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Abstract i

Abstract

The Black Sea is the largest anoxic basin in the world. Organic matter deposited at 

the continental slopes leads to high gas concentrations within the sediments. Compressive 

deformation at the margins of the Black Sea due to the collision of Arabia and Eurasia 

during the Eocene, in combination with a thick sediment coverage forces over-pressured 

fluids and upward fluid migration towards the seafloor, which is expressed by abundant 

seafloor seepage along the continental slopes of the Black Sea. Two areas in the Black 

Sea, the Sorokin Trough (offshore Crimea) and the continental slope offshore Batumi 

(Georgia) were investigated with high resolution multichannel seismic and additional 

acoustic data in order to study the distribution, structure and evolution of mud volcanoes 

and gas seeps and their relation to fluid migration pathways and gas and gas hydrate 

occurrences in the subsurface. The data of the Sorokin Trough were collected during the 

Meteor cruise M52/1 and include a 3D seismic dataset across the Sevastopol mud volcano. 

Offshore Batumi high resolution multichannel seismic data were acquired during the TTR-15 

cruise (UNESCO Training Through Research Program).  

In the Sorokin Trough, north-south oriented compressive deformation leads to the 

protrusion of diapiric structures and facilitates fluid/gas migration towards the seafloor, 

resulting in a large number of mud volcanoes above the diapirs. In total, 25 mud volcanoes 

with great morphological variability were identified on the seismic data. The mud volcanoes 

are grouped in three areas of different geological setting, which influences the evolution of 

the individual mud volcanoes and hence their morphology. Generally, the evolution of the 

mud volcanoes could be linked to fluid migration along faults developed during the diapiric 

uplift. In the western Sorokin Trough, low permeability hemipelagic sediments inhibit vertical 

fluid migration. Seals lead to over-pressured fluids, forcing violent eruptions and forming the 

collapsed structures common in this area. The homogeneous fan deposits of the Palaeo 

Don-Kuban Fan in the central and eastern Sorokin Trough are characterized by increased 

permeability resulting in quiet effusive mud extrusions, reflected by cone-shaped structures. 

These mud volcanoes partly reach enormous dimensions with diameters up to 2000 m and 

heights of about 100 m where faults with large offsets allow high mud flow rates.

The new 3D seismic dataset collected during Cruise M52/1 in the Sorokin Trough 

images the detailed spatial geometry of the collapsed Sevastopol mud volcano and its 

relationships to diapiric ridges and fluid migration pathways. The seismic data show that the 

evolution of the Sevastopol mud volcano is related to a diapiric structure with two ridges 

located beneath the mud volcano. Upward fluid migration is concentrated along a deep fault 

system, which developed during the growth of the diapiric ridges in a compressional tectonic 

regime. An initial explosive eruption due to over-pressured fluids generated the collapsed 

depression of the Sevastopol mud volcano. Several cones observed inside of the 
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depression were formed by subsequent quiet mud extrusions. High amplitude reflections 

(Bright Spots) located above one of the diapiric ridges in the direct vicinity to the feeder 

channel indicate the presence of gas and gas hydrates controlled by focused fluid flow 

nearby the mud volcano. Bright Spots occur at constant depth, which coincidences with the 

approximate depth of the base of gas hydrate stability zone (BGHSZ). Therefore, the Bright 

Spots are interpreted to represent the phase boundary between gas and gas hydrates. 

Variable fluid flow might lead to temperature variations at the BGHSZ, explaining small 

depth variations of the Bright Spots. A continuous BSR is not imaged on the data, 

suggesting either that gas and gas hydrates form locally where fluid flow is focused, as e.g. 

in the surrounding of mud volcanoes, or that fluid flow is episodically, which would inhibit the 

formation of a BSR.

The continental slope of Batumi is characterized by a complex E-W trending 

canyon-ridge system. Numerous gas seeps occur on the top or flanks of ridge structures in 

water depths of 850-1200 m. In contrast to the Sorokin Trough, the seeps off Batumi are not 

related to major material upflow. The largest and most active seep is the Batumi Seep 

located on the Kobuleti Ridge in the central study area. High amplitude reflection patches 

beneath the surface of the seep indicate massive gas hydrate deposits formed as a result of 

focused fluid flow. Upward fluid migration at the Batumi Seep is related to faults. Generally, 

gas seeps off Batumi are associated with shallow gas accumulation, indicated by Bright 

Spots. A BSR, limited to the Kobuleti Ridge in the area of the Batumi Seep, occurs at 

abnormal great depth, which could be explained by low salinity pore water of 15‰. The 

protrusion of diapirs beneath the ridges controls the fluid migration pathways towards the 

top. Depressions between growing diapirs acted as preferred pathways for turbidity 

currents, which eroded the deeply incised canyons between the ridges.  
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Zusammenfassung

Das Schwarze Meer ist das größte anoxische Becken der Welt. Die Ablagerung 

organischen Materials an den Kontinentalhängen führt zu hohen Gaskonzentrationen in den 

Sedimenten. Aufgrund der Kollision der arabischen mit der eurasischen Platte im Eozän 

sind die Ränder des Schwarzen Meeres durch kompressionstektonische Deformation 

geprägt. In Kombination mit den mächtigen Sedimentablagerungen im Schwarzen Meer 

führt dies zu unter Überdruck stehenden Fluiden und begünstigt Fluidaufstieg zum 

Meeresboden. Als Folge existieren zahlreiche Fluidaustrittstellen, so genannte Seeps, an 

den Kontinentalhängen des Schwarzen Meeres. Zwei Gebiete im Schwarzen Meer, der 

Sorokin Trog südöstlich der Krim und der Kontinentalhang vor Batumi (Georgien), wurden 

intensiv mittels hochauflösender Mehrkanalseismischer und hydroakustischer Daten 

untersucht. Ziel der Messungen ist die Untersuchung der Verteilung, Struktur und 

Entwicklung von Schlammvulkanen und Gas Seeps. Weiterhin soll die Beziehung zwischen 

Seeps und Schlammvulkanen an der Oberfläche zu Fluidmigrationswegen, Gas and 

Gashydratvorkommen im Untergrund analysiert werden. Seismische Daten im Sorokin Trog 

inklusive eines 3D seismischen Datensatzes im Bereich des Sevastopol Schlammvulkans 

wurden während der Meteor-Fahrt M52/1 aufgezeichnet. Der hochauflösende 

Mehrkanalseismische Datensatz am Kontinentalhang vor Batumi wurde während der TTR-

15 Fahrt aufgezeichnet (UNESCO Training Through Research Program). 

N-S gerichtete Kompressionstektonik führt im Sorokin Trog zum Aufstieg W-E 

streichender Diapirrücken und fördert Fluidaufstieg zum Meeresboden, der sich in der 

Entstehung von Schlammvulkanen oberhalb der Diapire äußert. In den seismischen Daten 

wurden insgesamt 25 Schlammvulkane identifiziert, die eine große morphologische 

Variabilität aufweisen. Das Auftreten der Schlammvulkane im Sorokin Trog konzentriert sich 

auf drei Gebiete. Die unterschiedlichen sedimentologischen und geologischen 

Rahmenbedingungen in diesen Gebieten haben einen direkten Einfluss auf die 

Entstehungsmechanismen der Schlammvulkane und somit auch auf ihre Morphologie. Die 

Entstehung der Schlammvulkane ist an Fluidaufstieg entlang von Störungen gebunden, die 

während des Diapiraufstiegs entstanden sind. Im westlichen Sorokin Trog herrschen 

hemipelagische Sedimente vor, die nur geringen vertikalen Fluidaufstieg zulassen. 

Impermeable Lagen bilden häufig Fallen für Gas. Dadurch kommt es zur Bildung unter 

Überdruck stehende Fluide, die bei explosionsartigen Eruptionen schlagartig freigesetzt 

werden. Explosionsartige Eruptionen führen zu den Kollapsstrukturen am Meeresboden, die 

in diesem Gebiet vorherrschen. Die homogenen Fächersedimente im zentralen und 

östlichen Sorokin Trog weisen eine höhere Permeabilität auf und ermöglichen effusive 

Schlammextrusionen. Dies äußert sich in der Bildung kegelförmiger Schlammvulkane, die 
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im Bereich großer Störungen Kegel mit Durchmessern bis 2000 m und einer Höhe bis 100 

m bilden. 

Anhand des während der M52/1 Fahrt im Sorokin Trog aufgezeichneten 3D 

Datensatzes kann die dreidimensionale Struktur des Sevastopol Schlammvulkan detailliert 

dargestellt und in Bezug zu den Untergrundstrukturen gesetzt werden. Der Sevastopol 

Schlammvulkan liegt oberhalb einer Diapirstruktur mit zwei Diapirrücken. Fluidmigration 

entlang eines komplexen Störungssystems, das durch den Diapiraufstieg zwischen den 

Diapirrücken entstanden ist, kontrolliert die Entwicklung des Schlammvulkans. Die 

Entstehung der Kollapsstruktur lässt sich durch einen explosiven Ausbruch durch unter 

Überdruck stehender Fluide erklären. Nachfolgende Schlammextrusionen führten zur 

Bildung mehrerer Kegel innerhalb der Kollapsstruktur. Bright Spots oberhalb einer der 

Diapirrücken in direkter Nähe zum Förderkanal des Schlammvulkans weisen auf Gas und 

Gashydratvorkommen hin, die sich aufgrund des fokussierten Fluidflusses im Bereich des 

Förderkanals gebildet haben. Die Bright Spots liegen in relativ konstanter Tiefe unterhalb 

des Meeresbodens annähernd in der theoretisch berechneten Tiefe der Basis der 

Gashydratstabilitätszone (BGHSZ). Die Bright Spots stellen vermutlich die Phasengrenze 

zwischen freiem Gas und Gashydraten dar. Tiefenvariationen der Bright Spots können 

durch Temperaturänderungen infolge von variablem Fluidfluß erklärt werden. Das Fehlen 

eines BSR kann entweder bedeuten, dass Gas und Gashydrate lokal gebildet werden, wo 

fokussierter Fluidfluß auftritt, z.B. in der Umgebung von Schlammvulkanen, oder dass es 

aufgrund episodischen Fluidflusses nicht zur Bildung eines BSR kommt. 

Der Kontinentalhang bei Batumi ist morphologisch von einem komplexen W-E 

streichenden Canyon- und Rückensystem geprägt. Mehrere Gas Seeps treten am Top oder 

an den Flanken der Rückenstrukturen in 850-1200 m Wassertiefe auf. Diapiraufstieg 

unterhalb der Rücken kontrolliert die Fluidmigrationswege und beeinflusst die Entwicklung 

des Kanal- und Rückensystems. Im Gegensatz zum Sorokin Trog ist der Materialaufstieg im 

Batumi Gebiet gering. Das größte und aktivste Seep Gebiet ist das Batumi Seep Gebiet auf 

dem Kobuleti Rücken. Unterhalb des Meeresbodens deuten Reflexionen hoher Amplitude 

auf hohe Gashydratkonzentrationen hin, die sich aufgrund fokussierten Fluidflusses im 

Bereich des Batumi Seep gebildet haben. Im Bereich des Batumi Seep bilden Störungen 

die Fluidmigrationswege. Bright Spots in der Nähe der Gas Seeps weisen auf einen engen 

Zusammenhang zwischen Fluidaustritten und Gasansammlungen hin. Ein BSR, der nur 

entlang des Kobuleti Rückens im Bereich des Batumi Seep zu beobachten ist, liegt in 

ungewöhnlich großer Tiefe. Die große Tiefe des BSR kann mit Porenwasser geringer 

Salinität (15‰) erklärt werden. Depressionen zwischen den wachsenden Diapiren stellen 

bevorzugte Bahnen für Turbiditströme dar, die aufgrund ihrer erosiven Wirkung tief 

eingeschnittene Canyons zwischen den Diapiren geformt haben.  
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General outline of the thesis

The thesis is structured into five chapters. Chapter 1 is an introduction into the 

thesis. The introduction starts with a presentation about the main objectives of the thesis. 

This part is followed by a general overview about seeps, mud volcanoes, and gas hydrates. 

Afterwards, the geological setting of the Black Sea in general and of the specific study areas 

is introduced. At the end of Chapter 1, the applied methods and the processing of the data 

are described. Special emphasis is drawn on the high resolution seismic data, but the 

bathymetric and sediment echosounder systems are introduced as well. Three manuscripts 

(Chapters 2, 3 and 4) are the main part of the thesis. The first paper (Chapter 2) 

characterizes mud volcanoes in the Sorokin Trough. Chapter 3 presents a detailed analysis 

of the Sevastopol mud volcano by means of a 3D seismic dataset. Chapter 4 discusses the 

complex canyon-ridge system offshore Batumi (Georgia). Short outlines of the manuscripts 

are given below. A summary with the main conclusions of the research work and an outlook 

on future research interests in the study area form the final Chapter 5. 

Chapter 2: Characterization of mud volcanoes in the Sorokin Trough (Black 
Sea) from hydroacoustic data 

M. Wagner-Friedrichs, L. Meisner, S. Krastel, V. Spiess 

To be submitted to Marine Geology. 

Chapter 2 classifies mud volcanoes in the Sorokin Trough based on a combined 

interpretation of high resolution multichannel seismic and Parasound echosounder data. 

The data show that mud volcanoes are associated with near-surface mud diapirs but display 

a great morphological variability. Based on different structural and sedimentologic 

environments, the survey area was classified into three areas, which are characterized by 

different morphological mud volcano types. An interpretation of the morphological features 

and the subsurface structures provides different evolution models for the three mud volcano 

areas, related to the development of permeable migration pathways depending on the 

geological setting. The distribution of the mud volcanoes is put into a regional geological 

context, and related to deep subsurface structures based on single channel seismic data 

collected by the SSC “Yuzhmorgeologia” of Gelendzhik in 1979. 



Outline vi

Chapter 3: 3D seismic investigations of the Sevastopol mud volcano in 
correlation to gas/fluid migration pathways and gas hydrate occurrences in the 
Sorokin Trough (Black Sea) 

M. Wagner-Friedrichs, S. Krastel, V. Spiess, M. Ivanov, G. Bohrmann, L. Meisner 

Submitted to G-Cubed (in review). 

A 3D high resolution multichannel seismic dataset across the Sevastopol mud 

volcano in the Sorokin Trough allows detailed conclusions about the three dimensional 

structure of the mud volcano and its spatial relationships to subsurface structures. Based on 

the data, an evolution model for the mud volcano is presented, which shows that faults 

acting as potential migration pathways for gas and fluids have great impact on the formation 

of the mud volcano. Bright Spots near the feeder channel of the mud volcano indicate close 

interaction of gas/gas hydrates, fluid migration and the evolution of the mud volcano. It is 

suggested that the Bright Spots are associated with the base of gas hydrate stability zone, 

which is uplifted due to the rise of warm fluids next to the mud volcano.

Chapter 4: Gas seepage and gas/fluid migration associated with the canyon-ridge 

system offshore Batumi (Georgia, south-eastern Black Sea) inferred from 
multichannel seismic data

M. Wagner-Friedrichs, E. Bulgay, H. Keil, S. Krastel, G. Bohrmann, M. Ivanov, V. Spiess 

To be submitted to International Journal of Earth Sciences. 

In Chapter 4 the distribution of gas seeps and mound structures at a complex 

canyon-ridge system is analyzed based on high resolution multichannel seismic dataset 

collected at the continental slope off Batumi (Georgia). All seep locations and subsurface 

structures, such as diapiric structures and evidences for gas and gas hydrate occurrences, 

are mapped, showing that gas discharge off Batumi is associated with the ridge structures 

and related to shallow gas accumulations. It is discussed that diapirs, growing beneath the 

ridges, control the development of fluid migration pathways and also guide the trend of the 

canyons by creating pathways preferably used by turbidity currents. 
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1 General Introduction 

1.1 Main objectives of this study    

Seafloor seepage in the oceans includes cold seeps on active and passive 

continental margins, as well as volcanic and hydrothermal hot vents at ocean spreading 

centers, island arcs and intra-plate volcanoes (Judd, 2003). At cold seeps, great amounts of 

gas and fluids, dominated by methane, emit to the hydrosphere and atmosphere (Hovland 

and Judd, 1988; Judd, 1997). Seeps occur worldwide in different water depths outside and 

within the gas hydrate stability zone (GHSZ). Typically, seeps occur at continental slopes 

with thick organic rich sedimentary coverage forcing gas generation and fluid migration 

towards the seafloor (Judd, 2003). Methane is an intensive greenhouse gas with great 

potential impact on climatic change and carbon budget, thus numerous research projects 

investigate cold seeps and their impact on methane and carbon budgets of the world 

oceans and the atmosphere. Seeps are related to focused fluid migration and may indicate 

shallow gas accumulation and potential hydrocarbon reservoirs at greater depth. Gas can 

be released in dissolved form with fluids or as free gas bubbles. Seeps are often related to 

mud volcanoes (Hovland and Judd, 1988), positive or negative geological structures formed 

by effusive extrusions or violent eruptions of mud, water, and gas (e.g. Dimitrov, 2002). 

Estimates about the methane emissions through mud volcanoes vary between ~1 and 33 

Tg/year and are still uncertain, as estimates are based on simplified analyses of limited 

data. Estimations, however, show that mud volcanoes are an important source of methane 

and other hydrocarbons to the atmosphere and the world oceans (e.g. Dimitrov, 2002; Kopf, 

2002; Milkov, 2003a). Detailed characterization and studies of mud volcanoes and their 

subsurface structures are needed to improve the knowledge about their activity and 

contribution to the atmospheric methane budget, to understand why and how mud 

volcanoes are formed and what factors control the evolution of mud volcanoes, as well as to 

identify fluid migration pathways and eventually shallow gas accumulation or indications for 

deeper hydrocarbon reservoirs.  

The Black Sea provides great potentials to study fluid migration and the evolution of 

mud volcanoes and gas seeps, because the Black Sea contains high concentrations of gas 

in an anoxic environment. A thick sedimentary coverage in combination with compressive 

deformation at the margins of the Black Sea due to the collision between Arabia and 

Eurasia since Eocene time, lead to over-pressured fluids migrating upward towards the 

seafloor along faults. Numerous seeps and mud volcanoes occur on the continental slopes 

of the Black Sea. In order to characterize and investigate seep structures and mud 

volcanoes, as well as the relationship between the evolution of mud volcanoes/gas seeps, 

near-subsurface diapiric structures, fluid migration pathways, and gas/gas hydrate 
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occurrences, two regions of the Black Sea were investigated mainly based on high 

resolution multichannel seismic data: 

1) The Sorokin Trough southeast off Crimea (Fig. 1.1) 

2) The continental slope off Batumi (Georgia) (Fig. 1.1) 

Both selected areas of the Black Sea exhibit gas/fluid discharge at the seafloor in great 

water depth within the gas hydrate stability zone. In the Sorokin Trough, gas emission is 

associated with upward material transport and the formation of mud volcanoes above 

diapiric structures. The seeps off Batumi are associated with ridge structures within a 

complex canyon-ridge system and mainly represent simple gas/fluid vents without major 

morphological expression on the seafloor. The canyon-ridge system off Batumi is 

considered to be guided by diapiric uplift. The diapiric growth influences the sedimentary 

structure on top and hence also fluid migration pathways towards the seafloor.  

 The data were acquired during two different expeditions: (a) during RV Meteor 

cruise M52/1 in January 2002 offshore Crimea, and (b) during the TTR-15 cruise (UNESCO 

Training Through Research Program) with RV Professor Logachev offshore Georgia in June 

2005. The data off Crimea include a 3D seismic dataset across the Sevastopol mud 

volcano.

Figure 1.1: Bathymetric map of the Black Sea and the surroundings (Gebco 1-min 
grid). The red rectangles show the locations of the study areas. 
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The specific objectives of this thesis are: 

 To map all mud volcanoes and gas seeps together with the subsurface structures 

 To integrate the mud volcanoes/gas seeps into the regional tectonic and structural 

setting

 To study gas/fluid migration pathways related to the mud volcanoes and gas seeps 

 To seismically characterize and classify the mud volcanoes in the Sorokin Trough 

based on morphological features, such as shape and size 

 To develop evolution models for the different mud volcano types observed in the 

Sorokin Trough 

 To analyze the three dimensional spatial geometry of the Sevastopol mud volcano, 

a representative collapsed depression structure in the Sorokin Trough 

 To study the development of the canyon-ridge system off Batumi and its relationship 

to seepage 

1.2 Gas and fluids in marine sediments 

Gas in marine sediments is mainly dominated by methane of biogenic or 

thermogenic origin (Schoell, 1988; Floodgate and Judd, 1992). Biogenic methane results 

from methanogenic processes in shallow sediments, in which CO2 from organic matter is 

reduced to methane (Claypool and Kaplan, 1974; Sloan, 1990). Continental margins are 

characterized by high biogenic productivity and high sedimentation rates, thus the decay of 

large amounts of organic matter in the sediments might form methane. After formation, the 

methane either become trapped and buried in the sediments or it may migrate towards the 

seafloor and discharge at the seabed. At greater depth methane and higher hydrocarbons 

are generated thermogenically from organic matter by catagenesis at temperatures between 

50° and 200°C. Depending on the temperature and pressure conditions, various 

hydrocarbons are formed (Judd, 2003). Gas and fluids might be mobilized and migrate 

upward into shallower horizons, if adequate pathways are present. Potential pathways for 

fluid flow include faults, fractures, dipping permeable stratigraphic horizons, as well as 

forced folds and mud diapirs, which create pathways by faulting and steepening of 

sediments (Hovland and Curzi, 1989; Moore et al., 1991; Eichhubl et al., 2000; Orange et 

al., 2002; Ligtenberg, 2005). The upward rise of fluids is forced by buoyancy, capillary 

forces and over-pressuring mechanisms, facilitated by sediment compaction and tectonic 

processes, or a combination of both (Minshull et al., 1994, Gorman et al., 2002). 

Upward transport of fluids might occur in solution and as free gas, either diffusive or 

focused (Ginsburg and Soloviev, 1997; Bouriak et al., 2000). Dispersive fluid flow through 

the sediment occurs intergranularly and along small-scale fractures, thus leaking out over 
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large areas, but focused upflow, e.g. along faults, is suggested to be two to three orders 

more intensive (Moore et al., 1990). Especially in low permeable mudstones, diffusive fluid 

flow through the sedimentary column is quite slow (Eichhubl et al., 2000). Gas/fluids can be 

trapped, e.g. at low permeable horizons, leading to increased pore fluid pressure and over-

pressured fluids, if fluid flow is sufficiently high. Does the pore fluid pressure exceed the 

principal stress, fluids might support the creation or widening of fractures by hydraulic 

fracturing (e.g. Hunt, 1990; Roberts and Nunn, 1995; Luo and Vasseur, 2002; Zühlsdorff 

and Spieß, 2004).

The direct detection of fluid flow in the subsurface is difficult, but variations in 

seismic attributes may indicate the accumulation of gas/fluids as the occurrence of fluids 

and gas changes sediment physical properties such as porosity and p-wave velocity (e.g. 

Minshull and White, 1989). The scatter of seismic energy at free gas bubbles leads to 

typical attenuation of seismic amplitudes, indicating free gas occurrences in seismic data 

(Max, 1990; Wood et al., 2002). Evidence of focused fluid flow through the sedimentary 

column can be detected as narrow vertical acoustic voids (chimneys) in seismic data, where 

seismic amplitudes and reflectors are distorted, indicating deeper reservoirs (Heggland, 

1998; Gay et al., 2003). Bright Spots, high amplitude reflections resulting from the high 

impedance contrast between gas-charged and gas-poor strata (Max, 1990), often indicate 

the accumulation of free gas in seismic data. Indirect evidence of fluid migration is given by 

the observation of flow-related structures and potential fluid conduits, such as faults and 

fractures. Trap structures may indicate potential gas accumulation (Brooks et al., 1984; Bray 

and Karig, 1985; Minshull and White; 1989, MacDonald et al., 1994; Taylor et al., 2000; 

Zühlsdorff et al., 1999; Zühlsdorff and Spiess, 2004).  

Fluid migration towards the seabed may result in seafloor seepage, where fluids are 

released into the water column in dissolved or gaseous phase. Such seep sites can be 

associated with different morphological features, such as mud volcanoes and pockmark 

structures (e.g. Hovland and Judd, 1988; Judd et al., 2002).  

1.2.1 Cold seeps  

Cold seep sites are characterized by the discharge of cold hydrocarbon fluids, 

mostly enriched with methane, at the seafloor (e.g. Suess et al., 1985; Hovland and Judd, 

1988; Judd et al., 1997; Greinert et al., 2001). Methane is a strong greenhouse gas that 

absorbs infrared radiation 25 times more efficiently than CO2 (Lelieveld et al., 1993, 1998). 

Thus, the emission of significant amounts of methane from seeps to the hydrosphere and 

atmosphere have great potential relevance on the carbon cycle and the climate change  

(e.g. Judd et al., 2002). Gas seeps occur where upward fluid migration is focused, e.g. 

along faults (e.g. Judd, 2003). Gas may be trapped in geological structures building 
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reservoirs or formed into gas hydrates under certain low temperature and high pressure 

conditions at sufficient supplies of water. Thus, gas seeps are often associated with shallow 

gas/gas hydrate accumulations or deeper hydrocarbon deposits (e.g. Wilson et al., 1974; 

Kvenvolden, 1993; Buffet, 2000). Dissociation of gas hydrates due to changes of p-T 

conditions may support gas discharge and result in sediment destabilization (Schmuck and 

Paull, 1993; Bouriak et al., 2000; Bünz et al., 2005). Estimations about the global emission 

of methane to the atmosphere from seafloor seepage range about 18-48 Tg CH4/year, 

which is 4-9% of the global budget (Judd, 2000; Kvenvolden et al., 2001; Judd et al., 2002). 

An equivalent amount of discharged methane is believed to dissolve in the water column 

(Kvenvolden et al., 2001). 

Methane seepage is globally distributed and occurs from shallow to deep water 

along most active and passive continental margins in different geological environments 

(Dimitrov, 2002; Judd, 2003) (Fig. 1.2). Only a small portion of the world seas and oceans 

have been studied sufficiently, thus the exact distribution and numbers of seep sites remain 

uncertain (Judd, 2003).  

