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Chapter 1

Introduction

In 2003, the geophysicist Vladimir Keilis-Borok, director of the International Institute of
Earthquake Prediction Theory and Mathematical Geophysics in Moscow issued an alarm
for an upcoming earthquake of magnitude 6.4 or greater within a 12.440 square miles
area of southern California that includes portions of the eastern Mojave Desert, Coachella
Valley, Imperial Valley (San Bernardino, Riverside and Imperial Counties) and eastern
San Diego County, during a time interval of nine months (January 5 - September 5, 2004).
This prediction was based on previous observations of microearthquake patterns forming
chains. Keilis-Borok and co-workers claimed to have predicted two earthquakes correctly
by means of such chains – one in Hokkaido, Japan in September 2003 and the second in
San Simeon, California in December 2003. However, the deadline of the recent forecast
passed and no earthquake fitting the alarm occurred.

Apart from the social and the economic dimension, this failed prediction raises also basic
scientific questions in earth sciences: Is a prediction of earthquakes solely based on the
emergence of seismicity patterns reliable? In other words, is there a “magic parameter”,
which becomes anomalous prior to a large earthquake? Is it necessary that such a parame-
ter is based on a physical model? Are pure observational methods without specific physical
understanding, like the pattern recognition approach of Keilis-Borok, also sufficient? Tak-
ing into account that earthquakes are monitored continuously only since about 100 years
and the best available data sets (“earthquake catalogs”) cover only a few decades, it seems
questionable to forecast earthquakes solely on the basis of observed seismicity patterns,
because large earthquakes have recurrence periods of decades to centuries; consequently,
data sets for a certain region include not more than ten large events making a reliable
statistical testing questionable.

The relation between frequency and magnitude of earthquakes in a large seismically active
region is given by the empirical Gutenberg-Richter law [Gutenberg and Richter, 1956]

log N = bM − a, (1.1)

where N is the frequency of earthquakes with magnitude equal to or greater than M ; a is
a measure of the overall seismicity level in a region and the slope b is the Richter b value,
which determines the relation between large and small earthquakes.

A key problem of the present work is the evaluation of the relevance of observed seismicity
patterns. First, it is important to decide whether an observed pattern has a physical
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2 CHAPTER 1. INTRODUCTION

origin or is an artifact, arising for example from inhomogeneous reporting or from man-
made seismicity, like quarry blasts or explosions. Second, the non-artifical events have
to be analyzed with respect to their underlying mechanisms. This leads to an inverse
problem with a non-unique solution, which can be illustrated for the most pronounced
observed seismicity pattern, the occurrence of aftershocks. It is empirically known that the
earthquake rate Ṅ after a large event at time tM follows the modified Omori law [Omori,

1894; Utsu et al., 1995]

Ṅ =
c1

(c2 + t − tM )p
, (1.2)

where t is the time, c1 and c2 are constants, and the Omori exponent p is close to unity.
In particular, aftershocks are an almost universal phenomenon; that is, they are observed
nearly after each mainshock. The underlying mechanisms leading to aftershocks are, how-
ever, unknown. Various physical models have been designed in order to explain aftershock
occurrence following Eq. (1.2). These models assume physical mechanisms including vis-
coelasticity [Hainzl et al., 1999], pore fluid flow [Nur and Booker, 1972], damage
rheology [Ben-Zion and Lyakhovsky, 2003; Shcherbakov and Turcotte, 2004],
and special friction laws [Dieterich, 1994]. The question, which mechanism is realistic
in a certain fault zone, remains open. Detailed comparisons of observed and modeled
seismicity with respect to the aftershock rate, the duration of aftershock sequences, the
dependence on the mainshock size, and other features are necessary to address this prob-
lem. Additionally, the results from lab experiments on rupture dynamics, and satellite
observations in fault zones, provide important constraints for the evaluation of such mod-
els.

Apart from aftershock activity, other seismicity patterns are well-known from observations,
e.g. foreshocks [Jones and Molnar, 1979], seismic quiescence [Wyss and Haber-

mann, 1988; Hainzl et al., 2000b; Zöller et al., 2002], and accelerating seismic moment
release [Bufe and Varnes, 1993; Jaumé and Sykes, 1999]. These patterns have been
documented in several cases before large earthquakes. They occur, however, less frequent
than aftershocks. For example, foreshocks are known to preceed only 20-30% of large
earthquakes [Wyss, 1997]. Therefore, their predictive power is questionable. Moreover,
it is not clear whether or not these findings can be attributed to physical processes or
to random fluctuations in the highly noisy earthquake catalogs. This problem can be
addressed by using conceptual fault models which allow to simulate long earthquake se-
quences over at least 1000 years. If the models are to some extent physical, the occurrence
of seismicity patterns can be studied with reasonable statistics. The main ingredients of
such models are the geometry of a fault region, empirically known friction laws, quenched
spatial heterogeneities, and stress and displacement functions in accordance to dislocation
theory [Chinnery, 1963; Okada, 1992] . In order to allow for detailed studies of the
relations between the imposed mechanisms and the observed seismicity functions, it is im-
portant that the number of adjustable parameters is limited. It is emphasized that these
models do not aim to reproduce an observed earthquake catalog in detail. Instead, the
main goal is to address questions like: Why is the Parkfield segment of the San Andreas
fault characterized by relatively regular occurrence of earthquakes with magnitude M ≈ 6,
while on the San Jacinto fault in California the properties of earthquake occurrence are
more irregular?
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In nonlinear dynamics, conceptual models have a long tradition. The Lorenz equa-
tions [Lorenz, 1963], which are a set of three coupled ordinary differential equations, have
been proposed to describe convection in a fluid layer heated from below and serve therefore
as a model for mantle convection. In a certain range of parameters, they are an example
for deterministic chaos [Sparrow, 1982]. In oceanography, low-dimensional box models
have been used to simulate the thermohaline circulation and their stability [Stommel,
1961; Rahmstorf, 2001]. These models include critical parameter ranges characterized
by bifurcations. Theoretical ecology and population dynamics are also a research area,
where models based on a small number of equations provide insights in the evolution of
the population of a species [Blasius et al., 1999].

Conceptual models for seismicity are mainly based on one or more solid blocks, which
are driven by a plate over a rough surface. The plate and the blocks are connected with
springs. This model can produce stick-slip motion of the blocks, where a slip event is
considered to simulate an earthquake. The model setup allows to govern a wide range
of complexity, beginning with a single-block model which produces periodic occurrence of
earthquakes of uniform size, ending with a network of connected blocks leading to complex
sequences of earthquakes with variable size. The latter model has been proposed by Bur-

ridge and Knopoff [1967]. In order to reduce the computational effort, i.e. solving
coupled differential equations, the use of cellular automata became popular [Olami et al.,
1992; Lomnitz-Adler, 1999]. Mathematically, these models include maps instead of dif-
ferential equations; physically, this corresponds to instantaneously occurring slip events,
neglecting inertia effects. The main ingredients of such models are (1) external driving
(plate motion), and (2) sudden change of system parameters (stress), when a critical value
(material strength) is reached, followed by an avalanche of block slips (stress drop and
co-seismic stress transfer during an earthquake). While the first process lasts for years
to several decades, the second occurs on a time scale of a few seconds. The simplest
model including these feature has been formulated by Reid [1910] and is known as Reid’s
elastic rebound theory; in terms of spring-block models, this corresponds to a single-block
model with constant plate velocity. Accounting for spatial heterogeneity and fault seg-
mentation, many interacting blocks, or fault segments, have to be considered. This leads
to a spatiotemporal stress field instead of a single stress value. In general, the mate-
rial strength will also become space-dependent. Such a model framework can be treated
with the methodology of statistical physics similar to the Ising model or percolation mod-
els [Main et al., 2004]. In this context, large earthquakes are associated with second-order
phase transitions [Sornette, 2004]. The view of earthquakes as phase transitions in a
system with many degrees of freedom and an underlying critical point, is hereinafter re-
ferred to as the “critical point concept”. It is interesting to note that the period before
such a phase transition is characterized by a preparation process, or a “critical state”, e.g.
in terms of growing spatial correlation length following a power law [Binney et al., 1993].
However, depending on the parameters of a model, different scenarios are conceivable: the
system trajectory can enter the critical state and the critical point frequently (“supercrit-
ical”) or it becomes never critical (“subcritical”). A case of special interest is the class
of models showing self-organized criticality (SOC) [Bak, 1996], which have their origin
in a simple cellular automaton model for a sandpile [Bak and Tang, 1996]. Here, the
system drives itself permanently in the vicinity of the critical point with almost scale-free
characteristics. Consequently, each small event can grow into a large earthquake with
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some probability.

A major part of the present work deals with the detection and the characterization of
critical states of seismicity using a model of a segmented fault in a three-dimensional elas-
tic half-space. The assumption of a critical point underlying the dynamics of seismicity
is discussed with respect to applicability and limits for different realizations of the fault
model. Although the model framework is conceptual, various realistic or physically moti-
vated features are included. On the one hand, the current state of the model simulates all
important seismicity patterns, which are known from observations. On the other hand,
the model is simple enough to make simulations of thousands of years possible. This allows
to study relations between patterns and underlying mechanisms as well as indicators for
critical states in detail with a reasonable statistics. Synthetic seismicity has the advan-
tage of providing access to hidden quantities, e.g. the stress field; moreover, data sets of
arbitrary high quality can be generated. The combination of both, synthetic and observed
seismicity, provides important insights in the understanding of seismicity patterns and
their underlying mechanisms from various points of view.

Statistical features like the frequency-size distribution can be calculated with high pre-
cision. Despite the scaling behavior (Eq. (1.1)) for small and intermediate earthquakes,
which is observed for all sets of model parameters, clear deviations become visible for
large magnitudes. Such deviations are known from real catalogs, but their statistical sig-
nificance is not clear in all cases. The model simulations suggest that deviations from
scaling for strong earthquakes can be attributed to physical properties. One important
property is the spatial disorder of brittle parameters of the fault. The presence of strong
heterogeneities suppresses system-wide events with some probability, whereas such events
can evolve more easily on smooth faults. The degree of quenched (time-independent)
spatial heterogeneity turns out to be a key parameter for statistical and dynamical prop-
erties of seismicity. This includes the temporal regularity of mainshock occurrence, various
aspects of stress and displacement field, and a spontaneous mode-switching between dif-
ferent dynamical regimes without changing parameters. It is interesting that the degree
of heterogeneity can act as a tuning parameter that allows for a continuous change of the
model dynamics between the end-member cases of supercritical and subcritical behavior.
Such a dependence, which is observed also for other parameters, can be visualized in phase
diagrams similar to the phase diagram for the different aggregate states of water. For in-
creasing complexity of a model, the number of axis of the phase diagram, representing the
relevant model parameters, will increase. The above mentioned question of distinguishing
different faults like the Parkfield segment and the San Jacinto fault can be rephrased to
the problem of assigning the faults to different points in such a diagram. An important
step in this direction is the physical modeling of observed seismicity patterns like after-
shocks (Eq. (1.2)), foreshocks, and the acceleration of seismic energy release before large
earthquakes. The latter phenomenon which is known to occur over large regions including
more than one fault, can be interpreted in terms of the approach towards a critical point.
This view is supported by an observational study of the growth of the spatial correlation
length which is a different aspect of the same underlying physics.

The present work is organized as follows: An overview of commonly used fault models is
given in Chapter 2. It is also discussed, how these models are taken into account for the
design of a more realistic fault model. In Chapter 3, the setup of the new fault model is
described, with respect to the mathematical framework, the imposed physical mechanisms,
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possible extensions, and the limits. The results of the simulations are presented and
discussed in Chapter 4. The last part of this chapter is devoted to a critical-point analysis
of the Californian earthquake catalog. The Appendices A to N include the publications of
the author, which are related to the subject of this thesis. In order to avoid a redundant
presentation, many results in the main body (Chapter 2 to 4) are given as links to Figures
and Tables in the Appendices. Finally, it is emphasized that the Appendices contain more
results than the main body, which deals predominantly with the critical point concepts
for earthquakes.



Chapter 2

Conceptual models for seismicity

In this chapter, the most important conceptual fault models are introduced and discussed.

2.1 Reid’s elastic rebound theory (1910): A model for the

Parkfield segment?

The Parkfield segment of the San Andreas fault in California is one of the best monitored
seismic regions in the world. The reason is that over a period of about hundred years
beginning in 1857, earthquakes with magnitude M ≈ 6 occurred almost periodically with
a period of about 22 years. An exception is the 1934 event, which followed 12 years after
the last mainshock. The last event fitting this rule was observed in 1966 leading to a
forecast for a subsequent earthquake in 1988. In order to detect possible precursors to this
event, the so-called Parkfield experiment, including ground motion instruments, strain-
meters, and GPS stations, has been installed. However, the next M6 earthquake occurred
on September 28, 2004 without any significant precursory phenomenon [Langbein, et
al., 2005]. Despite this failure, Parkfield is still a synonym for a region with an overall
regular occurrence of large earthquakes following the idea of Reid [1910]. In this view,
earthquakes occur after a stress accumulation resulting from tectonic plate motion over
some decades, followed by a stress drop in a few seconds. If geological and geophysical
parameters remain constant and the entire fault segment is assumed to slip during an
earthquake, this model predicts a periodic occurrence of earthquakes.

Quantitatively, Reid’s model can be described by a block with mass m, which is driven

v t
K

x
m

Figure 2.1: Sketch of a one-dimensional single-block model corresponding to Reid’s elastic
rebound theory.
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2.1. REID’S ELASTIC REBOUND THEORY 7

with constant velocity v over a rough surface as shown in Fig. 2.1. If a velocity weakening
friction law is imposed, the position of the block x(t) will evolve periodically in time and
perform stick-slip motion, where slip events are interpreted as earthquakes. Mathemati-
cally, x(t) is a solution of Newton’s equation

mẍ = K(vt − x) − f(ẋ), (2.1)

where K is the spring constant and f(ẋ) is the frictional force, which depends on the
velocity ẋ of the block. Here, we assume to be in the regime of Hooke’s law, where the
stress τ in the spring is proportional to the strain ε = ∆l/l of the spring; l + ∆l is the
current length of the spring, and l is the equilibrium length. The actual position x is
called the displacement of the block. The main features of this model are summarized in
Fig. 2.2. The stress function is periodic, the displacement is a staircase function, and the
slip events (earthquakes) occur also periodically. The sequence of M6 earthquakes on the
Parkfield segment is shown in Fig. 2.3.

m
ag

ni
tu

de
st

re
ss

di
sp

la
ce

m
en

t

(a)

(c)

(b)

time

material strength

Figure 2.2: Summary of main features of the single-block model (Fig. 2.1): (a) magnitude,
(b) stress, and (c) displacement as a function of time.

 1860  1880  1900  1920  1940  1960  1980  2000

time(years)

Moderate earthquakes on the Parkfield segment 

Figure 2.3: Sequence of moderate earthquakes (M ≈ 6) on the Parkfield segment of the
San Andreas fault; the vertical axis has no meaning.
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(a)

(b)

k
K

Figure 2.4: Sketch of one-dimensional spring-block model with more than one block: (a)
“uncoupled” system, (b) “coupled” system.

Despite the high degree of simplicity, this model captures the main features of conceptual
fault models: (1) long-term stress increase resulting from tectonic plate motion, (2) sudden
stress drop when a critical material strength is reached. Earthquakes have uniform size,
because the fault segment (modeled by the block) moves always as a whole. As pointed
out before, this approach provides only a rough approximation to the Parkfield situation,
because the occurrence time of at least two earthquakes on this fault segment deviates
significantly from the 22-year period.

2.2 Spring-block systems and cellular automata

The most unrealistic feature of a single-block system is probably the assumption that a
large fault segment performs a uniform slip during an earthquake. Taking into account
the dimensions of such a segment, which are about some hundreds of square kilometers,
leads to the conclusion that this approach is clearly oversimplified. Adding more blocks to
the system as shown in Fig. 2.4(a) overcomes this problem to some degree, because fault
segmentation and earthquakes with variable size can be modeled. However, earthquake
sequences are obtained by a simple superposition of the sequences from the corresponding
single-block systems. Especially the largest earthquakes, generated by slip events of the
largest block, occur still periodically in time.

A more physical approach is given in Fig. 2.4(b), which shows a sketch of a coupled block
system. Apart from the coupling with the driver plate, the blocks are coupled with the
nearest neighbors by additional springs. If a block begins to slip, stress is redistributed
along the chain and a slip event in a second block may be triggered. In general, an
earthquake can be described by an avalanche of slipping blocks. The size of the earthquake
can be defined by the total slip of all blocks during the earthquake, starting from the first
block slip and ending when all blocks stick again on the surface. Even if all blocks have
uniform size, earthquakes with different size and a complex temporal behavior can occur.

This modification leads straightforward to the model of Burridge and Knopoff [1967],
which consists of a two-dimensional coupled network of blocks of uniform size simulating



2.2. SPRING-BLOCK SYSTEMS AND CELLULAR AUTOMATA 9

a two-dimensional planar fault. Assuming an N ×N network of blocks with positions xij

(i, j = 1, . . . , N), nearest neighbor interaction between the blocks and a velocity-dependent
frictional force f(ẋij), the model equations are obtained by generalizing Eq. (2.1) to an
N × N system of ordinary differential equations,

mẍij = k · (xi+1 j + xi−1 j + xi j+1 + xi j−1 − 4xij) − K · (vt − xij) − f(ẋij), (2.2)

where v is the velocity of the driver plate, K is the spring constant between each block
and the driver plate, and k is the spring constant of the springs between the blocks, as
indicated in Fig. 2.4 for the one-dimensional model. Due to the discontinuous and thus
nonlinear character of the frictional force f(ẋij), many dynamical regimes are observed.
In a two-block system, Huang and Turcotte [1990a; 1990b] found deterministic chaos
including bifurcations and period doubling. In a three-block realization, Gabrielov et al.
[1994] showed that, depending on the position in parameter space, the model can produce
either deterministic and periodic behavior.

The presence of many blocks is associated with a high complexity of the motion and
leads also to a considerable computational effort. It is, therefore, convenient to assume
instantaneously occurring slip events, which are separated by long-term tectonic loading
periods. In natural seismicity, the intra-event time scale has a duration of seconds, while
the waiting time between earthquakes in the same region lasts from days to many decades
depending on the magnitude. This approximation corresponds to the neglection of inertia
effects. In sum, the dynamic model characterized by Newton’s equations, reduces to a
kinematic model, which is described by maps and includes two basic mechanisms, occurring
in series:

1. linear increase of stress τ(xi, t) in each block (position denoted as yi) until a material
strength τs(xi) is reached (“tectonic loading”)

2. slip of a block and redistribution of stress to the nearest neighbors triggering even-
tually slip events of other blocks (“earthquake”).

The first process, which is also phrased as “interseismic”, has a finite duration and is
continuous, while the second process, denoted as “coseismic” occurs instantaneously. Be-
cause of the mixture of continuous and discrete processes, this type of model is also called
a continuous cellular automaton model.

Cellular automaton versions of spring-block models have the advantage that they can
be modified easily, e.g. with respect to spatial heterogeneities or interaction between
fault segments. Quenched spatial heterogeneities can be defined by space-dependent brit-
tle parameters, e.g. using different values of the material strength (see Fig. 2.2). The
nearest-neighbor interaction in the spring-block system can be replaced by the long-range
interaction kernel of an elastic half-space, which decays like 1/r3 as a function of the
distance r between two blocks. Furthermore, complex rheologies including viscoelastic
terms [Hainzl et al., 1999] can be implemented. Therefore this model class provides a
useful and flexible framework for more complex and physically motivated fault models.



Chapter 3

Modeling seismicity in real fault
regions

In the previous chapter, we introduced spring-block models and continuous cellular au-
tomata. In this context, it is important that these models are so-called “inherently dis-
crete” models; that is, they are not obtained by discretizing the differential equations from
a continuous model – the discreteness is an inherent feature of the imposed physics. In
this section, we focus on the question, how the framework of conceptual models can be
adjusted in order to simulate seismicity of a real fault region, e.g. the Parkfield segment
of the San Andreas fault in California.

3.1 Fault geometry and model framework

A first constraint for a specific model is to include the geometry of the fault segment. As
shown in Fig. 3.3, the region of Parkfield is characterized by a distribution of fault seg-
ments, which have in good approximation the same orientation. It is therefore reasonable
to map these segments in the model on a straight line from SE to NW. Using a similar
procedure in depth leads to a rectangular fault plane. The dimensions of the fault seg-
ment are chosen to be 70km in length and 17.5km in depth. As discussed in [Ben-Zion

and Rice, 1993], this geometry corresponds approximately to the San Andreas fault near
Parkfield. It is emphasized that the plate boundary is assumed to have infinite length,
but the brittle processes are calculated on the above defined segment of finite length. The
discretization of the plane is imposed by a computational grid with 128×32 computational
cells of uniform size, where stress and slip are calculated. The size of the computational
cells is not determined by observational findings, rather it depends on the magnitude range
under consideration and the computational effort; a single cell would correspond to a single
magnitude as in Fig. 2.2. A higher resolution of the grid increases the magnitude range,
because the magnitude is calculated from the slip of all cells during an earthquake. The
degree of complexity as a function of the model geometry is determined by the resolution
of the computational grid. A change of the physical dimensions leads only to a rescaling of
time and magnitude axis. Following [Ben-Zion and Rice, 1993], the material surround-
ing the fault is assumed to be a homogeneous elastic half space of infinite size, which is

10
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characterized by two quantities:

1. The elastic properties are expressed by the Lamé constants λ and µ, which connect
stress and strain in Hook’s law. For many rocks, these constants are almost equal;
therefore we use λ = µ, denoting µ as the rigidity. An elastic solid with this prop-
erty is called a Poisson solid. Because the strain is dimensionless, µ has the same
dimension as the stress. In the present study, we use µ = 30GPa.

2. The (static) Green’s function G(y1,y2) defines the static response of the half space
at a position y1 on a displacement at y2, which may arise from (coseismic) slip or
(aseismic) creep motion. Due to the discretization of the fault plane into computa-
tional cells, we use the Green’s function for static dislocations on rectangular fault
patches of width dx and height dz, which is given in [Chinnery, 1963] and [Okada,
1992]. For a model including a single vertical fault, the Green’s function is calculated
only on a plane: G(x1, z1;x2, z2), where x and z denote the coordinates along strike
and in depth (for a sketch see Fig. 3.1). Further reduction of the computational
effort is given by the symmetry along strike G(x1, z1;x2, z2) = G(|x1 − x2|, z1, z2).
Therefore, x2 = 0 can be used without loss of generality and the Green’s function
has the following form:

G(x1, z1; 0, z2) =
µ

2π
·

4
∑

i=1

σi ·
[

2

3
(εi

A + εi
B) +

1

2
εi
C

]

. (3.1)

The sign σi is defined by
σ1 = 1 σ2 = −1
σ3 = −1 σ4 = 1.

(3.2)

With the notation
t1 = dx/2 − x1 t2 = dx/2 − x1

t3 = −dx/2 − x1 t4 = −dx/2 − x1
(3.3)

q1 = z2 + dz/2 − z1 q2 = z2 − dz/2 − z1

q3 = z2 + dz/2 − z1 q4 = z2 − dz/2 − z1
(3.4)

p1 = z2 + dz/2 + z1 p2 = z2 − dz/2 + z1

p3 = z2 + dz/2 + z1 p4 = z2 − dz/2 + z1,
(3.5)

the three parts in Eq. (3.1) can be written as follows:

εi
A = ti ·

(

1√
t2i −q2

i ·(qi+
√

t2i −q2

i )
+ 1√

t2i −p2

i ·(pi+
√

t2i −p2

i )

)

,

εi
B = ti ·

(

1

4

√
t2i −p2

i +qi√
t2i −p2

i ·

(

pi+
√

t2i −p2

i

)2 − (p2

i −q2

i )·
(

2
√

t2i −p2

i +pi

)

2(t2i −p2

i )3/2
(

pi+
√

t2i −p2

i

)2

)

,

εi
C = qi√

t2i −q2

i ·

(√
t2i −q2

i +ti
) + pi√

t2i −p2

i ·

(√
t2i −p2

i +ti
) .

(3.6)

The main difference of this Green’s function to the nearest-neighbor interaction of
spring-block models is the infinite-range interaction following a decay according to
1/r3, where r is the distance between source cell and receiver point.

A sketch of the fault model framework is given in Fig. 3.2.
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Figure 3.1: Sketch to illustrate the terms in Eq. (3.1)-(3.6).
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Figure 3.2: Sketch of the fault model framework.

3.2 Plate motion

The motion of the tectonic plates, indicated in Fig. 3.3, is responsible for the build-up of
stress in the fault zone. Satellite-based measurements of surface displacements allow to
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Figure 3.3: (a) Distribution of faults in the Parkfield (California) region; (b) fault region
in the model.
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estimate the velocity of the plates. For the San Andreas fault, a value of vpl = 35mm/year
as a long-term average is widely accepted and is therefore adopted for the model [Savage

et al., 1999]. The displacement ∆u(i, j) of a cell with coordinate i along strike and j in
depth during a time period ∆t is simply ∆u(i, j) = vpl · ∆t. While the average slip rate
u̇ is independent of the location of the cell, the stress rate τ̇ depends on the space. The
assumption that the fault zone is embedded in a medium which performs constant creep,
suggests that cells at the boundaries of the grid are in general higher loaded than cells in
the center of the grid. The properties of the elastic medium are determined by the Green’s
function G(i, j; k, l), which defines the interaction of points (i, j) and (k, l) in the medium.
In particular, the stress response at a position (i, j) on a static change of the displacement
field ∆u(k, l) is given by

∆τ(i, j) = −
∑

(k,l)∈halfspace

G(i, j; k, l) · ∆u(k, l), (3.7)

where the minus sign stems from the fact that forward (right-lateral) slip of regions around
a locked fault segment is equivalent to back (left-lateral) slip of the locked fault segment.
Taking into account that

∑

(k,l)∈halfspace

G(i, j; k, l) = 0, (3.8)

Eq. (3.7) can be written as

τ(i, j; t) = −
∑

(k,l)∈halfspace

G(i, j; k, l) · [u(k, l; t) − vplt], (3.9)

where u(k, l; t) is the total displacement at position (k, l) and time t since the begin of the
simulation. Because the surrounding medium performs stable sliding, u(k, l; t) = vplt for
(k, l) /∈ grid, the slip deficit outside the fault region vanishes and it is sufficient to perform
the summation on the computational grid:

τ(i, j; t) =
∑

(k,l)∈grid

G(i, j; k, l) · [vplt − u(k, l; t)]. (3.10)

Equation (3.10) can be decomposed in a part for the tectonic loading and a residual part
for other processes, especially coseismic slip. The tectonic loading follows the formula

τload(i, j; t) = γ(i, j) · t (3.11)

with the space-dependent, but time-independent loading rate

γ(i, j) = vpl ·
∑

(k,l)∈grid

G(i, j; k, l). (3.12)

3.3 Friction and coseismic stress transfer; quasidynamic ap-

proach

It is widely accepted that most earthquakes are due to frictional processes on pre-existing
faults. The friction is therefore an important empirical ingredient of a fault model [Scholz,
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1998]. Numerous laboratory experiments have been carried out to characterize fric-
tional behavior of different materials (see e.g. [Byerlee, 1978]). An important finding
is that the friction defined as the ratio of shear stress τshear and normal stress τnormal,
µf = τshear/τnormal at the initiation of slip, is approximately constant for many materials;
the value of µf lies between 0.6 and 0.85. This observation, known as Byerlee’s law, is
related to the Coulomb failure criterion [Brace, 1960] for the Coulomb stress CS,

CS = τshear − µfτnormal. (3.13)

The Coulomb stress depends on a plane, where shear stress and normal stress are calcu-
lated. The Coulomb criterion for brittle failure is

CS ≥ 0, (3.14)

which is for CS = 0 Byerlee’s law.

The North-American plate and the Pacific plate move in opposite direction along the fault
plane performing strike-slip motion. The absence of normal and thrust faulting reduces the
problem to a one-dimensional motion: all parts of the fault move along the fault direction.
The stress state of the fault is fully determined by the shear stress τxy in the coordinates
given in Fig. 3.3(b). Slip is initiated, if τxy exceeds µfτyy. This quantity, which is called
the material strength or static strength τs, is constant in time, if µf is assumed to be
constant. Note that the normal stress on a strike-slip fault does not change [Aki and

Richards, 2002]. The shear stress τxy will be denoted simply by τ . In this notation, the
failure criterion Eq. (3.14) reduces to

τ ≥ τs (3.15)

in agreement with the conceptual models discussed in Chapter 2 (see, e.g., Fig 2.2(b)).

When a cell (k, l) fails, the stress drops in this cell to the arrest stress τa:

τ(k, l) → τa, (3.16)

with a constant value τa, which may become space-dependent later. In terms of slip, this
corresponds to a displacement

∆u(k, l) =
τ(k, l) − τa

G(k, l; k, l)
(3.17)

with the self-stiffness G(k, l; k, l) of cell (k, l).

The observational effect of dynamic weakening includes also a strength drop from the
static strength to a lower dynamic strength:

τs → τd. (3.18)

In particular, slipping material becomes weaker during rupture and recovers to the static
level at the end of the rupture. This behavior of the strength corresponds to the static-
kinetic friction law.
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The values τs, τd, and τa are connected by the dynamic overshoot coefficient D:

D =
τs − τa

τs − τd

. (3.19)

Madariaga [1976] proposed D = 1.25 motivated by elastodynamic model simulations,
which is used to constrain the choice of these values in our model.

The redistribution of the stress release ∆τ(k, l) = τ(k, l) − τa from cell (k, l) to a point
(i, j) at time t is

τ(i, j; t) = G(i, j; k, l) · δ
(

t − r(i, j; k, l)

vs

)

· τ(k, l) − τa

G(k, l; k, l)
, (3.20)

where δ(x, y) denotes the δ-function, which is 1 for x = y and 0 else; vs is the constant
shear-wave velocity, and r(i, j; k, l) is the distance between source cell (k, l) and receiver
position (i, j). That is, cells far from the slipping cell receive their stress portion later
than cells close to the slipping cell. The value of vs is assumed to be constant. Each
“stress transfer event” denotes an instantaneous transfer of a stress ∆τ from a source cell
(k, l) to a receiver cell (i, j) at time t. This time-dependent stress transfer is called the
quasidynamic approach in contrast to the quasistatic approach used in most of the similar
models.

The evolution of stress and strength in a cell, where an earthquake is initiated (hypocenter
cell), is shown in a sketch in Fig. 3.4. When the earthquake is initiated, the stress and
the strength drop. Due to coseismic stress transfer during the event, the cell may slip
several times, before the earthquake is terminated and instantaneous healing takes place
in all cells. The piecewise constant failure envelope (dashed line) indicates static-kinetic
friction. In a first step towards more realistic healing properties the instantaneous healing
at the end of the event can be replaced by log (t) healing starting immediately after the
strength drop (see also Section 3.6). This is shown in Fig. 1 of Appendix K.
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Figure 3.4: Pictorial evolution of stress (solid line) and strength (dashed line) of a hypocen-
ter cell in the quasidynamic approach.

We note that the Green’s function leads to an infinite interaction range. Using open
boundary conditions with respect to the computational grid, the stress release from a
slipping cell is not conserved on the grid, but on the (infinite) fault plane.



16 CHAPTER 3. MODELING SEISMICITY IN REAL FAULT REGIONS

3.4 Model algorithm

Equation (3.17) shows the correspondence of stress and slip in our model. The model can
be formulated either by maintaining stress or by maintaining slip. The algorithm is given
for both formulations.

Stress formulation:

1. Load the fault according to Eq. (3.11), until the first cell is critical; that is, the cell
fulfills the failure criterion Eq. (3.15). Initiate earthquake.

2. Reduce stress in critical cell to τa and strength to τd. Schedule stress transfer events
according to Eq. (3.20) on the intra-event timescale.

3. Perform stress transfer event with the smallest time. Check whether receiver cell is
critical.

(a) If no, remove current stress transfer event from the scheduler: (i) if last stress
transfer event, terminate earthquake and go to point 4; (ii) else go back to the
beginning of point 3.

(b) If yes, go to point 2.

4. Set strength to τs for all cells (instantaneous healing).

Slip formulation:

1. Load the fault according to Eq. (3.11), until the first cell is critical; that is, the cell
fulfills the failure criterion Eq. (3.15). Initiate earthquake.

2. Reduce stress in critical cell to τa and strength to τd; update coseismic slip u →
u+∆u in this cell with ∆u from Eq. (3.17). Schedule stress transfer events according
to Eq. (3.20) on the intra-event timescale.

3. Perform stress transfer event with the smallest time. Check whether receiver cell is
critical.

(a) If no, remove current stress transfer event from the scheduler: (i) if last stress
transfer event, terminate earthquake and go to point 4; (ii) else go back to the
beginning of point 3.

(b) If yes, go to point 2.

4. Set strength to τs for all cells (instantaneous healing).

5. Calculate stresses τ(i, j) of all cells after the earthquake from the initial stresses
τ(i, j; 0) and the new positions u(k, l; t):

τ(i, j; t) = τ(i, j; 0) +
∑

(k,l)∈grid

G(i, j; k, l) · [vplt − u(k, l; t)]. (3.21)
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3.5 Limits and parameters of the model

The model framework described in the previous sections includes the basic properties of
seismicity, namely tectonic loading and coseismic stress transfer. Although these mech-
anisms are also part of simple slider-block and cellular automaton models, the imple-
mentation described above provides a more physical approach, because it is derived from
dislocation theory and uses the same Green’s function for both processes. The coseismic
propagation of stress and slip overcomes the unrealistic assumption of an instantaneous
occurring earthquake and is therefore more physical than the quasistatic approach. The
quasidynamic model is, however, still too simple in order to govern the full complexity of
dynamic rupture simulations. Despite the pulse-like shape (arising from the δ function in
Eq. (3.20)) of the stress transfer events and the step-like slip functions, the computational
effort may become very large and result in a memory exhaustion due to the large number
of single slips. Therefore, it is useful to constrain single events to occur at discrete times.
The resolution of the discretization can be tuned between a single time value correspond-
ing to the quasistatic model and a large number of time bins close to the continuous case.
This number determines also the required memory for a simulation.

An advantage of the model is the limited number of parameters. Keeping physically
chosen values fixed, e.g. the plate velocity vpl, the rigidity µ, and the dynamic overshoot
coefficient D, the brittle parameters τs, τd, and τa have to be determined. To produce a
certain degree of complex dynamics, the values should be chosen disordered depending on
space, reflecting quenched spatial heterogeneity.

3.6 Model extensions

The features described in Section 3.1 to 3.4 provide a basic framework of a simulation
tool for the Parkfield region and other real fault zones. In order to make the computer
code as flexible as possible, the ingredients have been implemented in a modular C++
class library. This includes mainly three hierarchy levels: the system, the fault, and the
computational cells. The system controls the global time and checks for criticality of the
faults (in the present state: only one fault), each fault checks for criticality of it’s cells. A
cell maintains stress, strength, and displacement. The mechanisms include a loading model
for the interseismic processes and an intra-event scheduler, which organizes the coseismic
stress and displacement changes. Both parts depend on the Green’s function, which is
a separate class. The modular design allows to reproduce other models, for instance,
cellular automaton models similar to [Olami et al., 1992], in a straightforward manner:
the Green’s function is replaced by a nearest-neighbor interaction kernel and the matrix
elements of loading rates in Eq. (3.12) become constant. On the other hand, additional
mechanisms can be included as additional classes without modifying the whole code. In
the following, we give a brief list of additional mechanisms, which have been implemented
or will be implemented in the future.

1. Boundary conditions: For the Parkfield segment, the boundary condition are known.
While the northern end is bounded by a creeping section, the fault zone south from
the Parkfield segment is locked and ruptured only during the M8 Fort Tejon earth-
quake in 1857. This event can be implemented by adding a slip portion instanta-
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neously on the fault in 1857. The fact that the segment is locked during the rest of
the time, reduces the stress increase on the computational grid between earthquakes
accordingly.

2. Aseismic creep and brittle-ductile transition: The presence of stable creep in fault
zones is known from satellite-based observations, e.g. [Lyons and Sandwell, 2003]
and from laboratory experiments [Marone et al., 1991]. Especially the increase of
temperature and pressure with depth leads to ductile behavior; that is, the stress
from the tectonic plate motion will predominantly be compensated by stable creep
instead of coseismic slip. In the present work, creep is implemented according to
the system of coupled differential equations for the creep velocities [Ben-Zion and

Rice, 1993]:
vcreep(i, j; t) = c(i, j) · τ 3(i, j; t), (3.22)

with τ(i, j; t) from Eq. (3.10) and time-independent creep rates c(i, j), which are
assumed to increase with depth. The slip rate in the interseismic periods becomes
time-dependent now:

3. Normal faulting and dip-slip behavior, buried faults: The generalization

u̇(i, j; t) = vpl − vcreep(i, j; t). (3.23)

to other fault mechanisms is straightforward; the equations for the Green’s function
are listed in [Okada, 1992]. These equations are also valid for buried faults.

4. Fault systems consisting of more than one fault: Using again the equations from [Okada,
1992] for the response of an arbitrary point in the 3D elastic half space on a static
dislocation of a source cell, this extension is also straightforward, but leads to a
high computational effort, e.g. in the case of two interacting faults consisting of N1,
respectively N2 cells, the Green’s function will be given by N 2

1 · N2
2 values.

5. Continuous healing: So far, the material strength is a piecewise constant function
with the unrealistic assumption of instantaneous healing when the earthquake stops.
However, laboratory experiments point to a more continuous healing, where the
strength increases according to log(t) on a time scale of months to years [Ruina,
1983; Scholz, 1998]. This process results in a coupling of interevent and the intra-
event time scale.

6. Other friction laws: The static-kinetic friction is a simplification of the more general
rate and state dependent friction law [Dieterich, 1994], which is an empirical con-
stitutive law that has been fit to observations. This law includes both, a dependence
on the velocity V (slip rate) and on the time-dependent state represented by a state
variable θ. The friction f as a function of V and θ is given by

f(V, θ) = f 0 + a ln

(

V

V0

)

+ b ln

(

V0θ

Dc

)

(3.24)

with material parameters a and b and a critical slip distance Dc. The value τ 0
f

denotes the friction at a reference velocity V0. The state variable θ evolves like

θ̇ = 1 − V θ

Dc

. (3.25)
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In the static case θ = Dc/V , this law reduces to

fstat(V ) = f0 + (a − b) ln

(

V

V0

)

(3.26)

The terms in Eq. (3.26) are illustrated in Fig. 3.5. The fast process corresponds to
the dynamic weakening in the static-kinetic friction law, the recovery of the friction
after the step-like decrease is the healing process mentioned in the previous point.
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Figure 3.5: Schematic description of the frictional response on a velocity step in the
presence of rate and state dependent friction.

Depending on the sign of a− b in Eq. (3.26), the frictional response may be velocity
strengthening (a − b ≥ 0) or velocity weakening (a − b < 0). The latter case is a
necessary condition for unstable behavior, while the first case terminates slip and
thus leads to a stabilization of the system. The bifurcation diagram including regions
of stability and unstable behavior is given in [Scholz, 2002]. Here we only mention
that static loading of a stick-slip system with rate and state dependent friction may
lead to an instability (earthquake) that is preceded by a period of accelerated sliding.
This nucleation period is of particular interest for earthquake prediction.

The full calculation of rate and state dependent friction in the model would be
complicated, because Eq. (3.24) is a differential equation which affects both time
scales, the inter-event time scale and the intra-event time scale [Hillers et al.,
2005]. So far, these time scales are separated.

7. Damage: In the present state of model development, earthquakes are assumed to
occur on pre-existing faults which do not change in time. However, experimental and
theoretical studies [Lockner et al., 1991; Lyakhovsky et al., 1997] indicate the
presence of damage in terms of an evolution of fault geometry and elastic properties.
Taking a physical damage rheology into account, would increase the complexity of
the model significantly. Therefore, an effective approach with a single damage state
variable as in [Lyakhovsky et al., 2005], provides a feasible way to include evolving
damage.

At the present state of model development, the mechanisms described in points 1-3 have
been included. Continuous healing on the intra-event time scale has also been taken into
account. Details and results are given in the appendices. The remaining mechanisms are
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related with a significant increase of the computational effort and are therefore left for
future studies.

3.7 Data types

The model produces two types of data, earthquake catalogs and histories of stress and dis-
placement. As demonstrated below, all parameters of the model have physical dimensions
and can therefore be compared directly with real data. This is in contrast to most of the
slider-block and cellular automaton models.

1. Earthquake catalogs include time, coordinates of the hypocenter, and the earthquake
size. The time of an earthquake is the time of the first slip; the hypocenter is
determined by the position of the corresponding cell along strike and depth. The
size of an event can be described by different measures: The rupture area A is the
total area, which slipped during an earthquake. The potency

P =

∫

grid
∆u(x, z)dxdz (3.27)

measures the total slip during the event and is related to the seismic moment m0

by the rigidity: m0 = µP . The (moment) magnitude M can be calculated from the
potency using

M = (2/3) log10 (P ) + 3.6, (3.28)

where P is given in cm · km2 [Ben-Zion, 1996].

