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Abstract

The identification of stratigraphical sequences within marine sediment deposits can

be accomplished by the combined interpretation of seismic, wireline and core data.

If seismic data are ambiguous and core recovery is poor, the accurate detection of

sequence boundaries may become difficult. It is desirable to distinguish such se-

quences automatically, thus avoiding any potentially wrong human interpretation.

This task can be performed by learning algorithms that classify logged intervals into

stratigraphical sequences.

Seven such supervised learning algorithms (linear and quadratic discriminant ana-

lysis, logistic regression, k-nearest neighbour, support vector machine, backpropaga-

tion neural network and probabilistic neural network) are applied to logging data.

These include borehole wireline, multi-sensor core scan and fluorescence X-ray data

sets that have been acquired during the PROMESS-1 cruise in the Mediterranean Sea

(Gulf of Lion and the Adriatic Sea).

The algorithms are compared in order to find the best suitable algorithm for the

specific task of stratigraphical sequences identification. Those classifiers that are both

non-parametric and discriminating (support vector machine, k-nearest neighbour

and probabilistic neural network) yield the best results. Given that ample training

data are available, quadratic discriminant analysis and backpropagation neural net-

work also perform well. The logging data are found to be non-Gaussian distributed.

Non-parametric algorithms seem to adjust better to this than parametric algorithms.

Linear classifiers such as linear discriminant analysis and logistic regression cannot be

recommended as the data are not linearly separable into classes representing strati-

graphical sequences.

It is shown that the classification performance improves if each class is properly

represented within the training data set. For the available data, the mean Dipmeter

micro-resistivity proves to be the best discriminating log curve as it possibly reflects

compaction effects near the borehole wall. The logged stratigraphical units are thus

primarily determined by compaction.

The feasibility of automated classification is demonstrated on the basis of PRO-

MESS-1 data. Although the identification of the most appropriate algorithms seems

to be specific to this data set, the results may be transferred to other classification

goals and geological settings.
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On Classification of Logging Data

1 Introduction

In recent years, the field of pattern recognition has seen a large increase of attention

in the light of new computing capacities and the ability (or curse) to search through

vast amounts of data. Both scientists and engineers are involved with the extension

of existing and the development of new data mining techniques with diverse appli-

cations such as speech recognition, DNA sequence identification, credit card fraud

detection, email spam protection or computer vision. The main goal is the feature

extraction from a large data set that follows some sort of similar pattern. This pattern

is likely being masked by the sheer amount of data it is extracted from or the kind

of non-trivial rule it follows. There are two principal fields of pattern recognition:

regression and classification. The former assigns one or more continuous valued out-

puts to each input object; the latter assigns each input object to one of finite classes

(Vapnik, 2000). Within this work, only the latter case will be considered as the prob-

lem at hand is one of classification: n-dimensional input objects (logging curves)

shall be classified into c classes (representing c stratigraphical sequences).

The classification task consists of a number of different activities: data collection,

variables choice, model choice, training and evaluation (Duda et al., 2001, see Fig-

ure 1.1). Collection of good data and an appropriate variables choice (i.e. selection

of logging curves) are crucial for any sound classification performance. The model

choice determines the type of classification algorithm and its parameters. Selecting

the best classifier for a specific problem (that of classifying logging data from uncon-

solidated marine sediments of the Mediterranean Sea into stratigraphical units) is

the objective of this thesis. Variables and model choice may be enhanced by input of

prior knowledge such as weighting of input curves, invariances, etc. Training of the

Data

collection

Classifier

evaluation

Model

choice

Variables

choice

Prior knowledge

Classifier

training

Figure 1.1: Design cycle of a classifier, from Duda et al. (2001). The evaluation process
may alter all previous steps in order to achieve a better performance.
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Chapter 1: Introduction

Pre-processing

Training data set
Features & Labels

(Test) data set
Features

Classifier evaluation

Classification Rules

Learning algorithm

Class labels
Labels

Training

Generalising

Figure 1.2: Training and generalisation cycles of a learning system. During training, a
data set with variables and labels is presented to the classifier. After optimising the
classifier, the algorithm found is applied to unknown data containing variables only
(generalisation).

chosen classifier and evaluation of its performance complete the classification design

cycle.

Classification is achieved by learning which can be divided into two groups: super-

vised and unsupervised learning. With unsupervised learning, there are no training

data presented to the classifier but the algorithms try to find an underlying decision

rule based on some measure determined by the algorithm. With supervised learning,

the classifier is being trained with a training set of (e.g. logging) variables and labels

(e.g. stratigraphical unit names) prior to classification of the (unlabelled) remain-

der of the data. The application of a trained algorithm to unknown data is called

generalisation. Training performance and generalisation performance have to be dis-

tinguished, as they may be significantly different (see Figure 1.2). A small training

error does not guarantee a low generalisation error, and vice versa. Overfitting occurs

when a classifier is very well trained (low training error) but nonetheless performs

poor on new data (large generalisation error). A good classifier avoids overfitting

and maintains a good generalisation performance at the same time.

In this work automatic classification is performed after some initial training. In

the given scenario of borehole data, the training data set resembles intervals where

core and wireline data are complete. The trained algorithm is then applied to data

15



On Classification of Logging Data

where core information is missing. This situation is frequently encountered in field

campaigns where coring is either too expensive or technically impossible, but wireline

data are readily available. If classification can be reliably performed with only few

cored intervals, these algorithms may provide a work-around in cases with poor or

no core recovery.

Classification of borehole data is by no means a new approach. Since the 1960s,

cross-plots of 2 or 3 parameters have been created to classify logged intervals into

different lithological units. This technique has been refined to a remarkable level of

perfection but as far as the industry is concerned, it has never been replaced by other,

more sophisticated algorithms (White, pers. comm.). Being almost certainly biased

by the interpreter or logging specialist, the results are far away from being impartial.

Statistical methods were applied to borehole data sparsely in the 1980s and 1990s

(e.g. Busch et al., 1987; Schumann, 1995; Bücker et al., 2000). Baldwin et al. (1989)

were the first to apply artificial neural networks (ANN) to the problem of classifica-

tion of well logs. Since then, neural networks have been a frequently used tool to

extract information from logs, e.g. lithofacies identification (Bhatt & Helle, 2002b),

permeability and porosity (Wiener et al., 1991; Wong et al., 1995), lithology (Rogers

et al., 1992) or fracture frequency (FitzGerald et al., 1999). Benaouda et al. (1999)

compare neural networks with various types of discriminant analysis, some of which

outperform the neural network. Derek et al. (1990) report similar results when com-

paring Bayes classifiers, k-nearest Neighbour (kNN) classifiers and linear discriminant

analyses (LDA) with neural networks. Other classification algorithms such as support

vector machines (SVM) or hidden Markov models (HMM) have been mentioned in

relation to log classification in recent years (Liu & Sacchi, 2003; Wong et al., 2003;

Schumann, 2002), but so far these have not yet been widely used in this field of appli-

cation. In this work, conventional statistical methods, k-nearest neighbour classifiers,

neural networks and support vector machines will be applied to log classification and

evaluated on their performances. So will be other techniques that up-to-date have

not yet been applied to this kind of classification task, namely Parzen windows and

logistic regression.

Many of the conclusions of the above cited papers have in common that they rec-

ommend general improvements of classifier designs without any specific statement

about how these improvements should look like. It seems to be a hope only that

a vaguely postulated improvement would lift the more complex algorithms above

rather simple ones such like the LDA. Intuitively, for a given problem a simple classi-

fication algorithm is preferred over a more complex one. This practice is commonly

referred to as Ockham’s razor, quoting William of Ockham’s "entia non sunt multipli-

canda praeter necessitatem" (entities shall not be multiplied without necessity). But

16



Chapter 1: Introduction

as the No Free Lunch theorem by Wolpert (1995) states, there is no inherently best

algorithm for a given problem but only a best classifier for a specific problem. The

goal of this thesis is finding such best classifier for the problem of classifying a set of

borehole logs into stratigraphical sequences.

Having introduced the terms pattern recognition, classification, supervised learn-

ing, training, generalisation and overfitting, the next chapter will present the data to

be classified. All log data have been acquired during the PROMESS-1 cruise in the

Mediterranean Sea. This project and its geological background will be illustrated.

Chapter 3 sets out acquisition and processing of wireline, multi-sensor core logging

(MSCL) and fluorescence X-ray (XRF) logging data. Chapter 4 introduces the theo-

retical foundations of selected classification algorithms. Conventional interpretations

from Geologists of the log data in terms of stratigraphic sequence identification and

classification results are shown in Chapter 5 along with the application of the algo-

rithms presented in Chapter 4. Discussion on the evaluation of classification algo-

rithms and conclusions follow (Chapter 6).

17



On Classification of Logging Data

2 Geological Setting

The Mediterranean Sea is a continent-surrounded basin only linked to the ocean sys-

tem through the Straits of Gibraltar. It developed during the collision of the Africa-

Arabian continent with the Eurasian continent during the Oligocene and Miocene.

At the end of the Miocene, the close-off of its western end caused the Messinian

Salinity Crisis, a major event all over the Mediterranean Sea with the deposition of

a deep-basin evaporitic sequence (Hsü et al., 1973). During the Quaternary, sea-

level rise led to sedimentation characterised by margin progradation (e.g. Lofi et al.,

2003; Trincardi et al., 2004). The Mediterranean Sea’s present coastline extents some

46,000 km, the Sea’s average depth is around 1,500 m and it covers roughly 1.7 mil-

lion km2. It is commonly divided into a number of gulfs, straits and smaller seas, two

being the Gulf of Lion at the southern coast of France and the Adriatic Sea east of

Italy. These two areas have long been the object of investigations of European ma-

rine geoscientists. They both exhibit continental shelf and upper slope sedimentary

sequences deposited during the last 500 ka (see Figure 2.1). During the PROMESS-1

(PROfiles across MEditerranean Sedimentary Systems, part 1) project, drilling, cor-

ing and borehole logging at four locations in the Gulf of Lion and the Adriatic Sea

have been conducted. The geological settings of these sites along with the project’s

goals will be outlined in this chapter.

2.1 Gulf of Lion

The Gulf of Lion is a passive continental margin. Present day Quaternary sediments

deposited in the Gulf are mainly fed by fluvial input from the Rhône river with an

estimated sediment load prior to dam construction of 2− 8× 106 t/a (Pauc, 1970) and

to a minor extent from the Aude and Têt rivers with 1.8− 4× 106 t/a and 0.6× 106 t/a,

respectively (CSCF, 1984). Their origin are mainly alpine glaciers and the rivers’

drainage basins. A rather constant subsidence rate of around 250 m/Ma (Rabineau,

2001) allows for ample accommodation space. This, in combination with high sedi-

ment supply rates, controls sediment deposition at the shelf edge, continental slope

(Lofi et al., 2003) and the Rhône deep sea fan (Droz & Bellaiche, 1985). Strati-

graphically, the Quaternary sequences on the outer shelf and upper slope exhibit

18



Chapter 2: Geological Setting

Figure 2.1: Northern Mediterranean Sea and drainage basins of the rivers Rhône and
Po (highlighted). Satellite image from USGS (2000).

a combination of several prograding wedges confined by discontinuities. Rabineau

et al. (2005) define a motif describing their depositional pattern. It consists of 2-3

horizontally juxtaposed prisms PI, PII and PIII capped by those discontinuities. In

their paper, they identify at least five such major erosional surfaces named D30, D40,

D50, D60 and D70. Supported by stratigraphic simulations and lithological, palyno-

logical, micro-palaeontological and seismic stratigraphical data they strengthen the

debated model of a depositional pattern following a 100 ka glacial/interglacial cycle

(as opposed to a 20 ka cycle). One of the goals of the PROMESS-1 cruise was to

test this model. At locations PRGL-1 and PRGL-2 (see Figures 2.2 and 2.3) boreholes

were drilled down to 300 metres and 100 metres below seafloor (mbsf), respectively,

penetrating the discontinuities D70 down to D35 (see Figure 2.4). Preliminary micro-

palaeontological data show that marine isotope stage (MIS) 13 has been reached at

the bottom of hole PRGL-1 (Flores, pers. comm.), thus supporting the 100 ka cy-

cle hypothesis. Grain size distribution and fluorescence X-ray (XRF) data suggest

an additional major discontinuity D45 between D40 and D50. This is supported by

classification results presented later in this work.
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Figure 2.2: Gulf of Lion: Shelf, Rhône canyon systems and drilling locations. PRGL-1 is
located on the shelf edge at a water depth of 300 m. PRGL-2 is located on the shelf
at a water depth of 100 m. Bathymetry data from Berné et al. (2002), satellite image
from USGS (2000).
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Figure 2.3: Projected drill holes PRGL-1 and PRGL-2 at the shelf and upper slope of
the Gulf of Lion shelf. Seismic data courtesy of IFREMER.
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Figure 2.4: Borehole PRGL-1 at the upper slope of the Gulf of Lion shelf. Major dis-
continuities are shown in red. Water depth is 300 m. Depth scale (mbsf) is an ap-
proximation based on seismic velocities. High resolution sparker data courtesy of
IFREMER.
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Figure 2.5: Chirp seismic profile AMC-236 intersecting borehole PRAD-1. Depth in
mbsl. Courtesy of ISMAR-CNR.

2.2 Adriatic Sea

The Adriatic Sea is a Plio-Quaternary foreland basin of the Apennine chain. During

the Pliocene and Quaternary, sediment flux, depositional patterns and direction of

progradation changed considerably (Ori et al., 1986). The Po Plain is the basin’s

main drainage area for sediment input, supplemented by smaller drainage basins of

the Apennine chain (Trincardi et al., 1996). Southward sediment transport is con-

trolled by wind-driven currents and waves. Sediment discharge of the smaller rivers

from the Apennine coalesces to create accretionary features known as clinoforms

(Cattaneo et al., 2004; Nittrouer et al., 2004). Four progradational units correlat-

ing to 100–120 ka cycles have been identified for the Central Adriatic basin. Each

of them developed during highstand to falling sea-level conditions and is topped by

erosional surfaces (ES1 to ES4, see Figure 2.5). The preservation of forced regres-

sion deposits was controlled by relative sea-level changes, the eustatic signal with

short-term but large magnitude rises and fifth-order cyclic sea-level falls of short

duration (Trincardi & Correggiari, 2000). The sequences vary laterally in terms of

thickness and depositional geometry which is due to heterogeneous regional depo-

sition prerequisites. Drilling through these four sequences was accomplished during

the PROMESS-1 cruise, therefore providing new information about sedimentation

processes, age definition and tectonic subsidence (see Figure 2.6).
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Figure 2.6: Adriatic Sea with drilling locations PRAD-1 and PRAD-2 north of the
Gargano Peninsula. Satellite image from USGS (2000).

2.3 PROMESS-1 Project

In order to enhance the existing data base of the two above mentioned Mediter-

ranean regions with ground-truth core and logging data, the European Community

launched the PROMESS-1 project involving 12 universities and research institutions

across Europe. In summer 2004, a 4-weeks cruise with an industrial drilling vessel

was accomplished. During its course, boreholes at four locations were drilled and

cored. In addition, geotechnical and wireline logging measurements were performed

downhole. The drilled intervals were targeted to cover approximately the last 500 ka.

PROMESS-1 was designed as a "source to sink"-approach to investigate two continen-

tal margins in the Mediterranean Sea and the associated sea-level changes, sediment

fluxes, canyon history and slope failures. Scientific objectives included the investiga-

tion of

• Stratigraphic evidence of glacio-eustatic (glacial/interglacial) cycles and corre-

lation with Milankovitch and Dansgaard-Oeschger scales;

• Depositional processes of sediments at the shelf, slope and deep-sea environ-

ment;

• Slope stability and the impact of regime and sediment supply variability on
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slope failures;

• Segregation of eustatic changes from tectonic deformation at short time scales.

Results from classification of logging data acquired during PROMESS-1 contribute to

the first two objectives. In the first case, stratigraphic sequences related to 100 ka

glacio-eustatic cycles are identified. From the four drilled sites of the PROMESS-1

project, the most extensive data sets from downhole, XRF and MSCL logging have

been recorded at sites PRGL-1 and PRAD-1. Hence, input data and classification will

be presented for these two sites.
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3 Data Acquisition

Geo-scientists seek to gather ground-truth data from the subsurface as accurate and

comprehensive as possible. At times, non-invasive methods such as reflection seismics

or swath bathymetry already deliver substantial data sets. However, it may also be

crucial to get closer to the target under investigation. Drilling, coring and logging a

borehole will provide the scientist with information impossible to obtain by remote

techniques.

Intuitively, obtaining a core from a drilled hole looks like pulling all extractable

data and information up to the surface. In fact, core data provide fundamental in-

sights into the genesis and history of the sediments and rocks, as well as palaeonto-

logical, chemical and physical parameters. But retrieving a core and bringing it up to

the surface means disturbing the sample and removing it from its natural equilibrium

state. Temperature and pore pressure will irrevocably change at surface. Here, wire-

line logging inside the borehole can add valuable information by means of measuring

in situ properties of the formation surrounding the hole.

During the PROMESS-1 project, at all drilled sites a full core recovery was at-

tempted. Onboard, all cores were scanned by a containerised multi-sensor core log-

ging (MSCL) unit owned and operated by IFREMER Brest. Magnetic susceptibility,

gamma density and compressional wave velocity were recorded. After the cruise, the

cores were split and one half was sampled by a fluorescence X-ray scanner (XRF)

at the Bremen Core Repository. At sites PRGL-1 and PRAD-1, an extensive wireline

logging suite was run, consisting of mainly open hole and few cased hole measure-

ments. Hence, the logging data set comprises MSCL, XRF and wireline logging mea-

surements. Because this set is exhaustive and of good quality the application and

comparison of existing and new classification techniques were made possible. This

enabled the investigation of the classifiers’ behaviour on different training and testing

data sets with real data. Unlike often published data with simple, simplified or syn-

thetic geological settings, the data used here are from rather homogeneous marine

Quaternary sediments (i.e. silty clay with clayey silt), which makes the classification

task difficult and challenging at the same time. Simple data sets are no defiance for

most classifying algorithms but delicate data sets like the ones presented are highly

capable of discriminating classifiers by their performance.

In this chapter, data acquisition aspects such as principles of methods, resolution,
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accuracy issues, possible sources of errors and depth matching will be briefly dis-

cussed. This shall also emphasise the fact that real data are always noisy and im-

perfect and that this has to be kept in mind during all subsequent processing and

classification steps. Tool output data are shown in Appendices A and B.

3.1 Core Logging

Coring operations onboard the PROMESS-1 drilling vessel SRV Bavenit utilised three

kinds of corers, namely WIP Mk III, PISTON Mk III and Fugro Corer. The majority

of coring in holes PRGL-1 and PRAD-1 was done by the former two with occasional

supplement of the Fugro Corer. WIP and PISTON corers are operated by hydraulic

oil pressure through an umbilical cable. The WIP corer takes a cylindrical sample

by applying a monotonic thrust. The sample tube is fitted with a liner. The core is

retained by a watertight ball valve in the sampler head, which causes suction if the

sample moves downward. The PISTON sampler is similar except that a stationary

piston is fitted in the tool. This piston forms a seal directly above the sample and

enhances recovery especially in soft cohesive soils. The Fugro Corer is a free-fall

device operated by mud pressure and retrieved by wireline. For soft sediments, the

tool acts as a push sampler (as opposed to a percussion mode when used in hard

soils). The pushing is achieved by building pressure behind a hammer at the top of

the device. Pressure is attained by pumping the drilling mud down the string using

the mud pumps (Fugro Engineers B.V., 2003).

All sample inner diameters (IDs) are 67 mm. The maximum stroke (i.e. length

of a recovered core sample) of the WIP and PISTON corer is 95 cm and 85 cm, re-

spectively. The Fugro Corer’s maximum liner length is 188 cm. During PROMESS-1,

stroke lengths were restricted to 80 cm for WIP and PISTON coring. The core liners

of the Fugro Corer were divided into 100 cm and 88 cm cores.

After recovery, every core received top and end caps, was labelled and stored verti-

cally at 13°C. Because of outgassing effects cores tended to expand. In extreme cases,

end caps had to be perforated in order to avoid gas pressure building up inside the

core liner.

3.1.1 Depth control

Despite extraordinarily good core recovery (above 95 % for either hole PRGL-1 and

PRAD-1), cores may have been shifted or squeezed due to outgassing and missing

intervals. Absolute depth match is therefore likely within the order of decimetres.

Claiming a more precise depth accuracy may be questionable. To minimise depth off-
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sets, the depth matching procedure consisted of two steps. First, a relative depth con-

version was applied to convert "depth within one core" to "depth within the borehole".

For this conversion, the following criteria applied (from Dennielou, pers. comm.):

• The top of a push corresponds to the top of a core;

• The sample retrieved during one push is the core plus the core shoe;

• The sampled length in a borehole during a sequence is the distance between

the top of two consecutive pushs;

• If the length of the core plus core shoe is larger than the sampled length, the

section is linearly squeezed to fit the sampled length;

• If the length of the core plus core shoe is smaller than the sampled length, the

distance between the base of the core plus core shoe and the top of the next

push is defined as lack of recovery;

• Voids described in the core (mainly due to outgassing) are excluded from the

recovery length;

• The intervals have been resampled at 1 cm resolution.

Second, the entire resulting intrinsically corrected core interval was then depth-

matched to the reference datum, the sea-floor. Here, the XRF measurement of Potas-

sium (40K) count rates was matched with the wireline spectral Gamma-ray count

rates for Potassium. The latter curve had been previously tied in to the sea-floor level

(see below).

3.1.2 Multi-Sensor Core Logging (MSCL)

Cores were scanned by the MSCL unit onboard the SRV Bavenit shortly after retrieval.

