherical
coordinates is given by

cosΘ
∂ Idif
∂ r

+
sinΘ cosϕ

r

∂ Idif
∂ Ψ

+
sinΘ sinϕ

r sinΨ

∂ Idif
∂ Φ

− sinΘ

r

∂ Idif
∂ Θ

− sinΘ cosϕ cotΨ

r

∂ Idif
∂ ϕ

= −α (Idif − Jms − Jss) , (3.63)

where

Idif = Idif (r, Ψ, Φ,Θ, ϕ) ,

Jms = Jms(r, Ψ, Φ,Θ, ϕ) ,

Jss = Jss(r, Ψ, Φ,Θ, ϕ) ,

α = α(r, Ψ, Φ)

In the selected coordinate system, the multiple scattering source function, Jms, and the
single scattering source function, Jss, according to Eqns. (3.24) and (3.25), respectively,
are given by

Jms(r, Ψ, Φ,Θ, ϕ) =
�(r, Ψ, Φ)

4π

2π∫
0

dϕ̂

π∫
0

dΘ̂ p(r, Ψ, Φ, γ) Idif(r, Ψ, Φ, Θ̂, ϕ̂) sin Θ̂ (3.64)

and

Jss(r, Ψ, Φ,Θ, ϕ) =
�(r, Ψ, Φ)

4π
F0 p(r, Ψ, Φ, γo) exp


−

s∫
0

α(ŝ) dŝ


 . (3.65)

Here the scattering angles γ and γo are defined by

γ = cosΘ cos Θ̂ + sinΘ sin Θ̂ cos(ϕ− ϕ̂) (3.66)

and
γo = − cosΘ cosΨ + sinΘ sinΨ cosϕ , (3.67)

respectively. The integration in Eq. (3.74) is performed along the direct solar beam and s
denotes the total path-length along the beam.
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3.4 Approximative differential operator in a spherical

atmosphere

If a spherical shell medium is considered, all atmospheric characteristics and, therefore,
the intensity of radiation do not depend on global azimuth angle Φ. Hence, the third term
in Eq. (3.63) containing ∂/∂Φ vanishes, and Eq. (3.63) leads to the differential radiative
transfer equation for a spherical planetary atmosphere introduced by Lenoble and Sekera
[1961] and independently by Sobolev and Minin [1962]:

cosΘ
∂ Idif
∂ r

+
sinΘ cosϕ

r

∂ Idif
∂ Ψ

− sinΘ

r

∂ Idif
∂ Θ

− sinΘ cosϕ cotΨ

r

∂ Idif
∂ ϕ

= −α (Idif − Jms − Jss) . (3.68)

This form of the radiative transfer equation has been also used in the extended Sobolev
method discussed in [Wilson and Sen, 1980a,b].

Considering each spherical shell layer to be horizontal-homogeneously illuminated by
the direct solar radiance, i.e., the intensity of direct radiation given by Eq. (3.21) to be
independent of the position of point r with respect to the Sun (Idir(r, es) = Idir(r, es)), the
derivative ∂/∂Ψ disappears and the following expression for the corresponding approxima-
tive differential operator is appropriate:

d

d s
= cosΘ

∂

∂ r
− sinΘ

r

∂

∂ Θ
− sinΘ cosϕ cotΨ

r

∂

∂ ϕ
. (3.69)

The radiative transfer equation employing this approximate differential operator has been
used by Balluch [1996] to calculate photolysis rates and solar heating in a spherical plane-
tary atmosphere.

If an atmosphere is isotropically illuminated, the diffuse radiation field becomes az-
imuthally independent and the following approximation for the differential operator is
obtained:

d

d s
= cosΘ

∂

∂ r
− sinΘ

r

∂

∂ Θ
. (3.70)

In this case the radiance is a function of two variables only, namely, r and Θ. It is the
radiative transfer equation with the differential operator defined by (3.70), which was used
to solve the radiative transfer problem in stellar atmospheres, as well as neutron transport
and heat transfer problems [Sen and Wilson, 1990].

3.5 Plane-parallel and pseudo-spherical atmospheres

A substantial simplification of the radiative transfer equation can be achieved considering
an atmosphere consisting of plane-parallel layers (plane-parallel atmosphere) instead of a
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Figure 3.3: Definition of directional coordinates in a plane-parallel atmosphere.

spherical atmosphere. The simplest way to obtain the solution of the radiative transfer
equation is a one-dimensional plane-parallel radiative transfer model, see, for example,
[Dave and Mateer, 1967; Meier et al., 1982; Stamnes et al., 1988; Rozanov et al., 1997].
In such models the spatial position of a point in the atmosphere is defined only by its
altitude, whereas in three-dimensional plane-parallel radiative transfer models, see, for
example, [Evans, 1998], the position of a point in the atmosphere is commonly defined by
three Cartesian coordinates. The coordinates which are commonly used in a plane-parallel
atmosphere are shown in Fig 3.3. The z-axis points upwards and z-coordinate corresponds
to the altitude, z = 0 refer to the bottom of the atmosphere and, hence, z = r−R, where
R is the Earth’s radius. The x-axis is commonly selected to set the azimuth angle of the
direct solar beam to zero, i.e., ϕo = 0.

Since the variables Θ and ϕ in a plane-parallel atmosphere do not depend on the position
in the atmosphere, the angular redistribution terms in Eq. (3.34) disappear. The metric
coefficients, hi, are equal to the unity when the Cartesian coordinates are used. Thus,
the following expression for the path-length derivative of diffuse radiation intensity in a
plane-parallel atmosphere is obtained:

d Idif
d s

= sinΘ cosϕ
∂ Idif
∂ x

+ sinΘ sinϕ
∂ Idif
∂ y

+ cosΘ
∂ Idif
∂ z

. (3.71)

Considering horizontally homogeneous atmosphere, all atmospheric characteristics and,
therefore, the intensity of diffuse radiation become independent of the position in a hor-
izontal layer. This leads to one-dimensional plane-parallel atmosphere and the following
radiative transfer equation Eq. (3.27) is appropriate:

cosΘ
d Idif(z, Θ, ϕ)

d z
= −α(z) (Idif (z, Θ, ϕ)− Jms(z, Θ, ϕ)− Jss(z, Θ, ϕ)) , (3.72)
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where the multiple scattering source function, Jms, and the single scattering source func-
tion, Jss, are given by

Jms(z, Θ, ϕ) =
�(z)

4π

2π∫
0

dϕ̂

π∫
0

dΘ̂ p(z, Θ, ϕ, Θ̂, ϕ̂) Idif(z, Θ̂, ϕ̂) sin Θ̂ (3.73)

and

Jss(z, Θ, ϕ, Ψ ) =
�(z)

4π
F0 p(z, Θ, ϕ, Ψ ) exp


−

zt∫
0

α(ẑ)

cosΨ
dẑ


 , (3.74)

respectively. Here, zt refers to the top of the atmosphere. Since the radiative transfer
equation in a plane-parallel atmosphere is always solved at one specified solar zenith angle,
the dependence of Jss on Ψ in Eq. (3.74) is parametrical and does not have to be included
in the radiative transfer equation.

The accuracy of the radiative transfer calculations at large solar zenith angles (larger
than about 85◦) can be substantially improved considering a pseudo-spherical atmosphere
instead of a plane-parallel one. This means that a plane-parallel atmosphere is considered
to be horizontal-homogeneously illuminated by direct solar radiance, which is attenuated as
in a spherical atmosphere. Thus, Eqns. (3.72) and (3.73) for a pseudo-spherical atmosphere
remain unchanged, whereas the single scattering source function Jss(z, Θ, ϕ) is calculated
in a spherical atmosphere, i.e.

Jss(z, Θ, ϕ) =
�(z)

4π
F0 p(z, Θ, ϕ, Ψ ) exp


−

st∫
0

α(ŝ) dŝ


 . (3.75)

Here, integration is to be performed along the direct solar beam and st, hence, denotes
the full length of the integration line from the selected point to the top of the atmosphere
along the beam. Similar to plane-parallel atmosphere, the radiative transfer equation in a
pseudo-spherical atmosphere is solved for one selected solar zenith angle at a time.

In recent times, pseudo-spherical radiative transfer models have commonly been used
to compute fast, and relatively accurately, the radiation field in the Earth’s atmosphere
as well as applied to a wide range of other problems concerning the remote sensing of the
Earth’s atmosphere, see, for example, [DeLuisi and Mateer, 1971; Klenk et al., 1982; Ridley
et al., 1984; Mateer and DeLuisi, 1992; McPeters et al., 1996; Rozanov et al., 2000b].





Chapter 4

Numerical methods to solve the
radiative transfer equation in a
spherical atmosphere

4.1 Radiative transfer models overview

A radiative transfer model employed for the interpretation of the measurements of solar
radiation scattered in the atmosphere or reflected from the Earth’s surface performed by
satellite or ground-based instruments in an arbitrary viewing geometry has to incorporate
the following characteristics:

• determine accurate multiple–scattered radiation in a spherical atmosphere for all rele-
vant solar zenith angles and viewing geometries;

• perform well over a wide range of phase functions;

• allow optical characteristics and phase functions of the medium to vary spatially;

• be computationally efficient.

Some methods to solve the spherical radiative transfer equation are discussed below.
The possibility to employ, in a spherical atmosphere, the well-known methods which were
effectively used in a plane-parallel medium is also discussed.

4.1.1 Monte Carlo method

A well–known method, which complies with most of the requirements formulated above,
is the Monte Carlo technique [Marchuk et al., 1980]. In a Monte Carlo simulation the
intensity of radiation is determined statistically by following a large number of individual
photon trajectories through the atmosphere. For atmospheric applications, the backward
Monte Carlo method is commonly used. In this method the photons are started from the
detector and their path is followed backward to the point where they leave the atmosphere
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toward the Sun. This technique is very effective when the receiver has a narrow field of view
because all simulated photons contribute to the signal, whereas in a forward simulation only
a small fraction of the photons coming from the Sun reach the instrument. However, there
are two serious disadvantages of the Monte Carlo method: (1) it requires long running-
times to achieve reasonable accuracy and (2) the accuracy of the backward Monte Carlo
method is poor when the medium is optically thick or has a weak absorption. Using the
quasi Monte Carlo technique discussed in [O’Brien, 1992], the calculation time can be
significantly reduced, but the difficulty of the backward Monte Carlo integration in an
optically thick or week absorbing atmosphere is not eliminated. Applications of the Monte
Carlo method for radiation field calculations in a spherical atmosphere can be found in
[Collins et al., 1972; Kondratjev et al., 1977; Oikarinen et al., 1999].

4.1.2 Methods involving azimuthal Fourier series expansion

Most of the methods which are successfully used for radiative transfer calculations in a
plane-parallel atmosphere, such as “Spherical Harmonics”, “Discrete Ordinate”, “Finite
Difference ”, etc. (the methods are discussed in detail, for example, in [Lenoble, 1985]),
involve the expansion of the intensity and the scattering phase function in Fourier series
as follows:

Idif (z, Θ, ϕ) =

K∑
k=0

(2− δ0,k) I
(k)
dif(z, Θ) cos kϕ (4.1)

and

p(z, Θ, ϕ, Θ̂, ϕ̂) =
K∑
k=0

(2− δ0,k) p
(k)(z, Θ, Θ̂) cos k(ϕ− ϕ̂) . (4.2)

Here, K is the total number of the Fourier terms in the expansion and δ0k is the Kronecker
symbol defined as {

δ0,k = 0, k 	= 0
δ0,k = 1, k = 0

(4.3)

Combining Eqns. (3.73), (4.1), and (4.2) the Fourier expansion coefficients for the multiple
scattering source function in a plane-parallel atmosphere can be obtained as follows:

J (k)
ms (z, Θ) =

�(z)

4π

2π∫
0

dϕ̂

π∫
0

dΘ̂ p(k)(z, Θ, Θ̂) I
(k)
dif(z, Θ̂) sin Θ̂ , k = 0, . . . , K . (4.4)

The Fourier expansion coefficients for the single scattering source function are obtained
from Eqns. (3.74) and (4.2) taking into account that for the direct solar radiation Θ̂ = π−Ψ
and ϕ̂ = 0 are appropriate:

J (k)
ss (z, Θ, Ψ ) =

�(z)

4π
F0 p

(k)(z, Θ, Ψ ) exp


−

zt∫
0

α(ẑ)

cosΨ
dẑ


 , k = 0, . . . , K . (4.5)
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Using this approach, the radiative transfer equation, as given by Eq. (3.72), for an arbi-
trarily selected solar zenith angle can be split into the system of independent equations for
each Fourier coefficient:

cosΘ
d I

(k)
dif(z, Θ)

d z
= −α(z) (I

(k)
dif (z, Θ)− J (k)

ms (z, Θ)− J (k)
ss (z, Θ)) , k = 0, . . . , K . (4.6)

In a spherical atmosphere, the cosine Fourier expansion, as given by Eqns. (4.1) and
(4.2), can be used only if the dependence of the intensity of the diffuse radiation on global
azimuth angle, Φ, is neglected. Thus, in this case, the radiative transfer equation given
by Eq. (3.68) is appropriate. Combining Eqns. (3.68), (4.1), (4.4), and (4.5) results in the
following system of coupled differential equations:

cosΘ
∂ I

(k)
dif

∂ r
+
sinΘ

r

[
1

2

∂ I
(k−1)
dif

∂ Ψ
+

1

2− δ0,k

∂ I
(k+1)
dif

∂ Ψ

]

− sinΘ

r

∂ I
(k)
dif

∂ Θ
− sinΘ cotΨ

r

[
k − 1

2
I
(k−1)
dif +

k + 1

2− δ0,k
I
(k+1)
dif

]

= −α (I
(k)
dif − J (k)

ms − J (k)
ss ) , k = 0, . . . , K , (4.7)

where J
(k)
ms and J

(k)
ss are the Fourier expansion coefficients for multiple scattering and single

scattering source functions in a spherical atmosphere. The spherical Fourier expansion
coefficients are obtained analogously to them in a plane-parallel atmosphere (Eqns. (4.4)
and (4.5)) from Eqns. (3.64) and (3.65), respectively. As clearly seen, the equation for
the k-th Fourier coefficients contains also the (k − 1)-th and the (k + 1)-th coefficients of
the Fourier expansion for the intensity. This means that each equation has to be solved
in combination with two neighboring equations, i.e., the system of the radiative transfer
equations for Fourier coefficients can not be split into independent equations any more.

Since the possibility to solve the radiative transfer equation for each Fourier coefficient
separately is the main advantage of the above mentioned methods, it is reasonable to ex-
tend them for a spherical atmosphere only if an azimuthal independent radiation field and
no external anisotropic illumination is considered [Sen and Wilson, 1990]. Thus, these
methods can be used to perform radiative transfer calculations in stellar atmospheres, as
well as neutron transport and heat transfer calculations. Although several advanced meth-
ods have been developed during the past years [Madkour, 1996; Abulwafa and Attia, 1997],
they can not be applied for the radiative transfer calculations in planetary atmospheres as
well.

4.1.3 Moment approach

Another well–known method for solving the radiative transfer equation in a spherical shell
planetary atmosphere is the “Moment approach” [Sobolev, 1975], which was introduced in
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[Sobolev, 1943] for a plane-parallel atmosphere and extended in [Sobolev and Minin, 1962]
for a spherical shell atmosphere. The basic idea of this method is solving the radiative
transfer equation for the moments of the intensity instead for the intensity itself. The
moments are defined by

M0(r, Ψ ) =
1

4π

2π∫
0

dϕ

π∫
0

dΘ sinΘ I(r, Ψ, Θ, ϕ) , (4.8)

M1(r, Ψ ) =
1

4π

2π∫
0

dϕ

π∫
0

dΘ sinΘ cosΘ I(r, Ψ, Θ, ϕ) , (4.9)

M2(r, Ψ ) =
1

4π

2π∫
0

dϕ

π∫
0

dΘ sin2Θ cosϕ I(r, Ψ, Θ, ϕ) . (4.10)

The zeroth moment, M0, is the mean intensity of the diffuse radiation, the first moment,
M1, is proportional to the vertical flux of the diffuse radiation, and the second moment,
M2, is proportional to the flux of the diffuse radiation in the direction ϕ = 0 in a horizontal
plane.

In moment approach, only the first two terms of the Legendre expansion of the phase
function are considered, i.e., the scattering phase function is given by

p(γ) = 1 + β cos γ . (4.11)

Combining Eqns. (3.64)–(3.67) and (4.8)–(4.10), the following formula for the total source
function can be obtained:

J = � (M0 + β M1 cosΘ + βM2 sinΘ cosϕ)

+
�(z)

4π
F0 (1− β cosΘ + β sinΘ sinΨ cosϕ) e−τ , (4.12)

where τ is the optical depth defined by

τ =

s∫
0

α(ŝ) dŝ . (4.13)

According to [Sobolev, 1975], the following system of differential equations for the moments
can be obtained:

∂M1

∂ r
+
2

r
M1 +

1

r

∂ M2

∂ Ψ
+
cotΨ

r
M2 = −α (1−�)M0 + α

�

4π
F0 e

−τ , (4.14)

(3−�β)M1 = − 1

α

∂M0

∂ r
− �

4π
F0 e

−τ , (4.15)

(3−�β)M2 = − 1

α r

∂ M0

∂ Ψ
+

�

4π
F0 e

−τ . (4.16)
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The equations (4.14)–(4.16) were derived multiplying the spherical radiative transfer equa-
tion, as given by Eq. (3.68), successively by

1

4π
sinΘ dΘ dϕ ,

1

4π
sinΘ cosΘ dΘ dϕ , and

1

4π
sin2Θ cosϕdΘ dϕ

and integrating over all directions. To obtain Eqns. (4.14)–(4.16) from Eq. (3.68), the
following approximative relation was used:

1

4π

2π∫
0

dϕ

π∫
0

dΘ sinΘ cos2Θ I(r, Ψ, Θ, ϕ) =
1

3
M0 , (4.17)

which is commonly referred to as the Eddington approximation.

Solving the system of differential equations (4.14)–(4.16) all three moments can be
found and, therefore, the source function, as given by Eq.(4.12), can be calculated. Once
the source function is known, the integro-differential radiative transfer equation, Eq. (3.68),
becomes a partial differential equation which can be solved using standard numerical
methods.

The moment approach has been used by Smokty [1986] for simulations of outgoing
radiance at line-of-sights having their tangent point near the terminator. The method is
also known as the “Sobolev method” [Sen and Wilson, 1990]. The main disadvantages of
the method are (i) a simplified consideration of the azimuthal dependence of the diffuse
radiation field (see Eqns. (4.11) and (4.12)), (ii) employing the Eddington approximation,
as defined by Eq. (4.17), and (iii) approximate boundary conditions.