2. Stress τ(x, z; t) and displacement u(x, z; t) as a function of space and time can be
monitored during the whole simulation. In particular, the spatiotemporal evolution
of stress and slip during an earthquake is accessible in the model. In contrast to
earthquake catalogs, these data are only available for real fault systems in limited
cases, where slip distributions have been inverted.



Chapter 4

Results

Numerous simulations of the model described in the previous chapter have been performed.
The first catalogs [Zöller et al., 2004] produced by simulations have been studied with
respect to the influence of the quasidynamic approach and the discretization of the intra-
event time scale in comparison with the quasistatic model of Ben-Zion and Rice [1993].
Then, a large fraction of the parameter space has been analyzed to find relationships
between input parameters and observed seismicity features. Finally, new mechanisms
have been adopted (see Section 3.6) in order to overcome unrealistic behavior and to
adjust the model towards real faults. All results are presented and discussed in detail in
the publications given in Appendix A to N. In this chapter, the key results are highlighted
and discussed in the light of critical states of seismicity.

4.1 Frequency-size distributions

The frequency-size (FS) distribution is one of the most important characteristics of ob-
served seismicity. For worldwide seismicity as well as for large faults systems, this dis-
tribution is given by the Gutenberg-Richter law (Eq. (1.1)). Figure 4.1 shows the FS
distribution of California from 1970 to 2004. Here we use the non-cumulative version of
Eq. (1.1), where N is the number of earthquakes with magnitude between M and M +dM
with a time bin dM . For individual faults or small fault systems, the FS distribution can
deviate from Eq. (1.1), especially for high magnitudes. An example is given in Fig. 4.2,
which shows the FS distribution of the Parkfield segment (Fig. 4.2(a)) and for the San
Jacinto fault (Fig. 4.2(b)) in California calculated for a time span of 45 years. The distri-
bution of the Parkfield segment consists of two parts: A scaling regime for 2.2 ≤ M ≤ 4.5
and a significant “bump” for 4.5 < M ≤ 6.0. For the San Jacinto fault, the scaling range
is observed for almost all events (2.2 ≤ M ≤ 5.0). The slight decrease for M ≈ 2 in both
plots is due to lacking catalog completeness.

A FS distribution as shown in Fig. 4.2(a) is called a characteristic earthquake distribu-
tion, because of the increased probability for the occurrence of a large (“characteristic”)
event. In contrast, distributions with a broad scaling regime following power-law behavior
according to the Gutenberg-Richter law, are denoted as “scale-free”, because a power law
distribution indicates the absence of a characteristic scale of the earthquake size [Tur-

21
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Figure 4.1: Frequency-size distribution for California from 1970 to 2004; the dashed line
denotes a power-law fit to the data.
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Figure 4.2: Frequency-size distribution for two faults in California: (a) the Parkfield
segment, and (b) the San Jacinto fault calculated over 45 years.

cotte, 1997]. In terms of critical point processes, the absence of a characteristic length
scale indicates that the system is close to the critical point. In this state, earthquakes
of all magnitudes can occur, or each small rupture can grow into a large one. Therefore,
the frequency-size distribution can serve as a proxy for the current state of a system in
relation to a critical point.

In a model, the easiest way to tune the FS distribution is a variation of the mean stress
〈τ〉 on the fault, where 〈〉 denotes the spatial average of all cells. This can be achieved, for
instance, by varying brittle properties, e.g. in terms of the dynamic overshoot coefficient
D (Eq. (3.19)), or by introducing dissipation [Hainzl and Zöller, 2001; Zöller et al.,
2004]. Figure 4.3 shows FS distributions for two different values of D, first D = 1.25
(Fig. 4.3(a)) from Madariaga [1976], and second a higher value D = 1.67 (Fig. 4.3(b)).
While Fig. 4.3(a) follows a characteristic earthquake behavior similar to the Parkfield case
(Fig. 4.2(a)), Fig. 4.3(b) resembles the shape of the FS distribution of the San Jacinto
fault (Fig. 4.2(b)).

As an outcome, three cases can be distinguished by means of a critical mean stress τcrit:
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Figure 4.3: Frequency-size distribution for model realizations with different dynamic over-
shoot coefficients (Eq. (3.19)): panel (a) D = 1.25, panel (b) D = 1.67.

1. subcritical fault (〈τ〉 < τcrit): the mean stress on the fault is too small to produce
large events. The system is always far from the critical point. The FS distribution
is a truncated Gutenberg-Richter law.

2. supercritical fault (〈τ〉 > τcrit): the mean stress is high and produces frequently large
events. After a large earthquake (critical point), the stress level is low (system is far
from the critical point) and recovers slowly (approaches the critical point). The FS
distribution is a characteristic earthquake distribution.

3. critical fault (〈τ〉 ≈ τcrit): the system is always close to the critical point with scale-
free characteristics. The FS distribution is a Gutenberg-Richter law with a scaling
range over all magnitudes.

This result demonstrates that, for isolated faults, the Gutenberg-Richter law is not the
rule, but the exception. If the FS distribution is plotted as a function of the parameters
controlling 〈τ〉, this result can be visualized by a phase diagram [Dahmen et al., 1999;
Hainzl and Zöller, 2001; Zöller et al., 2004; 2005c].

While it is obvious that the mean stress drop 〈∆τ〉 ≈ 〈τs − τa〉 controls the mean stress
〈τ〉 on the fault, it has also been found that the spatial distribution of the stress drop has
significant influence on the FS distribution. This is apparent in the case of a cellular au-
tomaton with a tectonic loading rate γ (see Eq. (3.12)), which is not only time-independent,
but also space-independent. In this case, the cells will synchronize, and from the time of
synchronization the dynamics will be periodic culminating in a large event. Thus, the FS
distribution will follow a characteristic earthquake law. This trivial case can be overcome
by introducing quenched (time-independent) spatial disorder. If, for instance, a barrier
with a high static strength is included in a homogeneous fault, a system-wide event will
be terminated at the barrier with some probability.

Quenched spatial heterogeneity is introduced in the model from Chapter 3 by means of
a variable arrest stress τa; the static strength τs remains homogeneous and the dynamic
strength τd is constraint by the dynamic overshoot coefficient D (Eq. (3.19)). The results
indicate that the degree of heterogeneity measured by the range of spatial size scales acts as
a tuning parameter for the FS distribution [Zöller et al., 2005c]. This behavior is clearly
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visible for discontinuous distributions of stress drops, e.g. high stress drop barriers in a
low stress drop environment. The range of size scales can be quantified by the standard
deviation of the distribution of circular areas which are placed between the barriers. These
circles give rough estimates for patches where a rupture can evolve unperturbed. In models
of real faults, such barriers provide a simplified way to simulate fault segmentation like
step-over regions and offsets.

4.2 Temporal occurrence of large earthquakes

The finding that quenched spatial heterogeneities have influence on the rupture propa-
gation suggests that also temporal clustering properties will be affected. While the end
member case of a smooth fault produces regular occurrence of events, it can be assumed
that a strongly disordered fault will show irregular earthquake occurrence. In Fig. 4.4,
we focus on the regularity of the largest earthquakes in a simulation, e.g. earthquakes
with M ≥ 5.7, for two different degrees of spatial disorder. Each plots is based on an
earthquake sequence covering 1000 years. Figure 4.4(a) corresponds to a smooth fault
and Fig. 4.4(b) to a rough (disordered) fault; the ordinate has no meaning. Although
no strictly periodic mainshock occurrence is observed, the sequence for the smooth fault
(Fig. 4.4(a)) is characterized by relatively regular mainshock sequences. In contrast, the
sequence for the highly disordered fault Fig. 4.4(b) shows a more disordered and clustered
behavior. It is interesting to note that sequences similar to the Parkfield sequence can
be found in Fig. 4.4(a), e.g. between t ≈ 600years and t ≈ 720years, where an almost
periodic mainshock sequence is followed by a gap before the next large event occurs. This
resembles the most recent Parkfield event on September 28, 2004, which occurred 16 years
after it was predicted based on the approximate period of 22 years for M6 events on this
fault segment.

A more quantitative measure for temporal clustering properties of earthquake sequences
is the coefficient of variation

CV = σ∆t/〈∆t〉 (4.1)

calculated for the interevent-time distribution, where σ∆t is the standard deviation and
〈∆t〉 the mean value of the interevent-time distribution. High values of CV denote clus-
tered activity, while low values represent quasiperiodic occurrence of events. The limit
case CV = 1 corresponds to a random Poisson process [Daley and Vere-Jones, 1988].
Table 1 in Appendix L shows the systematic dependence of CV as a function of the de-
gree of spatial disorder, and Fig. 4.5 demonstrates (for a smooth fault) that quasiperiodic
earthquake occurrence is found for the largest events, while intermediate and small events
occur irregular.

4.3 The stress field for different degrees of disorder

The observation that smooth faults show a more regular earthquake occurrence than rough
faults, can be explained by the ability of the stress field to synchronize on certain fault
patches. On a disordered fault, this type of synchronization is unlikely. Figure 4.6(a)
shows the stress field at the beginning of a large earthquake on a smooth fault. The most
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(b)

(a)

Figure 4.4: Mainshock sequence from model simulations of a smooth fault (panel (a)) and
a rough fault (panel (b)). The plots show earthquakes with M ≥ 5.7; the ordinate has no
meaning.
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Figure 4.5: Temporal earthquake occurrence quantified by the coefficient of variation
(Eq. (4.1)) as a function of the lower magnitude cutoff.

striking feature is the emergence of clearly defined patches with highly loaded boundaries.
During rupture evolution, these patches rupture almost in series until the fault is nearly
unloaded (see Fig. 10(f) in Appendix L). A different situation is shown in Fig. 4.6(b)
corresponding to a rough fault with a brittle-ductile transition zone resulting from creep
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rates which increase with depth [Ben-Zion, 1996]. Here, the stress field in the brittle
regime is irregular without obvious pattern formation. Similar behavior is found in the
case, where dynamic weakening is switched off (τd = τs or D → ∞); in other words,
the material heals instantaneously. Figure 4.6(c) shows the stress field in this case. As
discussed by Fisher et al. [1997] and Dahmen et al. [1999], this corresponds exactly to
a critical point in the phase diagram for the FS distribution spanned by stress dissipation
and dynamic weakening.

Although the stress field shows a complex evolution during a simulation, the presence or
absence of characteristic length scales indicating the relation to a critical point is easily
detected. However, from an observational point of view, the stress field is not accessible,
but the FS distribution can serve to some extent as a proxy for the degree of disorder of
the stress field.

If the model is in the transition regime between Gutenberg-Richter statistics and charac-
teristic earthquake behavior (see Fig. 4 in Appendix K), the ability of the stress field to
synchronize on parts of the fault, can have additional impact on the dynamics of seismicity:
for a model with small cells and high stress fluctuations along the cell boundaries arising
from a high degree of spatial disorder, the system can undergo a spontaneous transition
from an ordered state and a characteristic earthquake law to a disordered state following
Gutenberg-Richter statistics (see Fig. 4.7). Due to the high fluctuations in the stress field,
there is some probability that a certain number of cells synchronize by chance, leading to an
ordered behavior for some seismic cycles, until the order is destroyed, again resulting from
stress fluctuations. This mode-switching has been observed earlier in a mean-field model
by Dahmen et al. [1999]. In this more unrealistic model where the stress redistribution
is governed by a constant (space-independent) Green’s function, analytical expressions for
persistence times have been calculated [Fisher et al., 1997]. Although Ben-Zion et al.
[1999] claim some evidence for mode-switching behavior in a seismic record based on sed-
iment and paleoseismic data from the Dead Sea region, the relevance of mode-switching
from an observational point of view cannot finally be evaluated due to a lack of very long
records.

4.4 Aftershocks and foreshocks

The most pronounced pattern in observed seismicity is the emergence of strongly clustered
aftershock activity following a large earthquake. Apart from the Omori law (Eq. (1.2)), it
is widely accepted that aftershocks are characterized by the following properties:

1. The aftershock rate scales with the mainshock size [Reasenberg, 1985].

2. Aftershocks occur predominantly at the edges of the ruptured fault segments [Utsu,
2002].

3. B̊ath’s law [Båth, 1965]: The magnitude of the largest aftershock is Mm−D1, where
Mm is the mainshock magnitude and D1 ≈ 1.2.

Deviations from the Omori law, especially for rough faults, are discussed in [Narteau et
al., 2003]. While aftershocks are observed after almost all large earthquakes, foreshocks
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(c)

(b)

(a)

Figure 4.6: Snapshot of the stress field (normalized between 0 and 1) before a large
earthquake for three model realizations: (a) a smooth fault without aseismic creep; (b)
a rough fault with aseismic creep and depth-dependent creep rates leading to a brittle-
ductile transition at a depth of about 12.5km; (c) a fault without dynamic weakening
(τd = τs) corresponding to a dynamic overshoot coefficient D → ∞ (Eq. (3.19)).

occur less frequent [Wyss, 1997]. As a consequence, much less is known about the prop-
erties of these events. Kagan and Knopoff [1978] and Jones and Molnar [1979]
propose a power law increase of activity according to an “inverse” Omori law.

Figure 4.8(a) shows an example for the aftershock sequence following the M7 Landers
earthquake in California on June 28, 1992. An earthquake of similar size generated by
the model is given in Fig. 4.8(b). The absence of aftershocks in the simulation is clearly
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Figure 4.7: Earthquake area as a function of time for a simulation of a heterogeneous fault
with 128 × 50 cells. Note that the higher number of cells results effectively in a smaller
cell size.
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Figure 4.8: Earthquakes before and after a mainshock: (a) the M7 Landers (California)
earthquake; (b) M7 earthquake in the basic version of the model.

visible. The reason for the lack of aftershocks is the unloading of the fault due to the
mainshock, which is demonstrated in Fig. 10(f) in Appendix L. When a large fraction
of the fault has ruptured, the stress in this region will be close to the arrest stress after
the event. Consequently, the seismic rate will be almost zero until the stress field has
recovered to a moderate level.

It is not surprising that a model which imposes only tectonic loading and coseismic stress
redistribution, produces no aftershocks, because it is likely that aftershocks are due to
additional mechanisms triggered by the mainshock. A discussion on candidates for such
mechanisms is given in [Zöller et al., 2005b]. A common feature is the presence of post-
seismic stress which generates aftershock activity. In [Hainzl et al., 1999], for instance,
postseismic stress has been attributed to a viscoelastic relaxation process following the
mainshock. In the present work, creep motion following the constitutive law in Eq. (3.22)
is assumed. Additionally, the computational grid is divided by aseismic barriers from
the free surface to depth into a couple of seismically active fault segments (see Fig. 3
in Appendix M). As discussed in [Zöller et al., 2005b], this modification results in
a concentration of stress in the aseismic regions during rupture and, subsequently in a
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Figure 4.9: Earthquakes before and after a mainshock with M = 6.8 in the modified
model.
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Figure 4.10: Earthquake rate as a function of time for the model with seismic and aseismic
regions. The calculation is based on a simulation with 20,000 earthquakes covering about
500 years; the earthquake rates are averaged over about 30 mainshocks. A fit of the
Omori law (Eq. (1.2)) with p = 1 is denoted as a solid line. The dashed line gives the
estimated background level of seismicity.

release of stress after the event according to the coupled process from Eq. (3.22). This
stress release triggers aftershock sequences obeying the Omori law (Eq. (1.2)). A typical
aftershock sequence after a M6.8 event is shown in Fig. 4.9. According to B̊ath’s law,
the strongest aftershock has the magnitude M = 5.5. The sequence shows also the effect
of secondary aftershocks, namely aftershocks of aftershocks [Sornette and Sornette,
1999]. The evolution of stress in the seismic and in the aseismic parts of the fault and
the corresponding earthquake occurrence is shown explicitely in Figure 4 of Appendix M:
during a large event, stress is stored in the creeping zones, and afterwards the stress is
released to the entire fault triggering an aftershock sequence.

In Appendix M, the earthquake rate, stacked for a large number of mainshocks, is an-
alyzed as a function of the distribution of the creep coefficients c(i, j) in Eq. (3.22). A
realistic exponent of p = 1 is found if the barriers are characterized by creep coefficients,
which are by factor of 105 higher than the creep coefficients in the seismic patches. The
stacked earthquake rate as a function of the time after the mainshock is given in Fig. 4.10.
In [Zöller et al., 2005a; 2005b], it is demonstrated that the simulated aftershock se-
quences show a high correspondence with natural aftershock activity, and that they are
qualitatively compatible with satellite-based observation of afterslip along fault zones (see
e.g. [Bürgmann et al., 2002]).

Aftershock sequences like in in Fig. 4.9 emerge after all large events in the extended model.
In contrast, there is no clear foreshock signal visible in single sequences. However, stacking
many sequences together, unveils a slight increase of the earthquake rate prior to a main-
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shock supporting the observation of rarely occurring foreshock activity. An explanation of
these events can be given in the following way: Between two mainshocks, the stress field
organizes itself towards a critical state, where the next large earthquake can occur. This
critical state is characterized by a disordered stress field and the absence of a typical length
scale, where earthquakes of all sizes can occur. The mainshock may occur immediately
or after some small to moderate events. The latter case can be considered as a single
earthquake, which is interrupted in the beginning. This phenomenon of delayed rupture
propagation has already provided a successful explanation of foreshocks and aftershocks
in a cellular automaton model [Hainzl et al., 2000a; 2003].

The hypothesis that foreshocks occur in the critical point and belong, in principle, to the
mainshock, can be verified by means of the findings from Section 4.1. In particular, the
frequency-size distribution in the critical point (or close to the critical point) is expected
to show scale-free statistics. If an overall smooth model fault following characteristic
earthquake statistics is studied over a long time period, the approach of the critical point
can be calculated precisely in terms of a change of the frequency-size distribution towards
Gutenberg-Richter behavior. This change of frequency-size statistics is observed in the
model (Fig. 4.11) and supports thus the validity of the critical point concept.
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Figure 4.11: Frequency-magnitude distribution of all earthquakes, foreshocks and after-
shocks, respectively. Foreshocks and aftershocks are defined as earthquakes occurring
within one month before and after an earthquake with M ≥ 6.

4.5 Accelerating moment release

In the previous Section, it has been argued that large earthquakes are associated with a
critical point and the preparation process is characterized by increasing disorder of the
stress field and increasing tendency to scale-free characteristics in the frequency-size distri-
bution. Further support for critical point dynamics has been provided by the observational
finding of Bufe and Varnes [1993] that the cumulative Benioff strain ΣΩ(t) follows a
power law time-to-failure relation prior to the M7 Loma Prieta earthquake on October
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17, 1989:

ΣΩ(t) =

N(t)
∑

i=1

√

Ei = A + B(tf − t)m (4.2)

Here, Ei is the energy release of earthquake i, and N(t) is the number of earthquakes
before time t; tf is the failure time and A,B and m > 0 are constants. The systematic
study of Bowman et al. [1998] verifies this behavior also for other large earthquakes in
California. Similar studies for numerous seismically active regions followed (see [Zöller

et al., 2001]) and references therein).

The time-to-failure relation Eq. (4.2) has been proposed by Sornette and Sammis [1995]
and Saleur et al. [1996] from the viewpoint of renormalization theory. Moreover, they
demonstrated that a complex exponent m = α + iβ results in an additional term of log-
periodic oscillations decorating the power-law increase of ΣΩ(t). This law has been fit
by Sornette and Sammis [1995] to the data of Bufe and Varnes [1993]. Although
the fit shows good agreement with the data, there is no evidence that this concept is
feasible for the prediction of earthquakes so far. In particular, the fit operates with a
large number of free parameters including amplitude and phase of the fluctuations and a
cutoff time. Therefore, Eq. (4.2) with real m will be used to describe accelerating moment
release in this study.
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Figure 4.12: Cumulative Benioff strain (Eq. (4.2)) before and after two M6.8 earthquakes
in the model.

Figure 4.12 shows the cumulative Benioff strain before and after two earthquakes with
M = 6.8. The increase of the curves immediately after the mainshock is due to the energy
release of the mainshock itself and the subsequent aftershocks. In Fig. 4.12(a), no power-
law behavior according to Eq. (4.2) can be observed. In contrast, Fig. 4.12(b) includes a
period (marked by a box), where such a power-law can be fit to the data. Similar to the
findings about foreshocks, this pattern is not universal. Therefore, a stacking procedure
is adopted in order to obtain more robust results on the validity of Eq. (4.2) in the model.
This is not straightforward, since the interval of accelerating moment release is not known
a priori and the duration of a whole seismic cycle, as an upper limit, is not constant. To
normalize the time interval for the stacking, the potency release (Eq. (3.27)) is computed
as a function of the (normalized) stress level (Fig. 4.13). Taking into account that the
stress level increases almost linearly during a large fraction of the seismic cycle, as shown
in Fig. 7 of Appendix N, the stress level axis in Fig. 4.13 can effectively be replaced by the
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time axis leading to a power-law dependence of the potency release on time. The best fit is
provided with an exponent s = −1.5. Transforming the potency release to the cumulative
Benioff strain (Eq. (4.2)), results in an exponent m = 0.25 in Eq. (4.2). This finding is
based on a simulation over about 5000 years; the exponent is in good agreement with the
theoretical work of Rundle et al. [2000], who derive also m = 0.25 from a spinodal model,
and the analytical result of m = 0.3 in the damage mechanics model of Ben-Zion and

Lyakhovsky [2002]. The observational study of Bowman et al. [1998] finds m between
0.1 and 0.55.
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Figure 4.13: Mean potency release (Eq. (3.27)) as a function of the stress level. The stress
level is normalized to the maximum (max) and minimum (min) observed stress.

4.6 Critical point analysis of seismicity in California

The detection of critical point dynamics in synthetic seismicity is relatively easy, because
earthquake catalogs with arbitrary length and homogeneous reporting down to the min-
imum magnitude can be generated. This allows to calculate frequency-size distributions
accurately. Furthermore, the significance of seismicity patterns can be analyzed by means
of a stacking procedure with reasonable statistics. The detection of foreshocks and ac-
celerating moment release in the previous sections, for instance, is based on a simulation
with 200.000 events covering a period of about 5.000 years. The minimum magnitude,
which is identical with the magnitude of completeness in the model, is Mc = 4. The
stacking procedure includes 225 mainshocks with M ≥ 6. In natural data, the number of
mainshocks which are accomplished by a reporting of intermediate and small events with
similar quality, is in general smaller than ten. Additionally, the data are full of artificial
and man-made effects like

• varying magnitude of completeness in space and time due to network changes

• man-made seismicity (explosions, quarry blasts)

• relocation errors, especially for the hypocenter depth

• duplicate events (multiple solutions to the same earthquake)
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Numerous methods have been developed to deal with these problems. Some methods
are based solely on a catalog study, e.g. the day- to nighttime analysis to detect quarry
blasts [Wiemer and Baer, 2000a] or the deviation of the frequency-size distribution
from a power-law for small events indicating the magnitude of completeness [Wiemer

and Baer, 2000b]. However, these methods are often based on ad-hoc assumptions and
allow to correct a catalog only on average. The decision whether a single event is a quarry
blast, requires more knowledge, e.g. about the source mechanism.

The ANSS (Advanced National Seismic System) catalog for California seismicity which
grew out of the CNSS (Council of the National Seismic System) catalog, is one of the best
available data sets for the analysis of seismicity patterns, because it deals with most of the
above mentioned problems, especially the detection of man-made seismicity and duplicate
events. The catalog was already adopted by Bowman et al. [1998] to study the critical
earthquake concept in terms of accelerating moment release and critical regions where
this pattern emerges. They find a scaling relation log R ∼ 0.44M between the critical
region R and the magnitude of the upcoming mainshock M . It is interesting to note
that R varies between 73km for the Northridge earthquake on Jan. 17, 1994 (M = 6.7)
and 325km for the M = 7.5 Kern County earthquake on July 21, 1952. An analysis of
the M8.6 Assam (India) earthquake on Aug. 15, 1950 results even in R = 900km. These
findings demonstrate that critical point dynamics takes place in large spatial regions which
include many faults. Therefore, the following study will be carried out in a region of about
1000km × 1000km shown in Fig. 4.14.

As discussed before, the most conspicuous feature of a spatially extended critical point
system is the growth of the spatial correlation length ξ(t) when the critical point is ap-
proached. This growth is assumed to follow a power law [Bruce and Wallace, 1989]

ξ(t) ∼ (tf − t)−k (4.3)

with k > 0. It is emphasized that ξ(t) is not a cumulative quantity like ΣΩ(t) (Eq. (4.2)).
The main question is: How can the correlation length be calculated, or measured, from an
earthquake catalog? It is reasonable to relate ξ with the clustering properties of epicen-
ters. In the Ising model for ferromagnetic material, above a critical temperature Tc the
emergence of clusters with the same spin value is found. The size of the largest cluster
is referred to as the spatial correlation length. Accordingly, the correlation length of a
spatially clustered set of earthquakes, like an aftershock sequence or a swarm, ξ will be
small, whereas for widespread events, ξ will be large. It has been found that an algorithm
based on single-link cluster analysis [Frohlich and Davis, 1990] provides a simple, but
powerful and robust technique to measure the clustering properties and thus the spatial
correlation length. A detailed description of the algorithm is given in [Zöller et al.,
2001]. Using this method allows to compute time series of ξ(t) and to fit Eq. (4.3) to the
data. The quality of the fit is obtained from a curvature parameter [Bowman et al., 1998]
which is the ratio of root-mean-square errors of the power law fit and the fit of a constant
function to the data (Appendix C, Eq. (4)).

When the statistical testing is designed, the problem of limited amount of data has to
be addressed. For the synthetic data, robust results have been found by averaging over a
large number of mainshocks. In the ANSS catalog, the lower magnitude cutoff has been
set to Mcut = 4.0 and nine mainshocks with M ≥ 6.5 are studied. Here, we compare the
results of the nine cases with a large number of realizations of a stochastic earthquake
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Figure 4.14: Earthquakes with M ≥ 3 in California since 1910. The filled circles denote
the events with M ≥ 6.5 since 1952: (a) 1952 M = 7.5 Kern County, (b) 1968 M = 6.5
Borrego Mountain, (c) 1971 M = 6.6 San Fernando, (d) 1983 M = 6.7 Coalinga, (e) 1987
M = 6.6 Superstition Hills, (f) 1989 M = 7.0 Loma Prieta, (g) 1992 M = 7.3 Landers,
(h) 1994 M = 6.6 Northridge, (i) 1999 M = 7.1 Hector Mine.

model producing similar catalogs as the original one, except for the time evolution, which
follows a random Poisson process [Daley and Vere-Jones, 1988]. In particular, the
random (surrogate) catalogs conserve (1) the frequency-size distribution (a and b value
in Eq. (1.1)), (2) the epicenter distribution, and (3) the presence of aftershocks following
the Omori law Eq. (1.2). The model corresponds to the stochastic model of Epstein

and Lomnitz [1966] with additional aftershock activity. Imposing this model as a null
hypothesis for the analysis, the probability that an observed pattern is not random, can
be calculated. The free parameters, e.g. the spatial region around the epicenter of the
upcoming earthquake and time interval before occurrence time tc, are optimized with
respect to the parameters space in order to provide the best power-law fit. Here it is
important that the whole algorithm is applied exactly in the same way to the real data
and the surrogate data. Figure 4.15 shows an example for the M7 Loma Prieta earthquake
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in 1989 with the curvature parameter C = 0.34, the exponent k = 0.41 (Eq. (4.3)), and
the critical region R = 270km, which is significantly larger than the source volume of the
mainshock.
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Figure 4.15: Correlation length before the M7 Loma Prieta earthquake on October 18,
1989 and best power-law fit (Eq. (4.3)).

The best power-law fits for the other mainshocks are shown in Fig. 3 of Appendix C.
The probabilities that a pattern of similar or better quality (with respect to the curvature
parameter) is observed in the surrogate data, vary between 2.9% and 48% around the mean
value p̄ = 26.4% (see Tab. 1 in Appendix C). However, the probability that the mean
value of nine random numbers drawn from a Gaussian distribution is equal to or smaller
than 26.4%, is 0.7%. We conclude that our results are non-random with a significance level
up to 99.3%. The observation that both, the critical region R and the mean correlation
length 〈ξ〉 scale with the mainshock magnitude according to log R ∼ s1M , respectively
log 〈ξ〉 ∼ s2M (see Fig. 6 in Appendix C), and that the slopes s1 and s2 are similar to
studies based on acceleration moment release, e.g. [Jaumé and Sykes, 1999], indicates
that growing correlation length and accelerating moment release stem from the same
underlying mechanism, namely a critical point [Zöller et al., 2001].

The question whether the detection of the growth of the spatial correlation length provides
a feasible algorithm for predicting earthquakes is addressed in [Zöller and Hainzl, 2001;
2002], and [Zaliapin et al., 2002]. So far, the epicenter and the time of the mainshock
have been used to detect the pattern. The method can be generalized by introducing
a grid search technique for the entire space-time volume of the catalog. This allows to
map curvature parameters in space and time [Zöller and Hainzl, 2001] (see Fig. 2 in
Appendix E). Applying again a statistical testing based on the stochastic model intro-
duced above, probabilities for non-randomness can be mapped. These results are given in
Fig. 4.16 for the time steps before the largest events. A quantitative assessment indicates
significant correlations between the largest earthquakes (M ≥ 6.5) and the anomalies (see
Fig. 1 in Appendix G). Although a correlation between space-time regions with high
tendency towards growing spatial correlation length and subsequent large earthquakes is
visible, the anomalies cover a large fraction of the entire space-time volume and fail to
give an accurate prediction of the upcoming event.
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If accelerating moment release (Eq. (4.2)) instead of growing spatial correlation length
(Eq. (4.3)) is detected, the results are qualitatively similar (see Tab.1 and Fig. 3 in
Appendix G). The growth of the spatial correlation length gives, however, an overall
better performance of observed seismicity [Zöller and Hainzl, 2002]. We note that
the two approaches reflect different aspects of the same underlying process, namely the
critical point process. Accelerating moment release deals with the energy release and
growing spatial correlation length with epicenter clustering. The fact that both techniques
provide similar results, supports the presence of the critical point dynamics and is therefore
encouraging for further developments in this respect.
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Figure 4.16: Probability indicating the significance for the growth of the spatial correla-
tion length prior to eight large earthquakes in California. The large triangle denotes the
mainshock epicenter, whereas the smaller triangles refer to the earthquakes with M ≥ 5
which occurred up to one year after the mainshock.



Chapter 5

Summary and conclusions

The present work deals with the analysis, the understanding and the interpretation of
seismicity patterns with a special focus on the critical point concept for large earthquakes.
Both, physical modeling and data analysis are employed. This study aims at practical
applications to model data and earthquake catalogs from real fault systems. A point of
particular interest is the detection of phenomena prior to large earthquakes and their rel-
evance for a possible prediction of these events. While aftershocks are an almost universal
phenomenon, there is no precursor obeying a similar degree of universality. It is, therefore,
interesting to study the less frequent precursory phenomena with respect to two questions:

1. Is the phenomenon physically reliable? That is, can it be explained by a physical
mechanism?

2. Is the phenomenon statistically significant, or is it due to random fluctuation in a
noisy data set?

To address these questions, we use two important tools: 1. A numerical model which is
on the one hand to some degree physical, and on the other hand simple enough that it
allows to perform long simulations; 2. A sophisticated statistical testing procedure based
on stochastic earthquake models to discriminate between “real” patterns and statistical
fluctuations up to a certain significance level in a given data set.

The basic version of the model consists of a segmented two-dimensional strike-slip fault
in a three-dimensional elastic half space and is inherently discrete, because it does not
arise from discretizing a continuous model. The model dynamics is governed by realistic
boundary conditions consisting of constant velocity motion of the regions around the
fault, static/kinetic friction, and stress transfer based on static dislocation theory. The
dynamic rupture is approximated on a finite intra-event time scale using a constant stress
propagation velocity (”quasidynamic model”) instead of instantaneous stress transfer.

The results of the simulations indicate an overall good agreement of the synthetic seismic-
ity with real earthquake catalogs, with respect to frequency-size distributions and various
features of earthquake sequences. A major role for the characteristics of a simulated cat-
alog seems to play the degree of spatial heterogeneity on the fault, which is implemented
by means of space-dependent brittle parameters. Smooth faults are governed by charac-
teristic earthquake statistics, regular occurrence of mainshocks and overall smooth stress
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fields. On the other hand, rough faults obey scale-free Gutenberg-Richter statistics, irreg-
ular mainshock occurrence, and overall rough stress fields. A closer look at the disorder
of the stress field shows, however, that even on a smooth fault a gradual roughening takes
place when the next large earthquake is approached. This is reflected in the frequency-size
distribution which evolves towards the Gutenberg-Richter law. Such a state is denoted as
a critical state of seismic dynamics. This finding allows to establish a relation between
the closeness to the underlying critical point, the (unobservable) stress field, and the (ob-
servable) frequency-size distribution. Moreover, the concepts of “self-organized criticality”
and the “critical earthquake concept” can be interpreted as special cases of a generalized
concept, which is further supported by the observation of accelerating moment release in
the model as well as in observations, and by the detection of growing spatial correlation
length in the epicenter distribution of California seismicity. A rigorous statistical testing
unveils correlations between the pattern of growing correlation length and subsequent large
earthquakes. The space and time windows, where these precursors are found, are, how-
ever, too large for an accurate prediction of the upcoming event. However, in combination
with other parameters, e.g. accelerating seismic moment release, this pattern may provide
a significant contribution to an improved time-dependent seismic hazard assessment.



Chapter 6

Outlook

The main result of the present work is the clear evidence of the presence of a critical point
in the dynamics of seismicity. When the trajectory of the system gets close to the critical
point, or close to the next mainshock, a critical state is entered, which is characterized
by clear anomalies in various seismicity functions. Further refinements, especially of the
data analysis, regarding a more precise characterization of the critical state may lead to
progress in a possible prediction of large events or an improved time-dependent hazard
assessment. This work should be accomplished by extensions of the model towards a more
realistic resemblance of real fault zones. So far, the model has been compared with real
faults using parameters from the frequency-size distribution or spatiotemporal clustering
properties. The way, how the input parameters have to be chosen in order to simulate
seismicity on real faults, has been shown. An important goal, however, is the development
of a detailed phase diagram including several parameters, and the assignment of a real fault
to a position in this phase diagram. It is furthermore interesting to study, whether the
position in the phase diagram can also be characterized by means of observable parameters,
e.g. the surface deformation field, which is accessible in the model by using the equations
of Okada [1992] with stress calculation points (see Fig. 3.1) on the free surface. Since
corresponding geodetic data are ubiquitous, the analysis of the surface deformation field
in relation to seismicity and the underlying physics will be an important subject of future
studies.

Further work will focus on slip histories of single earthquakes calculated with the quasi-
dynamic approach. Tuning the friction law in a way that slip histories become similar
to those of real earthquakes, the simulated slip histories can serve as input for concepts
based on numerical Green’s functions [Wang and Igel, 2004] in order to calculate ground
motion, and finally seismic hazard maps.
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Turcotte, D., On increase of earthquake correlation length prior to large earthquakes
in California, Computational Seismology, 33, 141–161 (2002)→Appendix H.
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Abstract. Seismically active fault systems may be in a
state of self-organized criticality (SOC). Investigations of
simple SOC models have suggested that earthquakes might
be inherently unpredictable. In this paper, we analyze the
question of predictability in a more complex and realis-
tic SOC model, which consists of a spring-block system
with transient creep characteristics. Additionally to the
power law distribution of earthquake sizes, this model re-
produces also foreshock and aftershock sequences. Aside
from a short-term increase of seismicity immediately prior
to large model earthquakes, these events are preceded on av-
erage by an intermediate-term period of reduced seismicity.
The stronger and the longer the duration of this period, the
larger on average is the subsequent mainshock. We find that
the detection of seismic quiescence can improve the time--
independent hazard assessment. The improvement is most
significant for the largest target events.

Introduction

For the last several years, a continuing debate has taken
place on whether or not earthquakes are inherently un-
predictable [Geller et al., 1997;Wyss, 1997; Nature debate,
1999]. The statement of an inherent unpredictability is
founded on the assumption that “the Earth is in a state
of self-organized criticality, where any small earthquake has
some probability of cascading into a large event” [Geller et
al., 1997]. In the concept of self-organized criticality (SOC),
which was first introduced by Bak et al. [1987], a driven dis-
sipative system with many degrees of freedom evolves spon-
taneously into a statistically stationary state characterized
by power-law behavior of spatial and temporal correlation
functions. Thus, a self-organized critical state of fault sys-
tems can explain the frequency-size distribution of earth-
quakes, that is, the Gutenberg–Richter law. Examples for
earthquake models showing SOC, and therefore reproducing
the Gutenberg–Richter law, are the models proposed by Bak
and Tang, [1989], and by Olami et al., [1992]. On the other
hand, these models fail to reproduce some important proper-
ties of the spatiotemporal clustering of earthquakes observed
in real fault systems. In particular, they do not show fore-
shock and aftershock sequences correlated to large earth-
quakes as well as earthquake swarms. It is questionable,
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to what extent simple SOC models, which exclude these fun-
damental features, can be used to draw reliable conclusions
concerning the predictability of earthquakes.
The counterclaim to an inherent unpredictability is based

on the observation of precursory phenomena. They are as-
sumed to indicate a change of the system state [Wyss, 1997].
Foreshocks are the most obvious premonitory phenomenon
preceding large earthquakes. In advance, however, fore-
shocks can be identified as such only with a low probability
[Ogata et al., 1996]. Aside from foreshocks, other precursory
phenomena have been observed, e.g. ground water changes
or electromagnetic emissions [Wyss and Dmowska, 1997].
In contrast to foreshocks, the statistical evidence for these
observations is brought into question [Geller et al., 1997].
This is valid also for the phenomenon of precursory seismic
quiescence. A period of reduced earthquake activity is ob-
served to last between months or years prior to many main-
shocks. The duration is found to be the longer the larger
the subsequent mainshock is [Wyss and Habermann, 1988].
Therefore, precursory seismic quiescence could be a promis-
ing candidate for intermediate-term predictions. However,
its statistical significance is difficult to prove using seismic-
ity catalogs, because the latter represent only a brief record
of the system relative to the time scale of the seismic cycle.
In this paper, we try to bridge both the hypothesis of

an underlying self-organized critical system state and the
occurrence of precursory phenomena. Pre-existing hierar-
chical fault systems showing precursory phenomena have
been already investigated with regard to the predictabil-
ity of large events [Huang et al., 1998]. Here, we analyze
a recently proposed SOC model [Hainzl et al., 1999] repre-
senting the class of homogeneous spring-block systems. This
earthquake model reproduces in addition to the Gutenberg-
Richter law several observed spatiotemporal characteristics
of earthquakes, including foreshocks and precursory seismic
quiescence. Although the synthetic earthquake catalogs con-
tain much more information, in particular the spatial dis-
tribution of hypocenters as well as magnitudes, we restrict
our analysis to the temporal variations of the seismic rate.
The underlying question is to what extent fluctuations in the
high-dimensional system state are reflected in such an easily
observable quantity. In contrast to real earthquake catalogs,
the predictability of large earthquakes can be checked in the
numerically generated data with statistical significance.

Model

Themodel used here has been described elsewhere [Hainzl
et al., 1999]. Its basis is a cellular automaton version [Olami
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Figure 1. One-dimensional sketch of the investigated two-
dimensional spring-block model. The bottom blocks, which per-
form stick-slip motion, are interconnected by springs. Addition-
ally, they are coupled by further springs and dashpots (with vis-
cous coefficient η) to the moving tectonic plate and frictionally
to the lower plate. In the case of η=0, the model is equivalent to
the model proposed by Olami et al. [1992].

et al., 1992] of the two-dimensional spring-block model origi-
nally proposed by Burridge and Knopoff [1967]. In extension
to previous models, Hainzl et al. [1999] take into account
in a first-order approximation transient creep characteristics
observed in real fault systems [Savage and Svarc, 1997]. A
one-dimensional sketch of the investigated two-dimensional
block model is shown in Figure 1. The model parameters
are (i) the elastic coupling constant between two adjacent
blocks α, which can vary in the range of 0≤ α≤ 0.25, (ii)
the stress relaxation time T , which is proportional to the as-
sumed viscous coefficient η of the material, (iii) the tectonic
reloading time T0, and (iv) the fraction of postseismically
distributed stress κ(1−4α), where κ can vary between 0 and
1. However, block systems of this type evolve independently
of the initial conditions into a statistically stationary state,
which depends mainly on only two parameters, namely on
α and T/T0.
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Figure 2. The probability density of observing an event of
source size greater than S blocks as a function of S in the case of
the analyzed model sequences. The dotted line corresponds to a
B value of 0.9, whereas the arrows indicate the lower cutoffs for
the mainshock definitions used in our investigations.
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Figure 3. Log-log plot of the earthquake occurrence rate rel-
ative to the mainshock occurrence time. The curve shows the
average of the seismic rate regarding 5000 mainshocks with size
greater than 1000 blocks occurring in the analyzed model se-
quences.