The unit is basically a conveyor system that pushes each core section past several

sensors. As for PROMESS-1 cores, these sensors were

• Rectilinear displacement transducers for core diameter measurements;

• Piezo-electric ceramic transducers for acoustic P-wave measurements;

• 137Cs Gamma-ray source in a lead shield for Gamma-ray attenuation (bulk den-

sity) measurements;

• Loop and point sensors for magnetic susceptibility measurements;
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Figure 3.1: Sonic data were generated by utilising density data and a polynomial fit
of a sonic-density cross-plot.

• Thermometer for core temperature (used for temperature correction).

All these measurements were performed on whole core sections with a sampling

interval of 1 cm. During a subsequent sampling party, additional high resolution

susceptibility measurements were carried out on split cores. All MSCL data were

resampled at 5 cm resolution to match the wireline logging data. In terms of data

processing, erroneous data such as voids, cracks or core gaps were removed. This is

specifically true for the core extremities where sediment disturbance was commonly

encountered.

Unfortunately, it turned out that sonic velocity data were severely affected by gas

effects, i.e. the outgassing of cores after retrieving them from the subsurface. To

establish a relationship between sonic velocity and density for the investigated area,

a ρ vs. VP cross-plot was generated. For a polynomial fit, it was decided to best

use MSCL data from PRGL-1 (upper 21.5 m with still valid sonic data) and other

PROMESS-1 boreholes, namely PRGL-2 (fraction of the data with most confidence)

and PRAD-1 (upper 56.5 m). MSCL density data were corrected by extracting the

upper envelope of the curve to remove any gas effects. A polynomial of second order

was used to convert this envelope into sonic velocity values (see Figure 3.1). MSCL

sonic data and this fit were spliced at 21.5 mbsf. Two major assumptions were thus

made: VP is correlated to the upper envelope of density; and the polynomial fit is

sufficient for a mapping function ρ → VP .

28



Chapter 3: Data Acquisition

3.1.3 X-Ray Fluorescence (XRF) Core Scanning

Split core halves of PRGL-1 and PRAD-1 were analysed by the XRF core scanner at the

Bremen core repository. X-rays are generated by a 50 kV Molybdenum X-ray source

and emitted to the sediment. A Peltier cooled Si-detector records count rates and

energy of the backscattered X-rays. Spectral analyses yield relative abundance values

(in cps, counts per second) for the elements K, Ca, Ti, Mn, Fe, Cu, Sr, V, Cr, Fe, Co,

Ni, Zn and Pb. Ca/Fe and Sr/Ca ratios may be used to reveal detrital to biogenic

compositional fluctuations in the sediments (Rothwell et al., 2005). Sample interval

for PRGL-1 was 2 cm for the uppermost 49 m and 4 cm below. PRAD-2 was sampled

at 2 cm resolution. All XRF data were resampled at 5 cm resolution to match wireline

logging data. Again, erroneous data such as voids, cracks or core gaps were removed.

Other possibly disturbed data points such as those close to the core top or bottom,

at shells etc. were kept within the data set. However, smoothing of the data was

performed prior to classification by means of a symmetrical, non-recursive filter.

3.2 Wireline Logging

Contrary to running memory sondes on slickline or LWD (Logging While Drilling)

tools as part of the drill string (PCL, Pipe Conveyed Logging), wireline logging tools

are conveyed on an electrical cable. One to seven inner electrical conductors are ar-

moured by generally two outer layers of steel wire. This type of conveyance allows

for fast and easy entry into the hole, good depth control and real-time data acquisi-

tion. On the other hand, good hole conditions are necessary to lower the tools all the

way down to the total depth; if the hole is bridging or collapsing, no other force than

the tools’ weight will support the tool string to get down past the obstacle. With the

cable being flexible, its weight does not contribute to that force. While logging up, a

collapsed hole can still be logged as long as the maximum safe tension (defined by

the cable strength) is not exceeded.

3.2.1 Depth Control

The tool’s position relative to a reference datum can only be measured indirectly, i.e.

by measuring the cable length between tool and a surface station. This is typically

done by means of a wheel touching the wireline cable that rotates as the cable is

lowered into or pulled out of the hole. With this kind of depth control the following

issues have to be considered:

• Cable stretch. Provided with enough weight on its lower end, steel armoured
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cable will stretch. While the weight of the tool string itself may be rather small,

the cable’s own weight will eventually cause cable stretch. This stretch can

be accounted for by either cable stretch charts, an empirical formula or by

comparing a down-log vs. up-log near the bottom of the hole (TD, total depth).

• Cable slack. At a typical logging setup, the wireline cable has some slack in

between the cable drum and the sheave wheels. The slack will vanish with

tool depth and can be corrected for by measuring the surface cable length once

when the tool is near the surface and once when it is near TD.

• Cable slippage. The cable may slip when touching the depth-control wheel.

This can be recognised by using two wheels and only considering the faster one

for depth control. The depth control equipment used during PROMESS-1 only

features one wheel, therefore having no means to detect cable slippage.

• Tool drag. The cable may move at surface, while the tool downhole in fact is

being held up at a bridge (on the way down) or dragged along the borehole

wall. This can be easily seen on the cable tension meter. If the tool has a built-

in accelerometer , this "jojo"-effect may be removed from the logs, but typically

the logs are not corrected.

Nonetheless, wireline logging is one of the most accurate conveyance type in terms

of depth control, and depth accuracy within a decimetre can be achieved.

During PROMESS-1, wireline logs were recorded moving up-hole. The drop of

Gamma-ray count rates to zero at the seafloor was set as the reference datum (0 mbsf).

All logs were tied in to this datum subsequently.

3.2.2 Mud System

All sondes measure either parameters of the borehole, the borehole wall or the for-

mation surrounding the borehole. Unfortunately, this part of the formation is affected

by the drilling process. The drilling mud enters the formation matrix and migrates

from the borehole away, thus increasing the invaded zone (see Figure 3.2). The for-

mation matrix acts as a sieve: suspended particles of the drilling mud will stick to

the borehole wall, forming a mud cake, while the mud filtrate enters the formation

and displaces the formation fluid. This complex system consisting of mud, mud cake

and mud filtrate is difficult to account for when applying borehole corrections to

the recorded data. When possible, the wireline sondes’ target depth of investigation

(DOI) is set to the virgin zone but often the tool actually measures parameters of

the invaded zone. Most of the time it is even completely unknown which part of the
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Figure 3.2: Mud invasion defines different zones of the mud system, the virgin zone
being the most desirable one for measurements.

formation the data come from, as there exist only few tools that can give hints as to

how deep the invaded zone penetrates the formation (e.g. array resistivity, if both

mud and formation salinity is known). For small scale measurements such as micro-

resistivity, the mud cake may affect data quality in the same way, forging the data

that are meant to be recorded with an undisturbed borehole wall. Some sondes may

overcome this issue by exerting an eccentralising force to push the sensors through

the mud cake and into the formation.

At sites PRGL-1 and PRAD-1, the drilling mud used consisted of sea-water, salt

water gel (attapulgite clay) as a viscosifier and PAC (Polyanionic Cellulose) to con-

trol possible fluid-loss and to stabilise the borehole. Dual-Laterolog measurements

suggested that mud penetration was small and hence the mud cake was very thin

(hinting at a low porosity regime as to be expected with marine clays). Therefore,

the recorded data were considered to be unaffected by the drilling mud and no cor-

rection had been applied.

3.2.3 Tools

The following is a list of the wireline logging tools run during PROMESS-1. All tools

record the data digitally and send them over the wireline to a PC based real-time

acquisition system at the surface. The tools are not combinable but have to be run

one-by-one. Thus, depth matching and preparation of composite logs have to be car-

ried out with utmost care. A summary of logging parameters and technical details are

given in Appendix C. What follows is a short overview of the principles and physics

behind the measurement types and their technical implementation. It is not the aim
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of the author to give a thorough tract of each and every tool. For more details, see

e.g. Serra (1984).

Calliper Sonde (CALI)

The calliper tool measures the borehole diameter by means of a calliper arm pressed

against the borehole wall. The measurement is uni-directional, i.e. only the diameter

in one direction is measured. When the borehole is oval, the calliper reading is

assumed to represent the major axis of the ellipse, i.e. the largest possible distance.

Diameter readings give information about borehole stability, break-outs, zones of

swelling clay or fractures. It can also be used to locate the casing shoe or drill bit.

Spectral Gamma-Ray Tool (SGR)

Naturally occurring radioactive elements in the subsurface formations are primar-

ily Thorium (Th), Potassium (K) and Uranium (U). As part of their disintegration

process, Gamma-rays are emitted into the surrounding area. These Gamma-rays are

subjected to further interactions, namely Compton scattering and photoelectric ab-

sorption. Before they are captured by an atom, they can be counted by means of

a crystal scintillation detector (e.g. Bismuth-Germanium oxide, BGO) that converts

their energy into a light flash (photoelectric effect). These photons can be converted

into an electrical current by a photomultiplier tube and amplifier circuit. The current

is dependent on the Gamma-ray’s energy, hence energy spectra can be recorded. As

Th, K and U all have different energy spectra, the three elements can be discrimi-

nated. The tool outputs four parameters: Th, K, U and total count rates. Total count

rates are then converted into API units, i.e. into a calibrated comparable output mea-

sure based on the natural radioactivity at the American Petroleum Institute’s test pit

in Houston. Gamma-ray emission is statistical by nature, hence at low count rate

levels features may not be seen on the log. Reducing the logging speed may help

to increase overall count rates. The above radioactive elements tend to concentrate

in shales and volcanic rock rather than in sandstones, but there are also reported

high Gamma-ray responses in mineralogically immature sandstones. The ratios Th/K

and Th/U indicate changes in clay composition. Also, high Th/U ratios may suggest

volcanic ashes. As happened during PROMESS-1, the sonde may also be used inside

the drill string or casing, but then count rates are severely diminished. An ENCOR

correction algorithm (Hendriks, 2003) for this setting was applied that requires prior

calibration and re-processing of the recorded curves .
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Geochemical Tool (EBS)

The geochemical or "Neutron-Gamma-" tool records the formation Gamma-ray re-

sponse after being irradiated by neutrons. Relative element occurrence can be de-

ducted from the tool. Changes in the chemical composition of the formation are

easily detected and may give hints on mineral structure, provenance or weathering.

When emitting high energy neutrons into the formation, inelastic scattering occurs:

neutrons will collide with formation atoms and kinetic energy will be transformed

into gamma rays. Eventually, the neutrons will be captured by formation atoms.

During this capture process, gamma radiation will be set free as well. The energy

spectrum of these gamma rays is dependent on the colliding atoms. Energy levels

of gamma rays created during inelastic scattering can be associated with carbon and

hydrogen. Likewise, energy levels of gamma rays created during thermal absorption

can be associated with silicon, calcium, iron and oxygen. By means of two gamma-

ray scintillation detectors, two spectra are recorded and give quantitative measures

of the above elements. Similar to the SGR sonde, this is a statistical measurement

and may thus be affected by errors when count rates are low.

Dipmeter Tool (DIP)

The main data output of the Dipmeter tool are deviation, relative bearing and az-

imuth of the borehole (sonde). Also recorded are the angles and dips of formation

beds intersecting the borehole. These are based on micro-resistivity of the borehole

wall recorded by 4 buttons at 0°, 90°, 180° and 270° positions around the sonde.

The four micro-resistivity values can also be smoothed and used to generate a mean

micro-resistivity curve. This curve is neither calibrated nor output in Ωm units. It

nevertheless follows the conventionally recorded laterolog resistivity but its sampling

rate is much higher (5 mm). For this reason and because a calibrated unit scale is

not required for the classification task the mean micro-resistivity curve was used for

subsequent processing instead of standard laterolog resistivity data.

Dual Laterolog Resistivity Tool (DLL)

The Laterolog principle of measurement is to confine voltage and current in a fixed

region such that the resistance can be computed. Electrical resistance together with a

geometric factor yields resistivity. Technically, the tool directs a current beam into the

formation. This beam is focused and forced into the formation by bucking currents.

They create an equipotential surface, preventing the measure current to flow up the

borehole. The minimum electrode configuration for a Laterolog tool consists of two
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voltage measuring electrodes and one current electrode. Generally, regional changes

of formation resistivity are due to changes of pore fluid rather than matrix resistivity.

Where porosity and pore fluid resistivity are constant, changes of matrix resistivity

are likely being reflected in a Laterolog recording. Conductive drilling mud affects

the measurement that needs to be corrected. During PROMESS-1 with conductive

salt-water based drilling mud, such correction was not applied as there had been no

means to determine the mud salinity onboard. All resistivity data are thus presented

in uncalibrated Ωm units. The DLL tool provides two output curves (hence the name

dual): a deep and a shallow reading. The difference is their bucking currents and

thus their depth of penetration. Usually, the deep reading is closer or equal to the true

formation resistivity Rt, while the shallow reading may have been recorded within

the invaded zone and hence be affected by the mud. Within this work only the deep

reading is used.

Micro-Susceptibility Tool (MS)

Magnetic susceptibility is defined as the degree of magnetisation of a formation in

response to a magnetic field. This ability of a sediment or rock is controlled by the

amount of magnetic minerals within. Generally for sediment deposits, glacial periods

are characterised by sediments with high concentration of magnetic minerals, where

interglacials have low concentrations. Hence, climate variability may be deducted

from a susceptibility log. In order to measure the magnetic susceptibility of the sur-

rounding formation, this tool utilises three coils: one transmitter, one receiver and

one compensating coil. The transmitter coils sends a (primary) electromagnetic field

into the formation which in turn produces a secondary electromagnetic field. This

field, together with the primary one, induces a current in the receiver coil. The com-

pensating coil will cancel out the effect of the primary field on the receiver coil; the

imaginary part of the remaining signal is proportional to the formation’s magnetic

susceptibility.
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4 Classification Techniques

The principle of dividing any given quantity into several groups (a rather rude de-

scription of the classification task) seems to be so naturally and unconsciously ap-

plied to every-day tasks that in fact the roots of pattern recognition are difficult to

reveal. There is historical tradition of classification by Bodhidharma, Plato and later

Aristotle. In a modern mathematically-founded sense of classification, Fisher’s dis-

criminant analysis (Fisher, 1936) developed in the 1930s, started the development

of algorithms and learning machines that nowadays include e.g. maximum likelihood

estimation, artificial neural networks or support vector machines.

As already mentioned in Chapter 1, classification by means of supervised learning

requires a training data set, that is, data samples that have been assigned to (cor-

rect) class labels (see Figure 1.2). Based on these data, the classification algorithm is

trained until a discriminating (or decision) rule has been established. The remaining

data samples (termed test data) are then classified by this trained algorithm (Fig-

ure 4.1). In a more formal notation, the data samples are composed of a variable

vector x whose elements are, for instance, the values of several log curves at a given

depth. For the learning data set, each variable vector is accurately assigned to one of

k classes:

xi → cj ∀ i = 1, .., n and j = 1, .., k.

where n is the number of training samples. The classification task is then to determine

(a) (b) (c) (d)

Figure 4.1: Visualisation of the learning process: (a) Complete (2-D) data set.
(b) Training data set for the 2-class case (class 1 = dark grey, class 2 = black).
(c) Learning of the decision boundary. (d) All other sample points are classified
according to the decision rule (generalisation).
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or to approximate the underlying mapping function

f : xi → cj ∀ i = 1, .., n and j = 1, .., k

for all data samples for which the proper class labels are known (training data set).

The function is then applied to all other samples with unknown class labels (test data

set). This principle remains the same for all classification algorithms (or classifiers).

This chapter will briefly explain some of the existing algorithms and their differ-

ences. It is intended to give an overview rather than an exhaustive tract of deriva-

tions. References to more detailed essays are given in the text. The focus here clearly

is on basic principles and applicability of the algorithms.

4.1 Pre-Processing

All available wireline logging, MSCL and XRF data were verified in terms of gross

outliers, missing data points and drifts. Log curves to be used with the learning al-

gorithms were then selected. Outliers most likely due to borehole conditions were

omitted and replaced by an interpolation of adjacent values. Missing data were not

observed. Susceptibility data showed a temperature drift. Sonic velocities increased

with depth due to compaction effects. Both trends were removed under the assump-

tion that they are linear.

4.1.1 Data distribution

Strictly speaking, some of the subsequently used learning algorithms require the input

data to be Gaussian (normally) distributed. Even in cases where this prerequisite is

mathematically not necessary, Gaussian distribution is assumed, as it is the most

common distribution and very well studied in literature.

Input data were examined if they were normally distributed. Electrical resistivity

and magnetic susceptibility were tested for a log-normal distribution (i.e. the tests

were applied to the natural logarithm of the respective values). For the univariate

case (i.e. treating each log curve separately), the standard tests of distribution are

χ2 (chi-square) and Kolmogorov-Smirnov. Both tests calculate a score based on the

the null hypothesis that the values come from a standard normal distribution. If the

score falls below a critical value, the hypothesis cannot be rejected, i.e. the data

are Gaussian distributed. The χ2-test is susceptible to deviations from the standard

distribution especially at the distribution margins where frequencies are low. Here,

the Kolmogorov-Smirnov is more stable and gives a second opinion (Trauth, 2003).
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4.1.2 Normalisation

Normalisation is the scaling of data within a defined range. The input data in the

discussed case of logging curves consist of different value ranges in different units,

e.g. for Iron 3000−5450 counts per seconds or susceptibility 35−800×10−6 SI units.

For the purpose of classification, all input log curves were normalised with respect to

the interval [0, 1] using

xin =
xi − min(x)

max(x) − min(x)

where xin is the normalised log value, xi the actually measured value and x the log

curve vector with all x log values. The normalisation ensures evenly weighted input

vectors and faster computing performance.

4.1.3 Dimensionality Reduction

When dealing with classification algorithms using large data sets with many input

variables, this excessive dimensionality leads to prohibitive complex calculations,

computing times and storage. Specifically, the need for a large number of training

samples grows exponentially with the dimension of input space (Duda et al., 2001).

This fact is also known as the curse of dimensionality and may seriously handicap the

application of classifiers.

One approach to cope with the problem of dimensionality reduction is the linear

combination of input variables. Beside other methods such as principal component

analysis (PCA), projection pursuit (PP) and multiple discriminant analysis (MLA),

factor analysis (FA) aims to reveal simple underlying structures within data based

on similarities between observations (Davis, 2002). For the dimensionality reduc-

tion in the case of PROMESS-1 boreholes, input data space is not excessively high-

dimensional with only 18 log curves for PRGL-1 and 17 curves for hole PRAD-1. In

pattern recognition problems, typical input spaces have up to many hundreds of di-

mensions. Nonetheless, a factor analysis was performed on the normalised data sets

of PRGL-1 and PRAD-1. This method not only reduces input space dimensionality but

also may reveal mutual uncorrelated hidden variables (factors) controlling the visible

input variables.

Among several methods to perform a factor analysis, the approach already applied

to borehole data by Bücker et al. (2000) was used as follows. Starting with a d × n

input data matrix, eigenvalues and eigenvectors were extracted from its standardised

d×d variance-covariance matrix, d being the number of log curves and n the number

of log values. The eigenvalues λ are set as the diagonal elements of matrix Λ
2 and
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with eigenvector matrix U,

A = UΛ

defines the factor matrix with its elements called factor loadings. The sum (for each

variable) of the squared factor loadings yields totals called communalities. They de-

scribe the share of variance of the respective variable that is explained by the factors

and hence link each variable to one factor. Only factors with eigenvalues >1 are con-

sidered as being meaningful. Factors with smaller eigenvalues do not contain more

information than a single input variable and are therefore discarded. Moving the vari-

ables closer to the factor axes (in input space) may allow the deduction of a meaning

of the factors. This goal can be achieved by a transformation called varimax rota-

tion which is applied after a Kaiser normalisation to promote variables with higher

communalities (for details see Davis, 2002). Unfortunately, factor analysis yielded

unsatisfactory results (see Chapter 5) and the classification tasks were carried out

with the original log curves.

4.1.4 Class Labels

With supervised learning, the classification algorithm is fed with a training data set

that consists of input data vectors and class labels. In the discussed case of classifying

log curves into stratigraphic sequences, every measuring point is represented by a

vector of 18 log values (at PRGL-1) and 17 log values (at PRAD-1), respectively. In

addition, the training data set includes a number 1, ..., k for each measurement point,

where k is the number of sequences to be classified. The goal of each classifier is then

to predict this label for each measurement point of the test data set.

4.2 Bayesian Decision Theory

Prior to classifying a given sample into one of k classes c1, ..., ck, there is an a priori

or prior probability P (ci), i = 1, ..., k that the sample belongs to class ci (e.g. be-

cause there are more samples of class c1 than there are of class c2). When classifying

the same sample on the basis of a continuous random p-dimensional input vector x

(where x = (x1, ..., xp); e.g. Gamma-ray, sonic velocity and susceptibility measure-

ments at a given depth), both distribution and probability density function (PDF) of

x depends on the class it belongs to. The latter is therefore called class-conditional

probability density function p(x|ci) for vector x given it belongs to class ci.

Together with the prior probability it is used to determine the probability that the

appropriate class is ci given that the input vector x has been measured. This is called
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the a posteriori or posterior probability and can be expressed as

P (ci|x) =
p(x|ci)P (ci)

p(x)
. (4.1)

Equation 4.1 is called Bayes formula after the Reverend Thomas Bayes (1702–1761).

p(x) is termed evidence factor and is a mere scale factor ensuring that the posterior

probabilities sum to unity. It is

p(x) =
k
∑

i=1

p(x|ci)P (ci).

Classifying an input vector into a (possibly false) class is termed action. With a finite

set of l possible actions {a1, ..., al} and the above set of k classes {c1, ..., ck}, the loss

function L(aj |ci) defines the loss incurred for taking action aj when the correct class

is ci. It quantifies the error of classification. The expected loss for taking action aj

when observing variables x is

R(aj |x) =

k
∑

i=1

L(aj |ci)P (ci|x). (4.2)

R(aj |x) is called conditional risk. The overall risk (or error) R can be minimised

by taking action aj for which the conditional risk R(aj |x) is minimum. The result-

ing minimum overall risk is called Bayes risk R∗ and defines the best performance

achievable.