4.1.4 Further improvements to the Sobolev method

Three-stream moment method

The Sobolev method was further developed in [Wilson et al., 1980; Wilson and Sen,
1980a,b]. In addition to Sobolev’s moments, as defined by Eqns. (4.8)–(4.10), six new
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moments were introduced as follows:

M3(r, Ψ ) =
1

4π

2π∫
0

dϕ

π∫
0

dΘ sinΘ cos2Θ I(r, Ψ, Θ, ϕ) , (4.18)

M4(r, Ψ ) =
1

4π

2π∫
0

dϕ

π∫
0

dΘ sinΘ cos3Θ I(r, Ψ, Θ, ϕ) , (4.19)

M5(r, Ψ ) =
1

4π

2π∫
0

dϕ

π∫
0

dΘ sin2Θ cosΘ cosϕ I(r, Ψ, Θ, ϕ) , (4.20)

M6(r, Ψ ) =
1

4π

2π∫
0

dϕ

π∫
0

dΘ sin2Θ cos2Θ cosϕ I(r, Ψ, Θ, ϕ) , (4.21)

M7(r, Ψ ) =
1

4π

2π∫
0

dϕ

π∫
0

dΘ sin3Θ cos2 ϕ I(r, Ψ, Θ, ϕ) , (4.22)

M8(r, Ψ ) =
1

4π

2π∫
0

dϕ

π∫
0

dΘ sin3Θ sin2 ϕ I(r, Ψ, Θ, ϕ) . (4.23)

Following [Wilson and Sen, 1980a], the spherical radiative transfer equation, as given by
Eq. (3.68), results in the following system of differential equations for nine moments:

∂ M1

∂ r
+
2

r
M1 +

1

r

∂ M2

∂ Ψ
+
cotΨ

r
M2 = −α (1−�)M0 + α

�

4π
F0 e

−τ , (4.24)

∂ M3

∂ r
+
1

r
(3M3 −M0) +

1

r

∂ M5

∂ Ψ
+
cotΨ

r
M5 =

− αM1 + α

[
�βM1

3
− �β cosΨ F0 e

−τ

4π

]
, (4.25)

∂ M4

∂ r
+
1

r
(4M4 − 2M1) +

1

r

∂ M6

∂ Ψ
+
cotΨ

r
M6 =

− αM3 + α

[
�M0

3
+

�F0 e
−τ

12π

]
, (4.26)

∂ M5

∂ r
+
3

r
M5 +

1

r

∂ M7

∂ Ψ
+
cotΨ

r
(M7 −M8) =

− αM2 + α

[
�βM2

3
+

�β sinΨ F0 e
−τ

12π

]
. (4.27)
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In order to complete the system, five additional equations have to be found. This can
be achieved employing a three-stream approximation for the radiation field [Wilson and
Sen, 1980a] :

I(r, Ψ, Θ, ϕ) =




I1(r, Ψ ) + f(r, Ψ ) cosϕ, µr > cosΘ � 1 ,

I2(r, Ψ ) + f(r, Ψ ) cosϕ, 0 > cosΘ � µr ,

I3(r, Ψ ) + f(r, Ψ ) cosϕ, −1 � cosΘ � 0 ,

(4.28)

where

µr =

√
1−

( r

R

)2
. (4.29)

Here, R denotes the Earth’s radius. Combining Eqns. (4.8)–(4.10) and (4.18)–(4.23) with
Eq. (4.28) and excluding I1, I2, and I3 from the resulting system the following additional
equations are obtained:

2(2M4 −M1) = µr(3M3 −M0) , (4.30)

M2 =
π

8
f , (4.31)

M5 = 0 , (4.32)

M6 =
π

32
f , (4.33)

M7 =
1

2
(M0 −M3) , (4.34)

M8 =
1

2
(M0 −M3) . (4.35)

The relation given by Eq. (4.30) is called the generalized Eddington approximation.

Solving Eqns. (4.24)–(4.27) in conjuction with Eqns. (4.30)–(4.35) all moments can be
found. The solution is then obtained in the exact same manner as in the Sobolev method.

Thus, in the discussed method, an essential improvement has been achieved using the
generalized Eddington approximation and revised boundary conditions but the simpli-
fied consideration of azimuthal dependence of the scattering phase function, as given by
Eq. (4.11), has been retained.

Moment method employing Cutteridge–Devyatov polynomials

In a new revision of the moment approach discussed by Solovjev [1992] the radiance is
developed in Cutteridge–Devyatov polynomials using the moments of the diffuse radiation
as expansion coefficients:

I =

n−1∑
i=0

M̃i
dPi

d cosΘ
. (4.36)
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Here, n is the total number of the moments which can be selected arbitrary and the
moments, M̃i, are defined by

M̃i =

π∫
0

sinΘ cosi Θ I dΘ . (4.37)

The systems of the Cutteridge–Devyatov polynomials, Pi, have distinctive forms for dif-
ferent n and are given by

Pi =
n−1∑
m=0

cim cosm+1Θ, i = 0, . . . , n− 1 . (4.38)

Here, the coefficients cim are constant for each selected i and m.
Similar to the Sobolev method, the radiative transfer equation results, employing this

technique, in the system of n differential equation for n+1 moments. In this case, however,
the Eddington approximation used to complete the system of the differential equations can
be replaced by the following exact relation:

M̃n =

π∫
0

sinΘ

[
n−1∑
i=0

M̃i
dPi

d cosΘ

]
dΘ . (4.39)

Although, this approach was introduced by Solovjev [1992] for a plane-parallel isotrop-
ically scattering atmosphere, it can be easily extended for an anisotropically scattering
medium employing the expansion of the scattering phase function and the diffuse radiation
field in Fourier series with an arbitrary number of azimuthal expansion terms. Thus, all
disadvantages of the Sobolev method are eliminated. However, our attempts to extend
this method for a spherical medium failed for the following reasons. The determination
of the zeroth moment with an appropriate accuracy from Eq. (4.39) was found to require
very high accuracy of the other moments. The more moments in the radiance development
series are used, the higher the accuracy required for their calculation. Since in a spherical
atmosphere, unlike the plane-parallel case, the system of equations for the moments has to
be solved iteratively, a certain inaccuracy of moments determination is inevitable and the
iteration scheme fails to converge.

4.1.5 Other methods

A new approach to the solution of the integral radiative transfer equation in a spherical
shell atmosphere employing the Gauss–Seidel iteration scheme has been suggested recently
by Herman et al. [1994]. The basic idea of this method is avoiding the calculation of
the radiation field throughout the entire hemisphere employing instead a conical boundary
surrounding the zenith direction along which the solution is desired. Approximate solutions
are found along this boundary, and these solutions are used in an interpolation scheme
to obtain the radiation field along the zenith direction. Thus, using this technique the
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intensities are found at a discrete set of directions at discrete height levels along a selected
radial line in the atmosphere. The main approximation which has to be employed in order
to obtain the approximate solutions along the cone is that the ratio of multiple to single
scattering terms outside the cone is constant along any shell. Thus, this approach limits
the model to cases in which the single scattering term is not zero, i.e., the solar zenith
angle has to be less than 90◦. Furthermore, according to [Lenoble, 1985], the Gauss–Seidel
iteration scheme is computationally inefficient for an optically thick atmosphere.

There are also radiative transfer models, which use some approximations enabling the
mean intensity in a spherical atmosphere to be calculated efficiently. For example, in [An-
derson, 1983] the radiation field was assumed to be isotropic, in [Balluch, 1996] the variation
of the solar zenith angle with the spatial coordinates was neglected, and in [Dahlback and
Stamnes, 1991] the azimuthally averaged radiative transfer equation was solved iteratively
considering the spherical terms as a perturbation. Such models, however, can not reproduce
the angular dependence of the radiance accurately enough.

A new Combining Differential–Integral approach involving the Picard Iterative approx-
imation (CDIPI) was recently developed by Rozanov et al. [2001]. This approach involves
the Characteristics method [Currant and Hilbert, 1962] and the Picard iterative approx-
imation [Hirsh and Smale, 1974] to solve the radiative transfer equation in a spherical
planetary atmosphere. The theoretical basis of the method is discussed in the next sec-
tion. The CDIPI radiative transfer model which employs this approach to calculate the
radiation field in a spherical planetary atmosphere is discussed in detail in Section 7.

4.2 Characteristics method

Taking the requirements formulated in Section 4.1 into account, only the full differential
operator is suitable to solve the radiative transfer equation in a spherical planetary at-
mosphere accurately enough. As discussed in Section 3.3, the full differential operator in
spherical coordinates (see Fig. 3.2) is given by

d

d s
= cosΘ

∂

∂ r
+
sinΘ cosϕ

r

∂

∂ Ψ
+
sinΘ sinϕ

r sinΨ

∂

∂ Φ

− sinΘ

r

∂

∂ Θ
− sinΘ cosϕ cotΨ

r

∂

∂ ϕ
. (4.40)

Therefore, a first-order partial differential equation for the intensity of diffuse radiation as a
function of five variables r, Ψ , Φ, Θ, and ϕ has to be solved. One of the well-known methods
to solve such an equation is the so-called “Characteristics method” [Currant and Hilbert,
1962]. This method performs the conversion of the resulting first-order partial differential
equation into an integral equation by integrating its two sides along a characteristic. If no
refraction effects are considered, the characteristics are straight lines defined by direction
cosines ξ1 = cosϕ sinΘ, ξ2 = sinϕ sinΘ, and ξ3 = cosΘ. The angle variables Θ and
ϕ are assumed to be functions of Ψ and Φ. Beginning at the boundary and performing
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an integration along a characteristic, the following integral form of the radiative transfer
equation (3.27) can be obtained:

Idif(r, Ψ, Φ,Θ, ϕ) = I0(r, Ψ, Φ,Θ, ϕ) + Lsps J(r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) , (4.41)

where I0(r, Ψ, Φ,Θ, ϕ) is defined by the boundary conditions. The integral operator Lsps is
given by

Lsps ≡
sc∫
0

ds α(s) exp


−

s∫
0

α(s̃) ds̃


 , (4.42)

where s is the path-length along the characteristic and sc the full length of the character-
istic. Variables r̃, Ψ̃ , Φ̃, Θ̃, and ϕ̃ are assumed to be functions of s.

The characteristics method was first applied for radiative transfer calculations in a
spherical planetary atmosphere in [Germogenova et al., 1969], where the single–scattered
solar radiance was calculated for limb viewing geometry. Mathematical details on this
application can be found in [Sushkevich et al., 1990].

Equation (4.41) is only a formal solution of the differential equation (3.27), because
the source function J(r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) is a functional of the intensity of the diffuse radiation
Idif (r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) (see Eqns. (3.23)–(3.26)):

J(r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) = La Idif(r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) + Jss(r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) , (4.43)

where La is an angular integration operator defined by

La ≡ ω(r̃)

4π

2π∫
0

d ϕ̂

π∫
0

d Θ̂ sin Θ̂ p(r̃, Θ̃, ϕ̃, Θ̂, ϕ̂) . (4.44)

Here, ω(r̃) is the single scattering albedo and p(r̃, Θ̃, ϕ̃, Θ̂, ϕ̂) is the scattering phase
function. Equation (4.41), hence, can be rewritten as follows:

Idif (r, Ψ, Φ,Θ, ϕ) = I(r, Ψ, Φ,Θ, ϕ) + Lsps La Idif (r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) , (4.45)

where
I(r, Ψ, Φ,Θ, ϕ) = I0(r, Ψ, Φ,Θ, ϕ) + Lsps Jss(r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) . (4.46)

Equation (4.45) is a linear integral operator equation which can be solved using an iterative
approach. The commonly used equation for the iterative scheme known as “Picard iterative
approximation” [Hirsh and Smale, 1974] is given by:

I
(n)
dif (r, Ψ, Φ,Θ, ϕ) = I(r, Ψ, Φ,Θ, ϕ) + Lsps La I

(n−1)
dif (r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) . (4.47)

This iterative approach has been used for radiative transfer calculations in a plane-parallel
three-dimensional atmosphere in such radiative transfer models as SHDOM [Evans, 1998]
and PI approximation [Kuo et al., 1996].
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In order to perform the first iteration, an initial guess is required. One way to choose
an initial guess is the Successive Order of Scattering (SOS) method, which uses the single–
scattered radiance as an initial estimate. As pointed out by O’Brien [1992], the SOS
method is logically equivalent to the simulation of trajectories in the backward Monte
Carlo approach. Thus, the major criteria for a desirable solution technique, as summarized
in the introduction, are met, except for the computational efficiency. The computational
inefficiency, however, is found not to be an inherent limitation of the general approach, but
rather it is due to a poor initial approximation. Thus in [Kuo et al., 1995], in the case of a
plane-parallel atmosphere, the radiance obtained by employing a low order expansion of the
spherical harmonics solution has been used as an initial guess for the iterative approach. It
has been shown that using such an initial guess much fewer iterations compared to the SOS
method are required to achieve convergence. The basic idea of this method is to simplify
the integral operator La which characterizes the local properties of the medium. In the case
of a spherical atmosphere, a better initial approximation can be achieved retaining the local
integral operator La and simplifying instead the integral operator L

sp
s , which characterizes

the global behavior of light in the atmosphere. Since simplifying the differential operator
as given by equations (3.69) and (3.70) does not simplify the integral operator Lsps , the one-
dimensional plane-parallel differential operator Lpps is used in the CDIPI radiative transfer
model instead of Lsps to obtain an initial estimation of the radiation field. This means, the

first guess radiance I
(0)
dif (r, Ψ, Φ,Θ, ϕ) has to satisfy the following equation:

I
(0)
dif (r, Ψ, Φ,Θ, ϕ) = I(r, Ψ, Φ,Θ, ϕ) + Lpps La I

(0)
dif(r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) , (4.48)

where , according to Eq. (3.72), the one-dimensional plane-parallel integral operator Lpps is
given by

Lpps =
1

cosΘ

rb∫
r

dr̃ α(r̃) exp


− 1

cosΘ

r̃∫
r

α(r̂) d r̂


 (4.49)

where rb refer to the medium boundary and the corresponding differential operator is ,

d

d s
= cosΘ

∂

∂ r
. (4.50)

Using this approach to determine the initial guess, all scattering orders are considered.
The dependence of the first guest radiance on the variables r, Ψ , Φ, Θ, and ϕ can also be
accurately taken into account.





Part II

Solar occultation measurements





Chapter 5

Radiative transfer model and
retrieval algorithm

5.1 Radiative transfer equation

As discussed in Section 3.1, the direct solar radiation transmitted through the atmosphere
is given by Lambert-Beer law, Eq. 3.21. According to Fig 3.2, Θo = π− Ψ , and, therefore,
cosΘo = − cosΨ , for any point on the instrument line-of-sight. The x-axis of the direc-
tional coordinate system is commonly selected to set the azimuth angle of the direct solar
beam to zero, i.e. ϕo = 0. Thus, the direction eo is defined by the solar zenith angle Ψ and
Eq. 3.21 can be rewritten as follows:

Idir(r, Ψ, Φ,Θ) = F0 δ(cosΘ + cosΨ, ϕ) e− τ(r,Ψ,Φ) , (5.1)

where τ is the full optical depth along the solar beam given by

τ(r, Ψ, Φ) =

so∫
0

α(r̃(s), Ψ̃(s), Φ̃(s)) ds . (5.2)

Here, ds is the differential path-length along the direct solar beam and so the full path-
length along the beam. The extinction coefficient α is, generally, a function of all three
spatial coordinates (r̃, Ψ̃ , and Φ̃). In a spherical atmosphere the spatial coordinates vary
along the line-of-sight and, therefore, they are functions of s. The method to calculate
r̃, Ψ̃ , and Φ̃ at any point on the line-of-sight from selected initial values r, Ψ , and Φ is
discussed in detail in Appendix B. For each point in the atmosphere and each wavelength
λ the extinction coefficient can be calculated as follows:

α(r̃, Ψ̃ , Φ̃, λ) =

M∑
j=1

σj(λ, T, P )Nj(r̃, Ψ̃ , Φ̃) + αa(r̃, Ψ̃ , Φ̃, λ) + αr(r̃, Ψ̃ , Φ̃, λ) . (5.3)

Here, σj(ν, T, P ) is the absorption cross section of trace gas j at wavelength λ, temperature
T , and pressure P . Generally, the temperature and the pressure depend on the position of
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the selected point in the atmosphere, i.e., T = T (r̃, Ψ̃ , Φ̃) and P = P (r̃, Ψ̃ , Φ̃). Nj(r̃, Ψ̃ , Φ̃)
is the number density of trace gas j , M is the number of atmospheric trace gases having
absorption features at wavelength λ, αa(r̃, Ψ̃ , Φ̃, λ) is the aerosol extinction coefficient, and
αr(r̃, Ψ̃ , Φ̃, λ) is the molecular (Rayleigh) scattering coefficient.

The dependence of the intensity of direct solar radiation on global azimuth angle Φ is
caused only by the dependence of the extinction coefficient α on this variable. In the case
of spherical shell atmosphere, which will be discussed below, the intensity of direct solar
radiation is independent of the global azimuth angle.

To interprete measurements performed by satellite or ground-based instruments, only
the radiation at the top or the bottom of the atmosphere, respectively, is required. Omitting
the dependence on r below means that the quantity refers to the top or the bottom of the
atmosphere.

Since the Sun as observed in occultation viewing geometry has a finite geometrical
size and the instrument has a finite field of view, the delta-function in Eq. (5.1) has to
be replaced by the integration over the instrument field of view, Ω, with the instrument
apparatus function, f(ω). For multispectral instruments the radiation has to be convolved
with the instrument slit function, a(λ, λ′), as well. Thus, the radiance, Υ, measured by
a satellite or ground-based instrument is a convolution of the direct solar radiation trans-
mitted through the atmosphere with the apparatus function f(ω), which depends on the
field of view of the instrument, and with the slit function a(λ, λ′):

Υ(Ψ, λ) =

∫
Ω

∫
∆λ

f(w)F0(λ
′) a(λ, λ′) e−τ(Ψ,Φ,ω,λ′) dλ′ dω . (5.4)

Here, ∆λ is the total width of the instrument slit function. The additional dependence
of the optical depth τ on ω depicts that the integration in Eq. (5.2) is performed along
different line-of-sights then ω are different. Thus, s is also a function of ω, and, therefore,
r̃, Ψ̃ and Φ̃ are functions of ω as well.