In correspondence with the fully elastic model [Olami et
al., 1992], the model shows SOC. The self-organized state
is characterized by a power law distribution of event sizes,
limited only by the finite size of the block-system. The value
of the power law exponent B increases, if α decreases. Fig-
ure 2 illustrates the size distribution for 100×100-block sim-
ulations with α = 0.2. In this case the B value is within
the range of empirically observed values, scattering around
1 [Turcotte, 1997].
In contrast to the fully elastic model, the visco-elastic

model reproduces several observed spatiotemporal patterns
of earthquakes: Large events are followed by aftershock se-
quences obeying the modified Omori law; and are preceded
by localized foreshocks, which are initiated after a time pe-
riod of seismic quiescence (see Figure 3). While a consider-
able variability of precursory seismicity is observed, the av-
eraged earthquake activity, which is formed by stacking the
records of seismic activity relative to the mainshock occur-
rence times, increases immediately prior to the mainshocks
according to a power law. The exponent of the power law
increase is identical to the Omori exponent p characteriz-
ing the power law decay of aftershocks. This is also known
from empirical observations [Jones and Molnar, 1979]. The
value of p depends on the normalized relaxation time T/T0.
Additionally, it is found in further agreement with real ob-
servations [Suyehiro et al., 1964] that, compared with after-
shocks, the distribution of foreshock sizes is characterized
by a significantly smaller B value.
The analyzed synthetic catalogs (simulated with param-

eters α=0.2, κ=0.25 and T/T0=10−4) reproduce the em-
pirically observed event size distribution (B ≈ 1), the tem-
poral clustering relative to mainshocks (p ≈ 1), and addi-
tionally, swarm events, namely sequences of strongly clus-
tered smaller events not associated with a mainshock. Large
events themselves occur highly clustered, rather than peri-
odic in time.

Predictability

In these synthetic catalogs, a short-term power law in-
crease of seismic activity occurs immediately prior to the
mainshocks on average. However, the precursory seismic
patterns are found to vary largely for different mainshocks.
Only in approximately half of the mainshocks, can corre-
lated foreshocks be identified in retrospect. Furthermore,
in the case of their occurrence, no obvious correlation be-
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tween the size of foreshocks and the size of the mainshocks
exists. This observation is in agreement with empirical find-
ings [Jones and Molnar, 1979]. Thus it is not straightfor-
ward, maybe impossible, to identify foreshocks in advance;
especially, a discrimination by means of the different size
distribution of foreshocks, i.e. the smaller B value, is not
feasible because of the small number of foreshocks.
However, in these simulations mainshocks are preceded

on average by a further phenomenon, namely by a time in-
terval of reduced seismic activity, which occurs prior to the
foreshock activity. To illustrate this, we count the number
of events preceding mainshocks in the time interval T0/10.
Here, a mainshock is defined as the largest event within
its temporal vicinity ±T0/10. We find that the larger the
mainshock is, the less events occur in this time interval (Fig-
ure 4a). Furthermore, one observes a transition in the seis-
mic activity from a higher to a lower level. The onset of
this relative seismic quiescence depends on the size of the
following mainshock, namely the longer the duration of the
seismic quiescence is, the larger is on average the subsequent
mainshock (Figure 4b). This is in agreement with empiri-
cal observations [Wyss and Habermann, 1988]. The model
mechanism for this dependence is simple. Due to the tec-
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tonic movement, the accumulated energy increases with the
duration of seismic quiescence; that is, the probability for a
large event also increases.
In comparison to the duration of foreshock sequences,

which is of the order of 10−4T0, the duration of the seismic
quiescence is much longer, namely of the order of 5×10−2T0.
Thus, to identify such periods of quiescence, the seismic ac-
tivity can be averaged over longer time intervals in order to
smooth short-term fluctuations. To analyze the predictabil-
ity of large events on the basis of seismic quiescence, we cal-
culate the seismic rates in moving time windows of length
T0/100. Other window sizes do not change the results quali-
tatively. Alarm conditions are implemented in the way that
alarm is announced or extended for the following time inter-
val T0/100, if the measured rate is below a certain threshold.
The fraction of the total alarm time depends on the value
of this threshold. We determine the fraction of large events
predicted by alarms as a function of the threshold value,
respectively the fraction of alarm time. This analysis is per-
formed for simulations, which consist of several thousands
of mainshocks, leading to statistically significant results. In
Figure 5 the results are shown for mainshocks belonging to
three different magnitude bands. We find that in all cases
the number of predicted mainshocks exceeds the success-
ful predictions for the case of randomly distributed alarms.
Furthermore, the degree of predictability increases with in-
creasing size of the target events. For example in the case of
the largest events, approximately 50% of the targets are pre-
dicted when the alarm is on for 15% of the total time. Thus
our investigations show that the time-independent hazard
assessment can be improved by time-dependent estimations;
that is, that large synthetic earthquakes are to a certain de-
gree predictable.

Conclusions

Simple SOC models have been used as basis for the
hypothesis of an inherent unpredictability of earthquakes,
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although these models fail to reproduce realistic spatio-
temporal earthquake patterns. However, more complex
models can reproduce some of these spatiotemporal char-
acteristics [e.g. Cowie et al., 1993; Lyakhovsky et al., 1997].
With regard to predictability, we have analyzed a recently
proposed SOC model [Hainzl et al., 1999] showing in a real-
istic way clustering of earthquakes. In particular, two pre-
cursory signals known from real earthquake data are preced-
ing large events in this model on average: an intermediate-
term seismic quiescence and, immediately prior to the main-
shocks, a short-term increase of seismic activity. The ob-
served characteristics of both precursory phenomena, con-
cerning the spatiotemporal patterns as well as the variation
of the B value, are in good agreement with empirical find-
ings. Thus, in comparison to previous investigations of SOC
spring-block systems which lack realistic spatiotemporal dy-
namics [Pepke and Carlson, 1994], the analysis of this model
seems to be more appropriate to judge the stated unpre-
dictability of earthquakes.
It is difficult to identify the model foreshocks in advance.

However we have found that the detection of epochs of re-
duced seismic activity can improve the hazard assessment
for large earthquakes. In particular, the estimations are the
better the larger the target events are. However, because of
highly variable seismic activity prior to large earthquakes,
the success ratio - that is, the factor of improvement in com-
parison to a time-independent estimation - is only of the
order of three. On the other hand, it is behind the scope
of our paper to optimize the prediction algorithms. Our
investigations show that the self-organized state of a more
realistic SOC earthquake model performs fluctuations cor-
related to the largest events. These variations are reflected
to a certain degree in measurable quantities, even in sim-
ple measures such as event rates. In general, the degree of
predictability seems to be determined by the amplitudes of
these fluctuations, which are caused mainly by the energy
dissipation due to earthquakes.
We have shown in accordance with results for hierarchical

fault systems [Huang et al., 1998; Sornette, 1999] that even
for homogeneous fault systems the hypothesis of an underly-
ing self-organized critical state does not lead automatically
to an inherent unpredictability of earthquakes.
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Autors: G. Zöller, and S. Hainzl

Journal: Natural Hazards and Earth System Sciences,

Volume (Nr.): 1(1-2)

Pages: 93-98

Year: 2001

93



Natural Hazards and Earth System Sciences (2001) 1: 93–98
c© European Geophysical Society 2001 Natural Hazards

and Earth
System Sciences

Detecting premonitory seismicity patterns based on critical point
dynamics
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Abstract. We test the hypothesis that critical point dynamics
precedes strong earthquakes in a region surrounding the fu-
ture hypocenter. Therefore, we search systematically for re-
gions obeying critical point dynamics in terms of a growing
spatial correlation length (GCL). The question of whether or
not these spatial patterns are correlated with future seismic-
ity is crucial for the problem of predictability. The analysis
is conducted for earthquakes with M ≥ 6.5 in California. As
a result, we observe that GCL patterns are correlated with
the distribution of future seismicity. In particular, there are
clear correlations in some cases, e.g. the 1989 Loma Prieta
earthquake and the 1999 Hector Mine earthquake. We claim
that the critical point concept can improve the seismic hazard
assessment.

1 Introduction

Different critical point concepts have been discussed exten-
sively with respect to the predictability of earthquakes (Bufe
and Varnes, 1993; Jaumé and Sykes, 1999; Hainzl et al.,
1999, 2000; Hainzl and Zöller, 2001). Motivated by dam-
age mechanics and laboratory experiments (Leckie and Hay-
hurst, 1977; Das and Scholz, 1981), the time-to-failure ap-
proaches assume that the preparatory process of a large earth-
quake is characterized by a highly correlated stress field with
a growing correlation length (GCL) and an accelerating en-
ergy/moment (AMR) release. In practice, these concepts
have been tested by fitting time-to-failure relations to seis-
micity data. For the AMR model, this relation is

(6
√

E)(t) = A − B(tf − t)m, (1)

with positive constants A, B, m, the time-to-failure tf , and
the cumulative Benioff strain (6

√
E)(t), where E is the en-

ergy release of an earthquake. In the GCL model, the corre-

Correspondence to: G. Zöller (gert@agnld.uni-potsdam.de)

lation length ξ is expected to diverge for t → tf according
to

ξ(t) = C(tf − t)−k (2)

with positive constants C and k. Both approaches describe
the same underlying mechanism, namely, the critical point
dynamics. An important problem is the determination of
free parameters, which are in addition to A, B, tf , and m in
Eq. (1), respectively, C, tf , and k in Eq. (2), which represent
windows for space, time, and magnitude.

The accelerating moment release in terms of cumulative
Benioff strain has been documented in several cases, e.g.
for California seismicity (Bufe and Varnes, 1993; Bowman
et al., 1998; Brehm and Braile, 1998, 1999). The growth of
the spatial correlation length has been concluded from varia-
tions in the epicenter distribution (Zöller et al., 2001). How-
ever, these studies have not been conducted systematically
in space and time, i.e. the analysis was restricted to the oc-
currence time and the epicenter of the largest events. Thus,
possible false alarms (critical point behaviour without a sub-
sequent strong earthquake) have not been examined. There-
fore, it is an open question whether or not the observed phe-
nomena are unique, i.e. the occurrence of patterns prior to
large earthquakes is only meaningful if there is a system-
atic correlation between these patterns and subsequent earth-
quakes.

In the present work, we compare patterns based on crit-
ical point dynamics in terms of GCL before strong earth-
quakes with the epicenters of these events, and subsequent
intermediate to large earthquakes. By performing a system-
atic spatial search algorithm, we address the question of spa-
tial correlations. To estimate the significance of the results,
the method is also applied to catalogues from an appropriate
Poisson process model.

2 Data and method

In this section, we present the data and the method to detect
spatial correlations between GCL patterns and subsequent
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Fig. 1. Earthquakes with M ≥ 3.0
in California since 1910. Solid cir-
cles denote the events with M ≥ 6.5
since 1952: circle (a), 1952 M = 7.5
Kern County; circle (b), 1968 M =
6.5 Borrego Mountain; circle (c), 1971
M = 6.6 San Fernando; circle (d), 1983
M = 6.7 Coalinga; circle (e), 1987
M = 6.6 Superstition Hills; circle (f),
1989 M = 7.0 Loma Prieta; circle (g),
1992 M = 7.3 Landers; circle (h), 1994
M = 6.6 Northridge; and circle (i),
1999 M = 7.1 Hector Mine.

seismicity.
We analyze the seismicity in California between the 32◦ N

and 40◦ N latitude and the −125◦ W and −114◦ W longitude.
The data are taken from the Council of the National Seismic
System (CNSS) Worldwide Earthquake Catalogue. The cat-
alogue covers the time span from 1910 to 2000. The distri-
bution of earthquakes is shown in Fig. 1. To account for the
completeness of the data, we restrict the analysis to the nine
strongest earthquakes with M ≥ 6.5 since 1952. Note that
completeness of the CNSS catalogue was not achieved until
1940.

For a detailed description of the GCL model, we refer to
Zöller et al. (2001). The method is based on a fit of Eq. (2)
to the data in a circular space window with radius R and in a
time interval (t0; tf ) for earthquakes with magnitudes M ≥
Mcut = 4.0. The exponent k is set to k = 0.4 according to
the result of Zöller et al. (2001). The power law fit is then
compared with the fit of a constant and the quality of the
power law fit is measured by the curvature value introduced
by Bowman et al. (1998),

C =
power law fit root-mean-square error

constant fit root-mean-square error
. (3)

Around each epicenter of a strong earthquake, the curvature
parameter has been calculated for different values of R and
t0. The set of parameters for which C is minimal is used
for further calculations; i.e. the space window (R) and the
length of the time interval (t0) are adjusted in order to opti-
mize C. The approach of looking at different spatial scales is

based on the observation of Zöller et al. (1998), that the dy-
namics of a spatially extended system is most clearly visible
on intermediate spatial scales between the noisy microscales
and the large scales, where the dynamics are hidden due to
the averaging. The C values are determined on a spatial grid
with a resolution of 0.5◦ in longitude and latitude at nine dif-
ferent times t if , corresponding to the occurrence times of the
nine earthquakes with M ≥ 6.5, denoted with index i. The
result is a function Ci(x) for the GCL model, which is com-
pared with the epicenter distribution of the earthquakes with
M ≥ 5.0 in the time interval (t if ; t if + 1 year). This set of

epicenters is called the pattern Qi(x) for the ith strongest
earthquake. The (arbitrary) magnitude threshold M = 5.0
defining the pattern Qi(x) has been introduced, since the
premonitory patterns are assumed to be correlated not only
with the strongest earthquake, but also with some subsequent
main shock activity.

In the next step, the curvature parameter Ci
APC(x) is calcu-

lated for 100 adjusted Poisson catalogues (APC) in order to
derive a measure for the statistical significance of the results.
These catalogues are calculated according to the algorithm
of Zöller et al. (2001):

1. The CNSS catalogue is declustered using the algorithm
of Reasenberg (1985);

2. Random epicenters according to the epicenter distribu-
tion of the declustered CNSS catalogue are calculated;

3. The earthquake occurrence times are drawn from a Pois-
son process;
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4. The earthquake magnitudes are taken randomly from a
probability distribution fulfilling the Gutenberg-Richter
law (Gutenberg and Richter, 1956);

5. Aftershocks according to the law of Omori (1894) are
added using the algorithm of Reasenberg (1985) in the
inverse direction.

The resulting earthquake catalogue corresponds to a Poisson
process in time with additional aftershock activity. The dis-
tributions of the epicenters and the magnitudes are similar to
those of the genuine catalogue. Note that only the spatiotem-
poral correlations of the seismicity are randomized and all
other features are preserved. Therefore, the APCs allow one
to test for systematic spatiotemporal behaviour.

The likelihood ratio test has been proposed by Gross and
Rundle (1998) in order to compare two models with respect
to their suitability to describe an observed data set. In this
work, the observed data are given by the set Qi(x) of epicen-
ters with M ≥ 5.0 after the ith strongest earthquake. Model 1
is defined by the GCL pattern of the original catalogue before
the ith strongest earthquake, i.e. the distribution of curvature
parameters Ci(x) in space. Model 2 is the corresponding pat-
tern C

i
APC(x) for an APC. For both models, the likelihood

function L is computed with respect to the N earthquakes,
forming the pattern Qi(x):

L =
N∏

k=1

P(xk, Ck). (4)

P(xk, Ck) is the normalized probability density for an event
occurring at the epicenter xk with a premonitory GCL pat-
tern characterized by the curvature parameter Ck . To ap-
ply the likelihood ratio test, we assume Gaussian probabil-
ity density functions P(x, C) = p1(x) × p2(C) consisting
of a two-dimensional Gaussian function p1 around the spa-
tial grid node x with standard deviation σ1 and a (right wing)
Gaussian function p2 depending on the curvature parameter
C with standard deviation σ2. The value of σ1 is the distance
between two adjacent grid nodes and σ2 = 0.35 is an empir-
ical value (Zöller et al., 2001). It should be noted that Eq. (4)
must be applied cautiously, since this equation only holds if
the N earthquakes are statistically independent.

The likelihood function is also measured for each of the
APCs (model 2). The likelihood ratio LRi = L/LAPC of the
normalized likelihood functions for model 1 and model 2 is
equal to the probability ratio p/pAPC, where p denotes the
probability that Qi(x) arises from the original data (model 1)
and pAPC is the corresponding probability for the APCs
(model 2). In the case of LRi > 1, the detected GCL pat-
terns in the original catalogue are more correlated with the
subsequent occurring intermediate to large earthquakes. In
contrast, LRi < 1 means that the patterns from the random
catalogue are correlated with the future seismicity. Due to a
rather skewed distribution of LRi , the mean value 〈LRi〉 is
not an appropriate measure for the spatial correlations. In-
stead, we use the number N i

s of APCs that is a better fit than
the original model (LRi < 1) and represents a more robust

Table 1. Results of Likelihood Ratio Test. Ns is the number of ad-
justed Poisson catalogues, where the GCL patterns are more corre-
lated with main shock activity than for the CNSS catalogue. Pconf
is the probability that nine random numbers (corresponding to the
nine strong earthquakes) have a mean value smaller than or equal
to 〈Ns〉. The values in the parentheses are the results for 〈Ns〉 and
Pconf without the Kern County earthquake

Earthquake date M Ns

a. Kern County 21 Jul 1952 7.5 85

b. Landers 28 Jun 1992 7.3 34

c. Hector Mine 16 Oct 1999 7.1 23

d. Loma Prieta 18 Oct 1989 7.0 16

e. Coalinga 2 May 1983 6.7 26

f. Northridge 17 Jan 1994 6.6 62

g. San Fernando 9 Feb 1971 6.6 16

h. Superstition Hills 24 Nov 1987 6.6 28

i. Borrego Mountain 9 Apr 1968 6.5 51

〈Ns〉 38 (32)

Pconf 89% (97%)

measure. The value of N i
s varies between 0 (no APCs fit

better than the original model) and 100 (all APCs fit better).

3 Results and discussion

Results for the correlation length from Eq. (2) are shown in
Fig. 2. The triangles are the earthquakes with M ≥ 5.0 oc-
curring during one year after the strong shock with M ≥ 6.5
(largest triangle), i.e. the pattern Qi(x). The grey shaded
boxes denote the GCL pattern Ci(x). Analogously, Fig. 3
is the same for a catalogue from the Poisson process model.
Curvature parameters above 0.7 are not shown, since power
laws and constant functions are no longer distinguishable.

The likelihood ratio test introduced in Sect. 2 is now ap-
plied to compare the patterns Ci(x) and C

i
APC(x) with the

pattern Qi(x). The quantity N i
s (0 ≤ Ns ≤ 100), which is

the number of APCs that fit better to Qi(x) than the orig-
inal data, is used as a measure for the predictive power of
the GCL pattern in the original catalogue before a certain
strong earthquake. Note that we do not introduce alarm con-
ditions using threshold values. The results for N i

s are given
in Table 1. The confidence level pconf in the last row is the
probability that nine random numbers (corresponding to the
nine strongest earthquakes) have a mean value smaller than
or equal to 〈Ns〉 = (1/9)

∑
i N i

s .
The spatial correlations of the GCL patterns with the fu-

ture seismicity are clearly visible in some cases, e.g. the
Hector Mine, the Loma Prieta, the Coalinga, and the San
Fernando earthquakes. The most conspicuous anomaly can
be observed prior to the Loma Prieta earthquake in Fig. 2d.
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Fig. 2. Curvature parameter C (grey shaded boxes) based on the GCL pattern. The filled triangles are the strong earthquakes (largest triangle)
and the earthquakes with M ≥ 5.0 until one year after these events.

This is probably due to the fact that there had been no other
strong earthquake in the Loma Prieta region since 1910 and
consequently, the GCL pattern of this event is not disturbed
by the overlapping patterns from the other events. In con-
trast, the result for the Kern County earthquake is close to a
random response. A possible explanation is that the quality
and the length of the data may not be sufficient prior to 1952.

As we have checked, the result for the Kern County event can
be slightly improved with a magnitude cutoff of Mcut = 4.5
instead of Mcut = 4.0. The confidence level pconf = 89%
for the nine strongest earthquakes is below the typical con-
fidence levels for statistical hypothesis tests, e.g. p = 95%.
However, if the Kern County earthquake is excluded from the
analysis due to a lack of data quality, we obtain 〈Ns〉 = 32
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Fig. 3. Curvature parameter C (grey shaded boxes) with respect to
a strong earthquake (M = 7.0) for an adjusted Poisson catalogue
(APC). The filled triangles are the earthquakes with M ≥ 5.0 until
one year after these events.

and a resulting probability of pconf = 97%. In this case, the
null hypothesis where the results can be reproduced using a
realistic Poisson process model without spatiotemporal cor-
relations is rejected with a reasonable high confidence level.

We want to point out that all parameters in our analysis
are fixed empirically or determined by the optimization tech-
niques described in the previous section. This is a first or-
der approach which may ignore important information in the
data, leading to small significances. Therefore, it is important
to determine parameters by physical conditions, e.g. scal-
ing relations such as log R = c1 + c2M with constants c1
and c2 for the space window R (Bowman et al., 1998; Zöller
et al., 2001) and log T = c3 + c4M with constants c3 and
c4 for the time window T (Hainzl et al., 2000), as well as
search magnitudes should be introduced in order to increase
the significances. This would also be a step towards a pre-
diction algorithm, where a spatiotemporal search for anoma-
lies can be conducted. By introducing threshold values in
terms of alarm conditions, an analysis by means of error di-
agrams (Molchan, 1997) could then be carried out. These
refinements and extensions are left for future studies.

4 Summary and conclusions

We have tested the hypothesis that spatial anomalies accord-
ing to the critical point concept for earthquakes occur before
strong earthquakes. Therefore, we have used the growing
spatial correlation length as an indicator for critical point be-
haviour. To reduce the number of free parameters, we have

fixed the magnitude cutoff and the critical exponent by val-
ues known from the literature. The remaining parameters,
namely, space and time windows have been determined sys-
tematically by an optimization technique. From a likelihood
ratio test in combination with a sophisticated Poisson process
model, we have extracted a statistical confidence level.

By applying a search algorithm in space, we find a rough
agreement of the predicted regions with future seismicity.
Although false alarms and false negatives are present, the
original data provide significantly better results than the Pois-
son process model. The confidence level of 89% is enhanced
by excluding the Kern County (1952) earthquake due to a
lack of data quality. Further improvements in both the GCL
model itself and the statistical test are possible. In particular,
it is desirable to map directly probabilities instead of curva-
ture values. This would allow one to compare the present
analysis with similar approaches, especially with models
based on accelerating energy/moment release.

In conclusion, we have shown that the critical point con-
cept makes a contribution to the improvement of the seismic
hazard assessment. Further studies and applications of the
methods are promising to increase the significance of the re-
sults.
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Abstract. A systematic test on seismic quiescence occurring before large earthquakes is conducted.
For a fixed geographical location, the degree of clustering in space and time is analysed and the
results are tested against randomized earthquake catalogs. A gridding technique allows to investigate
the entire spatial volume covered by a certain earthquake catalog. The result is a significance K(�x, t)
for seismic quiescence as a function of space and time. A point (�x, t) is considered as quiet, if
K(�x, t) exceeds a threshold value K(99) such that the null hypothesis is rejected with a probability
of p ≥ 99%. Because earthquake clusters, like aftershocks and swarm events, generate erroneous
quiescence, declustered catalogs are also investigated and the influence of the clusters is discussed.
Applying this method to an earthquake catalog from Armenia, several cases of seismic quiescence
before mainshocks are obtained. These quiescence periods occur in the original data as well as in
the declustered data. Using alarm conditions, it is found that quiescence periods and mainshocks are
correlated ‘better-than-chance’. Thus, the results support the claim that seismic quiescence makes a
contribution to the improvement of seismic hazard assessment.

Key words: seismic quiescence, statistical methods, earthquake prediction.

1. Introduction

In the recent past, an extensive discussion about the predictability of earthquakes
and the significance of earthquake precursors has taken place (Nature debate,
1999). Many seismologists claim that some individual earthquakes should be pre-
dictable on the basis of precursory phenomena (Wyss, 1997a). Some of these
observed premonitory phenomena are foreshocks (Jones and Molnar, 1979), peri-
ods of seismic quiescence (Habermann, 1988; Wyss and Habermann, 1988a), and
patterns related to critical point dynamics in terms of accelerating moment release
(Jaumé and Sykes, 1999) or growing spatial correlation length (Zöller et al., 2001).

The counterclaim to the predictability based on precursory phenomena is the
conclusion that earthquakes are inherently unpredictable (Geller et al., 1997), be-
cause the earth is assumed to be in a state of self-organized criticality (SOC). In

101



246 G. ZÖLLER ET AL.

this context, the significance of precursory phenomena is brought into question,
because they are detected only in a limited number of cases using special values
for free parameters. However, Hainzl et al. (2000) have shown that also in models
obeying SOC, precursory phenomena occur. Especially, the detection of seismic
quiescence can improve the hazard assessment in these models. The aim of this
work is a systematic mapping of periods of seismic quiescence in a real earthquake
catalogue and to test if positive correlations with the largest earthquakes exist.

The role of seismic quiescence as a promising candidate for an intermediate-
term precursor to large earthquakes has been discussed in numerous publications
(Wyss and Habermann, 1988a, 1988b; Ogata, 1992; Wyss, 1997a, 1997b; Hainzl
et al., 1999, 2000). Possible mechanisms for the occurrence of seismic quiescence
are presented in Dieterich (1978), Dieterich and Okubo (1996), Kato et al. (1997),
Rudnicki (1988), and Scholz (1988). It typically extends over the rupture zone of
the subsequent mainshock and lasts for months to years. However, the detection
of quiescence in earthquake catalogs is not straightforward due to the following
reasons: (1) The occurrence of seismicity rate variations in earthquake data is “a
complex mixture of real and man-made changes” (Habermann, 1987). The latter
mostly arise from network changes and systematic changes in magnitudes. (2)
The significance of an observed signal, e.g., a seismic quiescence, depends on the
data quality as well as on the statistical testing procedure itself. For instance, the
detection of quiescence becomes questionable, if the background seismicity is too
low. (3) A proper definition of the background seismicity is required. The present
work mainly deals with points (2) and (3). For the discrimination between real and
‘man-made’ changes, the reader is referred to Habermann (1987).

In this work, a weighted sum of earthquakes above a fixed magnitude is used to
quantify seismic clustering. The weights decrease with increasing distance in space
and time (C-value). The inverse of C, called Q-value, is a measure for quiescence.
A common problem of all approaches is the choice of parameters needed for the
analysis, e.g., space and time windows, and the magnitude cutoff. Since the quies-
cence signal depends on these parameters, the separation of precursory quiescence
and random rate decreases is not clear. Therefore, randomized earthquake data are
used to compute significances for seismic quiescence (Theiler et al., 1992; Zöller
et al., 1998). This approach is based on bootstrap techniques (Efron and Tibshirani,
1993; Künsch, 1989), which are well-known in time series analysis. Because each
Q-value of the original data can be compared with a mean value of a large number
of random data, a higher degree of robustness is expected for the results.

In Section 2, the earthquake catalog and the data analysis technique are de-
scribed in detail. The results of the analysis are presented and discussed in Section
3. Finally, the conclusions are given in Section 4.
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Figure 1. Map of the study area and earthquake distribution between 1962 and 1996. The
crosses denote the earthquakes with M ≥ 2.2; the triangles denote the earthquakes with
M ≥ 5.0.

2. Data and Method

2.1. DATA AND PRE-PROCESSING

An earthquake catalog for the Armenia region (38.2◦–42.0◦N/42.0◦–47.0◦E) is in-
vestigated, which has been recorded by the National Survey for Seismic Protection
of the Republic of Armenia between 1962 and 1996. Armenia and the adjacent
regions are characterized by a diffusive distribution of earthquake epicentres, which
is due to the typical mosaic-block structure formed by several differently orientated
faults (Balassanian et al., 1997). The study area is shown in Figure 1.

The data set contains the times, the coordinates of the epicentres, and the surface
magnitudes for the total number of 11, 781 events with M ≥ 2.0. The depths are
not taken into account, because of their large uncertainties. The epicentres are cal-
culated to the nearest 0.1◦. A change of the epicentre accuracy may introduce small
volumes of erroneous seismic quiescence. Therefore, only quiescence volumes
exceeding a certain size will be considered as candidates for precursory patterns
(see Section 3.1).
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Figure 2. The frequency magnitude relation (Gutenberg–Richter law) for the Armenia data.
The solid line is a fit for b = 0.98 (Richter b-value).

Figure 2 shows the frequency magnitude relationship (Gutenberg and Richter,
1954) of the catalog. A straight line with the slope (Richter-b value) b = 0.98 ±
0.05 is in good agreement with the distribution of magnitudes M ∈ [2.2; 5.8].
Thus, a lower magnitude cutoff according to M ≥ 2.2 is introduced. The remaining
9,314 events are the basis for the further investigations.

A detailed analysis of the catalogue homogeneity and the magnitude of com-
pleteness Mc as a function of space and time has been conducted by Wyss and
Martirosyan (1998) for the same catalogue as in the present study. They found no
artificial rate changes in time, but a dependence of Mc on the space. In particular,
Mc increases for longitudes smaller than 39.7◦ and greater than 41.8◦ to Mc = 2.8.
As Zuniga and Wiemer (1999) and Zuniga and Wyss (1995) have shown, the com-
pleteness considerations are important for the choice of the study area and should
be carried out carefully to avoid misleading interpretations of observed seismicity
patterns. However, the present analysis is based on the detection of relative qui-
escence, rather than absolute rate decreases. That is, only significant deviations
from a local background seismicity are detected. Consequently, spatial changes of
the magnitude of completeness can be neglected, if Mc is approximately constant
in time. The quiescence analysis is thus conducted in the whole region shown in
Figure 1. This study area is chosen slightly smaller than the original catalog in
order to avoid boundary effects (see also Section 2.4).

Another important source of man-made changes is the occurrence of quarry
blast events. Wiemer and Baer (2000) have shown that these events can be detected
by comparing the daytime rate of earthquakes with the nighttime rate. For the
whole study area, this analysis results in an increased activity at noon. A spatial
mapping of this rate leads to the identification of two locations in the Armenian
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catalogue, where a significant number of quarry blasts is probably present. These
events occur with a rate that is approximately constant in time. As a consequence,
the quarry explosions may introduce only artificial quiescence periods with dur-
ations of hours to days, whereas the present analysis focuses on time scales of
months to years.

2.2. DETECTING SEISMIC QUIESCENCE

For the quantification of seismic quiescence, counting rates with additional weights
corresponding to spatial and temporal overlap volumes are used (Zschau, 1998). In
the following, the method is described briefly:
1. The function C(�x, t) is defined as the weighted sum of all earthquakes occurred

at time Ti with epicentre �Xi in the past (Ti ≤ t):

C(�x, t) =
∑

Ti<t

wspace(�x, �Xi) wtime(t, Ti), (1)

The spatial weight wspace(�x, �Xi) = V (�x, �Xi)/(πR2) contains the overlap
volume V (�x, �Xi) of two circles with the same radius R surrounding the
epicentre �Xi and the point �x, respectively:

V (�x, �Xi) = R2 ·

{

2 arccos
(

ri
2R

)

− sin
[

2 arccos
(

ri
2R

)]

, ri ≤ 2R
0, else,

(2)

where ri = |�x − �Xi |S is the distance on the sphere.
The time weight wtime(t, Ti) is a piecewise linear function:

wtime(t, Ti) =

{

1 − t−Ti

T
, 0 ≤ t − Ti ≤ T

0, else.
(3)

2. The inverse of C is a measure for seismic quiescence:

Q(�x, t) = 1/C(�x, t). (4)

As an example, the function Q(�x, t) is calculated at the location �x = (40.92◦N,
44.22◦E) of the M7 Spitak earthquake (8 December 1988) using 2R = 60 km and
T = 600 days (see Figure 3). The curve shows several peaks indicating less seismic
activity. However, these signals have to be divided into real quiescence periods and
statistical fluctuations. Therefore, 100 synthetic earthquake catalogs are generated
by randomizing the spatiotemporal correlations in the data. In particular, the epi-
centres have been shuffled as a function of the time: (ti, �xi) → (ti, �xrand(i)), where
rand(·) maps the index i on a randomly selected index j . The dashed line in Figure
3 shows the average of Q over the 100 synthetic catalogs; the errorbars indicate
three standard deviations: 〈Qsur〉±3σ sur. The comparison of both curves shows that
before the Spitak earthquake, Q deviates most significantly from the background
seismicity, which is assumed to be given by the synthetic earthquake data.
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Figure 3. The function Q(t) at the location of the M7 Spitak earthquake on 7 December 1988.
The solid line results from the original earthquake catalog. The dashed line is the average of
100 surrogate catalogs, each generated by scrambling the original data. The errorbars denote
three standard deviations: 〈Qsur〉 ± 3σ sur.

2.3. THE NULL HYPOTHESIS

A proper definition of a null hypothesis is not straightforward (Stark, 1997; Kagan,
1997). In this paper, the null hypothesis is constructed simply by randomizing the
locations of the earthquakes in the original catalog, so that the spatiotemporal cor-
relations in the data are destroyed. This technique is convenient, because the null
hypothesis is derived directly from the data set itself (Theiler et al., 1992; Zöller
et al., 1998) such that the statistical structure of the data is preserved. In detail, the
following null hypothesis for seismic quiescence is defined:

Null Hypothesis. The function Q(�x, t) for real earthquakes can be modelled by
Qsur(�x, t) obtained from surrogate earthquake data with randomized dynamics but
the same statistical properties.

An important property of the surrogate data is the conservation of the event
distributions, i.e., the time distribution and the spatial distribution of earthquakes.
Consequently, the frequency magnitude relation shown in Figure 2 is preserved.
Only the dynamics is randomized by scrambling the epicentres and thus, destroy-
ing the spatiotemporal correlations. The main advantage of this technique is that
important constraints of the earthquake data remain the same.

However, the surrogate data have to be considered carefully. Therefore, note that
the original data, which are the basis for the randomization, are not uniformly dis-
tributed; they contain either aftershocks and other clusters like earthquake swarms.
These clusters are distributed over the entire catalog by the randomization. As a
consequence, the seismic rate increases outside the cluster volume and artificial
quiescence is measured almost everywhere, when original data and surrogate data
are compared. There are two methods to deal with the cluster problem (Kagan
and Vere-Jones, 1996): (A) declustering the earthquake catalog and (B) using a
null hypothesis which explicitly includes clustering. Both techniques are related
to additional parameters, because they depend on the definition of a cluster. With
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respect to the latter method, a special kind of randomization, which is performed
by a sequence of transpositions of two events, i ↔ j , is introduced. First, an
event i is picked up randomly from the catalog. For a uniform randomization the
probability that i is exchanged with j , is independent of i and j : pij = 1/n, where
n is the total number of earthquakes in the catalog. In contrast to this, a Gaussian
probability distribution for a modified null hypothesis is introduced:

pij ∼ e
− 1

2 (
rij
r0

)2

, (5)

where rij is the distance of the epicentres of i and j ; the parameter r0 is set to
r0 = 50 km. This technique favours a more localized randomization. Although the
influence of the clusters decreases, artificial quiescence is still present. This is not
surprising, because the spatial extension of most clusters is less than the typical
distance r0. On the other hand, r0 can not be chosen arbitrarily small, because
the total number of events is relatively small and inhomogeneously distributed.
Therefore, the method proposed by Kagan and Vere-Jones (1996) is also used.
Declustered catalogs are calculated to identify quiet periods, which are artificial.
Applying the decluster algorithm of Reasenberg (1985) with the parameters from
Arabasz and Hill (1996), a data set of 7,892 events with M ≥ 2.2 remains.

Note that the declustering is an additional pre-processing of the data and thus
independent of the randomization. In the next section, the test of the null hypo-
thesis is described. The testing procedure is then applied to the original earthquake
catalog including clusters, as well as to the declustered catalog.

2.4. TEST OF THE NULL HYPOTHESIS

The modeling procedure can be divided into four steps and is performed for the
times t, t + �T, t + 2�T, . . . .

(i) For a fixed location �x and a time t the set of all events that occurred before t

is considered.

(ii) For this reduced catalog, N surrogate data sets are created by randomization.

(iii) The statistical significance

K(t) =
Q(t) − 〈Qsur〉(t)

σ sur(t)
(6)

is calculated, where 〈Qsur〉(t) is the average of Q over all surrogates and
σ sur(t) the corresponding standard deviation.

(iv) Set t → t + �T and go back to item 1.
In order to detect precursory phenomena, only events from the past (Ti ≤ t) are

used to model Q at time t . Due to statistical reasons, the number of events with
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Ti ≤ t as well as the number of events within the space–time window should not
be too small. Hence, the calculations are restricted – arbitrarily – to t ≥ 1/1980,
so that the past contains at least 4000 earthquakes with M ≥ 2.2 (3500 in the
declustered catalog). Furthermore, the condition is introduced that for one location
�x at least three events have to satisfy for each time t the conditions ri ≤ 2R and
0 ≤ t − Ti ≤ T from Equations (2) and (3). Else, the modelling at the location �x is
not taken into account.

The steps (i) to (iv) are performed for the nodes �xj of a 50×50 grid in space. To
avoid boundary effects, a grid that covers only the central region in space (38.6◦–
41.6◦N/42.8◦–46.3◦E) is considered. The parameters are 2R = 60 km and T =
600 days in order to approximate quiescence episodes with intermediate size and
duration; the time bin in item 4. is set to �T = 25 days. For each time step a
number of N = 100 surrogate data files is generated.

The aforementioned procedure provides the significance K(�x, t) as a function
of space and time. To transform the significance into a probability, the distribution
of Q-values has to be considered. The value, below which 99% of the results fall,
is extracted from each distribution and the corresponding significance K(99)(t)

is calculated from Equation (6). As a conservative approximation the threshold
K(99) = maxt K

(99)(t) is chosen for the rejection of the null hypothesis. For the
original catalog, K(99) = 12, respectively for the declustered catalog K(99) = 8, is
found.

3. Data Analysis

3.1. PERIODS OF SEISMIC QUIESCENCE IN THE ARMENIA REGION BETWEEN

1980 AND 1997

The technique introduced in the previous section is now applied to detect periods
of seismic quiescence prior to mainshocks. Therefore, earthquakes with magnitude
M ≥ 5.0 are investigated. The original catalog with clusters contains nine such
events including one aftershock in the time between 1980 and 1996. These earth-
quakes are listed in Table I. The aftershock (event 4a in Table I) is not considered
as a mainshock in the further investigations.

In order to analyse temporal correlations between quiescence and mainshocks,
the fraction VQ of quiet grid nodes, namely of grid nodes with K ≥ K(99) (see
Equation (6)), is calculated for each time step t . Figure 4 shows the results for the
earthquake catalog including clusters (Figure 4(a)) and those for the declustered
catalog (Figure 4(b)). The figure shows at least four different periods of quiescence.
The results obtained for the original data and the declustered data have two main
differences: first, the aforementioned artificial periods of quiescence after the main-
shocks, which are due to the shuffled aftershock sequences in the surrogate data,
are absent in the case of declustering. Second, the results for the declustered data
show a quiescence in the beginning of 1983, which is not present in the original
data.
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Table I. Earthquakes in the Armenia region with M ≥ 5.0 in the time between 1/1980 and
12/1996. Event 4a is probably an aftershock of event 4.

No. Date Lon. (deg.) Lat. (deg.) Mag.

1 June 16, 1982 43.90 41.00 5.0

2 Sep. 20, 1984 44.08 41.42 5.8

3 May 13, 1986 43.70 41.45 5.6

4 Dec. 7, 1988 44.22 40.92 7.0

4a Dec. 7, 1988 44.22 40.85 5.7

5 Dec. 16, 1990 43.69 41.32 5.1

6 Oct. 6, 1991 43.60 41.13 5.1

7 Dec. 9, 1992 45.19 40.10 5.0

8 Sep. 24, 1994 46.15 40.37 5.0

Figure 4. Fraction VQ of the total volume covered by seismic quiescence (K ≥ K(99)) for the
original catalog without declustering (a) and the declustered catalog (b). The impulses apply
to earthquakes with magnitude M ≥ 5.0.
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Figure 5. Pictorial definition of begin and end of a quiescence. An alarm is issued at the end
of the quiescence.

Although quiescence periods before mainshocks are visible in some cases (see
Figure 4), a systematic analysis is required to justify the statement that quiescence
periods are correlated with large earthquakes. This problem is addressed in the next
section.

3.2. TEMPORAL CORRELATIONS BETWEEN QUIESCENCE PERIODS AND

MAINSHOCKS

For a quantitative analysis of correlations between quiescence and mainshocks,
alarm conditions are defined. Afterward, the predicted events, the false alarms and
the failures to predict are counted. Finally, the fraction of time covered by alarm,
is computed.

The alarm conditions have the following form:

(A1) The alarm starts, if the fraction of the quiet volume VQ(t) falls below the
threshold Vth (time te).

(A2) The alarm lasts for TA.

(A3) If condition (A1) is fulfilled during a running alarm, this alarm remains
unchanged and no new alarm is issued.

A sketch of the alarm conditions is given in Figure 5.
These alarm conditions are connected with two additional parameters, the

threshold volume Vth and the alarm duration TA. An event is ‘predicted’, i.e.,
recognized by an alarm, if it takes place in an alarm interval [te; te + TA].