To minimise the probability of any classification error that class should be chosen

that minimises the overall risk and hence maximises the posterior probability. Bayes’

decision theory is coherent and powerful in the sense that it allows to calculate this

posterior probability of class ci given a measured input vector x only from prior prob-

abilities P (ci) (which are typically known) and the class-conditional PDFs p(x|ci).

Generally, the latter are the only unknown term in Equation 4.1 for many classifica-

tion applications (Duda et al., 2001). In few cases, they are multivariate Gaussian

distributions with known mean vectors and covariance matrices, sometimes they can

be assumed to be multivariate Gaussians but the parameters are unknown, and of-

ten, conditional densities are altogether unknown. For each case, varying algorithms

exist that require different assumptions about the conditional densities (Hastie et al.,

2001).
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Figure 4.2: Block diagram of presented classification algorithms. The methods can
be separated into parametric vs. non-parametric, informative vs. discriminative or
linear vs. non-linear groups.

4.3 Algorithms

Among the several methods, there are groups of classifiers that can be distinguished.

There are linear and non-linear, parametric and non-parametric, or informative and

discriminative classifiers (Figure 4.2), of which some have been chosen to be adjusted

to and applied to the logging data of PROMESS-1 boreholes.

The first distinguishing feature of classification algorithms is that between infor-

mative (also called generative) classifiers, and discriminative classifiers. Informative

classifiers model the class-conditional densities p(x|ci) and then use Bayes formula

(Equation 4.1) as described above to determine the posterior probability P (ci|x) . In

contrast, discriminative classifiers model the decision boundaries or the class mem-

bership probabilities directly without considering any underlying class-conditional

densities. Because this approach requires the consideration of all classes at the same

time, these types of classifiers are more difficult to train (Rubinstein & Hastie, 1997).

For a comparison between the two methodologies see Bouchard & Triggs (2004).

Regarding informative classifiers, the estimation of p(x|ci) can be accomplished

by estimating the parameters of these class-conditional densities (such as mean and

variance in case of a Gaussian distribution). This is done by so-called parametric

techniques like discriminant analysis. Contrary to this, non-parametric techniques

have to be used when there is no prior knowledge of the parameters of the underlying

density p(x|ci). For instance, one approach is to estimate the density functions p̂(x|ci)

from a sample data set. If satisfactory, these estimates can substitute the true class-

conditional densities. This is the principle of Parzen windows density estimation. For
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more details see e.g. Duda et al. (2001) or Hastie et al. (2001).

Finally, the various algorithms can be distinguished by their shape of decision

boundary. There are linear classifiers such as LDA and SVM, or other, such as neural

networks, that are so-called non-linear algorithms.

A short presentation of algorithms and classification tools follows. Although max-

imum likelihood and Parzen windows density estimation are not restricted to classi-

fication problems only, they are included because their principles are often used in

pattern recognition tasks.

4.3.1 Maximum-Likelihood Estimation

As outlined before, the difficult task in Bayes decision theory is to determine the class-

conditional densities p(x|ci). Assuming that the densities are known (e.g. Gaussian

density), but their parameters are not (e.g. mean and covariance), the problem of

estimating an unknown function p(x|ci) is simplified to one of estimating its parame-

ter vector θi. For the multivariate Gaussian case θi would consist of a mean vector

µi and a covariance matrix Σi. Two commonly applied procedures that accomplish

this parameter estimation based on training samples from supervised learning are

Bayesian parameter estimation and maximum-likelihood (ML) estimation. Bayesian

parameter estimation considers θ to be a random variable, whose distribution can be

recursively converted into a posterior probability density by use of training data. ML

estimation on the other hand considers θ to be a fixed parameter vector and finds the

parameter vector that is best for the given training data. For computational and inter-

pretational reasons ML is often preferred to Bayesian parameter estimation which in

turn is supported by theoretical and methodological arguments (Duda et al., 2001).

Therefore, out of these two methods, ML parameter estimation has been chosen to

be shortly outlined. It will later be used relating to discriminant analysis and logistic

regression.

ML estimation assumes that p(x|ci) has a known parametric form determined by

its parameter vector θi. For the multivariate Gaussian case, θi consists of the com-

ponents of µi and Σi. For each of c1, ..., ck classes, there is a data set S with n

i.i.d. (independent and identically distributed) random samples x1, ...,xn. Then the

likelihood of θ with respect to the set of samples is

p(S|θ) =
n
∏

i=1

p(xi|θ).

The maximum-likelihood estimate of θ is that value θ̂ that maximises p(S|θ). It can

be shown (e.g. Duda et al., 2001) that for the multivariate Gaussian case, the ML
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estimate of the mean

µ̂ =
1

n

n
∑

i=1

xi (4.3)

is the mean of the sample and the ML estimate for the covariance matrix is

Σ̂ =
1

n

n
∑

i=1

(xi − µ̂)(xi − µ̂)T (4.4)

which indeed is, in the words of Moore (2001), an "ultimately unsurprising fact".

4.3.2 Discriminant Analysis

One of the most commonly applied classification procedures is the discriminant analy-

sis. For a classification problem of assigning an input vector x to one of k classes

c1, ..., ck , there is a set of k discriminant functions gi(x). Each discriminant function

transforms any input vector x into a discriminant score. That class ci is assigned

to input vector x that yields the highest discriminant score. To minimise the risk of

misclassification, Bayes formula (Equation 4.1) is used to relate the maximum dis-

criminant function gi(x) to the maximum posterior probability:

gi(x) = P (ci|x).

It can be shown (e.g. Hastie et al., 2001) that this is equal to

gi(x) = ln p(x|ci) + ln P (ci).

In the case of multivariate Gaussian density (in d dimensions) given by

p(x|ci) =
1

(2π)d/2|Σi|1/2
e−

1

2
(x−µi)TΣ

−1

i (x−µi),

the discriminant functions are now

gi(x) = −1

2
(x− µi)

T
Σ

−1
i (x − µi) −

d

2
ln 2π − 1

2
ln |Σi| + lnP (ci). (4.5)

The special case where the covariance matrices for all classes are identical (Σi =

Σ ∀ i) is called linear discriminant analysis (LDA), because Equation 4.5 can be sim-

plified to

gi(x) = x
T
Σ

−1µi −
1

2
µT

i Σ
−1µi + ln P (ci) (4.6)
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Figure 4.3: Principle of linear discriminant analysis (LDA). LDA aims to minimise the
within-class variances and to maximise the inter-class means at the same time.

which are linear in x. All other terms of Equation 4.5 are independent of i and

therefore constant. Visually, Equation 4.6 can be interpreted such that to maximise

the posterior probability, the distances between the class means are maximised while

at the same time the variances for each class are minimised. This is illustrated in

Figure 4.3 for the 2-D case.

For the more general case with different covariance matrices for each class, only

the (d/2 ln 2π)-term of Equation 4.5 can be dropped, yielding

gi(x) = −1

2
ln |Σi| −

1

2
(x − µi)

T
Σ

−1
i (x− µi) + ln P (ci)

which are quadratic in x and hence denominate the quadratic discriminant analysis

(QDA). For both LDA and QDA, the parameters of the multivariate Gaussian distribu-

tions are unknown and have to be estimated from training data for each of k classes,

i = 1, ..., k:

µ̂i =
1

ni

ni
∑

j=1

xj

Σ̂i =
1

ni

ni
∑

j=1

(xj − µ̂i)(xj − µ̂i)
T

P̂ (ci) = ni/N

43



On Classification of Logging Data

where ni is the number of training data vectors of class i and N the number of all

training data vectors. Note the recurrence of Equations 4.3 and 4.4.

Though the principles that LDA and QDA are based on, are rather simple, both

techniques are widely used and have an excellent reputation. Michie et al. (1994)

report a remarkable performance of LDA and QDA compared to other classifiers as

do Benaouda et al. (1999) and Lee et al. (2005). Hastie et al. (2001) suggest that

this may be credited to the fact that many data sets support only simple decision

boundaries which can be sufficiently estimated by Gaussian distributions.

4.3.3 Logistic Regression

Logistic regression aims to model the posterior probabilities P (ci|x) from the Bayes

formula (Equation 4.1) for each of k classes c1, .., ck . It does so by means of a set of

linear functions such that the probabilities sum to one and remain in [0; 1]:

k
∑

i=1

P (ci|x) = 1 and P (ci|x) ∈ [0; 1]. (4.7)

The reason for these conditions are that the dependent variables of classification are

the class labels (here: 0 and 1 for the two-class case) and that any data sample must

be allocated to one of the possible classes. The linear equations are of the form

fi(x) = wi0 +

p
∑

j=1

wijxj

= bi + w
T
i x ∀ i = 1, ..., k (4.8)

where p is the dimension of input space (x = x1, ..., xp), wi0 are the biases (here

meaning offsets and simply denoted as bi) and wi are the (unknown) model coeffi-

cients. Using the logistic function

l(y) =
1

1 + e−y

and Equation 4.8, the logistic model is defined as

P (ci|x) =
1

1 + e−(bi+w
T

i x)
∀ i = 1, ..., k.

A transformation function called logit transformation

logit z = ln
z

1 − z
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is applied to ensure conditions 4.7 and yields

ln
P (ci|x)

1 − P (ci|x)
= bi + w

T
i x ∀ i = 1, ..., k.

The left side of the term is also called log odds ratio. This logistic regression model

is generally fit by maximum likelihood (see Section 4.3.1) estimating the unknown

coefficients bi and wi. ML maximises the probability of getting the observed results

(from the training samples) given the fitted regression coefficients wi. As the ML

estimates need neither to exist nor to be unique, often regularisation methods are

applied such as ridge regression. For the general multi-class case, the mathematical

details become somewhat substantial and their full tract is not the intention of this

work. The interested reader is pointed to detailed papers such as Zhu & Hastie (2004)

or Fort & Lambert-Lacroix (2005) and references therein.

Hastie et al. (2001) state that the models of logistic regression and linear discrim-

inant analysis are the same and only their estimations of the linear coefficients are

different. They remark that logistic regression tends to be more robust than LDA as

it relies on fewer assumptions (such as the underlying probability density distribu-

tion and identical covariance matrices). Even if LDA is used in cases violating those

assumptions, the two methods are reported to yield similar results.

4.3.4 Parzen Windows

In order to estimate the density at a given point x, a region R around x is intro-

duced. n samples x1, ...,xn are i.i.d. drawn according to the density function p(x). A

sequence of regions R1, ...,Rn is created with R1 containing one sample, R2 contain-

ing two samples, and so on, until finally all n samples fall into Rn. It can be shown

that the nth estimate for the density function p(x) is given by

p̂n(x) =
kn

nVn
(4.9)

where kn are the number of samples falling into Rn and Vn is the volume of Rn. The

following three conditions have to be fulfilled in order to ensure that p̂n(x) converges

to p(x):

lim
n→∞

Vn = 0

lim
n→∞

kn = ∞ (4.10)

lim
n→∞

kn/n = 0. (4.11)
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n = 1 n = 4 n = 9 n = 16

(a)

(b)

Figure 4.4: Parzen windows density estimation and kNN. (a) Parzen window region Rn

of volume Vn is shrank as a function of n (here: Vn = 1/
√

n ). (b) k-nearest neighbour
adjusts the volume data-dependent to encircle a given number kn of samples (here:
kn =

√
n ). Figure after Duda et al. (2001).

To obtain a sequence of regions that satisfy these conditions, the Parzen window

method shrinks an initial region by declaring the volume Vn as a function of the

number of samples n (Figure 4.4). This is done by introducing a window function or

kernel Kλ(x,xi) with window width λ such that

p̂n(x) =
1

nλ

n
∑

i=1

Kλ(x,xi).

A popular choice for Kλ is the Gaussian kernel

Kλ(x,xi) = ϕ

(‖x − xi‖
λ

)

(4.12)

that can be extended to the Gaussian product kernel with which p̂n(x) in R
d is then

p̂n(x) =
1

n(2πλ2)d/2

n
∑

i=1

e
− 1

2

�
‖x−xi‖

λ �2

.

The Parzen density estimate acts as the smoothed equivalent of the local average.

The window function is basically an interpolation, with each sample xi contributing

to the estimate p̂n(x) dependent on its distance from x.

The decision regions of a Parzen windows classification algorithm depend on two

parameters: on the choice of the window (kernel) function and on the window

46



Chapter 4: Classification Techniques

width λ. Recalling the nature of non-parametric techniques, there is no informa-

tion available about the underlying distribution. In absence of any such information,

the use of a generic window shape such as the Gaussian kernel function is plausible.

However, no window width λ is superior to another. Therefore, the classification

process must be validated in order to establish an appropriate value for λ. The dis-

advantage of non-parametric methods to require a large number of samples worsens

exponentially with the dimensionality in input space. In order to trade space com-

plexity for time complexity, artificial neural networks may be used to implement this

kind of classifiers. The neural network realisation of the Parzen windows method is

the probabilistic neural network (PNN). It will be discussed in Section 4.3.6.

The densities for each class are estimated separately and the proper class labels are

assigned according to the maximum posterior probability. Adapting Equation 4.9 for

the class-conditional case yields

p̂n(x, ci) =
ki/n

V

with a cell of volume V placed around x that encloses k samples of which ki samples

belong to class ci. Following Bayes decision rule (Equation 4.1), the estimate for

P (ci|x) is

P̂n(ci|x) =
p̂n(x, ci)

∑c
j=1 p̂n(x, ci)

=
ki

k
(4.13)

which is simply the fraction of those samples in that cell that belong to class ci.

The performance of this classification algorithm approaches the best possible given

that there are enough samples and that the cell is sufficiently small (Duda et al.,

2001). Regarding the size of the cell, its volume Vn is chosen as function of n. As n

approaches infinity, an infinite number k of samples will fall into an infinitely small

cell of volume Vn.

Another approach would be to expand Vn until it encircles some specified number

of samples k. This is exactly the way the k-nearest neighbour rule works, which

follows next.

4.3.5 k-Nearest Neighbour Estimation

To overcome the problem of determining the (unknown) best window function Kλ

of the Parzen window approach (section 4.3.4), the cell volume V can be made a

function of a subset of training data samples rather than of the overall number of

samples n. Hence, to estimate p(x) from n samples, a cell of volume V is centred

around x and grown until it captures k samples, k being a function of n (Figure 4.4).

47



On Classification of Logging Data

Bayes error R*

N
e

a
re

st
 n

e
ig

h
b

o
u
r 
e

rr
o

r 
R

R = R*

R = 2R*

Possible error

rates

Figure 4.5: Bounds on nearest neighbour error rate R. The error is never better than
the best possible Bayes error R∗ but also never worse than twice that error (2R∗).
Figure after Duda et al. (2001).

This subset consists then of the k-nearest neighbours of x. Classification is done

by majority vote among the k neighbours, ties are broken randomly. Typically, the

distance measure is chosen to be the Euclidean distance in input space di = ‖x−xi‖
after variables being standardised to mean 0 and variance 1 in the training sample

set.

A special case exists if k = 1. This so-called nearest neighbour rule simply assigns

the class label associated with xnn to the test point x, with xnn being the sample

point nearest to x. Cover & Hart (1967) showed that the error rate of the nearest

neighbour rule converges asymptotically to the Bayes risk R∗ (see Section 4.2) and is

never more than twice R∗ (Figure 4.5). In other words, with an infinite data set and

an arbitrarily complex classification rule, at least half of the classification information

resides in the nearest neighbour. However, the data set at hand is generally finite. In

this case, research only showed that asymptotic convergence may be slow and that

the error rate may not even decrease monotonically with increasing n (Duda et al.,

2001). However, despite the lack of positive statements on convergence behaviour in

the finite sample case, the (k)NN method often yields good results.

Unfortunately, there is no general decision rule whether to use the nearest neigh-

bour rule or the k-nearest neighbour rule (and to decide on the size of k) for a given

classification task. In theory, k should be large to obtain a reliable estimate P̂n(ci|x).

At the same time, all of the k nearest neighbours should be very close to x. So the

choice of k is a compromise in order to make k large and a small fraction of all n sam-

ples at the same time (see conditions 4.10 and 4.11). In practise, a given k may yield

a good training performance but bad generalisation. Therefore, only classification

validation by means of test data leads to a best value of k for a given problem.
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Figure 4.6: Example of a neural network with a fully connected 3-layer 3-4-2 topology:
the hidden layer with 4 neurons is in between the input layer with 3 neurons (e.g. 3 log
curves) and the output layer with 2 neurons (e.g. 2 lithological units to be classified).
Neurons of hidden and output layers have sigmoidal activation functions, the input
neurons have linear functions.

4.3.6 Artificial Neural Networks

Originally, the development of artificial neural networks (ANNs) was motivated by

imitating the human brain and modelling networks of real neurons. The basic ele-

ments of the brain are (from a very simplistic point of view) a large number (≈ 1011)

of neurons, each consisting of a cell body and connecting strands with synapses at

their ends. Each neuron is connected with a few thousands of other neurons by such

synapses.

Historically, what is nowadays known as an artificial neural network in the field of

pattern recognition had been developed as a perceptron by Rosenblatt (1959). It is

understood as a computational model consisting of parallel processing units (called

neurons) and their modifiable connections (called weights that act as factors). The

neurons are generally arranged in layers, with neurons in one layer not being con-

nected with each other. The first layer is always the input layer consisting of p neu-

rons, p being the size of an input vector x (e.g. number of log curves). The last layer

is always the output layer consisting of k neurons, k being the number of possible

classes. In between there may be one or several so-called hidden layers with any

given number of neurons. In a fully connected network, each neuron of layer 1 is

connected with each neuron of layer 2, and so on (see Figure 4.6). The structure or

topology of the neural net is completely described by the number of hidden layers and

their number of neurons. Caudhill (1991) reports that one hidden layer is adequate
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for most classification problems. Kolmogorov’s theorem proves that any function can

be implemented by a 3-layer network given a sufficient number of hidden neurons

(Duda et al., 2001). As for the number of hidden neurons, Lippmann (1987) suggests

three times more hidden than input neurons. Bhatt & Helle (2002b) recommend as

few as possible and warn that too many hidden neurons will lead to memorisation of

the network, resulting in poor generalisation performance. Duda et al. (2001) give

nw = n/10 as a rule of thumb, nw being the number of all weights and n the number

of training samples.

Each neuron computes a weighted sum of its inputs and outputs a single value as

a nonlinear function of this sum. When the transfer of outputs to the next layer is in

one direction only, the networks are termed feed-forward nets. Formally, outputs are

zj = f

(

d
∑

i=1

xiwji + bj

)

= f
(

w
T
j x
)

(4.14)

where f(·) is a nonlinear activation function, j indexes the units of a hidden or output

layer and i indexes the d units in the previous layer. wji denote the weights between

these two layers. A bias bj is appended to the weight vector w for mathematical

reasons. The activation functions are typically the same for all neurons in a network

(though this is not required) and have to be continuous and differentiable. For this

work, the sigmoidal function f(x) = tanh x was selected since it is widely used in

the literature. The final outputs zk from the output layer are used as discriminant

functions for the classification task.

Once the network topology has been defined, the network needs to be trained.

That is, the output signals zk generated by the net from input training vector x are

compared with a target vector t (e.g. t = {0; 1; 0} when classifying into class 2 out

of 3 classes). The difference (called training error) is used to adjust the weights

throughout the neural network. There are several learning algorithms, the most

known and widely used one being the backpropagation algorithm.

ANNs have been the focus of considerable research after Rumelhart & McClelland

(1986) revived ideas of Werbos (1974) and LeCun (1985) and made the backprop-

agation algorithm widely known. Numerous papers and books have been published

since. There are dozens of papers dealing with neural networks and log interpre-

tation alone (see Chapter 1 for an overview). Many refinements and modifications

have been proposed to overcome the shortcomings of neural networks. As they do

not change the inherent properties of ANNs, this study will only consider the basic

yet most popular case of a 3-layer backpropagation neural network.
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Backpropagation Neural Networks

Starting with an untrained ANN and random initial weights, a training pattern is

fed to the net, the signal is passed through the hidden layer(s) and the output is

determined. The difference between output and target vector is the training error

E(w) =
1

2
‖t − z‖2

where w describes all weights in the net, t is the target and z the output vector. E(w)

is minimum when the output matches best with the training input. The weights are

adjusted by means of gradient descent:

∆w = −η
∂E

∂w

where η is the learning rate, defining the size of changes in w. For the above discussed

case of a 3-layer network, both input-to-hidden and hidden-to-output weights have

to be recalculated. The learning rule of the former contains information about the

latter. The error E(w) computed at the output layer is propagated back to the hidden

layer in order to adjust the hidden-to-input and input-to-hidden weights, hence the

algorithm’s name.

For mathematical reasons, the initial weights of a backpropagation artificial neural

network (BPANN) cannot be zero. Thus, the training process is generally started with

random initial weights. Each presentation of a training pattern xi to the network is

termed epoch. To minimise the error, gradient descent is applied. With each epoch

the training error decreases monotonically. The backpropagation process requires

a stopping criterion, i.e. a threshold error value that, when reached, terminates

the iteration. Because the global minimum is not necessarily a desirable goal (as

it would most likely lead to an overfit solution), the stopping criterion resembles

a kind of regularisation (Hastie et al., 2001). Unfortunately, the network with the

lowest training error does not guarantee the best performance on other data sets

(poor generalisation). The optimum weights w of a BPANN can therefore only be

evaluated by means of a test data set. As every network starts with different random

weights, several ANNs have to be started, trained and tested. The best performing

network is then selected by trial and error. Despite being time-consuming, even this

process does not strictly guarantee the best possible result (Bhatt & Helle, 2002a).
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Figure 4.7: Example of a probabilistic neural network with 3-4-2 topology for the same
classification task as the ANN in Figure 4.6: the pattern layer with 4 neurons is in
between the input layer with 3 neurons (e.g. 3 log curves) and the class layer with
2 neurons (e.g. 2 lithological units to be classified). Neurons of the pattern layer have
exponential activation functions. This network is designed for 4 training samples.