5.2 Absorption cross sections

In the UV-Vis spectral region, where the fine spectral structure of the absorption cross sec-
tions of the relevant atmospheric constituents, with exception of H2O and O2, is relatively
weak, pre-measured moderate resolution absorption cross sections can be used to calculate
the extinction coefficient α as given by Eq. (5.3). In order to compute the absorption cross
sections of atmospheric trace gases in the near-IR spectral region as well as the absorption
cross sections of H2O and O2 in the visible spectral region, the so-called “line-by-line”
calculations are commonly employed. In this case the formula for absorption cross section
at a wavenumber ν is given by

σ(ν, P, T ) =
∑
i

S(νi, T )F(ν, νi, P, T ) , (5.5)

where S(νi, T ) is the spectral line intensity at the temperature T of line i having center
wavenumber νi and F(ν, νi, P, T ) is the line shape function. Summation in Eq (5.5) is
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performed over all spectral lines whose line shape functions at wavenumber ν are larger
than a selected threshold value. According to [Goody, 1964], the intensity of the spectral line
S(νi, T ) at particular temperatures can be calculated using the intensity at a temperature
of 296K, S0, provided by the HITRAN database [Rothman et al., 1998] as follows:

S(νi, T ) = S0

ng(T )

ng(T0)

1− exp
(
−hcνi

k T

)
1− exp

(
−hcνi

kT0

) . (5.6)

Here, ng(T ) and ng(T0) are the populations of the lower energy level at the temperature T
and T0, respectively, h is the Planck constant, c is the light velocity, and k is the Boltzmann
constant. The exponential terms in Eq. (5.6) owe their existence to induced emission,
see, for example, [Townes and Schawlow, 1975], and it is often argued that they may be
neglected. The population of an energy level can be found according to the Boltzmann law
as follows (only internal energy states are considered):

n(T ) =
g N

Qint
exp

(
−hcE

kT

)
, (5.7)

where E and g are level energy and degeneracy, respectively, and Qint is internal partition
function (state sum). The partition function characterizes how molecules in thermody-
namic equilibrium are distributed among various energy states at particular temperatures.
A detailed discussion of the partition functions and methods to calculate them can be found
elsewhere, see, for example, [Fay, 1965; Incropera, 1974]. Generally, the internal molecular
partition function is given by

Qint =
∑

gn e
−En

kT . (5.8)

Here, the sum is calculated over all internal energy states of the molecule, En is the total
energy in [J] of state n, and gn is the total statistical weight (degeneracy) of the state. The
internal partition function can be approximately considered as the product of component
partition functions:

Qint = Qrot Qvib QelecQnuc , (5.9)

where Qrot, Qvib, Qelec, and Qnuc are rotational, vibrational, electronic and nuclear parti-
tion functions, respectively. The atmospheric species considered in this study are in their
ground electronic and nuclear states, thus, the electronic and nuclear partition functions
are constant and equal to the electronic and nuclear ground-state degeneracy, respectively,
i.e., Qelec = gelec

0
and Qnuc = gnuc

0
.

As discussed by Gamache et al. [1990], the product of the vibrational and the rotational
partition functions, Qv,r = Qvib Qrot, as a function of temperature can be approximated by
the following polynomial expression:

Qv,r = a0 + a1 T + a2 T
2 + a3 T

3 , (5.10)

where the coefficients a0, a1, a2, and a3 are obtained by fitting to the calculated partition
functions using a Simplex nonlinear minimization algorithm [Nelder and Mead, 1965]. It is
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the form of partition functions storage given by Eq. (5.10), which is used in the HITRAN
database to simplify the computation of the partition functions.

Thus, combining Eqns. (5.6), (5.7) and (5.9), the following expression for the intensity
of the spectral line at the particular temperature T is obtained

S(νi, T ) = S0

Qv,r
0

Qv,r

exp
(
−hcEg

kT

)
exp

(
−hcEg

k T0

) 1− exp
(
−hcνi

k T

)
1− exp

(
−hcνi

kT0

) , (5.11)

where Eg is the lower state energy of the transition [cm
−1] contained in the HITRAN

database. Qv,r and Qv,r
0 are the vibrational-rotational partition functions at the tempera-

ture T and T0, respectively.
The shape of spectral lines depends on a dominant broadening mechanism. Spectral

lines of atmospheric trace gases are broadened for one of two reasons, either because of the
Doppler shifts resulting from molecular thermal motions (Doppler broadening), or because
of interactions between pairs of molecules (pressure broadening), see, for example [Goody,
1964].

In the troposphere and the lower stratosphere, the pressure broadening of spectral lines
dominates and the line shape function is given by Lorentz profile:

FL(νi, ν, P, T ) =
1

π

αL

(ν − νi)2 + α2
L

. (5.12)

Here, αL is the Lorentz (pressure broadened) line width defined in terms of the half
frequency width at the half maximum of the profile. According to [Goody, 1964], the
expression for Lorentz line width resulting from the kinetic theory is written as follows:

αL =
∑
j

njσ
2
j

√
2kT

π

(
1

m
+

1

mj

)
, (5.13)

where nj is the number density of the jth species of perturber, mj is its mass, m is the
mass of the absorber, and σj is the optical collision diameter. If the composition is held
constant, all of the nj are proportional to the total pressure and Eq. (5.13) gives the
important result, common to all impact theories, that line width is proportional to the
pressure. The temperature variation indicated by Eq. (5.13) depends upon the details of
the collision, and is uncertain, but this is rarely a crucial factor in thermal calculations.

Thus, as discussed in [Rothman et al., 1998], the pressure broadened line width at the
temperature T and pressure P can be calculated from the Lorentz line width at T0 = 296K
and P0 = 1 bar, αL(T0, P0), contained in the HITRAN database as follows:

αL(T, P ) = αL(T0, P0)
P

P0

(
T0

T

)β

, (5.14)

where β is the temperature dependence coefficient provided by the HITRAN database as
well.
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As discussed, for example, in [Breene, 1961; Sobel’man, 1972], due to collision effects
the spectral lines are not only broadened but also shifted. The pressure shift of the peak of
a spectral line is proportional to the number density of perturber molecules and, therefore,
to the total pressure. Using the air-broadened pressure shift at T0 = 296K and P0 = 1
atm, δ∗, from the HITRAN database, a shifted transition frequency ν∗

i can be calculated
as follows:

ν∗
i = νi + δ∗

P

P0

(5.15)

In upper stratosphere and the mesosphere, where the influence of collision effects is
relatively weak, Doppler broadening is dominant, i.e., the width of the spectral lines is
determined by the Doppler shifts origined from random molecular motions. The probability
that there is a relative velocity u between absorber and observer is, from Maxwell’s law,

p(u) =

√
m

2πkT
exp

(
−mu2

2kT

)
, (5.16)

where m is the mass of absorber molecule. If u/c 
 1, the Doppler shift is given by

ν − νi =
νiu

c
. (5.17)

Averaging over the Maxwell distribution, the following expression for the Doppler line
shape is obtained:

FD(νi, ν, T ) =
1

αD

√
π
exp

{
−
(
ν − νi
αD

)2
}

, (5.18)

where

αD =
νi
c

√
2kT

m
(5.19)

is the Doppler line width defined in terms of the half frequency width to e−1 of the maximum
of the profile, rather than 2−1 as for the Lorentz profile. The Doppler width does not depend
upon the pressure and, thus, at low enough pressures, it always exceeds the Lorentz width.

In the middle atmosphere, both broadening mechanisms have to be taken into account.
Assuming the collisional and Doppler broadening to be completely independent, as treated
in [Goody, 1964; Sobel’man, 1972], the collision broadened line shape should be shifted by
the Doppler shift Eq. (5.17) and averaged over the Maxwell distribution given by Eq. (5.16).
If this procedure is applied to the Lorentz profile, as given by Eq. (5.12), taking into account
the pressure shift, Eq. (5.15), the Voigt line shape function is obtained which is commonly
used in radiative transfer models in order to approximate the shape of absorption lines in
the atmosphere:

Fv(νi, ν, P, T ) =

∞∫
−∞

aL

π

√
m

2πkT

1(
ν − ν∗

i − uνi

c

)2
+ a2

L

exp

(
−mu2

2kT

)
du . (5.20)

The Voigt profile is extensively tabulated in terms of the parameter d = 2 aL/aD and fast
numerical algorithms are available for its computation [Hui et al., 1978; Humlicek, 1982].
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5.3 Rayleigh scattering

The generally used form of the Rayleigh scattering coefficient per particle (Rayleigh scat-
tering cross section), ε, is that of Cabannes [Chandrasekhar, 1960]:

ε(λ) =
8 π3 (n2

s − 1)2

3 λ4N2
s

FK , (5.21)

where ns is the refractive index of standard air
1 which depends on the wavelength and Ns

is the Loschmidt’s number. The King correction factor [King, 1923], FK , may be expressed
as follows:

FK =
6 + 3 ρ

6− 7ρ
, (5.22)

where ρ is the depolarization factor of standard air. Although, according to [Bates, 1984],
the King correction factor is weakly dependent on wavelength, a wavelength independent
King correction value is commonly used for the Rayleigh cross section calculations, see,
for example, [Penndorf, 1957; Young, 1980; Hoyt, 1977; Fröhlich and Shaw, 1980]. If the
refractive index ns is close to unity, as for a gas, the following expression for the the
Rayleigh scattering cross section can be obtained from Eq. (5.21):

ε(λ) =
32 π3 (ns − 1)2

3 λ4N2
s

FK . (5.23)

The refractive index is usually calculated using an approximative four- or five-parameter
formula. One of the commonly used formulas is that from [Edlén, 1966]:

(ns − 1) · 108 = 8342.13 +
2406030

130− λ−2
+

15997

38.9− λ−2
, (5.24)

where λ is given in micrometers. The Rayleigh scattering cross section may also be calcu-
lated using another formulas, as in [Edlén, 1957; Peck and Reeder, 1972; Chance and Spurr,
1997], or tabulated as a function of wavelength [Bates, 1984]. The differences between the
Rayleigh cross sections calculated using different formulas are found to be less than 0.5%
[Chance and Spurr, 1997; Bucholtz, 1995].

In order to calculate the Rayleigh scattering coefficient, αr(r̃, Ψ̃ , Φ̃, λ) in Eq. (5.2),
the Rayleigh scattering cross section ε(λ) given by Eq. (5.21) has to be multiplied by the
molecular number density of air, N(r̃, Ψ̃ , Φ̃), which is a function of pressure and temperature
and, therefore, depends on the position of the selected point in the atmosphere. Thus, the
following equation for the Rayleigh scattering coefficient is appropriate:

αr(r̃, Ψ̃ , Φ̃, λ) = N(r̃, Ψ̃ , Φ̃) ε(λ) . (5.25)

1Pressure 1013.25 mb, temperature 15◦C



5.4 Aerosol extinction 59

5.4 Aerosol extinction

The extinction cross section, kext, is one of the major quantities characterizing the scat-
tering of electromagnetic waves by a particle. For the light scattering by small spherical
particles, the extinction cross section can be analytically calculated using the Mie theory
developed in [Mie, 1908] and discussed also in [Stratton, 1941; van de Hulst, 1957]. The
extinction cross section depends on the particle radius, r, on the relative refractive index,
n, and on the wavelength, λ. The relative refractive index is given by the ratio of the
refraction index of the particle to that of the medium and may be complex. A more conve-
nient parameter, which is commonly used instead of kext, is the extinction efficiency factor,
Qext, obtained by the division of the extinction cross section by the geometric cross section
of the particle, i.e,

Qext =
kext
πr2

. (5.26)

The probability that the particle has a radius r within the range r to r+dr is defined by the
aerosol particle size distribution function, fa(r). Examples of commonly used particle size
distribution functions can be found elsewhere, for example, in [Deirmendjian, 1969; Kerker,
1969; d’Almeida at al., 1991]. In order to obtain the expression for the aerosol extinction
coefficient, the extinction cross section has to be multiplied by the aerosol particle number
density, Na, and integrated over all possible particle sizes with the particle size distribution
function. According to [Deirmendjian, 1969], the expression for the aerosol extinction
coefficient can be written as follows:

αa(r̃, Ψ̃ , Φ̃, λ) = Na(r̃, Ψ̃ , Φ̃)

∞∫
0

π r2Qext(r, n, λ) fa(r) dr . (5.27)

The first term in Eq. (5.27), the aerosol particle number density, depends only on the po-
sition in the atmosphere. Generally, the aerosol particle size distribution function, fa, and
the extinction efficiency factor, Qext, may also depend on the position in the atmosphere.
Thus, Eq. (5.27) can be rewritten as follows:

αa(r̃, Ψ̃ , Φ̃, λ) = α̃a(r̃, Ψ̃ , Φ̃, λ)Na(r̃, Ψ̃ , Φ̃) , (5.28)

where

α̃a(r̃, Ψ̃ , Φ̃, λ) ≡
∞∫
0

π r2Qext(r, n(r̃, Ψ̃ , Φ̃, λ), λ) fa(r, r̃, Ψ̃ , Φ̃, λ) dr . (5.29)

In the radiative transfer model under consideration, the first term in Eq. (5.28) is
obtained employing the well-known LOWTRAN/MODTRAN aerosol parameterization
[Kneizys et al., 1996]. The wavelength dependent term in Eq. (5.28) is usually defined
at a relatively rare wavelength grid and is supposed to change linearly with the wavelength
between the grid points.
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5.5 Weighting functions

5.5.1 Mathematical definition for atmospheric measurements

The interpretation of atmospheric measurements, independent of viewing geometry, com-
prises commonly the retrieval of the vertical distributions of the atmospheric trace gases
as well as eventually aerosol parameters, temperature profile, surface albedo and other
atmospheric parameters. Since the radiation field and, therefore, the radiance measured
by the instrument, are non-linear functionals of the atmospheric parameters, the so-called
non-linear problem has to be solved. Generally, for each wavelength, the intensity of the
radiation is a function of five variables, namely, of three spatial variables, xs ≡ {r, Ψ, Φ},
defining the position in the atmosphere and two directional variables, xd ≡ {Θ,ϕ}, defining
the direction of the radiation.

Forward simulation is performed for a reference or “mean” climatological model of the
atmosphere, defined by atmospheric parameters, p̄j (j = 1, . . . , J), which are, generally,
functions of three spatial variables, i.e., p̄j = p̄j(x

s). The expansion of the radiation field in
a functional Taylor series around these mean values of the atmospheric parameters yields a
linear relationship between the intensity of the radiation and the variation of atmospheric
parameters at each wavelength:

I(xs,xd,p(xs)) = I(xs,xd, p̄(xs)) +
J∑

j=1

∫
δI(x̂s,xd,p(x̂s))

δpj(x̂s)

∣∣∣∣
p̄(x̂s)

δpj(x̂
s) dx̂s , (5.30)

where p(x̂s) = {p1(x̂
s), ..., pJ(x̂

s)} is a vector containing J atmospheric parameters which
influence the radiation field. The integration in Eq. (5.30) has to be performed over entire
argument space of pj(x̂

s), i.e., over all possible values of x̂s.
Thus, as follows from Eq. (5.30), for a linear problem, the variation of the radiation

field due to the variation of the atmospheric parameter pj(x
s), defined by

δI(xs,xd, p̄1(x
s), ..., pj(x

s), ..., p̄J(x
s)) =

I(xs,xd, p̄1(x
s), ..., pj(x

s), ..., p̄J(x
s))− I(xs,xd, p̄(xs)) , (5.31)

is proportional to the variation of this parameter, δpj(x̂
s) given by

δpj(x
s) = pj(x

s)− p̄j(x
s) , (5.32)

with the coefficient of proportionality called weighting function. Therefore, according to
Eq. (5.30), the weighting function of an atmospheric parameter is defined as a variational
derivative of the intensity of radiation with respect to this parameter calculated at the
mean value of the parameter assuming that other parameters remain unchanged:

Wj(x
s,xd, p̄(xs)) ≡ δI(xs,xd,p(xs))

δpj(xs)

∣∣∣∣
p̄(xs)

(5.33)
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Thus, for the variation of the radiation field due to the variation of atmospheric parameters,
Eq. (5.30) can be rewritten as follows:

δI(xs,xd,p(xs)) =
J∑

j=1

∫
Wj(x̂

s,xd, p̄(xs)) δpj(x̂
s) dx̂s . (5.34)

5.5.2 Weighting functions for occultation measurements

For occultation measurements, the atmospheric parameters of interest are the trace gas
number densities, Nj , which, generally, depend on r, Ψ and Φ. Therefore, the vector of pa-
rameters, p(x̂s), is given by {N1(r, Ψ, Φ), ..., NJ(r, Ψ, Φ)}. For a spherical shell atmosphere,
the dependence on the global azimuth angle, Φ, disappears. Furthermore, for most appli-
cations, the atmospheric trace gas number densities are assumed to be independent on the
local solar zenith angle, Ψ , i.e., Nj = Nj(r). Thus, commonly, only vertical distributions
of the atmospheric trace gas number density are of interest. Since the radiance measured
by the instrument, Υ, as given by Eq. (5.4) rather than the radiation field, as discussed in
Section 5.5.1, is known, Eq. (5.34) is rewritten with respect to the measured radiance as
follows:

δΥ(Ψ, λ,p(r)) =

J∑
j=1

rt∫
rb

Wj(Ψ, λ, p̄(r̂)) δpj(r̂) dr̂ . (5.35)

Here, rt and rb denote the top and the bottom of the atmosphere, respectively, and Wj

are the weighting functions for the measured radiance rather then for the intensity, i.e.,
analogous to Eq. (5.33):

Wj(x
s,xd, p̄(xs)) ≡ δΥ(xs,xd,p(xs))

δpj(xs)

∣∣∣∣
p̄(xs)

(5.36)

For occultation measurements, the weighting functions of the atmospheric trace gases,
as defined by Eq. (5.36), may be derived analytically as discussed below. The variation of
the measured radiance due to variation of the concentration of trace gas j is given by

δΥ(Ψ, λ,N1(r), ..., Nj(r), ..., NJ(r)) =

Υ(Ψ, λ,N1(r), ..., Nj(r) + δNj(r), ..., NJ(r))

−Υ(Ψ, λ,N1(r), ..., Nj(r), ..., NJ(r)) . (5.37)

Substituting the measured radiance as given by Eq. (5.4) in Eq. (5.37), the following
expression for the variation of the measured radiance due to variation of the concentration
of trace gas j is obtained:

δΥ(Ψ, λ) =

∫
Ω

∫
∆λ

f(w)F0(λ
′) a(λ, λ′)

[
−e−τj (Ψ,ω,λ′) δτ(Ψ, ω, λ′)

]
dλ′ dω . (5.38)
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Using Eq. (5.2) to calculate the variation of the optical depth due to variation of the con-
centration of trace gas j, δτj(Ψ, ω, λ

′), and changing the order of integration, the following
equation is obtained:

δΥ(Ψ, λ) = −
∫
Ω

dω f(w)

so∫
0

ds δNj(r̃)

∫
∆λ

a(λ, λ′)F0(λ
′) e−τj(Ψ,ω,λ′) σj(λ

′, r̃) dλ′ , (5.39)

Here, as discussed in Section 5.1, r̃ is a function of s, whereas s and so are functions of ω.
The atmospheric trace gas cross sections are assumed to be independent on the local solar
zenith angle, Ψ̃ , i.e., σj = σj(λ

′, r̃). Using an appropriate Jacobian, the integration along
the direct solar beam in Eq. (5.39) can be replaced by the integration along the vertical as
follows:

ds(ω) =
dr̃

cos Ψ̃ (r̃, ω)
. (5.40)

Thus, introducing a new function, χ(Ψ, r̃, ω), Eq. (5.39) can be rewritten as follows:

δΥ(Ψ, λ) = −
∫
Ω

dω f(w)

rt∫
rb

dr̃
δNj(r̃)

cos Ψ̃(r̃, ω)
χ(Ψ, r̃, ω)

∫
∆λ

a(λ, λ′)F0(λ
′) e−τj(Ψ,ω,λ

′) σj(λ
′, r̃) dλ′ , (5.41)

Here, the function χ(Ψ, r̃, ω) is defined as follows. For ground-based measurements,
χ(Ψ, r̃, ω) = 1 is appropriate. For measurements performed by means of satellite-based
instruments, the following function is appropriate:{

χ(Ψ, r̃, ω) = 2, r > R+ h

χ(Ψ, r̃, ω) = 0, r ≤ R + h
, (5.42)

which is similar to the Heaviside function. Here, R is the Earth’s radius and h is the
tangent height of the instrument line-of-sight. The geometrical tangent height, i.e., the
tangent height neglecting refraction effects, hg, can be calculated as follows:

hg = (R+H) sinΨ − R , (5.43)

where H in Eq. (5.43) denote the total height of the atmosphere. The tangent height is
commonly used instead of the solar zenith angle to determine the line-of-sight direction of
satellite-based instruments.