Flow rates at seeps vary between slow, inter-granular and vigorous, even violent 

eruptions (Judd, 2003). Under normal conditions, most of the methane migrating towards 

the seabed is dissolved and oxidized (Reeburgh et al., 1993; Boetius et al., 2000; Michaelis 

et al., 2002). A main sink for methane is the anaerobic methane oxidation (AOM), resulting 

from microbial activity by a consortium of archaea and sulphate-reducing bacteria and 

leading to the precipitation of authigenic carbonates (Boetius et al., 2000; Michaelis et al., 

2002). At vents with low flow rates, dissolved methane can be completely oxidized by the 

AOM (Boetius, 2000) according to the following equation (Iversen and Jörgensen, 1985; 

Boetius, 2000): CH4 + SO2-
4 = HS- + HCO-

3 +H2O. For example, at the Dvurechenskii mud 

volcano in the Black Sea, the AOM consumes about 80% of the rising methane, so that 

Figure 1.2: Global distribution of 
seabed fluid flow correlated to 
oceanographic settings. Seepage 
locations are identified by one or 
more of the following features: gas 
seeps, chemosynthetic ‘cold seep’ 
fauna, methane-derived authigenic 
carbonates, pockmarks, shallow 
gas, gas hydrates. The continental 
shelves are shaded (from Judd, 
2003). 
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during quiescent dewatering periods from an annual transport of 8.9 x 10+6 mol CH4 to the 

surface, only 1.9 x 10+6 mol CH4/yr is emitted into the water column (Wallmann et al., 2006).  

Active cold seeps in deep water are typically colonized by chemosynthetic 

communities, such as chemoautotrophic clams, tube worms and bacterial mats, at the 

sediment surface, using the hydrogen sulphide and methane as energy source (Suess et 

al., 1985; Sibuet and Olu, 1998). At high flux rates, methane is rapidly released in large 

quantities, generating dense bubble plumes (Michaelis et al., 2002), so that methane 

oxidation and carbonate precipitation cannot proceed within the surface sediments and 

methane may pass into the hydrosphere (Luff et al., 2004). Most of the methane released at 

seep sites, however, is dissolved in the water column (Judd, 2003). The main factors 

controlling the rate of dissolution are the water depth, bubble size, dissolved gas 

concentration and temperature (Leifer and Patro, 2002). Released gas bubbles may be 

protected against rapid 

dissolution, if they are lined 

with crude oil (Sassen et al., 

2001) or, within the gas 

hydrate stability field, coated 

by gas hydrates (Topham, 

1984; Suess et al., 2001; 

Rehder et al., 2002; Greinert 

et al., 2006). The rise of free 

gas bubbles through the water 

column can be detected 

directly either by video 

observation or as gas plumes 

(flares) with hydroacoustic 

methods, as free gas bubbles 

give strong backscatter 

signals (Klaucke et al., 2005, 

2006; Greinert et al., 2006) 

(Fig. 1.3).  Rising velocities for 

bubbles can be determined 

from visual investigations and 

hydroacoustic measurements. 

Observations from Hydrate 

Ridge indicate rising velocities 

of 21 to 29 cm/s for bubbles 

Figure 1.3: Typical echogram of a gas flare, 
recorded by Greinert et al. (2006) at the 
Dvurechenskii mud volcano in the Sorokin 
Trough (Black Sea). 
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with diameters of 4 to 20 mm (Rehder et al., 2002). Greinert et al. (2006) measured rising 

velocities of 19-22 cm/s near the seafloor and 12-14 cm/s at the top of flares observed at 

mud volcanoes in the Sorokin Trough (Black Sea).  

Many cold seeps are associated with positive morphological structures (mud 

volcanoes, mud and carbonate mounds) or depressions (Pockmarks) on the seafloor. Such 

features can easily be recognized on bathymetric, side-scan sonar and seismic data (e.g. 

Hovland and Judd, 1988; Wever et al., 1998). Seeps without significant morphological relief 

can be detected in backscatter data. Distinctive backscatter signatures at seeps may 

indicate seep related biogeochemical processes, such as precipitation of gas hydrates or 

authigenic carbonates, which generally scatter the acoustic energy and generate typically 

high backscatter responses, often characterized by circular or flow-like shape (e.g. 

Anderson and Bryant, 1990; Sager et al., 2003). Acoustic anomalies in seismic data may 

indicate shallow gas accumulation or columns of focused fluid migration which might refer to 

seepage.

The Black Sea is well known for the presence of seafloor seepage and seep-related 

structures, which have been reported from various areas, e.g. at the north-western margins 

(Shnukov et al., 1995; Peckmann et al., 2001; Michaelis et al., 2002; Mazzini et al., 2004; 

Naudts et al., 2006), in the central and north-eastern parts (Ivanov et al., 1989, 1998; 

Ginsburg et al., 1990; Limonov et al., 1994; Woodside et al., 1997; Kenyon et al., 2002; 

Blinova et al., 2003; Bohrmann et al., 2003; Krastel et al., 2003; Aloisi et al., 2004; Mazzini 

et al., 2004; Greinert et al., 2006) as well as along the south-eastern slopes of the Black 

Sea (Kruglyakova et al., 1993; Cifci et al., 2002; Ergün et al., 2002; Klaucke et al., 2006). 

The distribution of gas flares observed in the Black Sea is imaged in Fig. 1.4. In contrast to 

most other seep sites, the Black Sea seeps are mainly situated in the anoxic zone, thus 

typical seep fauna lack. The seeps on the shelf and the slope of the Black Sea are an 

important source for methane in the water column (Dimitrov, 2002; Schmale et al., 2005). 

The basin-wide flux of methane from seeps and hydrates to the hydrosphere is estimated to 

be about 3.6-5.65 Tg/year (Kessler et al., 2006). Gas discharge in the Black Sea is 

commonly associated with mud volcanism, which is known from different regions of the 

Black Sea, as e.g. in the Central Black Sea and the Sorokin Trough (Limonov et al. 1994, 

1997; Ivanov et al., 1996, 1998; Woodside et al., 1997; Bouriak and Akhmetjanov, 1998; 

Krastel et al., 2003). The thick sedimentary cover and neo-tectonic compressional 

deformation at the continental slopes of the Black Sea are the main factor leading to over-

pressured pore fluids migrating upward towards the seafloor at faults (Yun et al., 1999). The 

two working areas investigated in this thesis, the Sorokin Trough in the north-eastern part 

and the continental slope off Georgia in the south-eastern part of the Black Sea, are known 

for the presence of abundant seep sites at great water depth between 800 and 2200 m. In 
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the Sorokin Trough gas discharge is bound to mud volcanism, while the slope off Georgia is 

characterized by gas seeps dominated by the release of free gas bubbles.

1.2.2 Mud volcanoes 

One major type of seepage is the release of gas by mud volcanism. Mud volcanoes 

are geological structures formed by the emission of gas, water and sediments (Kopf, 2002; 

Milkov et al., 2003a), thus providing important information about the subsurface sediments 

and fluids, which in turn might give evidence of the petroleum potential in the deep 

subsurface (Guliyev and Feizullayev, 1997; Milkov, 2000). Water and gas are transported 

within fine-grained muddy sediments forming a semi-liquid and gas enriched matrix and 

facilitating the mud to rise along adequate pathways towards the seafloor. The outflowing 

mass, called mud breccia, builds the bodies of mud volcanoes (Dimitrov, 2002, 2003). The 

origin of gas, water and mud emitted at mud volcanoes is mainly sourced in rocks and 

muddy sediments at great depth of several km, but shallower biogenic gas may also 

contribute to the gas discharge. Thus the emitted gas usually shows a mixed composition 

(Dimitrov, 2002; Kopf, 2002; Milkov et al., 2003a). As gas emissions at mud volcanoes are 

dominated by methane, mud volcanoes represent an important natural source of methane 

contribution to the atmospheric carbon budget with great potential impact on the global 

climatic change (Milkov, 2000; Dimitrov, 2003; Holland et al., 2003).  

Figure 1.4: Distribution of gas flares in the Black Sea (from Egorov et al., 2003). 
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Gas emissions at mud volcanoes occur during eruptive phases characterized by 

mostly short periods (hours to days) of quiet mud flows or/and violent mud eruptions, and 

also continue at different vent sites during long periods of quiescence (years to centuries), 

when little or no mud is expelled (Hedberg, 1974; Brown, 1990; Bagirov et al., 1996; Guliev 

and Feizullayev, 1996; Dimitrov, 2002; Kopf, 2002). The emitting gas ascends either as free 

gas or in dissolved form via fluid flow (dewatering) and mud extrusion. Estimations about 

the global annual gas flux and the amount of methane contributed to the atmosphere 

through mud volcanoes vary significantly and have great uncertainties as the number of 

submarine mud volcanoes is poorly constrained and measurements of gas flux during 

eruptive periods lack (Milkov et al., 2003a). Milkov et al. (2003a) estimate that the annual 

global gas flux from mud volcanoes is about ~15.9 Tg during quiescent periods, and ~17.1 

Tg during eruptive phases. Large volumes of gas (~27 Tg yr-1) may thereby escape from 

deep water mud volcanoes (Milkov et al., 2003a). Dimitrov (2002) estimates that the annual 

amount of methane released from onshore and shallow water mud volcanoes range 

between 10.2-12.6 Tg. The amount of methane contributed to the atmosphere through mud 

volcanoes by quiescent and eruptive periods is estimated to be about 5 Tg yr-1 (Dimitrov, 

2003). Gas flux from onshore and shallow offshore mud volcanoes is the main contributor to 

the modern atmospheric methane budget, but the contribution of deep-water mud volcanoes 

to the atmospheric methane budget appears to play not a significant role, as parts of the 

gases from mud volcanoes are formed into gas hydrates (about 10 % (Ginsburg et al., 

1999), or are oxidized and precipitated as authigenic carbonates in the near bottom 

sediments (Judd et al., 2002). Gas bubbles released into the water column rapidly are 

oxidized and dissolved (Judd et al., 2002). Mud volcanoes may erupt violently in regular or 

irregular time intervals or emit mud, fluid and gases continuously. The main gas component 

released is methane. Minor gas components at mud volcanoes are carbon dioxide and 

nitrogen (Milkov et al., 2003a), which are the dominant gas phase at mud volcanoes 

associated with recently active magmatic processes (Motyka et al., 1989; Kopf, 2002).  

Mud volcanoes form worldwide in different geological environments, onshore and 

offshore, primarily occurring in areas of compressional deformation and within sedimentary 

basins with rapid sedimentation (e.g. Black Sea and Caspian Sea) (e.g. Milkov, 2000; Kopf, 

2002). A map with the global distribution of onshore and offshore (known and inferred) mud 

volcanoes is imaged in Fig. 1.5. Most mud volcanoes (>50% of the total numbers of mud 

volcanoes identified) are clustered along the Alpine-Himalaya Active Belt with about 650 

terrestrial and at least 470 submarine prominent mud volcanoes (e.g. Dimitrov, 2002, 2003). 

Terrestrial mud volcanoes have been well studied for over 200 years (Ansted, 1866), but 

research of submarine mud volcanoes started only ~30 years ago (Dimitrov, 2003). During 

recent studies the number of known submarine mud volcanoes is rapidly increasing, but the 
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exact number of submarine mud volcanoes is still uncertain; estimations range from 840 to 

5000 (Milkov, 2000; Dimitrov, 2002; Kopf, 2002). Areas with well known submarine mud 

volcano occurrences include the Black Sea and the Caspian Sea (Ginsburg and Soloviev, 

1994; Ivanov et al., 1996; Limonov et al., 1997), the Norwegian Sea (e.g. Hovland and 

Judd, 1988), the Gulf of Mexico (Kohl and Roberts, 1994), the Mediterranean Ridge (Ivanov 

et al., 1996; Woodside et al., 1997) and the Barbados Ridge (e.g. Hedberg, 1974; 

Griboulard et al., 1998). 

Mud volcanism is caused by various geological processes and factors. Individual 

factors might vary in the different regions, but the occurrence of mud volcanoes is strongly 

controlled by rapid burial of sediments and compressional tectonic activity. The main 

formation mechanism leading to mud volcanoes is considered to result from upward fluid 

migration, forced by high pore fluid pressure due to rapid sedimentation and structural or 

tectonic compression (Brown, 1990; Milkov, 2000; Dimitrov, 2002).  

Mud extrusions building the mud volcanoes form typical circular or elongated 

morphological structures highly varying in shape, from cone-shaped or flat topped 

elevations to depression structures. The size might vary from few 10 m² up to 100 km² 

(Dimitrov, 2002; Kopf, 2002). Heights of mud volcanoes reach from a few meters to several 

Figure 1.5: Worldwide distribution of onshore (1), known (2 without gas hydrates, 
3 hydrate bearing) and inferred (4) submarine mud volcanoes (after Milkov, 2000). 
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hundreds of meters (Sturz et al., 1992; Dimitrov, 2002), and diameters range from only a 

few meters to several kilometers (Jakubov et al., 1971). The outflowing mud breccia sharply 

contrasts the surrounding host sediments, as the mud breccia represents sediments from 

greater depth (Dimitrov, 2002). Mud breccia generally comprises a clay mineral-rich mud 

matrix (as to 99% of the total volume) and a variable quantity of clast and rock fragments 

with diameters ranging from a few millimeters to over 10 m. The clast and rock fragments 

are derived from rocks through which the mud has passed (Dimitrov, 2002; Kopf, 2002). 

Mud extrudes from the main feeder channel, or conduit, forming the central cone or crater, 

but smaller lateral pipes can split off the feeder channel and lead to vents at the flanks of 

the mud volcano structure, called griphones (Dimitrov, 2002; Kopf, 2002). The general 

structure of a mud volcano is imaged in Fig. 1.6. The morphological structures of submarine 

mud volcanoes can be identified and investigated by side-scan sonar, bathymetric and 

seismic data, but to specify if the 

topographic feature observed 

really represents a mud volcano, 

sampling has to recover mud 

breccia and mud flows have to be 

identified. Mud flows may reach 

dimensions up to several 100 

meters in width and some 

kilometers in length (Jakubov et 

al., 1971). Mud volcanoes on 

seismic data typically show a 

narrow zone beneath lacking 

reflections, which represents the 

feeder channel and is 

characterized by not stratified 

sediments.

The morphology of mud 

volcanoes is directly related to the 

eruption style and the physical 

properties of the eruption product. 

The shape and size of mud 

volcanoes primarily depend on 

pore fluid content, frequency and 

character of activity, and the 

viscosity and consolidation of the 

Figure 1.6: Basic structure and main elements of 
a cone-shaped mud volcano (from Dimitrov, 
2002). 
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extruded mud (Brown, 1990; Kopf, 2002). The consistency of the mud and the eruption 

frequency affect the height of the mud volcano. The dipping angle of the flanks depends on 

the viscosity and porosity of the material (Kopf, 2002; Yusifov et al., 2004). The more 

frequent the eruption, the larger the structure. The lower the viscosity, the larger and flatter 

the body. Highly permeable mud results in domes and pies with relatively steep slopes. 

High pore fluid pressure, e.g. due to low permeability, probably leads to violent eruptions, 

which destroy the internal structure of a mud volcano and form pockmarks (Dimitrov, 2002; 

Kopf, 2002; Yusifov, 2004). 

In the Black Sea, mud volcanoes are known since the late 1970’s and have been 

intensively studied and documented during the TTR cruises (UNESCO Training Through 

Research program) in the 1990’s. Well studied mud volcanoes are documented for the 

Central Black Sea and the Sorokin Trough. About 65 mud volcanoes are known on the 

shelves (Kerch-Taman shelf) and slopes (off Bulgaria, Ukraine, Russia, Georgia and 

Turkey) of the Black Sea (Kruglyakova et al., 2002). The Dvurechenskii mud volcano 

(DMV), located in the Sorokin Trough at about 2000 m water depth, is considered to be a an 

very active vent site, with estimated high flux rates of 12-24 cm year -1 (Bohrmann et al., 

2003). Free gas bubbles at the DMV, identified as flares in hydroacoustic data, rise more 

than 1000 m. These bubble emissions have been observed only periodically, indicating 

intermittently gas emissions (Greinert et al., 2006). Methane emission rates from the DMV 

via quiescent dewatering into the water column have been estimated by Wallmann et al. 

(2006) to be about 1.9 x 10+6 mol CH4/yr. Assuming that the discharge rate of all mud 

volcanoes in the Black Sea is similar to DMV, the methane emission by quiescent 

dewatering processes contributes less than 0.1% to the total methane input into the Black 

Sea (Wallmann et al., 2006). However, large regions of the Black Sea are still unexplored, 

and the methane emission during active mud eruptions is unknown. Mud volcanoes of the 

Black Sea in general are related to high sedimentation rates of the Pliocene-Quaternary 

deposits and are associated with the clays of the Maikopian Formation (Oligocene-

Miocene), which is enriched with organic matter, thus containing great potential to generate 

hydrocarbons leading to over-pressured fluids (Dimitrov, 2002). In the Central Black Sea, 

mud volcanoes are formed in an extensional regime in combination with a thick sedimentary 

coverage above potentially mobile beds of the Maikop Formation leading to high 

overpressure, thus resulting in a fast release of gas/fluids from great depth (Ivanov et al., 

1996; Limonov et al., 1997). Mud volcanoes in the Sorokin Trough are related to the 

diapirism of the Maikopian clay due to the compressive tectonic regime and are formed 

above diapiric structures from sediments rising with high fluid content along faults towards 

the seafloor (Woodside et al., 1997). 
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1.2.3 Gas hydrates 

Gas hydrates are ice-like, crystalline solid structures composed of gas molecules 

occurring in cages of water molecules forming clathrates (Sloan, 1990). Most natural gas 

hydrates consist of more than 99% methane of the hydrocarbons, known as methane 

hydrates (Sloan, 1998; Kvenvolden and Lorenson, 2001). Gas hydrates occur in three 

different crystal structures, named structure I, II or H (Sloan, 1998). Structure I and II 

crystallize within the cubic and structure H within the hexagonal system. The structure 

formed depends on the size of the gas molecules. The different structures consist of 

different cage types forming the cavities, in which the gas molecules are included (Fig. 1.7). 

Gas hydrates with Structure I crystallography contain natural gases with small molecule 

sizes. Structure I is most common in marine sediments and mainly comprise methane with 

minor quantities of CO2 and H2S. Gas hydrates with significant amounts of propane and 

higher carbon gases form Structure II or H. Structure H is a complex structure and is 

present only with mixtures of small (like methane, nitrogen or carbon dioxide) and very large 

molecules, such as metylcyclohexane (Sloan, 1998).  

The occurrence of natural gas hydrates is controlled by temperature and pressure, 

the presence of enough gas, and, to a lesser content, composition of the gases and pore 

water salinity (Kvenvolden, 1993; Sloan, 1998). Gas hydrates are formed at high pressure 

and low temperature conditions when water is saturated with gas (e.g. Kvenvolden, 1993; 

Sloan, 1998).  At a given pressure, the presence of CO2, H2S and higher hydrocarbons

increases the maximum temperature for the stability, higher salinity shifts the stability field to 

Figure 1.7: Left: schematic illustration of the cage lattices of gas hydrate structure I. Right: 
Cage types of the gas hydrate structures I, II, and H (after www.ifm-geomar.de). 
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lower temperatures. At given pressure, seawater salinity of 33.5% would shift the 

dissociation temperature of methane hydrate about -1.1°C with respect to that of hydrate 

formation in a pure water system (Dickens and Quinby-Hunt, 1994). A phase diagram of a 

pure methane-fresh water system is shown in Fig.1.8.  

Gas hydrates occur all around the world, but due to their stability field their 

distribution is restricted to two environments: (1) at permafrost regions on land, and (2) 

offshore within the upper several hundreds meters of deep water sediments along passive 

and active continental margins at water depths below about 300 m (Fig. 1.9) (Kvenvolden 

and Barnard, 1983; Kvenvolden, 1993; Dickens et al., 1997).  

The limiting factor for the formation of gas hydrates in most offshore regions is the 

availability of sufficient gas concentrations, particularly methane, above solubility 

concentrations, which are thus restricted to the shallow geosphere (Kvenvolden and 

Lorenson, 2001). The maximal lower boundary of the gas hydrate stability is limited by the 

temperature gradient, as the stability is primarily influenced by the temperature. Thus, the 

base of gas hydrate stability (BGHSZ) runs along isotherms (e.g. Kvenvolden and 

Figure 1.8: Stability diagram for pure methane hydrates and 
seawater salinity (after Dickens and Quinby-Hunt, 1994). 
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Lorenson, 2001). Locally increased heat flow will uplift the BGHSZ and thin the gas hydrate 

stability zone (GHSZ), as e.g. near mud volcanoes and gas seeps. Thereby, the BGHSZ 

locally can intercept with the seafloor reflection (e.g. De Batist et al., 2002; Van Rensbergen 

et al., 2002). Other factors influencing the exact depth of the base of gas hydrate stability 

zone are the gas composition and the salinity of the pore water.  

Gas hydrates are formed in the pore space of sediments (typically a few percent), 

which leads to a change of the physical properties of sediments (e.g. Kvenvolden, 1993). 

The p-wave velocity of pure gas hydrate is about 3.3 to 3.8 km/s (Mathews and von Huene, 

1985), thus usually the elastic velocity of gas hydrate bearing sediments is increased. The 

resistivity of gas hydrate cemented sediments is significantly enlarged, as gas hydrates are 

a good electrical insulator (Collett, 1998). Due to the decreased permeability of gas 

hydrated layers, free gas is often found beneath the base of the gas hydrate stability zone 

(Sloan, 1990; Dillon et al., 1994; Holbrook et al., 1996; Ecker, 1998; Sain et al., 2000).

There are several main theories about the origin of the methane forming methane 

hydrates in sediments at continental margins: (1) in situ biogenic methane generation within 

the hydrate stability zone (Claypool and Kaplan, 1974), (2) biogenic methane formation 

below the stability field with subsequent upward migration of dissolved methane in rising 

pore fluids into the GHSZ (Hyndman and Davies, 1992), (3) recycling of methane during the 

process of hydrate dissociation accompanying sedimentation (Paull et al., 1994), and (4) 

Figure 1.9: Worldwide occurrences of known and inferred gas hydrates 
in aquatic sediments and polar continental sediments (after Kvenvolden 
and Rogers, 2005). 
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upward migration of thermogenic methane generated at greater depth (Kvenvolden and 

McDonald, 1985). 

The presence of gas hydrates in marine sediments is most commonly inferred from 

the observation of a BSR (bottom-simulating reflector) in seismic reflection profiles (Stoll et 

al., 1971; Shipley et al., 1979; Kvenvolden and Barnard, 1983; Hyndman and Spence, 

1992) (Fig. 1.10). As the BSR is considered to reflect the chemical phase boundary of gas 

hydrates, the BSR runs along isotherms, thus generally following the seafloor and typically 

crosscutting the strata (Shipley et al., 1979).  

The BSR is a strong reflector with reversed polarity relative to the seafloor due to a 

p-wave velocity inversion across the stability boundary from the high velocity gas hydrate 

bearing sediments above to the lower velocity of gas bearing sediments beneath (Dillon and 

Paull, 1983; Miller et al., 1991; Hyndman and Spence, 1992; Singh et al. 1993) (Fig. 1.10).

P-wave velocities of gas hydrated sediments range between 1700-2400 m/s (Katzmann et 

al., 1994; Minshull et al., 1994; Lee et al., 1994), while velocity values below 1500 m/s 

indicate the presence of free gas in the pore space. The BSR could also be caused by the 

increased seismic impedance contrast of hydrate cemented sediments relative to hydrate-

free sediments beneath (Hyndman and Davis, 1992). Detailed velocity models crossing 

BSR structures, however, suggest that the BSR results from the presence of free gas 

beneath (Holbrook et al., 1996). The presence of free gas beneath the BSR is proved by 

drilling, e.g. on the Blake Ridge during ODP Leg 164 (Holbrook et al., 1996). The amplitude 

of the BSR depends on the degree of saturation of sediments by hydrates above and by gas 

Figure 1.10: Most famous BSR at the eastern flank of the Blake Ridge (Shipley et al., 
1979) (right). A seismic velocity model shows the significant velocity decrease below the 
BSR marking free gas (left) (after Bohrmann and Torres, 2006).
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below (Sain et al., 2000). BSRs are common in hydrate-bearing sediments, but gas 

hydrates can be present, even where BSRs lack (Mathews and von Huene, 1985; Holbrook 

et al., 2002). Based on the depths of BSRs in combination with the bottom water 

temperature, the temperature geothermal gradient and heat flow can be estimated (Shipley 

et al., 1979, Yamano et al., 1982). 

As gas hydrates change the physical properties of sediments, seismic reflection 

amplitudes can be affected by the presence of gas hydrates, depending on the amount of 

gas hydrate concentration leading to reduced or enhanced reflectance (Lee and Dillon, 

2001). Gas hydrates preferentially form in more porous (lower velocity) sediments 

increasing the velocity relative to the less porous (higher velocity) layers. This reduces the 

impedance contrast between high and low porous strata at low gas hydrate saturations, 

suppressing the seismic reflectance. High hydrate saturated layers, however, can have 

significantly increased velocity, generating enhanced reflectance within the GHSZ 

(Holbrook, 2002). 

Gas hydrates are commonly associated with deep water mud volcanoes, as gas 

rising at mud volcanoes often is captured in the near-subsurface sediments in gas hydrates 

(Reed et al., 1990; Woodside et al.; 1998, Ginsburg et al., 1999; Milkov, 2000). Estimations 

from Milkov (2000) show that globally about 1010-1012 m³ of methane are associated with 

mud volcanoes at standard temperature and pressure. Gas hydrate accumulation at mud 

volcanoes is found in a concentric zone around the conduit for the fluid upflow (Ginsburg et 

al., 1997, 1999; Milkov, 1998). The dissociation of gas hydrates might play a significant role 

in mud volcano processes (Milkov, 2000). Warm fluids migrating at mud volcanoes towards 

the seafloor might lead to decomposition of gas hydrates (De Lange and Brumsack, 1998; 

Aloisi et al., 2000). Otherwise gas hydrates may be formed near mud volcanoes when 

gas/fluids pass through the GHSZ (Kopf, 2002).  

Recently, gas hydrates have become of great interest, due to (a) their potential as a 

future energy resource, as great amounts of methane are stored in gas hydrates, 

considered to form the largest reservoir type of natural gas (MacDonald, 1990; Kvenvolden, 

1993), (b) their role in climate change, as methane is a very strong greenhouse gas and 

release of methane from decomposed gas hydrates might significantly influence the 

atmospheric composition and thus impacting the global warming (Kvenvolden, 1988), and 

(c) their potential impact on slope stability after dissociation of gas hydrates (Kvenvolden, 

1993). In a saturated methane hydrate, with a molecular ratio of methane:water = 1:5.75, 

one m³ of methane hydrate contains 164 m³ of methane gas at standard conditions 

(Kvenvolden, 1993). Estimations about the amount of methane resources in global gas 

hydrate occurrences vary by several orders of magnitude and are highly uncertain and 

speculative due to heterogeneous gas hydrate distribution and incomplete knowledge about 
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gas hydrate content in sediments (e.g. Lerche, 2000). In the 1990s, estimations about the 

global hydrate-bound gas converge at about 10 teratonnes of methane carbon, a value, 

which was established from several independent estimations (Holbrook et al., 1996; 

Dickens et al., 1997; Makogon, 1997; Kvenvolden and Lorenson, 2001). Formation of gas 

hydrate impacts the slope stability, as gas hydrates decrease the sediment permeability and 

may form a barrier for fluids, which inhibits diagenetic processes during the burial and might 

lead to the formation of excess pore pressures (Sloan, 1990). Dissociation of gas hydrates 

then produces a fluidized layer at the base. This locally reduces the shear strength at the 

former boundary facilitating submarine slope failures, accompanied by the release of gas 

into the water column (Kvenvolden, 1993).  