Figure 6 shows the positions of the alarms relative to the mainshocks for a
fixed set of parameters. The alarm duration is TA = 10 months and the threshold
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Figure 6. Temporal correlations between alarms (boxes) and earthquakes with M ≥ 5.0
(impulses) for the original catalog (a) and the declustered catalog (b). The threshold value
for VQ is set to Vth = 1% for the original catalog and Vth = 0.5% for the declustered catalog;
the alarm duration TA is 10 months, respectively.

value Vth is chosen to Vth = 1% for the original catalog and Vth = 0.5% for the
declustered data. For the original catalog, 5/8 of the mainshocks are preceded by an
alarm and for the declustered catalog this fraction is 4/8. Among the seven alarms,
there are two false alarms and three failures to predict. In Figure 6 the fraction of
the total time covered by alarm is 36% for the catalog including clusters (Figure
6(a)) and 31% for the declustered catalog (Figure 6(b)).

It is, however, not clear, if the results in Figure 6 deviate significantly from
a random response. Therefore, seven alarms, each lasting for TA, are randomly
distributed over the entire time interval and the number of mainshocks covered by
an alarm Ns as well as the number of false alarms is extracted. This procedure is
repeated 10,000 times. A confidence level can be defined by the probability pc to
predict less than Ns mainshocks with these random alarm sets.

This calculation is performed for different values of TA and Vth. The results are
given in Figure 7 (catalog including clusters) and in Figure 8 (declustered catalog).
Each plot corresponds to a fixed alarm duration TA and shows the number of alarms
and false alarm (lower plot) and the confidence level pc (upper plot) as a function
of Vth, respectively. The figures demonstrate that the distribution of alarms is, for
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Figure 7. Catalog including clusters: number of alarms and false alarms as a function of
the parameters TA and Vth (bottom); confidence level pc for the alarms not being randomly
distributed (top). (a) TA = 8 months, (b) TA = 10 months, (c) TA = 12 months, (d) TA = 15
months.

certain ranges of the parameters Vth and TA, far from being random. This result
holds for both, the catalog including clusters and the declustered catalog. The
confidence level for the example in Figure 6(a) is pc = 0.91. For Figure 6(b)
this value is pc = 0.81.

3.3. LOCATIONS OF THE QUIESCENCE VOLUMES AND SPATIAL

CORRELATIONS WITH THE MAINSHOCKS

In the previous section, the computed temporal correlations between episodes of
seismic quiescence and subsequent mainshocks have been calculated. For certain
alarm conditions, the alarms issued by the quiescence detector are far away from a
random response. The alarm conditions correspond to the hypothesis that seismic
quiescence prior to mainshocks exists. This hypothesis is rather general, because
no further assumptions about the duration and the spatial location are taken into ac-
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Figure 8. The same as in Figure 7 for the declustered catalogue.

count. The reason for this is that the underlying mechanisms of quiescence are not
well understood and may not be applicable for all earthquakes, e.g., the earthquake
mechanisms may vary with locations or depth of focus.

Figures 9 and 10 show the location of the quiescence volumes relative to the
mainshock epicentre for the ‘successful’ alarms in Figure 6 for the catalog includ-
ing clusters and the declustered catalog, respectively. Therefore, the quiescence
volume has been defined by the set of grid points, which are quiet for at least 10%
of the duration td in Figure 5. Short term fluctuations of the quiescence volume are
thus suppressed.

Figure 9(c) and Figure 10(c) both provide a quiescence volume near the epi-
centre of the subsequent Spitak earthquake. In the other cases the quiescence
volume is less stable with respect to the declustering procedure. Hence, the quies-
cence detector leads to the clearest signal for the largest mainshock, the M7 Spitak
earthquake.

Finally, a criterion for the ‘prediction’ of the mainshock epicentre is introduced.
That is, the mainshock must be located within the quiescence volume. For the
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Figure 9. Catalog including clusters: location of the quiescence volume relative to the
mainshock epicentre (Vth = 1%) for the matched mainshocks in Figure 6(a).
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Figure 10. Declustered catalog: location of the quiescence volume relative to the mainshock
epicentre (Vth = 0.5%) for the matched mainshocks in Figure 6(b).

original catalogue, this criterion results in a rate of 3/8 of predicted mainshocks
in time and space. In the declustered catalogue, all mainshocks occur outside the
quiescence volume. The fraction of the space-time volume covered with alarms is
3% for the original catalogue and 2% for the declustered catalogue.

3.4. THE M7 SPITAK EARTHQUAKE

This subsection deals with the Spitak M7 earthquake, which occurred on 7 Decem-
ber 1988 at 40.92◦N, 44.22◦E (Balassanian et al., 1995; Rogozin and Philip, 1991).
In a detailed study, Balassanian et al. (1995) claim that this earthquake was pre-
ceded by the quiescence of different durations: 5 years for the future source zone;
1.5 years along the active faults, the junction which coincides with the source zone;
1.5 months for the whole region of the Armenian uplands. This means that there
is a relation between the area size and the quiescence duration. In particular, for
longer quiescence durations the area is smaller and vice versa.
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Wyss and Martirosyan (1998) claim that this earthquake was preceded by a
quiescence of 5 ± 0.5 years duration and a maximum extension of approximately
40 km. The quiescence is located north of the epicentre. This is in good agree-
ment with the present result illustrated in Figures 9(c) and 10(c). Furthermore,
the technique used in the present work, yields a maximum extension of the qui-
escence of approximately 80 km in February 1987. For larger values of Vth, the
anomaly shrinks, but the location remains stable. Wyss and Martirosyan (1998)
use the alarm cube method to show that the anomaly is unique with respect to the
statistical significance, if the standard deviate z which determines the significance
level, is increased. Taking into account the different study area, the present analysis
confirms this finding, if the parameter Vth is increased. Note that in this approach
Vth decides whether an alarm is issued, while this is done by the standard deviate z

in the work of Wyss and Martirosyan (1998).
The main difference is found in the onset and the duration of the quiescence.

Contrary to Wyss and Martirosyan (1998), the present analysis leads to a quies-
cence beginning in May 1986 and lasting for 2.5 years. Therefore, note that the
definition of the duration and the extension is arbitrary. Wyss and Martirosyan
(1998) determine these parameters by a 75% rate decrease in the crustal volume
of the mainshock. This is in contrast to the quiescence detector in the this work,
because the quiescence is smoothed out due to the special weights in Equation (1).

In summary, the approach in the present work is different from the those of
Wyss and Martirosyan (1998) with respect to the study area, the quiescence hypo-
thesis, the alarm conditions, and the statistical testing. These differences have been
introduced in order to conduct a systematic and robust test on seismic quiescence
and can also be applied to data from other regions. The fact that despite these
differences the results for the Spitak earthquake are very similar, strongly sup-
ports the hypothesis that this event was preceded by a clearly pronounced seismic
quiescence.

4. Summary and Conclusion

This work deals with seismic quiescence as an intermediate-term precursor to large
earthquakes. This phenomenon is known at least since the 1960s, and documented
in several case studies. However, case studies are not suitable to assess the statist-
ical significance of quiescence, respectively the benefit for earthquake prediction.
To overcome the problem of lacking statistical significance, a systematic spatiotem-
poral mapping of seismic quiescence with fixed parameters has been conducted
using a high quality data record from Armenia.

To quantify seismic quiescence, a simple cluster algorithm has been used. Stat-
istical significances have been derived by means of the concept of surrogate data
for spatiotemporal systems. Using a large number of surrogate data files yields
results with a high degree of robustness. Applying a gridding technique provides a
significance K(�x, t) for seismic quiescence as a function of space and time. With
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respect to the robustness of the method, a threshold K(99), which discriminates,
whether or not the actual seismicity is less then the background seismicity, has been
introduced. Due to the scrambling of aftershock sequences over the entire spatial
volume in the surrogate data, postseismic quiescence is observed. The applica-
tion of the method to a declustered earthquake catalog shows that this postseismic
quiescence is artificial.

The correlations between quiescence periods and mainshocks have been estim-
ated by introducing alarm conditions. In the Armenian catalogue, it is found that
quiescence periods and subsequent mainshocks are correlated better-than-chance
for a wide range of alarm parameters. In agreement with previous studies (Balas-
sanian et al., 1995; Wyss and Martirosyan, 1998), a pronounced seismic quiescence
before the M7 Spitak earthquake in 1988 is observed.

The future work will focus on refinements and improvements of the technique,
e.g., a continuous spatiotemporal mapping of probabilities for the presence of qui-
escence. Furthermore, the restriction of fixed values R and T will be removed by
searching the entire parameter space for anomalies. This will allow to rank the
anomalies according to their significance and find the most significant one.

In conclusion, a correlation between quiescence patterns and large earthquakes
is found, although no ‘one-to-one’ association can be established. Thus, the ana-
lysis is in good agreement with the numerical simulations of Hainzl et al. (2000)
and their conclusion that the detection of seismic quiescence can make an important
contribution to improve seismic hazard assessment. It can be expected that further
studies on this phenomenon, especially on the mechanisms, allow us to obtain new
interesting insights over the earthquake process.
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[1] The critical point hypothesis for large earthquakes predicts

two different precursory phenomena in space and time, an

accelerating moment release and the growth of the spatial

correlation length. The objective of this work is to investigate

both methods with respect to their predictive power. A systematic

statistical test based on appropriate random earthquake catalogs

allows to quantify the correlations of a precursory pattern with

the subsequent mainshock activity. The analysis of target

earthquakes in California since 1960 with magnitudes M �
Mcut reveals that these correlations increase systematically with

growing Mcut, and correlations at greater than 95% confidence

are observed for Mcut � 6.5 in the case of the spatial correlation

length. In particular, the seismicity patterns are found to be

significantly correlated with each of the largest earthquakes (M �
7.0), individually. The acceleration of the moment release has a

similar trend, but is less significant. INDEX TERMS: 7260

Seismology: Theory and modeling; 7223 Seismology: Seismic

hazard assessment and prediction; 7209 Seismology: Earthquake

dynamics and mechanics; 3220 Mathematical Geophysics:

Nonlinear dynamics

1. Introduction

[2] The question whether or not earthquakes are predictable is
one of the ‘‘holy grails’’ of geophysics. The application of
concepts from statistical physics and nonlinear dynamics, e.g.
self-organized criticality [Bak and Tang, 1989], provided new
insights into the prediction problem [Geller et al., 1997; Hainzl
et al., 2000]. In the recent past, the critical point concept for large
earthquakes has led to a revised understanding of the preparatory
process of mainshocks. Based on the theory of crack propagation
and damage mechanics [Vere-Jones, 1977; Das and Scholz, 1981],
the rupture process has been reinterpreted as a critical point
phenomenon in terms of statistical physics. The approach to the
critical point as well as the rupture process itself is characterized by
scaling rules [Allegre et al., 1982; Sornette and Sornette, 1990],
e.g., for the spatial correlations of the stress field. Voight [1989]
derived a second-order differential equation for material failure and
showed that it can be solved for certain parameter values by the
well-known time-to-failure equation. This equation has been used
in recent years to quantify the acceleration of seismicity prior to
large earthquakes [Bufe and Varnes, 1993; Bowman et al., 1998;
Jaumé and Sykes, 1999; Bowman and King, 2001], first reported
by Sykes and Jaumé [1990]. Ben-Zion and Lyakhovsky [2001]
found that accelerating moment release has predictive power, if the
seismicity has a broad frequency-size statistics. Using the renorm-
alization group formalism, Sornette and Sammis [1995] elaborated

the ‘‘critical earthquake concept’’ by deriving the time-to-failure
equation in the framework of statistical physics. The acceleration
of the moment release is a hallmark of the critical earthquake
concept. However, the most important feature of spatially extended
critical point systems is in general the growth of the spatial
correlation length according to a power law with a singularity in
the critical point [Main, 1999]. Zöller et al. [2001] investigated the
scaling relation for the spatial correlations and proposed a method
to measure the correlation length by means of the epicenter
fluctuations.
[3] Critical point behavior prior to large earthquakes has been

reported in several case studies [Jaumé and Sykes, 1999 and
citations therein]. However, the analysis has only been conducted
for special values of space and time. Thus, no conclusions can be
drawn with respect to practical forecasting purposes. The goal of
the present work is to search systematically for patterns related to
critical point behavior in terms of growing spatial correlation
length and accelerating moment release without tuning free param-
eters. The correlations of these pattern with subsequent intermedi-
ate to large earthquakes are calculated. In a recent work, Zöller and
Hainzl [2001] mapped curvature parameters, which measure the
quality of a power law fit to the data, in space. This method is now
generalized in the way that probabilities are mapped with the
advantage that different patterns can be compared in a straightfor-
ward manner. Because parameters like space or time windows are
not known in advance, it is a common technique to detect the
patterns related to critical point dynamics in the entire parameter
space. The same procedure is then repeated for a large number of
appropriate random earthquake data. The significance is measured
by the deviation of the original pattern from the corresponding
distribution of patterns in the random data.

2. Data and Method

[4] We analyze the seismicity in California between 32�N and
40�N latitude. The data are taken from the Council of the National
Seismic System (CNSS) Worldwide Earthquake Catalog (available
at (http://quake.geo.berkeley.edu/cnss). The catalog covers the time
span from 1910 to the present. To account for homogeneous
reporting, we restrict the analysis to the time from 1960 to 2001.

2.1. Power Law Fits

[5] The method to calculate the accelerating moment release
(AMR) is close to the methodology in Bowman et al. [1998]. In
particular, the time-to-failure equation for the cumulative Benioff
strain (��) (t) =

PN tð Þ
i¼1

ffiffiffiffiffi

Ei

p
of the earthquakes at times t with

energies Ei prior to a mainshock occurring at time tf

ð��ÞðtÞ ¼ Aþ Bðtf � tÞm ð1Þ

is fit to the data in a circular space window with radius R, a time
interval (t0; tf) for earthquakes with magnitudes M � 5.0. The
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constants A and B are fit parameters. The exponent m is set to
m = 0.3 according to numerous AMR studies, e.g., Bufe and
Varnes [1993]. The power law fit is compared with a linear fit
A0 � B0(tf � t) and the quality of the power law fit is measured
by the curvature value C, which is the root mean square (rms)

error of the power law fit divided by the rms error of the linear fit.
The free parameters R and t0 are determined by the condition that

C is a minimum.
[6] The proceeding for the detection of the growth of the spatial

correlation length (GSCL) is identical, except that now the equa-
tion for the spatial correlation length x

xðtÞ ¼ Dðtf � tÞ�k ð2Þ

is used with the fit parameter D and M � 4.0. For the exponent k,
we use the empirical value k = 0.4 found in Zöller et al. [2001],
although other authors suggest on theoretical grounds k = 0.25
[Rundle et al., 1999]. Note that equation (2) has a singularity at
t = tf, whereas (��) (t = tf) in equation (1) remains finite. Because x
is a non-cumulative quantity, the curvature parameter C is now the
rms error of the power law fit divided by the rms error of the

constant fit.
[7] Both, the GSCL and the AMR patterns are detected on a

spatial grid with a resolution of 0.5� in longitude and latitude for
a fixed time tf. To account for the temporal evolution of the
pattern, a time grid for tf is introduced. Due to the high computa-
tional effort the resolution is set to one year: ti 
 tfi = 1960.0 + i

with i = 0, . . ., 41. The result is a function C ~x; tið Þ of curvature
parameters for the GSCL patterns and the AMR patterns, respec-

tively.

2.2. Random Earthquake Catalogs and Significances

[8] In the next step, C ~x; tið Þ is calculated for nran = 100 random
catalogs. The algorithm for the computation of these synthetic data

is described in Zöller et al. [2001]. Each catalog is a realization of a
random Poisson process with additional synthetic aftershock activ-

ity following Omori’s law. The distributions of magnitudes and
epicenters fit those of the original catalog; the latter feature is

important for the GSCL patterns. The significance of an observed
pattern calculated at the location~x at time ti in the real data can be

defined by the probability

pð~x; ti ¼ nð~x; tiÞ=nran; ð3Þ

where n ~x; tið Þ is the number of random catalogs with Ciorig ~x; tið Þ �
Ciran ~x; tið Þ. That is, large values of p denote high significances
indicating that the pattern cannot be reproduced easily by random

data.

2.3. Likelihood Ratio Test

[9] The likelihood ratio test has been proposed Gross and
Rundle [1998] in order to compare two models with respect to
their suitability to describe an observed data set. In our case, the
observed data (target events) are given by the set of N(ti) earth-
quakes with M � Mcut occurring within the time interval [ti; ti + 1
year]. Model 1 is defined by the GSCL, respectively AMR pattern
of the original catalog, that is, the function p ~x; tið Þ. Model 2 is the
corresponding pattern for a random catalog. For both models, the

likelihood function L is computed for the entire space-time volume
and the total number N =

P

iNi(t) of target earthquakes:

L ¼
Y

41

i¼0

Y

NðtiÞ

k¼1

Pð~xk ; tiÞ: ð4Þ

P ~xk ; tið Þ is the normalized probability density for an event occur-
ring in the time interval [ti; ti + 1 year] at the epicenter~xk of a target

event with a premonitory GSCL, respectively AMR pattern. To

apply the likelihood ratio test, we assume the probability density
function

Pð~x; tiÞ ¼ k �
Z

g ~x0 �~xð Þ � ~pð~x0 � tiÞd2x0 ð5Þ

consisting of a two-dimensional Gaussian function g around the

spatial grid node~x with a standard deviation equal to the distance
between two grid nodes. The second function is defined by
~p ~xð Þ ¼ p ~xð Þ � 0:5ð Þ �� p ~xð Þ � 0:5ð Þ with p ~xð Þ from equation (3).
This definition is based on the fact that p ~xð Þ = 0.5 refers already to

randomness and thus p ~xð Þ � 0.5 is a meaningless case which is
excluded from the analysis by means of the Heavyside step

function �. For each catalog, the normalization factor k is defined
by the condition that the probability density integrates to the total

number N of target earthquakes, k = N/
R R

P ~x; tð Þd2 x dt.
[10] The likelihood function is also measured for each of the

random catalogs. The likelihood ratio LR = Lorig/Lran of the
normalized likelihood functions for model 1 and model 2 is equal
to the ratio p/pran, where p denotes the probability that the observed
seismicity arises from the original data (model 1) and pran is the
corresponding probability for the random data (model 2). In the
case of LR(ti) > 1, the detected GSCL patterns in the original
catalog are more correlated with the target seismicity than the
patterns from the random catalogs. By contrast, LR(ti) < 1 means
that the patterns from the random catalog fit better to the target
earthquakes.

3. Results and Discussion

[11] First, the spatiotemporal correlations are calculated accord-
ing to the previous section. The number Ns 2 [0; 100] of random
catalogs with LRi > 1 is used as a measure to compare original data
and random data in space and time. Note that due to the normal-
ization, this quantity includes not only information about main-
shocks with a precursory pattern, but also ‘‘false alarms’’ (patterns
without a mainshock) and ‘‘false positives’’ (mainshocks without a
pattern). Figure 3 shows Ns as a function of the lower magnitude
threshold Mcut of the target events. For the GSCL analysis the
figure shows a well defined region Mcut � 6.5 where the GSCL
pattern is positively correlated with the observed mainshock
activity at greater than 95% confidence.
[12] Because Ns � 50 would indicate random response, the

values for 5.0 � Mcut � 6.0 reveal an anticorrelation between the
observed GSCL patterns and the real seismicity. This behavior
points to a small-scale clustering in space which is below the
background level of the spatial correlation length. Because a
minimum number of earthquakes is required to perform the power
law fits, the space window cannot be reduced to such small scales
and consequently, a negative correlation is found on intermediate
scales. This behavior is not expected in the AMR patterns, because
energy release below a certain background level still makes a small
but positive contribution to �� in equation (1), which is a
cumulative measure. In fact, for Mcut � 6.4 the results reflect
almost randomness, whereas for higher values of Mcut the tendency
is similar to those of the GSCL patterns, with lower confidence
levels. These findings confirm clearly the hypothesis that patterns
based on critical point dynamics are precursory phenomena to the
largest earthquakes in California.
[13] Next, we consider the spatial patterns p ~x; tið Þ at times ti

prior to the mainshocks (M � 6.5) in California. These patterns
are shown in Figure 2 for GSCL and in Figure 3 for AMR. In

some cases, the spatial correlations of the GSCL pattern with the
future seismicity is clearly visible, e.g., the San Fernando, Loma

Prieta, and the Hector Mine earthquakes. For the AMR pattern,
the San Fernando earthquake shows the best agreement. In

general, the regions covered by high probabilities for critical point
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behavior are relatively large, especially in Figure 3. This is to

some degree in accordance with the earlier observations that these
regions are much larger than the rupture areas of the mainshocks.

However, the optimization technique may lead in some cases to an
over-estimation of the space windows and to the inclusion of

patterns far away from the center of the circle. As a consequence,

almost the whole catalog seems to be loaded, e.g., in Figures 3f
and 3g . Refinements with respect to the determination of the

space window are thus expected to reduce the size of the alarm

area. For that, the space window could be determined for a fixed
target magnitude M by an empirical scaling relation R � M,

instead of an optimization. This work is left for future studies.
Furthermore, Bowman and King [2001] showed that the results for

accelerating moment release can be improved, if the circular
critical regions, where the power law is fit, are replaced by the

regions of high pre-event stress estimated from the Coulomb stress
shadows after the main shock. This approach requires, however,

detailed knowledge of the mainshock.
[14] However, Figure 2 and Figure 3 only show the patterns

before the mainshocks. A likelihood ratio test for each time step
includes more information, because the normalization provides a
measure for the significance of the pattern p ~x; tið Þ relative to the
entire space-time distribution of p. Therefore, we compute for the

eight values ti from each figure the number of random catalogs
with LR(ti) > 1. Equation (4) reduces to a single value of ti and the

normalization factor is calculated by integrating P for t � ti. The
mainshock defines the target event. The results listed in Table 1

show again that GSCL patterns are most significant for the largest

mainshocks, namely M � 7. The probability that the mean of hNsi
is larger than or equal to the mean of eight random numbers

Figure 2. GSCL pattern p ~x; tið Þ (equation (3)) prior to the eight

mainshocks (M � 6.5) in California between 1960 and 2001. The
time step ti is the begin of the year in which the mainshock

occurred. The large triangle denotes the mainshock epicenter,
whereas the smaller triangle refer to earthquakes with M � 5 in the

same year.

Figure 3. Same as Figure 1 for the AMR pattern.

Figure 1. Results of the likelihood ratio test for the spatiotem-
poral analysis as a function of the lower threshold magnitude of the
target earthquakes; Ns 2 [1; 100] is the number of cases, where the
results from the original catalog are more correlated with the real
seismicity than the results from the random catalog.

Table 1. Results of the Likelihood Ratio Test for Individual

Mainshocks

Earthquake M Ns (GSCL) Ns (AMR)

a. Borrego Mountain (1968) 6.5 36 8
b. San Fernando (1971) 6.6 70 93
c. Coalinga (1983) 6.7 52 11
d. Superstition Hills (1987) 6.6 74 23
e. Loma Prieta (1989) 7.0 100 62
f. Landers (1992) 7.3 98 54
g. Northridge (1994) 6.6 96 67
h. Hector Mine (1999) 7.1 97 60
mean (a-h) 77.9 47.3
Pconf in % 99.7 39.7

Pconf is the probability that the mean of hNsi is larger than or equal to the
mean of eight random numbers between 0 and 100.
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between 0 and 100 is 99.7%. In contrast, the results for the AMR

patterns is close to random response.

4. Conclusions

[15] In this work, we have defined the critical point hypothesis
for large earthquakes in terms of growing spatial correlation length
(GSCL) and accelerating moment release (AMR). For both pat-
terns, the correlation with the observed mainshock activity
increases, if the magnitude threshold of the target earthquakes Mcut

grows. For Mcut � 6.5 the space-time correlation of the GSCL
pattern with the target events is significant at greater than 95%
confidence. A similar correlation analysis of individual mainshocks
leads also to high significances for the largest mainshocks. The
result of the AMR analysis is similar but less significant for the
space-time correlations and close to a random response for most of
the individual earthquakes. We conclude that further refinements of
the pattern detection, e.g., the reduction of the number of fit
parameters, is very encouraging for a further increase of the
significances. This would probably allow to estimate the spatial
extensions of the critical point patterns more precisely. In general,
our results strengthens the hypothesis that large earthquakes are
preceded by observable patterns related to a critical point process.

[16] Acknowledgments. This work was supported by the Deutsche
Forschungsgemeinschaft (SFB 555 and SCH280/13-1).
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021436587�9;:=<�9>7@?�58ACBED�9�FHG-9I<KJ%36L69�M
NPO
?�LRQ�9-58S,TVU'1XW%Y�Z[M�\�5%9�FHO(9-7]?�J8J;^�9_L6M�G�?�J%36M�<`U�1Xa
b <dcKe6c(f)gih�e6j(k>lnm�fo36527�9;:=<�9>7 ?I5p?8Q�<�36M�<qM�Nr?ILR?(F%st5�J;^�?�Jp?KFH92G-M�<�<�9-G-J%9>7�3R<u5;D�?�G-9
?(<�7_J%3Rst9Karv2^�365Ps�9I?(<�5wJ;^�?�JwJExyM"?ILR?(F%st5z\�9-L6M�<�{8J%MCJ;^�945;?Kst94G>LRQ�5%J%9�Fw3|No?K<�7}M�<�L6~
3|N'J;^�9�FH92365P?[5;D�?�J%36M�BXJ%9Is_D�M�F%?�L*D�?�J;^��(x�^�36G-^}G-M�<�<�9-G-J%5�J;^�9-5%9�?�LR?KF%st5z?(<�7_365�J%M(J;?IL6L6~
G-M�O(9IFH9>7+\K~8J;^�9-5%9�?(<�7_MKJ;^�9�Fw?�LR?(F%s�5"TVM�\KO�36M�Q�5%L6~(��?IL6L,?�LR?KF%st5wJ;^�?�JwG-M�O(9�F�J;^�3654D�?�J;^
?�L65%M�\�9>L6M�<�{CJ%M4J;^�9�5;?(st9wG>LRQ�5%J%9�F%Z>a��VN=?yJ;?(FH{(9>J=9I?(FHJ;^��*Q�?(��9w^*?KD*D�9I<�5wJ%Mp\�9�G-M�O(9�FH9-7
\K~ ?K<�?ILR?(F%s�G-LRQ�5%J%9IFP36J�365�G�?�L6L69-7�?"�=fEm)�(�Vh�lnm;��m)c(f)l�����j�c
��m��#M(J;^�9IFHx2365%9C36J�365�GI?�L6L69>7
?(<�j����=fEm)�(�Vh�lnm;��m)c(f)l�����j�c
��m�a b <d?�LR?(F%s�G>LRQ�5%J%9�F�J;^�?�J2G-M�O(9�FH5�?�J2L69I?I5%J�M�<�98M�N�J;^�9
J;?(FH{(9>J29I?(FHJ;^��*Q�?(��9>52365�G�?�L6L69-7�?�k>j�h)h;m-k)kV�-j�e=c(e6cKf;gt��MKJ;^�9�FHx2365%9836J�365�GI?IL6L69-7�?[�-cKe|k-m
c(e6c(f)gtaz�2MKJ%92J;^*?IJwJ;^�9�7�9;:=<�36J%36M�<qM�NoD*FH9>7*36G>J%9-7��(Q�<*D�FH9-7�36G-J%9>7�9I?KFHJ;^��*Q�?(�I9-5�x4M�Q�L67
<�MKJwG�^�?(<�{(923|N'M�<�92G>M�<�5%367*9�FH9-7q3R<�7*36O�367�Q�?�Lo?�LR?(F%s�5w3R<�5%J%9�?�7qM
N'?�LR?(F%s�G-LRQ�5%J%9IFH5��*?(<�7
J;^�365�365�<�M(J2J;^�98GI?�5%9�NnM�Fr5;Q�G>G-9-5%5ENXQ�LR��N�?�L65%9_?�LR?KF%st5�a
�'�R�,���� � �¡= @¢�£¥¤�¦, �¤,§�¨K�ª© Q�D*D�M(5%9�J;^*?IJqJ;^�9�D�FH9-7�36G-J%36M�<«x2?�5�D�9�FXNnM�F%s�9-7

7�Q�FH3R<�{qJ;^�98J%3Rs�9C3R<KJ%9IFHO
?ILoM
N�L69I<�{(J;^+¬ªTV~*F%Zrx236J;^�3R<+J;^�9­?KFH9I?"M
N�®¯Tn��s_°)Z2?(<�7²±
LR?(FH{(9�9I?KFHJ;^��*Q�?(�I9-5'M�G-GIQ�F%FH9-78x236J;^�3R<"J;^�365wD�9IFH36M�7'� b ?�LR?(F%s³G>LRQ�5%J%9�FH5wx49IFH9w7�9-G>LR?(FH9-7
?(<�7q´�µ�M
N�J;^�9�s�?(FH9zNX?�L65%9(�*?IL6L*J;^�9�?�LR?KF%st5z?�L6J%MK{(9-J;^�9IF�G>M
OK9IF�J;^�925;D*?IJ%36M
BXJ%9Is}D�M�F%?IL
O(M(LRQ�st9[¶�·¸TV~*F�¹º��s ° Z>��±tµCJ;?(FH{(9>Jw9I?(FHJ;^��*Q�?(��9>5zxy9IFH9�Q�<*D�FH9-7�36G-J%9>7�a4»�FH9-7�36G-J%36M�<
365o7�9-5%GIFH3R\�9-7+\K~�J;^�9rN¼M(L6L6M�x23R<�{�7�3Rst9I<�5%36M�<�L69-5%5�9IF%FHM�FH5�½=J;^�9wN�F%?IG-J%36M�<pM
N�Q�<*D�FH9-7�36G-J%9>7
9I?(FHJ;^��*Q�?(��9>5��=¾�¿À±tµ(Á-±]�#J;^�9_FH9-LR?IJ%36O(9+?ILR?(F%s�G-M�O(9�F%?�{(9K�=Â�¿Ã¶�·oÁ�TV¬«¹�®yZ>�#J;^�9
N�F%?�G>J%36M�<uM
NoNX?�L65%9�?ILR?(F%st5��#Ä�¿Å´�µ�Á-´8a
v2^�9­m�f)fEÆKf��K��c-Ç�fHc(gÈ5;Q*s�5PQ�D}J;^�9"D�FH9-7�36G-J%36M�<q9�F%FHM�FH5���9I?IG�^}D*?KFHJ%36GIQ�LR?(F2D�FH9-7�36G;B

J%36M�<�G>M�F%FH9-5;D�M�<�7*5�J%M+?�5%3R<�{KL69uD�M(3R<KJ�3R<ÉT¼¾oW)Â*W)Ä,Z�5;D*?IG-9(a4v2^�989IF%FHM�Fy7�3R?�{�F%?(sÊx236L6L
\�9�Q�5%9-7�J%Mt9-O
?�LRQ�?�J%9[J;^�9CD�FH9-7�36G-J%36O(9­D�M
xy9IF�M�N'M�Q�F4D�FH9-7�36G-J%36M�<d?�L6{(M�FH36J;^*sÊ?(<�7�36J%5
5%J;?(\�36L636JE~(a
v2^�9�9>O
?�LRQ�?�J%36M�<ËM�N�J;^�9�G-M�F%FH9-LR?�J%36M�<�L69I<�{(J;^�S=TVU�W%Y�Z[3R<KOKM(L6O(9>5_JExyM`<�Q�st9IFH36G�?�L

D*?KF%?(st9>J%9IFH5���9-OK9I<KJ4x23R<�7�M
x³5%36Ì-9tÍÎ?K<�7�7�?�J;?"G-M(L6L69>G-J%36M�<dF%?�7�3RQ�5�Ït�*?­D�FH9-7�36G-J%36M�<
x236J;^_?8D�?(FHJ%36GIQ�LR?(F�N�Q�<�G>J%36M�<tS87�9ID�9I<�7*5yM�<_?K<�MKJ;^�9�FwJ;^�FH9-9�D�?(F%?Kst9-J%9�FH5��
J;^�FH9-5;^�M(L67
�*Q*?K<KJ%36L69�Aq�4?�LR?(F%sÐF%?�7�3RQ�5qÑ��P?K<�7@?ILR?(F%sÎ7�Q�F%?�J%36M�<@Ò+a¸Ó�?�G-^ËG-M�st\�3R<*?IJ%36M�<ËM
N
J;^�9>5%9p:#O(98D*?KF%?(st9>J%9IFH5�G-M�F%FH9>5;D�M�<�7�54J%M_?[5%9ID�?(F%?�J%9CD�FH9-7�36G-J%36M�<���G�^�?(F%?IG-J%9IFH36Ì>9-7�\K~
J;^*FH9>9C9IF%FHM�FH5�½w¾rT¼Í²W)Ï­W%AqW)Ñ�W;Ò_Z)�KÂ�T¼Í`W)ÏtW%AqW%Ñ
W%Ò_Z)�KÄrT¼Í²W)Ï­W%AqW)Ñ�W�Ò_Z>a
�'�RÔ,�ªÕ8 �Ö*¢o£V×�ØI£Ù¡�Úw�ÈÛ 9 D�9IFXNnM�F%st9-7ÜD�FH9-7�36G-J%36M�<�5_NnMKL6L6M
x23R<�{]J;^�9�5%G-^�9Ist9�M
N

© 9>G-J�a / a . auv2^�9+D�?(F%?Kst9-J%9�FH5�?(FH9}O
?(FH369-7É?�5�N¼M(L6L6M�x25�½tÍÝ¿ .I/ W .�Þ W�ß-ß�ß�W;à / ��Ï�¿
.Iá(á W;à á(á W�ß-ß-ß�W;â áKá ��s��#Aã¿ á ß / W á ß|â�W á ß Þ W á ßåä�W á ßçæ�W á ßçæ / W á ßçæ(æ���Òè¿ á ß / W . W�ß>ß�ß�W .Iá
~*F>�wÑqxp?�58?�L6xp?�~�5C:#é�9-7]?�J .IáKá ��s+a+ê�OK9IF / � á(á(á D�FH9-7�36G-J%36M�<�5}x49IFH9}G-M�<�5%367�9IFH9-7
?�L6J%M({K9-J;^�9IF>a
b <ë9IF%FHM�F}7*3R?I{�F%?(sÎNnM�FqD�FH9-7�36G-J%36M�<�5�x236J;^³Ïì¿íÑ¸¿ .�á(á ��sí365�5;^�M�x�<É3R<

î 36{�a]ï#�z36Jq\*FH3R<�{(5qJ%MK{(9-J;^�9IFtä�ï á 3R<�7*36O�367�Q�?�L�D�FH9-7�36G-J%36M�<�5�x236J;^Ë7�3|ð'9IFH9I<KJ}O
?�LRQ�9-5
M
N4D�?(F%?(s�9-J%9IFH5�Í²W%Aq�*?(<�7`Ò+a�v2^�9CNX?�G-J�J;^�?�J2J;^�9CN�F%?�G>J%36M�<�M�Nw5;D�?�G-9)BXJ%3Rst9_?�LR?(F%s
7�Q�F%?�J%36M�<�365�?IL6xp?�~�52{�FH9I?IJ%9IFyJ;^�?(< .�/(ñ 365�7�Q�9tJ%M_M�Q�F�D*FH9>7*36G>J%36M�< 5%G�^�9Is�9(apÓ�?�G-^
<�M�7�9t365�NnM�FHG-9-7²J%Mq7�9-G>LR?(FH9_?�J�L69I?�5%J[M�<�9­?�LR?(F%s+�=J;^�Q�5�J;^�98J%M(J;?�L'5;D�?�G-9)BXJ%3Rst9+?KFH9I?
G-M�O(9IFH9>7�\K~`?�LR?KF%st5CG�?(<�<�MKJ�\�9q?(F%\�36J;F%?(FH~�5;s_?�L6Lw9>O(9I<dNnM�F2J;^�9_^�36{�^�9>5%J8O
?�LRQ�9-58M
N
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1�243�5�67598*:;:=<%:�>-?A@)B%:=@DC9EGFH<%:JI�:=KL>-?AMLNO?A<%P�EQ<%FR>-? S7KT:=KTPUNVN;@%:=B)KWNXCQ@)B%P�?ANOY�>�KLEWZ\[H@-]=^�[`_(]Xacbedgf h�^ikjml%n-oLl�dgo%fWfLf(oWp)n-^JqrjmstjmlLhDhvu�C\^Jwyxzh�f {�^J|}xrp�~):%�Q[HM�]=^X[H>
]�a��rdgf h�^Jikj
l�ngo%l%d-oLfWfWf�o=pDng^(q�j�p�h)h�oWs�j�lLhDh�u�C\^(w x�h�f {-ng^(|�b�n�~):%Z,�gKLKX>�KWN;@%?���EJ? Pt�gKWMLNWZ,ngZ �

�*�������%�(���������X�`��� / � �`��� �`� �%���¡  �  D¢�� � �L�`�(���¤£Q¥§¦k¨©¦kª§¦¬«�£� D¢��(�®­ � ���7 %�
���¯�X�`����°#£�±\¢��`�-¢²�����(���� D¢��� �­��L�-���`�- %� � �¯³*´�� � �` Wµ²¢��������¡­*� ��¶ �g����· �  %�-± � �L D¢7µ
�`�t D¢������A¸'���L�����-�����®­��(�%�7�v�- %���L�¹� � �%�L�-�D­ � ���������²  �  D¢��¡����­�� �
¶ �-�º­��L�-���`�- %� � �����
» �L�g�*�`�g %� � � �
¼ ���(�L D¢�³*´��(½��g��±��` D¢¿¾ ÀÂÁ�ÃA«��`��Ä��g % %���¡±��` D¢®ÅRÆÈÇ�É%Ê�Ë��-�% %������ %�-�
±��` D¢����¿�(�Ì�(�L��� �
¼ÎÍ ¦cÏ(«(«Ð½���ÑQ­*�L�g�*�`�g %� � �º¾ ÒÓÁ�ÃA«��`�+Ä��- % %���"±��` D¢¯ÅRÆÈÇVÉ%ÊWË
�-�% %������ %�-��±��` D¢������Ô�D��� �`� �����(�L����£ Í ¦ . «(«�½��+� » �L�g�*�`�g %� � ��� �
¼ ¾ ÀÕÁ�ÃA«��(�L�
� � �L��­*�L�g�-�`�%�(Öt×�¢���� � �%�L� � �� %� � � � �����( D¢¯�������L�����%�-� � �-�%�� D¢��(� / µ7���(�L��­*�L� � �Î  � �
 D�(�L�(�g Q���7�L D¢�³*´��(½��(Ñ�±\¢�� � � ¼;� �Ø¾ÙÒzÁ�ÃA«� D¢����������L�����%���`� � Ä��%��� ¶ �-��Ï�Ú . «�µ7���(�L�����
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D	F�]�DID	F\G�JKG[M%P(]EVQM%X�G^X�NUZE]�M_B�Na`WH�]�JR]bZ[G,DRG�JKPID	F�]�DcH�JKN�X*O\S,GdJKG�]�PRN�B�]be�f%G^H�JKG,X�M%S	g
DRM%NUB\P�h9iWO\DcF�N�VjPRD	]�e\f%Gk]�JKGlD	F�GTPRGkH�JKGTX�M%STDRM%NUB\P	m6nQN�VjX�N�G,Pc]EPRf%M%oUFbDYLa]�JKM_]�DRM%N�B�Na`
H�]bJR]�Z[GTDRG�JKPk]�p�GTS,DqD	F\GrH�JKGTX�M%STDRM%NUBsNUO\DRS,N�Z[G,P	mut�Nv]�B\PRVWG�JlD	F\G,PRGdw�O\G,PRDRM%N�B�P[VWG
PRM_B�obf%GrN�O�DqDKVWN H�JKGTX�M%STDRM%NUB\PxZ^]bJRy�G,Xzeb{vf_]�JKobGdNUH�G�B|S,M_JKSTf%G,P^M_B~}�M%o�h ��� PRf%M%oUFbDRf%{
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[1] The question whether the preparation process of foreshocks and main shocks is
different from other earthquakes is of great interest with regard to earthquake predictability.
We show that the most conspicuous properties of earthquake clustering can be explained
without assuming any differences in the initiation processes. In particular, the Gutenberg-
Richter law as well as the Omori law for foreshock and aftershock sequences can be
reproduced by model simulations with the simple assumption that all subsequent events are
initiated in the same manner at the edges of the recently ruptured area. In this way, the
empirically observed b and p values are reproduced naturally without any parameter tuning
as well as their differences with regard to foreshock and aftershock activity. These properties
are shown to result from the shrinking of the loaded fault region with time. In the model,
foreshocks occur in extended and almost compact fault segments, whereas aftershocks are
mostly restricted to recesses left unruptured by the main shock. Our investigations lead to
the conclusion that the spatial effects rather than the temporal effects of the initiation
mechanism are decisive for earthquake clustering. INDEX TERMS: 7260 Seismology: Theory and

modeling; 7230 Seismology: Seismicity and seismotectonics; 7209 Seismology: Earthquake dynamics and

mechanics; 7223 Seismology: Seismic hazard assessment and prediction; KEYWORDS: aftershocks, foreshocks,

Omori law, seismicity patterns, model simulations

Citation: Hainzl, S., G. Zöller, and F. Scherbaum, Earthquake clusters resulting from delayed rupture propagation in finite fault

segments, J. Geophys. Res., 108(B1), 2013, doi:10.1029/2001JB000610, 2003.