Changing the order of the integration in Eq. (5.39) leads to the following expression for
the variation of the measured radiance:

δΥ(Ψ, λ) = −
rt∫

rb

dr̃ δNj(r̃)

∫
Ω

dω
f(w)

cos Ψ̃(r̃, ω)
χ(Ψ, r̃, ω)

∫
∆λ

a(λ, λ′)F0(λ
′) e−τj(Ψ,ω,λ′) σj(λ

′, r̃) dλ′ , (5.44)
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Comparing Eqns. (5.35) and (5.44), the following expression for the weighting function of
atmospheric trace gas j is obtained:

Wj(Ψ, λ,p(r̃)) = −
∫
Ω

dω
χ̂(Ψ, r̃, ω)

cos Ψ̃ (r̃, ω)

∫
∆λ

a(λ, λ′)F0(λ
′) e−τj(Ψ,ω,λ′) σj(λ

′, r̃) dλ′ , (5.45)

where
χ̂(Ψ, r̃, ω) ≡ f(ω)χ(Ψ, r̃, ω) . (5.46)

One of the commonly used approximations for the instrument apparatus function, f(ω), is
given by {

f(ω) = 1, ω ∈ Ω
f(ω) = 0, ω /∈ Ω (5.47)

5.6 Retrieval algorithm

5.6.1 Optimal estimation method

One of the commonly used methods of retrieving atmospheric parameters from the measure-
ments of the atmospheric radiation using a priori information is the optimal estimation
method. The method is discussed in detail in [Rodgers, 1976, 1990] and will be briefly
described below.

The parameters to be retrieved from the measurements are represented by a model
state vector x with M elements. Usually, the model state vector contains vertical profiles
of atmospheric constituents defined at a finite number of layers, n. In this case,M = n×J ,
where J is the number of the atmospheric constituents whose vertical profiles are to be
retrieved. For each model state vector there is a corresponding measurement vector y,
which contains L measurements of atmospheric radiation at various spectral points and at
various solar zenith angles (tangent heights). Measurements are made to a finite accuracy,
with measurement error ε assumed to be normally distributed with mean zero and known
error covariance Sy.

The relationship between the model state vector and the measurement vector can be
written formally as:

y = Ax+ ε , (5.48)

where A is a non-linear forward model operator. For a linearized forward model the
following equation is appropriate instead of Eq. (5.48):

y = y0 +K0(x− x0) + ε . (5.49)

Here, x0 is an a priori state vector, K0 is a linear forward model operator, and y0 is a
measurement vector corresponding to the a priori state vector x0, i.e., y0 is calculated
using the forward model as follows:

y0 = Ax0 . (5.50)
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The linear forward model operator K0 is commonly defined by the Taylor series expansion
of the forward model operator A as follows:

Ax ≈ Ax0 +
δA

δx

∣∣∣∣
x0

(x− x0) = y0 +K0(x− x0) . (5.51)

Thus, in order to solve the linear inverse problem, the following quadratic form has to
be minimized:

‖ (y − y0)−K0(x− x0) ‖2S−1
y
+ ‖ x− x0 ‖2S−1

a
, (5.52)

where Sa is an a priori covariance matrix. The measurement error covariance matrix Sy is
usually assumed to be diagonal, i.e. no correlation between measurement errors at different
wavelengths or different tangent heights is considered. Minimizing the quadratic form given
by Eq. (5.52) the optimal estimation solution can be obtained:

x = x0 +
(
KT

0
S−1
y K0 + S−1

a

)−1
KT

0
S−1
y (y − y0) , (5.53)

The superscripts T and −1 designate the matrix transpose and inverse, respectively. If the
approximation given by Eq. (5.51) is not accurate enough, the solution has to be estimated
iteratively. Thus, according to Eq. (5.53), the optimal estimation solution in the iteration
step i+ 1 can be written as

xi+1 = x0 +
(
KT

i S−1
y Ki + S−1

a

)−1
KT

i S−1
y

[
y − yi +Ki(xi − x0)

]
, (5.54)

After convergence has occurred, the result of the last iteration is identified with retrieval
solution x̂. The corresponding solution covariance matrix is given by

Ŝ =
(
K̂T S−1

y K̂+ S−1
a

)−1

. (5.55)

The theoretical precision of the retrieval of the j-th parameter is defined in terms of
elements of matrix Ŝ as follows:

sj =
σj

xj
0

, (5.56)

where σj is a square root of the i-th diagonal element of matrix Ŝ and xj
0 is the a priori

value of the j-th parameter to be estimated.
A quantity frequently used to characterize the impact of the true state xt on the

retrieved state x̂ is the averaging kernels matrix Âk, which is defined as

Âk =
∂x̂

∂xt

. (5.57)

In the optimal estimation method the averaging kernels matrix has the following algebraic
form:

Âk =
(
K̂T S−1

y K̂+ S−1
a

)−1

K̂T S−1
y K̂ . (5.58)



5.6 Retrieval algorithm 65

Using this expression and taking into account Eq. (5.54), the retrieval solution, x̂, can be
approximated by

x̂ = x0 + Âk(xt − x0) , (5.59)

that is, if the model state vector is a vertical profile, the retrieved values at each altitude
can be expressed as the sum of the a priori value at this altitude and of the deviation of
the true profile from the a priori profile smoothed with the associated row of the averaging
kernel matrix.

For an ideal observing system, Âk is a unit matrix. In reality, the rows of the averaging
kernel matrix are peaked with a finite width, which can be regarded as a measure of the
vertical resolution of the retrieved profile. Some examples of the averaging kernels for solar
occultation measurements at various wavelengths can be found in Chapter 6.

5.6.2 Information operator approach

For the atmospheric measurements, the number of parameters to be retrieved is often larger
then the rank of the linear forward model operator, K̂, formally defining the maximum
number of independent parameters that can be retrieved from the measurement. In the
presence of measurement noise the number of parameters retrieved to useful accuracy can be
even smaller. It can be estimated by analyzing the information content of the measurement
as introduced in [Shannon and Weaver, 1949]. According to [Yaglom and Yaglom, 1983],
under the assumption that both the a priori state vector, x0, and measurement vector, y,
can be described by a Gaussian probability density function, the information content, H ,
of a measurement is given by

H =
1

2
ln
[
det(Sa)

]
+
1

2
ln
[
det(Ŝ)

]
. (5.60)

An elegant way to adapt the number of fit parameters to the information content of
the measurement was proposed by Kozlov [1983]. A new operator, P, called “information
operator” was introduced as

P = SaG , (5.61)

where
G = K̂TS−1

y K̂ , (5.62)

and its eigenvalue problem was considered:

Pψk = λk ψk . (5.63)

The eigenvectors of the information operator, ψk, form a basis of the state space. Combin-
ing Eqns. (5.60), (5.61), and (5.62), the following equation for the information content of
a measurement in terms of eigenvalues of the information operator can be obtained:

H =
1

2
ln
[
det(P+ I)

]
=
1

2

∑
k

ln(λk + 1) . (5.64)
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Here, I denotes a unity operator. The operator P is positive definite and its eigenvalues,
thus, are all positive. Commonly, only eigenvalues λk > 1 are considered to make a relevant
contribution to the information content. Thus, the state space spanned by the eigenvectors
associated with the relevant eigenvalues corresponds to the effective state space accessible
with the measurement. Therefore, the number of fit parameters can be easily adapted to
the measurement information content expanding the model state vector into a series of
eigenvectors of the information operator:

xi+1 − x0 =

Ni∑
k=1

βi,kψi,k . (5.65)

Here, analogously to Eq. (5.54), i + 1 denotes the iteration step number and Ni is the
number of eigenvalues which are larger than the unity. Now, instead of the state vector
xi+1 itself, the expansion coefficients βi,k have to be determined. Substituting Eq. (5.65)
into Eq. (5.54) leads to

Ni∑
k=1

Gβi,kψi,k +

Ni∑
k=1

S−1
a βi,kψi,k = KT

i S−1
y

[
y− yi +Ki(xi − x0)

]
. (5.66)

Introducing a new basis in the state space as

φk ≡ Gψk , (5.67)

another feature of the information operator can be employed, namely, the biorthogonality
of the basis sets ψk and φk, i.e., for the scalar product of eigenvectors, 〈φk, ψl〉, the following
equation is appropriate:

〈φk, ψl〉 = δkl nk , (5.68)

where
nk = 〈φk, ψk〉 (5.69)

and δkl is the Kronecker delta. Combining Eqns. (5.61)–(5.63) and Eq. (5.67) leads to

S−1
a ψk =

1

λk
φk . (5.70)

Substituting Eqns. (5.67) and (5.70), Eq. (5.66) can be rewritten as follows:

Ni∑
k=1

βi,kφi,k +

Ni∑
k=1

1

λi,k
βi,kφi,k = KT

i S−1
y

[
y − yi +Ki(xi − x0)

]
. (5.71)

Multiplying both sides of Eq. (5.71) with ψk and taking into account the biorthogonality of
the basis sets ψk and φk, as given by Eq. (5.68), the following expression for the expansion
coefficients βi,k is obtained:

βi,k =
λi,k

ni,k (1 + λi,k)
ψT
i,k K

T
i S−1

y

[
y − yi +Ki(xi − x0)

]
(5.72)

Thus, the information operator approach uses a priori information in the same statistical
sense as the optimal estimation method. However, in the fit process, only those parameters
are considered about which there is information actually contained in the measurement.
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5.6.3 Numerical aspects

As discussed in Section 5.5.2, for solar occultation measurements, the vertical distributions
of the atmospheric trace gas number density, Nj(r), are the parameters of interest. Each
parameter is defined at a finite number of layers, rl, l = 1, . . . ,L. Thus, state vectors x0

and x, as introduced in Section 5.6.1, are given by

x0 =




N1(r1)
...

N1(rL)
...

Nj(rl)
...

NJ(r1)
...

NJ(rL)




and x =




N1(r1) + δN1(r1)
...

N1(rL) + δN1(rL)
...

Nj(rl) + δNj(rl)
...

NJ(r1) + δN1(r1)
...

NJ(rL) + δNJ(rL)




, (5.73)

respectively. Here, J denotes the total number of atmospheric trace gases whose vertical
distributions are retrieved. Each state vector, hence, contains M = L × J elements.
For numerical reasons, the parameters to be estimated are not the number density vertical
distributions in absolute units but rather their relative deviations from the a priori (mean)
values. Using the notations of Section 5.5, the vector of estimated parameters, p, is given
by

p =




δN1(r1)/N1(r1)
...

δN1(rL)/N1(rL)
...

δNj(rl)/Nj(rl)
...

δNJ(r1)/NJ(r1)
...

δNJ(rL)/NJ(rL)




. (5.74)

Thus, in comparison with Section 5.5, the state vector containing J parameters Nj(r) as
functions of continuous argument r has to be replaced by the state vector containing the
atmospheric trace gas number densities at discrete altitude levels. Hence, the equation
for the variation of the radiance measured by the instrument due to the variation of the
atmospheric trace gas number densities, as given by Eq. (5.35), has to be rewritten in the
discrete form as well. Thus, for any Ψ and λ the following relation is appropriate:

δΥ(Ψ, λ,x0) =

J∑
j=1

L∑
l=1

Wjl(Ψ, λ,x0) δNj(rl) ql , (5.75)
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where ql are the quadrature coefficients appropriate to the selected integration rule.
The measurement vector y, as introduced in Section 5.6.1, represents the radiance

measured by the instrument at a set of discrete wavelengths λi, i = 1, . . . , I and solar
zenith angles, Ψk, k = 1, . . . ,K. Thus, the measurement vector, y, containing L = I × K

elements is given by

y =




Υ(Ψ1, λ1)
...

Υ(Ψ1, λI)
...

Υ(Ψk, λi)
...

Υ(ΨK, λ1)
...

Υ(ΨK, λI)




and, thus, y− y0 =




δΥ(Ψ1, λ1)
...

δΥ(Ψ1, λI)
...

δΥ(Ψk, λi)
...

δΥ(ΨK, λ1)
...

δΥ(ΨK, λI)




. (5.76)

Comparing Eqns. (5.75) and (5.49) and taking into account Eqns. (5.76) and (5.74)
leads to the following expression for the linear forward model operator, K0:

K0 =




W̃11(Ψ1, λ1,x0) q1 . . . W̃jl(Ψ1, λ1,x0) ql . . . W̃JL(Ψ1, λ1,x0) qL
...

...
...

W̃11(Ψ1, λI,x0) q1 . . . W̃jl(Ψ1, λI,x0) ql . . . W̃JL(Ψ1, λI,x0) qL
...

...
...

W̃11(Ψk, λi,x0) q1 . . . W̃jl(Ψk, λi,x0) ql . . . W̃JL(Ψk, λi,x0) qL
...

...
...

W̃11(ΨK, λ1,x0) q1 . . . W̃jl(ΨK, λ1,x0) ql . . . W̃JL(ΨK, λ1,x0) qL
...

...
...

W̃11(ΨK, λI,x0) q1 . . . W̃jl(ΨK, λI,x0) ql . . . W̃JL(ΨK, λI,x0) qL




, (5.77)

where W̃jl(Ψk, λi,x0) are the weighting functions appropriate to the relative variation of
the corresponding parameters given by

W̃jl(Ψk, λi,x0) ≡ Wjl(Ψk, λi,x0)Nj(rl) . (5.78)

The measurement error covariance matrix, Sy, is commonly a diagonal matrix, i.e., the
measurement errors at different wavelengths and solar zenith angles are assumed to be
uncorrelated. The diagonal elements of Sy are the squares of the relative random errors of
the measured radiances. The a priori covariance matrix, Sa, is a block diagonal matrix,
i.e., vertical distributions of different atmospheric trace gases are assumed to be uncorre-
lated. The diagonal elements of Sa represent the variances of the vertical distribution of
atmospheric trace gases and can be derived from climatology. The off-diagonal elements
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within each diagonal block are usually approximated by

Sl′l′′
a,j = σj,l′ σj,l′′ exp

(
−|rl′ − rl′′|

rc

)
, (5.79)

where
j = 1, . . . , J ; k = 1, . . . ,L ; and l = 1, . . . ,L . (5.80)

Here, index j denotes the number of diagonal block, σ2
j,l′ and σ2

j,l′′ are the variances which
correspond to altitude levels rl′ and rl′′ , respectively, and rc is the correlation length. The
commonly used value for the correlation length is 5 km over the whole atmosphere, see,
for example, [Hoogen et al., 1999].





Chapter 6

Results

6.1 Simulated spectra

Typical transmission spectra which are expected to be measured by means of the SCIA-
MACHY instrument in the solar occultation mode are shown in Figs. 6.1 and 6.2. The
simulated radiation discussed below is assumed to be the sun-normalized radiation, i.e.,
the radiation measured by the detector divided by extraterrestrial solar radiation. The
simulations were performed using Eq. (5.4) neglecting the field of view effects. This means
that the apparatus function, f(ω), was assumed to be a delta-function, i.e., using the co-
ordinates introduced in Section 3.3, f(ω) = δ(Θ + Ψ ) δ(ϕ). All calculations discussed in
this chapter were performed using trace gas vertical profiles from MPI [Brühl and Crutzen,

310 320 330 340 350 360
Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

T
ra

ns
m

is
si

on

ht = 25 km
ht = 30 km
ht = 35 km
ht = 40 km
ht = 45 km

Figure 6.1: Simulated transmission in UV spectral region for different tangent heights.
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Figure 6.2: Simulated transmission in near IR spectral region for different tangent heights.

1993] (channel 1 to 3 according to Table 2.1) and AGFL-86 [Anderson, 1986] (channels 4
to 8 according to Table 2.1) atmospheric models as a priori information.

Figure 6.1 shows the simulated radiation in SCIAMACHY channel 2 for five tangent
heights, ht. The attenuation of solar radiation in this spectral region is caused mostly
by ozone absorption. Due to strong absorption, there is almost no transmitted radiation
for tangent heights below 25 km at wavelengths shorter then 325 nm. Contrastingly,
for tangent heights above 45 km, ozone absorption is too weak at wavelengths longer
than 330 nm. Thus, in order to obtain information about ozone vertical distribution in
both upper and lower stratosphere, multispectral measurements have to be performed.
Figure 6.2 shows the simulated radiation in SCIAMACHY channel 8 for three tangent
heights. Since main absorbing trace gases in this spectral region are H2O, CH4 and CO
which are tropospheric components, the strongest absorption features, rapidly decreasing
with the tangent height, are observed in the lower troposphere. Thus, maximum sensitivity
of the solar occultation measurements in chanel 8 is reached in the lower troposphere.