The distribution of gas hydrates and the content of gas hydrate occupying the 

sediment pore space highly vary and are poorly understood yet. First estimations about gas 

hydrate occupation from drilling during ODP Leg 164 at Blake Ridge show that gas hydrate 

distribution is heterogeneous and that gas hydrate occupies 1-10% of the pore space (Paull 

et al., 1996). Recent investigations from ODP Leg 204 and IODP Leg 311 on the three-

dimensional distribution of gas hydrate within Hydrate Ridge, Cascadia Margin, provided 

new insights about the gas hydrate content and distribution in sediments, as well as about 

the presence of free gas within the GHSZ (Tréhu et al., 2003; Riedel et al., 2006; Tréhu et 

al., 2006). These studies confirm a highly heterogeneous distribution of gas hydrates in 

marine sediments (Tréhu et al., 2003, 2004a). The average amount of gas hydrate is 

estimated to be 1-2% of the sediment pore space (Milkov et al., 2003b; Tréhu et al. 2004a). 

Patchy zones of locally high concentration occur below 40 m occupying up to 20% of the 

pore space. Very high gas hydrate content with 30-40% of pore space is limited to the upper 

30-40 meter below seafloor (mbsf) at the southern summit of the ridge near seep sites 

(Tréhu et al., 2004a), resulting from focused fluid migration into and through the GHSZ 

towards seafloor vents (Torres et al., 2004). The massive gas hydrate deposits coexist with 

brines (Torres et al., 2004) formed during formation of gas hydrates by exclusion of 

dissolved ions, which are too large to fit into hydrate cages. Over time, the excluded ions 

are removed by advection or diffusion (Ussler and Paull, 2001). Thus, the co-existence of 

high gas hydrate deposits and brines indicates rapid gas hydrate formation. Recent

modeling by Torres et al. (2004) shows that the rapid growth of hydrates could only be 

explained by upward transport of abundant free gas, since the observed chloride 

enrichment cannot be generated from the transport of methane dissolved in the pore fluids. 

Anomalous high and massive shallow gas hydrate concentrations due to focused fluid flow 

may form in other areas of fluid venting as well.  

Free gas migration within the GHSZ has been previously inferred from the 

observation of bubble plumes, seismic data and critical pressure models (Gorman et al., 
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2002; Flemings et al., 2003). The presence of free gas within the GHSZ is not fully 

understood, since seafloor sediments are generally very porous and contain abundant 

water, so that gas hydrates should be formed. Several mechanisms whereby free gas 

migrates through the GHSZ have been suggested, such as hydrate or oil coatings around 

gas bubbles isolating the free gas phase from the pore water (Suess et al., 2001), high pore 

water salinity or increased heat flow that locally shift the stability field of gas hydrates down, 

local dehydration of sediments, and inhibition of hydrate formation because of capillary 

forces (Ginsburg and Soloviev, 1997; Clennell et al., 1999; Bohrmann et al., 2003; Milkov et 

al., 2004). Milkov et al. (2004) argue that free gas can move through the GHSZ in 

association with high salinity water. Co-existence of gas hydrate and free gas could occur 

when gas hydrate formation is faster than removal of ions excluded during hydrate 

formation, so that pore waters may become too saline for further gas hydrate formation.  

The recent studies at Hydrate Ridge show that critically pressured free gas beneath 

the GHSZ provides a driving force for gas migration (Tréhu et al., 2004b).  

High gas hydrate saturations reducing sediment pore space may form a critically pressured 

gas column beneath the GHSZ and drive gas migration through the GHSZ towards the 

seafloor (Tréhu et al., 2004b). Gas transport through the GHSZ results in gas hydrate 

formation, which is enhanced in the upper tens mbsf, where the overburden stress is less 

than the internal pressures of growing hydrate crystals and gas bubbles (Torres et al., 2004) 

(Fig. 1.11). Torres et al. (2004) demonstrated that the depth at which gas hydrates can form 

by pushing away sediment grains corresponds to the depth at the base of shallow massive 

Figure 1.11:
Schematic illustration of 
the effect of geochemical 
and physical properties 
of the sediment on gas 
hydrates and bubbles. 
Left: Increase of effective 
overburden stress with 
depth. Above 20 mbsf, 
internal pressures are 
large enough to push 
aside the sediment 
grains and result in 
enhanced gas hydrate 
contents and brine 
formation (from Torres et 
al., 2004). Ph= pressure of hydrate crystallite. Pg= pressure of gas 

bubbles. e= effective overburden stress
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gas hydrate deposits. This means that below ~30 mbsf capillary effects inhibit hydrate 

formation,  and allow methane gas to coexist with gas hydrate (Clennell et al., 1999) (Fig. 

1.11).

1.3 Geological setting of the Black Sea 

The Black Sea is a large intercontinental basin with anoxic conditions below a water 

depth of 100-150 m located within the Alpine orogenic belt on the western flank of the active 

Arabia-Eurasia Collision and north of the North Anatolian Fault (e.g. Rangin et al., 2002). It 

is surrounded by the Balkanides in the west, the Crimean Mountains in the north, the 

Caucasus in the east and the Pontides in the south (Fig. 1.12).

The Black Sea is connected by the Kerch Street to the Sea of Azov in the north and 

via the narrow Bosporus and the Sea of Marmara with the Mediterranean in the south-west 

(Ross et al., 1974). Thus, the Black Sea has only a restricted exchange with the global 

oceans. The northern and north-western continental shelves of the Black Sea are wide due 

to a large sedimentary influx through several major rivers, such as the Danube, Dniester, 

Dnieper and Don, but become narrower in the remaining parts of the Black Sea with only a 

Figure 1.12: Bathymetric map of the Black Sea and the surroundings (Gebco 1-min 
grid) together with the general geological structures and tectonic elements of the Black 
Sea (modified after Robinson et al., 1996). The locations of the study areas are marked 
as red rectangles.
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few small rivers draining into the Black Sea from the south. The shelf break occurs at a 

water depth between 110 and 150 m; the slope is dipping steeply (5-9°) to the floor of the 

Black Sea basin at about 2200 m (Duman et al., 2006). Most parts of the basin floor of the 

Black Sea are recently characterized by a flat abyssal plain at water depths of about 2000-

2200 m (Robinson et al., 1995). 

The Black Sea is considered to be originated during the Cretaceous by a back-arc 

extension due to the northward subduction of the Tethys Ocean (Okay, 1994; Nikishin et al., 

2003), now closed at a suture passing E-W through Northern Turkey (Robinson et al., 

1996). In spite of its extensional origin, the tectonic setting changed to a compressional 

system due to the collision between Eurasia and Arabia in Eocene times, so that the 

margins of the Black Sea are recently characterized by compressive deformation (Robinson 

et al., 1995; Spadini et al., 1996). 

  Although the basin recently reflects a single depocenter it comprises two 

extensional basins, the W-E trending Western and the NW-SE trending Eastern Black Sea 

Basin (Tugolesov et al., 1985; Finetti et al., 1988; Okay et al., 1994). The Western and 

Eastern Black Sea Basin are separated by the complex NW-SE trending Mid Black Sea 

Ridge consisting of thinned continental crust (Finetti et al., 1988; Robinson et al., 1996). The 

Mid Black Sea Ridge is subdivided into the Archangelsky and Andrusov Ridge (Robinson et 

al., 1996) (Fig. 1.12). The basins have kinematics of separate origin with different formation 

timing, which is still discussed especially for the Eastern Black Sea Basin (Okay et al., 1994; 

Rangin et al., 2002). Currently, it is believed that the Western Black Sea Basin opened by 

the separation of the Western and Central Pontides (North Turkey) from the Moesian 

Platform (Romania and Bulgaria) in the Mid-Cretaceous (e.g. Robinson et al., 1996). The 

Eastern Black Sea Basin is younger than the Western Basin and opened by the separation 

of the Shatsky Ridge and the Mid Black Sea High by rotation about a pole west of Crimea. 

The age of Eastern Black Sea Basin opening is not as well documented, thus interpretations 

vary from Jurassic time (Golmshtok et al., 1992), over end-Cretaceous (Nikishin et al., 

2003) to a Paleocene/Eocene opening (Robinson et al., 1996; Spadini et al., 1996; 

Cloething et al., 2003). The Eastern Black Sea Basin is flanked by several ridges (Shatsky, 

Gudauta, Ochamchiri) and troughs (Sorokin, Tuapse, Sinop) (Fig. 1.12), which developed in 

the Oligocene-Miocene age due to orogenic activity (Tugolesov et al., 1985; Kutas et al., 

1998; Starostenko et al., 2004) and are intersected by several deep faults (Finetti et al., 

1988). An enormous post Mesozoic sedimentary coverage in both basins is characterized in 

seismic data by highly reflective, well stratified and intensively faulted strata. The 

sedimentary cover is deformed into several diapiric folds in the easternmost part of the 

Black Sea and south-east of Crimea (Tugolesov et al., 1985). The Western Black Sea Basin 

is thought to be underlain by oceanic crust covered by up to 19 km thick sediments 
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(Tugolesov et al., 1985; Nikishin et al., 2003). The basement of the Eastern Basin is thinned 

and it is still debated whether it consists of oceanic (Belousov et al., 1988; Finetti et al., 

1988; Rangin et al., 2002) or continental crust (Tugolesov et al., 1985). The crust in the 

Eastern Basin is overlain by up to 12 km thick post-rift sediments (Tugolesov et al., 1985; 

Rangin et al., 2002).  

Five main seismic sedimentary units have been distinguished for the Black Sea: (1) 

the upper Cretaceous with a thickness of 3-6 km and dominated by carbonates, (2) the 3-5 

km thick Paleocene-Eocene unit of terrigeneous siliciclastic and carbonate composition,  (3) 

the Oligocene-Lower Miocene clays of the Maikopian Formation with a thickness of 4-5 km, 

(4) the Middle-Upper Miocene unit composed of siliciclasts with a thickness varying from 

several hundred meters to 3 km, and (5) the Pliocene-Quarternary consisting mostly of 

clays with a thickness of 2-3.5 km (Tugolesov et al., 1985; Nikishin et al., 2003). All 

sequences consist of nearly horizontal and undeformed layers within the basin. The 

basement beneath is disrupted by several normal faults supporting the extensional origin of 

the basins (Tugolesov et al., 1985; Zonenshain et al., 1986). During the Quarternary, 

increased sediment supply led to significant subsidence and high sedimentation rates, but 

the water depth decreased only slightly to the present depth of 2200 m (Robinson et al., 

1995). Sedimentation rates for the Pliocene-Quarternary varies, but are estimated to be not 

less than 10 cm/kyrs (Limonov et al., 1994). The modern sediment facies deposited during 

the last 25.000 years is recognized in most parts of the Black Sea with a maximum 

thickness in the central Black Sea and is characterized by three units (Ross and Degens, 

1974). Coccolithic ooze in alternation with clay sediments (unit 1) overly sapropel layers 

with coccolithic ooze laminae (unit 2), which in turn are underlain by a lacrustine facies 

consisting of laminations of terrigeneous clayey material (unit 3) (Ross and Degens, 1974). 

The organic-rich sediments of the Black Sea are characterized by high gas 

concentrations (Hunt and Whelan, 1978), manifested in the observation of abundant cold 

vents along the continental margins, mud volcanoes, and gas hydrate occurrences. Gas 

hydrates in the Black Sea were sampled in 1974 for the first time. This recovery was the first 

proof for natural gas hydrates in marine sediments on the world (Yefremova and 

Zhizhchenko, 1974). Most parts of the Black Sea are located within the gas hydrate stability 

zone. Typical bottom water temperatures of 9°C, result in stable gas hydrates below a water 

depth of 700 m (Ginsburg et al., 1990). 

In the Sorokin Trough and along the continental slope off Batumi (Georgia) cold vent 

sites are common. In the Sorokin Trough seepage is associated with the formation of mud 

volcanoes at water depth of 1500 to 2200 m (Limonov et al., 1994; Woodside et al., 1997). 

Offshore Georgia, gas seeps and free gas bubbles were observed at > 800 m water depth 

within the gas hydrate stability zone (Klaucke et al., 2005, 2006). 
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1.3.1 The Sorokin Trough 

The Sorokin Trough forms a structural depression with a length of 150 km and a 

width of 50 km, stretching along the south-eastern margin of the Crimean Peninsula in the 

northernmost part of the Eastern Black Sea Basin. The water depths in the Sorokin Trough 

range from 800 m to 2200 m (Fig. 1.13) (Tugolesov et al., 1985).  

The major part of the Sorokin Trough is situated on a flat platform complex at water depths 

of around 2000 m. In the south and the south-east, the trough is bordered by the buried 

Cretaceous-Eocene Tetyaev Rise and Shatsky Ridge, and in the north and the west by the 

marine continuation of the Crimean Mountains (Fig. 1.12). The trough is considered to be 

the southern foredeep of the Crimean Mountains and is originated during the Oligocene 

associated with the loading of the Crimean Mountains (Andreev, 1976). A succession of 

Figure 1.13: General bathymetric map of the slope south-east of Crimea (Gebco 1-
min grid, contours at 500 m) showing the study area (red box). 
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more than 8 km thick post Oligocene sediments has been deposited in the trough with the 

Crimean Mountains being the main source (Limonov et al., 1997).

The sedimentary cover of the Sorokin Trough has been divided into two main units 

based on seismic data collected during the TTR-6 cruise (Woodside et al., 1997). The lower 

unit comprises the Pliocene deposits and the upper part of the Maikopian Formation 

(Oligocene-Lower Miocene), which represents the main portion of the deposits in the 

Sorokin Trough. The Maikop Formation is primarily composed of clay sediments, inter-

bedded by marlstones, sand and siltstones, with an average thickness of 3-5 km (Limonov 

et al., 1997). The Middle Miocene-Pliocene deposits have a maximal thickness of 1 km 

(Woodside et al., 1997). The sediments of this unit are intensively folded and disrupted by 

numerous faults, traceable into the upper unit and partly almost reaching the seafloor 

(Limonov et al., 1997). The upper unit consists of Quarternary sediments characterized by 

subparallel, rarely faulted bedding, forming a blanket above the lower unit with synclines 

between the diapiric structures (Limonov et al., 1997). The Quarternary deposits are 

laterally subdivided into fan deposits of the Pleistocene Palaeo Don-Kuban Fan and basinal 

deposits, comprising hemipelagic sediments and turbidites with origin in the Crimean 

Mountains (Limonov et al., 1997). Turbidity currents formed a system of narrow channels in 

the western Sorokin Trough (Akhmetzhanov et al., 2002). The fan deposits are 

characterized by several channel-levee systems forming an accumulative structure with 

complex relief in the East (Volkonskaya, 1997). Due to a significant subsidence in the 

Pleistocene high sedimentation rates of 25 to 75 cm/kyrs are documented for the 

Quarternary sediments (Limonov et al., 1997; Akhmetzhanov et al., 2002).  

The Sorokin Trough is characterized by compressive deformation due to the tectonic 

loading of the southward oriented Crimean Mountains and the northward moving Shatsky 

and Tetyaev Ridges (Limonov et al., 1997). The compressive tectonic regime, in 

combination with the weight of the thick overburden result in the protrusion of plastic and 

water saturated Maikopian clays forming diapiric structures, which reach up to several 100 

mbsf and mainly strike in the E-W direction (Limonov et al., 1997; Woodside et al., 1997) 

(Fig. 1.14). The thickness of the overlying Quarternary unit varies from several 100 m up to 

2.5 km, which is controlled by the growths of diapirs, and increases progressively towards 

the north-east (up to 3 km), where the thick Palaeo Don-Kuban Fan deposits dominate. 

Westward, the fan deposits merge with the turbiditic and hemipelagic deposits (Limonov et 

al., 1997). Forced by the compressive deformation, fluid/gas migration towards the seafloor 

and over-pressured fluids lead to the formation of numerous mud volcanoes, mostly located 

above the near-subsurface diapiric structures (Fig. 1.14) and primarily associated with faults 

acting as migration pathways for rising fluidized mud (Woodside et al., 1997). 
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Fig. 1.14 shows the distribution of the mud volcanoes and the location of the diapiric 

ridges in the Sorokin Trough. Mud volcanoes in the Sorokin Trough were discovered during 

the last three decades and have been intensively studied since the TTR cruises in the 

1990s (Limonov et al., 1994, Ivanov et al., 1998; Kenyon et al., 2002, Krastel et al., 2003). 

The mud volcanoes can be classified into three morphological types: most of the mud 

volcanoes are cone-shaped, some are collapsed structures (pockmarks), and one, the 

Dvurechenskii mud volcano, is flat-topped (Krastel et al., 2003). The mud volcanoes are 

concentrated at the northern edges of the Tetyaev Rise and the Shatsky Ridge (Fig. 1.14). 

Mud volcanism in the Black Sea in general and specifically in the Sorokin Trough is related 

to the Maikopian Formation, as most clasts cored are derived from the Maikop clay 

(Woodside et al., 1997).

The sediments of the Sorokin Trough are characterized by high gas content in the 

form of both free gas and gas hydrate accumulations (Ivanov et al., 1998). Gas 

measurements showed that methane is the dominated gas with 98-99.9% of the total 

content of hydrocarbons (Stadnitskaya, 1997). The composition of the hydrocarbons shows 

a thermogenic component indicating that the high gas content in the Sorokin Trough is 

contributed to upward fluid migration from sources at greater depth (Ivanov et al., 1998). 

Figure 1.14: Grey-shaded bathymetric map of the Sorokin Trough together with the 
locations of the seismic lines collected during the Meteor Cruise M52/1 and the 
main structures. The bathymetry combines Hydrosweep data acquired during 
Meteor-Cruise M52/1 with multibeam data collected during the TTR-6 Cruise in 
1996 using a Simrad EM-12 system. The green circles show the mud volcanoes 
identified during the Meteor Cruise M52/1, the red zones give the trend direction of 
the near-subsurface diapiric structures.
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Gas hydrates were recovered from several mud volcanoes (e.g., Ginsburg et al., 1990; 

Bouriak & Akhmetjanov, 1998; Ivanov et al., 1998, Kenyon et al., 2002; Bohrmann et al., 

2003), but no BSR is present on seismic images of the Sorokin Trough.  

1.3.2 The continental slope offshore Georgia 

The Georgian Continental Slope is located at the south-eastern margin of the 

Eastern Black Sea Basin, and is bordered by the Shatsky Ridge in the north-east and 

limited in the south-east by the Eastern Pontides thrust belt (Robinson et al., 1995) (Fig. 

1.15).

The ~20 km wide Shatsky Ridge trends from offshore Crimea in ESE direction towards 

Georgia, crossing the coast near Poti, and is interpreted to be the northern rift margin of the 

Eastern Black Sea Basin (Robinson et al., 1996). Two major thrust belts affect the geology 

of Georgia: the east-southeast trending Greater Caucasus Thrust Belt in the north and the 

E-W trending north vergent Adjara Trialet Fold Belt in the south (Figs. 1.12, 1.15). The 

Adjara Trialet Belt is originated in the Paleogene as an extensional basin closed during the 

Late Eocene or Oligocene and deformed during the Miocene (Robinson et al., 1997). In 

Figure 1.15: General bathymetry (Gebco 1-min grid, contours at 500 m intervals) of 
the continental slope off Georgia showing the location of the study area off Batumi 
(red box).
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eastern Georgia, the Adjara Trialet Belt becomes overriden by the Greater Caucasus 

(Banks et al., 1997; Robinson et al., 1997). In the west, the Adjara Trialet Belt is linked to 

the on- and offshore structures of the Eastern Pontides; in the north the Adjara Trialet Belt 

overrides the Shatsky Ridge, which is flexed down to the south (Banks et al., 1997; 

Robinson et al., 1995;). The thrust belts of Georgia are separated by two W-E trending 

foreland basins, the Rioni Basin extending to the Black Sea in the west and the Kartli Basin 

in the east extending into the Caspian Sea (Banks et al., 1997) (Figs. 1.12, 1.15).  

The Jurassic-Cretaceous sequences below the onshore part of the Rioni and Kartli 

Basin are considered to represent the continuation of the Shatsky Ridge (Banks et al., 

1997). The Rioni and Kartli Basin are of flexural origin developed mainly during the Miocene 

through the loading of the Adjara Trialet Fold Belt (Banks et al., 1997; Robinson et al., 

1997). The basins are separated by the Dziruli Massif (Fig. 1.15), a basement high of the 

Middle Jura to Lower Cretaceous, acting as the main source of the deposits in the Rioni and 

Kartli Basin (Robinson et al., 1997). The thick Upper Miocene to Quarternary sediments 

deposited in the Rioni Basin onlap the Shatsky Ridge in the north and merge eastward with 

the post-rift fill of the Eastern Black Sea Basin (Banks et al. 1997; Robinson et al., 1997). 

Numerous unconformities within the sequence reflect the development of submarine 

canyons transferring sediment to the Black Sea (Banks et al., 1997). In the south and the 

Figure 1.16: Three-dimensional bathymetric map of the central study area off Batumi 
(Georgia) collected during the P317 cruise by using a 50 kHz ELAC Bottomchart Mk-II 
multibeam with a grid cell size of 50 m (Klaucke et al., 2005).
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east, the Rioni Basin is overridden by the Pontides leading to obscured margins (Rangin et 

al., 2002).

Figure 1.17: Mosaic of 75 kHz DTS-1 side-scan sonar profiles showing the 
canyon-ridge system offshore Batumi and several seep locations. White 
represents high back scatter intensity (after Klaucke et al., 2006). 
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The study area offshore Batumi, located at the offshore extension of the Rioni Basin, 

is characterized by a complex system of W-E striking canyon and ridge structures (Fig. 

1.16). Within the Rioni Basin the Maikopian Formation is deformed into several W-E 

trending anticlinal structures (Tugolesov et al., 1985), but is not related to mud volcanoes as 

in other parts of the Eastern Black Sea Basin (e.g. the Sorokin Trough). Numerous gas 

seeps occur off Batumi, which are associated with the ridge structures. The seeps have 

been identified as acoustic anomalies in the water column and as high backscatter patches 

on the seafloor on side-scan sonar records collected during the P317 cruise in 2004 

(Klaucke et al., 2005, 2006) (Fig. 1.17). 

1.4 Materials and methods 

The high resolution multichannel seismic data presented in this thesis were 

collected during to cruises: Seismic data in the Sorokin Trough were collected during 

Meteor cruise M52/1 in January 2002 in the frame of the MARGASCH project (Marine gas 

hydrates of the Black Sea). The continental slope off Batumi (Georgia) was investigated in 

the frame of the METRO project (Methane and methane hydrates within the Black Sea: 

Structural analyses, quantification and impact of a dynamic methane reservoir) during TTR-

15 cruise with R/V Professor Logachev in June 2005. Additionally, data include Parasound 

sediment echosounder and Hydrosweep multibeam swathsounder data recorded during the 

M52/1 cruise simultaneously to the seismic profiling. The Hydrosweep data  has been 

combined with Simrad EM-12 multibeam data acquired during the TTR-6 cruise (Woodside 

et al., 1997). Bathymetric data offshore Batumi shown in Chapter 4  represents ELAC 

Bottomchart Mk-II multibeam data collected during the Poseidon cruise P317 (Klaucke et 

al., 2005). In the Sorokin Trough the seismic survey was divided into 2 parts: initially 2D 

overview profiles were shot and then a 3D survey was shot based on the results of the 

overview lines in order to resolve the structural variability of the Sevastopol mud volcano. 

For this study ~570 km of 2D seismic lines and ~620 km of 3D seismic data off Crimea as 

well as 324 km of seismic profiles off Georgia have been processed and analyzed. 

1.4.1 The Bremen high resolution multichannel seismic system 

The seismic data used for this study were collected with the Bremen high resolution 

multichannel seismic system, which is specifically designed to acquire high resolution 

seismic data through optimizing all system components and procedural parameters. 

Different seismic system setups were used during the M52/1 and TTR-15 cruises, both 

described in detail below. The principal setups of the seismic surveys are outlined in Figs. 

1.18 and 1.19.   
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1.4.1.1 Data acquisition

   During the M52/1 cruise three different seismic sources, two different GI-Guns with 

chamber volumes of 2 x 1.7 l and 2 x 0.4 l, respectively, and one Watergun with 0.16 l 

chamber volume, were used for generating the seismic signal. The guns were operated in a 

quasi-simultaneous mode at a time interval of 9 s. Only GI-Gun data are analyzed in this 

thesis. The main frequencies of the used GI-Gun range from 50Hz to 500Hz. During the first 

12 profiles the GI-Guns were triggered in an alternating mode and only one GI-Gun was 

shot each time interval leading to a shot repetition time of 18 s for the different GI-Guns. 

This setting results in a shot distance of 60-70 m for the individual GI-Guns. Along all further 

profiles only the 0.4 l GI-Gun was shot in order to increase the coverage. The 0.4l GI-Gun 

was selected due to its slightly higher frequency content, because the aim of the survey was 

to record high resolution images of the near-subsurface. The acquisition geometry of the 3D 

seismic survey consists of 81 parallel 2D lines with a line spacing of 25 m. Additionally, 24 

profiles with a line separation of 50-100 m were collected at the margins of the 3D grid and 

11 cross profiles were shot as connecting lines to the overview profiles. 

Figure 1.18: Outline of the high resolution multichannel seismic data acquisition system 
used during the Meteor cruise M52/1 off Crimea (after Bohrmann and Schenk, 2002). 
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   During the TTR-15 cruise only the 2 x 1.7 l GI-Gun was used in harmonic GI mode 

with main frequencies of 50-400 Hz at a shot interval of 10-12 s, depending on the 

availability of high-pressure air, which was provided by two shipboard compressors. Only for 

one line, GeoB05-057, a Mini-GI-Gun with a chamber volume 2 x 0.18 was deployed at 5 

seconds shot interval to get a high resolution image of the uppermost 500 ms TWT. The 

seismic profiling during the TTR-15 cruise was either deployed parallel to the OKEAN or the 

deep towed MAK side-scan sonar and the subbottom profiler system of the R/V Logachev. 

The average shot point distance was about 25-31 m at 5 knots ship speed during the 

operation parallel to the OKEAN system and about 10-12 m at 2 knots ship speed at the 

operation parallel to the MAK system. 