Probabilistic Neural Networks

As already mentioned in Section 4.3.4, Parzen window density estimation may be

implemented by means of a probabilistic neural network (PNN). Much like a 3-layer

ANN presented above, it is composed of neurons arranged in layers and connecting

weights. An input layer with p neurons (p being the number of variables per input

vector) is fully connected with a pattern layer with n neurons (n being the number

of training samples). Each neuron of the pattern layer is connected to exactly one of

k neurons of the class layer, k being the number of possible classes (see Figure 4.7).

Similar to Equation 4.14, each neuron of the pattern layer outputs a function of the

inner product of all input weights and the normalised input vector

zj = f
(

w
T
j x
)

.

Using the exponential function

f(x) = e(x−1)/σ2

ensures the proper implementation of the Gaussian window function (Equation 4.12).

σ is the width of the effective (Gaussian) Parzen window. Training is performed by

normalising all xi ∀ i = 1, ..., n to have unit length. Then, for the first training sam-

ple, the input-to-pattern weights of the first pattern layer neuron are set such that
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wi = xi , i = 1. The ith (here: the first) neuron of the pattern layer is then connected

to that class layer neuron corresponding to the known class. This process is repeated

for i = 2, ..., n until all pattern layer neurons are connected to one class layer neuron.

The trained network can then be applied to the test data in the usual way.

PNNs are very fast learning networks due to their simple learning rule wi = xi.

The drawback is that with many training samples n, the topology and hence the size

of vector w may be very large, requiring a lot of computer memory.

4.3.7 Support Vector Machine

Classifying a data set into one of finite classes based on prior observation (training

data) can be viewed as estimating an unknown functional dependency (between in-

put data and class labels). Vapnik, Chervonenkis and others developed what was

named statistical learning theory in order to

• describe the best approximation to this dependency,

• formulate the general principles for finding the best estimation and

• develop algorithms implementing these principles.

Starting in the 1960s, different principles and concepts were developed (Vapnik &

Chervonenkis, 1968; Vapnik, 1979) until the analysis of empirical risk minimisation

inductive inference was completed (Vapnik & Chervonenkis, 1989). This allowed

then the implementation of a classification algorithm called support vector machine

(SVM; Vapnik, 1998). The following is a very brief summary of the several principles

SVMs are based on. For details, the reader is referred to the previously mentioned

literature as well as to the work by Vapnik (2000) and Kecman (2001).

In Equation 4.2 the expected loss (or risk) was expressed as a dependency of a

given action but it can also be written as a function of the (true) underlying proba-

bility density:

Rexp ∼ P (x, c).

With only a finite set of training data available, the average over the probability

density function is replaced with the average over these training samples, yielding the

empirical risk. The induction principle of empirical risk minimisation (ERM; Vapnik

& Chervonenkis, 1989) puts this risk as

Remp ∼ f(x,w)

where f(x,w) is a parameterised function depending on the input data vector x and

a weight vector w. Regarding the algorithms presented in this thesis, w would be the
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means and covariances of LDA (Equation 4.5), the coefficients of logistic regression

(Equation 4.8) or the weights of a neural network (Equation 4.14). Linking empirical

and expected risk, the law of large numbers ensures that the empirical risk converges

to the expected risk as the number of training data points n increases towards infinity:

lim
n→∞

‖Rexp − Remp‖ = 0.

Unfortunately, this does not guarantee that f(x,w) (which minimises Remp) min-

imises Rexp as well. Vapnik & Chervonenkis (1989) introduced their learning theo-

rem for bounded loss functions proving a uniform convergence of Remp to Rexp. This

ensures that a weight vector wemp (obtained by minimising Remp using training data

samples only) will also minimise the true risk Rexp as the training data size increases

(n → ∞). This is why SVM is the only algorithm that actually focusses on the gener-

alisation performance and not on training performance (expressed by Remp).

Finding the minimum empirical risk is an ill-posed problem (Kecman, 2001) for

there is an infinite number of possible solutions to the ERM problem. Within the sta-

tistical learning theory, the solution to this problem is the restriction of the hypothesis

space H of approximating functions (that map x to classes c) by means of a nested

structure

H1 ⊂ H2 ⊂ · · · ⊂ Hm ⊂ · · · ⊂ H

where m is the model complexity (see Section 4.4.2). This restriction of model com-

plexity is the basis of the structural risk minimisation (SRM) inductive principle (Vap-

nik, 1998). It ensures that Remp is minimised in Hm as opposed to Rexp being min-

imised in H. In other words, there is a unique solution to the ERM problem if H is

restricted in terms of model complexity. This will also be discussed in section 4.4.2.

With these prerequisites, Vapnik (2000) showed that the following risk bound

holds:

Rexp(w) ≤ Remp(w) + Ω(n, h, µ) (4.15)

with probability 1−µ. In other words, the generalisation performance given a weight

vector w cannot be worse than the bound Ω(·) called Vapnik-Chervonenkis (VC) con-

fidence. h is a measure of model complexity and is called VC dimension. It is m+1 for

linear in parameter models. Support vector machines represent such models, mean-

ing that they are linear with respect to the model parameters (αi, as will be shown in

Equation 4.21). 1 − µ is the level of confidence. The bound is valid for any learning

machine, expressed as a function of size of training set n and the VC dimension h of

that learning machine.
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Figure 4.8: Principle of classification by a support vector machine (linearly separable
case for two classes in R

2). Two classes 1 and 2 are separated by that hyperplane
that maximises the margin, i.e. the distance to the nearest data points. The latter
are the only data points relevant for the classification task and are called support
vectors (lying on margin hyperplanes H1 and H2).

The novelty of the statistical learning theory lies in the fact that it focusses on

the minimisation of the generalisation error rather than the training error. All other

classification techniques discussed so far are set up with a given structure (e.g. neural

net topology, see Section 4.3.6), and minimise the training error (i.e. the empirical

risk). The statistical learning theory keeps the training error fixed (at some acceptable

level) and minimises the confidence interval and the generalisation error. It does so

by creating a model with minimised VC dimension which in turn ensures an optimal

generalisation performance.

The support vector machine is the implementation of this theory. It is a linear

maximum margin classifier and has been developed for the 2-class case. As shown

in Figure 4.8 for R
2, the linearly separable data are divided by a line (in R

d: a

hyperplane). The margin is the distance perpendicular to the hyperplane between

that plane and the nearest data point. Of all possible hyperplanes, the best is the one

that maximises this margin.

During the learning process, the SVM finds the weight vector w and a bias value b

of a discriminant (or decision) function

f(x,w, b) = w
T
x + b.
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All points on the separating hyperplane in Figure 4.8 follow

w
T
x + b = 0.

Thus, the decision rules for classification are:

Class 1 if w
T
x + b > 0

Class 2 if w
T
x + b < 0.

The hyperplane is defined as canonical, i.e.

min ‖wT
x + b‖ = 1.

Hence, the points on the margin hyperplanes H1 and H2 satisfy

w
T
x + b = +1 for H1 (4.16)

w
T
x + b = −1 for H2. (4.17)

These points are the only ones actually needed for finding the optimal separating

hyperplane and are called support vectors. The decision rules are now the constraints

Class 1 if w
T
x + b ≥ +1 (4.18)

Class 2 if w
T
x + b ≤ −1. (4.19)

Using Equations 4.16 and 4.17 it can be shown that the margin M is

M =
2

‖w‖ .

The goal is to maximise the margin, i.e. minimise ‖w‖ (or actually ‖w‖2) subject to

constraints 4.18 and 4.19. This is a non-linear optimisation problem with inequality

constraints and can be solved by maximising the Lagrange function in dual formula-

tion (Vapnik, 2000)

LD(α) =

n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjcicjxixj (4.20)

subject to constraints

αi ≥ 0
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n
∑

i=1

αici = 0

where α are the Lagrange multipliers found during the search for an optimal saddle

point of the function and ci are the class labels (+1 or −1). LD only depends on the

Lagrange multipliers α. All points with α > 0 are support vectors. All other terms

with α = 0 disappear (meaning all points other than support vectors do not influence

the classification). The solution to 4.20 for the linearly separable case is

w =

ns
∑

i=1

αicixi (4.21)

subject to constraints

αi ≥ 0 (4.22)
n
∑

i=1

αici = 0

where ns is the number of support vectors.

For the non-separable case where data classes are overlapping (e.g. due to noisy

data), the solution 4.21 is the same, but the constraint 4.22 is different:

C ≥ αi ≥ 0

where the upper bound C is a penalty parameter chosen by the user. A high C assigns

a high penalty to classification errors, and vice versa.

The SVM algorithm presented so far is a linear classifier. In order to discriminate

non-linear classification problems, input vectors x of input space R
d are mapped into

vectors z of a higher dimensional feature space H:

Φ : Rd → H.

The mapping function Φ is implemented by means of a kernel function

K(xi,xj) = z
T
i zj = Φ

T
xi

Φ
xj

.

The Lagrangian (Equation 4.20) is rewritten as

LD(α) =
n
∑

i=1

αi −
1

2

n
∑

i,j=1

αiαjcicjK(xi,xj).
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Thus, the non-linear problem is mapped into a higher dimensional space where it can

be solved linearly. It is an elegant property of SVMs that although the feature space

H may be extremely high dimensional, the kernel function can be directly computed

in the (lower dimensional) input space. Examples for kernel functions are:

K(xi,xj) = ((xT
i xj) + 1)p Polynomial of degree p

K(xi,xj) = e−‖xi−xj‖
2/2σ2

Gaussian RBF (4.23)

K(xi,xj) = tanh((xT
i xj) + b) Multilayer perceptron.

In summary, the only parameters a user can choose are the upper bound C to penalise

classification errors and the kernel function K.

One problem persists: the SVM algorithm is a binary classifier. There are re-

cent efforts to expand the theory foundations to multi-class SVM. Other methods

apply binary classifiers to multi-class problems such as one-versus-all, all-pairs, error-

correcting-output-code, one-versus-one or directed acyclic graph approaches (Diet-

terich & Bakiri, 1995; Allwein et al., 2000; Hsu & Lin, 2001). Several options were

tested on the PROMESS-1 data set and the one-versus-all method was chosen for its

simplicity and fast performance. In the case of k classes, class c1 is classified versus

all other classes c2 to ck. Then class c2 is classified versus c3 to ck and so on. Finally,

after k − 1 binary classifications, all class labels are determined.

4.4 Other Considerations

4.4.1 Bagging

Having a complete data set such as the ones produced by the PROMESS-1 project

allows the data to be divided into test and training data sets of varying sizes. This

for the evaluation of classifiers favourable situation is ideal to enhance a classifier’s

performance by means of bagging (derived from bootstrap aggregation). It uses mul-

tiple subsets of a given training set that are created by selecting ns samples from the

training data set S containing n samples, ns < n. Each subset is used to train a so-

called component classifier. The combined classification is achieved by majority vote

of all component classifiers (Figure 4.9).

4.4.2 Bias and Variance

As already mentioned in the introduction (see also Figure 1.2), training a given clas-

sifier on a training data set as good as possible is not the ultimate goal in pattern
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Figure 4.9: Schematic principle of bagging. Component classifiers are trained with
subsets of the training data. Subsets may or may not include same data points.
The final classification is achieved by majority vote (the mode) of all component
classifications.

recognition. It is the performance of a trained classifier on new data (generalisation)

that is more important. Unfortunately, a low training error does not guarantee a low

generalisation error, i.e. the classification error of the test data set. In fact, both train-

ing and generalisation error are a function of model complexity m (see Figure 4.10).

Model complexity is always a tradeoff between bias and variance. Bias is defined

as the accuracy of the classification match, i.e. a measure of how well the classifica-

tion fits the data. Variance is the precision of this match, i.e. the refinement and/or

complexity of the trained model. High bias means a poor match, likewise high vari-

ance means a weak match (because of bad generalisation). Hence, low bias and low

variance are desired, but one can only be reduced at the cost of the other. A high

model complexity will lead to very detailed decision boundaries (high variance) that

will have small differences between true and expected values (low bias), and vice

versa. In the domain of classification it is exactly this bias-variance tradeoff that de-

termines the generalisation performance of a classifier: high model complexity will

reduce the error on the training set to minimum, but the thus trained classifier will

almost certainly perform poor on new (test) data. Regarding the classification algo-

rithms discussed so far, the following list shows the parameters that determine their

model complexity (Duda et al., 2001):
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Figure 4.10: Bias-variance tradeoff and test and training error as functions of model
complexity.

• LDA: model complexity cannot be adjusted;

• QDA: model complexity cannot be adjusted;

• SVM: self-adjusting by means of SRM;

• kNN: number of neighbours;

• LOGREG: model complexity cannot be adjusted;

• ANN: number of hidden neurons;

• PNN: Parzen window width.

For every classification task, the most adequate model complexity has to be deter-

mined to achieve the best generalisation performance (low test error) as shown in

Figure 4.10. This was done empirically in the case of PROMESS-1 boreholes by

choosing the most appropriate parameter(s) for each algorithm as shown in the next

chapter.

4.4.3 Computational Performance and Software Used

All of the above described computations were performed on a standard personal desk-

top computer with 3.6 GB memory space and a 2.4 GHz Intel Pentium 4 processor.
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It was running on a Gentoo Linux operation system, all calculations were performed

by The MathWorks’ software package MATLAB (version 7.0.4, release 14, service

pack 2). For the different algorithms, the following toolboxes and scripts were used:

statistic, neural network and optimisation toolboxes by The MathWorks, The Spider

toolbox by Weston et al. (2005), discriminant analysis toolbox by Kiefte (1999) and

the logistic regression toolbox by Fort (2005).

The amount of input data was small compared to typical classification tasks found

in the literature. For 18 log curves recorded over an interval of 147 m at a sam-

pling interval of 5 cm (as for hole PRGL-1, figures for PRAD-1 are even smaller), the

total number of values were 52,920. 5 % of them being training data correspond

to 2,650 values, leaving 50,274 data points as test set. Classification in medical or

speech recognition applications is often dealing with dozens to hundreds of input

dimensions and many hundred-thousands of data values. The classification of log

curves is not computationally challenging. In extreme cases, such as e.g. logging a

5,000 m well recording 25 log curves at 10 cm intervals, it would lead to 1.25×106

data points, which still do not require special main frame computers. Standard PCs

with ample memory are capable of performing these tasks, which then may become

time-consuming to compute though.

The parameter predominantly affecting model complexity and thus dominating

computing time is the dimension of input space (here: number of log curves). For
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Figure 4.11: Computing times for logistic regression. The training data set size is in-
creased as a percentage of all available data (52,920 values).
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a given classification performance, the number of training samples required grows

exponentially with that dimension. This fact is known as the curse of dimensionality

(see also Section 4.1.3) and its reason is that high dimensional functions are ex-

tremely more complicated than low dimensional ones (Bellmann, 1961). Again, 17

and 18 log curves for holes PRAD-1 and PRGL-1, respectively, can both be considered

as low dimensional classification tasks.

Typical computing times in the discussed case of PROMESS-1 boreholes were less

than one minute for training the classifier with 2,650 values (= 5 % of all data) and

testing it on the remainder. However, logistic regression and backpropagation neural

networks showed exponentially increasing computing times when the training data

set was increased considerably, as shown in Figure 4.11 for logistic regression. Linear

discriminant analysis, support vector machines, k-nearest neighbour and probabilistic

neural networks showed no such increasing computation times with growing training

data sets.
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5 Stratigraphical Classification

In this chapter, logging data acquired during the PROMESS-1 project at drill sites

PRAD-1 and PRGL-1 are used to computationally classify the logged intervals into

stratigraphic sequences. First, the data sets are tested for Gaussian distribution.

Then, dimensionality reduction in terms of factor analysis is attempted. For each

of the previously discussed algorithms the best parameter(s) are determined. The

performances of the methods are compared and the impact of bagging on the data

is examined. Also, the effect of training data size on the classification match is dis-

cussed. A thorough analysis of performance when including or excluding selected log

curves follows.

5.1 Gulf of Lion

5.1.1 Conventional Interpretation

Based on single and multi-channel seismic data and preliminary palaeontological re-

sults from PRGL-1 cores, the drilled interval 0–300 mbsf was divided into 5 strati-

graphical sequences (Figure 2.4). Also, XRF log data provided information in se-

quence boundaries. It is now widely agreed that the main present day sediment

bodies were deposited during glacials (at sea-level low stand when the areas were

closer to the shoreline than today). They are separated by major erosional surfaces

that mainly originate from continental erosion (Berné et al., 2004). The classification

task in the case of PRGL-1 was to divide the logged interval into these 5 sequences

and thus determining the erosional surfaces.

Visual core descriptions report a majority (>98 %) of silty clay throughout the

entire interval with minor occurrences of clay, silt and very fine sand (Dennielou,

pers. comm.). Other interpreted core data (e.g. mineralogical or petrological logs)

are not available at the time of writing. For seismic velocity data were not as accurate

as necessary, sequence boundaries were established by using the Ca/Fe ratio recorded

from XRF-scanned cores (Figure 5.1a). High Ca count rates are commonly associated

with pelagic regimes, whereas high Fe content stands for detrital regimes (Rothwell

et al., 2005). These curves can therefore be interpreted as an indicator of distance to

the shore line (and thus, sea-level). Sequence boundaries were then set to 71, 121,
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Figure 5.1: Ca/Fe plot and sequence boundaries D60 to D40 (PRGL-1). (a) Ca/Fe
data. (b) saw-tooth pattern of Ca/Fe data. (c) class labels scheme as applied
to PROMESS-1 data. (d) Alternative class labels scheme following sea-level high-
stand/mid-stand/low-stand groups.

157 and 198 mbsf.

Conventional log analysis by visual human interpretation of the logs (Appendix A)

proofs to be extremely difficult if not impossible. Discontinuity D40 (Figure 2.4) can

be detected on most logs with ease but other boundaries are hardly detectable (with

the exception of using Ca and Fe, of course, and the Potassium curve). Because the

lithological changes within this interval of silty clay are so subtle, most geophysi-

cal and geochemical parameters do not vary much. Only looking at the curves, an

interpreter could likely miss sequence boundaries which, however, are aimed to be

detected by automated classification. Clearly, the stratigraphical units are detectable

only by means of a combination of logging curves (in other words, in R
d space, d

being the number of curves) and not by examining a few selected log curves sepa-

rately. The combination of all available log data in such (higher dimensional) input

space is the major advantage of automated pattern recognition over conventional log

analysis.

Because the log curves show no major changes at the thus established sequence

boundaries, the classification task was set-up such as to characterise the geophysical

properties of each unit rather than detecting those boundaries. By finding a distinct

variable set for each unit (class), their discrimination leads inevitable to the deter-

mination of boundaries as well. Moreover, this approach is superior when it comes
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to the detection of stratigraphical units that occur multiple times within an interval

(such as thin layered beds for instance). PROMESS-1 data are simple in terms of their

class labels, which are an ordered succession of numbers (see Figure 5.1c). Here, no

unit block occurs more than once, but for the general case this option is certainly

desirable to have.

A remark should be made regarding the conventional interpretation of stratigraph-

ical log data on one side and the classification into units on the other. As shown

in Figure 5.1b, most geochemical data (like the Ca/Fe ratio) exhibit some sort of

saw-tooth pattern that reflects sea-level changes and distance to the shoreline at the

respective depth. This pattern repeats itself within each unit block. However, the

approach of this work is not to classify each pattern sequence into several subgroups

(e.g. sea-level high-stand, mid-stand, low-stand) but to look for an underlying pat-

tern to be classified that distinguishes each stratigraphical unit from the others as

such. This difference is depicted in Figure 5.1c and d. The training class labels used

for PROMESS-1 data follow that of Figure 5.1c. The goal is to detect and distin-

guish between those underlying parameters that are different for each glacial period

and not those that change within each period in the same way (such as shown in

Figure 5.1d).

5.1.2 Data Used

For the classification of logging data, the following 18 log curves were selected:

• Density (Rho) and sonic velocity (VP ) from MSCL measurements;

• Calcium (Ca), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Potassium

(K), Manganese (Mn), Nickel (Ni), Strontium (Sr), Titanium (Ti) and Vanadium

(V) from XRF measurements;

• Thorium (Th), Uranium (U), mean electrical micro-resistivity (RD), Hydrogen

(H) and magnetic susceptibility (SU) from downhole logging measurements.

Zinc and Lead XRF measurements as well as Carbon, Oxygen and Silicon downhole

logging measurements were not used for they were regarded as being too noisy. Data

pre-processing was applied as described in Section 4.1. For borehole PRGL-1, the

logged interval was from 65.7 mbsf to 213.0 mbsf at 5 cm vertical resolution, thus

comprising 2946 measure points (equaling 2946×18 = 53028 data points). Although

core recovery was excellent throughout the entire borehole (thus providing complete

XRF and MSCL measurements between 0 and 300 mbsf), wireline logging was not

possible below 213 mbsf due to hole collapse and above 65 mbsf due to hole stability

65



On Classification of Logging Data

Factor Eigenvalue Variance (%) Cumulative Variance (%)

1 6.09 33.82 33.8

2 2.51 13.95 47.8

3 1.70 9.43 57.2

4 1.22 6.77 64.0

5 1.09 6.08 70.0

6 0.95 5.26 75.3

7 0.84 4.66 80.0

8 0.82 4.53 84.5

9 0.71 3.93 88.4

10 0.57 3.19 91.6

11 0.37 2.05 93.7

12 0.33 1.86 95.5

13 0.27 1.49 97.0

14 0.21 1.16 98.2

15 0.15 0.83 99.0

16 0.08 0.42 99.4

17 0.06 0.31 99.7

18 0.05 0.26 100.0

Table 5.1: Factor analysis results from log curves of hole PRGL-1: Eigenvalues, vari-
ance and cumulative variance. 70 % of the data set’s variance can be represented
by 5 factors.

issues. Fortunately, all 4 sequence boundaries to be detected lie within the logged

interval.

The depth information (z) was not included in the data for two reasons: first,

class labels were assigned in ascending order, thus being a linear function of z. This

undesired dependency would have overlain other classification rules and made the

classification dependent on the depth location of the training samples. Second, in the

more general case of spatial mixed and interchanging class labels this approach would

only worsen the classification result. For more details, see the discussion (Chapter 6).