6.2 Weighting functions

Figures 6.3 and 6.4 show weighting functions of ozone and CO as functions of the altitude at
328 nm and 2333.74 nm, respectively, for different tangent heights. The weighting functions
were calculated according to Eqns. (5.78) and (5.45). Similar to the transmission spectra
simulations, the field of view effects were neglected. Maximum sensitivity is reached at
tangent heights between 30 km and 35 km for ozone and between 5 km and 12 km for
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Figure 6.3: Ozone weighting functions at 328 nm for tangent heights from 15 km to 60 km
in steps of 2 km.
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Figure 6.4: CO weighting functions at 2333.74 nm for tangent heights from 1 km to 30 km
in steps of 2 km.
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Figure 6.5: Ozone weighting functions as functions of wavelength for different tangent
heights.
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Figure 6.6: CO weighting functions as functions of wavelength for different tangent heights.
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CO. All weighting functions are well peaked, uncorrelated, and have their maxima at the
altitude which corresponds to the tangent height. The vertical resolution of the occultation
measurements can be estimated analyzing the shape of the weighting functions. In the case
under consideration, the vertical resolution is limited by the step of the internal altitude
grid of the radiative transfer model and is about 1 - 1.5 km.

The spectral behavior of ozone and CO weighting functions for different tangent heights
is shown in Figs. 6.5 and 6.6, respectively. At each tangent height and each wavelength,
the maximum value of the corresponding weighting function is shown, i.e., according to
Figs. 6.3 and 6.4, the value of the weighting function at the altitude corresponding to
the tangent height. As clearly seen in Fig. 6.5, the spectral position of the maximum
of ozone weighting functions depends strongly on the tangent height. So, for example,
ozone weighting function at a tangent height of 40 km has its maximum at about 313 nm
and rapidly decreases with the wavelength increasing, whereas the weighting function at a
tangent height of 25 km has its maximum at about 331 nm and rapidly decreases with the
wavelength decreasing. Thus, employing the multispectral measurements, the accuracy of
ozone vertical distribution retrieval can be improved substantially. The strongest maxima
of CO weighting functions take place at a tangent height of 7 km for most absorption lines,
except for two lines at about 2332 nm and 2341.5 nm where the maximum sensitivity is
reached at a tangent height of 12 km. The spectral behavior of CO weighting functions is
determined mostly by the strong background absorption by CH4 and H2O.

6.3 Averaging kernels

Typical averaging kernels for stratospheric (ozone) and tropospheric (CO) trace gases cal-
culated using Eq. (5.58) are shown in Fig. 6.7. The calculations were performed in spectral
regions 310 - 360 nm and 2323 - 2342 nm for ozone and CO, respectively. An appropriate
spectral resolution according to Table 2.1 was used in the forward simulations. Signal to
noise ratio of 10000 was selected and the noise at different wavelengths was supposed to be
uncorrelated. This means that the error covariance matrix, Sy, in Eq. (5.58) is a diagonal
matrix with diagonal elements of 10−8. As a priori covariance matrix, Sa, a diagonal ma-
trix with diagonal elements of 0.04 was selected. The state vector, hence, was assumed to
be a priori known with 20% uncertainty and no statistical information on the correlations
between the trace gas number densities at different altitude levels was used. The state
vector, x, contains, in this case, the ozone or CO number densities at the discrete altitude
levels from 0 to 60 km in step of 1 km. To clarify the representation, the averaging kernels
are shown only for each third component of the state vector starting from 0 km for CO
and from 6 km for ozone. The vertical resolution of the vertical profile retrieval algorithm
characterized by the averaging kernel width can be estimated as 1.5 km. Above 50 km for
ozone and 20 km for CO, the averaging kernels have relatively strong negative peaks. This
means that anti-correlated perturbations are added to the solutions at neighboring altitude
levels which lead to oscillations in the resulted vertical profiles. These oscillations can be
substantially reduced introducing off-diagonal elements in the a priori covariance matrix,
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Figure 6.7: Averaging kernels for ozone (a) and CO (b) vertical profile retrieval in the
spectral region 310 - 360 nm and 2323 - 2342 nm, respectively.

for example, as given by Eq. (5.79). These off-diagonal elements can also be derived using
statistical information if available. At tangent heights above 30 km, the absorption features
of CO in the transmission spectra become too weak compared to the noise. This results in
loss of sensitivity of the measured radiation to the variations of CO number density and,
therefore, the averaging kernels maxima are noticeably less than 1.0 at these altitude levels
(see Fig. 6.7 (b)).

6.4 Theoretical precisions

Theoretical precisions of the retrieval of the atmospheric trace gas vertical distributions
were computed according to Eqns. (5.55) and (5.56) using the same a priori covariance
matrix as for the averaging kernels. The calculations were performed for ozone, CO, CH4,
CO2, HCl, and NO2.

Figure 6.8 shows ozone vertical distribution and theoretical precisions of ozone vertical
profile retrieval. As for averaging kernels, the calculations were performed in the spectral
region 310 - 360 nm with an appropriate spectral resolution. The theoretical precisions
were computed for three different signal to noise ratios (measurement errors), namely,
10000, 1000, and 100, i.e., diagonal error covariance matrixes with diagonal elements 10−8,
10−6, and 10−4, respectively, were used in Eq. (5.55). As clearly seen in Fig. 6.8 (b), in
the absence of systematical errors, ozone vertical distribution can be retrieved with an
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Figure 6.8: Ozone vertical distribution (a) and theoretical precisions of ozone vertical
profile retrieval for different measurement errors (b).
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Figure 6.9: CO vertical distribution (a) and theoretical precision of CO vertical profile
retrieval for different measurement errors (b).
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Figure 6.10: Vertical distributions (a) and theoretical precisions of the vertical profile
retrieval (b) of some atmospheric trace gases.

accuracy of better than 1% from solar occultation measurements if the measurement error
does not exceed 0.01%. Whereas for the measurement error of 1%, the theoretical precision
of ozone vertical profile retrieval is expected to be between 0.5% and 10%. Due to strong
ozone absorption no additional information about the ozone vertical distribution below 5
km can be obtained from occultation measurements in the selected spectral range.

Similar to Fig. 6.8, vertical distribution and theoretical precisions of the vertical profile
retrieval for CO are shown in Fig. 6.9. The same spectral region and the same spectral
resolution as for the averaging kernels were used for the calculations. For a signal to
noise ratio of 10000, the vertical distribution of CO below 20 km can be retrieved with
an accuracy of better than 3%, whereas above 20 km, the theoretical precision of retrieval
decreases with the altitude to 15% at 50 km. Because of too weak absorption by CO, for a
signal to noise ratio of 100, no additional information about CO vertical distribution above
20 km is obtained from the retrieval.

Vertical distributions and theoretical precisions of the vertical profile retrieval of some
other atmospheric trace gases are shown in Fig. 6.10. All calculations were performed using
signal to noise ratio of 1000. The following spectral regions were selected for retrieval: 425
- 460 nm, 1725 - 1753 nm, 1950 - 1970 nm, and 2280 - 2300 nm for NO2, HCl, CO2, and
CH4, respectively. An appropriate spectral resolution was used in each channel according to
Table 2.1. Due to the strong absorption by CO2 in the selected spectral region its vertical
distribution can be retrieved with relatively high accuracy. Theoretical precision of the
retrieval is about 0.005% for boundary layer and decreases with altitude to 2-3% at 40 km.
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Altitude behavior of the theoretical precision of CH4 vertical distribution retrieval is similar
to that of CO2 but the precision is lower due to weaker absorption. Vertical distribution of
NO2 can be retrieved with an accuracy better than 1% only in boundary layer, whereas in
the altitude region 5 - 40 km a theoretical precision of 1 - 10 % is achieved. Because of too
weak absorption, vertical distribution of HCl can not be estimated from solar occultation
measurements for the selected signal to noise ratio. Only some information about HCl
abundance in boundary layer can be obtained.

Thus, as follows from the discussion above, the theoretical precision of trace gas vertical
profile retrieval depends strongly on trace gas abundance, on the strength of its absorption
features in the selected spectral region, and on the signal to noise ratio in the measured
spectra.





Part III

Scattered solar radiance





Chapter 7

The CDIPI spherical radiative
transfer model

7.1 Choice of coordinates

In general, the intensity of the radiation is a function of three spatial variables, which
define the point in the medium where the radiance is calculated, and two angular variables,
which determine the direction of the radiation. Therefore, two coordinate systems have to
be specified to define the spatial position and the local directional orientation.

Since the considered radiative transfer model describes the radiation field in a spherical
planetary atmosphere, it is reasonable to use a spherical coordinate system having its
center in the center of the planet as spatial (global) coordinate system. The Z-axis of
the associated Cartesian coordinate system points towards the Sun. For a spherical shell
atmosphere, this leads to an azimuthal symmetric radiation field. The X-axis (or Y-axis)
of the coordinate system can be selected arbitrarily. The directional (local) coordinate
system, which is also a spherical coordinate system, has to be chosen to set the directional
polar axis (z-axis of the associated Cartesian coordinate system) normal to any boundary
surface. Thus, the azimuthal plane has to be tangential to any boundary discontinuity
surface of the radiance (if any exists). Such a choice of the local coordinate system avoids
the discontinuity of intensity as a function of azimuth angle. The x-axis is chosen to be
in the plane defined by the Z-axis of the spatial coordinate system and the z-axis of the
directional coordinate system. All angles are defined with respect to the radiance direction,
thus, the Θ = 0◦ direction corresponds to the upward radiance and the Θ = 180◦ direction
to the downward radiance.

Using these coordinate systems, the set of coordinates r, Ψ , Φ, Θ, and ϕ at any point
in the atmosphere matches the corresponding coordinate set in a plane-parallel radia-
tive transfer model. Thus, the radiances calculated in a spherical and in a plane-parallel
atmosphere can be directly compared.

Figure 7.1 depicts the global and the local coordinate systems, selected as discussed
above, for two arbitrary points on the instrument line-of-sight. As an illustration, the
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Figure 7.1: Global (XYZ) and local (xyz) spherical coordinate systems.

reorientation of the directional coordinate system along a line-of-sight for limb viewing
geometry is shown.

7.2 Numerical aspects of radiative transfer calcula-

tion

As discussed in Section 3.1, the radiation field I(r, Ψ, Φ,Θ, ϕ) in Eq. (4.41) can be split
into two components: the direct radiation, which is never scattered in the atmosphere
or reflected from the planetary surface, and the diffuse radiation, which is scattered or
reflected at least once. In the coordinates depicted in Fig. 7.1, the intensity of the direct
solar radiation given by Eq. (3.18) can be calculated as follows:

Idir(r, Ψ, Φ,Θ, ϕ) = F0 δ(cosΘ + cosΨ, ϕ) exp


−

so∫
0

α(ŝ) dŝ


 , (7.1)



7.2 Numerical aspects of radiative transfer calculation 85

where F0 is the incident solar flux and so denotes the full path-length along the direct solar
beam from the top of the atmosphere to point r.

Rewriting Eq. (4.41), the following equation for the intensity of diffuse radiation can
be obtained:

Idif (r, es) = Idif (ro, es) e
−τ(sc) +

sc∫
0

J(r̃, ẽs)α(r̃) e
−τ(s)ds , (7.2)

where Idif(ro, es) is the diffuse radiance at the end of the characteristic (line-of-sight), i.e.,
at the boundary (the top or the bottom) of the atmosphere, in direction es, sc is the full
length of the characteristic, and τ(s) is the optical depth given by

τ(s) =

s∫
0

α(s̃) ds̃ . (7.3)

According to the boundary conditions, Idif (ro, es) is set to zero for the downward radiation
at the top of the atmosphere and describes at the bottom of the atmosphere the upward
radiation, which is reflected from the Earth’s surface. Thus, the first term in Eq. (7.2) is
always equal to zero for upwards pointing line-of-sights as well as for downwards pointing
line-of-sights which do not intersect the Earth’s surface.

As discussed in Section 3.1, Eqns. (3.24)–(3.26), the source function J(r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) in
Eq. (7.2) can be split into the multiple scattering and the single scattering source func-
tions. In the selected coordinate system, according to Eqns. (3.64) and (3.65), these source
functions are given by

Jms(r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) =
�(r̃, Ψ̃ , Φ̃)

4π

2π∫
0

dϕ̂

π∫
0

dΘ̂ sin Θ̂ p(r̃, Ψ̃ , Φ̃, γ) Idif(r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) (7.4)

and

Jss(r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) =
�(r̃, Ψ̃ , Φ̃)

4π
F0 p(r̃, Ψ̃ , Φ̃, γo) exp


−

st∫
0

α(ŝ) dŝ


 , (7.5)

respectively, where γ and γ0 are appropriate scattering angles according to Eqns. (3.66)
and (3.67):

γ = cos Θ̃ cos Θ̂ + sin Θ̃ sin Θ̂ cos(ϕ̃− ϕ̂) (7.6)

and

γo = − cos Θ̃ cos Ψ̃ + sin Θ̃ sin Ψ̃ cos ϕ̃ . (7.7)
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The angle between the direct solar beam and the characteristic, γo, is constant along the
characteristic in any atmospheric model which neglects refraction effects. The integration
in Eq. (7.5) is performed along the direct solar beam and st, hence, denotes the full length
of the integration line from point r to the top of the atmosphere along the beam.

Neglecting the refraction effects, the spatial coordinates of any point on the character-
istic, r̃, Ψ̃ and Φ̃, and the local direction of the radiance in this point, defined by Θ̃ and
ϕ̃, can be calculated from the initial set of variables r, Ψ, Φ,Θ and ϕ using the following
formulas (details are given in the Appendix B):

r̃ =
√
r2 − 2 r s cosΘ + s2 , (7.8)

cos Θ̃ =
r cosΘ − s

r̃
, (7.9)

cos Ψ̃ =
r cosΨ − s ζ0

r̃
, (7.10)

cos Φ̃ =
r sinΨ

r̃ sin Ψ̃
cosΦ− s

r̃ sin Ψ̃
η0 , (7.11)

cos ϕ̃ =
cos Ψ̃ cos Θ̃ − ζ0

sin Ψ̃ sin Θ̃
, (7.12)

where

η0 = cosΨ cosΦ sinΘ cosϕ− sinΦ sinΘ sinϕ+ sinΨ cosΦ cosΘ ,

and

ζ0 = cosΨ cosΘ − sinΨ sinΘ cosϕ .

The set of variables Θ̂ and ϕ̂ is chosen according to the numerical integration rule
selected to calculate the angular integral in Eq. (7.4), for example, Gaussian quadrature
for cos Θ̂ and evenly spaced azimuth angles ϕ̂. A commonly used approach to perform
angular integration is to employ the Fourier expansion with respect to azimuth angle, as it
was done in [Rozanov et al., 1997], or spherical harmonics, as it was done in [Evans, 1998].
Such methods are very efficient in the plane-parallel case but are too slow for spherical
geometry because of the change of all angles along the integration line [Balluch, 1996]. In
the CDIPI model the optimal set of nodes Θ̂ and ϕ̂, as proposed by Steinacker et al. [1996],
has been used to calculate the angular integral in Eq. (7.4). This set of nodes enables the
integration to be performed with a minimum number of nodes for a given accuracy. The
nodes and the corresponding integration weights have been supplied by J. Steinacker, MPG
Research Unit “Dust in Star–Forming Regions”, Jena, Germany.

Since the multiple scattering source function Jms(r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) is a functional of gener-
ally unknown function Idif (r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃), the Picard iterative approximation (as discussed
in Section 4.2) is applied to solve the radiative transfer equation for diffuse radiance (Eq.
(7.2)). Rewriting the equation for the Picard iterative approximation, Eq. (4.47), the
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following iterative scheme is obtained:

I
(n)
dif (r̂, Ψ̂ , Φ̂, Θ̂, ϕ̂)

interpolation−−−−−−−−→ I
(n)
dif (r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) (7.13)'

J (n)
ms (r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) = LaI

(n)
dif (r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) (7.14)'

I
(n+1)
dif (r̂, Ψ̂ , Φ̂, Θ̂, ϕ̂) = I(r̂, Ψ̂ , Φ̂, Θ̂, ϕ̂) + Lsps J (n)

ms (r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) . (7.15)

Here, I(r̂, Ψ̂ , Φ̂, Θ̂, ϕ̂) contains all terms of the radiative transfer equation, which require
no iteration to be calculated and remain unchanged during the iterations. The variables
r̂, Ψ̂ , and Φ̂ in Eqns. (7.13)–(7.15) denote spatial grid values, and the variables Θ̂ and ϕ̂
are integration nodes, as described above. According to Eqns. (4.48)–(4.50), the intensity
of diffuse radiation calculated in a pseudo-spherical atmosphere is used as an initial guess.
This pseudo-spherical intensity is computed using the GOMETRAN radiative transfer
model [Rozanov et al., 1997] which, as discussed is Section 3.5, assumes a plane-parallel
atmosphere for diffuse radiation and a spherical atmosphere for direct solar radiation.
Using such an initial estimate of the radiation field, convergence can be achieved after a
few iterations.

In fact, for most applications, not the complete radiation field but only the intensity of
the radiation at certain points in certain directions (r′, Ψ ′, Φ′, Θ′, ϕ′), which are usually
defined by the user, is required. These user–defined coordinates and directions do not have
to match the spatial grid values r̂, Ψ̂ , and Φ̂ as well as integration nodes Θ̂ and ϕ̂, which
are chosen to achieve maximum computational efficiency for a given accuracy. This means
that additional integrations have to be done for user–defined line-of-sights and the iteration
scheme given by Eqns. (7.13)–(7.15) can be rewritten as follows:

I
(n)
dif (r̂, Ψ̂ , Φ̂, Θ̂, ϕ̂)

interpolation−−−−−−−−→ I
(n)
dif (r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) (7.16)'

J (n)
ms (r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) = LaI

(n)
dif (r̃, Ψ̃ , Φ̃, Θ̂, ϕ̂) (7.17)'

I
(n+1)
dif (r′, Ψ ′, Φ′, Θ′, ϕ′) = I(r′, Ψ ′, Φ′, Θ′, ϕ′) + Lsps J (n)

ms (r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) (7.18)

I
(n+1)
dif (r̂, Ψ̂ , Φ̂, Θ̂, ϕ̂) = I(r̂, Ψ̂ , Φ̂, Θ̂, ϕ̂) + Lsps J (n)

ms (r̃, Ψ̃ , Φ̃, Θ̃, ϕ̃) (7.19)

In order to achieve convergence of the radiance at the user–defined points in the user–
defined directions, only convergence of the source function along the user-defined line-of-
sights is required, whose sensitivity to the radiation field in remote points of the atmosphere
is rejected by the exponential term in the integral operator Lsp

s . Therefore, the convergence
criteria can be substantially loosened. Once the convergence has been achieved, the last
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step given by Eq. (7.19) needs no longer to be performed. This makes the last iteration
much less computer–time consuming than the previous ones.