1. Introduction

[2] A current issue of seismology is whether the pro-
cesses that occur prior to and in the initial stages of
foreshock and main shock rupture can be distinguished
from other earthquakes [Vidale et al., 2001]. The answer
of this question would have important implications with
regard to the possibility of earthquake predictions. Because
of the complexity of this field we address a more specific
question in this paper: Which conclusions can be drawn in
this respect from the seismicity patterns conserved in earth-
quake catalogs?
[3] The occurrence of earthquakes is complex, but not

random, neither in the energy release nor in its spatiotem-
poral correlations. On one hand, this is documented by the
patterns of clustering in space and time. Almost all earth-
quakes are found to trigger aftershocks with a temporal
decaying probability. In particular, the occurrence rate of

aftershocks R can be well described by the modified Omori
law

R � cþ�tð Þ�p
; ð1Þ

where �t indicates the time after the main shock and c is a
small constant taking values from 0.01 days to over 1 day
with a median of about 0.3 days [Utsu et al., 1995]. The
observed values of the power law exponent p are close to 1.
The same law, if �t indicates the time before the main
shock, has been found to describe the foreshock occurrence.
This power law behavior has been observed for the much
less frequent foreshocks by stacking foreshock activity
correlated with different main shocks [Kagan and Knopoff,
1978; Jones and Molnar, 1979]. Likewise the temporal
clustering, also the frequency-size distribution of earth-
quakes is well-defined over a wide range of magnitudes by
a specific law, namely, the Gutenberg-Richter law [Guten-
berg and Richter, 1956]

log10 N ¼ a� bM ; ð2Þ
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where N defines the number of events with magnitude
greater than M and a and b are constants. This relation can
be expressed by a power law also for the source size S:

log10 N ¼ S�B ð3Þ

with B � b [Kanamori and Anderson, 1975; Purcaru and
Berckhemer, 1978]. The observed b values for regional
seismicity are close to 1.
[4] However, the Richter b value as well as the Omori p

value vary significantly within earthquake clusters. The p
value describing the temporal increase of foreshock activity
is significantly smaller than the exponent of the aftershock
decay [Maeda, 1999]. Furthermore, the b value of fore-
shocks and main shocks has been often found to be much
smaller than the b value of aftershocks [Suyehiro et al.,
1964; Papazachos, 1975; Knopoff, 2000], which is also in
agreement with the variation of acoustic emissions in
fracture experiments [Scholz, 1968; Sammonds et al.,
1992; Lei et al., 2000]. It is unknown so far, whether these
statistical differences between foreshocks and aftershocks
result directly from differences in their initiation processes
[Vidale et al., 2001].
[5] The Gutenberg-Richter law (equations (2) and (3))

points to a critical state of the stress field [Main, 1996;
Sornette, 2000]. Such critical states self-organizes naturally
by repeated earthquakes and tectonic forcing in simulations
of the earthquake evolutionary process [Burridge and Knop-
off, 1967; Bak and Tang, 1989; Olami et al., 1992; Sornette
et al., 1994; Hainzl et al., 1999, 2000b]. Whether the fault
system remains always near the critical point or fluctuates
back and toward this state depends on the assumptions about
dissipation and healing properties [Hainzl and Zöller, 2001].
However, the assumption of a critical stress state is not
sufficient to understand the spatiotemporal clustering of
earthquakes. Several additional mechanisms have been pro-
posed to underly the earthquake clustering, though their real
relevance is unknown so far. In particular, a rate- and state-
dependent friction law [Dieterich, 1994], pore fluid flows
[Nur and Booker, 1972; Yamashita, 1999], and stress corro-
sion cracking [Shaw, 1993;Main, 2000] are proposed on the
basis of theoretical considerations. Under some restrictions,
the nonlinear temporal laws of the proposed mechanism can
explain the occurrence of aftershocks according to the Omori
law. On the other hand, we have found in previous work
[Hainzl et al., 1999] that the introduction of viscoelastic
coupling in a fault model can reproduce earthquake cluster-
ing as well. However, the underlying reasons for these
numerical findings have not been fully understood so far.
[6] In this paper, we will show in detail that the spatial

rather than the temporal effects of the triggering mechanisms
seem to be crucial for the characteristics of the above
mentioned earthquake clustering. For this purpose, we study
sequences of earthquakes successively unloading initially
prestressed fault patches of finite size. Our cellular autom-
aton model introduced in section 2 is mainly based on the
assumption that the earthquakes within a cluster are triggered
at the edges of the rupture area of precursory events. The
temporal component of the postseismical effect is chosen as
simple as possible, namely, state-independent and purely
linear. In section 2 we show that simulations based on these

simple assumptions already reproduce the empirical obser-
vations. The implications and conclusions which can be
drawn from our results are discussed in section 4.

2. Model

2.1. Assumptions

[7] Our simulations of earthquake ruptures are based on
the following assumptions: (1) Ruptures occur at highly
stressed fault patches of finite size; (2) the coseismic
evolution is dominated by frictional behavior and elastic
interactions; (3) a ruptured area remains aseismic (unloaded)
within the timescale of the ongoing earthquake clustering,
and (4) in response to ruptures, the strength and stress in the
rock surrounding the ruptured area is altered postseismically
which may result in triggered earthquakes nucleating at the
edge of the rupture area.
[8] Several empirical observations seem to justify this

simplified picture of the complex processes taking place in
fault regions: Assumption 1 is supported, first, by the
validity of the Gutenberg-Richter law (equations (2) and
(3)) which indicates that earthquakes occur mostly in highly
stressed fault patches where ruptures can grow up to all
sizes limited only by the fault segment size [Geller et al.,
1997; Hainzl and Zöller, 2001]. Second, the time-to-failure
analysis of natural seismicity has recovered an underlying
critical point behavior [Bufe and Varnes, 1993; Jaumé and
Sykes, 1999; Zöller et al., 2001]; and third, in a whole class
of models simulating the seismic cycle, the stress field self-
organizes into a critical stress state (e.g., [Burridge and
Knopoff, 1967; Olami et al., 1992; Main, 1996; Dahmen et
al., 1998; Hainzl and Zöller, 2001]). Assumption 2 is
justified by the observation that earthquakes occur mostly
on preexisting faults, that is, they are a frictional rather than
a fracture phenomenon [Scholz, 1998]. Assumptions 3 and 4
are supported by the observation that within earthquake
clusters, subsequent events occur next to the rupture area of
previous events, in particular, aftershocks are concentrated
preferable at the edges of the main shock rupture area and
the epicenter of the main shock is situated mostly in the
immediate vicinity of the foreshocks [Mendoza and Hart-
zell, 1988; Ogata et al., 1995]. The timescales of individual
ruptures (minutes), earthquake clusters (weeks), and recur-
rence times of large earthquakes (hundreds to thousands of
years) are well separated leading to the conclusion that the
mechanism responsible for earthquake clustering is different
from that of rupture evolution (elastic interactions) and that
of reloading (tectonic plate movement) [Scholz, 1994]. The
temporal characteristics of the triggering mechanism will
depend on the real underlying process. Different processes
have been proposed, e.g., pore fluid flows [Nur and Booker,
1972; Yamashita, 1999] or stress corrosion [Shaw, 1993;
Main, 2000]; however, it is not known if one or more of
these processes are really underlying the earthquake cluster-
ing. Thus, for our investigations we assume the simplest
case, that is, a state-independent linear change of the
strength (stress) with time.

2.2. Algorithm

[9] We implement our model in the form of a continuous
cellular automaton by defining a two-dimensional L � L
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array of blocks (i, j), where i, j are integers, 1 	 i, j 	 L. To
account for complex boundary conditions, we produce
within this L � L array a seismic active patch of L2/2 sites
which is embedded in an aseismic region. The procedure
which we use to produce fault geometries of variable
geometry is described in Appendix A. We characterize the
complexity of the fault geometry by the fractal dimension
D0 of the border line. In Figure 1 one example is shown for
each of the three different degrees of fault complexity
analyzed in this paper.
[10] The evolution of ruptures within the active fault

region is described by the cellular automaton version
[Olami et al., 1992] of the two-dimensional spring-block
model originally proposed by Burridge and Knopoff [1967]:
Stick-slip motion is assumed within the seismic region,
where the friction law adopts the Mohr-Coulomb law with
a static failure threshold sF. If the stress on a block (k, l )
exceeds the static failure threshold, s(k,l ) 
 sF, sliding is
initiated at this block. The moving block slips to the zero-
force position and the stress �s � s(k, l ) is partially
distributed to the four nearest neighbors(k±, l±). The stresses
of the nearest neighbors lying within the fault patch are set
according to the rule

s k�; l�ð Þ ! s k�; l�ð Þ þ
g

4
�s; ð4Þ

but the stress transferred to boundary elements is lost. The
stress of the sliding site is reset to

s k; lð Þ ! 0; ð5Þ

and this site is set to the aseismic state, that is, it becomes a
new boundary element. The coupling constant g depends on
the assumed elastic properties and can vary in the range of 0
	 g 	 1. Additionally, g defines the degree of stress
conservation within the fault plane, where g = 1 refers to the
conservative case which is a unrealistic limit case because
of the elastic coupling to the tectonic plate. The redefined
stress on the adjacent blocks s(k±, l±) may lead to an
instability, i.e., s(k±, l±) 
 sF(k±, l±), in one or more blocks
of the unruptured fault zone. In this case, a chain reaction
starts and the stresses at all unstable blocks are distributed
according to equations (4)–(5) possibly leading to further

instabilities, and so on, until the earthquake is terminated,
i.e., until s(i,j) < sF (i, j) for all blocks (i, j).
[11] In most models of the earthquake evolutionary proc-

ess, which aim at simulating main shock occurrence, the
earthquake ruptures are initiated on account of the regional
stress increase due to the tectonic plate motion. In these
models the effect of previous earthquakes is restricted to
static stress changes. Such model versions [e.g., Bak and
Tang, 1989; Olami et al., 1992] cannot reproduce the
empirically observed earthquake clustering. However, we
are interested in earthquake clustering rather than in model-
ing the whole seismic cycle. Thus we neglect tectonic
loading, because it is not relevant on the timescale being
typical for earthquake clusters, whereas we consider post-
seismic processes. That means that the synthetic ruptures do
not only lead in adjacent fault regions to a static increase of
the Coulomb failure stress or failure function [Beeler et al.,
2000], respectively, but also to a further transient increase of
the failure function due to pore fluid flows, afterslip, and/or
stress corrosion. In particular, we assume that the postseis-
mic effect is mainly localized at the edge of the rupture
zone. Thus, in our simulations we assume that the strength
of blocks bordering on the rupture area decreases linearly
with time which is a first approximation to subcritical crack
growth and stress corrosion [Lee and Sornette, 2000]. We
have also tested the alternative approach, where a stress
increase instead of a strength decrease is assumed. We find
that our results do not depend on this specification of the
way how the failure function increases postseismically.
Therefore we restrict the presentation of the algorithm to
the first case: Immediately after an earthquake, the threshold
values start to decrease linearly with time until the minimum
(1 � t)sF is reached. The parameter t2[0, 1] defines the
strength of the decrease. When the threshold value at one
block equals the local stress level, the next earthquake is
initiated and is determined again according to equations
(4)–(5). Thus, earthquake sequences are simulated which
unload most parts of the fault segment. The timescale is
given by the unloading time T0 which defines the rate of
postseismic strength decrease �sF/T0. This timescale is
assumed to be much larger than that of individual earth-
quakes ruptures; that is, the duration of each earthquake is
set to be instantaneous. The earthquake sequence is termi-
nated when the whole seismic region is unloaded, or if the

Figure 1. Three different types of fault geometry are investigated differing in the smoothness of the
transition between seismic (white) and aseismic (black) regions. The surfaces are constructed according
to the description in Appendix A and classified by the fractal dimension D0 of the border line. The
analyzed 128 � 128 block systems consist of half black and half white blocks.
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stresses of all blocks bordered on the ruptured area are less
than (1 � t)sF. The data stored for each sequence consist of
the occurrence times in units of T0, the coordinates of the
epicenters and the spatial sizes of all initiated earthquakes.
[12] The ingredients of this model, namely, stress distri-

bution combined with linear strength decrease, are similar to
that recently introduced by Lee and Sornette [2000] in order
to simulate aftershock sequences. However, the mechanism
of earthquake triggering is completely different: Lee and
Sornette [2000] assume a simultaneous strength decrease all
over the fault and instantaneous recovering of the original
strength value after sliding (i.e., an effective hardening)
within ruptured areas. By contrast, our model assumes
strength decreases spatially localized at the edge of rupture
areas, whereas the rupture areas themselves remain aseismic
(no healing on the timescales investigated).

3. Numerical Simulations

[13] We have analyzed fault surfaces of size 128 � 128
produced according to the description in Appendix A. For
each surface, the initial stress values are randomly distrib-
uted in the interval [s0, sF], where the mean stress level hsi
= (s0 + sF)/2 is set to the critical value. This value defines
the minimal stress level, where earthquakes can occur which
rupture almost the whole fault segment at once. It is
identical to that found in a previous work for the case of
a stress concentration factor g = 1 [Hainzl and Zöller,
2001]. While all subsequent earthquakes are triggered by
previous events, the first earthquake has to be initiated
explicitly. We do this by picking one block by chance and
setting its stress value to sF. Furthermore, we set all
threshold values sF arbitrarily to 1 at the beginning. Three
free parameters are left which have to be fixed for our
simulations: the fault roughness D0, the coupling constant g,
and the strength of the postseismic effect t. However, by
exploring the three-dimensional parameter space, we have
found that the main characteristics, namely, the Gutenberg-
Richter law and the (inverse) Omori law with its b value and
p value change due to the main shock occurrence, are
reproduced independently of the parameter values. In sec-
tion 3.3 the robustness of our results with respect to the
choice of the parameters and the initial stress state is
discussed in more detail.
[14] We simulate many earthquake sequences in different

realizations of fault surfaces with a certain D0. To character-
ize our simulations, we use the following notation: The
largest event of each sequence is called the main shock,
whereas all events occurring before or after the main shock
are defined as foreshocks or aftershocks, respectively. One
typical example for such a simulated earthquake sequence is
shown in Figure 2. Although different earthquake sequences
can differ very much in the details of their spatiotemporal
rupture histories, we find that all of them share the same
universal features: The main shock is preceded by only few,
if any foreshocks and followed by much more aftershocks.
Furthermore, the rate of aftershocks decreases with time,
whereas the foreshock activity, if several foreshocks occur,
tends to increase until the main shock occurrence time.
These results are in agreement with real earthquake sequen-
ces [Scholz, 1994], and also with acoustic emissions in
laboratory fracture experiments, apart from the fact that the

number of acoustic foreshock emissions is found to be
larger than the number of aftershocks [Sammonds et al.,
1992].
[15] In terms of our model the observed characteristics

can be understood by the following considerations: The
probability for triggering aftershocks increases with the
number of unbroken blocks bordering on the already
ruptured fault patch. In an infinite two-dimensional fault
plane this number would increase further and further in
response to successive events increasing the ruptured area,
and consequently, the seismic activity would accelerate.
This is the reason for the observed accelerating foreshock
activity. However, for real, i.e., finite, fault sizes the main
shock will rupture the main part of the fault which leads to a
drastic change of the situation. On the one hand, the
probability for subsequent events is suddenly and signifi-
cantly increased due the sharp rise of the area effected by
the postseismic strength decrease. Thus a jump of the
seismic rate takes place. On the other hand, the finite size
of the fault becomes now significant. In general, the fault
area which is left unbroken by the main shock will consist
of many disconnected small patches. Each of these patches
will rupture at once or by a secondary, much shorter earth-
quake sequence. Each aftershock leads to a reduction of the
number of those unruptured islands and their sizes. Thus, on
average, the rate of aftershocks will decrease with time.
Note that a small gradual increase of the aftershock zone
size occurs as a consequence of our triggering mechanism.
In practice, however, this migration of activity is not easily
seen in the resulting aftershock sequences (see, e.g., Figure
2). The reason is the complex geometry of the rupture area
as well as of the border between seismic and aseismic
regions. The aftershocks occurring mostly on islands within
the rupture zone and on recesses in the border area.
[16] In the following, we want to characterize the earth-

quake sequences occurring in finite fault sizes in more
detail. At first, we examine the frequency-size distribution
of the events in dependence of their occurrence time. In the
second part, the averaged temporal characteristics of fore-
shocks and aftershocks are analyzed.

3.1. Frequency-Size Distribution

[17] Previously, [Hainzl and Zöller, 2001] have shown
that earthquakes, which are initiated in an infinite two-
dimensional critical loaded stress field, have a size distri-
bution reproducing the Gutenberg-Richter law (equations
(2) and (3)). However, in comparison to empirical observa-
tions, the exponent b has been found to be unrealistic small,
namely, b � 0.2, independent of the model parameters.
Now, in the case that a sequence of earthquakes succes-
sively rupturing a finite fault segment, the results change
because the earthquakes are initiated in fault patches of
finite extension limiting the maximum rupture size. In
addition, the fault patch sizes depend on the rupture history;
in particular, they are shrinking with time. In the first step,
we analyze the size distribution of the earthquakes succes-
sively triggered in our simulations independently of their
occurrence times. Then in a second step, we compare the
size distributions of foreshocks and aftershocks.
[18] The overall frequency-size distribution, which is

shown in Figure 3 in an incremental form, is found to
reproduce very well the Gutenberg-Richter law (equation
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(3)). In contrast to the earthquakes occurring in infinite two-
dimensional fault planes, the b value (�0.9) is now in good
agreement with the empirical observed value for the cumu-
lative distribution scattering around 0.9 [Turcotte, 1997].
This value is found independently of the model parameters
g, t, and the fault geometry referring to the universality of

the underlying critical point physics [Bruce and Wallace,
1989]. Note that the size of the segment which breaks
successively by the delayed rupture propagation is set in
our investigations. If healing and reloading of the fault
system is taken into account, the distribution of fault seg-
ment sizes and consequently also the b value will depend on
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Figure 2. A typical example of a simulated earthquake sequence rupturing successively almost the
whole prestressed fault segment (here t = 0.1, g = 0.8, and D0 = 1.25): (a) the sizes of the events as a
function of their occurrence time relative to that of the largest event (main shock); (b) the cumulative
rupture area of the five foreshocks (the cross marks the initiation point of the sequence); (c) the main
shock rupture area (the cross marks the epicenter); (d) the cumulative rupture area of the first half and (e)
of the second half of the subsequently occurring 158 aftershocks.
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the coupling constants g and t [Hainzl and Zöller, 2001].
The overall frequency-size distribution is built up by the
superposition of distributions with cutoffs corresponding to
the patch sizes in the stress field. Thus the macroscopic b
value of the overall population is a direct consequence of
the fragmentation of the stress field due to precursory
events.
[19] Now, in the second step, we compare foreshocks

with aftershocks regarding their size distributions. We find
that both distributions reproduce the Gutenberg-Richter law;
however, they differ significantly with regard to the b value.
Foreshocks can be characterized by a much smaller expo-
nent, b � 0.6, compared to aftershocks, b � 1. This is
illustrated in Figure 4. Again, we can explain this result by
the different patterns of the stress field before and after the
main shock, respectively. Whereas aftershocks occur in a
fragmentary stress field being composed of small patches
and recesses, foreshocks and main shocks are initiated in a
more extended and compact fault segment feeling almost
nothing from the finite size of the fault. The increasing
relevance of finite size effects with time explains the larger
b value for aftershocks compared to foreshocks and main
shocks. A further reason might be the slight tendency that
failures occur at weaker blocks with time. However, if we
trigger each earthquake in the sequence with the same stress
drop, we find the same results. Consequently, this explan-
ation is of minor importance for our observations which are
in good agreement with real seismicity and laboratory
experiments. Detailed observations of earthquake catalogs
have shown that foreshock sequences and main shocks are
characterized, on average, by a smaller b value than after-
shocks or other earthquakes [Suyehiro et al., 1964; Papa-
zachos, 1975; Knopoff, 2000]. Furthermore, acoustic
emissions from rock fracturing show an analogous jump
of the b value irrespective of pore fluid content and pressure
variations [Scholz, 1968; Sammonds et al., 1992]. Previ-
ously, the b value change has been explained to be the result
of the stress drop from a high to a low level owing to the

main shock [Scholz, 1968, 1994]. Our simulations suggest
that another explanation could be the fragmentation of the
stress field due to the precursory earthquakes. Foreshocks as
well as aftershocks occur at the same local stress and
strength conditions, only differing in the size and geometry
of the fault patch where they are initiated. However, both
interpretation are equivalent in a macroscopic point of view,
if only the mean stress, that is, the stress spatially averaged
over the total (broken and unbroken parts of the) fault, is
considered.

3.2. Temporal Clustering

[20] To extract the general characteristics of temporal
clustering, we determine the averaged occurrence rate
formed by stacking many simulated earthquake sequences
relative to the main shock. In particular, we divide the time
in bins of length � and calculate the number of earthquakes
have occurred in all sequences within each time bin. To
obtain the average rate, we normalize each value by � and
the number of sequences spanning this time bin.
[21] In Figure 5, the averaged seismic activity is illus-

trated for an intermediate complexity of the fault geometry.
The phenomena which we have already observed for
individual sequences now become clear: The seismic activ-
ity is increasing further and further until the main shock
occurs. Then the main shock leads to a pronounced jump of
the activity level and to a reversal of the temporal trend; that
is, the seismic activity is now decreasing with a rate slowing
down with time. To check whether or not our simulations
reproduce the Omori law (equation (1)), we redraw the
temporal behavior in a double logarithmic plot. This is
shown in Figure 6 for three different values of D0 lightening
up two important results: Firsty, the increase of foreshock
activity as well as the decrease of aftershock activity can
both be described approximately by power laws, where the
exponent describing the foreshock increase is found to be
significantly smaller than that of the aftershocks. Second,
the exponents depend on the fractal dimension D0, whereas

Figure 3. The probability of observing an event with
source size S as a function of S in earthquake sequences
rupturing critical loaded faults (here t = 0.2 and g = 0.8).
Independent of the fault geometry D0, the distribution can
be described very well by a power law S� (b+1) with b = 0.9.

Figure 4. Comparison of the cumulative frequency-size
distributions of foreshocks with that of the aftershocks (here
t = 0.2 and g = 0.8). The foreshocks are characterized by a
significantly smaller power law exponent b = 0.6 compared
to b = 1 for aftershocks.
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the results are almost insensitive to the other model param-
eters (see section 3.3). In particular, the exponents are
negatively correlated with D0. However, the dependence
is weak leading only to a variation of the p value in the
vicinity of 1.
[22] These results are in good agreement with the follow-

ing empirical observations: the validity of the Omori law
(equation (1)) for the foreshock increase and the aftershock
decay, respectively; the empirical p values for aftershocks
are lying in the same range, namely, between 0.9 and 1.5
[Utsu et al., 1995]; the p values for foreshocks are found to
be smaller than the p values of the correspondent aftershock
sequences [Maeda, 1999]; and the empirical p values are
also found to be negatively correlated to the estimated
fractal dimension D0 of fault systems [Nanjo et al., 1998;
Nanjo and Nagahama, 2000]. The only difference is that the
empirical observed exponents for foreshocks are mostly in
the range from 0.7 to 1.3 [Utsu et al., 1995] and thus
generally higher than in our simulations. This difference is
manifested also in the smaller gap between the exponents
for foreshocks and aftershocks for real seismicity (�p � 0.2
[Maeda, 1999]) in comparison to our simulation (�p �
0.5). However, this apparent inconsistency results probably
from the incomplete identification of the earthquake clusters
for real earthquake catalogs and the short and varying
lengths of the triggered sequences. Especially for larger
time gaps to the main shock, foreshocks, and aftershocks
cannot be distinguished from background seismicity. Fur-
thermore, the variations of time intervals cannot be consid-
ered in real earthquake catalogs because the begin and end
of such sequences are not well defined. Both causes are
more important for the less frequent foreshocks than for the
dominant aftershock activity and lead to an overestimation
of the growing rate of the real foreshock activity [Nyffe-
negger and Frohlich, 1998]. By contrast, we have com-
pletely extracted all synthetic foreshocks and we have taken
the variable length explicitly into account by averaging at
each time bin only over sequences spanning this time. To

confirm our results, we normalize the time scale of each
aftershock (foreshock) sequence to the unit time interval
before we stack the different sequences together. We find
that this representation of our simulations leads to the same
results.
[23] The exponents of our simulated foreshock activity,

0.4 	 p 	 0.7, are compatible with previous reports on
accelerated precursory activity found by time-to-failure
analysis of natural seismicity [Bufe and Varnes, 1993;
Jaumé and Sykes, 1999]. The cumulative activity is
observed to increase with decreasing time distance t to the
main shock according to �A � Btm with 0 < m < 1 and
constants A, B > 0. The exponent m = 1 � p is found
typically in the interval 0.2 	 m 	 0.6 [Bowman et al.,
1998].
[24] Another way to characterize the temporal behavior of

earthquake clusters is to study the waiting time distribution.
The waiting times are defined as the time intervals between
successive earthquakes within the sequences. For D0 = 1.25
this distribution is shown in Figure 7 for foreshocks and
aftershocks separately. Again, the numerical results can be
fit well by power laws, which is in good agreement with
empirical findings [Ito, 1995]. Although the waiting time
distribution is not completely independent of the Omori law,
it gives further evidence for the property of scale invariance,
especially with regard to the difference between foreshocks
and aftershocks. Again the exponent is found to be smaller
for foreshocks than for aftershocks.

3.3. Robustness of the Results

[25] Now, we discuss the robustness of our results with
respect to the model parameters and the initial stress field in
more detail. We have found that the frequency-size distri-
butions and the temporal behavior are independent of the
parameter g characterizing the rupture propagation. Only the

Figure 5. The earthquake activity as the function of the
time relative to the main shock occurrence time. This curve
results from the averaging over 2500 sequences for t = 0.2,
g = 0.8, and D0 = 1.25.

Figure 6. The averaged earthquake activity relative to the
main shock in double logarithmic plots (here t = 0.2 and g
= 0.8). For three different degrees of fault complexity D0,
the increase of foreshock activity as well as the decrease of
the aftershock rate is found to follow approximately power
laws.
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initial stress level, i.e., the critical state, depends on this
parameter [Hainzl and Zöller, 2001]. Additional investiga-
tions of more sophisticated rupture rules have supported our
conclusions that the rupture behavior seems to be of minor
importance for our results. In particular, we have analyzed
model algorithms with more realistic stress concentrations
at the rupture front [see Hainzl and Zöller, 2001]. These
modifications do not change the characteristics of the earth-
quake sequences. Our results have also been checked with
respect to the parameter t describing the amount of post
seismic strength decrease. Most results remain unchanged,
only the absolute number of events and the length of the
earthquake sequences depend slightly on t: the larger t is,
the more earthquakes are triggered on average. Finally, the
influence of the spatial fault structure characterized by D0

has been already discussed in section 3.2: The p value is
negative correlated to D0, whereas the b value does not
change significantly.
[26] A purely linear postseismic time dependence of the

failure function is only, if at all, a first-order approximation
to reality. For example, thermal activation would lead
locally to an exponential form [e.g., see Lawn, 1993].
Deviations from linearity will modulate the interevent times
and, as a consequence, will probably result in changes of the
p values. However, the mechanism described in this paper is
mainly based on spatial effects and on universal critical
point physics. Thus the main results can be expected to
remain qualitatively independent of nonlinearities which is
supported by previous investigations of percolation models
[Main, 1999].
[27] Furthermore, we have examined the influence of the

initial stress state on the synthetic earthquake clustering. For
the simulations shown above, the stress level has been set to
the critical state which is the minimum level where the
largest events span the whole system. For moderate varia-
tions of this initial stress state we find no changes of our
results. In particular, for overstressed (supercritical) faults
the results are almost robust, although runaway events can

now occur. Such events can be stopped, after growing over
a critical size, only at the (aseismic) boundaries in contrast
to events occurring in critical or subcritical stress states
which are controlled by inherent heterogeneities of the
stress field. However, also the stress concentration at the
rupture front of runaway events is not enough to rupture all
recesses in the fractal boundary region. Analogous to the
case of a critical stress state, the postseismic strength
decrease leads to successive rupturing of the untouched
fault parts and the aftershocks remain distributed according
to the Omori law also in the supercritical case. The p value
does not change, whereas the probability for the occurrence
of foreshocks becomes much smaller in the case of over-
stressed faults. By contrast, in the case of a subcritical stress
state, the earthquake ruptures are stopped due to inherent
stress field heterogeneities and the main part of the fault is
ruptured by a whole sequence of earthquakes of comparable
size, rather than by an individual main shock at once. As a
result, the transition between the increase of seismic activity
at the beginning and the decrease at the end of a sequence is
much smoother and none of the events within an earthquake
sequence is dominating now. In this case, our simulations
are visually similar to empirically observed earthquake
swarms which cannot be described by the Omori law nor
by any other law so far. Thus a comparison of our
simulations with earthquake swarms is much more compli-
cated and beyond the scope of this paper. It is an interesting
question for future studies whether swarm activity can be
explained by a delayed rupture propagation in subcritical
stress fields.
[28] In summary, we find that our results shown in

sections 2 and 3 are robust with respect to variations of
the earthquake mechanism and can be expected for a whole
range of stress states.

4. Summary and Conclusions

[29] Our aim is to understand the relevant mechanisms
which are responsible for earthquake clustering. For this
purpose, we have analyzed earthquake populations initiated
in critical stressed fault segments. Such critical states of the
stress field are expected for earthquakes on account of
theoretical and empirical investigations: Critical stress states
have been found to evolve naturally in models simulating
the seismic cycle [e.g., Burridge and Knopoff, 1967; Olami
et al., 1992; Main, 1996; Dahmen et al., 1998; Hainzl and
Zöller, 2001] and in real fault systems which has been
recovered by means of the time-to-failure analysis [Bufe and
Varnes, 1993; Bowman et al., 1998; Jaumé and Sykes, 1999;
Zöller et al., 2001]. On the other hand, the mechanisms
being responsible for the observed spatiotemporal clustering
of earthquake are not clear so far. In previous investigations
[Hainzl et al., 1999, 2000a, 2000b], we have found that
postseismic viscoelastic relaxation can explain the observa-
tions, however, also other triggering mechanisms, such as
state and rate dependent friction [Dieterich, 1994], or stress
corrosion cracking [Shaw, 1993; Main, 2000], have been
proposed on account of theoretical considerations basing on
the nonlinear temporal response of the system due to stress
jumps. Although all of these processes will probably occur
in real fault systems, it is so far unknown which of them are
more relevant. To test our hypothesis that only some basic

Figure 7. The probability density of observing a waiting
time t between two successive foreshocks and aftershocks,
respectively. The plot results from a simulation of 104

sequences with t = 0.2, g = 0.8, and D0 = 1.25.
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assumptions are necessary to explain the empirical obser-
vations, we have investigated a very simple triggering
mechanism: The postseismic effect is linear in time and
concentrates only on the edge of the ruptured area.
[30] Our simulations are in good agreement with empiri-

cal observations. Apart from the reproduction of the Guten-
berg-Richter law and the Omori law as such, also their
differences regarding foreshocks and aftershocks are repro-
duced. Furthermore, the simulations show the observed
negative correlation between the Omori p value and the
fractal dimension of the fault system D0. In our model, these
characteristics result from the successive shrinking of the
loaded fault area size with the continuation of the earth-
quake sequence. It was neither necessary to introduce any
nonlinearity in the temporal initiation process, nor to
assume any difference in the nucleation of foreshocks and
aftershocks. Although the temporal characteristics of the
processes in real fault systems will be more complex, maybe
nonlinear, this probably plays only a minor role for the
explanation of the most conspicuous properties of spatio-
temporal earthquake clusters. Thus our investigations lead
to two main conclusions: First, the observation of the
Gutenberg-Richter law as well as the Omori law with its
empirical exponents alone do not permit to discriminate
between several possible mechanisms, because, e.g., pore
fluid flows, stress corrosion, or after slip are probably all, in
a first approximation, compatible with our basic assump-
tions. For a discrimination, other observations are needed.
Second, the inspected empirical observations, especially the
differences in the b and p values, do not refer to any
differences between the initiation process of foreshocks
and that of other events.

Appendix A: Production of Fault Surfaces

[31] The fault surfaces with complex geometry are pro-
duced in the following way: First, we generate surfaces with
a fractal distribution of strength according to the detailed
description by [Turcotte, 1997]. That is, the Fourier trans-
form of a L � L matrix of random numbers hnm with a
Gaussian probability distribution supplies a matrix of com-
plex Fourier coefficients Hst corresponding to radial num-
bers R given

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ t2
p

: ðA1Þ

The mean power spectral density for each radial wave
number kr is then filtered according to

H�
st ¼

Hst

kr
bþ1
2

ðA2Þ

The inverse Fourier transform then generates the fractal
strength field, where the fractal dimension of this field D is
determined by the parameter b, namely, D = (7 � b)/2.
[32] The fault geometries which are analyzed in this paper

result from such strength fields by defining blocks with a
strength less (larger) than the mean strength level as seismic
active (aseismic). To characterize the complexity of such
surfaces, we calculate the fractal box-counting dimension
D0 of the border line separating the seismic active from the
a seismic region. The three different types of surfaces

studied in this paper have been produced with a dimension
of the strength field D = 1.8, 2.4, and 2.8 yielding D0 = 1.1,
1.25, and 1.4, respectively, for the border line.

[33] Acknowledgments. We are thankful to Ian Main, Sandy Steacy,
and an anonymous reviewer for their recommendations which helped us to
improve this paper significantly. This work was supported by the Deutsche
Forschungsgemeinschaft (SCH280/13-1 and SFB 555).

References
Bak, P., and C. Tang, Earthquakes as a self-organized critical phenomenon,
J. Geophys. Res., 94, 15,635–15,637, 1989.

Beeler, N. M., R. W. Simpson, S. H. Hickman, and D. A. Lockner, Pore
fluid pressure, apparent friction, and Coulomb failure, J. Geophys. Res.,
105, 25,533–25,542, 2000.

Bowman, D. D., G. Oullion, C. G. Sammis, A. Sornette, and D. Sornette,
An observational test of the critical earthquake concept, J. Geophys. Res.,
103, 24,359–24,372, 1998.

Bruce, A., and D. Wallace, Critical point phenomena: Universal physics al
large length scales, in The New Physics, edited by P. Davies, pp. 236–
267, Cambridge Univ. Press, New York, 1989.

Bufe, C. G., and D. J. Varnes, Predictive modeling of the seismic cycle of
the greater San Francisco bay region, J. Geophys. Res., 98, 9871–9883,
1993.

Burridge, R., and L. Knopoff, Model and theoretical seismicity, Bull. Seis-
mol. Soc. Am., 57, 341–371, 1967.

Dahmen, K., D. Ertas, and Y. Ben-Zion, Gutenberg-Richter and character-
istic earthquake behavior in simple mean-field models of heterogeneous
faults, Phys. Rev. E, 58, 1494–1501, 1998.

Dieterich, J. H., A constitutive law for rate of earthquake production and its
application to earthquake clustering, J. Geophys. Res., 99, 2601–2618,
1994.

Geller, R. J., D. D. Jackson, Y. Y. Kagan, and F. Mulargia, Earthquakes
cannot be predicted, Science, 275, 1616–1617, 1997.

Gutenberg, B., and C. F. Richter, Earthquake magnitude, intensity, energy
and acceleration, Bull. Seismol. Soc. Am., 46, 105–145, 1956.
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[1] In order to elucidate how structural heterogeneities
affect the aftershock decay rate, we examine the aftershock
sequences produced by a slider-block model of seismicity. In
this model, the geometry of the seismic zone is the only free
parameter and all aspects of the system are known. The
power law aftershock decay rate holds only for smooth faults.
A band-limited power law emerges at intermediate fault
complexity. For rough faults, only a transient regime toward
an exponential decay is observed. In all fault geometries
examined, a band-limited power law model fits the synthetic
aftershock decay rate better than the Modified Omori Law.
Then, as the connected seismic elements form a simpler
localised surface, we show that the power law aftershock
decay rate extends over longer time, and that the power law
exponent increases. These results support the inference that
the correlation time of the power law aftershock decay rate
increases as the deformation localises along dominant major
faults. INDEX TERMS: 3299 Mathematical Geophysics:

General or miscellaneous; 7230 Seismology: Seismicity and

seismotectonics; 7260 Seismology: Theory and modeling.

Citation: Narteau, C., P. Shebalin, S. Hainzl, G. Zöller, and

M. Holschneider, Emergence of a band-limited power law in the

aftershock decay rate of a slider-block model, Geophys. Res. Lett.,

30(11), 1568, doi:10.1029/2003GL017110, 2003.

1. Introduction

[2] Following an earthquake, aftershocks are seismic
events of smaller magnitude occurring in the neighbourhood
of the rupture. Omori [1894] first suggests a hyperbolic
aftershock decay rate with respect to the time from the
mainshock. This precursory work permits a more general
description of the temporal clustering of aftershocks through
the modified Omori Law [Utsu, 1961],

� tð Þ ¼
K

t þ cð Þp
; ð1Þ

where �(t) is the aftershock rate at time t, p is a positive
power law exponent, K is a constant of proportionality, and

c is a time constant essential to define a finite aftershock
frequency at t = 0, the mainshock time. This empirical law
predicts a power law aftershock decay rate over long time
and a constant rate over short time. Later, different models
of aftershock decay rate have been tested to improve the fit
of natural aftershock sequences [Gross and Kisslinger,
1994]. For example, an exponential decay replaces the
power law decay to account for an acceleration of the decay
rate over long time [Kisslinger, 1993].
[3] Following Scholz [1968], Narteau et al. [2002] devel-

op a model of aftershock decay rate based on a Markov
process with stationary transition rates. These transition rates
l vary according to the magnitude of a scalar representing
the state of stress, and defined as the overload s0. Thus, the
aftershock decay rate in the model is a weighted sum of
independent exponential decay functions with different char-
acteristic times. From different overload distributions N(s0)
and different expressions of the transition rates l(s0), it has
been shown that the aftershock decay rate can be written as

� tð Þ ¼
A g q;lbtð Þ � g q;latð Þð Þ

tq
; ð2Þ

where g r; xð Þ ¼
R x

0
tr�1 exp �tð Þdt; is the incomplete Gam-

ma function and where q and A can be expressed according to
analytical results. lb is a characteristic aftershock rate which
corresponds to an upper bound of the overload distribution.
la is a characteristic aftershock rate which corresponds to a
limit of crack growth where the magnitude of the transition
rate jumps from 0 to a finite positive value.
[4] The main characteristic of the aftershock decay rate

produced by equation 2 is that, if lb � la, three major
regimes of the aftershock decay rate emerge: (1) A linear
decay is observed for t < t1

z where t1
z = xb/lb. (2) A power

law decay is observed for t1
z< t < t2

z where t2
z = xa/la. (3) An

exponential decay is observed for t > t2
z. In this description,

xb and xa are coefficients defined from the q-value and a
threshold of divergence z between the aftershock decay rate
and a permanent power law decay. Thus a band-limited
power law aftershock decay rate results from the upper
bound of the overload distribution and a limit of crack
growth over short and long time respectively. In the
framework of this model, (q, la, lb) are the only free
parameters, but sometimes it is more convenient to refer
to the temporal limits (t1

z, t2
z) that result from these param-

eters in order to describe the different types of aftershock
decay rate produced by equation 2 (Figure 1).

GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 11, 1568, doi:10.1029/2003GL017110, 2003

1Institute of Earth Sciences and Institute of Physics, Universtität
Potsdam, Potsdam, Germany.

2Institute of Physics, Universtität Potsdam, Potsdam, Germany.
3Institute of Applied and Industrial Mathematics, Universität Potsdam,

Potsdam, Germany.

Copyright 2003 by the American Geophysical Union.
0094-8276/03/2003GL017110$05.00

22 -- 1

159



[5] From several well known aftershock sequences in
different geophysical environments, Narteau et al. [2002]
have suggested that the power law aftershock decay rates
extends over longer time according to the concentration of
the deformation along dominant major faults. In addition to
the limit of crack growth, it has been proposed that structural
properties control the time of the transition from a power law
to an exponential aftershock decay rate (i.e. correlation time
of the power law aftershock decay rate). Such conclusions
have now to be confirmed by a systematic analysis of a large
number of aftershock sequences. In a preliminary study
presented in this paper, we test our hypothesis from after-
shock sequences generated by a slider-block model [Hainzl
et al., 2003]. In this model, the complexity of the seismic
zone is the only free parameter. Thus, modifications of the
aftershock decay rate only result from changes in the
geometry of the system. On the other hand, all the artifacts
coming from data acquisition and data selection are avoided
in numerical simulations. Our approach may be therefore
visualised as an independent procedure for characterising a
relationship between the duration of the power law after-
shock decay rate and the faulting complexity.