5.1.3 Factor Analysis

In order to reduce the input data dimension and remove redundant information

within the logging data, a factor analysis as outlined in Section 4.1.3 was attempted.

The results are given in Table 5.1. There are 5 factors with eigenvalues >1. They

represent only 70 % of the data set’s variance, a value that is rather low. Usually,

3 factors are sufficient to explain ≈ 75 % of the data (Bücker, pers. comm.). Using

these 5 factors instead of the 18 log curves in subsequent classification operations

would mean discarding 30 % of the information contained in all data. It was there-
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Log Curve χ2 Kolmogorov-Smirnov

Ca 564 0.069

Co 70 0.018

Cr 103 0.015

Cu 2×108 0.066

Fe 161 0.034

H 773 0.024

K 1121 0.074

Mn 1694 0.056

Ni 184 0.029

ln Mean Micro-resistivity 7306 0.041

Sr 71 0.012

ln Susceptibility 304 0.017

Th 111 0.011

Ti 295 0.054

U 96 0.019

V 112 0.033

Density 238 0.037

Vp 505 0.046

Critical value 69 0.025

Table 5.2: Tests of distribution on PRGL-1 log curves. Left: χ2-test (which no curve
passes). Right: Kolmogorov-Smirnov test. Bold numbers pass this test (i.e. the null
hypothesis that the values come from a standard normal distribution cannot be re-
jected). Both tests assumed a probability of error α = 0.05 .

fore decided to perform the classifications with all 18 logging curves rather than with

the 5 factor logs.

5.1.4 Data Distribution

For all selected log curves, normal probability plots and histograms were created (see

Appendix D). χ2 (chi-square) and Kolmogorov-Smirnov tests were performed. The

χ2-test indicates that no log curve is normally distributed. However, the Kolmogo-

rov-Smirnov test shows a normal distribution for Co, Cr, H, Sr, ln of susceptibility, Th

and U curves (see Table 5.2). This discrepancy can be explained by deviations at the

distribution margins that are attenuated by the Kolmogorov-Smirnov test (Trauth,

2003). Having thus established the fact that not all input data curves are Gaussian

distributed, the multivariate distribution of all 18 log curves cannot be Gaussian ei-

ther. The assumption of normally distributed data will hence be violated in the sub-

sequent application of learning algorithms. It has to be stated though, that this has

little effect on the real-life use of these methods, an observation previously made by

other authors (e.g. Hastie et al., 2001).
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Class Data Points Training Points Fraction

1 111 6 5 %

2 1002 50 5 %

3 716 36 5 %

4 826 41 5 %

5 291 15 5 %

Total 2946 148 5 %

Table 5.3: Distribution of training data for each class.

5.1.5 Supervised Learning

In addition to a test data set, supervised learning requires a training data set with

input vectors w and class labels c. Subdividing the total available data into training

and test data (also called off-training data) can be accomplished be several means.

The training data set can be either a randomly drawn subset of the total data or sam-

ples can be drawn at a fixed sample rate (say, one sample every metre). Furthermore,

all training data may be either

• a fixed fraction of the total data,

• a fixed fraction of each class (thus dependent on the number of sample points

per class),

• a fixed number of samples (of the total data) or

• a fixed number of samples per class.

Unless otherwise stated, the subsequent classifications were performed with a train-

ing data set of 5 % of the total data per class. The training data were randomly

drawn from the logged interval of PRGL-1 with 2946 data points (=100 %) as shown

in Table 5.3 . The test data are the remainder of the total data (95 %). As to what

extend this nonetheless arbitrarily designed procedure resembles a real-life situation

of having a core recovery of 5 % is debatable. It shall be pointed out though that a

training-to-total data ratio of 1/20 can safely be regarded as a tough condition for

any classifier (even more so considering a mere 6 training samples for class 1).

Performance was measured by comparing the test data classification results with

true class labels established from conventional analysis (see section 5.1.1). The num-

ber of correctly assigned class labels is output as a percentage. These data do not

include the training data set as the latter is correct by definition.

With both training and test data sets generated, the afore discussed classification

algorithms were applied as described in the next sections.
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Figure 5.2: Performance with varying training data set size (in percentage of total
available data, PRGL-1). The mean performance value from 3 classification runs
with different randomly selected training sets is shown. Logistic regression (LGR) was
aborted with input data >60 %. Quadratic discriminant analysis (QDA) only works
with more than 16 % of the data.

Discriminant Analysis

Linear and quadratic discriminant analyses were performed. The latter algorithm re-

quires a minimum of training data. Each class has to be represented by a minimum of

p samples where p is the dimension of input space (here: number of logging curves).

This restricts the application of quadratic discriminant analysis to training set sizes

>16 % (see Figure 5.2). This limit originates from the sampling limit imposed from

the class with the least data samples, which is class 1 with 111 samples (16 % of 111

equals 19 samples, see also Table 5.3).

Thus, for the predominately discussed case with 5 % training data, only LDA will

be presented and QDA will be omitted.

k-Nearest Neighbour Estimation

For the best classification using the k-nearest neighbour algorithm, the most appro-

priate value of k needed to be determined. From Figure 5.3 it is evident that classi-

fication results improve when the number of neighbours decreases. Obviously, k was

chosen to be 1, effectively implementing the nearest neighbour rule.
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Figure 5.3: Performance of k-nearest neighbour algorithm with changing parame-
ter k (PRGL-1). Of all available data, 5 % were assigned to the training set, 95 % to
the test set. 5 data sets were computed (grey curves), the black curve shows their
mean. Best performance is at k = 1.

Logistic Regression

Logistic regression was performed using a penalised logistic regression implementa-

tion with ridge regression as described by Zhu & Hastie (2004). Figure 5.2 shows

only results with less than 80 % training data, because the algorithm turned out to be

too time consuming when trained with more data samples (see also Figure 4.11).

Support Vector Machine

For the application of SVM to the PRGL-1 data set, a radial basis function kernel

(Equation 4.23) was used. The best parameters for the given data set were estab-

lished by training the classifiers with 5 % of total data and testing it on the remain-

der 95 %. The parameters yielding best test performance were then chosen. These

are for the upper bound C=7 and for the RBF spread σ=0.4 (see Figure 5.4).

Backpropagation Neural Network

Contrary to other classification techniques, backpropagation neural networks (ANN)

give different results when repeatedly trained on the same training data set. This

is due to the randomness of initial weights w as described in Section 4.3.6. Deter-
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Figure 5.4: Performance of RBF-kernel support vector machines with changing upper
bound C and RBF-kernel spread σ (PRGL-1). Of all available data, 5 % were assigned
to the training set, 95 % to the test set. A mean performance value was calculated
from 5 data sets. Performance drops considerably for values of C < 2 and σ < 0.3 .
Best performance is at C = 7 and σ = 0.4 .

mining the best combination of number of hidden neurons and stop condition of the

error minimisation process proved to be rather fruitless as there are apparently no

preferred parameters that would significantly improve the classification result (Fig-

ure 5.5). Rather, the initial weights condition the subsequent result, a property of

neural networks that is undesirable but intrinsical. The parameters arbitrarily chosen

were 24 hidden neurons and a stop condition of estop = 5 · 10−4. With 18 log curves

as input data and a classification goal of 5 stratigraphical sequences, the network

topology was hence a 18-24-5 neural net.

Probabilistic Neural Network

According to the theory of PNNs (see Section 4.3.6), the network topology of the

classification of PRGL-1 logging data was 18-148-5 (18 log curves, 148 training data

points, 5 class labels). As this topology is entirely determined by the problem at hand,

the only parameter to be determined by the user is the size of the Parzen window σ.

Several runs were combined to a mean parameter curve revealing that a value of

σ=0.2 would work best (Figure 5.6).
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Figure 5.5: Performance of backpropagation neural networks with changing training
error bound and number of hidden neurons (PRGL-1). Of all available data, 5 % were
assigned to the training set, 95 % to the test set. Performance varies homogeneously
over the tested parameter interval, no parameter combination is superior to another.
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Figure 5.6: Performance of probabilistic neural networks with changing RBF spread σ
(PRGL-1). Of all available data, 5 % were assigned to the training set, 95 % to the test
set. 5 data sets were computed (grey curves), the black curve shows their mean.
Best performance is at σ = 0.2 .
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Comparison

As previously described, the total available data of borehole PRGL-1 was divided into

a training and a test data set (5 % and 95 %, respectively). With these data sets the

6 above discussed classification techniques were performed. The results are plotted

in Figure 5.7. This figure is central to this work as it shows the basic results of all clas-

sifications on one page. The five colours represent the 5 classes to be identified. The

leftmost column shows that randomly chosen training data points (5 % per class), the

one next to it the test data. Then follow the results of classifications. Also given are

the match values for each classifier. ANN is worst with 61 %, followed by LGR and

LDA (66 % and 71 %, respectively). kNN (72 %), PNN (74 %) and SVM (78 %) per-

form best. Evidently, the automatically classified stratigraphy suffers from many very

thin layers within larger blocks of the (mostly properly classified) sequences. In this

special case where the goal is to establish large volume sequences and their bound-

aries, the occurrence of such thin layers is highly unlikely and may be rejected for

geological —not mathematical!— reasons. This consideration justifies a smoothing

operation, where each data point is assigned to the class that most often occurs in a

3 m-interval around that point (i.e. the mode of this interval). The smoothed result

is shown in Figure 5.8. Generally, classification improves by around 12 % with this

operation, yielding a very good match of 91 % in case of the SVM classifier.

Naturally, some sequence boundaries are more difficult to detect than others. Se-

quences 4 (orange) and 5 (grey) are well discriminated by all classifiers. However, a

quick look at the logging curves would have established that boundary at 198 mbsf

as well. More subtle are the boundaries on top of and below sequence 3 (green) at

157 and 121 mbsf, respectively. Here, the better performing algorithms (SVM, kNN,

PNN) show some advantages over the remainder, even more so when looking at the

smoothed columns (Figure 5.8). Discriminating sequence 1 (red) and 2 (blue) again

is an easy task for SVM, kNN. LDA establishes this boundary (at 71 mbsf) equally

well, PNN could do better and LGR completely fails in recognising sequence 1, which

may be attributed to the little training data available (see Table 5.3). Another view on

this subject offers the performance cross matrix plot which was specifically designed

to highlight misclassification subject to each class label. Figure 5.9 shows the result

for classifications of PRGL-1. It quantifies all misclassification for each class. Most

striking are the generally difficult classification of class 1 as well as issues with class 4.

Class 5 poses no major difficulties to all algorithms but ANN.

An important aspect to keep in mind is that the performances just presented are

not generally valid results. They reflect the performance for only one specific training

set used (and in the case of neural networks, the initial random weights). In order to
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Figure 5.7: Classification of hole PRGL-1. From left to right: Training data set (5 % of
all available data per class); true class labels (sequence 1 = red, 2 = blue, 3 = green,
4 = orange, 5 = grey); linear discriminant analysis; support vector machine; k-nearest
neighbour; logistic regression; artificial neural network; probabilistic neural network.
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Figure 5.9: Performance cross matrix plots of 6 algorithms (PRGL-1). Plotted are com-
puted class labels vs. true class labels. The main diagonal represents accurate clas-
sifications, all other elements denote misclassifications.
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Figure 5.10: Box-and-whisker-plot of performance variances using 600 different train-
ing sets (PRGL-1). Of all available data, 5 % were assigned to the training set, 95 % to
the test set. Best median is achieved by SVM, followed by PNN and kNN. ANN shows
large variations. Whisker length is the interquartile range ×1.5 . Crosses denote out-
liers.

identify the general performance of each classifier, 600 training and test data set com-

binations were generated and classified. The box-and-whisker plot1 of Figure 5.10

shows the medians, interquartile ranges and outliers for all algorithms. Clearly, SVM

performs best, closely followed by PNN and kNN algorithms. At times, LDA may show

equally good results. LGR has a generally poorer performance but with a variance

much the same as the better performing algorithms. ANN not only performs worst

but also varies considerably in terms of its performance output. It seems that this

variation of more than 25 % is mainly attributed to different initial weights.

The analysis of the performance dependency on the size of the training data set

reveals that classifications improve with more training data (Figure 5.2). The results

worsen considerably with less than 5 % of data (equivalent to 148 data points for

PRGL-1) and reach values of above 95 % of accurate classification when the algo-

rithms are trained on SVM and kNN with half of all data (50 %). A classification

match of 90 % can be achieved with one third of all training data. Especially ANNs

benefit from more training data and outperform many other algorithms when trained

1 The box-and-whisker plot illustrates a data distribution in the following way: cen-

tre line (m) is the median; box (b) is the interquartile range (containing 50 %

of the data); whisker length (w) is 1.5× interquartile range (b); crosses (o) are

outliers.
o    w    m b   w     o
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Figure 5.11: Classification improvement with repeated bagging (50 times, PRGL-1).
From a training data set (with 5 % of all input data), subsets were created that con-
tained 80 % of these training data (i.e. 4 % of all data). For each classifier, perfor-
mance is plotted for a majority classification vote of n subsets, n = 1, ..., 50 .

with 50 % training data. LDA is quite the opposite in that it does hardly improve with

more training data at all. LGR shows some improvement though at a generally low

level.

Bagging

Bootstrap aggregation was applied to all algorithms in order to evaluate its feasibility

in terms of improvement and robustness. As shown in Figure 5.11 most classifiers do

not improve much, but bagging ensures that the best result for a given training data

set will be achieved. The mediocre performance of logistic regression (LGR) does

not improve much though. Remarkably, ANN shows dramatic improvement when

bagged. It then even outperforms the kNN algorithm, getting boosted by almost

25 %. It seems that bagging is partly able to remove the negative effects of the neural

network’s feature of large performance variance (Figure 5.10).

5.1.6 Input Data Selection

So far, all classifications of borehole logging data from PRGL-1 have been fed with

18 logging curves. The focus in this section is on reducing this amount of curves

and gain some insight as to which curves do contribute the most for the class dis-
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Figure 5.12: Performance gain when excluding and including each logging curve
(sorted from left to right, PRGL-1). Classification performance increases considerably
when including mean micro-resistivity (RD). Including Cu, Cr, Ni, V or H to the input
training data has little or negative effect on the performance.

crimination and which ones do less so. For this purpose, the SVM algorithm (us-

ing parameters C=7 and σ=0.4) was run with every combination of input curves,

which amounts to 218 − 1 calculations. For each logging curve, the combination pairs

(including and excluding that specific curve) for each input pattern were extracted

and their difference calculated, giving the gain (or loss) of performance due to that

respective curve being included in the classification process. The results are plot-

ted in Figure 5.12. Most striking is the performance improvement when including

the mean micro-resistivity. Vice versa, excluding resistivity from the training process

would make the performance drop by 10–20 % and in extreme cases by 37 %. This

fact comes as a surprise since the resistivity curve shows no obvious signs of its ex-

cellent discriminating characteristic (see Appendix A). Other curves that appear to

be most useful for the classification algorithm are sonic velocity (VP ), density (Rho),

susceptibility (SU), Potassium (K) and Calcium (Ca).

On the other side, the elements Cu, Cr, Ni, V and H either do not improve the result

significantly or even worsen it. To demonstrate the difference, the (sorted) perfor-

mance values for in- and excluding resistivity and Copper are plotted in Figure 5.13.

The better the curve selection performs the smaller is the gain. The largest effect

occurs when performance is generally poor (on the left hand side). From the box-

and-whisker plot (Figure 5.14) of the same data it can be deducted that literally all
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Figure 5.13: Classification performances when in- and excluding RD (left) and Cu
(right). Black curves show performance when including the respective data curve,
light grey curves show performance when excluding that curve. Data from hole
PRGL-1

curves have many outliers, especially above the median. Again, the superiority of the

resistivity is striking. It should be noted that the best performance was not achieved

with all 18 log curves. Instead, only 10 curves were necessary for this task, as shown

in Table 5.4. Using all curves is a little less successful. Remarkably, using only the best

6 curves derived from Figure 5.14, a very good result can also be achieved. Using the

same curves, but not resistivity, makes the result drop by almost 15 % though.

Also tested was the scenario in which only curves were used that are acquirable by

downhole logging tools. This would simulate a situation in which no core data would

be available (say, due to poor core recovery). Enjoyably, this combination proofed to

be well performing, just a little less successful than if all available curves were used

(see also Table 5.4).

Curves Classification match

All 18 curves 77.6 %

Best result (Ca, Co, H, K, Mn, RD, SU, Ti, Rho, VP ) 80.8 %

Best result without RD (Ca, Co, H, K, Mn, SU, Ti, Rho, VP ) 67.5 %

Best 6 discriminators (RD, V, Rho, SU, K, Ca) 74.1 %

Best 5 discriminators without RD (VP , Rho, SU, K, Ca) 59.7 %

Wireline curves only (Ca, Fe, H, K, RD, SU, Th, U, Rho, VP ) 77.0 %

Table 5.4: Some performance results of PRGL-1 with varying curve combinations.
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Figure 5.14: Box-and-whisker plot of performance gain when excluding and includ-
ing each logging curve (medians sorted from left to right, PRGL-1). Classification
performance increases considerably when including resistivity (RD) and also sonic
(VP ), density (Rho), susceptibility (SU), Potassium (K) and Calcium (Ca). Including
Cu, Cr, Ni, V or H to the input training data has little or negative effect on the perfor-
mance.

5.2 Adriatic Sea

5.2.1 Conventional Interpretation

Existing seismic data from various surveys prior to PROMESS-1 suggest the presence

of 4 erosional surfaces ES1 - ES4 on top of 4 progradational units (see Figure 2.5).

These units were deposited mainly during glacials (Trincardi & Correggiari, 2000).

As previously done for hole PRGL-1 in the Gulf of Lion, the XRF-derived Ca/Fe ratio

was utilised as an indicator of detrital vs. pelagic regimes and distance to the shore

line. The ratio (Figure 5.15) is in line with the erosional surfaces but further subdi-

visions can be made accounting for intervals with rather slow decrease of Ca/Fe ac-

counting for intervals where erosion has not removed all of interglacial accumulated

sediments. This would add an extra boundary in addition to those established by

Trincardi & Correggiari (2000) which is denoted as ES3+. Subsequently, the logged

interval (45-71 mbsf) was divided into 4 sequences as depicted in Figure 5.15. The

logging interval had been restricted to those 26 metres because wireline logging was

not possible above 44 mbsf.

Visual core descriptions show mainly silty clay throughout the entire interval with
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Figure 5.15: Ca/Fe plot and sequence boundaries ES3 and ES4 (PRAD-1). Class
boundaries are numbered from 1 to 4. Logging interval is indicated by the black
line to the right.

other occurrences being clay and silt. Again, other interpreted core data are not

available yet. Attempting to deduct the sequence boundaries from conventional log

interpretation is difficult (see Appendix B). Though there are some good indicators

(Ca, Fe, Co, density, sonic), other curves do not show changes at the erosional sur-

faces ES3 or ES4.

5.2.2 Data Used

From available XRF, MSCL and wireline logging data, the following 17 curves were

selected for further application in learning algorithms:

• Density (Rho) and sonic velocity (VP ) from MSCL measurements;

• Calcium (Ca), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Potassium

(K), Manganese (Mn), Nickel (Ni), Strontium (Sr), Titanium (Ti) and Vanadium

(V) from XRF measurements;

• Thorium (Th), Uranium (U), mean electrical micro-resistivity (RD) and mag-

netic susceptibility (SU) from downhole logging measurements.

For technical reasons, no wireline geochemical data were acquired at PRAD-1. From

XRF logs, Zinc and Lead log curves were rejected because of noise. Sample rate for
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Factor Eigenvalue Variance (%) Cumulative Variance (%)

1 5.13 30.18 30.2

2 2.48 14.59 44.8

3 1.86 10.92 55.7

4 1.27 7.48 63.2

5 1.12 6.58 69.8

6 1.01 5.96 75.7

7 0.83 4.87 80.6

8 0.66 3.90 84.5

9 0.63 3.70 88.2

10 0.50 2.96 91.1

11 0.39 2.32 93.5

12 0.35 2.04 95.5

13 0.26 1.54 97.1

14 0.18 1.04 98.1

15 0.17 1.01 99.1

16 0.08 0.48 99.6

17 0.07 0.41 100.0

Table 5.5: Factor analysis results from log curves of hole PRAD-1: Eigenvalues, vari-
ance and cumulative variance. 76 % of the data set’s variance can be represented
by 6 factors.

the interval 45-71 mbsf was 5 cm. The total data set size was therefore 519×17 =

8823 values.

Again, the depth information z was not used for reasons outlined in the discussion

(Chapter 6).

5.2.3 Factor Analysis

In order to reduce the input data dimensionality, a factor analysis was performed

with the selected 17 log curves as described in Section 4.1.3. The results are given

in Table 5.5. Six factors score an eigenvalue above 1 with a cumulative variance of

76 %. Replacing the 17 log curves by those 6 factors (thus reducing the dimension by

about two thirds) would discard almost a quarter of the data’s variance. This measure

was regarded as being too costly and therefore rejected. The classification tasks were

performed with the original (standardised) 17 log curves.

5.2.4 Data Distribution

Normal probability plots and histograms were created for the selected 17 log curves

(Appendices D and E). Whereas all curves fail the χ2 test on normal distribution, 11

out of 17 curves pass the Kolmogorov-Smirnov test (see Table 5.6). As previously
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Log Curve χ2 Kolmogorov-Smirnov

Ca 1889 0.039

Co 83 0.026

Cr 1×105 0.050

Cu 2×105 0.078

Density 372 0.059

Fe 213 0.030

K 5×105 0.058

Mn 1336 0.055

ln Susceptibility 158 0.034

Ni 90 0.029

ln Mean micro-resistivity 178 0.081

Sr 8×1029 0.237

Th 7152 0.147

Ti 7875 0.038

U 1×105 0.254

V 5×1020 0.088

Vp 30797 0.034

Critical value 69 0.059

Table 5.6: Tests of distribution on PRAD-1 log curves. Left: χ2-test (which no curve
passes). Right: Kolmogorov-Smirnov-Test. Bold numbers (11 out of 17 curves) pass this
test (i.e. the null hypothesis that the values come from a standard normal distribution
cannot be rejected). Both tests assume a probability of error α = 0.05 .

discussed in Section 5.1.4, the data set cannot be Gaussian distributed because not

all curves are Gaussian. Again, the assumption of normally distributed data will be

violated in the subsequent application of learning algorithms.