The number of iterations needed to obtain convergence was found to be weakly depen-
dent on viewing geometry, selected model atmosphere, wavelength, and so on. Therefore,
the required number of iterations can be once determined and then used as model input
parameter. Using this approach, the step given by Eq. (7.18) can be skipped for any in-
termediate iteration and the step given by Eq. (7.19) needs not to be performed for the
last iteration. This makes the radiative transfer model two times faster for commonly used
viewing geometries and model atmospheres.

The iteration, which involves the steps given by Eqns. (7.16), (7.17), and (7.19) will be
further called “global iteration”, in contrast to the last iteration, which involves the steps
given by Eqns. (7.16), (7.17), and (7.18). Solving only the system of equations (7.16)–
(7.18), i.e., performing no global iteration, leads to the Combined Differential–Integral
(CDI) approach described in [Rozanov et al., 2000a].

In the present version of the radiative transfer model, the dependence of the radi-
ance, the source function, and all atmospheric parameters on global azimuth angle Φ is
neglected, i.e., a spherical shell atmosphere is considered. No refraction effects were taken
into account.

7.3 Simulated radiance

Typical spectra of Sun-normalized diffuse radiation at the top of the atmosphere for dif-
ferent tangent heights are shown in Fig. 7.2. The spectra were simulated for a solar zenith
angle of 30◦ and an azimuth angle of 90◦ with the CDIPI model performing one global iter-
ation; that is, following the notation in Section 7.2, I

(2)
dif was calculated. The incident solar

flux was assumed to be equal π. All angles refer to the top of the atmosphere. The compu-
tations were done including the absorption by ozone, NO2, and O4 as well as aerosol and
Rayleigh scattering. The 1976 US Standard model atmosphere [NASA, 1976] with the top
of the atmosphere set at 100 km was used. A maritime aerosol in the boundary layer and a
background aerosol in the stratosphere according to the LOWTRAN/MODTRAN aerosol
parameterization [Kneizys et al., 1996] was selected. The calculations were performed using
a surface albedo of 0.3.

The diffuse radiation at the top of the atmosphere as a function of tangent height is
shown in Fig. 7.3. The calculations were carried out at 500 nm at a solar zenith angle of
80◦ for two azimuth angles. The radiation was computed for two atmospheric scenarios:
(a) including only Rayleigh scattering and ozone absorption and (b) including aerosol and
Rayleigh scattering as well as ozone absorption. Figure 7.3 clearly illustrates the increase
of the intensity of diffuse radiation, as well as the peak in the troposphere, for an azimuth
angle of 0◦ caused by the forward scattering at aerosol particles. Assuming an aerosol–free
atmosphere, a small descent takes place below a tangent height of 10 km. For an azimuth
angle of 180◦, the behavior of both curves is determined by the back scattering properties of
aerosol particles or molecules. Since, for the back scattering, the Henyey–Greenstein phase
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Figure 7.2: Sun-normalized diffuse radiation at the top of the atmosphere at a solar zenith
angle of 30◦ and an azimuth angle of 90◦ for different tangent heights.
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Figure 7.3: Diffuse radiation at the top of the atmosphere at a solar zenith angle of 80◦

for azimuth angles of 0◦ and 180◦ as a function of tangent height with and without aerosol
scattering.
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function, which was used here to describe the aerosol scattering properties, is similar to
the Rayleigh phase function, both curves show a similar dependence on the tangent height.
The radiation calculated including aerosols is, however, weaker because of additional aerosol
extinction.

7.4 Convergence of the iterative scheme

As mentioned previously, using the pseudo-spherical radiative field as an initial guess causes
the iterative scheme to converge rapidly, i.e., after 1–2 global iterations. In order to estimate
the accuracy achieved after each iteration, the solutions after the first and the second global
iteration were compared.

The relative difference between the CDIPI solutions performing two and one global
iterations, i.e., (I

(3)
dif/I

(2)
dif − 1) ∗ 100%, as a function of wavelength for different tangent

heights is shown in Fig. 7.4. The computations were done at a solar zenith angle of 30◦

and an azimuth angle of 90◦ for the same atmospheric scenario as for Fig. 7.2.
The same relative difference as a function of tangent height at solar zenith angles of 30◦

and of 80◦ is shown in Fig. 7.5 and Fig. 7.6, respectively. The calculations were performed
at 500 nm for three azimuth angles with and without aerosol scattering. The atmospheric
scenarios as in Fig. 7.3 were used. The difference between the solutions never exceeds 0.2%
and depends only slightly on the selected atmospheric scenario, solar zenith angle, and
azimuth angle.

Figure 7.7 shows the relative difference as a function of solar zenith and azimuth angle
at a tangent height of 30 km. The calculations were carried out for 19 azimuth angles (0◦–
180◦ in steps of 10◦) and 11 solar zenith angles (0◦–90◦ in steps of 10◦ and 95◦). As will be
explained in Section 7.6.4, azimuth angles between 140◦ and 180◦ at a solar zenith angle
of 90◦ and between 70◦ and 180◦ at a solar zenith angle of 95◦ have not been considered.
The computations were performed including ozone absorption and Rayleigh scattering.

The relative difference shown in Figs. 7.4–7.7 never exceeds 0.2%. Thus, performing
only one global iteration yields a spherical solution with an accuracy sufficient for most
applications.

7.5 The CDI solution for the limb viewing geometry

As mentioned in Section 7.2, performing no global iteration leads to the CDI solution,
i.e., I

(1)
dif ≡ ICDI

dif . For non-limb viewing geometry, as shown in [Rozanov et al., 2000a],
the CDI and the spherical solutions differ by less than 2%. Although the CDI approach
was developed to simulate off-nadir measurements, it can be also used to obtain a fast
approximation for scattered solar radiation in limb viewing geometry. Similar approaches
which involve an accurate consideration of the single scattering term and an approximation
for the multiple scattering term have already been used for modeling of scattered solar
radiation in the Earth’s atmosphere [Naudet and Thomas, 1987; Anderson and Lloyd,
1990; McLinden et al., 1999; Abreu et al., 1989]. Thus, it is of interest to estimate the
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Figure 7.4: Relative difference between the CDIPI solutions performing three and two
iterations, i.e., (I
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dif − 1) ∗ 100%, as a function of wavelength at a solar zenith angle of

30◦ and an azimuth angle of 90◦ for different tangent heights.
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Figure 7.5: Relative difference between the CDIPI solutions performing three and two
iterations as a function of tangent height for a solar zenith angle of 30◦ and three azimuth
angles with and without aerosol scattering.
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Figure 7.6: As Fig. 7.5, but for a solar zenith angle of 80◦.
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Figure 7.8: Relative difference between the CDI and the spherical solutions, i.e., (I
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1) ∗ 100%, as a function of wavelength at a solar zenith angle of 30◦ and an azimuth angle
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(1)
dif/I

(2)
dif − 1) ∗ 100%, as a

function of tangent height for a solar zenith angle of 30◦ and three azimuth angles with
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Figure 7.10: As Fig. 7.9, but for a solar zenith angle of 80◦.
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accuracy of the diffuse radiation computed with the CDI radiative transfer model in limb
viewing geometry.

The relative difference between the CDI and the spherical solution, i.e., (I
(1)
dif/I

(2)
dif −1)∗

100%, as a function of wavelength for different tangent heights is shown in Fig. 7.8. The
computations were done at a solar zenith angle of 30◦ and an azimuth angle of 90◦ for the
same atmospheric scenario as in Fig. 7.2. The relative difference increases with wavelength
and tangent height to 10% at 800 nm and a tangent height of 45 km.

The same relative difference as a function of tangent height at solar zenith angles of
30◦ and of 80◦ is shown in Fig. 7.9 and Fig. 7.10, respectively. The calculations were
performed at 500 nm for three azimuth angles with and without aerosol scattering. The
atmospheric scenarios as in Fig. 7.3 were used. For tangent heights below 25 km at a
solar zenith angle of 30◦ and below 30 km at a solar zenith angle of 80◦, the CDI and the
spherical solutions agree within 1% for most scenarios. For a solar zenith angle of 30◦,
starting from the tangent height about of 25 km, the relative difference increases almost
linearly with the tangent height and reaches in the worst case 8% at a tangent height of
60 km. The inclination of the curve depends on the selected atmospheric scenario and the
azimuth angle. For a solar zenith angle of 80◦, the relative difference for azimuth angles
of 0◦ and 180◦ does not exceed 2% for tangent heights up to 60 km. Both curves for an
azimuth angle of 90◦ show similar behavior as for a solar zenith angle of 30◦.

Figure 7.11 shows the relative difference as a function of solar zenith and azimuth angle
at a tangent height of 30 km. The calculations were performed for the same set of solar
zenith and azimuth angles and the same atmospheric scenario as in Fig. 7.7.

7.6 Model validation

7.6.1 Pre-validation

As a first step to validate the newly developed radiative transfer model, the pseudo-
spherical diffuse radiation field calculated using the GOMETRAN radiative transfer model
has been validated, which is used as an initial guess for the iterative scheme. In [Rozanov et
al., 1997] the diffuse radiances at the top of the atmosphere for the nadir viewing geometry
calculated using GOMETRAN and DISORT [Stamnes et al., 1988] were compared. The
agreement between both models was found to be better than 0.5%. In [Blindauer et al.,
1996] the simulated pseudo-spherical radiance in the middle of the atmosphere was com-
pared with balloon–born measurements. Simulated and measured radiances were found to
be in good agreement within the experimental error. The UV indices, which characterize
the radiation field at the bottom of the atmosphere, simulated using 6 different multi-
ple scattering pseudo-spherical radiative transfer models were compared in [Koepke et al.,
1998]. The UV index calculated using GOMETRAN was found to be in good agreement
with the indices calculated using other radiative transfer models. This shows that the
pseudo-spherical radiance as calculated with GOMETRAN is adequately validated and is
a sufficiently accurate initial guess for the iterative scheme.
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Figure 7.12: Definition of the solar zenith angle Ψ and the viewing angle Θ in different
models.

7.6.2 Self consistence tests

As a self-consistence test for the considered radiative transfer model, the diffuse radia-
tion for zenith and nadir viewing geometry was calculated performing no global iteration
and compared to the corresponding radiation calculated with GOMETRAN. The intensi-
ties in this case are expected to coincide because the pseudo-spherical source function in
Eq. (7.18) is used and the spherical operator Lsp

s for such geometries has to result in the
same intensities as the pseudo-spherical one (i.e., Lpp

s ). In fact, these intensities were found
to be in agreement within better than 1%. As a test for the iterative scheme, the model
was run using an Earth’s radius increased by a factor of 1000. The corresponding results
were compared with the pseudo-spherical model. Both models were found to agree to less
than 2%. The remaining difference between these test–solutions appears to be caused by
solving different types of equations, i.e., the integro-differential equation in GOMETRAN
and the integral equation in CDIPI.

7.6.3 Off-nadir viewing geometry

To verify the CDI solution in non-limb viewing geometry, a series of comparisons to an in-
dependent fully spherical model were performed. Radiances at the top of the atmosphere
calculated with the CDI approach and with the Gauss-Seidel spherical (GSS) radiative
transfer model were compared. Since CDI is a scalar and GSS a vector radiative transfer
model, direct comparison between both models can not be performed. In order to reduce
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Figure 7.13: Relative differences between the radiances at TOA calculated with GT PSM
and with CDI for six wavelengths at a solar zenith angle of 85o.

the influence of polarization effects which are included in GSS and neglected in CDI, the cor-
responding ratios of the pseudo-spherical to the spherical solution were compared, namely,
GT PS/CDI and MPS/GSS. Here, MPS denotes the Mateer pseudo-spherical model (vec-
tor model) which was used to analyze the ratio MPS/GSS in [Caudill et al., 1997] and
GT PSM is the GOMETRAN pseudo-spherical model (scalar model) with MPS-like input
angle definition. Figure 7.12 shows the solar zenith angle and the viewing angle definitions
used in different models. In the CDI and GSS radiative transfer models the solar zenith
angle and the viewing angle at the top of the atmosphere (Ψ0,Θ0) are used as model input.
Whereas in the MPS and GT PSM models, the solar zenith angle and the viewing angle at
the point where the line-of-sight intersects the Earth’s surface (Ψ1,Θ1) are used as input
parameters. The corresponding values of Ψ1 and Θ1 can be calculated from given Ψ0 and
Θ0 using Eq. (7.10) and (7.9), respectively.

The solar zenith angle and the viewing angle in a pseudo-spherical model are assumed
not to change along the line-of-sight. Therefore, a single effective value has to be chosen to
describe the source function. Since the simulated radiation is more sensitive to scattering
processes near the bottom of the atmosphere than to the scattering processes near the
top of the atmosphere, it is more accurate to define the input angles for pseudo-spherical
models as in MPS and GT PSM. However, all angle variables below refer to the top of the
atmosphere and were appropriately converted when being used as input angles for MPS
and GT PSM models.
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Figure 7.14: Relative differences between the radiances at TOA calculated with GT PSM
and with CDI at 317.5 nm for a viewing angle of 55o and five azimuth angles.

All calculations were carried out including ozone absorption and Rayleigh scattering.
A surface albedo of 0.1 was selected. The comparison was performed at six wavelengths
for a variety of viewing angles using the high-latitude 325 DU ozone profile and the same
ozone cross sections as used in [Caudill et al., 1997].

The relative differences between the radiances at TOA calculated with GT PSM and
with CDI for six wavelengths at a solar zenith angle of 85o are shown in Fig. 7.13. Positive
values for the viewing angle correspond to the azimuth angle of 0o and negative values
to the azimuth angle of 180o. The azimuth angle of 0o corresponds to the line-of-sight
pointing towards the sun. The differences depict the influence of spherical effects on the
calculated radiance. In Fig. 7.14 the relative difference between the GT PSM and CDI
models at 317.5 nm is shown as a function of solar zenith angle for a viewing angle of
55o and a set of azimuth angles. The dependence of the relative difference on solar zenith
angle, viewing angle, azimuth angle, and wavelength is in good qualitative agreement with
the results published in [Caudill et al., 1997]. This agreement demonstrates that spherical
effects in the CDI approach are taken into account correctly. Nevertheless, it is necessary to
examine whether despite the neglect of spherical features of the multiple scattering source
function in the CDI model sufficiently accurate solutions result. In order to estimate the
quantitative difference between the CDI approach and the fully spherical GSS model, the
relative differences (GT PSM/CDI - 1)∗100% were compared with the relative differences
(MPS/GSS - 1)∗100%. The comparison was performed for six wavelengths at a solar zenith
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Figure 7.15: Differences between ratios GT PSM/CDI and MPS/GSS for six wavelengths
at a solar zenith angle of 85o.

angle of 85o. The results of the comparison are shown in Fig. 7.15. The differences do not
exceed the values typical for the comparison of independent radiative transfer models (1–
2%). The small increase of the differences at short wavelengths and large viewing angles
appears to arise from the inclusion of the polarization effects in the MPS and GSS and
their neglect in the CDI and GT PSM models. This means that the CDI approach treats
spherical features of the atmosphere accurately enough for the viewing geometries under
consideration.

7.6.4 Limb viewing geometry

It is obvious that the largest effect of the sphericity of the Earth’s atmosphere is to be
expected in limb viewing geometry. Therefore, in order to verify the developed approach,
a comparison with the Monte–Carlo radiative transfer model, Siro, [Oikarinen et al., 1999]
for limb viewing geometry was performed. The outgoing radiation at 500 nm at the top of
the atmosphere was calculated using both radiative transfer models. The accuracy of the
Siro model radiance is reported to be better than 1% (the Siro model radiance and accu-
racy estimations were provided by L. Oikarinen, Finnish Meteorological Institute, Helsinki,
Finland). All calculations were carried out including Rayleigh scattering and ozone ab-
sorption. The same model atmosphere and surface albedo as discussed in Section 7.3 were
used. As in the previous sections, all angles refer to the top of the atmosphere.
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Figure 7.16: Relative difference between CDIPI and Siro, i.e., (CDIPI/Siro− 1) ∗ 100%, as
a function of tangent height at a solar zenith angle of 30◦ and an azimuth angle of 90◦.
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Figure 7.17: Relative difference between CDIPI and Siro, i.e., (CDIPI/Siro− 1) ∗ 100%, as
a function of solar zenith angle and azimuth angle at 10 km tangent height.
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Simulations using the CDIPI radiative transfer model were carried out performing one
global iteration, i.e., I

(2)
dif(rt, Ψ, Θ, ϕ) was used as the output intensity of the diffuse ra-

diation, where rt denotes the top of the atmosphere. The radiation field in CDIPI was
calculated for solar zenith angles between 0◦ and 98◦ and set to zero for solar zenith angles
larger than 98◦. Therefore, the comparison was carried out only for line-of-sights with the
solar zenith angle at the tangent point less than 98◦. Thus, for line-of-sights starting at a
solar zenith angle of 90◦ at the top of the atmosphere, the largest azimuth angle included
in the comparison was 140◦. For this line-of-sight, the solar zenith angle at the tangent
point is 97.3◦. For line-of-sights starting at a solar zenith angle of 95◦ at the top of the
atmosphere, only azimuth angles between 0◦ and 60◦ were included in the comparison,
because for larger azimuth angles most of the line-of-sight is in the shadow region and the
error caused by neglect of radiance at solar zenith angles larger than 98◦ can be relevant.

The relative difference between CDIPI and Siro, i.e., (CDIPI/Siro − 1) ∗ 100%, as a
function of tangent height at a solar zenith angle of 30◦ and an azimuth angle of 90◦ is
shown in Fig. 7.16. As can be seen, the relative difference never exceeds 1.5% and is less
than 1% for all tangent heights excluding 45 km. The same relative difference as a function
of solar zenith angle and azimuth angle at a tangent height 10 km is shown in Fig. 7.17. For
most points the difference does not exceed 1%. The two points with a maximum difference
of 2.3%, at a solar zenith angle of 95◦ and an azimuth angle of 60◦, and of 1.9%, at a solar
zenith angle of 90◦ and an azimuth angle of 140◦, are closest to the excluded region of solar
zenith and azimuth angles. Thus, the results at these points can also be affected by neglect
of radiance at solar zenith angles larger than 98◦.