2. The Model

[6] In the modelling of the earthquake phenomenology,
slider-block models opened up a variety of new applica-

tions, all based on a standard representation of a frictional
behaviour along faults. The model to be presented here
retains the simplicity of the conventional slider-block model
but specifically accounts for stress corrosion cracking
[Lawn and Wilshaw, 1975]. Then earthquake clustering
and, in particular aftershocks, result from short-range inter-
action over long time in the neighbourhood of ruptures.
[7] In this model previously described by Hainzl et al.

[2003], the evolution of individual ‘earthquakes’ is a
cellular automaton version [Olami et al., 1992] of the
two-dimensional spring-block model originally proposed
by Burridge and Knopoff [1967]. Elastic interactions are
incorporated by nearest neighbour coupling, and the fric-
tional behaviour respects a Mohr-Coulomb criterion with a
static failure threshold sF. In addition to static stress
changes, the strength of the blocks bordering the rupture
linearly decreases [Lee and Sornette, 2000] to mimic sub-
critical crack growth by stress corrosion. Then a character-
istic time of a chemical reaction rate can be related to the
unloading time T0 which defines the rate of postseismic
strength decrease �sF/T0. Hence the duration of an earth-
quake is assumed to be few orders of magnitude shorter
than T0. Under this assumption, from a pre-stressed fault
patch and a stochastic nucleation, different parts of the fault
segment are unloaded by a succession of individual events.
In this sequence of events, it is possible to determine
foreshocks, mainshock and aftershocks with respect to the
time of the events and their sizes.
[8] The model is implemented in the form of a two-

dimensional L � L array of blocks. To account for complex
boundary conditions, a seismic zone of L2/2 blocks is em-
beddedwithin an aseismic region. Practically, different fractal
strength fields are generated from different fractal dimensions
[Turcotte, 1997], and the seismic zone is defined by the blocks
with the higher strength. Then we characterise the fault
geometry by estimating D0 the fractal box-counting dimen-
sion of the border line between seismic and aseismic zones
(i.e. the fault roughness). In addition, we calculate the average
number Nc and the correlation length L0 of the aseismic
regions within the seismic zone [Stauffer and Aharony,
1994]. These two parameters are negatively correlated to
the degree of localisation of the connected seismic elements.
Hence, in the following, we consider that the deformation
occurs along simpler localised fault as L0 and Nc decrease.

3. Results

[9] Different aftershock sequences obtained for a given
fault complexity are stacked in a unique catalogue with
respect to the time from the mainshock [Davis and Frohlich,
1991]. Thus we take advantage of the computing capabil-
ities to reduce the statistical bias associated with individual
aftershock sequences. Simultaneously, we verify that the
temporal properties of a vast majority of individual sequen-
ces are the same as for the stacked catalogue. Each sequence
initiates at t = 0 and continues at least until t/T0 = 1. Then,
we analyse the aftershock decay rate between 0 and T0 to
avoid finite size effects at t > T0 when individual sequences
are more likely to stop. The numerical procedure is the same
as in Narteau et al. [2002]. We define the parameters of the
modified Omori law (p, c) and the parameter of the band-
limited power law (q, la, lb) using state-of-the art statistical

Figure 1. Averaged aftershock activity and best-fits of the
band-limited power law and the modified Omori law for
different fault geometries of the slider-block model. (a) D0 =
1.1. (b) D0 = 1.25. (c) D0 = 1.4. Enlargements show that the
band-limited power law is always closer to the data. (d)
Generic behaviours of the band-limited power law. A-values
are arbitrary, lb = 200 and q = 1 (i.e. t2

z = cte/la). Type A:
power law decay rate over long time (1/la = 106). Type B:
band-limited power law (1/la = 0.2). Type C: transient
regime toward an exponential decay rate (1/la = 10�3).
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measures [Akaike, 1974; Ogata, 1983]. Then we compare
the models by calculating the difference �AIC between the
Akaike Information Criterion (AIC) values obtained from
both model. �AIC < 0 means that statistically the band-
limited power law provides a better fit of the data than the
modified Omori law, despite the additional parameter.
[10] Table 1 shows the parameters of the modified Omori

law and the parameter of the band-limited power law for
five different degrees of fault complexity (L = 128). For
three of them, Figure 1 shows the aftershock decay rate and
the best fits provided by both laws. In Table 1, the Nc-value
and the L0-value rapidly decrease as the D0-value decreases.
Thus we study the transition from a more distributed to a
simpler localised seismic zone. In all fault geometries
examined, the best-fit of the aftershock sequence is obtained
by the band-limited power law.
[11] For the modified Omori law, the p-value is high and

almost constant for the different fault geometries examined.
On the other hand, the q-value continuously decreases from
1.6 to 0.15 as the fault complexity increases. In particular,
the q-value jumps from 1.1 to 0.4 as D0 moves from 1.3 to
1.35. Small t1

z-values suggest a rapid onset of the power-law
aftershock decay rate. The c-value is always higher than the
t1
z-value, and the ratio c/t1

z increases for rougher faults.
Thus, the modified Omori law may capture non power law
behaviours over long time scales but provides a worst fit to
the short-term behaviour.
[12] A rapid decrease of the t2

z-value is associated with an
increasing complexity of the border line separating seismic
and aseismic regions of the model. For a smooth fault (D0 =
1.1), t2

z ! 1 and no transition toward an exponential
aftershock decay rate can be observed (Figure 1a). For an
intermediate complexity (D0 = 1.25), the t2

z-value is less than
T0 and a transition toward an exponential decay rate occurs
over long time (Figure 1b). From D0 = 1.1 to D0 = 1.25, we
have therefore the emergence of a band-limited power law,
and a lower �AIC-value is obtained. For a more complex
fault geometry (D0 = 1.3), the power law aftershock decay
rate is still the dominant regime over intermediate time
although the smaller t2

z-value. For rough faults (D0 

1.35), t2

z ! 0 and t2
z < t1

z. It is impossible to observe a
power law decay and only a transient regime from a linear
decay to an exponential aftershock decay rate occurs (Figure
1c). As shown by the�AIC-value, the modified Omori law is
unable to deal with this decay type. From D0 = 1.35 to D0 =
1.3, we have therefore the emergence of a band-limited
power law. As the connected seismic elements form a

simpler localised surface, the power law regime emerges
from a linear regime over short time, and extends over longer
time to the detriment of the exponential regime.

4. Discussion

[13] In the slider-block model with stress corrosion
cracking, the aftershock decay rate results from strength
decreases spatially localized at the border of the rupture
over a population of blocks with heterogeneous stresses.
Hence, the extension of the rupture is essential in determin-
ing when aftershocks will be triggered. Aseismic regions
included in the seismic zone may inhibit the propagation of
an event, and are likely to affect the stress field at the edge
of rupture areas. In fact, as the fault becomes smoother,
aftershocks are in average triggered at lower stresses, and
the macroscopic strength of the fault is decreasing. The
controlling properties of the aftershock decay rate in the
slider block model and in the model presented by Narteau et
al. [2002] are therefore the same.
[14] The nature of the heterogeneity that we introduce in

the slider block model might not be the same as the
heterogeneity in the real Earth. However, the particular
mechanism of the heterogeneity is unlikely to be critical
to the broadly averaged statistics of aftershock decay, and
the huge AIC values resulting from the large numbers of
events being fit is a benefit of studying models.
[15] In this paper, we examine how the geometry of the

seismic zone affects the temporal properties of the after-
shock sequences produced by the slider-block model. In
particular, we determine the parameters of a band-limited
power model and of the modified Omori law. The band-
limited power law predicts a decrease of the exponent of the
power law aftershock decay rate with respect to an increas-
ing fault complexity. From real aftershock sequences, Nanjo
et al. [1998] already suggest such a decrease of the power
law exponent with respect to an increase of the fractal
dimension of the fault populations. Nevertheless, this anal-
ysis suggests that, if the transition toward an exponential
regime rate is not taken into account -as in the modified
Omori law- such variation may be more difficult to capture
because of a worst fit of the aftershock decay rate.
[16] In the model, the power law aftershock decay rate is

permanent along smooth faults. For an intermediate fault
complexity, a transition toward an exponential decay rate
occurs over long time and a band-limited power law
emerges. Finally, for the most complex geometries, only a

Table 1. Simultaneous Comparisons Between the Aftershock Decay Rates of the Slider-Block Model With Different Fault Geometries,

and Between the Band-Limited Power Law and the Modified Omori Law

Fault geometry

N(�104)

Mod Omori law Band-limited power law

�AIC (�105)

Temporal limits

D0 L0 Nc p c la lb q t1
z t2

z Type

1.10 2.50 5 3.41 2.18 0.12 10�3 22.8 1.59 �7.04 0.11 394 A
1.25 4.52 24 4.37 2.60 0.25 0.84 15.1 1.41 �9.03 0.14 0.54 B
1.30 5.22 40 4.22 2.02 0.18 0.75 18.1 1.12 �8.61 0.10 0.38 B
1.35 6.89 92 4.97 2.27 0.31 1.28 17.0 0.41 �10.1 0.04 0.012 C
1.40 7.73 185 4.69 1.75 0.30 0.86 22.9 0.15 �9.40 0.008 2.3 10�5 C

D0 is the fractal box-counting dimension of the border line between seismic and aseismic regions. Nc and L0 are the number and the correlation length of
aseismic regions within the seismic zone. N is the number of aftershocks. The time scale is given by the unloading time T0. la,b have units of frequency. t1,2

z

and c have units of time, while q and p are dimensionless. �AIC is the difference between the AIC’s of the band-limited power law and of the modified
Omori law. t1,2

z are inversly proportional to la,b and vary according to the q-value and a threshold of divergence expressed as a percentage (z = 0.8). As in
Figure 1, type A corresponds to a power law decay rate over long time t2

z ! 1, type B corresponds to a band-limited power law 0 < t2
z < 1, and type C

corresponds to a transitional behavior toward an exponential decay rate t2
z ! 0.
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transient regime toward an exponential aftershock decay
rate may be observed. Therefore there is a rapid increase of
the correlation time of the power law aftershock decay rate
with respect to a decreasing fault complexity.
[17] Without the restrictions applied to seismological and

experimental data analysis, these observations are in good
agreement with (1) the experimental results of Hirata
[1987] that show that an exponential decay is replaced by
a power law aftershock decay rate following the advance of
the fracturing process, and (2) the inference that have been
done from natural sequences [Narteau et al., 2001]. After-
shock sequences produced by the slider-block model along
smooth fault correspond to real sequences observed in zones
where the strain is concentrated on a major fault and where
the aftershocks exhibit a dominant faulting mechanism. In
laboratory experiments, they correspond to aftershock
sequences observed just before the macroscopic failure
(i.e. dynamic stress drop). For an intermediate fault com-
plexity, synthetic aftershock sequences correspond to real
sequences observed in zones where the strain is partitioned
on smaller faults and where no major structure emerges.
Synthetic sequences along rough fault correspond to after-
shock sequences observed in zones of distributed damage
where the deformation is accommodated by different types
of faulting mechanism or where the strain rate is signifi-
cantly low (i.e. higher crustal strength). In laboratory
experiments, such sequences are observed during the pre-
liminary stages of fracture growth.
[18] In the multi-disciplinary science of critical phenom-

ena, a critical behaviour is characterised by an increase of
both the correlation time and length in the proximity of a
critical point and by a divergence of these parameters at the
critical point. During the formation and the evolution of
fault populations, individual fault growth, interact, strain
localise and structural irregularities are smoothed by the
accumulation of the deformation. In a slider-block model,
this work suggests that, simultaneously, the correlation time
of the power law aftershock decay rate increases. As said
above, similar behaviours may have been captured in real
sequences and in laboratory experiments. Unfortunately, the
selection of only a few aftershock sequences for analysis
means that the empirical support provided for such behav-
iours is still of an anecdotal nature. The statistical analysis
presented in this paper is a new and independent contribu-
tion about the possible relationship between the correlation
time of the power law aftershock decay rate and the faulting.
The results support the idea that brittle rocks makes a
transition from a subcritical state to a precisely critical state
during the localisation process of the deformation.

5. Conclusion

[19] Temporal properties of the aftershock sequences
produced by a slider-block model depend on the geometry
of the seismic zone. Along smooth fault, the power law
aftershock decay rate applies at all time scales, but for
complex fault geometries, only a transient regime toward an
exponential decay may be observed. Between these two end
members, a band-limited power law emerges and extends
over longer time as the smoothness of the fault increases. In
all fault geometries examined, a band-limited power law
model fits the synthetic aftershock decay rate better than the

Modified Omori Law, despite the additional parameter. In
addition to the duration of the power law aftershock decay
rate, we show that the power law exponent increases as the
connected seismic elements form a simpler localised sur-
face. Without the usual restrictions applied to geophysical
and experimental data analysis, the work presented here
supports the inference that the correlation time of the power-
law aftershock decay rate increases as the deformation
localises along dominant major faults.
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Quasi-static and Quasi-dynamic Modeling of Earthquake Failure

at Intermediate Scales

GERT ZÖLLER1, MATTHIAS HOLSCHNEIDER2, and YEHUDA BEN-ZION3

Abstract—We present a model for earthquake failure at intermediate scales (space: 100 m–100 km,

time: 100 m/vshear- 1000’s of years). The model consists of a segmented strike–slip fault embedded in a 3-D

elastic solid as in the framework of BEN-ZION and RICE (1993). The model dynamics is governed by

realistic boundary conditions consisting of constant velocity motion of the regions around the fault, static/

kinetic friction laws with possible gradual healing, and stress transfer based on the solution of CHINNERY

(1963) for static dislocations in an elastic half-space. As a new ingredient, we approximate the dynamic

rupture on a continuous time scale using a finite stress propagation velocity (quasi–dynamic model) instead

of instantaneous stress transfer (quasi–static model). We compare the quasi–dynamic model with the

quasi–static version and its mean field approximation, and discuss the conditions for the occurrence of

frequency-size statistics of the Gutenberg–Richter type, the characteristic earthquake type, and the

possibility of a spontaneous mode switching from one distribution to the other. We find that the ability of

the system to undergo a spontaneous mode switching depends on the range of stress transfer interaction,

the cell size, and the level of strength heterogeneities. We also introduce time-dependent log ðtÞ healing and
show that the results can be interpreted in the phase diagram framework. To have a flexible computational

environment, we have implemented the model in a modular C++ class library.

Key words: Earthquakes, fault models, dynamic properties, seismicity.

1. Introduction

In recent years various models of earthquake sequences have been developed.

Although the verification of such models is difficult due to limited data, considerable

progress has been made with respect to the generation and understanding of various

seismicity patterns. An important goal is the development of conceptual models,

which are simple enough to allow some analytical understanding of the relevant

processes, but also produce seismic dynamics that is to some degree realistic. Such

models have in general a set of tuning parameters that should not be too large. For
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some parameters empirical values are available, while others can be used to tune the

model dynamics towards an expected behavior. The model of BEN-ZION and RICE

(1993) of a fault in a 3-D elastic half-space appears to meet these criteria. Using this

model, several observed frequency-size and temporal statistics could be explained in

terms of structural properties of a given fault.

The most striking feature of seismicity is the frequency-size distribution, which

follows in regional domains the Gutenberg-Richter power-law relation. On an

individual fault, the situation can be different: although power-law scaling is always

observed for a certain range of magnitudes, deviations are found for large

magnitudes. On one hand, the Gutenberg-Richter scaling can break down; that is,

large events may be suppressed. On the other hand, the large magnitude range can be

dominated by a frequently occurring ‘‘characteristic’’ earthquake. Using a mean field

approximation of the model of BEN-ZION and RICE (1993), it has been shown that

different frequency-size distributions can result from different values of a dynamic

weakening coefficient controlling the brittle properties of the fault, and a conser-

vation parameter that determines the amount of stress transfer remaining on the fault

(DAHMEN et al. 1998; FISHER et al. 1997). For certain parameter values, the system

can spontaneously switch from one state to the other. In HAINZL and ZÖLLER (2001)

a cellular automaton model of Burridge-Knopoff type (BURRIDGE and KNOPOFF,

1967; HAINZL et al., 1999) has been analyzed with the result that the degree of

disorder and stress concentration can tune the frequency-size statistics. The question

whether or not a small earthquake can grow into a system wide event is connected to

the degree of smoothness (or roughness) of the stress field. In BEN-ZION (1996) and

BEN-ZION et al. (2003) it is argued that the smoothing of long wavelength

components of stress can be interpreted as a development of long-range correlations

or, in terms of critical phenomena, as an increase of the spatial correlation length,

which prepares the fault for a large event (SORNETTE and SAMMIS, 1995; ZÖLLER et

al. 2001; ZÖLLER and HAINZL, 2002). Consequently, all processes that influence the

smoothness of the stress field, e.g., the type of stress transfer during a rupture and

quenched heterogeneities, are relevant for the dynamics.

Most existing models for earthquake failure are governed by instantaneous stress

transfer (quasi-static) during the rupture process, and in part by unrealistic stress

transfer functions like nearest-neighbor interaction or homogeneous stress transfer

independent of the position on the fault and the rupture dimension (see BEN-ZION,

2001, for a recent summary of fully dynamic earthquake models). As in the present

work, the fault is usually discretized into uniform cells. To account for a more

realistic rupture process, the quasi-static approach is extended here to a quasi-

dynamic one by introducing a finite communication speed (GABRIELOV et al., 1994).

Using Chinnery’s solution for a strike-slip fault in a 3-D elastic half-space

(CHINNERY, 1963), realistic boundary conditions, dynamic weakening, and option-

ally a gradual time-dependent healing, provides a realistic, but still relatively simple

earthquake model on the intra- and the inter-event time scale.
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The results indicate that the quasi-dynamic model favors for certain parameter

values the occurrence of large events. In particular, the truncation of the Gutenberg-

Richter law in the quasi-static approach vanishes. We further show that the ability of

a system to undergo a mode switching between the Gutenberg-Richter law and a

characteristic earthquake distribution depends on the range of the stress transfer

interaction, the cell size, and the strength heterogeneities. If logðtÞ healing is included,
the time-dependence can be absorbed in an effective dynamic friction and stress loss

in the model without healing.

2. Model Framework

We assume conceptually a hierarchical model that consists of three hierarchies:

the system (top level) as a whole contains a set of faults (middle level); each fault is

composed of an array of cells (bottom level). The system is embedded in a three-

dimensional elastic half-space. At the system level, the interaction between the faults

is accounted for. The fault controls the interaction of the cells during an event, while

the accumulation and the release of stress takes place on the cell level.

At the present state of model development, only a single rectangular fault is

considered. Unless stated otherwise, a fault of 70-km length and 17.5-km depth is

covered by a computational grid, divided into 128 � 32 uniform cells, where

deformational processes are calculated. As discussed in BEN-ZION and RICE (1993),

this geometry corresponds approximately to the San Andreas fault near Parkfield,

CA. Tectonic loading is imposed by a motion with constant velocity vpl=35 mm/year

of the regions around the computational grid. The space-dependent loading rate

provides realistic boundary conditions. Using the static stress transfer function

Kði; j; k; lÞ from CHINNERY (1963), the tectonic loading for each cell ði; jÞ is a linear

function of time t and plate velocity vp=1:

Dsði; j; tÞ ¼ ð�vpl � tÞ �
X

k;l2fault
Kði; j; k; lÞ; ð1Þ

where the minus sign stems from the fact that forward (right-lateral) slip of regions

around a locked fault segment is equivalent to back (left-lateral) slip of the locked

fault segment. The grid of cells is governed by a static/kinetic friction law, i.e., a

cell slips initially if the static friction ss is exceeded. The threshold decreases

instantaneously to the dynamic friction sd < ss and remains there until the

earthquake is terminated (model without healing during events). The stress itself

drops to the arrest stress sa < sd . This process of dynamic weakening can be

parameterized by the dynamic overshoot coefficient D ¼ ðss � saÞ=ðss � sdÞ. Fol-

lowing the description in DAHMEN et al. (1998), we set ss ¼ 1 and sa ¼ 0 and use

the dynamic weakening coefficient e ¼ ðss � sdÞ=ss ¼ 1� sd to connect static/kinetic

friction and arrest stress. Consequently, the dynamic weakening parameter
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e ¼ 1� sd is bounded between 0 and 1. The case e ¼ 0 represents the unrealistic

case of static friction equals kinetic friction, or instantaneous healing. To account

for heterogeneities in the brittle properties, some uniformly distributed noise

2 ½�0:5; 0:5� is added to sd .

As yet, the frictional properties of the fault are strongly simplified; the strength

envelope, which describes the change of the friction coefficient by means of static

and dynamic frictions, is a piecewise constant function (see solid line in Fig. 1). It

is, however, known from laboratory experiments that ruptures are governed by

more complicated friction laws (DIETERICH, 1972; 1978). Most of the experimental

results are described by the rate- and state-dependent constitutive law (RUINA,

1983; SCHOLZ, 1998). Within this law, the response to a sudden change of the

sliding velocity is an instantaneous effect on the friction coefficient followed by a

more gradual evolution.

As a first step towards a more realistic friction law, we introduce a gradual time-

dependent healing of the form (see dashed line in Fig. 1)

sdðtÞ ¼ sd;0 þ C logð1þ ðt=t0ÞÞ; ð2Þ

where sd;0 is the initial dynamic friction coefficient, t0 is a reference time and C is a

free parameter. The healing begins after the instantaneous drop of the friction from

ss to sd;0. For our numerical simulations, we parameterize the healing with two

parameters p1 and t100, instead of C and t0. The value of p1 gives the fraction of

ss � sd;0 that has healed after a time of 1 km/vs, and the value t100 gives the time

interval required for complete healing, sdðt100Þ ¼ ss.

Figure 1

Sketch of frictional processes: in the model without healing during events (solid line), the friction drops

from ss to sd and remains there until the earthquake is terminated, at which time there is instantaneous

healing. In the model with healing during events (dashed line) the friction increases as log ðtÞ after the stress
drop. The shape of the healing curve is parameterized by the values of p1 and t100.
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The stress transfer during an earthquake is calculated by means of the three-

dimensional solution of CHINNERY (1963) for static dislocations on rectangular

patches in an elastic Poisson solid with rigidity l ¼ 30GPa. In particular, we

approximate the 3+1 dimensional space-time stress transfer by

Dsði; j; tÞ ¼ ð1� cÞ �
X

k;l2fault
Kði; j; k; lÞDuðk; l; t � r=vsÞ; ð3Þ

where Du is the slip, r is the spatial distance between the cells ði; jÞ and ðk; lÞ, and vs is

the shear-wave velocity. The factor 1� c 2 ð0; 1� corresponds to a given ratio of

rigidities governing during instabilities the self-stiffness of a slipping cell (diagonal

elements of the stiffness matrix) and the stress transfer to the surrounding domain

(off-diagonal elements). A ratio smaller than 1 represents stress loss during rapid slip

on the fault to internal free surfaces in the solid associated with porosity and cracks.

We refer to c and 1� c the stress loss parameter and stress conservation parameter,

respectively. The slip Duði; jÞ of a cell at a position ði; jÞ is related to the stress drop

Dsði; jÞ at the same position through the self-stiffness: Duði; jÞ ¼ Dsði; jÞ=Kði; j; i; jÞ.
The size of an earthquake is measured with two quantities: 1. the area, which is

proportional to the number of cells that participated in the earthquake failure, and

the potency, which is the integral of the slip over the rupture area. This approach

extends the model of BEN-ZION and RICE (1993) to a quasi-dynamic procedure with a

finite communication speed vs for stress transfer and a related causal rupture process.

In one version of the model, the quasi-dynamic rupture process is calculated on a

continuous time scale. This may, however, lead to a numerical explosion during the

simulation, for certain parameter values. Therefore, we also study simplifications of

the continuous time process, e.g., by discretizing the time scale for the stress transfer

during an earthquake.

At the present state, the model is characterized by two separate time scales: the

inter-event time scale during which the fault is loaded between two events, and the

intra-event time scale defined by the travel time of a shear wave along the fault,

where coseismic stress redistribution takes place. During the event, the tectonic

loading is neglected. The stress conservation parameter 1� c, which controls the

amount of stress remaining on the computational grid, is varied between c � 1 (no

stress redistribution) and the conservative case c ¼ 0 (stress drop s� sa is completely

redistributed). In general, c controls the size of the generated earthquakes: for high

values of c, small amounts of stress are redistributed and the evolution of cascading

failure events stops earlier than in corresponding cases of small c, for which large

earthquakes can develop. In the latter case, numerical problems may occur, because

large runaway events that cover the entire fault and have multiple slip episodes of

each cell, result in a memory exhaustion on the continuous intra-event time scale.

Therefore, we also study a simplification of the quasi-dynamic rupture: the intra-

event time scale is discretized into N time intervals. Each slip of a cell is assigned to

one of the time intervals. Note that the case N ¼ 1 represents the quasi-static model
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used in BEN-ZION and RICE (1993). Although it is mathematically not clear that the

limit N !1 converges to the continuous time scale, we assume that a value of N
exists, which approximates the continuous case with a reasonable accuracy. In our

simulations we used N ¼ 1000. Given the dimensions of our grid, a stress signal may

travel ten times along the fault before the time error becomes comparable to the

travel time between neighboring cells. The model simulations are started with a

random distribution of initial stress. To account for transient effects in the dynamics,

the first 50,000 earthquakes are neglected in each simulation.

3. Model Simulations

3.1. Influence of Intra-event Dynamic

Figure 2 gives the frequency-size distribution for different versions of the intra-

event time scale. Figure 2(a) shows results calculated with c ¼ 0:3 and a realistic

value of the dynamic weakening coefficient e ¼ 0:8 corresponding to a dynamic

overshoot coefficient D ¼ 1:25 (MADARIAGA, 1975). Figure 2(b) shows the same

calculation for the unrealistic case of e ¼ 0 and instantaneous healing (sd ¼ ssÞ,
where the frequency-size statistics is a truncated power law. The results indicate that

the continuous time scale (solid line) can be approximated quite well by the

discretized time scale with 1000 intervals (dotted line). In the case without large

earthquakes, there is no significant difference between the quasi-dynamic model and

the quasi-static model (dash-dotted line). In contrast, Figure 2(a) shows a clear fall-

off for large events in the quasi-static case. This difference is a stable feature; that is, it

is also present for a broad range of parameter values e and c that allow large

earthquakes to occur. Consequently, the quasi-static approximation seems to

Figure 2

Frequency-size distribution for different model versions (without healing during events) employing c ¼ 0:3

with e ¼ 0:8 (Figure (a)) and e ¼ 0:0 (Figure (b)). The solid line refers to the continuous intra-event time

scale; the dashed and the dotted line refer to discretized time scales with the 100 and 1000 time intervals,

respectively. The dash-dotted line refers to the quasi-static model of BEN-ZION and RICE (1993). The area is

given in units of the used cell size.
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suppress large earthquakes leading to a truncation in the frequency-size statistics.

For large earthquakes, the propagation of stress with finite communications speed vs

is obviously a relevant feature.

3.2. The Phase Diagram Framework

In DAHMEN et al. (1998) a simplified two parameter mean field version of the

quasi-static model of BEN-ZION and RICE (1993) has been analyzed. A ‘‘conservation

parameter’’ c (similar to our 1� c) has been introduced, and an infinite-range mean-

field stress transfer function G � c=N (N = total number of cells) was used instead of

Chinnery’s solution for the 3-D elastic stress transfer. For this model, a phase

diagram spanned by c and the dynamic weakening coefficient e contains two distinct

phases: one phase where the frequency-size distribution follows the Gutenberg-

Richter law, and a second phase governed by a spontaneous mode switching between

Gutenberg-Richter statistics and the characteristic earthquake distribution. In

particular, it is hypothesized that these phases are generic for more realistic stress

transfer functions. In the first part of this study, we analyze this claim for various

types of interactions. We observe in agreement with WEATHERLEY et al. (2002) that

with coarse cell size there is a threshold of the interaction range, below which no

mode-switching occurs. However, with small enough cells and strong heterogeneities,

mode-switching also occurs for the realistic case of elastic stress transfer. In the

second part, we consider the influence of time-dependent logðtÞ healing. The results

show that the model can be mapped onto the same phase diagram if the net effect of

healing is absorbed in effective dynamic threshold and stress loss.

3.2.1. The phase diagram for the quasi-dynamic and elastic model.

Figure 3 shows frequency-size statistics for a fixed dynamic weakening coefficient

e ¼ 0:6 as a function of the stress loss factor c. High values of c prevent the

occurrence of large earthquakes, in that stress that is needed to bring cells to failure is

Figure 3

Frequency-size statistics for different values of the stress loss factor c with e ¼ 0:6 (no healing during

events). The transition from the Gutenberg-Richter distribution to the characteristic earthquake

distribution takes place at c � 0:125.
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lost and earthquakes are stopped earlier. Furthermore, the figure shows a transition

from a truncated Gutenberg-Richter distribution (c ¼ 0:2) to a characteristic

earthquake distribution (c ¼ 0). For c � 0:125, the system bifurcates to the two

regimes.

Our calculations with the quasi-dynamic elastic model lead (Fig. 4) to a large

Gutenberg-Richter regime with small earthquake sizes, and a regime governed by a

characteristic earthquake distribution with some short time fluctuations. Note that

the factor c in DAHMEN et al. (1998) is now replaced by 1� c. The characteristic

earthquake regime is smaller than the mode switching phase in DAHMEN et al. (1998),

because in the elastic model a small fraction of the stress drop is lost even for c ¼ 0

due to the finite fault size. We have estimated that on average 80% of the stress drop

remains on the fault for the employed 70 km and 17.5 km dimensions with c ¼ 0.

Consequently, the case c ¼ 0 for the elastic model corresponds to c ¼ 0:8 of the mean

field model. This is approximately confirmed by a comparison of Figure 4 with the

phase diagram in DAHMEN et al. (1998).

3.2.2. Mode-switching between Gutenberg-Richter and characteristic earthquake

statistics.

To address the question of a possible mode switching, long simulations are

required. Therefore, we use for the following analysis a fault of 10.9-km length and

2.7-km depth divided into 20� 5 uniform cells. Figure 5 shows a typical earthquake

sequence (rupture area vs. time) from a catalog representing the characteristic

earthquake regime. The quasi-periodically occurring characteristic earthquakes are

Figure 4

Schematic phase diagram for a fault with N ¼ 128� 32 cells as a function of the dynamic weakening

parameter e and the stress loss factor c (model without healing during events). The line AB separates the

Gutenberg-Richter phase and the phase where large characteristic earthquakes occur.

2110 Gert Zöller et al. Pure appl. geophys.,

171



interrupted for short time by clusters of small and intermediate earthquakes. It seems

as if the system attempts to switch into the other regime and flips back after a short

time, e.g., for t ¼ 361 in Figure 5. In Figure 6 we show that the ability of the system

Figure 5

Earthquake area as a function of time for the quasi-static model (N ¼ 20� 5, e ¼ 0:6, c ¼ 0:03, no healing

during events). The sequence follows the characteristic earthquake distribution, although the system

attempts to switch to a Gutenberg-Richter phase, e.g., at t � 361.

Figure 6

Earthquake area as a function of time for the quasi-static model (N ¼ 20� 5, e ¼ 0:6, no healing during

events) and different types of interaction � r�x. The stress loss factor c has been adjusted in order to bring

the system into the transition regime between Gutenberg-Richter and characteristic earthquake

distributions. The case x ¼ 0 represents the mean field approximation [DAHMEN et al., 1998], while x ¼ 3

corresponds to the elastic solution of CHINNERY [1963].
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to undergo a mode-switching depends significantly on the kind of stress transfer. We

consider interactions between the limit cases of mean field interaction (Ds � r0, where
r is the distance from the slipped cell) and the elastic solution of CHINNERY (1963),

Ds � r�3. These simulations are performed on a 20� 5 grid with dynamic weakening

e ¼ 0:6. Since mode-switching most likely occurs in the transition regime between

Gutenberg-Richter and characteristic event distribution, we adjust the stress loss

factor c to be in this part of the parameter space. Each plot in Figure 6 gives results

for 10,000 simulated events with stress transfer Ds � r�x and a certain value of the

exponent x. The plots show clearly that in simulations with coarse cells, the mode-

switching in the mean field approximation degenerates with increasing exponent x to

the short-term fluctuations described above. We also performed similar calculations

for a uniform stress transfer on a compact support (circle with radius R),
Ds ¼ s0 �Hðr � RÞ. Figure 7 shows earthquake sequences as in Figure 6 for this

kind of interaction. Again, the mode-switching behavior, which is clearly visible for

large radii, degenerates to short-term fluctuations for small radii. Although we did

not observe mode-switching of the type described in DAHMEN et al. (1998) in

earthquake catalogs up to 20,000,000 events, it cannot be ruled out that this behavior

may occur with a very large persistence time in one mode.

Figure 7

Earthquake area as a function of time for the quasi-static model (N ¼ 20� 5, e ¼ 0:6, no healing during

events) as in Fig. 6, with stress transfer on a compact support with a radius R.
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In sum, we have found that the ability of the system to undergo a mode-switching

from the Gutenberg-Richter distribution to the characteristic earthquake distribu-

tion with coarse cell size depends on the range of the stress transfer interaction.

Similar results were found in (WEATHERLEY et al., 2002). While mode-switching

occurs quite frequently for the infinite range mean field interaction, this behavior

could not be observed for the more realistic long-range 3-D elastic interaction,

although the system attempts to switch from time to time. In this case, the transition

from the Gutenberg-Richter regime to the characteristic earthquake regime with

coarse grid is continuous; that is, a decrease of c leads to the growth of the average

magnitude. The limit case (c! 0) is the characteristic earthquake distribution with

quasi-periodically occurring earthquakes that rupture the entire fault. It is also

visible that in contrast to the mean field approximation, intermediate size

earthquakes are also present in the characteristic earthquake regime. These

observations also hold for the quasi-dynamic model.

Until now we have kept the cell size fixed and have varied only the range of stress

transfer interaction. It is, however, possible that smaller numerical cells will produce

mode-switching, since such will lead to larger stress concentrations near failure areas

and larger stress fluctuations. To investigate this hypothesis we have to consider a

grid with numerous cells. Note that a change of the fault dimension in terms of total

length and depth produces the same earthquake sequences with a rescaled time axis.

Such an analysis requires very time-consuming numerical simulations due to two

reasons: 1. A new phase diagram corresponding to Figure 4 must be calculated; 2. the

transition between both phases must be scanned with a very high resolution in order

to extract the range of parameters within which mode-switching is expected in

reasonable short simulations. In this context it is important to note that the

persistence time in a certain mode depends not only sensitively on c and e, but also on

the number of cells N . In the mean field model, the persistence time increases

according to expðNÞ (DAHMEN et al., 1998).

In Figure 8 we show two simulations using the elastic stress transfer on a 128� 50

grid and values for sd which are uniformly distributed between 0:15 and 0:35

(hei ¼ 1� hsdi ¼ 0:75), resulting in a more heterogeneous distribution of the brittle

properties. The two plots refer to different values of the stress loss c. The results

clearly show a tendency towards mode-switching behavior, e.g., for t 2 ½6:4; 9:0� in
Figure 8(a). We can thus conclude that mode-switching also depends on the degree of

heterogeneity in a system, determined by the cell size and the distribution of the

brittle properties. While in the constant mean-field interaction, a large fraction of the

parameter-space is governed by mode-switching. This phenomenon seems to occur

with the more realistic 1=r3 elastic interaction in considerably smaller ranges of

parameters. However, the region in parameter space producing mode-switching in

the case of 1=r3 interaction is expected to increase with further decreasing of cell size

and increasing of heterogeneities.
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3.2.3 Time-dependent healing.

The introduction of time-dependent healing according to Eq. (2) replaces the

piecewise constant strength envelope by a function consisting of a strength drop

followed by a logðtÞ increase of the strength. This kind of healing requires three

parameters: the value of p1 (healing rate after 1 km/vs stress propagation, the value

t100 (time when healing is complete) and the values sd;0 to which the strength drops

when a cells begins to slide. For the present analysis we keep t100 fixed

(t100 ¼ 100km=vs) and tune the shape of the healing curve by means of p1 and

sd;0. The stress loss c is an additional parameter independent of the healing.

It is a reasonable assumption that in the case of healing, effective values of sd;0

and c exist that correspond to sd in the case without healing. To investigate this

hypothesis we determine for different values of p1 and c the dynamic threshold s�d;0,
where the transition between the Gutenberg-Richter law and the characteristic

earthquake distribution occurs. The value s�d;0 as a function of p1 and c is then

compared with the corresponding dynamic threshold s�d in the system without

healing.

Figure 9 shows for the 20� 5 grid the dependence of s�d;0 on p1 for different values
of c (Fig. 9(a)) and the dependence of s�d;0 on c for different values of p1 (Fig. 9(b)).

The curves for the model with healing (p1 > 0) are normalized to the model without

healing (p1 ¼ 0). In particular, the vertical axis gives s�d;0ðp1Þ=s�d;0ðp1 ¼ 0Þ. Note that

s�d;0ðp1 ¼ 0Þ ¼ s�d describes the model without healing. In Figure 9(b) the curves are

normalized to the horizontal line s�d;0ðp1Þ=s�d;0ðp1 ¼ 0Þ � 1. Figure 9(a) shows clearly

a systematic decrease of s�d;0 for growing values of p1. Moreover, s�d;0 also decreases as

a function of p1, although this decrease is less significant. The dependence of s�d;0 on
p1 and c can be described by the formula

s�d;0ðp1; cÞ ¼ s�d � ð1� sðp1; cÞÞ; ð4Þ

Figure 8

Earthquake area as a function of time for simulations of the quasi-static model (without healing during

events) on a fault with N ¼ 128� 50 cells. The stress loss parameter is c ¼ 0:01 in (a) and c ¼ 0:015 in (b).

The dynamic weakening coefficients for the cells are drawn from a uniform distribution e 2 ½0:65; 0:85�.
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where sðp1; cÞ is given by the curves in Figure 9. This rule connects the model with

healing (p1 > 0) and the model without healing (p1 ¼ 0). Consequently, p1 is not an

independent parameter like sd and c. Rather, the model with healing can be obtained

Figure 9

Model with healing: dynamical threshold s�d;0 at the transition between Gutenberg-Richter law and

characteristic earthquake distribution (a) as a function of p1 for different values of the stress loss c and (b)

as a function of c for different values of p1. The vertical axis in (a) is normalized to 1 at p1 ¼ 0; in (b) the

curves for p1 > 0 are normalized to the model without healing (p1 ¼ 0, horizontal line).

Figure 10

Relation between potency and rupture area in a model realization with e ¼ 0:8 and (a) c ¼ 0:0 or (b)

c ¼ 0:3 (model without healing during events). Panels (c) and (d) show the corresponding results for the

quasi-static model.
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from the model without healing by a shift in the phase diagram according to Eq. (4).

The observation that the dependence of sðp1; cÞ on p1 is more pronounced than the

dependence on c arises from the origin of p1: this parameter defines the rate of

healing; in other words, the rate of increase of sd . It is, therefore, reasonable that an

effective dynamic threshold (in the model without healing) exists that can to some

degree absorb the time-dependence in the model with healing.

In general, it is an interesting task to also map other models systematically onto

the present one with respect to the phase diagram. This would, however, require two

independent state variables that allow positioning a given catalog in the phase

diagram without pre-knowledge of the parameters. This work is left for the future.

3.3. Area-potency Relations

Finally, we investigate the area-potency relation. Figure 10 shows calculations for

e ¼ 0:8 and c ¼ 0:0 and c ¼ 0:3, for both the quasi-dynamic and the quasi-static

models. The change of slope for the transition from small to large earthquakes is in

agreement with the quasi-static simulations in BEN-ZION and RICE (1993) and the

data analysis in BEN-ZION and ZHU (2002). The slope for the large earthquakes is

close to the exponent in the classical crack relation a � p2=3 (KANAMORI and

ANDERSON, 1975).

4. Conclusions

We have developed a model for earthquake failure at intermediate scales that is

based on the framework of BEN-ZION and RICE (1993). The model is implemented in a

flexible C++ class library and therefore allows the incorporation of additional

processes and structural fault properties in a straightforward manner. In this study we

extended the model of BEN-ZION and RICE (1993) by two important features. First, the

stress propagation is modeled on a continuous intra-event time scale using a finite

communication speed. This quasi-dynamic model results in more realistic behavior of

the stress propagation. Second, we have introduced a gradual time-dependent healing

after a cell has slipped. This mechanism modifies the frictional properties from the

simple static/kinetic friction towards the rate- and state-dependent constitutive law.

The results indicate that the finite stress propagation velocity is a relevant feature

even for the frequency-size statistics. The quasi-dynamic model produces larger

events compared to the quasi-static model in which the occurrence of large events is

suppressed. This is in agreement with the fully dynamic 2-D calculations of BEN-

ZION and RICE (1997). Future activities with the quasi-dynamic version of the model

include analysis of slip histories and possible calculations of synthetic seismograms.

In another research direction we examined the ability of the model to undergo a

spontaneous mode-switching between the Gutenberg-Richter law and the charac-
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teristic earthquake distribution. While the mean field model, which is characterized

by a constant stress transfer function, exhibits clear mode-switching behavior, this is

not the case in the model with the coarse grid and 3-D elastic stress transfer function.