5.2.5 Supervised Learning

The logging data at hand needs to be subdivided into a training and a test data set

prior to be used with a classification algorithm. From the possibilities to generate a

training data set (presented in Section 5.1.5), the same approach as used with hole

PRGL-1 was chosen, i.e. a fixed fraction of each class was randomly drawn from

the data set. Because the number of total data points is rather low (519 values, see

Table 5.7), 10 % per class were chosen as training data set, leaving the remaining

90 % for the test data set. This split ratio is used for the entire processing unless

otherwise stated. Even though the training data set is twice as big as for PRGL-1,

the absolute figures are still very low. For class 1, merely 2 data points are present

in the training data set (6 data points for class 2). Nevertheless, this section on

classification of PRAD-1 data serves as a case study of shallow boreholes with a rather

small data set. Having very little training data at hand may be a demanding task for
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Class Data Points Training Points Fraction

1 20 2 10 %

2 56 6 10 %

3 154 15 10 %

4 289 29 10 %

Total 519 52 10 %

Table 5.7: Distribution of training data for each class.

the classifiers but is not unlikely be encountered during geo-scientific operations.

Discriminant Analysis

Linear discriminant analysis was performed and quadratic discriminant analysis was

attempted. As shown in Figure 5.16, QDA needs more than 85 % of data, equalling

17 training samples out of 20 available samples of class 1 (see Table 5.7). For the

classification with 10 % training and 90 % test data, only LDA was used.
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Figure 5.16: Performance with varying training data set size (in percentage of total
available data, PRAD-1). The mean performance value from 5 classification runs with
different randomly selected training sets is shown. Quadratic discriminant analysis
(QDA) only works with more than 85 % of the data.
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Figure 5.17: Performance of RBF-kernel support vector machines with changing up-
per bound C and RBF-kernel spread σ (PRAD-1). Of all available data, 10 % were
assigned to the training set, 90 % to the test set. A mean performance value was
calculated from 5 data sets. Performance drops considerably for values of C < 2
and σ < 0.2 . Best performance is at C = 6 and σ = 0.3 .

k-Nearest Neighbour Estimation

The k-nearest neighbour estimation was run with varying k. Like the results from

PRGL-1, here again the best k value is 1, thus implementing the nearest neighbour

rule.

Logistic Regression

Logistic regression (LGR) was performed with 10 % training data. As the absolute

number of data points of PRAD-1 is considerably less than with PRGL-1, LGR was

successfully tested on other training/testing data set ratios as shown in Figure 5.16.

Computing times increased with more input data but were still justifiable.

Support Vector Machine

Similar to the parameter findings in Section 5.1.5, the SVM was implemented with a

RBF kernel and an one-vs.-all (OVA) multiclass transformation (see Section 4.3.7). As

shown in Figure 5.17, the best upper bound C is 6 and the best RBF spread σ is 0.3 .
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Backpropagation Neural Network

Similar to results presented from hole PRGL-1, backpropagation neural networks

(ANNs) are robust with respect to net topology and stop error condition. Parame-

ter ranges that were tested are 17 to 60 hidden neurons and 1×10−1 to 1×10−12 for

the stop error condition, respectively. Either parameter combination is similar to any

other for the given training set size of 10 %. Eventually, a 17-24-4 net topology was

chosen (17 log curves, 24 hidden neurons and 4 stratigraphic sequences). The stop

condition was set to estop = 5 · 10−4.

Probabilistic Neural Network

PNN was implemented with a 17-52-4 net topology (17 log curves, 52 training data

points, 4 class labels). The topology is entirely determined by the problem at hand,

and the only parameter to be determined by the user is the size of the Parzen win-

dow σ. Similar to results from borehole PRGL-1, a value of σ = 0.2 yields the best

performance.

Comparison

Similar to the classification results of hole PRGL-1, the above described algorithms

(LDA, SVM, kNN, LGR, ANN and PNN) were used with 17 log curves from hole PRAD-

1. A typical result is shown in Figure 5.18. A smoothed version with a 3 m sliding

window like proposed at borehole PRGL-1 was not attempted due to the short log-

ging interval (26 m). Clearly, the identification of class 1 (red) is not accomplished

by either algorithm. Evidently, the very low number of training samples (just 2, see

Table 5.7) prohibits a successful classification in this extreme situation. The discrimi-

nation between classes 2 (blue) and 3 (green) appears to be equally challenging. The

neural network gives the best result here, although this may be due to accidentally ad-

vantageous initial weights. Again, the proper detection of class 2 is severely affected

by the low number of training samples (6). Classes 3 and 4 (orange) are properly

separated by all classifiers except LGR, which completely fails to detect any classes

other than class 4. The match results given below the figures have to be considered

with care, as the majority of (correct) classifications takes place within class 4. The

detection of class boundaries is in fact independent of a good classification match.

For instance, SVM performs best in total but does not accurately detect classes 2 or 3.

Looking at the performance cross matrix of hole PRAD-1 (Figure 5.19), the re-

sults reflect the findings from the classification columns just discussed. Classification

performance is dependent on the number of available training samples. Especially
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Figure 5.18: Classification of hole PRAD-1. From left to right: Training data set (10 % of
all available data per class); true class labels (sequence 1 = red, 2 = blue, 3 = green,
4 = orange); linear discriminant analysis; support vector machine; k-nearest neigh-
bour; logistic regression; artificial neural network; probabilistic neural network. For
parameters and processing details refer to text.
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Figure 5.19: Performance cross matrix plots of 6 algorithms (PRAD-1). Plotted are
computed class labels vs. true class labels. The main diagonal represents accurate
classifications, all other elements denote misclassifications.
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Figure 5.20: Box-and-whisker-plot of performance variances using 600 different train-
ing sets (PRAD-1). Of all available data, 10 % were assigned to the training set, 90 %
to the test set. Whisker length is the interquartile range ×1.5 . Crosses denote outliers.
Best median is achieved by the SVM, followed by PNN and kNN. LDA and ANN show
larger variations. LGR fails completely.

classes 2 and 3 are often misclassified (and associated with class 4). Only ANN shows

a satisfying pattern. LGR does not work altogether because of too few training data.

Again, the so far discussed results represent only one out of many cases because

of the randomly selected 10 % of training samples. In order to assess the algorithms’

performance in a more general way, 600 classifications with different training data

were computed. The results are plotted in Figure 5.20. Overall, SVM, kNN and PNN

seem to perform best, while LDA and ANN are less successful. LGR is "locked" at

a 56 % match, which accounts for a uniform classification into class 4 only (as in

Figure 5.18). The figure may have a limited significance only, as the identification of

classes 1-3 may not be reflected by a good overall result.

Clearly, classification in case of hole PRAD-1 logging data with 10 % training and

90 % test data is an extreme case at each classifiers limit. Increasing the number

of training samples will therefore significantly improve the performance as shown

in Figure 5.16. kNN and SVM perform equally well, reaching a 90 % match when

trained with 60 % or more data. ANN benefits as well from more training data though

on a generally lower level. LDA and LGR do not perform better than 70% regardless

of the number of training samples.
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Figure 5.21: Classification improvement with repeated bagging (50 times, PRAD-1).
From a training data set (with 10 % of all input data), subsets were created that con-
tained 80 % of these training data (i.e. 8 % of all data). For each classifier, perfor-
mance is plotted for a majority classification vote of n subsets, n = 1, ..., 50 . Only
ANN benefits considerably from bagging.

Bagging

Bagging was performed with 10 % of all data and subsets that comprised of 80 %

of these samples (equals 8 % of all data). 50 bagging operations were performed

and the result was plotted after each bagging (Figure 5.21). None of the algorithms

benefits much from bagging with the exception of ANN. The latter can be improved

by more than 15 % by means of bagging, a result that clearly justifies this additional

processing step.

5.2.6 Input Data Selection

Similar to Section 5.1.6, a SVM algorithm with parameters C=6 and σ=0.3 was

run with all (217 − 1) possible logging curves combinations. Again, the performance

for each combination with and without a given curve was compared, sorted and

plotted (Figure 5.22). Though the feature is not as striking as with hole PRGL-1,

the resistivity curve (RD) has once more the largest impact in terms of classification

match for borehole PRAD-1 (an increase between 5 % and 15 %). Other log data that

also discriminate the proposed classes properly are Manganese, Thorium, density

and Titanium (see also Figure 5.23). Including Ni, Cr, Cu or Ca does not improve the
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Figure 5.22: Performance gain when excluding and including each logging curve
(sorted from left to right, PRAD-1). Classification performance increases considerably
when including mean micro-resistivity (RD). Including Ni, Cr, Cu or Ca in the input
training data has little or negative effect on the performance.
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Figure 5.23: Box-and-whisker plot of performance gain when excluding and includ-
ing each logging curve (medians sorted from left to right, PRAD-1). Classification
performance increases considerably when including resistivity (RD) and also with
Manganese (Mn), Thorium (Th), density (Rho) and Titanium (Ti). Including Ni, Cr, Cu
or Ca in the input training data has little or negative effect on the performance.
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Curves Classification match

All 17 curves 75.6 %

Best result (Co, Fe, K, Mn, RD, Sr, SU, Th, Ti, U, V) 84.2 %

Best result without RD (Co, Fe, K, Mn, Sr, SU, Th, Ti, U, V) 74.7 %

Best 5 discriminators (RD, Mn, Th, Rho, Ti) 77.3 %

Best 4 discriminators without Rt (Mn, Th, Rho, Ti) 68.3 %

Wireline curves only (Ca, Fe, K, RD, Rho, SU, Th, U, Vp) 76.9 %

Table 5.8: Some performance results from PRAD-1 with varying curve combinations.

classification match but may even worsen it. While the negative effect of Ni, Cr and

Cu is in line with findings from hole PRGL-1 (see Section 5.1.6), the bad performance

when using the Ca curve is the opposite to the case in the Gulf of Lion where Ca was

found to be the 4th best discriminator (see Figure 5.14). These results are somewhat

different to those of borehole PRGL-1 (Figure 5.14). Apparently, the marine clays are

of slightly other mineral composition than those at the Gulf of Lions.

For a randomly chosen training set of 10 % of all data, Table 5.8 shows that the best

result with only 11 out of 17 curves has an almost 10 % higher classification match

than when using all curves. Excluding the resistivity from the classification task will

lead to a performance drop of about 10 %. Using wireline data only would yield a

similar result as if using all XRF, MSCL and wireline log data.
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6 Discussion & Conclusions

Having outlined the acquisition of (wireline, MSCL and XRF) logging data, the PRO-

MESS-1 project and several classification techniques, the previous chapter presented

the results of their application to PROMESS-1 data. These results will now be dis-

cussed with emphasis on the comparison of algorithms and the findings regarding

the importance of log curves to the successful classification process. A summary and

outlook conclude this chapter.

Data Input

Reducing the number of log curves and thus input dimensions by means of factor

analysis proved to be unfeasible. At both locations PRAD-1 and PRGL-1, the reduc-

tion of log data to factor logs would have meant discarding a too large amount of

data variance (24 % and 30 %, respectively). Evidently, PROMESS-1 data show too

little variance to be utilised for a dimensional reduction. Subsequently, no attempt

was made to give these factors any geological or geophysical meaning, as the classifi-

cation processing was performed with the actual (normalised) log curves. There are

examples in the literature where factor analysis has been successfully performed on

log data. Bücker et al. (2000) report the dimensional reduction down to 3 factor logs

accounting for more than 80 % of the data’s variance. Regarding PROMESS-1 data,

the majority of log curves deal with chemical elements derived from the XRF scanner.

Although they reflect changes of composition of the marine clay, their variance may

not be as high as with physical parameters such as magnetic susceptibility and den-

sity. In conclusion, the selected log curves cannot be reduced to any sufficiently low

number of factors that would explain a decent amount of data variance.

Training Data Generation

A major application of supervised learning to log data in real-life situations and a

main motivation of this work is possible poor core recovery (or, like with PROMESS-

1 data, the assumption of it). In cases where there are little or no cores available,

wireline logging data are the only in situ measurements at the scientists’ disposal.

Both MSCL and XRF scanners need successful sampled and properly preserved cores.

If core recovery is less than 100 %, there is little chance to gain information regarding
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the missing intervals. Reducing the (known) total data to a subset of it (the training

data set) simulates a less-than-complete core recovery with missing intervals. The

investigation of classification performance in such (simulated) situations aims to ex-

amine if this tool is still useful for the geoscientist even if or especially when there

are no core data available.

As repeatedly mentioned before, of all available (wireline, MSCL and XRF) data

a certain fraction of it was used to train the classification algorithms. These trained

classifiers were then used to properly label the remaining (test) data according to

their respective classes. The actual ratio of training-to-test data was chosen arbitrar-

ily. However, the figures were intended to be challenging for the algorithms and at

the same time still produce reasonable results. It was demonstrated that in the case

of quadratic discriminant analysis and logistic regression, limits are tighter than with

the other algorithms analysed. QDA cannot be performed with less than p samples

per class, p being the number of log curves. On the other hand, presenting >1800

data points to the LGR algorithm made the classification task increasingly time con-

suming but not better in terms of performance. Having a core recovery of only 5 %

during a scientific campaign would be a very disappointing result. In fact, much

higher recovery rates are almost always encountered and as Figures 5.2 and 5.16

show, these will lead to very satisfying classification matches (e.g. >85 % with one

third of training data).

With less than 100 % core recovery, the missing intervals are likely to be linked to

regions with less compaction, less adhesive matrix structures, changes in grain sizes

or just with technical incidents during the drilling and/or coring process. Eventually,

the position of these intervals are inherently unpredictable. This fact is represented

by drawing the training data points randomly from the total data pool, as opposed

to using a fixed drawing interval (e.g. make every 10th data sample a training data

sample). In both cases PRAD-1 and PRGL-1, the shares of each class of the entire

interval are not evenly distributed. This is especially true for class 1 in both boreholes

that only represents less than 4 % of the to-be-classified logging interval. To avoid

any preference in favour of classes that make up for large portions of the data set

(e.g. class 4 at PRAD-1), the sampling of training data points was adjusted such that

the subset to be drawn was sampled from each class individually. This ensures a

proper representation of each class within the training data set. A typical core with

missing intervals would consist of larger blocks with or without sediments than it

is the case with this simulated core recovery and its quite selective spots of training

sample occurrences. Nonetheless the presence of each class within the training data

is essential for a proper classification task and adjusting the training data sampling

procedure in this respect only seems reasonable.
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Figure 6.1: Regions of training-to-test data ratio performance. A: Performance is a
function of training data size. B: Performance is stable. Data from PRGL-1 (left) and
PRAD-1 (right).

Training Data Size

When increasing the ratio of training-to-test data, there are two main regions dis-

tinguishable: a range where performance increases drastically when the training set

size is raised little (0–25 % and 0–20 %, see Figure 6.1, region A) and a region where

performances are more stable even if the size is increased considerably, i.e. >25 %

(PRGL-1) and >20 % (PRAD-1). Region A clearly represents a situation where the

performance is dependent on the size of the training data set. With 1 % or less

training data, the classification match is not any better than mere chance. When

the size of the training data set reaches a certain level (region B), the performance

only changes little. This is true for all investigated algorithms but ANN. Here, more

training data also means better performance, especially when the absolute number

of training samples is generally low (as with PRAD-1, right hand side of Figure 6.1).

Region A represents the demanding case where core (meaning training) data are

sparse and which is most difficult for any classification algorithm. Region B on the

other hand is a more ideal situation with ample training data samples available. The

typical core recovery rates to be expected during a scientific campaign fall in this

region.

The previously presented training set sizes of 5 % (PRGL-1) and 10 % (PRAD-1) fall

in region A. Admittedly being a rather demanding task for the learning algorithms,

such ratio represents the lower limit of what is still feasible (see Figure 6.1). Present-

ing even less training data to the algorithms would both be unrealistic (a 5 % core
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recovery rate of a 20 m core is equivalent to having only sampled 1 m of sediments)

and pointless in terms of a scientific statement. Summarising the results presented

in Chapter 5, for PRGL-1, SVM, kNN and PNN perform best with this little training,

followed by LDA and LGR. ANN shows poor results which is due to too few train-

ing samples (Figure 5.10). QDA needs a minimum amount of training data which is

dependent on the input space dimension.

Region B represents the range in which performance levels only slightly rise with

more training data. While SVM and kNN show minor improvements (5–10 %), PNN,

QDA, LDA and LGR remain at almost constant performance levels. The major excep-

tion is the ANN algorithm that benefits drastically from being fed with more training

data. This fact is also illustrated by the difference between the two boreholes. While

at PRGL-1, ANN yields match values of above 90 % with only 50 % of the training

data, at PRAD-1 this value is never reached even when the network is trained with

90 % of all data. The absolute numbers of training samples (see Tables 5.3 and 5.7)

need to be sufficiently large for ANN to perform well.

Comparison of Classifiers

Apparently, SVM and both the Parzen windows density estimation (implemented by

PNN) and the nearest neighbour algorithm manage to approximate best the classifi-

cation rule for boreholes PRGL-1 and PRAD-1. All three methods are discriminative

and non-parametric classifiers (Figure 4.2). As far as SVMs are concerned, the good

results are less surprising because the algorithm minimises the generalisation error

rather than the training error. This approach is certainly superior to algorithms that

minimise the training error only as discussed in Chapter 4. With k set to 1, the near-

est neighbour rule classifies new data points exclusively on the basis of the nearest

sample point. Seeing the very good results, the remaining error appears to be close to

the (best achievable) Bayes error R∗ shown in Figure 4.5. Presuming that the nearest

neighbour of any given sample point indeed matches with the correct class label in

most cases would militate in favour of

• rather simple class boundaries or

• contiguous regions of same class labels within the data space.

This is supported by the fact that the Parzen windows approach yields similar good

results. Although its window is a function of the number of training samples n rather

than the number of neighbours, the algorithm places emphasis on the surrounding

sample points alike. Recalling the ordinary performance of LDA, simple (=linear)
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class boundaries are less likely. Notwithstanding the fact that SVM is a linear classi-

fier as well, this algorithm is able to perform the linear classification task in a higher

dimensional space thanks to its kernel function. Therefore, the class labels of logging

data of PROMESS-1 holes PRGL-1 and PRAD-1 are likely to be arranged in contigu-

ous regions with little overlapping. The value of the penalty parameter C of the SVM

gives another hint in this direction. A high value C → ∞ means hard class bound-

aries (i.e. outliers are costly penalised) if σ2 is held constant. Figures 5.4 and 5.17

show that C is rather small and (more importantly) does not influence the perfor-

mance when made bigger. In other words, the SVM classifier does not improve much

when the boundaries are made more strict which again suggests classes with little

overlapping. When comparing the results of LDA and QDA, the latter generally per-

forms more than 15 % better than LDA. This again points towards a generally better

aptitude of non-linear classifiers with respect to this kind of log data.

The similar performance of LDA and LGR is explained by the fact that their un-

derlying models are basically the same. They differ only in the way they estimate

the linear coefficients. The LGR model is more general as it makes less assumptions

regarding the data distribution (LDA requires the data to be Gaussian). Although

proven that the log data used within this work are not normally distributed, LDA per-

forms not worse than LGR. This robustness of LDA towards data distribution has been

remarked by several authors before (e.g. Hastie et al., 2001). With very little train-

ing data, linear class boundaries seem to be an appropriate approximation. When

there are more training samples fed to these two algorithms however, this advan-

tage diminishes. This can be seen in regions B of Figure 6.1 where the performance

remains almost at the initial (mediocre) level while other algorithms improve their

performance drastically.

When comparing different sets of training and test data, the variance of results

are very similar for each of the classification algorithms but ANN (Figures 5.10 and

—notwithstanding the poor LDA performance— 5.20). The interquartile range (in-

cluding 50 % of the results) is ≈5 % or less. Solely the backpropagation neural net-

work shows larger variances due to its changing initial weights. These cause varying

starting points on the error surface of the gradient descent which then leads to the

algorithm’s arrival in different local minima.

This underlying negative property of the neural net can be compensated for by bag-

ging as pictured in Figures 5.11 and 5.21. Clearly, using multiple ANN classifiers and

effectively stacking them such that the majority vote determines the final class label

removes possibly harming isolated cases of classification. However, bagging not only

moves the classification result towards a mean value (or median as in Figures 5.10

and 5.20). It boosts the result beyond that and achieves outputs that equal those
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of the top performing SVM, kNN and PNN algorithms. The reason for this is that

resampling techniques such as bagging use the final accuracy (after being applied to

the test data) of a classifier. This can also be interpreted as finding the best model

complexity by improving the variance (accuracy).

Regarding the failure of the logistic regression at borehole PRAD-1, 10 % of training

data are clearly too few to successfully yield any reasonable results. The algorithm

simply assigns all samples to the majority class of the training data set (which in

this case is class 4). This behaviour is called underfitting. The LDA performance

level is reached only when the LGR algorithm is trained with more than 35 % of data

(Figure 5.16).

With classification matches of around 75 % (after training with 5 % and 10 % of

the data, respectively) the questions remains: where do the misclassifications oc-

cur? Here, the performance cross matrix plots (Figures 5.9 and 5.19) are suitable

to quickly detect the main difficulties of an algorithm. In case of borehole PRGL-

1, major mismatches occur in class 1, especially with the LGR algorithm. The least

errors are encountered in class 5, which somewhat weakens the reason of too little

training data. However, the amount of training data is influencing the classification

performance but it is not the only factor. Where the input data are easily separable

into different classes, good class boundaries can be established (here: the sequence

boundary between classes 4 and 5, see Figure 5.7). If the classes are more difficult

to separate, little training data make the labelling process a challenging task (as with

class 1 in this case). Sequences 2–4 are generally well recognised, though the bound-

ary between class 2 and 3 is thought to be shallower (≈3 m) by the algorithms. This

is a hint for a possibly inappropriate training data set. With more training samples,

the sequence boundary is met more accurately (see Appendix F).