7.7 Computational efficiency

As mentioned in the introduction, one of the most important features, which has to be
incorporated in a spherical radiative transfer model, is its computational efficiency. The
required computer time obviously depends on the computer system architecture and its
performance. The estimation of computer time (user time) needed to simulate the inten-
sities for the comparison shown in Fig. 7.17 (a set of 209 user-defined variables was used:
11 solar zenith angles and 19 azimuth angles) was performed for three different computer
systems. The calculations using CDIPI with 1127 spatial grid points (49 height grid layers
and 23 solar zenith angles) and 100 integration nodes took approximately 10 min at a SUN
Sparc Ultra 2, 6.5 min at a Silicon Graphics Origin 10000, 6 min for 1 CPU and about 1
min using 8 CPUs of a CRAY J90se. The same calculations made by Siro using a Silicon
Graphics Origin 2000 took about 13 hours (L. Oikarinen, Finnish Meteorological Institute,
Helsinki, Finland, private communications, 1999).





Chapter 8

Applications of the new spherical
radiative transfer model

8.1 Differential approach involving the CDI model

Since the fully spherical CDIPI model is relatively slow, some approximation has to be
found to perform forward simulations for the interpretation of large amount of multi-
spectral measurements in limb viewing geometry. Using the approximative CDI approach
instead of the fully spherical model, forward simulations can be performed much faster.
Unfortunately, as discussed in Section 7.5, the Sun-normalized radiation calculated using
the CDI model in limb viewing geometry is not accurate enough at tangent heights above
30 km.

One of the commonly used methods to reduce the influence of systematical errors in
the measured spectra on retrieved parameters is using the differential approach; that is,
the differential optical depth (DOD) instead of the radiation is used for the retrieval. This
approach is also employed to avoid the influence of instrument calibration errors.

The differential optical depth is commonly defined by

τ(λ) = ln I(λ)−
N∑

k=0

ak λ
k , (8.1)

where I(λ) is the Sun-normalized radiation, λ is the wavelength, ak are polynomial coeffi-
cients and N is the polynomial order. It is the differential optical depth given by Eq. (8.1),
which is used in the DOAS retrieval to estimate atmospheric trace gas vertical distributions
or vertical column densities.

Accuracy of differential optical depth simulated with the CDI radiative transfer model
for different scenarios is investigated below. Accuracy was estimated comparing the differ-
ential optical depths resulting from the approximative CDI approach and the fully spherical
CDIPI model. Two spectral windows were selected for the comparison, namely, 310 – 340
nm and 425 – 455 nm, which can be used for the vertical profile retrieval of ozone and
NO2, respectively, from the SCIAMACHY limb measurements.
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Figure 8.1: Differential optical depth and
absolute difference between spherical and
CDI differential optical depths.
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Figure 8.2: Typical dependence of the max-
imum DOD in the spectral region 310 – 340
nm on the tangent height.
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Figure 8.3: Maximum absolute difference
between spherical and CDI DODs at a so-
lar zenith angle of 30◦ for different azimuth
angles.
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Figure 8.4: As Fig. 8.3, but at an azimuth
angle of 0◦ for different solar zenith angles.

All calculations below were done including the absorption by ozone, NO2 and O4 as
well as aerosol and Rayleigh scattering. A background aerosol scenario was selected. The
computations were performed using a surface albedo of 0.3, except for Figs. 8.5 and 8.10.
All angles are defined at the top of the atmosphere.

Figure 8.1 shows the differential optical depth and the absolute difference between
spherical and CDI differential optical depths, i.e., τ(λ)sph− τ(λ)CDI , in the spectral region
310 – 340 nm at a tangent height of 24 km, a solar zenith angle of 30◦ and an azimuth
angle of 90◦. Typical dependence of the maximum differential optical depth (MDOD) in the



8.1 Differential approach involving the CDI model 105

0.000 0.002 0.004 0.006 0.008
Absolute difference

0

20

40

60

T
an

ge
nt

 h
ei

gh
t [

km
]

Surface albedo:
0.1
0.3
0.9

Figure 8.5: As Fig. 8.3, but at a solar zenith
angle of 90◦ and an azimuth angle of 90◦ for
different surface albedo.
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Figure 8.6: As Fig. 8.1, but in a spec-
tral region used for NO2 vertical profile
retrieval.
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Figure 8.7: As Fig. 8.2, but in the spectral
region 425 – 455 nm.
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Figure 8.8: As Fig. 8.3, but in the spectral
region 425 – 455 nm.

selected spectral region on the tangent height is shown in Fig. 8.2. Since MDOD is found
to be only weakly dependent on the selected viewing geometry and surface albedo, only
the values at solar zenith angle of 10◦ and azimuth angle of 0◦ are shown. Figures 8.3–8.5
show the maximum value in the selected spectral interval of the absolute difference between
spherical and CDI differential optical depths as a function of tangent height for different
solar zenith and azimuth angles as well as different surface albedo. For tangent heights
below 40 km, the absolute difference never exceeds 0.002 and the relative difference is less
than 1.5%. Typically, the difference increases with increasing surface albedo and, above 20
km, with the tangent height.

Similar to Fig. 8.1, Fig. 8.6 shows the differential optical depth and the absolute dif-
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Figure 8.9: As Fig. 8.4, but in the spectral
region 425 – 455 nm.
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Figure 8.10: As Fig. 8.5, but in the spectral
region 425 – 455 nm.

ference between spherical and CDI differential optical depths in the spectral region 425
– 455 nm. Figure 8.7, similar to Fig. 8.2, shows a typical dependence of the maximum
differential optical depth in this spectral region on the tangent height. Figures 8.8–8.10
show the same dependencies as Fig. 8.3–8.5, but for the spectral region 425 – 455 nm. The
absolute difference is typically less then 2 · 10−4 and never exceeds 7 · 10−4, whereas the
noise level in DOD spectra derived from the measurements is unlikely to be less then 10−3.

Thus, using the differential approach, an acceptable accuracy of ozone and NO2 vertical
profile retrieval can be achieved performing forward calculations with the CDI model, which
is substantially faster than a spherical model.

8.2 Air mass factors for off-axis measurements

DOAS interpretation of ground-based zenith-sky measurements is one of the commonly
used methods to obtain information about vertical distribution or total column abundance
of such atmospheric constituents as ozone, NO2, BrO, etc. Air mass factors needed for
DOAS retrieval are well studied for zenith-viewing geometry, see, for example [Solomon et
al., 1987; Perliski and Solomon, 1993]. They are found to be weakly dependent on atmo-
spheric parameters and can be calculated using a single scattering radiative transfer model,
as long as the abundance of the species in question is small in the troposphere, [Mount
et al., 1987] or with a pseudo-spherical radiative transfer model [Ridley et al., 1984]. To
obtain additional information about atmospheric trace gas abundances in the troposphere,
so-called “off-axis” measurements are carried out, i.e., ground-based measurements at line-
of-sight angles about several degrees above the horizon. In this Section, the sensitivity of
the air mass factors for off-axis geometry to atmospheric parameters is investigated. The
suitability of pseudo-spherical models for the interpretation of the off-axis measurements
is discussed as well.
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Table 8.1: Solar zenith (SZA) and relative azimuth (RAA) angles for the selected off-axis
measurement sequence.

65.4◦/131.3◦ 65.8◦/123.1◦ 66.4◦/115.1◦ 67.2◦/107.1◦ 68.2◦/99.2◦

sunset 69.2◦/91.3◦ 70.5◦/83.5◦ 71.8◦/75.8◦ 73.2◦/68.2◦ 74.6◦/60.7◦

SZA/RAA 76.0◦/53.2◦ 77.5◦/45.7◦ 78.9◦/38.3◦ 80.3◦/30.9◦ 81.6◦/23.5◦

82.7◦/16.6◦ 86.6◦/18.1◦ 87.0◦/25.6◦ 87.1◦/31.9◦

87.5◦/36.0◦ 87.4◦/43.5◦ 87.1◦/50.9◦ 86.6◦/58.5◦ 85.9◦/65.9◦

sunrise 85.1◦/73.4◦ 84.1◦/80.9◦ 83.0◦/88.3◦ 81.8◦/96.0◦ 80.4◦/03.2◦

SZA/RAA 79.1◦/10.6◦ 77.6◦/18.0◦ 76.2◦/25.4◦ 74.7◦/32.8◦ 73.5◦/39.2◦

66.4◦/71.8◦ 65.8◦/63.7◦ 65.4◦/55.6◦

8.2.1 Measurement technique

The air mass factors discussed below were calculated to interprete the zenith-sky (line-
of-sight angle 0◦) and off-axis (line-of-sight angle 86◦) measurements performed in Ny-
Ålesund, Spitsbergen (79◦N, 12◦E) during a selected day in spring 1999. The measurements
were carried out in the spectral range from 330 nm to 490 nm at solar zenith angles from
65◦ to 87◦ using a Czerny-Turner spectrograph. Details on the instrument and observation
modes can be found in [Wittrock et al., 1999]. Performing the off-axis measurements, the
azimuth angle of the instrument line-of-sight was fixed relative to North pole and the
relative azimuth between the line-of-sight and the direct solar beam, hence, was changing
during the measurements. The corresponding values for solar zenith (SZA) and relative
azimuth (RAA) angles for the selected off-axis measurement sequence are presented in
Table 8.1.

8.2.2 Air mass factors

The air mass factors are calculated using the intensity of the radiation simulated with a
radiative transfer model in an appropriate viewing geometry as follows [Solomon et al.,
1987]:

A =
ln(I−/I+)

τ
, (8.2)

where τ is the vertical optical depth of the targeted trace gas. I+ and I− are the intensities
with and without absorption by the trace gas under consideration, respectively.

In order to investigate the applicability of pseudo-spherical radiative transfer models
for off-axis viewing geometry, intensities I+ and I− were calculated using the SCIATRAN
pseudo-spherical radiative transfer model [Rozanov et al., 2000b] and the CDIPI spherical
radiative transfer model discussed in Chapter 7. The simulated slant columns were obtained
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Figure 8.11: Relative air mass factors for
ozone at 337.2 nm for off-axis and zenith
viewing geometry.
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Figure 8.12: Absolute difference between
ozone air mass factors at 337.2 nm for
surface albedo of 0.1 and 0.8.

applying the same DOAS retrieval algorithm to the synthetic spectra as used to interprete
experimental data. In order to estimate the variability of air mass factors with atmospheric
parameters, a set of air mass factors for ozone, NO2, and O4 was calculated using various
aerosol scenarios, surface albedo (ozone only) and model atmospheres (NO2 only).

The DOAS fit is commonly applied to relative spectra, i.e., twilight spectra are usually
divided by a reference spectrum. A spectrum measured at noon is commonly used as a
reference. Therefore, the relative air mass factors are of interest rather than absolute ones.
As clearly seen from Eq. 8.2, the relative air mass factor is given by

Arel = Aabs − Aref . (8.3)

The relative air mass factors for ozone at 337.2 nm for zenith and off-axis viewing
geometry calculated with the CDIPI model are shown in Fig. 8.11. All air mass factors
discussed below are supposed to be the relative air mass factors according to Eq. 8.3. As
a reference spectrum in both zenith and off-axis viewing geometries a zenith-sky spectrum
at the smallest solar zenith angle is used.

Figure 8.12 and 8.13 show the absolute differences between ozone air mass factors cal-
culated for two different surface albedo and aerosol scenarios, respectively. The absolute
differences between ozone air mass factors calculated with the SCIATRAN pseudo-spherical
and CDIPI spherical radiative transfer models are shown in Fig 8.14. Although the depen-
dence of ozone air mass factors on atmospheric parameters is much stronger for off-axis
than for zenith viewing geometry, the relative difference in all cases does not exceed 3%
for air mass factors larger than 2.

Figure 8.15 shows NO2 air mass factors calculated with the CDIPI model for two differ-
ent atmospheric models, namely, for the US Standard (USS) model atmosphere containing
only a small amount of NO2 in the troposphere and for the MPI model atmosphere yielding
an additional peak of NO2 vertical profile in the troposphere. As clearly seen, air mass
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Figure 8.13: Absolute difference between
ozone air mass factors at 337.2 nm calcu-
lated for aerosol optical depth of 0.15 and
0.02.
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Figure 8.14: Absolute difference between
ozone air mass factors at 337.2 nm calcu-
lated using pseudo-spherical and spherical
radiative transfer models.
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Figure 8.15: Relative air mass factors for
NO2 at 435 nm for off-axis viewing geom-
etry calculated using the US Standard and
MPI model atmospheres.
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Figure 8.16: Absolute difference between
NO2 air mass factors at 435 nm calcu-
lated using pseudo-spherical and spherical
radiative transfer models.

factors calculated using different model atmospheres show quite different dependencies on
the solar zenith angle. Thus, an additional study of NO2 vertical profile structure has to
be carried out before the air mass factor computations. Figure 8.16 shows absolute differ-
ences of NO2 air mass factors calculated using the SCIATRAN pseudo-spherical and CDIPI
spherical radiative transfer models. The relative difference between the pseudo-spherical
and spherical air mass factors for the US Standard model atmosphere has its maximum
value of about 7% at higher solar zenith angles, whereas for the MPI atmosphere the rel-
ative difference is about 2% almost independent of the solar zenith angle. This means
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Figure 8.17: O4 air mass factors at 477.1
nm for off-axis viewing geometry calcu-
lated using pseudo-spherical and spherical
radiative transfer models.
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Figure 8.18: O4 air mass factors at 477.1
nm for off-axis viewing geometry calculated
for aerosol optical depth of 0.15, 0.08, and
0.025.
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Figure 8.19: O4 air mass factors at 477.1
nm for off-axis viewing geometry calculated
for surface albedo of 0.1 and 0.8.
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Figure 8.20: Comparison between slant
columns retrieved from experimental data
and simulated spectra.

that a spherical radiative transfer model needs to be used to retrieve NO2 vertical columns
accurately enough.

The relative air mass factors of O4 calculated with SCIATRAN pseudo-spherical and
CDIPI spherical radiative transfer models are shown in Fig 8.17. The pseudo-spherical
and spherical air mass factors differ by 3–5% in the relevant range of the solar zenith
angles. Figure 8.18 and 8.19 show O4 air mass factors calculated for three different aerosol
scenarios and two surface albedo, respectively. As clearly seen, the air mass factors are
strongly sensitive to the selected atmospheric parameters.

A comparison of simulated O4 slant columns with experimental data is presented in
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Fig. 8.20 . As clearly seen, the measured dependence of O4 slant column on azimuth and
solar zenith angle is reproduced by the radiative transfer model. The better agreement
between experimental and model curves can be achieved using an appropriate fit proce-
dure. Since the vertical column of O4 can be calculated if vertical profiles for pressure
and temperature are known, such a comparison can be used in controlling if the selected
atmospheric model can reproduce real atmospheric processes accurately enough.

8.3 Interpretation of zenith-sky measurements con-

sidering NO2 photochemistry

As mentioned in Section 8.2, the radiative transfer models commonly used to calculate air
mass factors for zenith-sky measurements consider either multiple scattered radiation in a
plane-parallel atmosphere assuming a constant vertical distribution of atmospheric trace
gases (pseudo-spherical models) or take into account only single scattered radiation (single
scattering models). Although such simplified models are sufficient for most situations, they
can not be used to interpret zenith-sky measurements for the species in great abundance
in the troposphere whose vertical distribution in the stratosphere varies with the solar
zenith angle. To investigate the accuracy of different approaches, NO2 was selected as
a target atmospheric constituent. The corresponding measurements were carried out in
Ny-Ålesund, Spitsbergen (79◦N,12◦E) in spring 1997 in the spectral range 435 – 480 nm
[Wittrock et al., 1999].

8.3.1 Slant column simulations

The slant columns of NO2 as functions of solar zenith angle were simulated using three
different radiative transfer models:
(a) the GOMETRAN pseudo-spherical radiative transfer model,
(b) the CDIPI spherical radiative transfer model, and
(c) a single scattering (SS) radiative transfer model which was derived from the CDIPI
model by switching off the multiple scattering calculations.

Using each radiative transfer model, the intensities of the zenith-sky radiation with and
without NO2 absorption (I+(Ψ ) and I−(Ψ ), respectively) were simulated as functions of
solar zenith angle. Then the slant columns were calculated as follows:

S(Ψ ) =
1

σ
ln

[
I−(Ψ )
I+(Ψ )

]
, (8.4)

where σ is NO2 cross section at the selected wavelength. The dependence of I+ on the solar
zenith angle, Ψ , in GOMETRAN is caused only by radiative transfer geometry, whereas
this dependence in the CDIPI and the single scattering models is also due to the change
of NO2 vertical distribution with the solar zenith angle.
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Figure 8.21: NO2 vertical profiles for dif-
ferent solar zenith angles simulated with
BRAPHO (Ny-Ålesund, sunrise, spring
1997).
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Figure 8.22: NO2 slant columns calculated
using the CDIPI spherical and the GOME-
TRAN pseudo-spherical radiative transfer
models.

From measured spectra, the slant columns were derived employing the DOAS fit:

ln

[
I(λ, Ψ )

I(λ, Ψref)

]
DOAS fit−−−−−−→ Sexp(Ψ ) , (8.5)

where subscript ref denotes the reference spectrum and λ is the wavelength. Similar to
the measured values, the relative slant columns were simulated, which are defined by

Ŝ(Ψ ) = S(Ψ )− S(Ψref) , (8.6)

where Ψref is the solar zenith angle corresponding to the reference spectrum used in DOAS
fit.

8.3.2 Slant column comparison

All calculations discussed below were performed for spring 1997 for Ny-Ålesund using a
surface albedo of 0.8.

Figure 8.21 shows typical NO2 vertical profiles, n(Ψ ), for different solar zenith angles
calculated using the BRAPHO atmospheric photochemical model [Sinnhuber et al., 1999]
for sunrise conditions. The simulated vertical distribution of NO2 shows a strong depen-
dence on the local solar zenith angle in the altitude range 12 – 40 km. Since the BRAPHO
model can only simulate the vertical distribution in the stratosphere, the dependence of
the tropospheric NO2 on the solar zenith angle could not be taken into account.

Figure 8.22 shows NO2 slant columns calculated according to Eq. (8.4) as function of
the local solar zenith angle, i.e., the solar zenith angle at instrument position. The slant
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Figure 8.23: Simulated NO2 slant columns
for pure stratospheric and for stratospheric-
tropospheric NO2.