    During both cruises the signal was recorded by using an oil-filled SYNTRON 

streamer, equipped with separately programmable hydrophone subgroups of different 

lengths in order to optimize resolution and bandwidth of the received signals. During the 

M52/1 cruise the streamer was employed with a 35 m long lead-in cable, a 50 m long 

stretch section and six active sections of 100 m length each, while during the TTR-15 cruise 

the streamer had a 30 m tow-lead and three active sections of 50 m length each. Offshore 

Crimea, 48 channels of 6.25 m length and a group distance of 12.5 m recorded the GI-Gun 

data. Offshore Georgia, the first active streamer section used was especially designed for 

high resolution imaging at shallow water, containing 48 channels at a channel spacing of 1 

m. This configuration was of reduced performance for greater water depths, and hence this 

section was not used for processing and interpretation. The second and third active sections 

Figure 1.19: Outline of the high resolution multichannel seismic data acquisition system 
used during the TTR-15 cruise off Batumi.  
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(SYNTRON) are subdivided into 16 hydrophone groups with a length of 6.25 m. Generally, 

the streamer was kept in a water depth of 3 m (+/- 0.5 m) by the attachment of four 

MultiTrak Remote Units (MTC Birds) and five DigiCourse Birds (DigiBirds) during the M52/1 

cruise and the use of five MTC Birds during the TTR-15 cruise. The birds contain a depth 

sensor and adjustable wings, which could be remotely controlled with a PC-based control-

unit. Magnetic compass readings allowed for the determination of the position of each 

hydrophone group relative to the ship course. 

  The streamer was connected with a deck cable via a switch box to the recording 

system. On the M52/1 cruise the GI-Gun data were digitally recorded by a Jupiter/ITI/Bison 

seismograph, which allows online display of the shot gather and demultiplexing of the data. 

The GI-Gun data were recorded at a sampling frequency of 4 kHz over an interval of 3 

seconds. Pre-amplifiers were set to 48 dB, low-cut filter to 16 Hz. A delay was adjusted 

depending on the current water depth. The data were stored on DLT 4000 cartridge tapes (20 

GB) in SEG-Y format. During the TTR-15 cruise a newly in house designed data acquisition 

system, consisting of a Pentium IV based PC with two NI6052E 16 bit AD converters, was 

used for the first time. Each ADC is connected to a 32-channel multiplexer with onboard 

pre-amplification and anti-alias filter. The custom developed acquisition software permits a 

continuous recording of maximum 64 channels and allows storing the data in demultiplexed 

SEG-Y format on hard disk, as well as online display of the shot gathers and online profile 

plot using brute channel stacks of arbitrary channels. Data were recorded at a sampling 

frequency of 4 kHz over an interval of 5 seconds with a delay of 0 seconds.

1.4.1.2 Data processing 

The processing of the multichannel seismic data was applied by using the custom 

developed software package GeoApp for the geometry processing (Zühlsdorff, 1999) and 

the commercial VISTA software (Seismic Image Software Ltd.) for the main processing 

steps.

The geometry processing includes the calculation of the shot and receiver positions, 

the CMP-sorting and the static correction to correct vertical movements of the streamer 

recorded by the birds. The input data for the geometry processing contains the following 

information: (1) shot number and time information, (2) navigation information, (3) depth data 

of the birds and (4) heading data of the birds. For all datasets, initially all information of the 

data were resampled to the same time interval by a time interpolation. As the further 

processing procedures of the 2D and 3D seismic data differ, the single steps for both are 

described separately below. All seismic data were displayed and interpreted by using the 

commercial software package Kingdom Suite (Seismic Micro Technology, Inc.). 
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Processing of the 2D seismic data 

 Only the GI-Gun data collected during the M52/1 cruise and only the data recorded 

with the second and third streamer section collected during the TTR-15 cruise were 

processed and analyzed in this study. First, the reflection midpoints between the source and 

the receiver (CMPs) were calculated for each trace based on the information of the 

navigation and heading data. The CMPs were defined as small circles, so-called bins, with 

distinct sizes and distances along the cruise track. Each midpoint was assigned to one bin 

with the minimum distance to the center of the bin. Based on this procedure, a CMP number 

was determined for each shot-receiver pair. A calculation of the static correction time was 

then applied for each trace using lateral linear interpolation of the depth information of the 

birds for each receiver. The static correction time and CMP number were exported as ASCII 

files and imported into Vista. After delay correction a velocity analysis was utilized to obtain 

the velocities for NMO corrections and stacking. The velocity analysis showed that a 

constant velocity of 1500 m/s could be used for the data due to the relatively short streamer 

length and water depths >1000 m. The data collected during the M52/1 cruise were stacked 

at a bin distance of 10 m leading to 7-8 fold coverage, while the data of the TTR-15 cruise 

were stacked at a bin distance of 10, 15 or 20 m leading to 10 fold coverage on average. 

The stacked sections were bandpass frequency filtered with a frequency content of 55/110 - 

600/800 for the M52/1 data and 20/40 - 200/400 for the TTR-15 data and finally time 

migrated. For the TTR-15 data, coherent noise with main frequencies at 50 Hz, which is 

believed to be caused by mechanical vibrancy of the ship or streamer, was reduced by fk-

filtering with a wave number between -0.25 and +0.25 before stacking. 

Processing of the 3D seismic data  

The 0.4 l GI-Gun data collected during the 3D seismic survey across the Sevastopol 

mud volcano were processed and analyzed in this study in order to image the uppermost 

500 ms of the sediments with best possible resolution. A processing flow of the 3D seismic 

data is shown in Fig. 1.20. For the processing of the 3D dataset initially a 3D grid with 

specified coordinate edges and a given inline spacing of 25 m and a crossline spacing of 

12.5 m was created for the survey area. This grid was used to calculate the coordinates for 

each cross point of the gridlines. The traces of each line were sorted to common cell 

gathers with a cell width of 12.5 m in the inline direction and 25 m in the crossline direction. 

Traces assigned to the same cell could derive from different profiles and traces from the 

same profile could be assigned to cells on different inlines. Thus, the trace coverage of the 

cells varies. Mostly 2-3, but partly up to 4 different profiles, were adjusted to one inline. 

Static corrections were applied as for the 2D data. The information about the cell number, 
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the inline and crossline number, as well as the static correction time were exported to 

VISTA and written into the trace headers for each shot-receiver pair.  

Profiles were split according to their inline number, and then plots were created 

showing the data of an inline measured with one profile. After that, lateral and vertical 

offsets between adjacent profiles binned on the same inline were adjusted. Inaccuracies in 

the measurement of the equipment outlay lead to inexact geometry and result in lateral 

offsets between opposite shot profiles. This would cause a constant offset between adjacent 

profiles with opposite headings. Trigger errors might lead to small vertical offsets. The parts 

of the acquired profiles belonging to one specific inline were NMO-corrected, filtered and 

stacked in order to determine the offsets between the measured profiles. As traces of one 

acquired profile could be binned on different inlines, the coverage of the profile representing 

one inline could be incomplete. Therefore, missing CMPs were filled with empty-traces, 

which allows to compare the different measured profiles binned to a specific inline at the 

same scale. Characteristic morphological structures were used to compare and adjust the 

profiles on a light table. In the central grid, the lines could be adjusted based on the 

structure of the Sevastopol mud volcano. The comparison for the lines at the margins of the 

grid was more complicated as the study area is characterized by a smooth dipping slope 

without great relief. Here, a slight edge at the seafloor was chosen as structure for 

comparison. Uncertainties occurred only at locations where comparability of different 

profiles lacks due to low coverage of several lines. Due to the low line spacing at the margin 

Figure 1.20: Processing flow applied for the 3D seismic data.
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of the 3D grid the bin coverage decreases towards the edges of the grid. Fig. 1.21 shows a 

stacked inline at the margin of the grid with fragmentary coverage and a stacked inline with 

good coverage in the central grid area.  

Figure 1.21: Stacked images of inline 52 at the western margin of the grid area 
with low coverage (top) and inline 107 in the central grid area with good 
coverage (bottom).
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Figure 1.22: Overlay of stacked profiles 066 and 113 with opposite heading binned on 
inline 107. Top: Distinct discrepancy between the profiles due to lateral offset. Bottom: 
Best adjusting of the lines. 
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The detailed comparison off all profiles shows that measured profiles with the same 

heading do not show any offset, but profiles shot in opposite direction show a constant 

lateral offset of four CMP numbers. This is visualized on Fig. 1.22 showing inline 107. Two 

acquired profiles (Profiles GeoB02-066 and GeoB02-133) shot in opposite directions were 

Figure 1.23: Stacked seismic inline 107, composed of three profiles, before (top) and 
after (bottom) correction of the lateral and vertical offsets. 
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binned on this inline. The overlay of these two profiles show an lateral offset, which can be 

corrected by a constant shift of one of the profiles (Fig. 1.22).  

The lateral offsets for all profiles was corrected by shifting the even numbered 

acquired profiles with a heading of about 165° four CMPs to the NNW. Additionally, the 

profiles between 95 and 112 show a vertical offset of 4 ms TWT, thus these lines were 

upward corrected with respect to the other lines. The corrections were applied on the raw 

data for each profile. Afterwards, profiles representing the same inline were combined. On 

Fig. 1.23, the stacked inline 074, measured by three profiles (062, 105, 134) is imaged 

before (top) and after (bottom) correction. The quality of the inline is significantly improved 

after corrections, so that detailed structures and reflectors are more distinctly imaged. For 

example: before correction numerous vertical offsets between traces of different profiles 

occur along the inline (top), which are removed after correction (bottom). The corrected 

inline is characterized by enhanced continuity and reflectivity of the reflectors.  

After correction, all inlines were loaded to one project and delay corrected. Based on 

the results of the velocity analysis applied on the 2D data a constant velocity of 1500 m/s 

was used for NMO correction. The data were stacked at a common cell gather distance of 

12.5 m in the inline direction and 25 m in the crossline direction, leading to 6-7 fold 

coverage. The stacked grid was bandpass frequency filtered with a frequency content of 

55/110 - 600/800 and finally a FK-3D time migration at a constant velocity of 1500 m/s was 

applied. Locally low and irregular bin coverage along several inlines, particularly at the 

margins of the grid, and the limited crossline extension affect the quality of the 3D migration, 

thus only the central grid area, comprising inline 60-140, was used for 3D migration. 

1.4.2 The Parasound sediment echosounder 

Parasound data of the Sorokin Trough were used for the analysis of mud volcanoes 

in the Sorokin Trough (Chapter 2). The hull-mounted narrow beam Parasound sediment 

echosounder is permanently installed on the R/V Meteor. It uses the so-called parametric 

effect by the emission of two high amplitudes, high frequency sound waves to generate an 

operational secondary sound wave of the difference frequency lying between 2.5 and 5.5 

kHz. This secondary operational signal is focused within a cone with 4° as opening angle, 

resulting in a footprint diameter of only ~7% of the water depth. Thus, lateral resolution is 

significantly improved compared to conventional 3.5 kHz systems; vertical resolution is in 

the order of a few decimeters. Penetration varies between 0 - 200 m, depending on the type 

of sediment and attenuation (Grant and Schreiber, 1990).  

 During the M52/1 cruise the data were collected with a difference frequency of 4 

kHz. The Parasound data were permanently acquired and digitally recorded and stored by 



Chapter 1 39                            

the ParaDigMa System (Spiess, 1993). To remove acoustic and electronic noise, the data 

were bandpass filtered from 2-6 kHz.

1.4.3 The Hydrosweep swath bathymetry system 

Bathymetric data during cruise M52/1 were recorded using a Hydrosweep 

multibeam echosounder. The system maps the seafloor by generating 59 pre-formed 

beams over an angle of 90° at an operating frequency of 15.5 kHz, providing seafloor 

information of a swath with a width of twice the water depth (Grant and Schreiber, 1990). 

The lateral resolution depends on the water depth and the slant angle and was about 80 to 

200 m at water depths of 2000 to 2500 m.  

The data were processed with the public domain software package MultiBeam 

(Caress and Chayes, 1996), including the correction of the navigation data and the depth 

values. For removing bad outer beams and abnormal depth values automatic tools were 

used and remaining artifacts were deleted by interactive editing. Gridding and imaging the 

data were carried out with the public domain software package GMT (Wessel and Smith, 

1998). The Hydrosweep data recorded during the overview profiles in the Sorokin Trough 

were merged with multibeam data collected with a Simrad EM-12 system during the TTR-6 

cruise (Woodside et al., 1997). 
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2 Characterization of mud volcanoes in the Sorokin Trough (Black 
Sea) from hydroacoustic data 

Michelle Wagner-Friedrichs, Leonid Meisner, Sebastian Krastel and Volkhard Spiess 

To be submitted to Marine Geology 

2.1 Abstract 

High resolution multichannel seismic data collected during the Meteor cruise M52/1 

in the Sorokin Trough (Black Sea) south-east of the Crimean peninsula in early 2002 reveal 

numerous mud volcanoes of various morphology, such as depression, cone-shaped and flat 

topped structures. The evolution of the mud volcanoes is associated with near-subsurface 

diapiric structures grown in a compressional tectonic regime. The mud volcanoes are 

concentrated in three areas of different sedimentological environments and structural 

features resulting in different evolutions and eruption styles. Generally, the formation of the 

mud volcanoes in the Sorokin Trough is controlled by fluid migration along faults developed 

during the protrusion of the diapiric ridges. In the western Sorokin Trough over-pressured 

fluids are sealed by impermeable or gas hydrate bearing layers in the dominating 

hemipelagic sediments leading to violent eruptions forming the collapsed depression 

structures of this area. Trapped gas is indicated by numerous Bright Spots limited to this 

area. In the central and eastern Sorokin Trough, homogeneous fan deposits of the Palaeo 

Don-Kuban Fan are characterized by enhanced permeability due to the lack of seals, hence 

reducing the pore fluid pressure. This is reflected by more quiet effusive eruptions forming 

cone-shaped structures of partly enormous dimensions with diameters up to 2000 m and 

heights of 100 m. In the easternmost Sorokin Trough the mud volcanoes additionally are 

supplied by absorption of the gas saturated fan deposits due to lateral fluid migration 

towards a morphological high leading to increased fluid content and moussy consistence of 

the erupted mud. 

2.2 Introduction

Mud volcanoes are positive or negative geological structures related to mass and 

fluid discharge, representing an important source of methane and subordinately carbon 

dioxide emissions to the hydro- and atmosphere with a high potential relevance to climate 

change (Milkov, 2000; Holland et al., 2003). The total annual methane emissions to the 

atmosphere through mud volcanoes are estimated to be about 5 Tg (Dimitrov, 2003). Mud 

volcanoes are observed all over the world, onshore and offshore, but predominantly occur 

at compressional systems, as at accretionary complexes, convergent plate margins and 

thrust belts, but are observed at sedimentary basins with great sediment thickness as well 
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(e.g. Black Sea and Caspian Sea) (Kopf, 2002; Dimitrov, 2003). Most mud volcanoes occur 

along the Alpine Himalaya Active Belt with about 1200 terrestrial and offshore mud 

volcanoes (Dimitrov, 2003). Onshore, mud volcanoes have been intensively studied since 

several 100 years, but less is known about submarine mud volcanoes. Since the studies of 

submarine mud volcanoes started during the last three decades, the number of newly 

discovered mud volcanoes increases yearly, but nevertheless probably there will be yet a 

great number of submarine mud volcanoes not identified. Milkov (2000) estimated that the 

number of large seafloor mud volcanoes might exceed 5000.

There are different reasons and factors controlling the formation of mud volcanoes, 

which are still intensively discussed. Two key reasons for the formation of mud volcanoes 

were defined by Milkov (2000): (1) high sediment accumulation rate at passive margins and 

abyssal plains, (2) lateral compression at active margins. Further conditions necessary for 

the formation of mud volcanoes as density inversion, faulting, over-pressured fluids and fluid 

migration result from these two key factors listed above (Milkov, 2000).  

Mud volcanoes show a great morphological diversity in size and shape, which is 

directly linked to the formation mechanisms and the physical properties of the eruption 

product (Brown, 1990; Kopf, 2002). The morphological expression of mud volcanoes is 

primarily controlled by the fluid content, viscosity and consolidation of the extruded material 

(e.g. Brown, 1990). 

Thick organic rich sedimentary sequences in the Black Sea represent excellent 

conditions for the evolution of mud volcanoes. In the central Black Sea (Ivanov et al., 1996; 

Limonov et al., 1997) and in the Sorokin Trough (Woodside et al., 1997; Kenyon et al., 

2002; Krastel et al., 2003; Wagner-Friedrichs et al., in review) mud volcanoes are known 

since the late 1970’s and have been intensively studied and documented, particularly since 

the TTR (UNESCO/IOC Training Through Research Program) cruises during the 1990’s. 

Mud volcanoes in the Sorokin Trough are related to the diapirism of the Maikopian clay and 

result from the rise of sediments with high fluid content along faults to the seafloor 

(Woodside et al., 1997).  

In this study we present a characterization of mud volcanoes in the Sorokin Trough 

obtained from high resolution seismic, sediment echosounder and bathymetric data carried 

out during Meteor cruise M52/1 in January 2002. The data reveal 25 mud volcanoes of 

varying morphology, size and shape reflecting different driving and evolution mechanisms. 

The mud volcanoes, located at water depth between 1700 and 2200 m, were cataloged in 

shape, height, and diameter, and were related to subsurface structures. Accordingly, the 

mud volcanoes were attributed to three areas characterized by different depositional and 

structural environments. The main objective of the study is to explain the variability of the 

mud volcanoes.  
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Key questions are: 

 Are the morphological features related to different subsurface structures influencing 

the evolution of the mud volcanoes and can the shapes of the mud volcanoes be 

related to eruption styles?  

 What are the fluid migration pathways and are there differences between individual 

mud volcanoes concerning the fluid migration pathways?  

 What is the effect of the sedimentologic environments on the evolution of the mud 

volcanoes?

Based on the analysis of the above mentioned questions we propose different loading 

models for the evolution of the mud volcanoes in the various areas of the Sorokin Trough 

depending on the migration pathways and driving forces.

2.3 Geological overview of the Black Sea and the Sorokin Trough 

The Black Sea is generally considered to be originated by a backarc extension due 

to the subduction of the Tethyan Plate in end-Cretaceous (Dewey et al., 1973; Robinson et 

al., 1995; Nikishin et al., 2003). This collision of Arabia with Eurasia lead to a compressional 

tectonic regime during the Eocene (Nikishin et al., 2003), thus in particularly the margins of 

the Black Sea are characterized by deformation (Robinson et al., 1995). The Black Sea is 

enclosed by Cenozoic orogenic belts, such as the Pontides in the south, the Caucasus in 

the east, the Balkanides in the west and the Crimean Mountains in the north (Fig.2.1). The 

Andrusov and the Archangelsky Ridge separate the Black Sea structurally into two basins, 

the Western and the Eastern Black Sea Basin (Fig. 2.1), both containing a 10-19 km thick 

sediment cover, which is underlain either by oceanic or thinned continental crust (Tugolesov 

et al., 1985). The Eastern Black Sea Basin is characterized by a number of troughs and 

barriers developed in the Oligocene-Miocene age, such as the Sorokin Trough, Kerch-

Taman Trough and Indolo-Kuban Trough (Fig. 2.1). 

The Sorokin Trough is located in the northern part of the Eastern Black Sea Basin 

stretching along the south-eastern continental margin of the Crimean Peninsula with a 

length of 150 km and a width of 50 km at water depths between 800-2200 m (Fig.2.1) 

(Tugolesov et al., 1985). The main part of the Sorokin Trough is located on a flat platform 

complex at water depths of around 2000 m, bordered in the south and the south-east by the 

buried Cretaceous-Eocene Tetyaev Rise and Shatsky Ridge and in the north and the west 

by the marine continuation of the Crimean Mountains (Fig. 2.1). 
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The Sorokin Trough is considered to be a southern foredeep of the Crimean 

Mountains, which grew in Oligocene times (Andreev, 1976). The Crimean Mountains are the 

main source for the deposition of the more than 8 km thick succession of Oligocene to 

Quarternary sediments in the Sorokin Trough. The main part of the deposits is represented 

by the 3-5 km thick clayey sediments of the Maikop Formation (Oligocene-Lower Miocene) 

(Limonov et al., 1997). The Miocene-Pliocene deposits are of low thickness (less than 1 km) 

(Woodside et al., 1997). A significant subsidence in the Pleistocene is documented by high 

sedimentation rates, leading to thick Quarternary sediments in the Sorokin Trough with an 

average thickness of 1 km. The Quarternary deposits can be laterally subdivided into fan 

deposits of the Pleistocene Palaeo Don-Kuban Fan and basinal deposits, consisting of 

hemipelagic sediments and turbidites with origin in the Crimean Mountains (Limonov et al., 

Figure 2.1: Schematic overview of the structural and tectonic units of the Eastern 
Black Sea Basin (modified after Robinson et al., 1996). The working area is shown as 
black box. 
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1997). The north-eastern part of the Sorokin Trough is dominated by the fan deposits 

leading to increased thickness of the Quarternary sediments up to 2.5 km. 

Compressive deformation due to movements of the Crimean Mountains on the one 

hand and the Shatsky and Tetyaev Ridges on the other hand in combination with the 

overburden of thick post-Miocene sediments result in the protrusion of the plastic and water 

saturated Maikop clay forming diapiric structures up to several 100 meter below seafloor 

(mbsf). The diapiric ridges are mainly striking in the E-W direction, changing towards the 

east and the west following the flanks of the buried Tetyaev Rise and Shatsky Ridge 

(Woodside et al., 1997). Fluid flow to the seafloor, forced by the compressive tectonic 

regime, leads to the formation of mud volcanoes above the top and the edges of the near-

surface mud diapirs.

2.4 Previous acoustic studies in the Sorokin Trough 

Hydroacoustic studies during the last decades showed the presence of numerous 

mud volcanoes above diapiric structures in the Sorokin Trough (Limonov et al., 1994; 

Meisner et al., 1996; Woodside et al., 1997; Ivanov et al., 1998; Kenyon et al., 2002; Krastel 

et al., 2003). The mud volcanoes are characterized by a highly variable morphology and 

could be distinguished into three types: cone-shaped mud volcanoes dominate, some are 

collapsed structures (pockmarks), and one, the Dvurechenskii mud volcano, is flat-topped 

(Ivanov et al., 1998; Kenyon et al., 2002; Krastel et al., 2003). Gas hydrates in the Sorokin 

Trough were sampled at several mud volcanoes (e.g., Ginsburg et al., 1990; Bouriak & 

Akhmetjanov, 1998; Ivanov et al., 1998; Kenyon et al., 2002; Bohrmann et al., 2003), but, 

despite the sampled near-surface gas hydrates BSRs (bottom-simulating reflector) have not 

been identified in seismic data. Bright Spots at the top and flanks of several diapiric ridges 

in the direct vicinity to mud volcanoes are interpreted to represent the base of the gas 

hydrate stability zone (Krastel et al, 2003; Wagner-Friedrichs et al., in review). Gas hydrates 

are believed to occur locally where upward fluid migration is focused towards the seafloor, 

i.e. at the top of the diapirs and/or in direct vicinity to the feeder channels of the mud 

volcano (Ginsburg et al., 1990; Bouriak & Akhmetjanov, 1998; Wagner-Friedrichs et al., in 

review). Evidences for extensive fluid venting through the seafloor were found during the 

TTR-6 cruise, indicated by mud volcanoes, pockmarks and acoustic anomalies (Ivanov et 

al., 1998). Recently, gas flares have been observed at three mud volcanoes in water depths 

of about 2080 m using hydroacoustic methods (Greinert et al., 2006). The gas bubbles arise 

about 1300 m to a water depth of 770 m, which is ~75m below the phase boundary of pure 

methane hydrate in the Black Sea. The flares appear to be temporal variable, as the 

Dvurechenskii mud volcano (DMV) was inactive during the Meteor cruise M52/1 in early 

2002, but high gas flares were observed in June 2002, May-June 2003 and May 2004. In 
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June 2004 the flares vanished and the DMV remained inactive in August 2004. At the other 

surveyed mud volcanoes activity slightly decreased with time, indicated by lower flare 

heights during the last observations in 2004 (Greinert et al., 2006).  

2.5 Materials and methods 

The acoustic data used for this study were collected during Meteor-cruise M52/1 in 

January 2002. Sediment echosounder data were acquired using the hull-mounted narrow 

beam Parasound System. By utilizing the so-called parametric effect, the system generates 

an operational signal of 4 kHz focused within a cone of only 4° opening angle, resulting in a 

footprint diameter of ~7% of the water depth. Thus lateral resolution is significantly improved 

compared to conventional 3.5 kHz systems. Vertical resolution is in the order of a few 

decimeters. Penetration varies between 0-200 m, depending on the type of sediment and 

attenuation (Grant and Schreiber, 1990). The Parasound data were permanently acquired 

and digitally recorded and stored by the ParaDigMa System (Spiess, 1993). 

Multichannel seismic data (MCS data) were acquired using a 0.4l GI-Gun and a 600 

m long streamer. For recording we used 48 channels with a group length of 6.25 m at a 

group distance of 12.5 m. The GI-Gun data were digitally recorded at a sampling frequency 

of 4 kHz over an interval of 3 s. Remotely controlled birds kept the streamer depth within a 

range of 1 m. Standard processing procedures were applied to the MCS data with ‘in house’ 

and the ‘Vista’ (Seismic Image Software Ltd) softwares, including trace editing, geometry 

processing, static and delay corrections, NMO-corrections, bandpass frequency filtering with 

a frequency content of 55/110 - 600/800, stacking with a CMP distance of 10 m and time 

migration. In total we collected about 570 km of 2D seismic profiles. The location of the 

seismic lines is shown in Fig. 2.2 together with the bathymetric data. The presented 

bathymetric map is a combination of Hydrosweep data acquired during Meteor cruise M52/1 

(Bohrmann and Schenk, 2002) with multibeam data collected during the TTR-6 cruise in 

1996 using a Simrad EM-12 system (Woodside et al., 1997). 
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2.6 Results 

2.6.1 Distribution of the mud volcanoes in the Sorokin Trough 

The seismic and bathymetric data collected during the Meteor cruise M52/1 reveal 

numerous mud volcanoes of varying morphology and size. The location of the mud 

volcanoes is mapped on Fig. 2.2. In total, 25 mud volcanoes were observed, 14 are cone-

shaped, 10 are depression structures and one mud volcano is flat topped (Table 1).  

The cone-shaped mud volcanoes often consist of several cones (up to three) and 

most of the depression structures contain small cones inside (Table 1). Several mud 

volcanoes have been known from previous cruises (TTR-6+11 cruises) (Woodside et al., 

1997; Bouriak et al., 1998; Ivanov et al., 1998; Kenyon et al., 2002), but also new mud 

volcanoes were identified. With exception of the Kazakov mud volcano all mud volcanoes 

are located above the top or the edges of near-surface diapiric structures. Thus, the mud 

volcanoes are relatively linear distributed conform to the W-E strike direction of the diapiric 

ridges (Fig. 2.2). The mud volcanoes are concentrated at the northern edges of the Tetyaev 

Rise and the Shatsky Ridge and can be grouped into three areas, based on the different 

geological and depositional environments in the Sorokin Trough. The only mud volcano not 

included in any group is the M10 mud volcano observed in the westernmost part of the 

Sorokin Trough (Fig. 2.2, Table 1).  