Instead, it is found that in the characteristic earthquake regime, the system attempts

to switch into the Gutenberg-Richter regime, but flips back after a very short time.

However, if the cell size is decreased and the degree of strength heterogeneity is

increased, mode-switching behavior is observed, even for the 1=r3 elastic stress

transfer function. This is in agreement with similar studies in more complex models

(BEN-ZION et al., 1999; LYAKHOVSKY et al., 2001). Remaining important questions

are which mechanisms are responsible for this behavior and whether these

mechanisms are relevant for real faults.

The incorporation of time-dependent healing leads to a modification of the

phase diagram shown in Figure 4. As we have shown, the frequency-size event

distribution for a model with a logðtÞ healing can be reproduced by a model

without healing and with different values of c and sd . It is desirable to find two

independent state variables that will allow quantification of a catalog and

assignment of unique values of c and sd . With such state variables one could

map other model classes onto the present model.

Due to the modular design of our model code, it is easy to include more structural

features and mechanisms into the model, e.g., a more refined frictional behavior and

heterogeneities in the distribution of the arrest stress. A detailed analysis of statistical

properties and seismicity patterns with various model versions and ranges of

parameters will result in a deeper understanding of natural seismicity.
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The Role of Heterogeneities as a Tuning Parameter

of Earthquake Dynamics

GERT ZÖLLER,
1 MATTHIAS HOLSCHNEIDER

2 and YEHUDA BEN-ZION
3

Abstract—We investigate the influence of spatial heterogeneities on various aspects of brittle failure

and seismicity in a model of a large strike-slip fault. The model dynamics is governed by realistic boundary

conditions consisting of constant velocity motion of regions around the fault, static/kinetic friction laws,

creep with depth-dependent coefficients, and 3-D elastic stress transfer. The dynamic rupture is

approximated on a continuous time scale using a finite stress propagation velocity (‘‘quasidynamic

model’’). The model produces a ‘‘brittle-ductile’’ transition at a depth of about 12.5 km, realistic

hypocenter distributions, and other features of seismicity compatible with observations. Previous work

suggested that the range of size scales in the distribution of strength-stress heterogeneities acts as a tuning

parameter of the dynamics. Here we test this hypothesis by performing a systematic parameter-space study

with different forms of heterogeneities. In particular, we analyze spatial heterogeneities that can be tuned

by a single parameter in two distributions: (1) high stress drop barriers in near-vertical directions and (2)

spatial heterogeneities with fractal properties and variable fractal dimension. The results indicate that the

first form of heterogeneities provides an effective means of tuning the behavior while the second does not.

In relatively homogeneous cases, the fault self-organizes to large-scale patches and big events are

associated with inward failure of individual patches and sequential failures of different patches. The

frequency-size event statistics in such cases are compatible with the characteristic earthquake distribution

and large events are quasi-periodic in time. In strongly heterogeneous or near-critical cases, the rupture

histories are highly discontinuous and consist of complex migration patterns of slip on the fault. In such

cases, the frequency-size and temporal statistics follow approximately power-law relations.

Key words: Earthquake dynamics, fault models, seismicity, ruptures, heterogeneities, criticality.

1. Introduction

Theoretical parameter-space studies of earthquake models aim to provide a

physical basis for understanding seismicity. Such studies complement observational

efforts to collect better and larger data sets, and statistical efforts to establish better

estimation procedures. In this context, the main goal of the fault model studies is to
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identify different physical regimes that may be present in the data. This can provide

guidelines for separating the observations to different corresponding populations,

thereby allowing higher-resolution (i.e., more space-time specific) information to be

extracted from the available data. In this work we attempt to provide a better

understanding of the role of heterogeneities on earthquake dynamics. Toward this

goal we first develop a description of heterogeneities that is likely to be physically

relevant and has a small number of parameters. We then perform a systematic

parameter-space study using that form of heterogeneities and a model of a segmented

strike-slip fault in elastic half space.

Important unresolved questions are the dependencies of the frequency-size and

temporal statistics of earthquakes on the physical properties and parameters of the

fault. The most general feature of seismicity is probably the Gutenberg-Richter (GR)

law (GUTENBERG and RICHTER, 1956) for the frequency of earthquake occurrence,

logN ¼ a� bm, where a and b are constants and N is the number of earthquakes with

magnitudes greater than or equal to m. When phrased in terms of seismic potency

(average slip times rupture area) or moment (rigidity times potency), the GR relation

follows a power-law distribution (e.g., TURCOTTE, 1997; BEN-ZION, 2003). It has been

observed that theGR law is valid over a broad range ofmagnitudes for data collected in

large regions of space (e.g., UTSU, 2002). However, on individual fault zones the

situation is different: although power-law behavior is in general present, certain ranges

of earthquake magnitudes are characterized by clear deviations from power-law

scaling. Observed frequency-size statistics on individual faults are found to exist

between two end-member cases: (1) a Gutenberg-Richter law with a fall-off for large

magnitudes, and (2) a power law for small earthquakes followed by a gap for

intermediate earthquakes and a peak for frequently-occurring characteristic events.

Several explanations for the occurrence of the different frequency-size distribu-

tions have been derived from fault models. Here it is crucial to distinguish whether or

not an earthquake can rupture large parts of the fault (critical or supercritical

behavior), or is stopped after short propagation due to spatial barriers or stress loss

during rupture (subcritical behavior). BEN-ZION and RICE (1993, 1995) and BEN-

ZION (1996) examined this issue in terms of stress concentration and strength

heterogeneities in elastic solids. LOMNITZ-ADLER (1999), STEACY and MCCLOSKEY

(1999) and others studied the same with cellular automata models. HAINZL and

ZÖLLER (2001) studied this question in terms of stress concentration and spatial

disorder in a spring-block model. FISHER et al. (1997) and DAHMEN et al. (1998) have

shown that coseismic dynamic weakening and stress loss in a mean field version of

the elastic half-space model of BEN-ZION and RICE (1993) can produce the different

end-member frequency-size statistics and spontaneous transitions between them.

ZÖLLER et al. (2004) generalized the phase diagram of DAHMEN et al. (1998) to a

more realistic model with (non-mean field) elastic Green’s function for the coseismic

stress transfer and several other features (e.g., gradual strength healing and causal

propagation of stress).
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It is widely accepted that spatial disorder, or heterogeneities, significantly

influence rupture propagation and thus the frequency-size statistics and other aspects

of earthquake behavior. Such heterogeneities may have various forms. The locations

of large asperities (e.g., the Parkfield asperity) are known from seismological and

other studies (WYSS et al., 2000) and can be implemented easily in fault models. In

contrast, small-scale heterogeneities are in general unknown with respect to their

sizes, forms and positions. Therefore, heterogeneities in model simulations are often

based on simple assumptions, e.g., uniformly distributed random numbers with a

certain range, or power-law distributions characterized by range of values and fractal

dimensions. Both types of heterogeneities produce stress fluctuations that may be

associated with smoothness or roughness of the fault. The results of such studies

indicate that large (characteristic) earthquakes can evolve on smooth faults, whereas

the growth of a rupture is terminated earlier on a rough fault. A natural example for

a smooth fault is the San Andreas fault, which is characterized by a Gutenberg-

Richter law for small events and quasiperiodic occurring ‘‘characteristic’’ large

events. In contrast, the San Jacinto fault with its numerous offsets and branches has a

highly irregular geometry and is governed by Gutenberg-Richter distributed

seismicity over the entire range of magnitudes (WESNOUSKY 1994; STIRLING et al.,

1996). In this paper, we examine whether the degree of spatial heterogeneity can be

tuned by one or two parameters in a fault model between these two extreme cases.

This would allow a description of the heterogeneity in terms of the phase diagram

approach of DAHMEN et al. (1998) and ZÖLLER et al. (2004).

BEN-ZION and RICE (1993, 1995, 1997) studied evolutionary seismicity on

homogeneous and heterogeneous fault systems using several types of calculations

ranging from quasi-static to fully-dynamic. The results from these and related

analytical and numerical studies (BEN-ZION et al., 1999; DAHMEN et al., 1998; BEN-

ZION, 2001; FISHER et al., 1997; ZÖLLER et al., 2004; MEHTA et al., 2005) indicate that

the essential long-term properties of earthquake statistics, and overall aspects of

additional dynamic quantities such as moment-rate functions and slip distributions,

remain the same when the models share certain key features. These include the

physical dimension, range of interaction, overall class of heterogeneities (e.g.,

continuum vs. inherently discrete cases), and the existence of dynamic weakening and

dissipation. Such models are referred to as belonging to the same universality class

and they share the same coarse-grained properties that govern the behavior on large

space-time scales (e.g.,WILSON 1979; BINNEY et al., 1993).

The goal of the present work is to study phenomena associated with large-scale

ruptures in realistic heterogeneous fault structures. As discussed by BEN-ZION and

RICE (1993, 1995, 1996), the successful propagation of rupture in such systems

involves stresses that operate at finite distances from the rupture front, where slip can

nucleate at non-contiguous locations across fault offsets and other strong barriers.

Thus the large-scale growth of slip instabilities in realistic segmented fault systems is

governed by length scales that are much larger than those associated with crack-tip
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processes such as strength degradation with slip. We therefore neglect detailed small-

scale crack-tip processes and fully dynamic calculations, and focus on large-scale

fault interactions given approximately by macroscopic static/kinetic friction and

creep property values (BEN-ZION, 1996). The assumed properties are assigned to a

system of numerical cells representing quasi-independent fault segments, each

behaving uniformly in the adopted modeling approximation. Our investigations are

done with quasi-dynamic calculations (ZÖLLER et al., 2004) that incorporate causal

spatio-temporal propagation of stress during an earthquake failure. This allows us to

discuss basic differences of rupture histories on smooth and rough faults.

Power-law distribution of fault properties may be used to tune the smoothness of

a fault by two parameters, the fractal dimension D and standard deviation of values.

It is, however, unlikely that the active structure of large faults or fault systems is

characterized by fractal properties over tens or hundreds of kilometers (BEN-ZION

and SAMMIS, 2003). Instead, it is more realistic to use heterogeneities that model

large-scale offsets and branches superimposed on a relatively smooth fault. BEN-ZION

and RICE (1995) and BEN-ZION (1996) used such a form of heterogeneities consisting

of strong (high stress drop) barriers separating weaker (low stress drop) fault

segments. To model realistic structures, the barriers were assumed to be strongly

correlated with depth and essentially uncorrelated in the strike direction. In the

following sections we perform a systematic study of frequency-size statistics and

other aspects of earthquake dynamics using such nearly-vertical barriers embedded

in an overall smooth fault, as well as power-law distributions, and discuss the results

in terms of the phase diagram approach.

2. Model Framework

Our model includes a single rectangular fault embedded in a 3-D elastic half space

(Fig. 1).A fault region of 70 km length and 17.5 kmdepth is covered by a computational

grid, divided into 128� 32 uniform cells, where deformational processes are calculated.

Tectonic loading is imposed by amotionwith constant velocity vpl ¼ 35mm/year of the

regions around the computational grid. The space-dependent loading rate provides

realistic boundary conditions.Using the static stress transfer functionKðx; z; x0; z0Þ from
CHINNERY (1963), the continuous tectonic loading for each cell ðx; zÞ on the

computational grid is a linear function of time t and plate velocity vpl:

Dsðx; z; tÞ ¼ ð�vpl � tÞ �
X

x0; z02 grid

Kðx; z; x0; z0Þ; ð1Þ

where the minus sign stems from the fact that forward (right-lateral) slip of regions

around a locked fault segment is equivalent to back (left-lateral) slip of the locked

fault segment. Additional loadings on a given cell occur due to brittle and creep

failures on the fault.
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While the loadings produce an increase of stress on the fault, the local stress may

be reduced by creep and brittle failure processes operating ‘‘in series.’’

2.1. The Creep Process

The ongoing creep motion on the fault is implemented as in BEN-ZION (1996).

The space- and time-dependent creep rate follows the formula

_ucreepðx; z; tÞ ¼ cðx; zÞsðx; z; tÞ3; ð2Þ

where cðx; zÞ are time-independent coefficients and s is the local stress.

Equation (2) corresponds to dislocation creep observed in laboratory experiments

with a coefficient c that increases with temperature and pressure. Following BEN-

ZION (1996), we choose a distribution cðx; zÞ that simulates ‘‘brittle-ductile’’

transitions in the vertical and horizontal directions:

cðx; zÞ ¼ A expðB �Maxððx� xDBÞ; ðz� zDBÞÞ þ ranðx; zÞ; ð3Þ

where A and B are constants and xBD ¼ 62:5 km; zBD ¼ 10:0 km are the horizontal

and vertical positions of the ‘‘brittle-ductile’’ transition zones. The transition in depth

models the occurrence of ductile deformation with increasing temperature and

pressure, while the transition along strike is based on the assumption that an

essentially brittle fault segment is connected with a creeping fault section. At xBD and

zBD, the creep rates equal approximately the tectonic loading rate, the stress increase

v  = 35 mm/year
pl

North
70 km

17.5 km

Depth

segmented fault

Figure 1

A sketch of a 2-D strike-slip fault in a 3-D elastic half space.
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due to the plate motion is released mostly by aseismic creep, and consequently

hypocenters do not nucleate. The values ranðx; zÞ simulate a certain mixing between

the two zones which are dominated by different brittle and ductile properties. Details

about the calculation of A and B and the values of ranðx; zÞ are given in BEN-ZION

(1996). We point out that this choice of creep coefficients represents a certain type of

quenched spatial heterogeneities, which are, however, constant in all simulations.

The gradual creep motion results in realistic depth profiles of the simulated

hypocenter distribution, which follow approximately a Gaussian function in

agreement with observations.

Taking into account the relation between stress and displacement on the

computational grid

Dsðx; zÞ ¼
X

x0; z02 grid

Kðx; z; x0; z0ÞDuðx0; z0Þ: ð4Þ

Equations (2)–(4) result in a system of 128� 32 coupled ordinary differential

equations, which is solved numerically using a Runge-Kutta scheme. However, in

order to increase numerical efficiency we use the decay of the elastic Green’s function

to reduce the interaction during the creep to a local neighborhood.

2.2. The Brittle Process

The brittle process is governed by a static/kinetic friction law and dynamic

overshoot. A brittle failure is initiated on a cell if the static friction ss is exceeded. We

assume that the static threshold increases with depth z:

ssðzÞ ¼ Dsmax þ f � z; ð5Þ

where f ¼ 13:5 MPa/km and Dsmax is the maximum allowed brittle stress drop (BEN-

ZION, 1996). If a cell slips, the stress drops to an arrest stress sa ¼ ss � Ds, where the
stress drop Ds is the parameter that defines the heterogeneity, e.g., Ds can be drawn

from a power-law distribution or from a set of two values representing high stress

drop and low stress drop regions.

Following an initial failure during an earthquake, the brittle threshold drops

from the static value ss to a dynamic value sd , which is calculated in relation to a

dynamic overshoot coefficient DOS:

sd ¼ ss �
ss � sa

DOS
: ð6Þ

In our study, we use the value DOS ¼ 1:25 for the dynamic overshoot (BEN-ZION

and RICE, 1993; MADARIAGA, 1976).

An important aspect of the brittle process is the dynamic weakening coefficient e:

e ¼ ss � sd

ss
; ð7Þ
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which becomes space-dependent if Ds is a function of space and DOS is a constant

number.

The coseismic stress transfer is calculated by means of the three-dimensional

solution of CHINNERY (1963) for static dislocations on rectangular patches in an

elastic Poisson solid with rigidity l ¼ 30 GPa. In particular, we approximate the

3+1 dimensional space-time stress transfer by

Dsðx; z; tÞ ¼ ð1� cÞ �
X

ðx0; z0Þ2 grid

Kðx; z; x0; z0ÞDuðx0; z0; t � r=vsÞ; ð8Þ

where Du is the slip, r is the spatial distance between the cells ðx; zÞ and ðx0; z0Þ, and vs

is the shear wave velocity.

The factor ð1� cÞ is in the range ð0; 1� and corresponds to a given ratio of

rigidities governing during instabilities the self-stiffness of a slipping cell (diagonal

elements of the stiffness matrix K) and the stress transfer to the surrounding domain

(off-diagonal elements). A ratio smaller than 1 represents stress loss during rapid slip

on the fault to internal free surfaces in the solid associated with porosity and cracks.

We refer to c and 1� c as the stress loss parameter and stress conservation

parameter, respectively. FISHER et al. (1997) and DAHMEN et al. (1998) showed

analytically that at e ¼ 0 and c ¼ 0 the model has a critical point of phase transition.

The slip Duðx; zÞ of a cell at position ðx; zÞ is related to the stress drop Dsðx; zÞ at
the same position through the self-stiffness: Duðx; zÞ ¼ Dsðx; zÞ=Kðx; z; x; zÞ. The size

of an earthquake is measured by the potency (e.g., BEN-ZION, 2003), which is the

integral of the slip Du over the rupture area A,

P ¼
Z

A

Duðx; zÞ dxdz: ð9Þ

We note that Equation (8) corresponds to the quasi-dynamic model of ZÖLLER et al.

(2004), which reduces for c ¼ 0 and vs !1 to the quasi-static model of BEN-ZION

(1996). The quasi-dynamic model has the advantage that the spatio-temporal

evolution of stress transfer during an earthquake can be analyzed, whereas the

rupture in the quasi-static model occurs instantaneously. This allows us to study

rupture properties in model realizations characterized by different degrees of

heterogeneity. Similar quasi-dynamic procedures were used by ROBINSON and

BENITES (2001) and HEIMPEL (2003).

2.3. Heterogeneities

In this study we consider two different types of heterogeneities that can be tuned

with a single parameter: (1) near-vertical barriers of high stress drop embedded in

regions of low stress drop, and (2) continuous power-law distributions of the stress

drop with a fixed standard deviation.
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The first type of heterogeneities, hereinafter referred to as RW, represents near-

vertical offsets that produce, as discussed by BEN-ZION and RICE (1995) and BEN-

ZION (1996), large-scale fault segmentation. To generate the stress drop distribution,

we fix randomly a certain number k of cells along the free surface that act as initiators

of the barriers. The continuation of the barriers with depth is determined by a quasi-

2-D random walk, where with each depth increment the barrier may move one unit

to the left or right. Using different values of k results in different degrees of

complexity, e.g., for k ¼ 1 two continuous patches with low brittle stress drop are

separated by one high stress drop barrier representing an overall relatively smooth

fault. The roughness or segmentation of the fault increases if more barriers are

added. The degree of heterogeneity is quantified by means of a tuning parameter h
which is calculated in the following way: Each cell with a low stress drop is

surrounded by the circle of maximum area Ai which includes only cells with low stress

drop. The circle size
ffiffiffiffiffi
Ai
p

is a measure for the distance to the nearest high stress drop

barrier or to a fault boundary. The standard deviation of the distribution of the circle

sizes gives a measure for the range of size scales. To remove boundary effects, we

define the heterogeneity parameter by

h ¼ std
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAi � A0

i j
q� �

; ð10Þ

where A0
i is the corresponding circle area on an ‘‘empty’’ fault (fault without

barriers). The dimension of h is km. For a fixed fault, h may be transformed to a

dimensionless value, hn ¼ h=hmax.

We point out that h is determined only by the distribution of the stress drops Ds.
The stress drop values themself are fixed for all simulations of model RW: Dsh þ R is

the high stress drop value, Dsl þ R denotes the low stress drop value. Dsh;l are

constant numbers, while R ¼ r � rn is additive noise with a width r and a random

number rn in the range ½0; 1�.
For finite faults, h always has a positive value even if no barrier is present. BEN-

ZION and RICE (1995) and BEN-ZION (1996) pointed out that the simulated

earthquake dynamics depend on the range of size scales of the heterogeneities, and

distinguished between wide range of size scales (WROSS) and narrow range of size

scales (NROSS). In terms of this concept, h tunes range of size scales represented by

the range of radii of the circles discussed above. Specifically, small values of h
correspond to NROSS and large values correspond to WROSS.

For the fractal heterogeneities (F), we generate a power-law distribution (see e.g.,

TURCOTTE, 1997) of stress drops between Dsmin and Dsmax with a given fractal

dimension D. Although the fractal dimension allows some tuning of the range of size

scales in the distribution of stress drops, model F belongs is general to the class

associated with NROSS (BEN-ZION, 1996). This is because the power-law distribution

has a continuous range of stress drop values leading to an overall higher degree of

smoothness. In particular, despite the presence of heterogeneities with a range of size
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scales, a rupture can easily overcome such heterogeneities since the stress drops

fluctuations at the cell boundaries are relatively small. This is in contrast to model

RW, which has a bimodal distribution of stress drop (‘‘high’’ and ‘‘low’’) with high

fluctuations at the barrier boundaries. Model F can be somewhat tuned towards

WROSS by increasing the standard deviation of the stress drop distribution. As will

be shown, however, we find that power-law distributions do not provide an effective

way of tuning the heterogeneities.

3. Model Simulations

In the first part of this section, we discuss frequency-size and temporal

distributions of seismicity in simulated earthquake catalogs. In the second part, we

present the main characteristics of individual ruptures for different ranges of model

parameters.

3.1. Analysis of Earthquake Catalogs

We generate heterogeneities for the quasi-dynamic model as described in Section

3. The first type of heterogeneities consists of near-vertical high stress drop barriers

embedded in a fault with low stress drops. The brittle stress drop in the barriers is

Dsh ¼ 100� 5 � rn and the stress drop in the other cells is Dsl ¼ 10� 5 � rn, where rn
is a uniformly distributed random number between 0 and 1. The degree of complexity

is essentially controlled by the density of barriers. We point out that the total number

of points with high/low stress drops does not effect the form of the frequency-size

distribution. If this number is changed, the average stress on the fault and inter-patch

distances will be modified resulting in a rescaling of the time and magnitude axes.

The form of the frequency-size distribution depends only on the distribution of the

different brittle properties. Three different RW type distributions of stress drops with

different values of h from Eq. (10) are used in our study (Fig. 2). A comparison of the

distributions in Figures 2(a) to (c) suggests that h may provide an effective measure

for the complexity of the distribution.

The second type of heterogeneities is based on a power-law distribution of brittle

stress drops; three employed examples are given in Figure 3. Although the

distributions represent smooth and rough surfaces like the RW heterogeneities, the

power-law distributions are structurally different: while the RW heterogeneities are

characterized by strong localized stress drop gradients which produce high stress

fluctuations at these positions on the fault, the power-law distributions are smoother

even for high fractal dimensions.

Figure 4(a) shows the cumulative frequency-size distribution for a purely elastic

model without stress loss (c ¼ 0) and the three stress drop distributions of Figure 2.

The results indicate that h acts as a tuning parameter for the frequency-size
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distribution. If h is small, the fault is characterized by a NROSS and a few low stress

drop patches with relatively uniform size. Only a few ruptures are effected by the high

stress drop barriers leading to a characteristic earthquake behavior. In contrast, high

Figure 2

Heterogeneities of the quasi-2D random walk type (RW): The distribution of brittle stress drops consists of

high stress drop barriers in a near-vertical direction embedded in a low stress drop environment. The

tuning parameter h (Eq. (10)) measures the degree of heterogeneity in units of km.

Figure 3

Power-law distributions of the brittle stress drops with three fractal dimensions D and values between 1

MPa and 9 MPa.
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h-values representing many low stress drop patches on a fault which has a WROSS,

lead to a Gutenberg-Richter distribution with a broader region of power-law scaling.

If the number of barriers is increased further, the frequency-size distribution will

again show a tendency towards characteristic earthquake behavior, because the

barriers will begin to form continuous patches. Consequently, the roles of barriers

and surrounding environment will be exchanged and the fault will consist of low

stress drop barriers in a high stress drop environment. For physical cases with a finite

size, the parameter h can only be considered in certain parts of the interval ½0; hmax�.
The fault with the dimensions shown in Figure 1 and 128� 32 cells has a value of

hmax � 0:76 km, while for a fault with 256� 32 cells and 140 km � 17.5 km

hmax � 0:84 km. The frequency-size distribution for the latter case (Figure 5) is

qualitatively similar to the distribution of the smaller fault, with the difference that a

broader range of heterogeneities is covered. The results for h ¼ 0:84 km show power-

law statistics over the entire range of event sizes.

Figure 5

Cumulative frequency-size distributions for RW heterogeneities with different degrees of disorder on a

large fault (256� 32 cells corresponding to a fault of 140 km length and 17.5 km depth).

Figure 4

Cumulative frequency-size distributions for RW heterogeneities with different values of h (Eq. (10)) given

in Figure 2.
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If a stress loss c > 0 is introduced, the frequency-size distributions for different

values of h become more similar to each other (Fig. 4(b)) in agreement with previous

observations of DAHMEN et al. (1998) and ZÖLLER et al. (2004).

The frequency-size distributions for the different cases with fractal dimensions

and c ¼ 0 are shown in Figure 6(a). It is seen that the fractal dimension does not

provide an effective tuning parameter for the frequency-size distribution. The effect

of positive c is again to make the frequency-size distributions more Gutenberg-

Richter like and more similar to each other (Fig. 6(b)).

Figures 7(a) and 7(b) show earthquake sequences (rupture area vs. time) for two

realizations of model RW, while Figures 7(c) and 7(d) give similar results for model

F. The time series suggest that model RW allows a greater variability of the temporal

behavior in terms of the tuning parameter h. The results for model F show an

increased occurrence rate for earthquakes with area A � 700 cells. We note again that

model F represents a smoother fault than model RW, and it has a continuous

distribution of stress drops in the range 1 MPa � Ds � 9 MPa . This leads to large-

scale patches which have their own ‘‘characteristic events.’’

The clustering properties of the simulation results can be quantified with the ratio

l=r of interevent times between large events, where l and r are the mean value and

standard deviation, respectively. For clustered seismicity l=r < 1, whereas for quasi-

periodic occurrence of events l=r > 1. The case l=r ¼ 1 corresponds to a Poisson

process. Table 1 shows l=r values for the N largest earthquakes in models RW and F

with c ¼ 0 and different values of the degree of spatial disorder measured by h and

D. Each value of N corresponds to a magnitude condition M � Mcut, where Mcut

varies slightly for different values of h and D. The approximate value of Mcut is also

given in the table. The relation between potency P and magnitude M is given by

M ¼ ð2=3Þ log P þ 3:6 (BEN-ZION and RICE, 1993). For N ¼ 100ðMcut � 6:5Þ and
N ¼ 1000ðMcut � 5:6Þ, model RW shows a decrease of l=r with increasing h. In other
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Cumulative frequency-size distributions for fractal heterogeneities with different fractal dimensions D
given in Figure 3.
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words, for cases with RW heterogeneities and increasing range of size scales, the

temporal behavior changes from a quasi-periodic occurrence of large events toward a

random/clustered behavior. For smaller values of Mcut, l=r is almost constant and

corresponds to random/clustered statistics. This result is supported by the values of

l=r for the highest degree of disorder (h ¼ 0:84 km) on the large fault (140 km � 17.5

km), which are also given in Tab. 1. In contrast, model F has no systematic

dependence of l=r on the fractal dimension D. These observations support our

assertion that the distribution type RW is more efficient for tuning the dynamics with

a single heterogeneity parameter.

ZÖLLER et al. (2004) have shown that high stress fluctuations occurring along cell

boundaries on a heterogeneous fault can cause a spontaneous mode-switching

between a Gutenberg-Richter and a characteristic earthquake distribution (DAHMEN

et al., 1998; BEN-ZION et al., 1999; WEATHERLEY et al., 2002). Although the type of

distribution does not change in the simulations leading to Figure 7, the results

(especially those for model RW) have time periods with clearly different maximum

magnitudes. This has a similar origin to the mode-switching: strong stress

fluctuations sometimes lead to a spontaneous synchronization or desynchronization

Figure 7

Earthquake sequences (rupture area vs. time) for four simulations with 106 events. Panels (a) and (b)

correspond to model RW (Figs. 2(a) and (c)); panels (c) and (d) correspond to model F (Figs. 3(a) and (c)).
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of a large number of cells resulting in an increase or decrease of the maximum

magnitude.

The observations discussed above indicate that the relevant parameter of the

heterogeneities is the range of size scales (ROSS) introduced in Section 2.3, which is

measured by h. The patches that contribute to different ROSS have to be separated

by strong localized barriers, otherwise the rupture can easily jump the barriers. This

is the case for fractal heterogeneities with small standard deviation. Therefore, model

F requires two parameters to tune the fault towards NROSS or WROSS, as

discussed in Section 2.3. Model RW needs only one parameter to control the ROSS,

and it is probably also closer to natural faults due to the existence of near-vertical

fault offsets. We conclude that model RW gives a better performance of both the

ability to tune effectively the level of fault heterogeneities and the relation between

model simulations and natural seismicity.

The results of the simulations with heterogeneous faults can be summarized in a

phase diagram. According to the results of Figures 4–7, the parameter h represents a

third dimension in addition to the stress loss c and the dynamic weakening e. Figure
8(a) shows a projection of the 3-D phase diagram onto the plane c ¼ 0 and Figure

8(b) gives a similar projection for e =constant. As discussed by BEN-ZION et al.

(1999), DAHMEN et al. (1998), and FISHER et al. (1997), cases with e ¼ 0 and c ¼ 0

represent a critical point of a phase transition in the 2-D phase diagram. To illustrate

the difference between purely static friction (e ¼ 0) and the static-kinetic friction

(e > 0), two frequency-size distributions are shown in Figure 9, one for e ¼ 0 (for all

cells) and another for hei ¼ 0:02. Both are calculated on a fault with heterogeneities

according to Figure 2(a). As discussed in Section 2.2, a heterogeneous fault includes

space-dependent dynamic weakening coefficients e, because of varying stress drops

Ds and constant dynamic overshoot DOS. Therefore, the value of e in the phase

diagram (Fig. 8) should be understood as a mean value. The frequency-size

distribution for e ¼ 0 follows a Gutenberg-Richter behavior tapered by finite-size

Table 1

The ratio l=r for different model realizations with c ¼ 0, where l is the mean value of interevent times

calculated for earthquakes with magnitudes M � Mcut and r is the corresponding standard deviation. For

statistical reasons, a fixed number N of earthquakes with M � Mcut is used. The approximate value of Mcut

corresponding to N is given in parentheses. The case RWL represents the large fault (140 km � 17.5 km)

with the highest degree of disorder. In this case, the catalog contains only 16,000 events. Therefore, the value

in the last line is given in parentheses

model RW RWL F

N h ¼ 0:15 km h ¼ 0:64 km h ¼ 0:76 km h ¼ 0:84 km D ¼ 2:0 D ¼ 2:5 D ¼ 3:0

100 (Mcut � 6:5) 1.664 1.566 1.402 1.200 1.508 1.232 1.845

1000 (Mcut � 5:6) 1.480 1.180 0.990 1.005 0.869 0.790 0.826

10000 (Mcut � 4:9) 0.907 0.989 0.968 0.948 0.883 0.832 0.911

100000 (Mcut � 4:0) 0.960 0.970 0.969 (0.938) 0.882 0.835 0.911
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effects, while e > 0 leads to a characteristic earthquake distribution. The precise

structure of the phase diagrams of Figure 8 should be clarified in a future work.

3.2. Investigation of Rupture Histories

In contrast to the earlier quasi-static version of the model (e.g., BEN-ZION, 1996),

the present quasi-dynamic model simulates the spatio-temporal evolution of stress

and slip with a finite propagation velocity vs. This allows us to study general

properties of rupture histories for single earthquakes, in particular events which

rupture large parts of the fault. It can be expected that quenched heterogeneities

significantly influence the stress propagation, especially if high stress drop barriers

are included. As pointed out in Section 2.1, the creep mechanism already creates

some quenched spatial heterogeneities, because the mixture of brittle and ductile

processes produces heterogeneous effective rheology. Therefore, we compare rupture

histories of two extreme cases in this section: (1) A fault without creep motion and

uniformly distributed brittle properties: ss ¼ 10 MPa, Ds ¼ 1 MPa þ ran � 8 MPa ,

where ran is a uniformly distributed random number between 0 and 1. (2) A fault

with creep motion and heterogeneous brittle properties according to Figure 2(b).

Both simulations start with randomly distributed initial stresses s 2 ½sa; ssÞ.
Figures 10 and 11 show snapshots from rupture histories of mainshocks in both

models described above. While Figure 10 corresponds to a system-wide event with

area A ¼ 4096 cells, the rupture area in Figure 11 is smaller having A ¼ 2093 cells.

Both events were recorded after the model had evolved for some 1000’s of years. The

gray scaled boxes show the dimensionless stress ŝ ¼ ðs� saÞ=ðss � saÞ, which is 1 for

Figure 8

Projections of the 3-D schematic phase diagrams for c ¼ 0 (panel (a)) and e =constant (panel (b)). The

value hn ¼ h=hmax denotes the heterogeneity parameter normalized to the interval ½0; 1�. CE denotes the

characteristic earthquake distribution and GR the Gutenberg-Richter distribution. Note that e represents
the mean value of the dynamic weakening coefficient over the fault; due to a constant dynamic overshoot

DOS ¼ 1:25 and space-dependent stress drops (see Figs. 2 and 3), e is also space-dependent. The finite-size

effects at hn � 1 (see text) are not taken into account here; that is, the phase diagram is assumed to

represent a fault of infinite size.
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a critical cell (light color) and 0 for a the lowest stress value sa (dark color). It is

remarkable that the situation on the homogeneous fault before the occurrence of a

large earthquake has evolved to clearly defined patches with highly loaded

boundaries (Fig. 10). The mainshock is initiated at a boundary of a patch and

propagates from the boundary inward. After the system-wide event, the plate motion

reloads the fault and the stress evolves to form new similar spatial patterns. In an

intermediate size earthquake, not all patches are ruptured. This behavior is similar to

a rupture scenario of ‘‘double encircling pincers,’’ which have been found by DAS and

KOSTROV (1983) in a dynamic fault model with a circular asperity. However, DAS

and KOSTROV (1983) observe an almost isotropic propagation inward, while the

patches in our model are mostly ruptured from a preferred direction.

A completely different scenario is observed in the highly heterogeneous model

with creep motion. The stress field before a mainshock has no obvious regularity,

except the brittle-ductile transition (here at about 15 km depth), which is responsible

for the stable sliding of the deep cells. After the first large self-organized patch is

ruptured from the hypocenter in Figures 11(a) and 11(b), a barrier at about 15 km

along strike is jumped and the next patch is ruptured. Due to the irregular stress field

and long-range interaction, different regions of the fault can be ruptured simulta-

neously, e.g., in Figure 11(c) a new patch at the right boundary of the fault is created

while the rupture adjacent to the hypocenter continues to evolve. This is in contrast

to the smooth fault, where most of the patches are ruptured almost sequentially. The
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Comparison of frequency-size distributions for a model at the critical point C (c ¼ e ¼ 0, solid line) and a

noncritical model realization with finite e (dashed line). Note that the presence of heterogeneities (here

according to Figure 2(a)) leads to space-dependent dynamic weakening.
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Figure 10

Snapshots of rupture evolution for a system-wide event on a smooth fault without creep motion. t � tEQ

denotes the time after the rupture initiation and depends on the choice of the shear wave velocity vs . The

filled white circle is the hypocenter of the event. The figure shows the dimensionless stress state ŝ ¼ s�sa
ss�sa

of

the cells.
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Figure 11

Same as Figure 10 for a fault with heterogeneities according to 2(b) with a brittle-ductile transition at

about 15 km depth.
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overall rupture propagation on the heterogeneous fault is relatively slow, because

some cells undergo multiple slips due to the heterogeneous distribution of stress

drops and slow the rupture process. During the rupture and especially at the end,

quasi-vertical stress patterns are created from time to time, e.g. in Figure 11(e) and

11(f). These patterns reflect the high stress drop barriers in Figure 2(b). At the end of

the mainshock, the fault is almost unloaded between these near-vertical barriers. A

highly irregular rupture history similar in some respects to the results of Figure 11,

was observed during the Chi-Chi (Taiwan) earthquake on September 21, 1999

(Mw ¼ 7:6) (SHIN and TENG, 2001).

Finally, we show in Figure 12 three snapshots of a model at the critical point

e ¼ 0; c ¼ 0 (see Fig. 8(a)). The snapshots were taken before, during and after a large

event with area A ¼ 2199 cells. The only difference from the smooth model leading to

Figure 10 is the choice of a purely static friction (sd ¼ ss) instead of static-kinetic

friction. Despite the high degree of smoothness of brittle parameters, the stress field

has no obvious structure and the rupture consists of a sequence of almost

uncorrelated cell slips. This is in agreement with the analytical results of FISHER

Figure 12

Same as Figure 10 for purely static friction (ss ¼ sd ) corresponding to the critical point in Figure 8(a):

normalized stress field before (panel (a)), during (panel (b)), and after (panel (c)) a mainshock with area

A ¼ 2199 cells).
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et al. (1997) and similar in some respects to the simulations of Figure 11. As shown in

Figure 9, the frequency-size statistics for e ¼ 0; c ¼ 0 follow the Gutenberg-Richter

law without the enhanced occurrence of large events.

4. Discussion and Conclusions

We have investigated the effect of quenched spatial heterogeneities in a quasi-

dynamic version of a discrete strike-slip fault in a 3-D elastic half space (BEN-

ZION, 1996, BEN-ZION and RICE, 1993; ZÖLLER et al., 2004). The calculations

employed two types of heterogeneities: 1. near-vertical barriers of high brittle stress

drop embedded in a fault with low brittle stress drop (RW) and 2. power-law stress

drop distributions (F). The former type probably provides a closer representation

of natural faults because it simulates fault offsets which are common geological

features (WESNOUSKY 1994; BEN-ZION and SAMMIS, 2003). Both types of

heterogeneities can be tuned with respect to the degree of spatial complexity

between the two end-member cases of a smooth fault (few barriers/low fractal

dimension) and a rough fault (many barriers/high fractal dimension). However,

large variations in the parameters of model F produce a small effect on the

obtained earthquake behavior.

The results indicate that the degree of spatial disorder can act as a tuning

parameter for the earthquake dynamics. Smooth faults are governed by character-

istic earthquake behavior, connected slip areas and cyclic components in various time

histories like potency release. In contrast, seismicity on rough faults is characterized

by a Gutenberg-Richter law, disconnected slip areas and fractal-like time histories.

FISHER et al. (1997), DAHMEN et al. (1998), and BEN-ZION et al. (2003) showed with

related quasi-static models that similar differences exist on these and other

earthquake quantities as the dynamic weakening parameter e moves toward or

away from a critical values (e ¼ 0).

Although h may act as a tuning parameter for the heterogeneities, the results

suggest that the basic underlying physical quantity is the range of size scales (ROSS)

that characterizes the heterogeneities. This is clear in the case of the RW

heterogeneities. If an earthquake is initiated in a cell with a low brittle stress drop,

the rupture can propagate easily until a high stress drop barrier is reached. Then the

barrier can overcome the stress concentration at the rupture front with some

probability. On the other hand, if an earthquake starts in one of the barriers, it is

likely that the adjacent low stress drop regions will be ruptured, resulting in a large

event. Therefore, the low and intermediate events will organize in the patches

between the barriers. Consequently, a large range of size scales of such patches will

result in a Gutenberg-Richter law, and a narrow range will favor characteristic

events. Thus the ROSS of the heterogeneities is the key property controlling the

frequency-size distribution as suggested by BEN-ZION and RICE (1995), BEN-ZION
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(1996), and BEN-ZION et al. (2003). A narrow range of size scales (NROSS) leads to

characteristic earthquake behavior, while a wide range of size scales (WROSS) results

in a Gutenberg-Richter distribution.

This behavior is also somewhat valid in a weaker form for the power-law stress

drop distribution, where in this case the fault is overall smoother due to the

continuous distribution of stress drops in contrast to the sharp bimodal distribution

of the RW heterogeneities. The comparison of the two types of heterogeneities

unveils the relevance of an additional tuning parameter in model F, the standard

deviation of the stress drops. If this range of values is small, a rupture can easily jump

heterogeneities, although the degree of spatial disorder may be high. This occurs for

power-law distributions of the stress drop due to the continuous range of values.

Therefore power-law distributions require two tuning parameters, the fractal

dimension and the standard deviation in order to tune the heterogeneities between

NROSS and WROSS. The RW model needs only the tuning parameter h for this

aim, because the almost discontinuous shape of the barriers defines the patches where

ruptures can propagate.

A qualitative analysis of rupture histories of mainshocks in the case of faults with

low and high degrees of disorder reveals clear differences in the spatio-temporal

evolution of stress. On smooth faults, the stress field organizes itself into large

patches with highly loaded boundaries. A mainshock starts at one of the boundaries

and ruptures a patch in the inward direction. For a system-wide event all patches are

ruptured more-or-less in series. This highly organized pattern formation vanishes if

the static-kinetic friction is replaced by a purely static friction (sd ¼ ss). Assuming

full stress conservation during rupture (c ¼ 0), this case represents a critical point in

the phase diagram Figure 8(a), where no system-wide event occurs. If dynamic

weakening is switched on (e > 0), earthquakes bigger than a certain size become

unstoppable (BEN-ZION and RICE, 1993; DAHMEN et al., 1998), unless the fault

heterogeneities have a WROSS. In the latter case, the stress field before a mainshock

is highly irregular also for a finite dynamic weakening (e > 0) without large self-

organized patches. The rupture propagates simultaneously in several regions and is

slowed down or terminated if a barrier is reached.