80 82 84 86 88 90 92
Local solar zenith angle [deg]

-10

-5

0

5

10

R
el

at
iv

e 
di

ff
er

en
ce

 [
%

]

without tropo-
spheric NO2

Ψref = 60◦
)

including
tropospheric

NO2Ψref = 70◦

Figure 8.24: Relative difference between
NO2 slant columns calculated using the
CDIPI and the SS models.

columns were calculated as follows:
(a) with the CDIPI spherical model (the results of this simulation were treated as “true”
values),
(b) with the GOMETRAN pseudo-spherical model assuming the NO2 vertical distribution
to be independent of the solar zenith angle, i.e., n = n(Ψref),
(c) similar to (b), but running the GOMETRAN model separately for each solar zenith
angle using an appropriate (local) NO2 vertical distribution, i.e., n = n(Ψloc), and
(d) similar to (c), but using the NO2 vertical distribution at 90

◦ for local solar zenith angles
larger than 90◦.

Thus, neglecting the dependence of NO2 vertical distribution on the solar zenith angle
leads to an overestimation of NO2 slant column by 10 to 25 %. Better accuracy can be
achieved with a pseudo-spherical radiative transfer model calculating the slant columns
using vertical distribution at local solar zenith angle, i.e., at the instrument position.
However, as seen from Fig. 8.22, this approach is inappropriate for solar zenith angles
large than 91◦. For these solar zenith angles a vertical distribution at 90◦ should be used
instead of local vertical distribution. Using this approach, NO2 slant columns can be
calculated with an accuracy better than 5% for solar zenith angles up to 92.5◦ employing
a pseudo-spherical model.

Figure 8.23 shows NO2 slant columns calculated using the CDIPI and the single scatter-
ing models for pure stratospheric NO2 and including tropospheric NO2. The tropospheric
part of NO2 vertical profile was selected according to the MPI atmospheric model [Brühl
and Crutzen, 1993] for an appropriate season and latitude (March, 75◦N) and supposed to
be independent of the local solar zenith angle. The relative differences between the slant
columns calculated using the CDIPI and the single scattering models, i.e., (SS/CDIPI -
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Figure 8.25: Measured and simulated
(CDIPI) NO2 slant columns at sunrise and
sunset.
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1)*100%, are shown in Fig. 8.24. If tropospheric NO2 is included, the slant columns differ
even at small solar zenith angles. Thus, accuracy of the slant columns calculated using a
single scattering model is strongly dependent on the selected reference spectrum, whereas
the differences between slant columns for pure stratospheric NO2 are independent thereof.

Figure 8.25 shows measured and simulated (CDIPI) NO2 slant columns at sunrise and
sunset. The measured and simulated slant columns are in good agreement for all solar
zenith angles at sunset and for solar zenith angles up to 91.5◦ at sunrise. Differences
between measured and simulated slant columns for solar zenith angles larger than 91.5◦ at
sunrise are believed to be caused by the BRAPHO model.

8.3.3 Vertical columns

A commonly used approach to obtain vertical columns of atmospheric trace gases is given
by

Sexp(Ψ ) = A(Ψ )V (Ψ )− A(Ψref)V (Ψref) ≈ [A(Ψ )− A(Ψref)] V̂ (Ψ ) , (8.7)

where A(Ψ ) and V (Ψ ) are the air mass factor and the vertical column at solar zenith
angle Ψ , respectively, and V̂ (Ψ ) is some effective vertical column. For a stationary vertical
distribution, V̂ (Ψ ) = V (Ψ ) = V (Ψref) and the second equality in Eq. (8.7) is exact.

The air mass factors are calculated as follows:

A(Ψ ) =
1

τ(Ψ )
ln

[
I−(Ψ )
I+(Ψ )

]
, (8.8)

where τ(Ψ ) is the local vertical optical depth of NO2 at solar zenith angle Ψ . All quantities
on the right hand side of Eq. (8.8) have to be calculated using an appropriate radiative
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transfer model. Thus, the effective vertical column is calculated as follows:

V̂ (Ψ ) =
Sexp(Ψ )

A(Ψ )− A(Ψref)
. (8.9)

Figure 8.26 shows true vertical columns and vertical columns obtained applying different
approaches to calculate air mass factors. A commonly used approach is to calculate air
mass factors according to Eq. (8.8) and then vertical columns as given by Eq. (8.9). In
this case, resulting vertical columns have similar dependence on the solar zenith angle as
the true local vertical columns but differ by up to 15% from true values (dashed line with
squares in Fig. 8.26). Another way is to use the following formula for the air mass factor

Ã(Ψ ) =
1

τ(Ψref)
ln

[
I−(Ψ )
I+(Ψ )

]
(8.10)

instead of Eq. (8.8). This means that the noon vertical optical depth instead of the local
one is used at all solar zenith angles. This approach leads to an almost constant vertical
column (dash-dotted line with asterisks in Fig. 8.26) which is approximately equal to the
vertical column at noon (i.e., V (Ψref) in Eq. (8.7)). Thus, the vertical column calculated

according to Eqns. (8.8) and (8.9), V̂ (Ψ ), can be corrected requiring the exact equality in
Eq. (8.7) and assuming V (Ψref) ≈ Ṽ (Ψ ), i.e.,

V (Ψ ) =
A(Ψ )−A(Ψref)

A(Ψ )
V̂ (Ψ ) +

A(Ψref)

A(Ψ )
Ṽ (Ψ ) , (8.11)

where Ṽ (Ψ ) is calculated using Eq. (8.9) with Ã(Ψ ) instead of A(Ψ ). As shown in Fig. 8.26
(dotted line with triangles) using this approach the local vertical distribution can be
retrieved with an accuracy of 1-2%.





Conclusions

Solar occultation measurements

A radiative transfer model intended to simulate SCIAMACHY occultation measurements
has been developed. The model can be used to simulate solar radiation transmitted through
a spherical shell atmosphere. Absorption by all atmospheric trace gases having their ab-
sorption features in the spectral region covered by SCIAMACHY (240 - 2380 nm) can be
taken into account. The absorption by all atmospheric trace gases in near IR spectral
region as well as absorption by H2O and O2 in visible spectral region is treated employing
“line-by-line” calculations.

The selected approach allows the weighting functions to be derived analytically. Typical
dependences of the weighting functions for stratospheric and tropospheric absorbers on
wavelength and tangent height are analyzed.

The forward model has been coupled with an retrieval algorithm, which involves either
the optimal estimation method or the information operator approach. The occultation
measurements performed at various tangent heights in various spectral windows can be
interpreted together to prevent loss of the information.

The theoretical precisions of vertical profile retrieval of several atmospheric trace gases
were investigated. They were found to be strongly dependent on the selected trace gas
abundance, on the strength of its absorption features in the selected spectral region, and
on the signal to noise ratio in the measured spectra.

The developed software package enables the retrieval of high-precision ozone vertical
profiles in the upper troposphere and the stratosphere, as well as vertical profiles of some
other stratospheric species, such as NO2, BrO, ClO, and OClO, from SCIAMACHY occul-
tation measurements. Due to the high sensitivity of retrieval to the vertical distribution
of the atmospheric trace gases in the upper troposphere and the lower stratosphere, addi-
tional information on the transport of the tropospheric greenhouse gases (CH4, H2O, CO,
etc.) to the stratosphere will be obtained from the measurements.

Modeling of the scattered solar radiation

Most important methods to perform radiative transfer calculations were reviewed. Their
suitability and their disadvantages for a spherical planetary atmosphere were discussed.
Most available radiative transfer models were found to be unsuitable to perform radiative
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transfer calculations in a spherical planetary atmosphere. No existing radiative transfer
model was found to be computationally efficient and free of disadvantages.

A novel radiative transfer model (CDIPI), suitable to calculate the radiation field in
a spherical planetary atmosphere, has been developed. The new approach involves the
Picard iterative approximation to solve the radiative transfer equation in its integral form.
A radiation field calculated by solving the integro-differential radiative transfer equation
in a pseudo-spherical atmosphere is used as an initial guess for the iterative scheme.

The convergence rate of the CDIPI solution was analyzed. Performing only one global
iteration was found sufficient to determine the radiation field with an accuracy exact enough
for most applications.

The newly developed radiative transfer model was compared with a Monte–Carlo model
(Siro) and found to perform radiative transfer calculations accurately enough for viewing
geometries which are relevant for the exploration of the Earth’s atmosphere by means of
satellite and ground-based instruments. The relative difference between the radiance at
the top of the atmosphere calculated by CDIPI and Siro is typically less than 1%.

An approximate model (CDI) has been derived from the fully spherical CDIPI model
allowing the computation time to be reduced by up to 100 times. The CDI radiative
transfer model was compared with a Gauss-Seidel spherical radiative transfer model in an
off-nadir viewing geometry. Both models were found to agree within 2%. A suitability of
a pseudo-spherical model for the simulation of off-nadir measurements was investigated.
The pseudo-spherical model was found to differ from the CDI model up to 10% at large
solar zenith and viewing angles.

The accuracy of the CDI approach for limb viewing geometry was estimated and found
to be better than 2% for tangent heights up to 30 km for all viewing geometries and
atmospheric scenarios considered in this study. The deviation from the spherical solution
increases with the tangent height depending on viewing geometry and atmospheric scenario
and may be as large as 8% at a tangent height of 60 km. The CDI radiative transfer model
can also be used as a forward model in the retrieval algorithm which uses the differential
approach to obtain vertical profiles of ozone and NO2.

The newly developed radiative transfer model was applied to calculate air mass factors
for off-axis and zenith-sky measurements. Several scenarios were discussed when a fully
spherical radiative transfer model is required to interprete ground-based measurements
accurately enough.
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Appendix A

Coordinate transformations

Let
{f} = {f1, f2, f3} (A.1)

be a basis in a three-dimensional Euclidean space, and let

{f̃} = {f̃1, f̃2, f̃3} (A.2)

be another basis in the same space. The vectors of the coordinate system {f̃} are uniquely
determined by their expansions in terms of the vectors of the original basis:

f̃i =
3∑

j=1

pij fj . (A.3)

The coefficients pij are elements of matrix P called the matrix of the transformation from
basis {f} to basis {f̃}. Analogously, the transformation from basis {f̃} to basis {f} is given
by

fi =
3∑

j=1

qij f̃j , (A.4)

where matrix Q is the inverse of the matrix P.
In order to find the transformation of the components of an arbitrary vector, e, due to

the basis transformation, the following relation can be used:

e =

3∑
i=1

ξi fi =

3∑
i=1

ξ̃i f̃i , (A.5)

where ξi are the components of vector e with respect to basis {f} and ξ̃i are its components
with respect to basis {f̃}. Substituting Eq. (A.4) in Eq. (A.5) yields:

3∑
i=1

ξ̃i f̃i =

3∑
i=1

ξi

3∑
j=1

qij f̃j =

3∑
j=1

f̃j

3∑
i=1

ξi qij . (A.6)
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Thus, the following relation for the components of vector e with respect to basis {f̃} in
terms of its components with respect to basis {f} can be obtained:

ξ̃1ξ̃2
ξ̃3


 = (

P−1
)T ·


ξ1ξ2
ξ3


 , (A.7)

i.e., transformation of vector components are defined by a matrix which is the transpose
of the inverse of matrix P. Analogously:

ξ1ξ2
ξ3


 = PT ·


ξ̃1ξ̃2
ξ̃3


 . (A.8)

In order to find the relation between the direction cosines of an arbitrary vector in the
spatial and the directional coordinate systems, as depicted in Fig. 3.2, the basis transfor-
mation due to the rotation of the global coordinate system through an angle Φ about the
Z-axis and then through an angle Ψ about the Y-axis has to be found. For the selected
coordinate systems, the basis transformation, as given by Eq. (A.3), can be rewritten as
follows:

x = xXX+ xYY + xZZ , (A.9)

y = xXX+ yYY + yZZ , (A.10)

z = xXX+ zYY + zZZ , (A.11)

where x, y, and z are the unit vectors defining the directions of the corresponding axes of
the local coordinate system and X, Y, and Z are the unit vectors defining the directions
of the corresponding axes of the global coordinate system. As can be easily derived from
Fig. 3.2, the direction cosines of the x-, y-, and z-axes of the local coordinate system with
respect to the global coordinate system are given by
xX

xY

xZ


 =


cosΨ cosΦcosΨ sinΦ

− sinΨ


 ,


yXyY
yZ


 =


− sinΦcosΦ

0


 , and


zXzY
zZ


 =


sinΨ cosΦsinΨ sinΦ

cosΨ


 , (A.12)

respectively. Combining Eqns. (A.9)–(A.11) and Eq. (A.12), the following relation for the
matrix of the transformation is obtained:

P ≡

xX xY xZ

yX yY yZ
zX zY zZ


 =


cosΨ cosΦ cosΨ sinΦ − sinΨ

− sinΦ cosΦ 0
sinΨ cosΦ sinΨ sinΦ cosΨ


 . (A.13)

The inverse of the transformation matrix is given by

P−1 =


cosΨ cosΦ − sinΦ sinΨ cosΦ
cosΨ sinΦ cosΦ sinΨ sinΦ
− sinΨ 0 cosΨ


 . (A.14)
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Thus, substituting Eq. (A.14) into Eq. (A.7) and using the notations of Section 3.3, the
following formula for the transformation of the direction cosines can be obtained:

ηξ
ζ


 ≡


ξ̃1ξ̃2
ξ̃3


 =


cosΨ cosΦ cosΨ sinΦ − sinΨ

− sinΦ cosΦ 0
sinΨ cosΦ sinΨ sinΦ cosΨ


 ·


η0

ξ0

ζ0


 . (A.15)

In the same manner, combining Eqns. (A.13) and (A.8), for the inverse transformation is
obtained: 

η0

ξ0

ζ0


 ≡


ξ1ξ2
ξ3


 =


cosΨ cosΦ − sinΦ sinΨ cosΦ
cosΨ sinΦ cosΦ sinΨ sinΦ
− sinΨ 0 cosΨ


 ·


ηξ
ζ


 . (A.16)
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Calculation of angle variables along
the line-of-sight in a spherical
atmosphere

Any unit vector es can be represented by its three projections in any given coordinate
system. For any point r1 in the atmosphere one can write

es ≡

η1ξ1
ζ1


 =


sinΘ1 cosϕ1

sinΘ1 sinϕ1

cosΘ1


 , (B.1)

where η1, ξ1, and ζ1 are the direction cosines of unit vector es in the local coordinate system
at point r1 (see Fig. 7.1). In order to obtain global direction cosines of es the local ones
have to be rotated: 

η0ξ0
ζ0


 = A1 ·


η1ξ1
ζ1


 , (B.2)

where, according to Appendix A, rotation matrix A1 is given by

A1 =


cosΨ1 cosΦ1 − sinΦ1 sinΨ1 cosΦ1

cosΨ1 sinΦ1 cosΦ1 sinΨ1 sinΦ1

− sinΨ1 0 cosΨ1


 . (B.3)

Performing the multiplication in the right hand side of Eq. (B.2), the following formulas
for global direction cosines can be obtained :

η0 = cosΨ1 cosΦ1 sinΘ1 cosϕ1 − sinΦ1 sinΘ1 sinϕ1 + sinΨ1 cosΦ1 cosΘ1 (B.4)

ξ0 = cosΨ1 sinΦ1 sinΘ1 cosϕ1 + cosΦ1 sinΘ1 sinϕ1 + sinΨ1 sinΦ1 cosΘ1 (B.5)

ζ0 = − sinΨ1 sinΘ1 cosϕ1 + cosΨ1 cosΘ1 (B.6)
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Since the global direction cosines remain unchanged along the line-of-sight, the local
direction cosines at point r2 can be found as follows:

η2ξ2
ζ2


 = A−1

2 ·

η0ξ0
ζ0


 , (B.7)

where A−1
2 is given by

A−1
2 =


cosΨ2 cosΦ2 cosΨ2 sinΦ2 − sinΨ2

− sinΦ2 cosΦ2 0
sinΨ2 cosΦ2 sinΨ2 sinΦ2 cosΨ2


 . (B.8)

The cosines of the solar zenith and the global azimuth angle (i.e., cosΨ2 and cosΦ2) at
point r2 can be found solving the following vector equation:

r2 = r1 − s es , (B.9)

where s = s es is the vector connecting points r2 and r1. Since vector s defines the direction
of the radiance, it originates in r2 and points to r1. The Z-projection of Eq. (B.9) yields:

r2 cosΨ2 = r1 cosΨ1 − s ζ0 , (B.10)

and hence:
cosΨ2 =

r1
r2
cosΨ1 − s

r2
ζ0 . (B.11)

The X-projection of Eq. (B.9) yields:

r2 sinΨ2 cosΦ2 = r1 sinΨ1 cosΦ1 − s η0 , (B.12)

and hence:

cosΦ2 =
r1 sinΨ1

r2 sinΨ2

cosΦ1 − s

r2 sinΨ2

η0 (B.13)

and the Y-projection of Eq. (B.9) yields:

r2 sinΨ2 sinΦ2 = r1 sinΨ1 sinΦ1 − s ξ0 , (B.14)

and hence:

sinΦ2 =
r1 sinΨ1

r2 sinΨ2

sinΦ1 − s

r2 sinΨ2

ξ0 . (B.15)

Performing the multiplication in the right hand side of Eq. (B.7) and taking into account
Eq. (B.1), the following formulas for angle variables Θ2 and ϕ2 at an arbitrary point r2 on
the line-of-sight can be obtained:

cosΘ2 = sinΨ2 cosΦ2 η0 + sinΨ2 sinΦ2 ξ0 + cosΨ2 ζ0 , (B.16)

cosϕ2 =
1

sinΘ2
(cosΨ2 cosΦ2 η0 + cosΨ2 sinΦ2 ξ0 − sinΨ2 η0) . (B.17)
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Substitution of Eqns. (B.4), (B.5), (B.6), (B.13), and (B.15) in Eqns. (B.16) and (B.17),
and rewriting Eqns. (B.11) and (B.13) enables the following formulas for angle variables
Ψ2, Φ2, Θ2, and ϕ2 at an arbitrary point r2 on the line-of-sight to be obtained:

cosΨ2 =
r1 cosΨ1 − s ζ0

r2
, (B.18)

cosΦ2 =
r1 sinΨ1 cosΦ1 − s η0

r2 sinΨ2
, (B.19)

cosΘ2 =
r1 cosΘ1 − s

r2
, (B.20)

cosϕ2 =
cos Ψ̃2 cosΘ2 − ζ0
sinΨ2 sinΘ2

. (B.21)
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