Mud volcano Area 1 runs along the northern margin of the Tetyaev Rise and is 

characterized by a morphological step on the seafloor extending over 25 km in the W-E 

direction, at which most of the mud volcanoes are located (Fig. 2.2). The mud volcanoes in 

this area reveal a great morphological variety, but collapsed mud volcanoes with caldera-

like structures, often including one or more cones inside, and small cone-shaped mud 

volcanoes dominate (Table 1). The second mud volcano area (Area 2) stretches in the NW-

SE direction along the north-eastern edge of the Tetyaev Rise and includes only two single 

large cone-shaped mud volcanoes, the Nioz and the Kazakov mud volcano (Fig. 2.2). 

These mud volcanoes are thrice as large as the mud volcanoes of Area 1 and double as 

large as the mud volcanoes of Area 3. The mud volcanoes are located at the flat plain of the 

Sorokin Trough in water depths of 1950 to 2100 m. In Area 3, located at the north-western 

edge of the Shatsky Ridge, ten mud volcanoes were identified in the seismic and 

echosounder data, most located on a morphological high at water depths of 1700-1800 m 

(Fig. 2.2). Small cone-shaped mud volcanoes predominate, but some larger sized structures 

consist of several cones, partly located within a depression structure (Table 1). 
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Figure 2.2:  
Top: Grey-shaded bathymetric map of the Sorokin Trough. The larger mud volcanoes 
are distinctly imaged on the bathymetry, as the Dvurechenskii, M4, Yalta, Sevastopol, 
Odessa and Istanbul mud volcano, outlined by black circles. The structural features of 
the seafloor (morphological high, morphological step and abyssal plain) are encircled 
in black.
Bottom: Distribution of the mud volcanoes and subsurface structures, as diapiric 
ridges, faults and Bright Spots, mapped from the seismic data. The area influenced by 
the Don-Kuban Fan sediments is marked in blue. The dashed line running through the 
Sorokin Trough in the SW-NE direction represents the seismic cross-section recorded 
by the SSC “Yuzhmorgeologia” of Gelendzhik in 1979 shown in Fig. 2.16. 
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width [m] depth [m] width [m] height [m] dipping angle [°] width [m] penetration [m]

43 2000 80 600

13        2000 30

400 20 8-9°

300 25 11°

24 2550 19 1000 42 9.5° 1600 270

14 1100 5 520 40 12°

22 2300 15 350 22

15 600 45

41 1190 30 800 360

500 30

490 30

650 45

450 37

400 35

50 1100 25 400 37

22 300 12

M3 19 550 20 5-8.5° 700 480 cone-shaped
Small cone-shaped mud volcano with
strong seafloor reflection. Several
reflection patches at the margin of the
feeder channel.

M4 21 500 37 not measurable 600 480 cone-shaped
Pillar like structure, extruding from conduit.
Strong reflector on top. Faults south and
north of the mv.

M5 22 250 15 7.5° 20 390 cone-shaped

Small cone-shaped mud volcano with
weak seafloor reflection above diapiric
structure. Most likely a fault is located
beneath. 

41 400 20 6-7°

23 350 12 3-5°

M7 42 1900 7-30 700 40 2-7°
Cone-shaped

within 
depression

Periphery or begin of mv = sea mound.
Beginning of formation of feeder channel,
not yet reaching up to the seafloor. Several
faults beneath the mound.

M8 45 330 10 250 330 depression 
structure

MV with depression structure above the
top of a diapir.

200 13 9.5

190 18 14

M10 37 900 22 2-4° 250 200 cone-shaped
buildup

Above anticlinal. Cone-shaped buildup,
most probably beginning of mv. Begin of
feeder channel not reaching the seafloor.

13 1200 90 1200 510

1 800 22 8000

1 1700 105 14° 1000

3 2200 75 13° 1540

500 40 12° 400 540

2500 10 1000 45-50 5-10°

M11 44 1000 22 600 750 depression

Periphery of the mud volcano, containing a
small collapsed syncline, which can be
traced down to 580 m bsf. Above the
eastern edge of a diapir.

3 1000 45 15° 1100 400

12 800 45 16° 400 350

M13 3 400 12 13° 540 360 cone-shaped
Small cone-shaped mud volcano. The
feeder channel can be traced down to the
diapiric structure at 2.7 s TWT.

600 30 9-13°

800 60 18°

200 15 13° 2800 550

800 80 11°

900 15 5° 600

M14 4 1300 30 3.5° - - cone-shaped
Developed as a local uplift, most probably
representing the margin of a mud volcano.
Above anticlinal structure at 2.8 s TWT.

M15 11 200 15 not measurable cone-shaped

Small hill at the southern edge of a small
depression, located above a large
anticlinal structure. No feeder channel is
visible beneath. Strong influence of Don
Kuban fan deposits.

600 15 10°

2200 20 500 20 15°

M17 echo
sounder 700 25 2.6° cone-shaped  Cone with weak reflectance

M18 echo
sounder 880 30 4° cone-shaped  Cone with weak reflectance

BMV 12 1600 30 depression

Buried collapse syncline at a depth of 50
m bsf, which can be traced down to 440 m
bsf. The dome of an anticline is observed
at 440 m bsf.

Mud volcano Line Shape CharacterizationDepression Feeder channelCones

11

M16

Istanbul

M9 13

44

Area 3

Cone-shaped

Cone-shaped

cone-shaped

cone within
depression

Odessa

M12

2 cones
within 

depression

cone-shaped

4

10

Seperated mud volcano

Area 2

Flat topped mud volcano. Influenced by
the deposits of the Don-Kuban fan. Strong
seafloor reflection of the top. Above
diapiric structure.

Area 1

flat topped 

Cone-shaped
within 

depression

500 430
depression 
structure 

with 2 cones

3-7°

M1

Cone with steep flanks within depression.
The old cone was destroyed and a new
cone grew up. Above top of diapiric
structure. No clear feeder channel, but a
wide zone of signal attenuation. Weak
seafloor reflection of the cone.

2 Cones in the direct vicinity 
to the Dvurechenskii mud volcano

15 2300

3 cones 
within

depression

Three cones are observed 
within a collapse syncline. 

The small cone has steep flanks.  
No clear feeder channel.

Cone-shaped
within 

depression

7° 

7-12°

19

Three cones within depression. The
depression can be traced down to 3.3 s
TWT. The feeder channel is not clear
seen, but a wide zone of signal
attenuation. Low seafloor reflection.

M2

3 cones 
within

depression

Eastern periphery of the mud volcano.
Two cones are divided by a small cavity.900M6

2400 30

Sevastopol

Yalta

50 2400

Buried mud volcano features

Big single cone-shaped mud volcano.
Diapiric crest is observed beneath. The
surrounding sediments are significantly
influenced by the Don-Kuban fan. Circular
shaped. Steep flanks.
Big single cone-shaped mud volcano.
Without a diapiric structure beneath,
hence no root of feeder channel. Strong
influence of the Don Kuban fan. Circular
shaped.

Two cones within a depression, showing
dome lifting between the cones. Located
above diapiric structure.

The mud volcano is represented by three
cones with a feeder channel beneath each
top respectively characterized by
transparent turbiditic deposits. Strong
influence of Don-Kuban fan. Above the
southern edge of a diapiric structure at 450
ms TWT bsf. Steep flanks of the southern
cone.

Two turbiditic cones with smooth surface
reflection are observed within a collapsed
depression. Located above diapiric
structure at 400 ms TWT bsf. Strong
influence of the Don-Kuban fan. 

The cone with steep flanks is complicated
by a small caldera. Located at
morphological break, at the swell. Feeder
channel can be traced down to a diapiric
structure at 2.7 s TWT. Probably a fault
beneath.

11°

cone-shaped
3 cones

Kazakov

Dvurechenskii

Nioz

Two cones within depression, one steep
flanked, one smoothed. Next to a fault.
Indistinct feeder channel but diffuse zone
of signal penetration. Diapiric structure at
350 ms TWT bsf.

17 1700 22 500 320

25

25

Table1: Morphological characteristics and description of the mud volcanoes in 
the Sorokin Trough. 
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2.6.2 Characterization of the mud volcanoes 

Table 1 summarizes the morphological characteristics of the observed mud 

volcanoes. As seismic lines are not closely spaced the individual profiles might cross only 

the periphery of the mud volcano, hence additionally the bathymetry was used to determine 

the spatial morphology of the mud volcanoes.

Fig. 2.3 images the heights of the cone-shaped mud volcanoes (including the flat-

topped mud volcano and the cones within the depression structures) versus their diameters. 

From mud volcanoes comprising several cones, only the largest one was used. In total, the 

Figure 2.3: Heights of the mud volcanoes versus their diameters. The green circles 
represent the mud volcanoes of Area 1, the blue circles are the Nioz and Kazakov mud 
volcano of Area 2, and the red circles represent the mud volcanoes of Area 3. With 
exception of Area 2, comprising the largest mud volcanoes, the mud volcanoes of Area 1 
and 3 can not be related to defined dimensions, but show great variations. The mud 
volcano M10 outside of the Areas 1-3 is not included. 
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diameters of the cones vary between 200 and 2000 m, their heights range from 10-105 m. 

Most mud volcanoes have diameters of several 100 m up to 1000 m and heights between 

15-50 m. The cones of four mud volcanoes have significant increased dimensions, i.e., the 

DMV (Area 1), the Istanbul (Area 3), and particularly the Nioz and Kazakov mud volcano 

(Area 2).

The characteristics of the different mud volcanoes and the typical features of each 

area are described below. 

Mud volcanoes of Area 1 

In the western Sorokin Trough two main diapiric ridges strike parallel to the Tetyaev 

Rise in the WSW-ENE direction. They separate sedimentary basins with continuous strong 

reflectors of most probably hemipelagic sediments onlapping the flanks of the diapirs and 

bulging above their tops (Fig. 2.4). Nine of twelve mud volcanoes imaged on the seismic 

lines are located above the steep southern flank of the southernmost diapiric ridge aligned 

along the morphological seafloor step, which marks the transition between a crest in the 

north-west and the flat abyssal plain in the south-east (Fig. 2.2). Concerning the morphology 

of the mud volcanoes there is a trend to pockmark structures: 7 mud volcanoes are 

depression structures, of which 6 include cones inside, 4 of the mud volcanoes are cone-

shaped and one mud volcano, the Dvurechenskii mud volcano, has a flat top (Table 1).  

Typical pockmark structures are the Sevastopol and the Yalta mud volcano, two 

larger sized mud volcanoes of this area with diameters of 2400 and 1700 m and depths of 

15 and 25 m, respectively (Fig. 2.5, Table 1). The Yalta mud volcano was imaged by six 

seismic lines providing detailed information about its structure. The elliptic shaped SW-NE 

trending depression structure includes three cones with steep flanks of about 7° in average. 

The westernmost cone is characterized by a weak seafloor reflection, while the others show 

higher seafloor reflection amplitude. The interior of all cones is characterized by acoustic 

transparency (Fig. 2.5). On the Parasound image in Fig. 2.5, low seafloor reflection 

amplitudes and weak reflectors within the upper 25 - 30 m characterize the cones of 

Sevastopol and Yalta mud volcano. The seismic data show a zone of strong signal 

attenuation beneath the Yalta mud volcano including several short reflection patches. This 

zone is as wide as the depression and reaches down to the diapir (Fig. 2.5). Between the 

Sevastopol and the Yalta mud volcano a package of Bright Spots is observed at a depth of 

about 300 ms TWT bsf (Fig. 2.5). Bright Spots are widely distributed in the western Sorokin 

Trough, generally occurring on the top or the edges of the diapiric ridges at +/- constant 

depth (Figs. 2.2, 2.4, 2.5). The Bright Spots are limited to an area west of the Yalta mud 

volcano concentrated northwest of the Sevastopol mud volcano (Fig. 2.2).  
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Figure 2.4: Time migrated seismic profile GeoB02-019 showing the general structures of 
mud volcano Area 1. The M3 mud volcano is a typical small cone-shaped mud volcano 
above the steep southern flank of the southernmost diapiric ridge structured by several 
near vertical faults. The location of the line is shown in Fig. 2.2. 
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Figure 2.5: Close-up of time migrated seismic section (top) and Parasound image 
(bottom) of line GeoB02-050 crossing the Sevastopol and Yalta mud volcano. The 
location of the line is shown in Fig. 2.2. 
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A typical cone-shaped mud volcano with weak diffusive disrupted seafloor reflection 

is the circular M3 mud volcano located above the flank of the southernmost diapiric ridge at 

a water depth of ~2130 m (Fig. 2.4). The feeder channel has blurred outlines and several 

strong reflection patches are observed in particularly at the margin of the channel. Near 

vertical faults with vertical offsets of up to 25 ms TWT occur in the surrounding of the feeder 

channel and above the diapirs (Fig. 2.4). In the north, further acoustic transparent zones 

arise along the flanks of diapirs up to 130 ms TWT bsf, but no mud volcano is observed on 

the seafloor (Fig. 2.4).

The Dvurechenskii mud volcano (DMV) located at the eastern edge of the area 

shows a completely different shape and a large size. The flat cone has a width of 2000 m 

and a height up to 80 m (Fig. 2.6, Table 1).  

Acoustic transparent units separated by bands of high amplitude reflectors dominate 

the subsurface sediments around the DMV. The feeder channel has a sharp outline to its 

northern and southern margin, but diffusive boundaries to the south-west and north-east 

(Fig. 2.6). The reflectors south-west and north-east of the feeder channel are displaced by 

Figure 2.6: Time migrated seismic section GeoB02-013 crossing the Dvurechenskii, 
the M9 and the Nioz mud volcano, surrounded by fan sediments. The black lines give 
the outline of the feeder channel, which boundaries are diffuse at the DMV and M9 
mud volcano. The location of the line is shown in Fig. 2.2. 
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40 ms TWT (Fig. 2.6) indicating a fault beneath the DMV, as also suggested by Krastel et 

al. (2003). Beneath the top of the DMV short weak reflection patches are imaged within the 

upper 100 ms TWT. The flanks of the DMV show varying dipping angles and heights. The 

southern flank has a height of ~ 80 m with a slope angle of ~ 2.7°, while the northern flank is 

only 15 m high with a slope angle of 7.7°. There is a vertical offset of 4-9 m between the top 

and the flanks of the mud volcano (Fig. 2.6).  

Figure 2.7: Close-up of the time migrated seismic line 
GeoB02-021 (location of the line is shown in Fig. 2.2). The 
special shape of the M4 mud volcano with steep flanks let 
us presume that the eruption product is more porous and 
might consist of presumably sand. Acoustic transparent 
disturbances at faults above the diapiric top are interpreted 
as fluid escape structures due to fluid migration along these 
faults.
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A special structure is the M4 mud volcano located at the westernmost periphery of 

the area, with a shape varying significantly from the other cone-shaped mud volcanoes (Fig. 

2.7). The M4 mud volcano has a pillar-like shape and the top is slightly convex with a strong 

seafloor reflection. No reflections are seen at the southern and northern flanks of the cone 

due to high slope angles. The feeder channel is characterized by acoustic transparency and 

can be traced down to a mud diapir at 450 ms TWT bsf.   

Mud volcanoes of Area 2

Area 2 is located at water depths of around 2000 m at the flat plain of the Sorokin 

Trough (Fig. 2.2). The sediments are influenced by the distal fan deposits of the Palaeo 

Don-Kuban Fan characterized by an alternation of thick acoustic blank units (100 - 200 ms 

TWT) and few bands of strong reflectors (Figs. 2.6, 2.8).

Figure 2.8: Time migrated seismic line GeoB02-003 imaging the large Kazakov 
mud volcano of Area 2 and the two small-sized M12 and M13 mud volcanoes on 
the morphological high within Area 3. The feeder channels are outlined by black 
lines. See Fig. 2.2 for location of line. 
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The two largest cone-shaped mud volcanoes of the Sorokin Trough, the Kazakov 

and the Nioz mud volcano, are found in this area, both distinctly imaged on the bathymetric 

data (Fig. 2.2). They have enormous dimensions with heights of about 100 m and diameters 

of 1200 m for the Nioz and 2000 m for the Kazakov mud volcano (Figs. 2.6, 2.8, Table 1). 

The Kazakov mud volcano has steep slope angles with about 14°. No diapiric structure is 

observed beneath and the feeder channel can be traced down to the maximal signal 

penetration at 4 s TWT (Fig. 2.8). Contrary, the Nioz mud volcano is located above the 

eastern edge of the southern diapiric ridge observed in Area 1. Both mud volcanoes are 

characterized by a strong seafloor reflection, but the internal structure is masked by 

acoustic transparency, with exception of some short weak reflectors inside the Nioz mud 

volcano (Fig. 2.6). At both mud volcanoes the seafloor reflection is vertically displaced, the 

southern seafloor reflection being about 20 m deeper than the northern one (Figs. 2.6, 2.8). 

The few subsurface reflectors observed beneath the Kazakov mud volcano are also 

vertically displaced by about 10-20 m (calculated with a sediment velocity of 1600 m/s).

Mud volcanoes of Area 3

Area 3 can be subdivided into 2 sub-regions: In the south-east the sediments are 

characterized by acoustic blank units, which are partly divided either by single distinct 

reflectors (Fig. 2.9) or by several continuous bands of strong reflectors (Fig. 2.10). The 

sediments in the north-west are characterized by well stratified continuous high amplitude 

reflectors, separated by single acoustic transparent zones of smaller thickness (Figs. 2.9, 

2.10). These different deposition sub-regions are separated by an E-W striking 

morphological seafloor high, underlain by a diapiric ridge at a depth of about 350-400 mbsf. 

Seven mud volcanoes of this area occur on that morphological high, and all ten mud 

volcanoes are located above a diapiric structure (Fig. 2.2, 2.9, 2.10).  

Most of the mud volcanoes (7) are cone-shaped and three mud volcanoes are 

pockmark structures, of which two include cones inside (Table 1). Additionally, a buried 

pockmark structure is observed at a depth of 80 ms TWT bsf in this area (Fig. 2.2, Table 1). 

The cone-shaped M17 and M18 mud volcanoes are not covered by seismic lines, but have 

been crossed by echosounder profiles (Fig. 2.2). All except one mud volcano (M15) show 

feeder channels beneath their tops. The largest mud volcanoes in this area are the 

depression of the Odessa and the cone-shaped Istanbul mud volcano with widths of about 

2500 and 1700 m respectively (Fig. 2.9-2.11, Table 1).

The elliptical shaped NW-SE trending Istanbul mud volcano is located at the distal 

area of the fan deposits and contains 3 cones with weak seafloor reflections and acoustic 

transparency inside. Between the central and the north-western cone a flat platform with 

strong seafloor reflection is developed, while a narrow basin is formed between the central 
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and south-eastern cone. A Parasound line crossing the Istanbul mud volcano (Fig. 2.11) 

shows that the subbottom is characterized by diffuse reflectors and low signal penetration of 

several m to max. 25 m. The Odessa mud volcano is a big pockmark structure including two 

cones surrounded by non fan sediments (Fig. 2.10). Contrary to the structures of Area 1 the 

depression of the Odessa mud volcano is less deep (~10 m) and shows a continuous strong 

seafloor reflection, broken by the cones, which are characterized by washed out reflections 

and a weak seafloor reflection. Beneath each cone a feeder channel can be traced down to 

the diapir (Fig. 2.10). The chaotic discontinuous sediments above the diapir, disconnected 

by the feeder channels, are dissected by several faults.  

Figure 2.9: Close-up of the time migrated seismic section GeoB02-004 
imaging the Istanbul mud volcano. The surrounding of the mud volcano 
and the south-east are characterized by fan deposits. The acoustically 
masked feeder channel is as wide as the mud volcano and reaches down 
to the diapiric ridge at 2.9 s TWT. Several reflection patches are observed 
within the feeder channel. The location of the line is shown in Fig. 2.2.
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Figure 2.11: Parasound image of the line GeoB02-011. At the morphological high the 
seafloor reflection shows reduced amplitudes and the subsurface is characterized by a 
weak reflector at about 40-70 mbsf. The location of the line is shown in Fig. 2.2.

Figure 2.10: Close-up of the time migrated seismic profile GeoB02-044 
imaging the Odessa and the M11 mud volcano. The south-east is influenced 
by fan deposits, but changing to the north-west into well stratified bedding of 
hemipelagic sediments. The location of the line is shown in Fig. 2.2. 
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The M12 and M13 mud volcanoes north of the Kazakov mud volcano are two typical 

small cone-shaped mud volcanoes (Fig. 2.8). The M12 mud volcano, consisting of 2 tops 

with weak seafloor reflection, is directly located at the edge of the morphological high. 

Reflections in the interior of the mud volcanoes are masked by acoustic transparency. Both 

mud volcanoes are connected via individual feeder channels to mud diapers.  

2.6.3 Diapiric structures in the Sorokin Trough 

Several WSW-ENE striking diapiric ridges and single mud diapirs, which could not 

be attributed to a ridge, were identified in the seismic sections. In the western Sorokin 

Trough three diapiric ridges stretch along the northern margin of the Tetyaev Rise (Fig. 2.2). 

The southernmost diapiric ridge can be traced over 40 km from the M4 mud volcano in the 

west to the Nioz mud volcano in the east; the central diapiric ridge runs over 34 km from 

seismic line 21 to line 43 (Fig. 2.2). The northernmost diapiric ridge is imaged only on few 

seismic lines in the central Sorokin Trough and can not be traced over a great distance due 

to missing seismic data coverage (Fig. 2.2). The tops of the central and the southern ridge 

protrude up to 350-400 ms TWT bsf showing a relatively constant subsurface depth, 

whereas the top of the northern ridge is located at greater depth of 500-700 ms TWT bsf 

with more variations in depth. The diapirs are characterized by acoustic transparency. 

Continuous reflectors of the surrounding sedimentary basins are onlapping the flanks of the 

diapirs and are bulged above their tops. The ridges are asymmetric with a steeper southern 

flank. In the surrounding of the M3, Sevastopol and Yalta mud volcano the southern diapiric 

ridge splits into two tops separated by a syncline with continuous parallel reflectors (Fig. 

2.2). Near vertical faults with offsets of about 3-7 ms TWT disrupt the sediments above the 

diapiric ridges leading to a disturbed and chaotic reflection pattern (Fig. 2.4).  

Numerous high amplitude reflection packages (Bright Spots) are observed in the 

westernmost Sorokin Trough along the top or the flanks of the central and southern diapiric 

ridge (Fig. 2.2). The depth of the Bright Spots varies for about 200 ms TWT from 220 to 430 

ms TWT bsf with an average depth at about 300 ms TWT bsf. The Bright Spots are local 

amplitude anomalies with a limited lateral extension of maximal 1500 m in the N-S direction. 

In an area north-west of the Sevastopol mud volcano the Bright Spots could be traced over 

a maximal distance of 4.8 km in the E-W direction (Fig. 2.2). 

In the eastern Sorokin Trough it is more difficult to identify mud diapirs due to the 

acoustic blank units of the fan deposits. Contrary to Woodside et al. (1997), who observed 

N-S striking diapiric zones north-east of the Shatsky Ridge we could not identify diapirs at 

this margin of the survey area. At the north-western edge of the Shatsky Ridge, however, 

one diapiric ridge stretches in the WSW-ENE direction along a morphological high. The 
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ridge rises to a depth of about 400-500 ms TWT bsf. Several single mud diapirs were 

identified north and south of this ridge but could not be attributed to a ridge.

2.7 Discussion 

2.7.1 Feeder channels 

The feeder channels of the mud volcanoes are seismically characterized by acoustic 

transparent zones connected to the diapirs beneath with widths similar to the mud volcano 

structure. The resulting diameters of the conduits are in the range of several 100 m to 

maximum 2400 m at the Yalta mud volcano (Figs. 2.4-2.9, 2.11). Although information about 

the dimensions of ancient and recently active feeder channels are marginal, surface 

observations indicate that diameters of conduits range from 15 cm at Taiwan (Yassir, 1989) 

to 3 m at the Mediterranean Ridge (Stamatakis et al., 1987; Pascoe, 1912; Gorkun and 

Siryk, 1968; Kopf and Behrmann, 2000). Cemented chimneys at the ancient Verrua mud 

volcano in Italy also consist of diameters of only several 10 cm (Cavagna et al., 1998). 

Contrary observations on seismic data show conduits of several 100 m to 1.5-3.5 km in the 

Black Sea (Ivanov et al., 1996; Limonov et al., 1997; Krastel et al., 2003) at the Barbados 

Ridge (Griboulard et al., 1998) and in the Alboran Sea (Perez-Belzuz et al., 1997). 3D 

seismic investigations of mud volcano provinces, however, demonstrate that the width of the 

feeder channels is probably much smaller than the zone affected by acoustic blanking (Van 

Rensbergen et al., 1999). Kopf (2002) argued that conduit diameters of hundreds or 

thousands meters would be only reasonable for slowly ascending diapiric intrusions without 

considerable over-pressure, otherwise astronomic flow rates have to be expected, even if 

only small density contrasts exist as driving force. Krastel et al. (2003) proposed for the 

Dvurechenskii mud volcano that the transparent zone corresponds to an area riddled with 

smaller conduits, which cannot be resolved by the seismic system. This interpretation is 

based on short reflection patches within the feeder channel. We observed such weak 

chaotic reflections within the feeder channel of most of the mud volcanoes in the Sorokin 

Trough, but they might reflect disturbed sediments as well (Figs. 2.4-2.9, 2.11). The 

acoustic transparent zone imaged beneath the mud volcanoes is probably much wider than 

the real conduit, most likely due to generally increased gas content in the sediments 

surrounding the conduit. Although the main mass transport in the feeder channels is 

vertically, lateral transport from the channel into the surrounding sediments and vice versa 

occurs as well. Such lateral flows can explain the blurred margins of most of the feeder 

channels.
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2.7.2 Evolution of the mud volcanoes at the different areas 

Previous studies showed that mud volcanism in the Sorokin Trough is associated 

with the diapirism of the Miocene Maikop plastic clay formation (e.g. Ivanov et al., 1998) by 

forming diapiric protrusions due to the compressional deformation between the Crimean 

Mountains and the buried Tetyaev and Shatsky Ridges. The formation and evolution of the 

mud volcanoes in the Sorokin Trough is controlled by fluid migration along faults and 

fractures (Woodside et al., 1997). 