A shortcoming of our simulations that should be addressed in future studies is

the effect of finite size of the fault, which limits the range of h values. A more

efficient design of the computer code will provide a possibility perform parameter

space studies on a larger fault and quantify more clearly the role of the

heterogeneities on earthquake dynamics. The results of this paper indicate that

heterogeneities have dramatic effects on the spatio-temporal evolution of rupture

histories and earthquake statistics. These effects should be clarified further with

more detailed analyses, e.g., by using stress and seismicity functions of the type

employed by BEN-ZION et al. (2003). Another interesting problem for future studies

is a joint theoretical-observational work involving tuning the model parameters to

specific fault zones (e.g., the Parkfield section of the San Andreas fault). Large
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statistically-complete data sets of simulated slip histories and events statistics for

various cases of such tuned models may provide important input for models of

seismic hazard assessment.
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[1] We show that realistic aftershock sequences with
space-time characteristics compatible with observations
are generated by a model consisting of brittle fault
segments separated by creeping zones. The dynamics of
the brittle regions is governed by static/kinetic friction, 3D
elastic stress transfer and small creep deformation. The
creeping parts are characterized by high ongoing creep
velocities. These regions store stress during earthquake
failures and then release it in the interseismic periods. The
resulting postseismic deformation leads to aftershock
sequences following the modified Omori law. The ratio of
creep coefficients in the brittle and creeping sections
determines the duration of the postseismic transients and the
exponent p of the modified Omori law. Citation: Zöller, G.,

S. Hainzl, M. Holschneider, and Y. Ben-Zion (2005),

Aftershocks resulting from creeping sections in a heterogeneous

fault, Geophys. Res. Lett., 32, L03308, doi:10.1029/

2004GL021871.

1. Introduction

[2] The occurrence of aftershock sequences is one of the
most general patterns of observed seismicity. The temporal
decay rate _n(t) of the number of aftershocks is found to
follow the modified Omori law [Omori, 1894; Utsu et al.,
1995]

_n tð Þ ¼ cþ t � tMð Þ�p; ð1Þ

where tM is the occurrence time of the mainshock and the
exponent p is close to 1 for observed seismicity.
[3] Many models were used to explain the frequency-

magnitude distribution of observed seismicity [e.g., Burridge
and Knopoff, 1967; Bak and Tang, 1989; Dahmen et al.,
1998]. In these models dealing solely with coseismic stress
transfers and tectonic loading, aftershocks are not observed,
unless the stress transfer on the fault becomes very weak.
However, in such a case, the p value of the Omori law is
unrealistically low [Hergarten and Neugebauer, 2002].
[4] Various mechanisms were proposed to explain the

generation of aftershock sequences. These include viscoelas-
tic relaxation in the fault zone [Dieterich, 1972;Hainzl et al.,
1999], fault strengthening or weakening after a block slips
[Ito and Matsuzaki, 1990], pore fluid flow [Nur and Booker,
1972], rate-state friction [Dieterich, 1994], and damage

rheology [Ben-Zion and Lyakhovsky, 2003; Shcherbakov
and Turcotte, 2004]. While these mechanisms are based on
time-dependent processes, Hainzl et al. [2003] have shown
that foreshocks and aftershocks can also be explained by
spatial effects, namely a decrease of strength localized at
the edges of the rupture area. Some of the proposed models
are, however, conceptual and it remains an open question
whether these mechanisms can explain detailed observations
of space-time earthquake clustering in natural fault systems.
[5] Empirical observations show that aftershocks are

concentrated near the margin of fault areas where large
coseismic displacements occur [Utsu, 2002], and partly on
adjacent segments. A full numerical treatment of systems of
segmented faults with realistic stress transfer requires very
large computational effort. In the present work, we over-
come this difficulty by using a fault plane that is divided by
near-vertical aseismic barriers into separate segments. The
aseismic barriers can undergo postseismic creep deforma-
tion and thus transfer stress from one fault segment to
another. The presence of coseismic, postseismic and inter-
seismic creep is now commonly observed by means of
InSAR and other geodetic measurements [e.g., Lyons and
Sandwell, 2003]. Numerous studies show that fault seg-
ments, e.g., along the San Andreas fault, can store stress and
remain locked for certain periods, while other less brittle
segments undergo a steady creep deformation [Bürgmann et
al., 2000].
[6] The model used in the present work is based on earlier

works of Ben-Zion [1996] and Zöller et al. [2004, 2005] with
a heterogeneous strike-slip fault in an elastic half-space.
Various model ingredients, including the laws for brittle and
creep deformation, stress transfer, and boundary conditions,
are compatible with empirical knowledge. The simulations
cover hundreds of years and allow us to reproduce brittle
deformation as well as postseismic and interseismic creep
deformation. The results indicate that a spatially heteroge-
neous distribution of brittle and creeping fault sections leads
to realistic aftershock sequences compatible with observed
data. We note that the assumed creeping barriers provide an
effective way of parameterizing macroscopically a variety
of physical processes including viscous relaxation, fluid
migration, rate-state friction and damage.

2. Model

[7] In the first part of this section, we give a brief
summary of the employed fault model following Ben-Zion
[1996] and Zöller et al. [2004, 2005]. In the second part, we
describe how the assumed brittle and creep mechanisms are
implemented.

2.1. Model Framework

[8] The model includes a strike-slip fault region of 70 km
length and 17.5 km depth, covered by a computational grid,
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divided into 128 � 32 uniform cells, where deformational
processes are calculated [Ben-Zion and Rice, 1993].
[9] Tectonic loading is imposed by a motion with con-

stant velocity vpl = 35 mm/year of the regions around the
computational grid. The space-dependent loading rate pro-
vides realistic boundary conditions. Using the static stress
transfer function for slip in elastic solid, the continuous
tectonic loading for each cell on the computational grid is a
linear function of time t. While the loading produces an
increase of stress on the fault, the local stress may be
reduced by creep and brittle failure processes.
[10] The ongoing creep motion on the computational grid

is governed by a local constitutive law corresponding to lab-
based dislocation creep. Specifically, we assume that the
creep velocity is given by

_uc x; z; tð Þ ¼ c x; zð Þ t x; z; tð Þð Þ3; ð2Þ

where x and z denote coordinates along strike and depth,
c(x, z) are time-independent coefficients, t is the local stress
and _u is the creep velocity [Ben-Zion, 1996]. Equation (2)
results in a system of 128 � 32 coupled ordinary differential
equations, which is solved numerically using a Runge-Kutta
scheme.
[11] An earthquake is initiated if the local stress t(x, z; t)

exceeds the static friction ts(x, z). Then the stress drops in
cell (x, z) to the arrest stress ta(x, z) and the strength drops
to a dynamic friction value td(x, z) for the reminder of the
event. At the end of the earthquake, the strength recovers
back to the static level. The dynamic friction is calculated
from the static and arrest stress levels in relation to a
dynamic overshoot coefficient D:

td ¼ ts �
ts � ta

D
: ð3Þ

Following Ben-Zion and Rice [1993] and Madariaga
[1976], we use D = 1.25. The static strength is constant,
ts(x, z) � 10 MPa, and the arrest stress is chosen randomly
from the interval ta(x, z) 2 [0; 1 MPa].
[12] The stress transfer due to coseismic slip and creep

motion is calculated by means of the three-dimensional
solution K(x, z; x0, z0) of Chinnery [1963] for static dis-
locations on rectangular patches in an elastic Poisson solid
with rigidity m = 30 GPa:

Dt x; z; tð Þ ¼
X

x0;z0ð Þ2fault

K x; z; x0; z0ð ÞDu x0; z0; t � r=vsð Þ ð4Þ

where Du is the slip, r is the spatial distance between the
cells (x, z) and (x0, z0), vs is a constant shear wave velocity,

and the kernel K decays like 1/r3. The value of vs defines the
event time scale and has no influence on the earthquake
catalogs. A finite value of vs corresponds to the quasi-
dynamic approximation of Zöller et al. [2004], whereas
vs!1 reduces to the quasi-static procedure ofBen-Zion and
Rice [1993] and Ben-Zion [1996]. The calculations below are
done for a finite value of vs, but the statistical aspects of the
results remain the same for the quasi-static case.

2.2. Brittle and Creep Parameters

[13] Each cell of the computational grid is either a
‘‘brittle’’ or a ‘‘creep’’ cell. A brittle cell can undergo slip
during an earthquake (coseismic) and small creep motion
between two earthquakes (interseismic). A creep cell can
only perform interseismic creep. Figure 1 shows a sketch of
the distribution of brittle and creep cells. The creep barriers
are generated by near-vertical random walks from various
along-strike positions at the free surface to depth [Ben-Zion,
1996]. As shown below, the assumed barriers provide a
simple way of simulating non-brittle deformation processes
near segment boundaries (e.g., step-over regions) of a large
strike-slip fault. The material surrounding the computational
grid moves with a constant velocity vpl. The model has two
imposed timescales: A long time scale associated with the
tectonic loading and a short earthquake timescale. In addi-
tion, there is a third emergent timescale generated by the
interplay between the processes occurring on the brittle fault
patches and creeping barriers.
[14] The creep coefficients for the brittle cells cb(x, z) in

equation (2) are chosen similar to the values by Ben-Zion
[1996] and Zöller et al. [2005]: cb(x, z) is randomly
distributed in [0.9hcbi;1.1hcbi], where hcbi = 10�7 m s�1

MPa�3. The coefficients for the creep cells ccr(x, z) are
varied in different model simulations as follows: Model A:
hccri = 10�2 m s�1 MPa�3, Model B: hccri = 5 � 10�3 m s�1

MPa�3, and Model C: hccri = 10�3 m s�1 MPa�3. Noise is
added to the mean values as for cb(x, z).

3. Model Simulations and Results

[15] For each model introduced at the end of the previous
section, we perform a simulation with random initial
stresses. After the stress field has reached a steady state,
we produce an earthquake catalog containing 20,000 events
and covering about 500 years. Figure 2 shows that the
frequency-size distributions for all models include a scaling
region followed by a characteristic earthquake at M � 6.6.

Figure 1. Sketch of a natural fault system and the linear
approximation of the assumed fault model.

Figure 2. Frequency-size distributions for different model
simulations.
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Similar frequency-size distributions have been observed by
Ben-Zion [1996] for a fault with uniform brittle properties.
The fact that no earthquakes with M < 4.0 occur, stems from
the discretization of the computational grid. Because the
magnitude is derived from the cumulative slip during an
event [Ben-Zion, 1996], the size of a cell determines the
minimum magnitude. The bump at M = 4.5 is associated
with the sizes of the brittle patches produced by the
employed spatial realization of the creeping barriers.
[16] Figure 3 (bottom) shows the spatial distribution of

creep and brittle cells in the fault region and the number of
aftershocks along strike. Here, aftershocks are earthquakes
occurring up to one year after a M � 6.2 mainshock. The
aftershocks are mostly concentrated close to the near-
vertical creep barriers (margins of the fault segments),
which become highly loaded during mainshocks that trans-
fer stress from the rupturing cells into the creeping parts of
the fault. Because these parts do not fail in rapid brittle
fashion, they store stress until each mainshock is terminated.
After the mainshock they creep, thereby transferring stress
back to the entire fault region. This leads to aftershocks,
which occur preferentially close to creeping parts and in high
stress fault patches that have not ruptured during the large
event.
[17] Figure 4 (bottom) shows a typical aftershock

sequence following a mainshock with magnitude M = 6.6.
Immediately after the mainshock, the sequence is strongly
clustered and becomes less concentrated some months later.

The evolution of stress during this period in the brittle and
creep regions is shown in the top and middle panel of
Figure 4. The mean stress in the creeping regions grows
rapidly during the occurrence of mainshocks and then
relaxes. The mean stress in the brittle region drops at the
time of the mainshock and then increases due to the stress
transfer from the creeping cells. It is clear that the time scale
of the stress relaxation in the creep regions depends on the
average creep rate hccri. If this value grows, the creep
velocity will increase according to equation (2). Thus, the
relaxation becomes faster and aftershocks will occur in a
shorter period after the main event. Comparing the bottom
panel of Figure 4 with typical features of observed seis-
micity, we conclude that Model A represents a realistic
scenario of aftershock activity.
[18] Figure 5 shows the mean earthquake rate after a

mainshock in Models A, B, and C. The rate is stacked for all
mainshocks with M � 6.6. The estimated p exponent of the
modified Omori law and the level of background seismicity
are indicated in each plot. The deviation of the aftershock
activity from the background level can be measured by the
ratio of earthquakes occurring up to three months after and
before the main event. This ratio is about 10 for Models A
and B, and about 6 for Model C. It is clearly visible that a
high ratio of hccri/hcbi (Model A) leads to aftershock
sequences on short time scales characterized by relatively
high exponents. A smaller ratio results in a slower stress
transfer from creeping cells and thus leads to less clustered
aftershock sequences (Model C). It is conspicuous that
in Model C the maximum number of aftershocks is not
observed directly after the mainshock. This is similar to the
relative quiescence in the model without creep [Ben-Zion
and Rice, 1993; Zöller et al., 2004], which is due to the
relative slow recovery of the stress field after the fault
region has been unloaded by the mainshock. In particular,

Figure 3. Model A: Hypocenter distribution of aftershocks
(for a definition see text) along strike (top). Bottom:
Distribution of brittle cells (white boxes) and creeping cells
(black boxes) in the fault region.

Figure 4. Example for a typical aftershock sequence in
Model A: Mean stress as a function of time in the brittle
region (top) and in the creeping region (middle panel) for a
period of two years. The bottom panel shows earthquake
magnitudes as a function of time.

Figure 5. Earthquake rate as a function of time for different
models. The solid lines give estimates of the modified Omori
law and the dotted lines mark the background level
of seismicity. Each plot is based on a simulation with
20,000 earthquakes covering about 500 years; the earth-
quake rates are averaged over about 30 mainshock cycles.
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the amount of stress resulting from afterslip in Model C is
too small to compensate the unloading of the fault due to the
mainshock immediately after the mainshock. If the ratio
hccri/hcbi is close to 1, the loading of each brittle cell will be
approximately linear. The results of Figure 5 indicate that
Model A with p = 1.0 represents the most realistic case of
aftershock sequences.

4. Discussion and Conclusions

[19] We study the behavior of a fault consisting of
seismic segments separated by creeping regions that do
not fail on the short earthquake timescale. Aseismic creep is
known as an important process in fault zones [Wesson,
1988]. This is obvious for deep sections with ductile
characteristics, but geodetic measurements as well as studies
of seismic data indicate that creep plays also an important
role in shallow parts of crust. It is interesting to note that the
creep deformation of a fault may be of the same order of
magnitude or even higher than the coseismic change. This
has been observed, e.g., for the postseismic creep response
of the 1984 Morgan Hill earthquake that occurred on the
Calaveras fault in California [Schaff et al., 1998].
[20] In our model, the interplay of brittle and creep

deformation produces significant afterslip on creeping
regions following large events. As a consequence, after-
shocks are triggered on highly stressed fault patches that did
not rupture during the mainshock. The occurrence of after-
slip following large earthquakes has been documented in
observational studies [e.g., Bürgmann et al., 2002], and
analyzed in laboratory experiments and numerical models
[Marone et al., 1991]. The p exponent of the modified
Omori law and the time scale of aftershocks depend only on
the coefficients of the imposed creep law (equation (2)). If
the ratio of creep coefficients in the creeping and the brittle
regions hccri/hcbi is of the order 105, realistic aftershock
sequences with p � 1 are observed. A study of foreshocks,
which occur less frequent than aftershocks, requires a large
number of mainshocks in various realizations. This is
beyond the ability of our current computational method
and is left for a future work.
[21] Summarizing, we have developed a fault model

based on dislocation theory and empirical knowledge. The
mixing of brittle and creep properties leads to postseismic
effects, which are in agreement with numerous experiments
and observational studies, and produce aftershock sequences
following the modified Omori law. The high correspondence
of the results to observations indicates that the model
provides an effective parameterization of the key physical
process that govern seismicity on large strike-slip faults.
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Zöller, G., M. Holschneider, and Y. Ben-Zion (2005), The role of hetero-
geneities as a tuning parameter of earthquake dynamics, Pure Appl. Geo-
phys., in press.

�����������������������

Y. Ben-Zion, Department of Earth Sciences, University of Southern
California, Los Angeles, Los Angeles, CA 90089–0740, USA. (benzion@
usc.edu)
S. Hainzl, Institute of Earth Sciences, University of Potsdam, POB 60 15

53, D-14415 Potsdam, Germany. (hainzl@geo.uni-potsdam.de)
M. Holschneider, Institute of Mathematics, University of Potsdam, POB

60 15 53, D-14415 Potsdam, Germany. (hols@math.uni-potsdam.de)
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2

Abstract. We investigate the evolution of the seismicity within seismic cycles in a model of a discrete large

strike-slip fault in elastic solid. The model dynamics is governed by realistic boundary conditions consisting

of constant velocity motion of regions around the fault, static/kinetic friction and dislocation creep along the

fault, and 3D elastic stress transfer. The fault consists of brittle parts which fail during earthquakes and undergo

small creep deformation between events, and aseismic creep cells which are characterized by high ongoing

creep motion. This mixture of brittle and creep cells is found to generate realistic aftershock sequences which

follow the modified Omori law and scale with the mainshock size. Furthermore, we find that the distribution of

interevent times of the simulated earthquakes is in good agreement with observations. The temporal occurrence,

however, is magnitude-dependent; in particular, the small events are clustered in time, whereas the largest

earthquakes occur quasiperiodically. Averaging the seismicity before several large earthquakes, we observe

an increase of activity and a broadening scaling range of magnitudes when the time of the next mainshock is

approached. These results are characteristics of a critical point behavior. The presence of critical point dynamics

is further supported by the evolution of the stress field in the model, which is compatible with the observation of

accelerating moment release in natural fault systems.
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1. Introduction

The complexity of spatiotemporal earthquake occurrence on natural fault systems has been discussed and

quantified in numerous studies (for an overview see [RUNDLE et al., 2000B]). While some seismicity patterns

show an almost universal behavior, others are observed less frequently and follow no obvious law. For example,

aftershocks according to the modified Omori law are observed after almost all large earthquakes [UTSU et

al., 1995], whereas foreshocks are a rare phenomenon [WYSS, 1997; UTSU, 2002]. However, the Parkfield

experiment in California [ROELOFFS AND LANGBEIN, 1994] demonstrates that even if a fault segment shows

regular behavior over several decades, a prediction of future activity can fail drastically. One reason for this

is that the given data sets are too limited to provide enough information for the understanding of the complex

relationships between the various physical mechanisms in the earth’s crust. This emphasizes the importance of

model simulations which cover several seismic cycles and allow to study the dependences of seismicity on the

underlying parameters and evolving stress field.

Several conceptual models have been proposed to describe properties of observed seismicity, e.g. the first

generation of spring-block models and cellular automata, which reproduce the frequency-size distribution of

earthquakes. These models are mainly based on tectonic loading and the coseismic stress transfer [BURRIDGE

AND KNOPOFF, 1967; BAK AND TANG, 1989]. Others have implemented additional mechanisms, like

viscoelastic relaxation in the fault zone [DIETERICH, 1972; HAINZL et al., 1999], fault strengthening

or weakening after a block slip [ITO AND MATSUZAKI, 1990], pore fluid flow [NUR AND BOOKER,

1972], rate-state friction [DIETERICH, 1994], and damage rheology [BEN-ZION AND LYAKHOVSKY,

2005; SHCHERBAKOV AND TURCOTTE, et al., 2004]. Although most of these models reproduce certain

observed phenomena, the underlying frameworks are often abstract and the application to an actual fault system

with its spatiotemporal complexity of earthquake occurrence remains questionable.

In this study, we analyze earthquake catalogs generated by the model of [Z ÖLLER et al., 2005] for a

large heterogeneous strike-slip fault. The model develops further the framework of [BEN-ZION AND RICE,

1993] and [BEN-ZION, 1996] for a discrete fault in a surrounding elastic solid, and it combines computational

efficiency with realistic physical properties. The simulations cover 1000s of years and allow us to reproduce

brittle as well as postseismic and interseismic creep deformation. The model ingredients, including laws for

brittle and creep deformation, stress transfer, and boundary conditions, are compatible with empirical knowledge.

Several relationships between imposed model parameters (e.g., frictional parameters, creep velocities, spatial

heterogeneities) and observed seismicity quantities like frequency-size distributions and aftershock clustering,
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have been previously quantified [ZÖLLER et al., 2005]. In this paper, we will focus on the temporal evolution of

seismicity during seismic cycles. Many observational and theoretical studies have shown that seismicity is largely

time-dependent. In particular, the seismic moment release is found to accelerate prior to large earthquakes [BUFE

AND VARNES, 1993; BOWMAN et al., 1998; JAUME AND SYKES, 1999]. This phenomenon indicates that

seismicity is a process that may characterized by critical point behavior in terms of upcoming long-range

correlations prior to a large earthquake [SORNETTE AND SORNETTE, 1990; ZÖLLER et al., 2001; ZÖLLER AND

HAINZL, 2002]. Analyzing stress and seismicity functions over several seismic cycles, [BEN-ZION et al., 2003]

conclude that mainshock occurrence is associated with a period where the stress-field evolves toward a critical

level of disorder. In this state, the stress field heterogeneities are characterized by many size scales and a brittle

failure can evolve into a large earthquake. It is, therefore, an important question, whether the evolution of stress

and seismicity in our model reflects such critical point behavior.

2. Model

In this section, we give a brief description of the fault model. Further details can be found in [Z ÖLLER et

al., 2005] and references therein.

Our model includes a single rectangular fault embedded in a 3D elastic half space (Fig. 1). A fault region

of 70 km length and 17.5 km depth is covered by a computational grid, divided into 128 × 32 uniform cells,

where deformational processes are calculated. Tectonic loading is imposed by a motion with constant velocity

vpl=35 mm/year of the regions around the computational grid. The space-dependent loading rate provides

realistic boundary conditions. Using the static stress transfer function for slip in elastic solid, the continuous

tectonic loading for each cell on the computational grid is a linear function of time and plate velocity vpl.

Additional loadings on a given cell occur due to brittle and creep failures on the fault. While the loading produces

an increase of stress on the fault, the local stress may be reduced by interseismic creep and coseismic brittle

processes. As in [ZÖLLER et al., 2005], all cells on the computational grid undergo creep deformation, while

brittle deformation during an earthquake is only possible for “brittle cells” (white cells in Fig. 1). The aseismic

“creep cells” (black cells in Fig. 1) are generated by near-vertical random walks from the free surface to depth

accounting for offsets and step-over regions in the fault zone.
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v  = 35 mm/year
pl

x (strike)
70 km

17.5 km

brittle
creep

z (depth)

Figure 1. A sketch of a 2D strike-slip fault in a 3D elastic half space

The ongoing creep motion on the grid is implemented by a local constitutive law corresponding to lab-based

dislocation creep [BEN-ZION, 1996]:

u̇creep(x, z, t) = c(x, z)τ(x, z, t)3, (1)

where u̇creep(x, z, t) is the creep velocity of the cell with coordinates (x, z); τ(x, z, t) is the local stress at time

t, and c(x, z) are time-independent coefficients, which are different for the creep cells and the brittle cells. As

shown in [ZÖLLER et al., 2005], this design can produce aftershock sequences, where the ratio of the mean creep

coefficients in the creep cells and in the brittle cells 〈ccr〉/〈cb〉 determines the exponent p of the modified Omori

law for the rate ṅ(t) of aftershocks:

ṅ(t) =
c1

(c2 + t − tM )p
. (2)

Here, c1 and c2 are time-independent numbers, and tM is the mainshock occurrence time. For this work, we

choose the creep coefficients leading to p = 1: The creep parameters for the brittle cells cb are randomly

distributed in the interval [0.9〈cb〉;1.1〈cb〉], where 〈cb〉 = 10−7ms−1MPa−3. The values for the brittle cells ccr

are calculated accordingly with 〈ccr〉 = 10−2ms−1MPa−3. This choice corresponds to model A in [ZÖLLER

et al., 2005]. Equation (1) results in a system of 128× 32 coupled ordinary differential equations, which is solved

numerically using a Runge-Kutta scheme.

The coseismic processes are governed by static/kinetic friction. An earthquake is initiated if the local stress

τ(x, z; t) exceeds the static friction τs(x, z). Then the stress drops in cell (x, z) to the arrest stress τa(x, z) and
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the strength follows a piecewise constant failure envelope τf (x, z, t) during an earthquake:

τf (x, z; t) =







τd(x, z) : cell (x, z) already failed during this event

τs(x, z) : cell (x, z) failed not during this event.
(3)

If τ(x, z; t) < τf (x, z; t) for all cells on the grid, the earthquake is terminated. Then, the strength recovers

back to the static level for all cells: τf (x, z; t) = τs(x, z). The dynamic friction is calculated from the static and

arrest stress levels in relation to a dynamic overshoot coefficient D:

τd = τs −
τs − τa

D
. (4)

Following [MADARIAGA, 1976], we use D = 1.25. The static strength is constant, τs(x, z) ≡ 10MPa, and the

arrest stress is chosen randomly from the interval τa(x, z) ∈ [0; 1MPa].

The stress transfer due to coseismic slip and creep motion is calculated by means of the three-dimensional

solution K(x, z; x′, z′) of [CHINNERY, 1963] for static dislocations on rectangular patches in an elastic Poisson

solid with rigidity µ = 30GPa:

∆τ(x, z; t) =
∑

(x′,z′)∈grid

K(x, z; x′, z′)∆u(x′, z′; t − r/vs), (5)

where ∆u is the slip, r is the spatial distance between the cells (x, z) and (x′, z′), vs is a constant shear wave

velocity, and the kernel K decays like 1/r3. The value of vs defines the event time scale and has no influence on

the earthquake catalogs.

3. Results

We analyze an earthquake catalog covering about 5000 years, which contains 200,000 earthquakes with

moment magnitudes M between 4.0 and 6.8. The seismic potency P0 (moment M0 divided by rigidity µ) is

calculated as the integral of slip over the rupture area during an earthquake. The range of magnitudes depends

on the segmentation of the grid into computational cells, e.g. smaller cells would allow to simulate smaller

earthquakes. On the other hand, a larger fault would result in a higher maximum magnitude. Figure 2 shows an

earthquake sequence (magnitude vs. time) from the catalog over a period of 60 years.
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Figure 2. Example of the model seismicity in a time span of 60 years.

3.1. Aftershocks

The most obvious feature in Fig. 2 is the aftershock clustering following the largest events. As mentioned

above, the aftershock decay is compatible with the modified Omori law, Eq. (2), with an exponent p = 1.

Furthermore, it has been demonstrated that the aftershocks are predominantly concentrated at the margins of the

fault segments [ZÖLLER et al., 2005], which is good agreement with observational studies.

An important question is the dependence of the aftershock sequences on the mainshock magnitude Mmain,

expressed by the value of c1 in Eq. (2). The exponent p is found to be almost independent of Mmain in agreement

with [UTSU, 1962; UTSU, 2002]. For the rate of aftershocks, [REASENBERG, 1985] assumes the relation

c1 ∝ 10
2

3
·Mmain . (6)

The number of aftershocks as a function of the mainshock magnitude is given in Fig. 3a. It is clearly visible

that the scaling law Eq. (6) is fulfilled in our model. A second scaling relation is observed, if the number of

aftershocks is plotted as a function of the mainshock rupture area, leading to NA ∝ A1/2 and thus to NA ∝ R,

where R is the rupture length (Fig. 3b). Combining both scaling laws, results in a relation P0 (or M0) ∝ A9/8

between seismic potency (or moment) and rupture area A. In sum, we note that the aftershock sequences in our

model govern the main properties of observed aftershock activity with respect to frequency and spatiotemporal

occurrence.
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Figure 3. The number of aftershocks in the first month after a mainshock as a function of the mainshock magni-

tude. Here, an earthquake is defined to be a mainshock if it is the largest event within ± 1 month. The aftershock

productivity is found to scale with 10
2

3
Mmain (panel a) and with the rupture length R ∝

√
A (panel b).

3.2. Interevent times

In recent studies, it has been shown that the distribution of interevent times can be described by a universal

law. In particular, the distributions from differents tectonic environments, different spatial scales (from worldwide

to local seismicity) and different magnitude ranges collapse, if the time τ is rescaled with the rate Rxy of seismic

occurrence in a region denoted by (x, y) [CORRAL, 2004]:

Dxy(τ) = Rxy · f(Rxyτ), (7)

where Dxy is the probability density for the interevent time τ , and f can be expressed by a generalized gamma

distribution

f(θ) = C
1

θγ−1
exp

(

−θδ

B

)

(8)

with parameters C, γ, δ, and B, which have been determined by a fit to several observational catalogs [CORRAL,

2004].

In Fig. 4, we compare Dxy(τ) from Eq. (7) with two earthquake catalogs: 1. The ANSS catalog of

California (catalog ranges are given in the caption) and 2. the model catalog. We note that due to the numerical

procedure, especially the Runge-Kutta integration of the creep law (Eq. (1)), the interevent times in the model

have a finite lower limit. However, in the region where the interevent times are calculated, the agreement of the

three curves is remarkable. For small values of τ , Eq. (7) deviates from the California data; for high values the

model has a slightly better correspondence with the observational data than Eq. (7). Thus the interevent time

217



9

distribution is in excellent agreement with observational results.
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Figure 4. The normalized interevent time distribution of the model simulations (black dots) compared with the

result of [CORRAL, 2004] and the distribution of earthquakes in California (ANSS catalog of M > 3 earthquakes

occurred between 1970 and 2004 within 29◦ and 43◦ latitude and -113◦ and -123◦ longitude).

The degree of temporal clustering of earthquakes can be estimated by the coefficient of variation CV of the

interevent time distribution.

CV = σ/µ, (9)

where σ is the standard deviation and µ the mean value of the interevent time distribution. High values of CV

denote clustered activity, while low values represent quasiperiodic occurrence of events. The case CV = 1

corresponds to a random Poisson process. [BEN-ZION, 1996] and [ZÖLLER et al., 2004] have found that the

clustering properties of the large events depend on the degree of quenched spatial disorder of the fault. Here we

show that CV as a function of the lower magnitude cutoff has a characteristic shape (Fig. 5). The values of CV

are higher than 1 (clustered) for small and intermediate earthquakes (M ≤ 5.4) and smaller than 1 (quasiperiodic)

for larger earthquakes. This corresponds to the case of a low degree of disorder in [Z ÖLLER et al., 2004],

because the brittle cells which participate in an earthquake have no significant spatial disorder. We note that

this behavior resembles the seismicity on the Parkfield segment of the San Andreas fault, which is characterized

by a quasiperiodic occurrence of mainshocks. The fact that the dependence of CV on the magnitude cutoff is

not monotonic for the small magnitude cutoffs, is again due to the time discretization as a consequence of the

numerical procedure.
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Figure 5. The temporal earthquake occurrence quantified by the coefficient of variation as a function of the lower

magnitude cutoff. Values larger than 1 indicate clustering, whereas lower values point to quasiperiodic behavior.

3.3. Foreshocks

In [ZÖLLER et al., 2005] and in Section 3.1, it is shown that our model produces aftershocks sequences

which are quantitatively in very good agreement with observed aftershock activity. Foreshock activity is,

however, less present in observed data. Although it is documented that the increase of activity prior to a

mainshock follows an “inverse Omori law” ṅ(t) ∼ (c + tM − t)−q with an exponent q ≈ 1 [HAINZL et al.,

1999], the overall smaller number of foreshocks requires very long data sets including many mainshocks to detect

a clear foreshock signal. Stacking the activity before 225 mainshocks with M ≥ 6, shows a moderate but clearly

visible increase of the earthquake rate before a mainshock (see Fig. 6). The exponent q of foreshock actvity is,

however, difficult to estimate, because it is not clear how to distinguish the small number of extra events from the

background activity. The observation of an increasing precursory rate is encouraging for the applicability of the

model to real fault zones.
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Figure 6. The stacked and averaged activity prior to mainshocks (225 sequences). Here, mainshocks are M>6

events which are the largest earthquakes within ±10 years.

3.4. Critical point behavior

The interpretation of seismicity in terms of critical point dynamics has opened new perspectives for the

analysis and the understanding of earthquake data. These include self-organized criticality [BAK AND TANG,

1989; HAINZL et al., 1999], growing spatial correlation length [ZÖLLER et al., 2001; ZÖLLER AND HAINZL,

2002] and accelerating moment release [BUFE AND VARNES, 1993; JAUME AND SYKES, 1999]. A key question

is whether the approach to the critical point can be measured by stress or seismicity functions as addressed

by [BEN-ZION et al., 2003]. Their analysis of catalogs from three end-member models leads to the conclusion,

that large earthquakes are preceded by a period of criticality characterized by a highly disordered stress field with

a broad range of size scales. In this section, we search for signals of criticality in our more realistic model.

Figure 7 (bottom) shows the average earthquake rate before and after a large event as a function of time. This

figure is again based on a stacking of 225 large events (M ≥ 6). The top panel of Figure 7 is the corresponding

mean stress (normalized) on the computational grid. The mainshock itself is characterized by a significant stress

drop. In the following period of aftershocks, lasting for about 1.2 years, the mean stress still decreases before it

recovers and increases again. This stress increase is almost linear and lasts until the next mainshock occurs.
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Figure 7. The averaged activity and stress evolution relative to mainshocks (M>6 events which are the largest

earthquakes within ±10 years).
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In previous studies [BEN-ZION, 1996; BEN-ZION et al., 2003; ZÖLLER et al., 2005], it has been

demonstrated that the degree of disorder of the stress field is correlated with the frequency-size distribution

of the seismicity: a smooth stress field produces characteristic earthquake distributions with a frequently

occurring characteristic event, almost no intermediate earthquakes and small events following a truncated

Gutenberg-Richter distribution; in contrast, the seismicity from a disordered stress field is characterized by a

Gutenberg-Richter distribution over a broad range of magnitudes. Therefore, we expect that the frequency-size

distribution before a mainshock has a broad scaling region, whereas the overall seismicity follows a characteristic

earthquake distribution. Figure 8 shows the cumulative frequency-size distributions for foreshocks, aftershocks,

and all earthquakes in our model. Due to the small number of foreshocks, the corresponding curve is less smooth

than the curves for aftershocks and all events. However, it is clearly visible that the foreshock activity shows the

smallest deviations from a scaling law (denoted as solid lines) compared to the other curves. Although the overall

frequency-size distribution of earthquakes follows a characteristic earthquake law, the periods before mainshocks

are characterized by a scaling law of Gutenberg-Richter type with a broad scaling range pointing to a disordered

stress field with a wide range of spatial size scales.
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Figure 8. The frequency-magnitude distribution of all earthquakes, foreshocks and aftershocks, respectively.

Foreshocks and aftershocks are defined to be earthquakes occurring within one month before and after a main-

shock, where the mainshock definition is the same way as before. The dotted lines refer to b-values of 1 and

2.

The second indication for critical point behavior is the the acceleration of seismic moment release, which is

assumed to follow the power law

(ΣΩ)(t) = A + B(tf − t)m, (10)

where the cumulative Benioff strain (ΣΩ)(t) is calculated from the energy releases E(τ) of earthquakes at times
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τ ≤ t by (ΣΩ)(t) =
∫ t

0

√

E(τ)dτ . The time tf is the mainshock occurrence time, A, B, and m are parameters.

Analyzing eight large earthquakes in California, [BOWMAN et al., 1998] find values of the exponent m in

the range 0.1 ≤ m ≤ 0.55. The theoretical analysis of [RUNDLE et al., 2000A] of a critical point process

leads to m = 0.25. The observational study of [BUFE AND VARNES, 1993] and the theoretical damage model

of [BEN-ZION AND LYAKHOVSKY, 2002] suggest the value m = 0.3.

Due to the noisy character of single earthquake sequences, it is difficult to detect accelerating moment

release before individual mainshocks. Instead, we use a more robust representation by plotting the release of

potency P0 as a function of the (normalized) stress level on the fault. We note that the stress increase on the

fault is linear (see Fig. 7). Consequently, the abscissa represents effectively the time between two mainshocks.

The curve shows a clear power law dependence of the (non-cumulative) potency release on the stress level with

an exponent of s = −1.5. This results in a power law for the cumulative Benioff strain according to Eq. (10)

with m = 0.5 · s + 1 = 0.25, which is in good agreement with empirical and theoretical findings [BUFE AND

VARNES, 1993; BOWMAN et al., 1998; RUNDLE et al., 2000A; BEN-ZION AND LYAKHOVSKY, 2002]. In sum,

our results are compatible with the hypothesis of accelerating moment release and provide further support for the

presence of critical point dynamics in the simulated seismicity.
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Figure 9. The mean potency of earthquakes as a function of the stress level τ . The stress level is normalized to

the maximum (max) and minimum (min) observed stress. The potency is found to increase according to a power

law ∆τ−1.5, if stress approaches the maximum.

4. Discussion and conclusions

In the present work, we have analyzed an earthquake catalog from a recently developed model for a large

heterogeneous strike-slip fault. As shown in a previous work, this model reproduces various characteristics

of observed seismicity [ZÖLLER et al., 2005]. Using different parameters, like frictional values and creep

rates, the model can be tuned towards observed cases, e.g. a fault which produces clustered seismicity obeying
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Gutenberg-Richter statistics or a fault with quasiperiodically occurring mainshocks following the characteristic

earthquake distribution. Here, we have analyzed an earthquake catalog from the latter situation, which

resembles many features of seismicity on the Parkfield segment of the San Andreas fault in California, including

quasiperiodically occurring mainshocks, which are followed by aftershock sequences. In contrast to short

observational data sets covering some years or decades, we consider an observational period of about 5000 years

of simulated seismicity. This allows us to use a stacking procedure in order to unveil properties, which are not

visible in short and noisy data sets.

The stacking of many aftershock sequences shows a scaling relation between the mainshock magnitude and

the number of aftershocks. This gives in combination with the modified Omori law an excellent explanation

of aftershock activity. In addition, the less frequently occurring foreshock activity is also visible in our model.

The temporal occurrence of earthquakes is quasiperiodic for large events and clustered for intermediate and

small events with an overall interevent time distribution that follows a recently proposed universal law and

is very similar to the interevent time distribution of California seismicity. While these results demonstrate a

high correspondence of the model output with observed seismicity, we also find support for the hypothesis that

seismicity is characterized by critical point dynamics. In particular, we have shown that the scaling range of

the frequency-size distribution becomes broader, when the time of a mainshock is approached. This indicates

that the stress field has reached a certain degree of disorder, where a single failure can evolve into a large event.

Furthmore, the moment release accelerates in the interseismic periods in good agreement with observational and

theoretical results.

In sum, we have demonstrated that our model provides a very good performance of natural earthquake

activity and gives new insights to various aspects of the so-called “critical earthquake concept”. Therefore, we

believe that it will have impact on the problem of earthquake predictability in certain fault zones.
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JAUMÉ, S. C., AND SYKES, L. R.. (1999), Evolving towards a critical point: A review of accelerating

moment/energy release prior to large and great earthquakes, Pure Appl. Geophys, 155, 279-306.

MADARIAGA, R. (1976), Dynamics of an expanding circular fault, Bull. Seim. Soc. Am., 66, 639-666.

NUR, A., AND BOOKER, J. R. (1972), Aftershocks caused by pore fluid flow?, Science, 175, 885-887.

REASENBERG, P. (1985), Second-order moment of Central California Seismicity , J. Geophys. Res., 90,

5479-5495.

ROELOFFS, E., AND LANGBEIN J. (1994), The earthquake predicition experiment at Parkfield, California,

Rev. Geophys., 32, 315-336.

RUNDLE, J. B., KLEIN, W., TURCOTTE D. L., AND MALAMUD, B. D. (2000A), Precursory seismic

activation and critical point phenomena, Pure Appl. Geophys, 157, 2165-2182.

RUNDLE, J. B., TURCOTTE D. L., AND KLEIN, W. (2000B), Geocomplexity and the physics of earthquakes,

Geophysical Monograph 120, American Geophysical Union, Washington, DC.

SHCHERBAKOV, R., AND TURCOTTE, D. L. (2004), A damage mechanics model for aftershocks, Pure and

Applied Geophysics, 161, 2379, doi 10.1007/s00024-004-2570-x.

SORNETTE, A., AND SORNETTE, D. (1990), Earthquake rupture as a critical point: consequences for telluric

precursors, Tectonophysics, 179, 327-334.

UTSU, T. (1962), On the nature of three Alaskan aftershock sequences of 1957 and 1958, Bull Seism. Soc.

Am. 52, 279-297

UTSU, T. (2002), Statistical features of seismicity, International handbook of earthquake and engineering

seismology, Part B, 719-732

UTSU, T., Y. OGATA, AND MATSU’URA, R. S. (1995), The centenary of the Omori formula for a decay law of

aftershock activity, J. Phys. Earth, 43, 1-33.

WYSS, M. (1997), Cannot earthquakes be predicted?, Science, 278, 487
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