Within each sequence, misclassifications happen randomly but may be clustered

when there are larger intervals without training data (e.g. at 161 mbsf or at 190–

195 mbsf, see Figure 5.7). This phenomenon can be repeated with different training

data sets (after all, Figure 5.7 is just an example of one out of many possible results

with varying training data sets). Apparently, there are local properties that can only

be accounted for when the training data set is covering the entire interval, although

this coverage does not have to be complete, of course. Having only core samples

of very few selected spots (e.g. the upper first 50 metres) would very likely lead to

disappointing results. Having training data from the entire to-be-classified interval

(even with larger gaps) is a requirement for successful pattern recognition. This also

shows that the true class labels and hence stratigraphical model may be somewhat too

simple for the algorithms. Apparently there is more information hidden in the data.

Its detection is prevented by the rather simplistic training data set (4 or 5 classes).
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The classification of borehole PRAD-1 with 10 % training data serves as an extreme

example because the number of training samples is altogether extremely low (see Ta-

ble 5.7). In this situation, performance is mainly dependent on training data size: the

class with most samples (class 4) is matched best, the one with the fewest samples

(class 1) is matched worst. When the training-to-test-data ratio is increased, perfor-

mance is excellent (see Appendix G). This example points to a possibly delicate case

when sequences (i.e. classes) are disproportionate in terms of their presence within

the training data set. If some classes are weakly represented by the training data,

underfitting occurs. Class 1 of hole PRAD-1 is an example of this.

The major drawback of automated classifiers is that most of them work as a "black

box", i.e. the interpreting person does not gain any information about how confident

the algorithm is regarding class labels. Some algorithms allow such sort of extended

information to be extracted (e.g. ANN) but most do not and therefore this infor-

mation was not presented as this work deals with comparing the algorithms. The

problem remains though and it has to be clearly stated that the algorithms presented

are not suitable to extract such additional information. The class labels are rather an

"all-or-nothing" result that conceals other potentially interesting findings such as how

(un)ambiguous the class decision was. Likewise, none of the algorithms allows for an

insight in terms of the actual differences between classes. No explicit statement can

be made here for single curves, rather all input data are discriminated as a whole.

Coming back to the initial goal of this research on classification as formulated

in Chapter 1, the question remains which supervised classification algorithm is best

suited for the discrimination of stratigraphical sequences in shallow marine sediments

in the Mediterranean Sea. This work shows that for the given problem (using wire-

line, MSCL and XRF logging data from marine sediments to determine glacial sed-

imentological units) non-linear classifiers work best. kNN, PNN and SVM (though

technically a linear classifier in feature space) perform excellent even with few train-

ing samples. ANN and QDA yield equally good results when trained with sufficient

training data. LDA and LGR are less appropriate because class boundaries are pre-

sumed to be non-linear (see Table 6.1).

Best Discriminating Curves

Another focus of this research is to identify those logging curves that are important

for the automated classification process and those that prevent a good match. As

previously presented, the Dipmeter mean micro-resistivity proved to be of utmost

importance to the identification of stratigraphical units for both boreholes PRGL-1

(Figure 5.12) and PRAD-1 (Figure 5.22). In order to determine this to be a property
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Good performance
Good performance

when trained with ample data
Poor performance

kNN

PNN
ANN LDAl

SVMl QDA LGRl

Table 6.1: Suitability of classifiers when applied to geophysical borehole data of shal-
low marine sediments. l denotes linear algorithms. These results are only valid for the
classification of stratigraphical sequences.
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Figure 6.2: Performance gain when excluding and including each logging curve
(sorted from left to right). Included are Laterolog resistivity (RL) and mean Dipme-
ter micro-resistivity (RD). Classification performance increases considerably when in-
cluding the latter. Data from PRGL-1.

of resistivity or rather of micro-resistivity, another computation of all logging curve

combinations at hole PRGL-1 was performed but this time adding the deep resistivity

curve (RL) from the dual laterolog tool. The result is plotted in Figure 6.2 and shows

that it is in fact only the micro-resistivity curve (RD) making such a difference. The

excellent discrimination is not a property of resistivity itself. Rather, the deep resistiv-

ity is a good but not outperforming discriminator. The different behaviour can also be

seen on a box-and-whisker plot of both curves divided by classes (Figure 6.3). While

the micro-resistivities of the Dipmeter (DIP) show distinct medians that increase with

depth (class 1 is on top of class 2 and so on), the dual laterolog’s (DLL) deep resistiv-

ity medians and interquartile ranges are more overlapping, especially in classes 1–4.

Formally, an one-way analyis of variance (one-way ANOVA) yields the same results
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Data from PRGL-1.

that are then statistically well-founded. The one-way ANOVA tests the data on the

variability between groups and on variability within groups (Davis, 2002). It outputs

a F statistic that is compared to a critical value Fc. If F is larger than this value, the

result supports the alternate hypothesis that one or more of the samples are drawn

from groups with different means. For borehole PRGL-1, F values are 809 (DIP) and

505 (DLL), respectively. Fc is 2.4 in both cases (assuming a 5 % level of significance),

therefore both curves show significant different group means. Regarding borehole

PRAD-1, no such investigation utilising the deep resistivity could be performed since

this curve had not been recorded over the entire interval.

It seems that micro-resistivity is dependent on depth-related parameters such as

compaction whereas resistivity is not. When looking at the original curves (Fig-

ure 6.4), micro-resistivity shows a wider range while the deep resistivity is more

stable, especially at the top and the bottom part of the interval. The Dipmeter tool

buttons that record the micro-resistivity at the sonde’s four arms are pushed into the

borehole wall hydraulically. As the name suggest, there is little depth of penetration.

Only the bulk resistivity in the closest surrounding of the button is contributing to

the output. Evidently, this lies within the invaded zone (see Figure 3.2) thus being

exposed to drilling mud. Therefore the tool response is generally thought to be lit-

tle if at all influenced by formation fluids (being replaced by the drilling mud) but

reflects rock properties. This interpretation however has to be questioned in clay

regimes like the ones at PROMESS-1 boreholes where effective porosity (from inter-
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Figure 6.4: Resistivity logs of borehole PRGL-1. Mean Dipmeter micro-resistivities are
plotted in black, deep laterolog resistivities are grey. Numbers (1–5) denote the strati-
graphical units (classes).

connected pores) is extremely low. Here, varying resistivity values could be explained

by changing fractions of pore fluids and hence pore space, i.e. by compaction. Al-

though this is supported by increasing resistivities (less conductive pore fluids) with

depth (more overburden pressure) it does not explain why the DLL deep resistiv-

ity does not respond in a similar way. Although the vertical resolution of DLL and

Dipmeter resistivities are not the same (DLL is averaging over a few decimetres, Dip-

meter records a value every half centimetre, see Appendix C), this discrepancy is

considered negligible because the sequences are large scale sedimentary units. Con-

cluding, the good discriminating properties of the micro-resistivity has to be due to

some interaction of the (conductive) drilling mud with the formation that changes

(distinctively) with each stratigraphic sequence. This may be indeed subtle changes

in porosity (though at a generally low level) that are caused by compaction effects.

Due to the generally low-permeable clays only fluids outside the equilibrated sys-

tem (such as drilling mud) could make these changes visible, which would explain

why these effects only occur within the close borehole vicinity (i.e. few millimetres).

Each sequence was deposited during glacial times and covered with interglacial sed-

iments. These were then exposed to rapid erosion (during which the compaction

effect could not be completely removed) until the next glacial period supplied new

sediments on top. Therefore the individual sequences could be distinguished by their
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different levels of compaction. Unfortunately, this scenario cannot be supported by

porosity data either from downhole logs or cores. It should be mentioned though

that the presented algorithms perform the classification task with good results only

when multiple logging curves are used. Reducing this task to one of simply convert-

ing compaction effects into stratigraphical sequence discrimination would not seem

to be adequate.

Because compaction has now been established as a major class discriminator for

both boreholes PRAD-1 and PRGL-1, a remark should be made concerning the un-

derlying parameter of compaction, which is depth (z). For all classification tasks,

the spatial information of the data points (which is z) have been excluded. With the

given situations discussed in this work, classes are a succession of units with depth.

Mathematically, the class labels are a linearly ordered set with respect to z. Adding

this parameter to the training data would yield excellent results but these would be

solely based on z (see Figure 6.5a). This does not come as a surprise as the learn-

ing algorithms naturally detect this simple relationship and classify accordingly. It

has to be stated though that the inclusion of this information is of no use to the

interpreter as class boundaries are then solely dependent on the spatial location of

training samples as one can clearly see in Figure 6.5b where the boundaries are set

halfway between the nearest training samples. In the situation of PROMESS-1 data

classes are dependent on their spatial position (and thus on z) because of their lin-

early ordered nature. Including this extra information to the training data set falsifies

the classification process as it introduces a parameter that does not always represent

a physical property. Here, z (or compaction) is a physical property as well, but be-

cause the two features (linearly ordered set vs. compaction) are indistinguishable,

the depth information must be discarded. Also, in more general cases where classes

are mixed (with respect to z) and less "sorted", the inclusion of depth information

would not improve the classification result.

As for the other logging curves, they by and large cluster together. When compar-

ing the two boreholes PRGL-1 and PRAD-1, the bulk density seems to be a reason-

ably good discriminator in both cases. This would support the compaction concept

just described. Although this effect ought to be removed from the sonic logs (see

Section 4.1), they still show good discrimination behaviour at least as far as hole

PRGL-1 is concerned. On the low side, Copper downgrades the classification perfor-

mance in both cases (PRGL-1 and PRAD-1). The reason for this can only be very

speculative. It seems that the accumulation of this element within the clay material is

either independent from the sedimentation process or even corresponds to an oppos-

ing pattern of unknown nature. Again, an ANOVA supports these findings. Table 6.2

shows significantly different distribution for each log curve and class combination for
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Figure 6.5: (A) Classification results when including depth information into the training
data. Classification results dramatically improve as shown by the match figures. (B)
Classification results when training data only consists of depth z. Class boundaries
are dependent on the position of training data samples. LDA and PNN fail in this
situation. All data from PRGL-1.

hole PRGL-1. While resistivity (RD) and Titanium (Ti) have different distributions

for each class combination, Copper (Cu) shows the most similar distribution patterns

(6 out of 10). As to why Titanium shows significantly different distributions in the

ANOVA remains unsolved. Although the mean values are similar for classes 2 to 4,

the variance is generally low. Thus, the ANOVA result suggests distinct distributions

for each class boundaries but indeed such distinction only exists for classes 1 and 5

in this case.

The last questions that this work aims to answer is: can wireline measurements

produce a sufficient data basis on which glacial-interglacial stratigraphical sequences

can be distinguished? Evidently so, as both Tables 5.4 and 5.8 prove. Although the

results presented there are only an example dependent on the respective training

data set used, they show that core data are not strictly necessary to identify the

stratigraphical units. This is a quite reassuring result because core data are often not

available, be it due to technical or monetary difficulties. Remarkably, PROMESS-1

has been a reverse case. Data acquirable by wireline tools had to be replaced by core

measurements because some of the wireline logging data were not recorded due to

technical issues.
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Group
Curve 1vs.2 1vs.3 1vs.4 1vs.5 2vs.3 2vs.4 2vs.5 3vs.4 3vs.5 4vs.5 -s
RD + + + + + + + + + +
Ti + + + + + + + + + + 0

Ca + + + + + - + + + +
Co + + + + - + + + + +
Fe + + + + + + + - + +
H + + + + - + + + + +
Rh + + - + + + + + + + 1
Sr + + + + + + + - + +
U + + + + + - + + + +
V + + + + + - + + + +
Vp - + + + + + + + + +

Cr + + + - + + + - + +
Mn + + + + + - + - + + 2

SU + + + + + + + - - - 3

K - - - + + + + - + +
Th - - - + + + + - + + 4

Ni - + - + + - - + + - 5

Cu - + - + - - + - - + 6

Table 6.2: ANOVA results for all logging curves at PRGL-1. Each class is tested against
each other (top row). + symbols denote significantly different distributions, - symbols
denote the opposite (all with a 95 % level of confidence). The -s column sums all
occurrences of non-different distributions for each logging curve.

Links to Existing Literature

Relating the findings of this work to previously published results by other authors is

not a straightforward task. There are several new aspects that have not been pub-

lished by others yet. Because there is no best classifier as such, the algorithms’ perfor-

mances can only be evaluated in the framework of shallow marine sediments, if not

only shallow marine sediments in the Mediterranean Sea. In the existing literature,

backpropagation neural networks are frequently applied to (wireline) logging data.

Core scanning data has not been subjected to such learning algorithms at all. Also,

there is little communication regarding the application of SVM or PNN to geophysi-

cal log data. "Simple" algorithms such as LDA or kNN seem not to be worthwhile to

become published, which this work proves to be unjustified. Applying several clas-

sifiers to PROMESS-1 data is indeed a case study, but it is more than that. Existing

and widely known algorithms as well as new methods have been compared to each

other to reveal structural advantages of some algorithms over others —for the specific

case of this data set. Side results include experience and recommendations regarding

training set size, sample techniques, computing times, variance and parameters.
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Conclusions

The comparison of several supervised learning algorithms applied to classify logging

data from shallow marine sediments of the PROMESS-1 project yields the following

results:

Among the tested algorithms, those that are both non-parametric and discriminat-

ing (SVM, kNN and PNN) are best suited to learn and classify stratigraphical units

based on core and wireline log data. The three mentioned algorithms are superior in

terms of absolute match levels (when comparing the classification output with true

class labels), variance of results when using different training data sets and number

of training samples required. ANN and QDA perform equally well if sufficient train-

ing data are available. The linear classifiers LDA and LGR cannot be recommended

for this kind of learning task, as their performance levels are considerably lower. Fur-

thermore, computing times of the LGR algorithm become prohibitively large when

dealing with larger training data sets.

Supervised learning requires a training data set with known (and correct) class

labels. The following properties of the training data set are found to be beneficial to

the classification match in case of logging data:

All classes to be classified have to be adequately represented by the training data

set. If the relative number of training samples of a class is very low compared to

that of other classes, underfitting occurs and the result is corrupted. Also, the entire

interval should be covered by the training data if possible. In large areas without

training samples misclassifications are more likely to occur. In general, the more

training data are available the better the classification match will be. The number of

training samples is by no means the only parameter controlling the final performance,

but may severely affect the result in extreme cases (i.e. when the number is very low).

Aside from that, the distribution of logging data is not important to the algorithms.

Even in cases where a Gaussian distribution is formally required algorithms perform

fairly well.

Bagging is an easy yet effective method to improve backpropagation neural net-

works that suffer from too few training data. Already good performing classifiers are

not boosted much by this technique.

The mean Dipmeter micro-resistivity proves to be the best discriminating log curve.

Results are boosted when this curve is part of the training data although the perfor-

mance is not solely dependent on its inclusion in the data set. The reason for this

are thought to be compaction effects involving very small porosity changes within

the invaded zone around the borehole. In general, log curves acquirable by wireline

tools perform nearly as good as a combination of all wireline, MSCL and XRF data.
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Thus, in case where no core data are available, stratigraphic sequences can still be

classified by exclusive means of wireline data.

Outlook

This work represents a thorough comparison of different classification algorithms

applied to data acquired during the PROMESS-1 project. For this kind of logging

data and classification goal, the best algorithms have now been determined. The

question remains how specific the results are. The findings of this thesis are valid

for wireline and core logging data recorded in the shallow marine regime of the two

presented sedimentary systems in the Mediterranean Sea. Whether the classification

of logging data from other geological settings and with different classification goals

would yield similar results may be the focus of further research. Such goals could be

permeability / porosity estimation, lithofacies discrimination or fracture detection.

As far as similar settings and goals are concerned, this work shows that in the ab-

sence of cores, stratigraphical sequences can still be accurately established by means

of wireline data. Seismic data are generally capable to provide enough information

to roughly identify sedimentary units and thus generate a training data set. Using the

above mentioned non-linear discriminative algorithms, wireline log data can then

be used to detect sequence boundaries with the high resolution typically provided

by those measurements. The feasibility of such application has been proven in this

work.

PROMESS-1 data were simple data sets in terms of their linearly ordered class la-

bels with no interchanging class units. This makes the data appear depth-dependent

although all presented algorithms are capable of classification without such strong

dependency. Thus, the presented data do not properly show the comprehensive po-

tential of these algorithms. Future work may demonstrate their feasibility when ap-

plied to more complex classification tasks.
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A. Logging Data (Gulf of Lion)

D60

D50

D45

D40

Ca (cps)0 7000 Co (cps)0.0 300.0 Cr (cps)0.0 50.0 Cu (cps)0.0 50.0

75

100

125

150

175

200

   H

 (cps)
40    80      Mn

    (cps)
0     200    Ni

  (cps)
0    40    Sr

  (cps)
0    80      Ti

   (cps)
0     200     V

  (cps)
0    50

Figure A.1: Logging data of PRGL-1: Ca, Co, Cr, Cu, H, Sr, Ni, Mn, Ti and V. Sequence
boundaries D40 to D60 are shown as used for classification. Depth in mbsf.
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Figure A.2: Logging data of PRGL-1: Fe, susceptibility, density, sonic, K, Th, U and
resistivity. Sequence boundaries D40 to D60 are shown as used for classification.
Depth in mbsf.
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B. Logging Data (Adriatic Sea)
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Figure B.1: Logging data of PRAD-1: Ca, Co, Cr, Cu, V, Ti, Sr, Ni and Mn. Class bound-
aries ES3 to ES4 are shown as used for classification. Depth in mbsf.
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Figure B.2: Logging data of PRAD-1: K, Th, U, resistivity, density, sonic, Fe and suscepti-
bility. Class boundaries ES3 to ES4 are shown as used for classification. Depth in mbsf.
Th, U and resistivity curves have been smoothed.
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C. Tool Parameters

Sample Penetration Logging

Tool Rate (cm) Depth (cm) Speed (m/min)

Caliper 5 0 10

Spectral Gamma-ray 10 15–20 3

Geochemical Sonde 10 5–10 1

Dipmeter 0.5 <1 5

Dual-laterolog 5 30–100 10

Micro-susceptibility 2 15–20 4

MSCL 1 Core diameter N/A

XRF 2 or 4 Core diameter N/A

Table C.3: Tool parameters for wireline sondes, MSCL system and XRF scanner.
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Appendix D: Data Distribution (Gulf of Lion)

D. Data Distribution (Gulf of Lion)
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Figure D.1: Normal probability plots of the 18 logging curves at hole PRGL-1. Com-
bined training and test data between 65 and 213 mbsf @ 5 cm sampling interval
(2946 log readings) are plotted. Gaussian distributed data show as a straight line,
curvatures indicate a different underlying probability density function. Ca = Cal-
cium; Co = Cobalt; Cr = Chromium; Cu = Copper; Fe = Iron; H = Hydrogen; K =
Potassium; Mn = Manganese; Ni = Nickel; RD = mean electrical micro-resistivity; Sr =
Strontium; SU = magnetic susceptibility; Th = Thorium; Ti = Titanium; U = Uranium; V =
Vanadium; Rho = density; VP = sonic compressional velocity.
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Figure D.2: Histograms of the 18 logging curves at hole PRGL-1. Combined training
and test data between 65 and 213 mbsf @ 5 cm sampling interval (2946 log readings)
are grouped into

√
2946 ≈ 54 bins. Ca = Calcium; Co = Cobalt; Cr = Chromium; Cu

= Copper; Fe = Iron; H = Hydrogen; K = Potassium; Mn = Manganese; Ni = Nickel;
RD = mean electrical micro-resistivity; Sr = Strontium; SU = magnetic susceptibility;
Th = Thorium; Ti = Titanium; U = Uranium; V = Vanadium; Rho = density; VP = sonic
compressional velocity.
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E. Data Distribution (Adriatic Sea)
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Figure E.1: Normal probability plots of the 17 logging curves at hole PRAD-1. Com-
bined training and test data between 45 and 71 mbsf @ 5 cm sampling interval
(519 log readings) are plotted. Gaussian distributed data show as a straight line,
curvatures indicate a different underlying probability density function. Ca = Cal-
cium; Co = Cobalt; Cr = Chromium; Cu = Copper; Rho = density; Fe = Iron; K =
Potassium; Mn = Manganese; SU = magnetic susceptibility; Ni = Nickel; RD = mean
electrical micro-resistivity; Sr = Strontium; Th = Thorium; Ti = Titanium; U = Uranium; V =
Vanadium; VP = sonic compressional velocity.
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Figure E.2: Histograms of the 17 logging curves at hole PRAD-1. Combined training
and test data between 45 and 71 mbsf @ 5 cm sampling interval (519 log readings)
are grouped into 54 bins. Ca = Calcium; Co = Cobalt; Cr = Chromium; Cu = Copper;
Rho = density; Fe = Iron; K = Potassium; Mn = Manganese; SU = magnetic susceptibil-
ity; Ni = Nickel; RD = mean electrical micro-resistivity; Sr = Strontium; Th = Thorium; Ti =
Titanium; U = Uranium; V = Vanadium; VP = sonic compressional velocity.
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F. Classification Results with 50 % Training Data

(Gulf of Lion)
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Figure F.1: Classification of hole PRGL-1. From left to right: Training data set (50 % of
all available data per class); true class labels (sequence 1 = red, 2 = blue, 3 = green,
4 = orange, 5 = grey); linear discriminant analysis; quadratic discriminant analysis;
support vector machine; k-nearest neighbour; logistic regression; artificial neural net-
work; probabilistic neural network.
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G. Classification Results with 50 % Training Data

(Adriatic Sea)
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Figure G.1: Classification of hole PRAD-1. From left to right: Training data set (50 % of
all available data per class); true class labels (sequence 1 = red, 2 = blue, 3 = green,
4 = orange, 5 = grey); linear discriminant analysis; quadratic discriminant analysis;
support vector machine; k-nearest neighbour; logistic regression; artificial neural net-
work; probabilistic neural network.