The morphological shape of mud volcanoes is directly related to the evolution of the 

mud volcano and the physical properties of the material erupted, primarily depending on the 

viscosity, the porosity and consolidation of the extruded mud (Brown, 1990; Ivanov et al., 

1996; Kopf, 2002; Yusifov et al., 2004). The height of the mud volcano reflects the 

consistency of the mud and the eruption frequency. The viscosity and porosity of the 

material influence the dipping angle of the flanks (Kopf, 2002; Yusifov et al., 2004): Mud 

flows with low viscosity form big and flat cones with low slope angles, while high viscose 

mud extrusions form cones with steep flanks. High permeable mud results in domes and 

pies with relatively steep slopes. High pore fluid pressure, e.g. due to fluids sealed by low 

permeable material, leads to violent eruptions. The great morphological variety of the mud 

volcanoes observed in our data indicates that different factors control the eruption process 

and development of the mud volcanoes in the Sorokin Trough, depending on the driving 

force, eruption mechanism and the physical properties of the material. Concerning to their 

distribution and morphology, the mud volcanoes have been distinguished into 3 areas (Fig. 

2.2). Variations in sedimentary characteristics and subsurface structures most probably 

influence the factors controlling the evolution of the mud volcanoes in the individual areas. 

Evolution model of the mud volcanoes of Area 1 

In the western Sorokin Trough the WSW-ENE striking diapiric ridges reflect the S-N 

oriented compressional tectonic regime due to the northward movement of the Tetyaev 

Rise. The sedimentary basins contain hemipelagic deposits as well as slumps and turbidity 

currents from the steep Crimean slope, which formed a system of narrow channels of less 

than 10 m in depth (Akhmetzhanov et al., 2002). The mud volcanoes of this area are 

elongated along a morphological step on the seafloor located above the southernmost 

diapiric ridge (Fig. 2.2). The seafloor step reflects the morphology of the subsurface 

structures and can be correlated to steep dipping sediments bulging above the diapir (Fig. 

2.4). Numerous faults striking parallel to the Tetyaev Rise, perpendicular to the main strain 

direction, occur at the steep southern flank of the diapir in the surrounding of the feeder 

channels as well as above the top of the diapir, but lack at the northern diapir flank (Figs. 

2.4, 2.7). However, only the M7 mud volcano could be directly linked to a fault underneath, 
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as mostly sediments beneath the mud volcanoes are acoustically masked in the range of 

the feeder channel. Reflectors north and south of the feeder channels are difficult to 

correlate, but at the M3 mud volcano a strong reflector at about 3 s TWT is displaced by 10 

ms TWT (Fig. 2.4), and at the DMV the reflectors south-west and north-east are also 

displaced by about 40 ms TWT (Fig. 2.6), indicating that faults appear to be common 

beneath the mud volcanoes. Thus, we suggest that the mud volcanoes are associated with 

faults developed at the steep southern flank of the diapir providing excellent fluid migration 

pathways towards the seafloor. Acoustic transparent disturbances observed at numerous 

faults above and at the flank of the diapir are interpreted as fluid escape structures (e.g. 

Figs. 2.4, 2.7), supporting that fluid migration is fault-controlled. The evolution of the faults 

probably is mainly forced by the growth of the diapirs, destroying the overlying sediments 

and leading to over-steepened sediments at the diapir flanks. Thus faults developed above 

and at the flanks of the diapirs. In the study area, the southern flank of the diapir is 

significant steepened and faults are limited to this side (Fig. 2.4). This supports that fluid 

migration and evolution of mud volcanoes is concentrated at the southern flank of the diapir.

Figure 2.12: Sketch of the explosive eruption model in Area 1 leading 
to collapsed depressions. (a) Gas is trapped at horizons with decreased 
permeability indicated by Bright Spots. (b) If pore pressure exceeds the 
fracture pressure, gas and sediments are sudden released by gaseous 
explosion. (c) The material collapses back into the depression. (d) After 
seal failure the permeability is increased, leading to quiet mud 
extrusions forming cones. 
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The morphological expression of the mud volcanoes in this area greatly varies 

reflecting different settings concerning the driving mechanism. Most mud volcanoes are 

depression structures, which are interpreted to represent collapsed structures formed by 

explosive eruptions. A model for the explosive evolution of the depression structured mud 

volcanoes is imaged in Fig. 2.12. 

The most driving forces for violent eruptions are over-pressured fluids, which can be 

sealed either by impermeable layers or by gas hydrates (e.g. Brown, 1990). The 

hemipelagic sediments probably contain predominantly fine grained low permeable clayey 

sediments in alternation with more permeable silty and sandy sediments, hence prohibiting 

vertical fluid migration. In addition, gas hydrates have been sampled at several mud 

volcanoes in the Sorokin Trough (Bohrmann et al., 2003) which decrease the permeability 

of sediments as well (e.g. Kvenvolden, 1993) and hence possibly lead to excess pore 

pressures (Sloan, 1990). An evolution model of the mud volcanoes of Area 1 is presented in 

Fig. 2.13. 

Bright Spots at the approximate depth of the base of the gas hydrate stability zone 

are widespread in the mud volcano Area 1, especially in the surrounding of the mud 

volcanoes (Figs. 2.2, 2.4, 2.5). Bright Spots are absent in Area 2 and 3 indicating different 

mechanisms for the formation of the mud volcanoes. Krastel et al. (2003) and Wagner-

Figure 2.13: Schematic evolution model of the mud volcanoes in Area 1. Fluid 
migration is bound to faults developed during the diapiric uplift at the top and the flanks 
of the diapirs. 
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Friedrichs et al. (in review) interpreted these Bright Spots as local free gas accumulation 

trapped either by impermeable horizons or gas hydrates above. The Bright Spots are 

probably limited to local areas where fluid migration occurs, associated with mud volcanism. 

Lateral gas migration from the feeder channel into porous sediment layers might be an 

explanation why Bright Spots often occur next to feeder channels. The occurrence of the 

Bright Spots supports that gas is trapped in this area. If the pore pressure exceed the 

fracture pressure the seal fails and the sudden release of pressure leads to gas expansion 

and explosive escape of gas/fluids and fluidized material to the seafloor resulting in violent 

explosions forming collapsed depressions, calderas and craters (Hovland et al, 1997). Over-

pressured fluids would be presumably released at cracks and faults, and hydraulic fracturing 

could play an important role in the development of faults representing an early phase of the 

formation of the feeder channel. Several authors showed that fluid flow along faults often is 

associated with hydraulic fracturing (Behrmann, 1991; Brown et al., 1994) though 3D-

seismic data would be necessary to prove this hypothesis for our working area. After the 

burst the collapsed material falls back into the depression (Hovland et al., 1997). Our 

seismic data show irregular seabed reflections and diffuse discontinuous reflection pattern 

within the feeder channel, which we interpret as material deposited in the depression after 

the burst (e.g. Fig. 2.5). After the first violent eruption, the conduit is open for successive 

more quiet mud extrusions building up the cones within the collapsed structures. 

Accumulation of gas probably increases the fluid content and decreases the viscosity, thus 

subsequent fluid-rich mud flows form cones with flat angles, as e.g. at the Dvurechenskii 

mud volcano (Fig. 2.6).  

The simple cone-shaped mud volcanoes indicate less violent and more effusive mud 

extrusions, fed by continuous fluid flow from the diapir, where permeability is increased, e.g. 

due to well developed faults, and open unsealed conduits. No Bright Spots are found in the 

vicinity of these mud volcanoes supporting the idea that no seals exist for these mud 

volcanoes.

Two special structures occur at the eastern and western edge of the study area: The 

flat topped Dvurechenskii mud volcano (DMV) (Figs. 2.2, 2.6) with low slope angles 

indicates extrusions of low viscous fluidized mud, which is supported by sampled mousse 

like mud breccia with high gas content (Bohrmann et al., 2003). Similar flat-topped mud 

volcanoes correlated to fluid-rich mud extrusions have been observed e.g. in the Barbados 

accretionary prism (Henry et al., 1996). The huge dimension of the DMV indicates high 

frequently mud eruptions (e.g. Yusifov et al., 2004). The DMV is interpreted to be a 

presently active seep site and seems to be the most active mud volcano in the Sorokin 

Trough with calculated high flux rates of 12-24 cm year -1 and recent mud flows observed on 

video images at the western rim of the mud volcano (Bohrmann et al., 2003). Gas bubbles 
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above the DMV, however, have not been observed during the M52 cruise (Bohrmann et al., 

2003), but were recorded during the CRIMEA cruise in 2002 as acoustic flare images in 

echosounder data (Greinert et al., 2006), indicating that gas emission at the DMV is 

episodically. The Pillar-like structure of the M4 mud volcano characterized by steep flanks is 

interpreted to represent a high porous sandy mud volcano (Fig. 2.7). Such morphological 

structures have been observed at onshore sand mud volcanoes cemented by clay and silt-

breccia. The origin of the sand might be associated with the basis of the Maikop Formation 

containing sandstones, which partly have been eroded and washed out forming sand lenses 

within the Maikop formation (Golubnichaya, 1969).

Evolution model of the mud volcanoes of Area 2  

The mud volcanoes located at the flat plain of the Sorokin Trough have a completely 

different character to those of Area 1 implying a different eruption style. The big Nioz and 

Kazakov mud volcano are simple cone-shaped indicating quiet effusive mud extrusions, 

which are proposed either to occur more frequently or to contain huge amounts of mud 

resulting in such large structures. The deposits of the Don-Kuban Fan, which might affect 

the migration pathways controlling the evolution of the mud volcanoes, intensively influence 

this area. The gas and water saturated fan deposits are correlated to mass movements 

along canyon systems at water depths above 1200 m in the north-east (Akhmetzhanov et 

al., 2002) resulting in homogeneous mixed sediment units without internal structure, 

seismically characterized by an acoustically transparent facies (Figs. 2.6, 2.8). As this area 

represents the distal fan province, the fan deposits are merged with hemipelagic sediments, 

which are characterized by bands of strong reflectors separating the transparent fan units 

(Figs. 2.6, 2.8). The lack of layered horizons within the fan sediments provides less seals for 

ascending gas, which increases permeability. Therefore no trapping of gas and fluids occur, 

resulting in more quite eruptions characterized by ductile mud extrusions forming simple 

cone-shaped structures. The displacement of the seafloor and subsurface reflections east 

and west of the Nioz and Kazakov mud volcano implies that the upward mass transport to 

them is fault-controlled as already discussed for Area 1 (Figs. 2.6, 2.8). An evolution model 

for this area is imaged in Fig. 2.14. The Nioz mud volcano is associated to a diapiric ridge 

beneath, but no root of the feeder channel is visible beneath the Kazakov mud volcano in 

our high resolution seismic data. There might be a diapiric protrusion at greater depth. 

Otherwise the mud volcano could be directly fed from the Maikop Formation. Such 

structures have been observed in the Central Black Sea, where feeder channels could be 

traced down to 7-9 km terminating in the Maikopian Formation (Meisner et al., 1996). It is 

believed that the Maikop Formation is the source of the mud volcanoes in the Sorokin 

Trough, as clasts recovered from mud breccia sampled at the Dvurechenskii mud volcano 
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could be correlated to the Maikopian Formation, which is located at a depth of 4-5 km 

(Bohrmann et al., 2003). Upward bending reflectors at 3.0 - 3.1 s TWT at the margins of the 

feeder channel of the Kazakov mud volcano could either be related to velocity pull-ups due 

to the presence of gas hydrates with higher velocities, or represent uplifted and tilted 

sediments caused by the upward transport of material.  

Evolution model of the mud volcanoes of Area 3 

In this area the formation of the mud volcanoes is related to the diapiric ridge 

stretching along the morphological high north-west of the Shatsky Ridge, representing the 

south-western edge of the Paleocene-Eocene Pallas-Uplift. The Pallas-Uplift is covered by 

mainly Quarternary sediments of the Don-Kuban Deep Sea Fan, forming a thick 

accumulative structure with complex relief (Tugolesov et al., 1985; Volkonskaya, 1997; 

Akhmetzhanov et al., 2002). Half of the mud volcanoes concentrated on this high is 

surrounded by well stratified hemipelagic sediments in the north-west, while the other mud 

volcanoes are located within the unstructured acoustically transparent facies of the fan 

deposits in the south-east (Figs. 2.2, 2.9, 2.10).  

Figure 2.14: Schematic model of the evolution of the mud volcanoes in Area 2. The Nioz 
and Kazakov mud volcanoes are fed by fluid migration along major faults. 
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Analogue to Area 2 cone-shaped mud volcanoes are the most typical structures in 

Area 3 indicating a dominance of quiet eruptions, which probably occur less frequently than 

in Area 2 due to the generally smaller size of the mud volcanoes. Explosive gas/fluid 

expulsion due to over-pressured fluids plays a minor role in this area, as only few collapsed 

structures were observed in both sub-regions (M11, M16 and Odessa mud volcano; Table 

1). Bright Spots, which are common in Area 1 and indicate trapped free gas, are absent in 

this area. Asides, breccia or gas hydrates in the conduits might act as seal as well, inducing 

Figure 2.15: Schematic model of the evolution of the mud volcanoes in Area 3. a: At the 
sub-region dominated by hemipelagic sediments the mud volcanoes are fed by fluid 
migration along faults. b: In the south-eastern sub-region lateral fluid migration within the 
fan horizons towards the morphological high might play a key role in supplying the mud 
volcanoes.
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increased pore pressure and leading to explosions in case of seal failure. Gas hydrates and 

clasts would affect seismic amplitudes, as they create high impedance contrast to the 

surrounding gassy material of the conduit (Holbrook et al., 2002). High amplitudes reflection 

patches are often observed in the feeder channels, in Area 1 as well as in Area 2 and 3 

(Figs. 2.5, 2.6, 2.8, 2.9), and might be an indication for potential seals. As the dimension of 

these patches is small, their impact on great explosions probably is very low. The different 

depositional environments in the two sub-regions of Area 3 suggest different evolution 

models (Fig. 2.15a+b). In the north, faults imaged above the diapiric top in the surrounding 

of the mud volcanoes let us presume that fluid migration along faults probably fed the mud 

volcanoes from the diapiric ridge as in Area 1. Continuous upward migration of fluids and 

fluidized mud forms cones and domes depending on the density and consistency of the 

material. In the south-east faults could not be identified within the transparent units of the 

fan deposits, but are suggested to be present due to the diapiric protrusion beneath. Here, 

additionally to vertical fluid migration along faults the mud volcanoes might be supplied by 

absorption of material from the fan deposits. The northward oriented tectonic stress initiates 

lateral fluid migration towards the morphological high. Passing into the feeder channel these 

fluidized material can be periodically expelled at the mud volcano due to the upward fluid 

migration absorbing and raising them to the mud volcano. This process increases the fluid 

content at these mud volcanoes, which is supported by mousse like breccias sampled 

during the TTR cruises (Woodside et al., 1997). The higher fluid content, however, is not 

reflected in the morphology of the mud volcanoes.

2.7.3 Correlation of the mud volcanoes to deep subsurface structures and the 
regional geological and tectonic framework 

The seismic data collected during Meteor cruise M52/1 does resolve a maximum of 

1000 m of sediment coverage, which means that only Quarternary sediments and the tops 

of the diapiric ridges are imaged. We do not penetrate down to the root of the diapirs, which 

are considered to be located at the Maikopian Formation in 4-5 km depth (Woodside et al., 

1997; Ivanov et al., 1998). Our access to single channel seismic data collected by the SSC 

“Yuzhmorgeologia” of Gelendzhik in 1979, penetrating the deeper structures of the Sorokin 

Trough, enabled conclusions about the evolution of the mud volcanoes with respect to the 

regional geological framework. An interpreted image of the SW-NE striking cross section 

covering the Sorokin Trough along the general trend of the structures is shown in Fig. 2.16.
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Figure 2.16:
Top: Interpretation of the seismic cross section of SSC “Yuzhmorgeologia” of 
Gelendzhik through the Sorokin Trough together with the residual magnetic data 
(upper part). See Fig. 2.2 for location of the line. The positive anomaly of the 
magnetic data corresponds with fault systems.  
Q=Quaternary, Ng1-2=Miocene-Pliocene, Pg3-Ng1

1=Oligocene-Lower Miocene 
(Maikop), Pg1-2=Palaeocene-Eocene, K1=Lower Cretaceous, K2=Upper Cretaceous, 
J=Jura
Bottom: Close up of the seismic cross section. A mud volcano is located above a 
diapiric structure showing faults inside probably acting as fluid migration pathways.  
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The Maikop Formation shows varying thickness defined by subsurface structures, 

but generally thins towards the offshore continuation of the Crimean Mountains, which is 

composed of Triassic-Jurassic terrigeneous flysch and forms a barrier west of the Sorokin 

Trough. Above the marine continuation of the Crimean Mountains the Maikop Formation is 

found to be absent in the seismic data (Fig. 2.16). In the range of the diapiric folds the 

thickness of the Maikop formation is increased to almost 7 km. The cross section shows that 

the diapiric structures are rooted in the Maikop Formation, but do not reflect the topography 

of the Maikopian basis (Fig. 2.16). Four mud volcanoes (M4, Sevastopol, M6 and Odessa) 

are covered by the cross section, all underlain by a diapir. The M4 and M6 mud volcano 

have not been imaged on this seismic line, but could be identified on our high resolution 

seismic data (Fig. 2.2). Our observation that the mud volcanoes are related to fluid 

migration along faults is supported by the Gelendzhik seismic data revealing numerous 

deep faults, concentrated beneath the mud volcanoes, within the Miocene/Pliocene 

sediments and the Maikop Formation. The faults partly reach down into older rocks 

underneath the Maikop (Fig. 2.16). We suggest that the near-subsurface faults observed in 

the high resolution seismic data are connected to the deeper faults acting as fluid migration 

pathways to the seafloor.  

Why are the mud volcanoes concentrated at the northern edges of the Tetyaev Rise 

and Shatsky Ridge? The source of the fluids is considered to be at greater depth within the 

Maikop Formation, released under great pressure and temperature conditions due to the 

transformation of smectite to illite, which is expected to be completed in a depth of about 3.7 

km (Kholodov, 1983). The evolution of faults within the Maikop Formation probably is 

related to over-pressured fluids. The Maikop clay contains less migration pathways due to 

its low permeability leading to over-pressured fluids. This forces primary lateral fluid 

migration together with the general mass movements from north to south, mobilized by the 

overburden and lateral compression. The Tetyaev Rise and the Shatsky Ridge south of the 

Sorokin Trough represent uplifts of Mesozoic and Palaeogene rocks, acting as a barrier for 

the mass and fluid migration. Fluids accumulate and get over-pressured preferably released 

at cracks and faults. The origin of the deeper faults can be attributed to a Gabbro Intrusion 

in Jurassic time, proved onshore on Crimea and in Georgia (Zaridze et al., 1964, 

Lebedinsky, 1969). Offshore, a positive magnetic anomaly with a width of 40-50 km 

extending from the Crimean slope through the Sorokin Trough and along the Shatsky Ridge 

to Georgia is considered to represent the same intrusion (Fig. 2.16). The Gabbro probably 

has intruded along existing faults and forced the evolution of further faults, which proceeded 

into younger layers. The fluids are released at pre-existing weakness zones, such as cracks 

and faults. 
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As described above we think that the origin of the gas emitting at the mud volcanoes is 

sourced at greater depth within the Maikop Formation migrating upward along faults, but to 

a minor degree the gas additionally could be originated by in situ microbial transformation of 

organic matter into hydrocarbons. The molecular components of the hydrocarbon gases 

measured at several mud volcanoes suggest a deep source of the venting fluids (Blinova et 

al., 2003). However, the isotopic composition of the methane, which is the dominating 

component of the gas extracted by dissociation of gas hydrates, with an average delta 13C

value of -64 ‰ indicates a mainly biogenic origin with an admixture of thermogenic gas 

(Blinova et al., 2003). 

2.8 Conclusions 

Based on new acoustic data collected during the Meteor cruise M52/1, 25 mud 

volcanoes were identified in the Sorokin Trough associated with diapiric structures of the 

Maikopian Formation mainly trending in the WSW-ENE direction due to an N-S oriented 

compressional tectonic regime. The single channel seismic data from 1979 show that the 

deep subsurface of the Sorokin Trough is structured by numerous faults within and beneath 

the Maikop Formation, which can be traced also into the Pliocene and Quaternary 

sediments, suggesting that fluid migration towards the mud volcanoes is controlled by faults 

and sourced at great depth. The Shatsky and Tetyeav Ridge act as a barrier for lateral fluid 

migration, leading to over-pressured fluids, preferentially released at cracks and faults, thus 

mud volcanoes are clustered at the northern edges of these buried ridges.  

The new high resolution seismic data show that most mud volcanoes are related to 

near-subsurface faults developed during the growth of the diapirs and acting as fluid 

migration pathways. The mud volcanoes show a great variety in shape and size reflecting 

different driving mechanisms. Four different morphological types of mud volcanoes were 

identified: cone-shaped mud volcanoes, collapsed structures, collapsed structures including 

cones and one flat topped mud volcano. Based on different geological and depositional 

settings, the study area was subdivided into three areas dominated by different mud 

volcano types: In Area 1 the mud volcanoes are elongated along a morphological step with 

predominately collapsed structures. Layered hemipelagic sediments provide efficient seals 

for gas/fluids rising along growth faults at the steep southern flank of the southernmost 

diapir, which lead to high pore pressure. Seal failures cause gaseous explosions and abrupt 

release of fluids and material collapsing back into the vent and forming caldera-like 

structures. Traps of gas are indicated by the local distribution of Bright Spots near the mud 

volcanoes. Area 2, located at the deep plain of the Sorokin Trough, comprises two big 

simple cone-shaped mud volcanoes, formed by quiet effusive mud extrusions due to 

increased vertical permeability of the dominating homogeneous fan deposits. The mud 
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volcanoes are located above faults with great vertical offsets of about 20 m, indicating that 

high mud flow rates seem to be related to prominent faults. The small cone-shaped mud 

volcanoes of Area 3, aligned along a morphological high, are built by quiet ductile mud flows 

as in Area 2. Lateral fluid migration towards the morphological high might supply the 

formation of the mud volcanoes leading to very moussy eruption products. 
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3.1 Abstract 

New 3D seismic investigations carried out across the Sevastopol mud volcano in the 

Sorokin Trough firstly represent 3D seismic data of a mud volcano in the Black Sea. The 

studies allow us to image the complex three dimensional morphology of a collapsed 

structured mud volcano and to propose an evolution model. The Sevastopol mud volcano is 

located above a buried diapiric structure with two ridges and controlled by fluid migration 

along a deep fault system, which developed during the growth of the diapirs in a 

compressional tectonic system. Over-pressured fluids initiated an explosive eruption 

generating the collapsed depression of the Sevastopol mud volcano. Several cones were 

formed within the depression by subsequent quiet mud extrusions. Although gas hydrates 

have been recovered at various mud volcanoes in the Sorokin Trough, no gas hydrates 

were sampled at the Sevastopol mud volcano. A BSR (bottom-simulating reflector) is 

missing in the seismic data, however, high amplitude reflections (Bright Spots) observed 

above the diapiric ridge near the mud volcano correspond to the approximate depth of the 

base of the gas hydrate stability zone (BGHSZ). Thus, we suggest that gas hydrates are 

present locally where gas/fluid flow occurs related to mud volcanism, i.e. above the diapir 

and close to the feeder channel of the mud volcano. Depth variations of the Bright Spots of 

up to 200 ms TWT might be caused by temperature variations produced by variable fluid 

flow.

3.2 Introduction 

Mud volcanoes are structures related to fluid discharge and are considered to be 

one of the most significant natural sources of carbon emission to the hydrosphere and 

atmosphere. Emission is dominated by methane gas, which contributes to the modern 

atmospheric methane budget (Dimitrov, 2003; Milkov et al., 2003a). The emitted 

greenhouse gases have a great relevance to the carbon budget and climatic change, which 

lead to increased interest in the study of mud volcanoes since the last decades (e.g. Milkov, 

2000). Mud volcanoes are formed by the emission of gas, water and sediments, which 
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might occur by violent eruptions, but mostly occur by semi-liquid effusive mud flows 

(Dimitrov, 2002; Milkov et al., 2003a). Thus, the extruded material at mud volcanoes gives 

information about sediments and fluids in the shallow and deep subsurface (e.g. Guliyev 

and Feizullayev, 1997). Estimates about the amount of methane emitted to the atmosphere 

through mud volcanoes vary significantly: Milkov et al. (2003a) establish that the global 

methane flux through mud volcanoes is about ~ 33 Tg year -1, while Kopf (2002) suggests 

that only 0.08-1.41 Tg year -1 of methane are released through mud volcanoes. Dimitrov 

(2003) estimates that the annual amount of methane released from onshore and shallow 

water mud volcanoes range between 10.2-12.6 Tg. The annual contribution of methane to 

the atmosphere through mud volcanoes is estimated to be about 5 Tg year -1 (Dimitrov, 

2003). Mud volcanoes occur worldwide onshore and offshore, predominantly in areas of 

compressive tectonic regimes facilitating fluid/gas and mud flow towards the surface (Kopf, 

2002). Almost 2000 mud volcanoes have been observed worldwide, most located along the 

Alpine-Himalaya Active Belt (Dimitrov, 2003). The distribution, activity, eruption products 

and formation mechanisms of terrestrial mud volcanoes have been well studied for over 200 

years. The investigation of submarine mud volcanoes, however, only started ~30 years ago 

and the exact number of submarine mud volcanoes is uncertain, but the number of 

described submarine mud volcanoes is increasing rapidly (Dimitrov, 2003). The formation of 

mud volcanoes has been intensively discussed and is affected by several factors and 

processes. Woodside et al. (1997) distinguished 2 main mechanisms for the formation of 

mud volcanoes: (1) fluid migration associated with a shale diapir and (2) rise of fluidized 

mud along faults and fractures. Mud volcanoes show a great variety in size and geometry 

(Kopf, 2002). Morphological and structural characteristics of submarine mud volcanoes are 

mainly investigated by hydroacoustic methods. The morphology of mud volcanoes reflects 

directly the eruption style and the physical properties of the material erupted, primarily 

depending on the fluid content, the viscosity and consolidation of the extruded mud (Brown, 

1990; Kopf, 2002). 

The Black Sea, containing thick sedimentary sequences with high methane 

concentrations, provides an excellent area to study mud volcanism. Well studied mud 

volcanoes occur in the central part of the Black Sea (Ivanov et al., 1996; Limonov et al., 

1997) and in the Sorokin Trough (Ginsburg et al., 1990; Woodside et al., 1997; Krastel et 

al., 2003). The mud volcanoes in the Sorokin Trough show varying morphology and are 

generally connected to near-subsurface diapiric structures (Woodside et al., 1997). The 

evolution of the mud volcanoes in the Sorokin Trough is primarily linked to faults acting as 

migration pathways for rising fluidized mud (Woodside et al., 1997). Generally, deep water 

mud volcanoes are often associated with gas hydrate occurrences (Woodside et al., 1997) 

as first discussed by Ginsburg et al. (1984). In the Sorokin Trough gas hydrates near 
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numerous mud volcanoes have been sampled since the 1980s (e.g. Ginsburg et al., 1990; 

Ivanov et al., 1998; Bohrmann et al., 2003), but no BSRs have been identified on seismic 

sections.

During Meteor cruise M52/1 in January 2002, a high resolution three dimensional 

seismic survey was carried out in the vicinity of the Sevastopol mud volcano in order to 

obtain the detailed spatial geometry of a collapsed structured mud volcano and its 

subsurface structures, which provide an evolution model directly related to gas/fluid 

migration along deep faults. The main objectives of this survey have been focused on 

following aims and questions: 

 What is the 3 dimensional structure of the Sevastopol mud volcano? 

 What kind of subsurface structures are associated with the mud volcano? 

 What conclusions about the evolution and eruption style of the mud volcano can be 

drawn from the identified surface and subsurface structures? 

 What are the main fluid/gas migration pathways controlling the formation of the mud 

volcano?

 Are there evidences for gas hydrates in the surrounding of the mud volcano?

3.3 Geological setting  

The Black Sea, surrounded by Late Cenozoic mountain belts (the Pontides, the 

Caucasus, the Crimean Mountains and the Balkanides), is the world’s largest anoxic 

intercontinental basin. The Black Sea presumably originated as a back-arc basin related to 

the subduction of the Thetyan Ocean in late Cretaceous time (Dewey et al., 1973; Finetti et 

al., 1988; Nikishin et al., 2003). Due to the collision between the Eurasian and the Arabian 

plates since the Eocene, the tectonic setting changed to a compressional regime (Nikishin 

et al., 2003). Structurally, the Black Sea is composed of two basins, the Western Black Sea 

Basin and the Eastern Black Sea Basin, which are separated by the Andrusov Ridge (Fig. 

3.1) consisting of continental crust and overlain by 5-6 km of sediments (Tugolesov et al., 

1985). The origin and the formation timing of the basins are still under debate (e.g., Okay et 

al., 1994; Rangin et al., 2002). Currently, it is widely accepted that the Western Black Sea 

Basin opened in Mid-Cretaceous, which is based on stratigraphic evidences from the 

northern Black Sea margin (e.g. Robinson et al., 1996). The age of the opening in the 

Eastern Black Sea is not as well documented and interpretations vary from Jurassic time 

(Golmshtok et al., 1992), to end-Cretaceous (Nikishin et al., 2003) and Paleocene/Eocene 

opening (Robinson et al., 1996; Spadini et al., 1996; Cloething et al., 2003).  

The Western Basin is thought to be underlain by oceanic crust with a sediment 

cover of up to 19 km thickness (Tugolesov et al., 1985). The basement of the Eastern Basin 
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is thinned and it is still discussed whether it represents oceanic (Belousov et al., 1988; 

Finetti et al., 1988; Rangin et al., 2002) or continental crust (Tugolesov et al., 1985). The 

crust in the Eastern Basin, however, is overlain by up to 12 km thick post-rift sediments 

(Tugolesov et al., 1985; Rangin et al., 2002).  

The Sorokin Trough (Figs. 3.1, 3.2) forms a 150 km long and 50 km wide structural 

depression along the south-eastern margin of the Crimean Peninsula in the Eastern Black 

Sea Basin at water depths of 800-2200 m (Tugolesov et al., 1985). The trough is considered 

to be a foredeep of the Crimean Mountains and belongs to a system of Oligocene-Miocene 

troughs, such as the Kerch-Taman and Indolo-Kuban Trough (Tugolesov et al., 1985). In 

the south and south-east, the Sorokin Trough is bordered by the Cretaceous-Eocene buried 

Shatsky Ridge and Tetyaev Rise (Figs. 3.1, 3.2). The formation of the Trough began in 

Oligocene time during Crimean-Alpine folding (Andreev, 1976).  

Based on seismic data, two main units have been recognized in the sedimentary 

cover of the Sorokin Trough (Woodside et al., 1997): The lower unit consists of the upper 

part of the Maikopian Formation (Oligocene-lower Miocene) and Pliocene deposits. It is 

intensively folded and disturbed by numerous faults, which can be traced into the upper unit. 

Figure 3.1: Schematic map of the Black Sea showing the major tectonic units, 
morphological structures and the location of the study area (Sorokin Trough), highlighted in 
red (modified after Robinson et al., 1996). The grey lines mark the borders of the 
morphological structures.
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The thickness of the unit varies from 5 to 6 km. The upper unit consists of quaternary 

deposits, which are characterized by subparallel bedding (Limonov et al., 1997). The 

quaternary deposits can be laterally subdivided into fan deposits of the Pleistocene Palaeo 

Don-Kuban Fan and basinal deposits, consisting of hemipelagic sediments and turbidites 

with an origin in the Crimean Mountains (Limonov et al., 1997). The thickness of the unit is 

controlled by the underlying diapirs and varies from several 100 m up to 2 km, but generally 

increases towards the north-east. A compressional tectonic regime, produced by the 

northward movements of the Shatsky Ridge and the Tetyaev Rise, and the weight of the 

overburden affect the protrusion of the plastic and water-saturated clay of the Maikopian 

Formation and lead to the growth of diapiric structures (Limonov et al., 1997). The diapiric 

ridges mainly strike in the E-W-direction, but the strike direction changes east- and 

westward and follows the flanks of the buried Tetyaev Rise and Shatsky Ridge (Woodside 

et al., 1997). The compressive deformation facilitates fluid/gas migration towards the 

seafloor and over-pressured fluids lead to the formation of numerous mud volcanoes, which 

mostly evolve on the edges of the near-surface mud diapirs.

Figure 3.2: Bathymetric map of the Sorokin Trough together with the location of 
the seismic overview profiles (continuous lines) and the area of the 3D survey 
(red rectangle). The yellow circles show the locations of the mud volcanoes 
observed during Meteor cruise M52/1. 
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Based on seismic studies three types of mud volcanoes have been distinguished in 

the Sorokin Trough: most of the mud volcanoes are cone-shaped, some are collapsed 

structures (pockmarks), and one, the Dvurechenskii mud volcano, is flat-topped (Krastel et 

al., 2003). Most mud volcanoes are located at the northern edges of the Tetyaev Rise and 

Shatsky Ridge (Fig. 3.2). In the Sorokin Trough, gas hydrates were recovered from several 

mud volcanoes and above diapirs (Ginsburg et al., 1990; Bouriak & Akhmetjanov, 1998; 

Ivanov et al., 1998; Kenyon et al., 2002; Bohrmann et al., 2003). The gas hydrates are 

believed to form local accumulations, which are controlled by mud volcanoes and can be 

related to zones of intensive fluid flow towards the seafloor (Ginsburg et al., 1990; Bouriak & 

Akhmetjanov, 1998). In the Black Sea, gas hydrates are stable below a water depth of 700 

m (Ginsburg et al., 1990).  

3.4 Methods 

The high resolution multichannel seismic data presented in this paper were collected 

during Meteor cruise M52/1 in early 2002. A GI-Gun with 0.4 l chambers (main frequency 

100-500 Hz) towed in 1.4 m water depth was used along all seismic lines. Data were 

recorded by a 300 m long streamer section (SYNTRON) with 24 channels at a group 

distance of 12.5 m. The streamer was kept in a water depth of 3 m (+/- 0.5 m) by the 

attachment of 9 birds (cable levelers). Magnetic compass readings in the birds allow the 

determination of the position of each hydrophone group relative to the ship course. The data 

were digitally recorded at a sampling frequency of 4 kHz over an interval of 3 seconds. 

Positioning was based on GPS recordings. The seismic survey was divided into two parts. 

Initially, 44 seismic lines were shot as overview profiles to get information about the general 

structures and the distribution of the mud volcanoes in the survey area. Based on these 

results, first interpreted by Krastel et al. (2003), a 2.5 x 7.5 km large area around the 

Sevastopol mud volcano in the western Sorokin Trough was chosen for the three 

dimensional survey in order to resolve the structural variability observed in the overview 

lines (Fig. 3.2), which are characterized by a complex pattern of buried diapiric ridges and 

sedimentary basins.  

Our 3D acquisition geometry consists of a series of 81 parallel 2D lines with a line 

spacing of 25 m (Fig. 3.3). The lines are oriented in the NNW-SSE direction perpendicular 

to the strike direction of the diapiric ridges. Additionally, 24 profiles with a line separation of 

50-100 m increase the width of the survey region to ~6 km and 11 cross profiles were shot 

as connecting lines to the overview profiles.  



Chapter 3  79 

Geometry processing was done by custom software and includes the calculation of 

source and receiver positions, which was the basis for the calculations of offsets and the 

CMP binning. Residual lateral offsets between adjacent profiles binned on the same Inline 

were adjusted. Statics caused by vertical movements of the streamer were corrected with 

help of the depth information from the birds. Afterwards the 3D seismic data were NMO-

corrected with a constant velocity of 1500 m/s, bandpass frequency filtered with a frequency 

content of 55/110 - 600/800 and stacked at a Common Cell Gather distance of 12.5 m in the 

Inline and 25 m in the Crossline direction. The average cell coverage was about 7. Finally, a 

FK-3D time migration at a constant velocity of 1500 m/s was applied. Due to the relatively 

short streamer (300 m maximal offset), and water depths of more than 2000 m no velocity 

Figure 3.3: Bathymetric map of the 3D survey area in the western Sorokin Trough based 
on 15.5 kHz Krupp Atlas Hydrosweep data together with the seismic tracks of the 3D grid. 
The white lines are shown in this paper. 
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analysis was carried out. Locally low and irregular bin coverage along several Inlines, 

particularly at the margins of the grid, and the limited Crossline extension affect the quality 

of the 3D migration. Only the central grid area, comprising Inline 60-140, is unproblematic 

for the migration aperture and hence was used for interpretation. During the processing the 

amplitudes information were preserved and only spherical divergence was corrected.  

Bathymetric data were continuously obtained with the Krupp Atlas Hydrosweep system, 

using a frequency of 15.5 kHz and 59 beams in a swath of 90°. Additionally, digital sediment 

echosounder data were permanently acquired by the Parasound/ParaDigMa System, which 

uses a pulse with a dominant frequency of 4 kHz. 

3.5 Results 

3.5.1 Bathymetry of the 3D seismic survey 

The 3D study area is located at water depths of 1800 - 2150 m and characterized by 

a slope angle of about 0.5° towards the south-east. The relief is low in general, but three 

smooth ridge-like structures occur in the north (Fig. 3.4).  

Figure 3.4: Three dimensional bathymetric view of the slope within the 3D area. The 
depression structure and the mounds of the Sevastopol mud volcano are well pronounced 
within the smooth morphology of the slope. 
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The elliptically shaped Sevastopol mud volcano comprises a ~1700 x 1100 m wide 

depression with a depth of about 25 m including two NNW-SSE trending cone-shaped 

mounds within its center. The southern cone has a height of 35 m and a diameter of about 

500 m, while the northern cone rises 25 m and extends 500 m in the W-E direction and 

about 360 m in the N-S direction. The mounds show an asymmetrical shape with a maximal 

slope angle of 6.5° at their southern flanks, while the slope angle of the northern flanks is 

between 2.6°-4.5°. There is no significant relief within the depression except for the 

mounds. At the south-western rim of the depression a third mound rises about 10 m above 

the surrounding seafloor with a diameter of 300 x 200 m. A second circular depression with 

a radius of 330 m and a depth of 10-15 m is located at the north-eastern margin of the mud 

volcano.

3.5.2 Seismic structure of the 3D area 

Based on four Inlines (Figs. 3.5-3.7) the main structural features, i.e. the diapiric 

structure, the Sevastopol mud volcano, and the sedimentary basins, and their variability 

within the study area are described below. On Fig. 3.8 a three dimensional block of the 

survey area is shown, and on Fig. 3.9 three time slices at depths of 2.95, 3.07 and 3.15 s 

TWT image the lateral changes of the subsurface structures. 

Diapiric structure and Sevastopol mud volcano 

The 3D area is characterized by a complex buried diapiric structure with two ENE-

WSW striking diapiric ridges (Ridge 1 in the north and Ridge 2 in the south), separated by a 

small syncline (e.g. Fig. 3.5). The sediments in the western grid area are disrupted by a 

deep fault system with vertical offsets of several ms TWT (Fig. 3.5). The main fault trends E-

W parallel to the diapiric ridges and can be traced for more than 1 km from the western 

edge of the grid area to the central part. The tops of the diapiric ridges are located at a 

depth of about 400 ms TWT below seafloor (bsf) (Figs. 3.5-3.7). With the exception of weak 

bulged reflections in the core of Ridge 2, the diapiric structure is generally characterized by 

acoustic transparency (Figs. 3.5-3.8). 

High amplitude reflections (Bright Spots) were observed in two areas: In the range 

of Area 1 a package of Bright Spots occurs at about 300 ms TWT bsf just above and at the 

north-western edge of Ridge 1. The Bright Spots have a thickness decreasing from 150 ms 

TWT in the west to 40-50 ms TWT in the east (Figs. 3.5-3.7). The Bright Spots are 

characterized by chaotic reflection patches, so that it is unclear whether they are 

conformable or unconformable to the surrounding strata.  
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Figure 3.5: Time migrated seismic inline 064 at the western periphery of the 3D grid 
(location is shown in Fig. 3.3). A deep fault system is developed between Ridge 1 and 
Ridge 2. Enhanced amplitude reflections (Bright Spots) are found above Ridge 1. 
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On the top of Ridge 1, the Bright Spots are definitely conformable, but on the diapir 

flank the reflections seem to crosscut the stratigraphic units (Figs. 3.6, 3.7). In the outermost 

eastern portion of the grid area the Bright Spot reflections are less chaotic and conformable 

bedded into the strata at the onlap termination of the northern diapiric flank (Fig. 3.7). In the 

eastern grid area, Bright Spots additionally are imaged in the syncline between Ridge 1 and 

Ridge 2 (Area 2). 

In the central 3D grid, the Sevastopol mud volcano is formed on the seafloor above 

the fault system developed between Ridge 1 and Ridge 2. The seafloor of the central 

depression structure of the mud volcano is represented by a package of diffuse and 

disrupted medium amplitude reflection patches (Fig. 3.6). The mounds located in the centre 

Figure 3.6: Time migrated section of seismic inline 102 in the central grid area. The 
Sevastopol mud volcano is formed above the fault system, where it is characterized 
by a depression with two mounds inside the depression. Beneath the mud volcano, 
a zone of signal attenuation reaches down to the diapir. The Bright Spots are located 
on the northern edge of Ridge 1. The inset shows an interpreted portion of the 
seismic section. The location of the line is shown in Fig. 3.3. 
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of the depression are characterized by a weak seafloor reflection and short washed out 

inner reflections (Fig. 3.6). Beneath the mud volcano, a zone of signal attenuation with a 

width similar to the diameter of the mud volcano can be traced down to the diapir and 

reveals only few discontinuous reflection patches inside (Figs. 3.6, 3.8).  

Sedimentary basins

The two sedimentary basins separated by the diapiric structure are filled with well 

stratified parallel reflectors of laterally and vertically varying amplitudes (Figs. 3.5-3.8). The 

lower sedimentary layers are onlapping the flanks of the diapiric structure and the upper 

layers are bulged upward above the diapir. The sediments are generally characterized by 

units of weak amplitude reflections separated by closely spaced and continuous high 

amplitude reflectors. Signal penetration is down to 3.8 s TWT (Figs. 3.5, 3.7, 3.8). In the 

northern basin the units of weak amplitude reflections have a thickness of 80-100 ms TWT, 

decreasing above the diapiric structure and increasing with the water depth in the southern 

basin from 130 ms in the west to 200 ms TWT in the east (Figs. 3.5-3.8). Above Ridge 2 the 

reflection amplitudes are weakened (e.g. Figs. 3.5, 3.7), while there are enhanced 

amplitude reflections above Ridge 1, which are disrupted by numerous microfaults with a 

Figure 3.7: Time migrated seismic inline 132 in the eastern part of the 3D grid. Bright 
Spots are observed at the northern flank of Ridge 1 and in the syncline between the 
ridges. The location of the line is shown in Fig. 3.3. 
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vertical offset of 4-5 ms TWT (Figs. 3.5-3.8). Individual microfaults cannot be traced along 

Ridge 1, but represent local fractures laterally extending about 50-100 m and only a few 

faults can be traced for more than 200 m parallel to Ridge 1.  

The syncline between Ridge 1 and Ridge 2 extends about 250 m in the NNW-SSE 

direction with a steep northern and moderately dipping southern flank; the syncline can be 

traced down to the diapir (Figs. 3.5, 3.7). In the western and the central grid area the 

syncline is characterized by irregular weak reflection patches disturbed by the deep fault 

Figure 3.8: Three dimensional block 
diagram of the survey area. The time slice 
crosses the Bright Spots and the feeder 
channel of the Sevastopol mud volcano at 
a depth of 3.09 s TWT. Two mud diapirs 
are imaged in the subsurface. 
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system described above (Fig. 3.5). In the eastern grid area the syncline contains continuous 

horizontal reflectors onlapping the sediments bulged above Ridge 1 and continuing to the 

southern basin (Fig. 3.7). 

3.5.3 Distribution of the subsurface structures 

For a better understanding of the complex relationships between the structural 

features, the observed subsurface structures were mapped and are displayed together with 

the bathymetry collected during M52/1 cruise (Fig. 3.10). The depth bsf of the top of the 

Bright Spots varies from 0.266 to 0.486 s TWT in Area 1 and from 0.234 to 0.285 s TWT in 

Area 2 (Fig. 3.10). Most Bright Spots are located at a depth between 300 and 400 ms TWT 

bsf with an average depth of 337.5 ms TWT bsf. Within Area 1, the Bright Spots occur 

above the top of Ridge 1 in the western part of the study area, but occur mainly on its 

northern flank further to the east (Figs. 3.5-3.9). The Bright Spots of Area 1 occur at 

relatively constant depth along the trend of the diapir, but their depth increases from the top 

of Ridge 1 towards the northern basin. Two zones with anomalously shallow Bright Spots 

depth of less than 0.298 s TWT bsf are located above Ridge 1 at the south-western and 

Figure 3.9: Three time slices from the 3D seismic data cube calculated for the depths at 
2.95 s, 3.07 s and 3.15 s TWT. Between the crosslines 200 and 300 chaotic reflections 
represent the sediments above Ridge 1 disturbed by the microfaults at depth shallower 
than 2.998 ms TWT, while at greater depths the Bright Spots are distinctly imaged. The 
zone of signal attenuation beneath the mud volcano has a circular shape with a diameter 
that increases with depth. 
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south-eastern edge of Area 1. The Bright Spots of Area 2 show fewer variations in depth, 

with greatest depth at the apex of the syncline. Above the Bright Spots within Area 1, 

acoustic anomalies were observed: Particularly in the east, several vertical acoustic 

transparent zones run vertically from the top of the Bright Spots up to 200 ms TWT along 

the microfaults, partly reaching through the Bright Spots down to the diapir (e.g. Fig. 3.7). 

These zones (blue zones in Fig. 3.10) are cylindrical-ellipsoidal shaped with lateral 

dimensions of 275 m x 250 m. 

Figure 3.10: Distribution of the main subsurface structures, i.e. the Bright Spots, the fault 
system and upward fluid migration pathways (transparent zones), mapped from the 3D 
seismic survey. The white lines in the range of the mud volcano mark the mounds of the 
mud volcano. The color contours represent the uppermost Bright Spot reflectors in TWT 
[s] bsf. 
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The mud volcano is located between Ridge 1 and Ridge 2. The zone of signal 

attenuation observed beneath the mud volcano has similar lateral dimensions as the mud 

volcano (Figs. 3.6, 3.10). The fault system developed between the diapiric ridges forms a 

180-200 m wide zone striking in the ENE-WSW direction and can be traced from the 

western edge of the 3D grid to the central part of the mud volcano, where the fault is lost 

due to the acoustic transparency beneath the Sevastopol mud volcano. 

3.6 Interpretation and discussion 

3.6.1 Evolution model of the Sevastopol mud volcano  

Most mud volcanoes in the Sorokin Trough, including the Sevastopol mud volcano, 

are associated with near-surface mud diapirs (Woodside et al., 1997; Krastel et al., 2003), 

which are related to the clays of the Miocene Maikopian Formation. The convergence 

between the Crimean Peninsula in the north and the buried Tetyaev and Shatsky Ridges in 

the south in combination with a thick overburden on top of the Maikop clays led to the 

protrusion of diapirs and diapiric ridges (Limonov et al., 1997). Although our high resolution 

seismic data do not resolve the basis of the diapiric structures, we are convinced, that the 

diapirs observed in the 3D dataset are related to the Maikop Formation, because clasts 

recovered from mud breccia samples at the nearby Dvurechenskii mud volcano have been 

correlated to the Maikopian Formation (Bohrmann et al., 2003). The deep fault system 

developed between the diapiric ridges (Ridge 1 and Ridge 2) forming the complex near-

surface diapiric structure located beneath the mud volcano acts as potential pathways for 

upward gas/fluid migration and controls the evolution of the Sevastopol mud volcano. The 

development of the fault system is controlled by the diapirism (see below). The zone of 

signal attenuation in the surrounding of the fault system indicates the presence of gas and 

fluid saturated material. Hence this zone is interpreted as the feeder channel connecting the 

mud volcano with the diapir (Fig. 3.6). Strong signal attenuation, however, might be caused 

by other factors as well, such as roughness or steepness of the seafloor or lithological 

issues. The high relief at the mud volcano and carbonate precipitations, often associated 

with mud volcanoes due to anaerobic oxidation of methane, could lead to the signal loss 

beneath the mud volcano. Seismic overview profiles collected across numerous mud 

volcanoes in the Sorokin Trough and the Central Black Sea all show a zone of strong signal 

attenuation beneath the mud volcanoes (Bohrmann and Schenk, 2002; Krastel et al., 2003). 

The zones of strong signal attenuation often are limited to a narrow zone beneath the top of 

the mud volcano and do not cover the entire width of the mud volcano. This observation 

strongly supports our interpretation that the zones of signal attenuation are related to gas 

and not to imaging or lithological effects. Reflection patches observed within the conduit 
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(e.g. Fig. 3.6) also contradicts strong signal loss due to the roughness or steepness of the 

flanks of the mud volcanoes. Thus, we propose that the Sevastopol mud volcano is fed from 

the diapir by fluidized mud rising with gas and fluids along the fault system to the seafloor.  

Based on the 3D images of the mud volcano we suggest a 4 phase evolution model 

for the Sevastopol mud volcano (Fig. 3.11). Phase 1 represents the intact diapiric structure: 

The two diapiric ridges are separated by a syncline filled with +/- horizontal reflections (Figs. 

3.7, 3.11a). Bright Spots at the northern flank of Ridge 1 and between the diapiric ridges 

Figure 3.11: Schematic illustration of the different phases of the evolution of the 
Sevastopol mud volcano and the subsurface structures as found in different areas of the 
3D-grid. (a) The intact diapiric structure is observed in the eastern grid area. (b) The 
deep fault system developed in the western grid area acts as potential pathway for 
gas/fluids. (c) The depression structure of the mud volcano most likely was formed by an 
explosive eruption due to over-pressured fluids. (d) Fluids and fluidized mud arising 
along the fault system form the mud cones within the collapsed depression of the mud 
volcano. For detailed explanations see text. The red arrows indicate fluid migration. 
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indicate that upward gas and fluid migration occurs throughout the diapir into the strata 

generating the Bright Spots, where free gas accumulates. The development of the deep 

fault system between Ridge 1 and Ridge 2 during phase 2 is the first important stage in the 

evolution of the mud volcano and represents the incipient formation of the later feeder 

channel (Fig. 3.11b). The evolution of the faults is most likely associated with the diapirism 

and the compressional deformation. We suggest that the formation began along the steep 

southern flank of Ridge 1. Different protrusion rates of the diapiric ridges, presumably a 

rapid protrusion of Ridge 1, might have steepened its flank and lead to a vertical 

displacement of the ridges leading to the evolution of fractures. It remains unclear, why the 

fault system is only developed in the western and not yet in the eastern grid area. Phase 3 

and 4 comprise two formation mechanisms of the mud volcano with different driving forces 

(Figs. 3.11c, 3.11d). The morphological shape of mud volcanoes reflects the eruption 

mechanism and the properties of the extrusion products (e.g. Brown, 1990; Ivanov et al., 

1996; Kopf, 2002). Mud flows of low viscosity form large and flat bodies, and low porosity 

mud flow form steep mud domes or ridges. High pore-fluid pressure, e.g. caused by low 

permeability, might lead to violent eruptions (Kopf, 2002; Yusifov, 2004). The compressional 

tectonic deformation, the thick overburden and the low permeability of the mud diapir 

facilitate the generation of over-pressured fluids in the Sorokin Trough, thus we suggest that 

the Sevastopol mud volcano was initially formed by an explosive eruption due to seal failure 

leading to a collapsed depression structure (Phase 3, Fig. 3.11c). Disturbed sedimentary 

layers are represented by weak chaotic reflections within the conduit. Subsequent, quiet 

and effusive mud extrusions during phase 4 are believed to have formed the cones inside of 

the depression (Figs. 3.6, 3.11d).

3.6.2 Relationship between the Bright Spots and the base of the gas hydrate 
stability zone 

The Black Sea is known for containing enormous concentrations of gas in the 

marine sediments (e.g. Hunt & Whelan, 1978; Ivanov et al., 1998). In the western Sorokin 

Trough numerous Bright Spots, observed either in the cores of anticlinal structures or at the 

updip terminations of strata with the diapirs at a relatively constant depth of ~ 300 ms TWT 

bsf (Krastel et al., 2003), indicate the presence of free gas. Similarly, in our 3D seismic 

survey area the high amplitude reflection packages identified just above or at the updip 

termination of the strata with the north-western flank of Ridge 1 and in the eastern grid area 

additionally in the syncline between Ridge 1 and Ridge 2 (Figs. 3.10, 3.12) are considered 

to represent Bright Spots related to free gas occurrences.
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We identified further abundant lateral and vertical amplitudes variations in the 

dataset, but, the high amplitude reflections described as Bright Spots above differ 

significantly: The so-called Bright Spots form a thick package of diffuse high amplitude 

reflection patches and occur consistent above the diapir, while the other amplitude 

variations predominantly occur along one reflector. Apart from gas, there are numerous 

further factors affecting seismic amplitudes, such as changes of sediment properties, effects 

of topography, scattering and artifacts due to processing. The latter can be excluded, 

because true amplitudes are imaged. Analyzing the frequency content of seismic data can 

help to identify free gas in the sediments, because free gas absorbs the high frequency 

component of the seismic energy (Taylor et al., 2000). The decrease of the main 

frequencies from about 115 Hz above the Bright Spots to ~ 95 Hz beneath (Fig. 3.13) 

therefore supports the presence of free gas. Thus we attribute the Bright Spots to free gas 

occurrences.