120



Bibliography

Bibliography

N.B.: All online references citing digital content within the world wide web are inherently

non-permanent. When online links are cited, they refer to the respective online content as of

June 1, 2006.

Allwein, E. L., Schapire, R. E., & Singer, Y., 2000. Reducing multiclass to binary: a unifying

approach for margin classifiers, Journal of Machine Learning Research, 1, 113–141.

Baldwin, J. L., Otte, D. N., & Wheatley, C. L., 1989. Computer emulation of human mental

process: application of neural network simulations to problems in well log interpretation,

Society of Petroleum Engineers Paper 19619, pp. 481–493.

Bellmann, R., 1961. Adaptive control processes: a guided tour, Princeton University Press.

Benaouda, D., Wadge, G., Whitmarsh, R. B., Rothwell, R. G., & MacLeod, C., 1999. Inferring

the lithology of borehole rocks by applying neural network classifiers to downhole logs: an

example from the Ocean Drilling Program, Geophysical Journal International, 136, 447–

491.

Berné, S., Satra, C., Aloïsi, J. C., Baztan, J., Dennielou, B., Droz, L., Dos Reis, A. T., Lofi,

J., Méar, Y., & Rabineau, M., 2002. Carte morpho-bathymétrique du Golfe du Lion, notice

explicative, IFREMER, Brest, France.

Berné, S., Rabineau, M., Flores, J. A., & Sierro, F. J., 2004. The impact of Quaternary global

changes on strata formation: exploration of the shelf edge in the northwest Mediterranean

Sea, Oceanography, Strata formation on European margins: a tribute to EC-NA cooperation

in marine geology, Special Publication, 17(4), 92–103.

Bhatt, A. & Helle, H. B., 2002a. Committee neural networks for porosity and permeability

prediction from wireline logs, Geophysical Prospecting, 50, 645–660.

Bhatt, A. & Helle, H. B., 2002b. Determination of facies from well logs using modular neural

networks, Petroleum Geoscience, 8, 217–228.

Bouchard, G. & Triggs, B., 2004. The trade-off between generative and discriminative classi-

fiers, in Proceedings of COMSTAT 2004 Symposium, edited by J. Antoch, Physica Verlag.

Bücker, C. J., pers. comm. RWE Dea, Hamburg, Germany.

121



On Classification of Logging Data

Bücker, C. J., Jarrard, R. D., Wonik, T., & Brink, J. D., 2000. Analysis of downhole logging

data from CRP-2/2A, Victoria Land basin, Antarctica: a multivariate statistical approach,

Terra Antarctica, 7(3), 299–310.

Busch, J. M., Fortney, W. G., & Berry, L. N., 1987. Determination of lithology from well logs

by statistical analysis, SPE Formation Evaluation, 2, 412–418.

Cattaneo, A., Trincardi, F., Langone, L., Asioli, A., & Puig, P., 2004. Clinoform generation on

Mediterranean margins, Oceanography, Strata formation on European margins: a tribute to

EC-NA cooperation in marine geology, Special Publication, 17(4), 105–117.

Caudhill, M., 1991. Neural network training tips and techniques, AI Expert, 6(1), 56–61.

Cover, T. & Hart, P., 1967. Nearest neighbor pattern classification, in Proceedings of IEEE

Transactions on Information Theory, pp. 21–27.

CSCF, 1984. Catalogue sédimentologique des côtes françaises: côtes de la Méditerranée de

la frontière espagnole à la frontière italienne, in Collections de la direction des études et

recherches d’élecricité de France, p. 290, Ministère des transports, Paris.

Davis, J. C., 2002. Statistics and data analysis in geology, John Wiley & Sons, 3rd edn.

Dennielou, B., pers. comm. IFREMER, Géosciences Marines, Centre de Brest, France.

Derek, H., Johns, R., & Pasternack, E., 1990. Comparative study of backpropagation neural

network and statistical pattern recognition techniques in identifying sandstone lithofacies,

1990 Conference on Artificial Intelligence in Petroleum Exploration & Production, pp. 41–49.

Dietterich, T. G. & Bakiri, G., 1995. Solving multiclass learning problems via error-correcting

output codes, Journal of Artificial Intelligence Research, 2, 263–286.

Droz, L. & Bellaiche, G., 1985. Rhône deep-sea fan: morphostructure and growth pattern,

American Association of Petroleum Geologists Bulletin, 69, 460–479.

Duda, R. O., Hart, P. E., & Stork, D. G., 2001. Pattern Classification, Wiley-Interscience, 2nd

edn.

Fisher, R. A., 1936. The use of multiple measurements in taxonomic problems, Annals of

Eugenics, 7(2), 179–188.

FitzGerald, E. M., Bean, C. J., & Reilly, R., 1999. Fracture-frequency prediction from borehole

wireline logs using artificial neural networks, Geophysical Prospecting, 47, 1031–1044.

Flores, J. A., pers. comm. Geociencias Oceánicas, Universidad de Salamanca, Spain.

Fort, G., 2005. Inference in logistic regression models (MATLAB codes). Software, École Na-

tionale Supérieure, France.

122



Bibliography

Fort, G. & Lambert-Lacroix, S., 2005. Classification using partial least squares with penalized

logistic regression, Bioinformatics, 21(7), 1104–1111.

Fugro Engineers B.V., 2003. Geological report: geotechnical and operational data, scientific

research on deltaic margins, Mediterranean and Adriatic Sea, unpublished field report,

issue 2 N4373/01, PROMESS-1.

Hastie, T., Tibshirani, R., & Friedman, J., 2001. The elements of statistical learning, Springer

Series in Statistics, Springer.

Hendriks, P. H. G. M., 2003. In-depth Gamma-ray studies: Borehole measurements, Ph.D. the-

sis, Rijksuniversiteit Groningen, Holland.

Hsu, C.-W. & Lin, C.-J., 2001. A comparison of methods for multi-class support vector ma-

chines, Tech. Rep. 19, Department of Computer Science and Information Engineering, Na-

tional Taiwan University, Taipei, Taiwan.

Hsü, K. J., Cita, M. B., & Ryan, W. B. F., 1973. The origin of the Mediterranean evaporites,

Initial Reports of the Deep Sea Drilling Project, 13, 1203–1231.

Kecman, V., 2001. Learning and soft computing: support vector machines, neural networks and

fuzzy logic models, MIT Press.

Kiefte, M., 1999. Discriminant Analysis Toolbox, version 0.3. Software, Dalhousie University,

Canada.

LeCun, Y., 1985. A learning scheme for asymmetric threshold networks, in Proceedings of

Cognitiva 85, pp. 599–604.

Lee, J. W., Lee, J. B., Park, M., & Song, S. H., 2005. An extensive comparison of recent

classification tools applied to microarray data, Computational Statistics and Data Analysis,

48, 869–885.

Lippmann, R. P., 1987. An introduction to computing with neural nets, IEEE ASSP Magazine,

4(2), 4–22.

Liu, Y. & Sacchi, M. D., 2003. Propagation of borehole derived properties via a support vector

machine (SVM), CSEG Recorder, December 2003, 54–58.

Lofi, J., Rabineau, M., Gorini, C., Berné, S., Clauzon, G., de Clarens, P., Tadeu Dos Reis,

A., Mountain, G. S., Ryan, W. B. F., Steckler, M. S., & Fouchet, C., 2003. Plio-Quaternary

prograding clinoform wedges of the western Gulf of Lion continental margin (NW Mediter-

ranean) after the Messinian Salinity Crisis, Marine Geology, 198(3-4), 289–317.

Michie, D., Spiegelhalter, D., & Taylor, C., 1994. Machine learning, neural and statistical clas-

sification, Ellis Horwood Series in Artificial Intelligence, Ellis Horwood.

Moore, A. W., 2001. Learning with maximum likelihood. Unpublished lecture slides, Carnegie

Mellon University, USA.

123



On Classification of Logging Data

Nittrouer, C. A., Miserocchi, S., & Trincardi, F., 2004. The PASTA project: investigation of Po

and Apennine sediment transport and accumulation, Oceanography, Strata formation on

European margins: a tribute to EC-NA cooperation in marine geology, Special Publication,

17(4), 46–57.

Ori, G. G., Roveri, M., & Vannoni, F., 1986. Plio-pleistocene sedimentation in the Apenninic-

Adriatic foredeep (Central Adriatic Sea, Italy), in Foreland Basins, edited by P. A. Allen

& P. Homewood, vol. 8 Special Publications, pp. 183–198, International Association of

Sedimentologists.

Pauc, H., 1970. Contribution à l’étude dynamique et structurale des suspensions solides au large

du Grand Rhône (Crau de Roustan), Thèse de 3ème cycle, Université de Toulouse Paul

Sabatier, Toulouse.

Rabineau, M., 2001. Un modèle géométrique et stratigraphique des séquences de dépôts qua-

ternaires de la plateforme du Golfe du Lion: enregistrement des cycles glacioeustatiques de

100,000 ans, Ph.D. thesis, Université de Rennes 1, Rennes.

Rabineau, M., Berné, S., Aslanian, D., Olivet, J., Jospeh, P., Guillocheau, F., Bourillet, J.,

Ledrezen, E., & Granjeon, D., 2005. Sedimentary sequences in the Gulf of Lion: a record

of 100,000 years climatic cycles, Marine and Petroleum Geology, 22, 775–804.

Rogers, S. J., Fang, J. H., Karr, C. L., & Stanley, D. A., 1992. Determination of lithology from

well logs using a neural network, The American Association of Petroleum Geologists Bulletin,

76(5), 731–739.

Rosenblatt, F., 1959. The perceptron: a probabilistic model for information storage and orga-

nization in the brain, Psychological Review, 65, 386–408.

Rothwell, R. G., Hoogakker, B., Thomson, J., & Croudace, I. W., 2005. Turbidite emplace-

ment on the southern Balearic Abyssal Plain (W. Mediterranean Sea) during marine isotope

stages 1-3; an application of XRF scanning of sediment cores in lithostratigraphic analysis,

in New ways of looking at sediment cores and core data, edited by R. G. Rothwell, Geological

Society, London.

Rubinstein, Y. D. & Hastie, T., 1997. Discriminative vs informative learning, in Proceedings

of the Third International Conference on Knowledge Discovery and Data Mining, edited by

D. Heckerman, H. Mannila, D. Pregibon, & R. Uthurusamy, pp. 49–53, AAAI Press.

Rumelhart, D. E. & McClelland, J. L., 1986. Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, vol. 1: Foundations, MIT Press.

Schumann, A., 1995. Neural networks versus discriminant analysis: lithological classification

of geophysical wireline logs, Zentralblatt für Geologie und Paläontologie, 1(9), 843–852.

Schumann, A., 2002. Hidden Markov models for lithological well log classification, Terra

Nostra, 4, 373–378.

124



Bibliography

Serra, O., 1984. Fundamentals of well-log interpretation, vol. 1. The acquistion of logging data,

Elsevier.

Trauth, M. H., 2003. Praktische Statistik und numerische Methoden. Unpublished handout,

Universität Potsdam, Germany.

Trincardi, F. & Correggiari, A., 2000. Quaternary forced regression deposits in the adriatic

basin and the record of composite sea-level cycles, Sedimentary Responses to Forced Regres-

sions. Geological Society, London, Special Publications, 172, 245–269.

Trincardi, F., Asioli, A., Cattaneo, A., Correggiari, A., & Langone, L., 1996. Stratigraphy of the

late-Quaternary deposits in the Central Adriatic basin and the record of short-term climatic

events., Memorie dell’ Istituto Italiano di Idrobiolgia, 55, 39–70.

Trincardi, F., Cattaneo, A., Correggiari, A., & Ridente, D., 2004. Evidence of soft sediment de-

formation, fluid escape, sediment failure and regional weak layers within the late Quater-

nary mud deposits of the Adriatic Sea, Marine Geology, COSTA - Continental Slope Stability,

Special Publication edited by Mienert, J., 213(1-4), 91–119.

USGS, 2000. NLT Landsat7 images from U.S. Geological Survey, EROS data center, Sioux

Falls, SD, USA, via World Wind (http://worldwind.arc.nasa.gov/).

Vapnik, V. N., 1979. Estimation of dependencies based on empirical data, Nauka.

Vapnik, V. N., 1998. Statistical learning theory, Wiley.

Vapnik, V. N., 2000. The nature of statistical learning theory, Information Science and Statis-

tics, Springer, 2nd edn.

Vapnik, V. N. & Chervonenkis, A. J., 1968. On the uniform convergence of relative frequencies

of events to their probabilities, Doklady Akademii Nauk USSR, 181(4).

Vapnik, V. N. & Chervonenkis, A. J., 1989. The necessary and sufficient conditions for consis-

tency of the method of empirical risk minimization, in Yearbook of the Academy of Sciences

of the USSR in Recognition, Classification and Forecasting, no. 2, pp. 217–249, Nauka.

Werbos, P. J., 1974. Beyond regression: new tools for prediction and analysis in the behavioral

sciences, Ph.D. thesis, Harvard University, Cambridge, MA.

Weston, J., Elisseeff, A., Bakir, G., & Sinz, F., 2005. The Spider, version 1.6. Software, Max

Planck Institute for Biological Cybernetics, Germany.

White, J., pers. comm. Schlumberger Oilfield UK Plc.

Wiener, J. M., Rogers, J. A., Rogers, J. R., & Moll, R. F., 1991. Predicting carbonate permeabil-

ities from wireline logs using a back-propagation neural network, in Expanded abstracts of

the technical program with author’s biographies, vol. 1, pp. 285–288, Society of Exploration

Geophysicists.

125

http://worldwind.arc.nasa.gov/


On Classification of Logging Data

Wolpert, D. H., 1995. The relation between PAC, the statistical physics framework, the

Bayesian framework, and the VC framework, in The Mathematics of Generalization, edited

by D. H. Wolpert, Addison-Wesley.

Wong, K. W., Ong, Y. S., Gedeon, T. D., & Fung, C. C., 2003. Intelligent well log data analy-

sis for reservoir characterization, in Proceedings of the Fourth International Conference on

Intelligent Technologies (Intech’03), pp. 203–208, Chiang Mai, Thailand.

Wong, P. M., Gedeon, T. D., & Taggart, I. J., 1995. An improved technique in porosity pre-

diction: a neural network approach, IEEE Transactions on Geosciences and Remote Sensing,

33(4), 971–980.

Zhu, J. & Hastie, T., 2004. Classification of gene microarrays by penalized logistic regression,

Biostatistics, 5(3), 427–443.

126



Bibliography

This thesis was set with LATEX 2ε provided by the MiKTeX 2.4 distribution. The KOMA class

"scrreprt" was used along with the following packages: inputenc, fontenc, scrpage2, color,

array, colortbl, setspace, newcent, charter, graphicx, natbib, amsfonts, bm, dsfont, textcomp,

units, makeidx, footmisc and hyperref. The bibliography style is "gji".

127



On Classification of Logging Data

Index

Activation function, 50

Adriatic Sea, 22

ANOVA, 101, 104

Bagging, 78, 91, 98

Bayes formula, 39

Bias, 59

Black box, 100

Bootstrap aggregation, see Bagging

Box-and-whisker plot, 77

Cable slack, 30

Cable slippage, 30

Cable stretch, 29

Calliper, 32

Chi-square test, 67, 83

Classification, 14

Classifier

component, 58

discriminative, 40, 97

generative, 40

informative, 40

linear, 41

non-linear, 41, 98

non-parametric, 40, 97

parametric, 41

Communalities, 38

Corer

Fugro, 26

PISTON, 26

WIP, 26

Cross-plot, 16

Curse of dimensionality, 37, 62

Depth control

core, 26

logs, 29

Detrital regime, 63, 81

Dimensionality reduction, 37

Dipmeter, 33

Discriminant analysis

linear, 16, 42, 69, 85

quadratic, 43, 69, 85

Drilling mud, 30

Eigenvalue, 66, 83

ENCOR processing, 32

Erosional surface, 63, 81

Error

generalisation, 59

training, 50, 51, 59

Factor analysis, 37, 66, 83, 94

Factor loadings, 38

Gaussian distribution, 67, 84

Generalisation, 15

Geochemical Tool, 33

Gradient descent, 51, 98

Gulf of Lion, 18

Hidden neuron, 71, 87

128



Index

Histogram, 67, 83

k-nearest neighbour algorithm, 16, 48,

69, 86

Kernel, 46, 70, 86

Gaussian product, 46

Kernel function, 46

Kolmogorov’s theorem, 50

Kolmogorov-Smirnov test, 67, 83

Laterolog, 33

Law of large numbers, 54

Layer

hidden, 49

input, 49

output, 49

Learning, 15

supervised, 15

unsupervised, 15

Log odds ratio, 45

Logistic Model, 44

Logistic regression, 16, 70, 86

Logit transformation, 44

Loss function, 39

Maximum-likelihood estimation, 41

Mediterranean Sea, 18

Messinian Salinity Crisis, 18

Micro-resistivity, 33, 101

Micro-Susceptibility

log, 34

MSCL, 27

Mode, 73

Model complexity, 59

Multi-Sensor Core Logging, 27

Nearest neighbour rule, 48, 69, 86

Neural network, 16

backpropagation, 70, 87

probabilistic, 71, 87

Neuron, 49

Normal probability plot, 67, 83

Ockham’s razor, xiii, 16

Off-training data, 68

Overfitting, 15

Parameter vector, 41

Parzen window, 16, 46, 52, 71

Pelagic regime, 63, 81

Perceptron, 49

Performance cross matrix, 73, 87, 99

Po, 22

Probabilistic neural network, 47, 52

Probability

posterior, 39

prior, 38

Probability density function

class-conditional, 38

PROMESS-1 project, 23

Radial basis function (RBF), 70, 86

Reference Datum, 30

Regression, 14

Rhône, 18

Risk

Bayes, 39

conditional, 39

empirical, 53

expected, 53

Saw-tooth pattern, 65

Sequence boundary, 63, 82

Smoothing, 73

Spectral Gamma-Ray, 32

Stop error condition, 71, 87

Supervised learning, 68

Support vector machine, 16, 70, 86

129



On Classification of Logging Data

Synapse, 49

Test data, 68, 84

Tool drag, 30

Topology, 49, 71, 87

Training data, 68, 84

Transformation function, 44

Underfitting, 100

Variance, 66, 83, 98

Analysis of, see ANOVA

Weight, 49

Window function, 46

Window width, 46

X-Ray Fluorescence (XRF), 29

130



Curriculum Vitae

Curriculum Vitae

Name: Ralf Wilfried Gelfort

Date of Birth: August 27, 1974

Place of Birth: Karlsruhe, Germany

Nationality: German

Marital Status: Single

Professional Record:

since 2006 Technical advisor for Baker Hughes INTEQ GmbH, Celle, Germany.

Member of LWD technology transfer group.

2003 – 2006 Research assistant at GGA Institut, Hannover, Germany. Principal

member of borehole geophysics research group. Contribution to EC

project PROMESS-1.

June/July 2005 Wireline logging consultant for Antares Datensysteme GmbH, Stuhr,

Germany. Training and tool presentions for Weatherford Bin

Hamoodah, Abu Dhabi, UAE.

2000 – 2002 Senior field engineer for Schlumberger Oilfield Services, Kazakhstan.

Specialist for open and cased hole logging. Lead engineer for Maersk

Oil Kazakhstan project.

1999 IT consultant for "Gabinet Tècnic d’Innovació Educativa" (gtie),

Barcelona, Spain.

Education:

1997 – 1998 M.Sc. in Marine Geotechnics at University of Wales, Bangor, UK. Mas-

ter thesis "Adapted Processing of Seismic Reflection Data Recorded

with a Marine Deep-Towed System".

May – August 1998 ERASMUS "Mercator" exchange at Renard Centre of Marine Geology

(RCMG), University of Ghent, Belgium.

1994, 1996 – 1997 Studies in geophysics at University of Kiel, Germany. "Vor-Diplom" in

1996.

1988 – 1993 Secondary school "Friedrich Wilhelm Gymnasium", Cologne, Ger-

many. "Abitur" in 1993.

131


	Introduction
	Geological Setting
	Gulf of Lion
	Adriatic Sea
	PROMESS-1 Project

	Data Acquisition
	Core Logging
	Depth control
	Multi-Sensor Core Logging (MSCL)
	X-Ray Fluorescence (XRF) Core Scanning

	Wireline Logging
	Depth Control
	Mud System
	Tools


	Classification Techniques
	Pre-Processing
	Data distribution
	Normalisation
	Dimensionality Reduction
	Class Labels

	Bayesian Decision Theory
	Algorithms
	Maximum-Likelihood Estimation
	Discriminant Analysis
	Logistic Regression
	Parzen Windows
	k-Nearest Neighbour Estimation
	Artificial Neural Networks
	Support Vector Machine

	Other Considerations
	Bagging
	Bias and Variance
	Computational Performance and Software Used


	Stratigraphical Classification
	Gulf of Lion
	Conventional Interpretation
	Data Used
	Factor Analysis
	Data Distribution
	Supervised Learning
	Input Data Selection

	Adriatic Sea
	Conventional Interpretation
	Data Used
	Factor Analysis
	Data Distribution
	Supervised Learning
	Input Data Selection


	Discussion & Conclusions
	Appendix
	A. Logging Data (Gulf of Lion)
	B. Logging Data (Adriatic Sea)
	C. Tool Parameters
	D. Data Distribution (Gulf of Lion)
	E. Data Distribution (Adriatic Sea)
	F. Classification Results with [50]% Training Data (Gulf of Lion)
	G. Classification Results with [50]% Training data (Adriatic Sea)

	Bibliography
	Index