Figure 3.12: Three dimensional 
image of the top of the Bright 
Spots in s TWT in front of inline 
139 (location of the line is shown 
in Fig. 3.3). 
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A polarity change of the seismic signal would be an additional tool to identify free 

gas, because the velocity decrease caused by free gas leads to a negative reflection 

coefficient. Unfortunately, the chaotic and patchy reflection pattern prevents to determine 

the phase of the Bright Spot. We also need to keep in mind that no definite conclusions can 

Figure 3.13: Frequency Trace Graph for inline 102, a) above the Bright Spots, b) 
beneath the Bright Spots.
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be drawn based on the reflection seismic methods alone, because interpretation is based 

on relative amplitude changes. Assuming that the Bright Spots are caused by free gas, it is 

worth to discuss the possible reasons for trapping of free gas. The flanks and the top of 

diapirs are typical locations for the trapping of gas and hence the observed Bright Spots 

could be interpreted as lithological or tectonic traps for free gas accumulation. The 

enhanced reflection patches beneath the Bright Spots, as in particular observed in the 

western grid area, might present gas charged zones (e.g. Figs. 3.5, 3.6), which is a well 

known phenomenon of Bright Spots (Holbrook, 2001). During Meteor cruise M52/1 gas 

hydrates were sampled at adjacent mud volcanoes, e.g. at the Dvurechenskii, Yalta and 

Odessa mud volcanoes (Fig. 3.2), though no gas hydrates were sampled at the Sevastopol 

mud volcano (Bohrmann et al., 2003). If gas hydrates are present, the base of the gas 

hydrate stability zone is often imaged as a bottom-simulating reflector (BSR), a high 

amplitude reflector with a negative reflection coefficient, marking the transition between the 

high velocity gas hydrates bearing sediments and the underlying low velocity sediments, 

mostly containing free gas (Shipley et al., 1979; Kvenvolden and Barnard, 1983; Minshull 

and White, 1989; Miller et al., 1991; Hyndman and Spence, 1992). Some studies suggest 

that the BSR is generated due to the contrast between the high velocity zone of gas hydrate 

cemented sediments above and water saturated sediments beneath (e.g. Hyndman and 

Davis, 1992). Most velocity-models, however, strongly suggest the presence of free gas 

beneath a BSR. Hence the widely accepted consensus is that a BSR reflection is caused by 

free gas trapped beneath the hydrate stability zone (Holbrook et al., 1996). 

Despite the known presence of gas hydrates in the Sorokin Trough, a BSR is absent 

in all seismic sections. Our data show, that the depth range of the Bright Spots, varying from 

235 to 485 ms TWT bsf (Figs. 3.10, 3.12), coincides with the approximate depth of the base 

of gas hydrate stability zone (BGHSZ), and hence the Bright Spots might be related to the 

stability field of gas hydrate. Assuming a sediment velocity of 1600 m/s, the Bright Spots are 

located at depths of 188-388 meter below seafloor (mbsf). We compared this measured 

depth with the theoretically calculated depth for the BGHSZ. The Bright Spots occur at a 

water depth of about 2020 m in Area 1 and about 2100 m in Area 2 (Fig. 3.10). Measured 

seafloor temperature is 9°C. Further we assume a constant temperature gradient of 29°C 

km-1, a pure methane system and Black Sea water chlorinity. Based on these assumptions 

the calculated depth of the BGHSZ is located at about 380 mbsf in Area 1 and 400 mbsf in 

Area 2 (Fig. 3.14). Hence, most of the observed Bright Spots are located at shallower 

depths with a deviation of 10-210 m to the theoretical depth (Figs. 3.10, 3.12, 3.14). Only 

the deepest Bright Spots, observed at the northern flank of Ridge 1, coincide with the 

calculated depth. Changes of the factors controlling gas hydrate stability, i.e. temperature, 

pressure or salinity (e.g. Kvenvolden, 1993) can cause vertical movements of the BGHSZ. 
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Stability of hydrates is primarily controlled by changes in temperature. Heat flow 

measurements in the Sorokin Trough are very sparse, and the assumed temperature 

gradient of 29°C km-1 was measured in an area without mud volcanoes. Mud volcano areas 

are often characterized by increased heat flow values. As shown by Bohrmann et al. (2003), 

locally increased fluid flow in the Sorokin Trough does exist for the Dvurechenskii mud 

volcano (DMV) located at 2000 m water depth. Sediment temperatures of 16.5 °C at the 

DMV in close contact to the bottom water temperature of 9°C suggest high fluid flux within 

the mud volcano (Bohrmann et al., 2003). The high temperature measured at the DMV 

coincides with the maximum temperature for the methane hydrate stability at this depth 

(Bohrmann et al., 2003). No heat flow measurements exist for the Sevastopol mud volcano, 

but we expect higher heat flow values as well. Increased heat flow due to the rise of warm 

fluids, as expected in the surrounding of the Sevastopol mud volcano, leads to an uplift of 

the isotherms (e.g. von Huene and Pecher et al., 1999), and could have uplifted the BGHSZ 

to the depth of the Bright Spots. Assuming, that the Bright Spots represent the BGHSZ, an 

increased temperature gradient of 37°/km would explain the shallowing of the BGHSZ to 

270 mbsf, representing the observed average depth of the Bright Spots (Fig. 3.14). The 

depth variations of the Bright Spots observed particularly in the NNW-SSE direction then 

also could be explained by variable fluid flow along the diapiric ridge. Considering the 

stability field of gas hydrates on Fig. 3.14, changes of the temperature gradient from 29°C to 

52°C/km would effect the observed variations in depth bsf of the Bright Spots. If the Bright 

Spots represent the gas hydrate phase boundary, their depth bsf, which is constant along 

the trend of Ridge 1, but shallows from the flank towards the top (Figs. 3.10, 3.12), suggests 

high fluid flow along the top of Ridge 1 decreasing towards the northern basin. The points of 

shallowest Bright Spots, observed at the western and the eastern edges of Area 1 (Fig. 

3.10), therefore might be related to locally focused fluid flow. Constant depth of the Bright 

Spots, as observed in the ENE-WSW direction, then means a constant depth of the gas 

hydrate phase boundary in the strike direction of the diapiric ridge.  

Another aspect influencing the stability of gas hydrates is the salinity of pore waters, 

which often includes high salinity fluids in the range of mud volcanoes. Increased salinity 

would shift the gas hydrate stability field to lower temperatures (Kvenvolden, 1993; Taylor et 

al., 2000), and hence also would lead to a shallowing of the BGHSZ. Measured Cl--

concentrations of 810-900 mM at the Dvurechenskii mud volcano indicate the expulsion of 

high salinity fluids, which are considered to be formed during burial by diagenetic processes 

(Bohrmann et al., 2003; Aloisi et al., 2004). Salinity as high as measured at the DMV would 

uplift the theoretical BGHSZ into a depth of 300 m, which almost coincides with the average 

depth of the Bright Spots (270 m) (Fig. 3.14). 
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Although the Bright Spots correspond with the calculated depth of the BGHSZ and 

shallowing and depth variations could be explained by variable fluid flow or increased 

salinity fluids, it is not definite that the Bright Spots represent the BGHSZ. Due to the 

Figure 3.14: Gas hydrate stability field for a pure methane system calculated 
with 1) Black Sea water chlorinity and 2) pore water chlorinity of 900 mM 
(measured in sediments at the Dvurechenskii mud volcano) (modified after 
Bohrmann et al., 2003). The depth of the theoretical BGHSZ is calculated with 
a bottom water temperature of 9°C and a constant temperature gradient of 
29°C/km. Assuming, that the Bright Spots are related to the stability field of gas 
hydrates the change in temperature gradient was inferred from the depth of the 
Bright Spots. 
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stability field of gas hydrates BSRs follow isotherms and mimic the seafloor, typically 

crosscutting the strata (e.g. Shipley et al., 1979; Dillon & Paull, 1983; Max, 2000) The 

relationship of the Bright Spot reflections and the sedimentary strata, however, could not be 

determined in our data due to the chaotic and patchy reflection characteristics of the Bright 

Spots. Discordant layered reflection patches identified at the edges of Ridge 1 support that 

the Bright Spots might represent a BSR (Figs. 3.5-3.8). The Bright Spots are, however, not 

bound to a stratigraphic layer, as it would be expected for a lithological gas trap. On Inline 

132 (Fig. 3.7) the reflections occur at different stratigraphic layers than on Inline 102 (Fig. 

3.6). The Bright Spot reflections on Inline 064 (Fig. 3.5) can not be attributed to any 

reflector. Furthermore the occurrence of Bright Spots in the syncline between the diapiric 

ridges (Bright Spot Area 2) does not represent a typical stratigraphic trap. Thus, we 

speculate that the Bright Spots represent the base of the phase boundary of gas hydrates. 

In this scenario gas hydrates above the Bright Spots act as seal to trap the gas beneath due 

to the low permeability of hydrate layers (White, 1979; Bangs et al., 1993; Pecher et al., 

1996; Holbrook, 2001). 

The Bright Spots represent the shallowest depth of free gas in our data, and the 

sediments above are definitely located within the gas hydrate stability zone (GHSZ). 

Indications for the presence of gas hydrates above the Bright Spots of Area 1 might be 

given by zones of washed out reflections observed in the western grid area (Fig. 3.6), as 

sediments containing gas hydrates can reduce the impedance contrast across sedimentary 

interfaces (Lee & Dillon, 2001; Holbrook et al., 2002). This in particularly applies to low 

concentrations of gas hydrates. In contrast, layers with high gas hydrate saturations lead to 

a significant increase of the sediment velocity generating enhanced reflectance (e.g. 

Holbrook et al., 2002), thus concentrated gas hydrate layers could also explain the Bright 

Spot reflections. The sediment velocity of gas hydrate bearing sediments increases 

gradually with hydrate concentration, but even a low content of free gas in the pore space 

lead to a significant decrease of the velocity (Domenico, 1977). Therefore we assume that 

the Bright Spots are related rather to free gas than to gas hydrate. Alternatively to the 

occurrence of gas hydrates, disturbances in the sediments might also reduce sediment 

reflectivity.  

As discussed above, we see local bright reflections at the depth of the BGHSZ, but 

why we do not see a BSR in the study area? An explanation for the absence of a BSR is 

that the concentration of free gas and gas hydrate is very low, as suggested e.g. for the Gulf 

of Mexico and portions of the Blake Ridge (Paull et al., 1996). Thus, the Bright Spots might 

represent fragments of a BSR, formed where fluid migration provides gas in sufficient 

amounts due to adequate fluid migration pathways, which are associated with the diapir and 

the mud volcano. This suggests that gas and gas hydrate occurrences in the Sorokin 
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Trough are not widespread, but controlled by local gas/fluid migration. Another explanation 

might be that fluid flow is episodic, so that the BSR does not have time to establish at a 

particular depth. Then, the depth of the BSR changes with time, thus the transition from gas 

hydrate to gas may occur over a large depth range and hence does not look like a sharp 

interface. Episodic fluid flow then would also control the activity of the mud volcano.

3.6.3 Fluid and gas migration 

The distribution of the Bright Spots indicates local gas occurrences and gas hydrate 

occurrences above Ridge 1 and between the diapiric ridges, if the Bright Spots represent 

the BGHSZ as suggested above. A model of potential fluid migration pathways and the 

interactions of the mud volcano-diapir system and gas/gas hydrate occurrences are shown 

in Fig. 3.15. The source of the fluids is thought to be located within the Maikop clay diapirs 

released due to the transformation of smectite into illite under high temperature and 

pressure conditions. Kholodov (1983) determined the depth boundary between smectite and 

illite in the Eastern Kuban Trough at about 3.7 km. The low permeability of the Maikop clay 

and the sedimentary cover force over-pressured fluids, which are most likely released at 

zones of weakness, developed in the compressional tectonic regime, and migrate 

throughout the diapirs into the strata. Migration pathways within the diapir could not be 

identified due to the acoustic transparency of the homogeneous Maikop clays. The deep 

fault system between the diapiric ridges is considered to be the continuation of fractures 

within the diapir controlling the fluid migration towards the Sevastopol mud volcano. The 

well stratified hemipelagic sediments of the basins prohibit significant vertical upward fluid 

migration, but from the feeder channel gas/fluids might migrate laterally into the surrounding 

strata. The upward bulged sediments above Ridge 1 facilitate lateral gas/fluid migration 

along highly permeable stratigraphic layers towards the top of Ridge 1, where the gas 

accumulates generating the Bright Spots of Area 1 (Fig. 3.15). In the eastern grid area the 

fault system lacks and fluids rising through the diapir are trapped due to decreased vertical 

permeability and generate the Bright Spots of Area 2.  

Besides the generation of bright reflections due to increased seismic impedance 

contrast, the occurrence of free gas in seismic sections is often characterized by acoustic 

transparency due to the attenuation of acoustic energy, which is especially pronounced in 

high resolution seismic data (Max, 1990; Taylor, 2000). Vertical acoustic void zones with a 

width of up to 225x200 m indicate upward gas/fluid migration along the microfaults above 

Ridge 1 into the GHSZ (Figs. 3.7, 3.10). The vertical transparent zones are located within 

the GHSZ and as mentioned above signal attenuation can also be due to the presence of 

gas hydrates, but the attenuation from gas hydrate bearing sediments is significantly lower 

than from free gas bearing sediments (Taylor et al., 2000). The interpretation of seismic 
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amplitudes, however, has to be handled carefully. Particularly in the eastern grid area such 

zones are observed (Fig. 3.10), although fewer microfaults occur, indicating that fluid flow is 

focused here, whereas in the western and central grid area fluid flow is evenly spread along 

numerous faults, but less focused. Acoustically transparent disturbances observed along 

numerous microfaults (e.g. Fig. 3.6) are interpreted as pathways for gas/fluid migration as 

well. The microfaults most likely have been developed during the diapiric growth and may 

allow sufficient amount of gas to migrate into the gas hydrate stability zone resulting in the 

formation of gas hydrate, if water is present. Based on the distribution of the fluid migration 

pathways and Bright Spots, gas hydrate formation is expected above and at the north-

western flank of Ridge 1, as well as in the area surrounding the mud volcano and the feeder 

channel (Fig. 3.15). 

Figure 3.15: Schematic model of the subsurface structures in the diapir-mud volcano 
system and suggested gas/fluid migration pathways. Gas hydrates are expected where 
focused fluid flow occurs, i.e. towards the top of Ridge 1 and in the surrounding of the 
mud volcano and its feeder channel.
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3.7 Conclusions 

Few 3D seismic investigations of mud volcanoes have been documented yet, such 

as offshore Nigeria (Graue, 2000), in the Caspian Sea (Davies and Stewart, 2005), and in 

the Gulf of Cádiz (Masson and Berndt, 2006). We present a first 3D seismic dataset of a 

mud volcano (Sevastopol mud volcano) in the Sorokin Trough, Black Sea. Numerous mud 

volcanoes were identified in the Sorokin Trough, and the Sevastopol mud volcano is a 

representative for collapsed structures. Collapsed structures are known from other areas as 

well, such as the Central Black Sea and the Mediterranean Ridge (e.g. Ivanov et al., 1996), 

but have not been studied in 3D until now. The new 3D images give detailed information 

about the spatial geometry of the Sevastopol mud volcano and its subsurface structures. 

Based on the morphological features, an evolution model has been suggested for the 

Sevastopol mud volcano. In the Sorokin Trough compressive deformation affects the growth 

of diapiric ridges and facilitates fluid flow to the seafloor, expressed by the evolution of mud 

volcanoes above the diapirs. The 3D seismic data show that the depression structure of the 

Sevastopol mud volcano includes three cones. The Sevastopol mud volcano is formed 

above a complex diapiric structure with two diapiric ridges (Ridge 1 and Ridge 2) and is 

associated with a deep fault system developed between the ridges. The evolution of the 

fault system in the study area is most likely associated with the diapiric uplift, and the faults 

are thought to be the continuation of fractures and cracks within the mud diapir developed 

due to the compressional tectonic regime. The fault system and probably cracks/fractures 

within the diapir act as potential pathways for gas/fluid migration, feeding the mud volcano 

from the diapir. Presumably an initial explosive eruption due to over-pressured fluids formed 

the depression structure of the Sevastopol mud volcano and subsequently mud flows 

extruded at different locations where the faults disrupt the seafloor, forming the observed 

cones. Bright Spots indicate the accumulation of free gas at the top and the flanks of Ridge 

1 and additionally between the diapiric ridges in the eastern grid area. The depth of the 

Bright Spots, which is constant along the trend of the diapiric ridge and only slightly 

increases at its flanks, is almost consistent with the approximate depth of the base of gas 

hydrate stability zone. The shallower location of the Bright Spots compared to the calculated 

theoretical depth of the BGHSZ could be explained by an increased temperature gradient of 

37°C/km due to the rise of warm fluids next to the Sevastopol mud volcano. Gas hydrates 

are likely present above this depth and may act as a seal to trap the gas. The depth of the 

BGHSZ in the Sorokin Trough is strongly controlled by fluid flow and the variations in depth 

of the Bright Spots can be explained by variable fluid flow. Furthermore, threefold enhanced 

salinity pore fluids might shallow the BGHSZ into the depth of the Bright Spots, but chlorinity 

has not been measured at the Sevastopol mud volcano.
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We observe gas migration into and within the GHSZ along microfaults located above 

Ridge 1, supplying the gas hydrate reservoir. The local distribution of the Bright Spots 

shows that gas and consequently gas hydrate occurrences are limited to local areas where 

strong fluid flow occurs along faults, providing sufficient concentrations of gas. Hence we 

suggest that gas hydrates occur above the Ridge 1 and near the mud volcano and the 

feeder channel. Fluid flow probably occurs episodic controlling the activity of the mud 

volcano and inhibiting the generation of a BSR. The distribution of gas hydrates is directly 

linked to the mud volcanism. 
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4.1 Abstract 

Numerous gas seeps on the continental slope offshore Batumi (Georgia) occur in 

water depths at 850-1200 m on the top or flanks of ridge structures within the gas hydrate 

stability zone (GHSZ). High resolution multichannel seismic investigations carried out during 

the TTR-15 cruise (UNESCO Training Through Research Program) show that fluid 

migration towards the seafloor can be linked to the protrusion of buried diapiric structures, 

which controlled the development of the complex canyon-ridge system offshore Batumi. 

Depressions between growing diapirs guided the pathways for turbidity currents, primarily 

forming the canyon systems off Batumi by erosional processes. Over-steepening and 

faulting of canyon flanks due to diapiric uplift resulted in slope failures. Additionally, faults 

developed during the diapiric uplift particularly at the flanks and above the diapirs, as well as 

dipping reflectors at the steep flanks of the diapirs provide potential pathways for upward 

gas/fluid migration, which controls the distribution of the gas seeps off Batumi. A prominent 

gas seep of the survey area, the Batumi Seep, located on Kobuleti Ridge in the central 

study area, is characterized by high amplitude reflection patches beneath the seafloor, 

which indicate the presence of shallow gas hydrate and carbonate, most likely formed due 

to focused fluid flow. On several ridges additional potential seep sites were identified by 

acoustic disturbances in the strata. Although two diapiric mound structures have been 

identified, most seep sites offshore Batumi do not show upward material transport in diapirs. 

All seep sites are related to shallow gas accumulations, indicated by Bright Spots at 

different depths. Although gas hydrates have been sampled at different places, a bottom-

simulating reflector (BSR) is limited to the Kobuleti Ridge, but Bright Spots at the depth of 

the BGHSZ (base of gas hydrate stability zone) might be related to the stability field of gas 

hydrate, generated where local fluid migration delivers sufficient gas to form gas hydrate. 

The depth of the BSR is located below the calculated theoretical depth of the BGHSZ for a 

methane-seawater system, which might be explained by low pore water salinity of 15‰. 
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4.2 Introduction 

Gas seeps considerably contribute to hydrospheric and atmospheric methane 

concentrations by the release of significant amounts of methane. Methane emissions 

intensively impact the carbon cycle and the global warming, thus recently gas seeps get 

intensively studied (Hovland and Judd, 1988; Judd et al., 1997). Gas seepage occurs 

worldwide, particularly on continental margins, but also in deep waters with a thick 

sedimentary cover (Judd, 2003). Typically the methane is transported by focused fluid flow 

from sources at greater depth towards the seafloor along adequate permeable pathways 

(Greinert et al., 2002; Judd, 2003), e.g. along faults, parallel to permeable stratigraphic 

layers and at mud diapirs (Hovland and Curzi, 1989; Moore et al., 1991; Orange et al., 

2002). 

Gas emission at submarine gas seeps can be detected as flares of free gas bubbles 

in the water column by hydroacoustic methods (Greinert et al., 2006; Naudts et al., 2006) or 

by acoustic anomalies in unprocessed side-scan sonar data (Klaucke et al., 2005, 2006). 

Gas discharge is often related to morphological expressions on the seafloor, such as mud 

volcanoes and pockmarks, which are visible in hydroacoustic and seismic data (e.g. 

Hovland and Judd, 1988; Judd and Hovland, 1992). Indirect evidences for gas seeps are 

found in methane derived carbonates (Judd et al., 1997) and high backscatter anomalies in 

side-scan sonar data, which can indicate authigenic carbonate precipitations that are 

commonly associated with seeps, formed by anaerobic oxidation of methane (AOM) (e.g. 

Greinert et al., 2001; Bohrmann et al., 2003). Subsurface structures on seismic images 

provide information about potential pathways for fluid migration. As high gas content at 

seeps affects the seismic signal, amplitude anomalies, such as Bright Spots or acoustic 

transparency, indicate shallow gas accumulations and conduits of focused gas migration 

which might be related to seep sites (e.g. Judd and Hovland, 1992; Orange and Breen, 

1992; Yun et al., 1999; Zühlsdorff and Spieß, 2004). 

The anoxic environment of the Black Sea with enormous concentrations of methane 

in the marine sediments provides a high potential for methane emissions at cold vents. The 

Black Sea is the largest surface water reservoir of dissolved methane with a total methane 

concentration of 6 x 1012 mol (Reeburgh et al., 1991). The shelves and continental slopes of 

the Black Sea are well known for gas saturated sediments and gas seeps (Kruglyakova et 

al., 2004; Greinert et al., 2006; Naudts et al., 2006). Kessler et al. (2006) estimate that the 

gas emissions from cold vents to the hydrosphere and atmosphere in the whole Black Sea 

comprise about 3.6-5.65 Tg/y. Recently almost three thousand active methane seeps have 

been documented from the north-western Black Sea margin within the Dnepr paleo-delta 

(Naudts et al., 2006). The depth of these seeps is limited by the phase boundary of pure 

methane hydrate at 725 m (Naudts et al., 2006). Gas discharge associated with mud 
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volcanism is common in different regions of the Black Sea, as e.g. in the Central Black Sea 

and the Sorokin Trough (Limonov et al. 1994, 1997; Ivanov et al., 1996, 1998; Woodside et 

al., 1997; Bouriak and Akhmetjanov, 1998; Krastel et al., 2003). At three mud volcanoes in 

the Sorokin Trough hydroacoustic gas flares observed in echosounder data in water depth 

of about 2080 m were variable in time (Greinert et al., 2006). In the south-eastern Black Sea 

gas seeps created numerous pockmarks identified on the Turkish shelf (Ergün et al., 2002; 

Cifci et al., 2003). A thick sedimentary coverage and compressional deformation at the 

continental slopes of the Black Sea force over-pressured fluids and upward fluid migration 

along faults (Yun et al., 1999). Kruglyakova et al. (2004) suggest that gas seeps in the Black 

Sea are mainly related to tectonic faults, but Naudts et al. (2006) observed seeps controlled 

by stratigraphically controlled fluid migration in the Dnepr paleo-delta area.  

Gas seeps off Georgia differ from the shallow water seeps in the north-western 

Black Sea and the mud volcanoes in the Central Black Sea and the Sorokin Trough, as 

most seeps off Georgia are not associated with upward transportation of sediments (e.g. 

mud breccia) and are located at water depths within the stability field of gas hydrate (Egorov 

et al., 2003; Klaucke et al., 2006). Gas hydrate destabilization might be an important factor 

supporting the seepage in this area and probably influence the slope stability. Several gas 

seeps recently have been identified on the continental slope off Batumi; the seeps are 

located on the tops or flanks of ridge structures, which are separated by deep incised 

canyons (Klaucke et al., 2006). Seismic investigations were carried out in the frame of the 

METRO project (Methane and methane hydrates within the Black Sea: Structural analyses, 

quantification and impact of a dynamic methane reservoir) within the TTR-15 cruise in order 

to study the subsurface structures controlling the distribution of the seeps off Batumi. The 

investigations were focused on the largest seep identified by Klaucke et al. (2006), which is 

named Batumi Seep, but further seeps have been identified and studied as well. The main 

objective of the seismic investigations is to study the evolution of the complex canyon-ridge 

system off Batumi. Specific question to be addressed are:

 What are the main processes controlling the development of the canyon-ridge 

system? 

 What kind of subsurface structures control the distribution of the gas seeps? 

 What are the fluid migration pathways? 

 Is there a relationship between the seeps and the canyon-ridge structures? 

 Are the seeps correlated to shallow gas accumulation? 

 Are there evidences for gas hydrates associated with the seeps? 
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4.3 Geological setting of the south-eastern Black Sea 

The Black Sea is a large intercontinental basin with anoxic conditions below 100-

150 m water depth surrounded by Alpine orogenic belts: the Pontides in the south, the 

Caucasus in the north-east, the Balkanides in the west, and the Crimean Mountains in the 

north (Fig. 4.1). The Black Sea is believed to be of extensional origin, formed in the late 

Cretaceous as a backarc basin during the northward subduction of the Tethyan Ocean 

(Dewey et al., 1973; Robinson et al., 1995; Nikishin et al., 2003). During Eocene the 

tectonic setting changed to a compressional regime due to the collision between Eurasia 

and Arabia and the margins of the Black Sea are recently characterized by compressive 

deformation (Spadini et al., 1996; Nikishin et al., 2003). The Black Sea comprises two 

extensional subbasins, the Western and the Eastern Black Sea Basin, separated by the 

thinned continental Mid Black Sea Ridge. The Mid Black Sea Ridge is subdivided into the 

Andrusov and the Archangelsky Ridge (Fig. 4.1) (Tugolesov et al., 1985; Finetti et al., 1988; 

Robinson et al., 1996).  

Figure 4.1: Schematic map of the main tectonic zones within the Eastern Black 
Sea Basin (modified after Robinson et al., 1996). The study area is highlighted 
by a black rectangle. 
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The Georgian Continental Slope at the south-eastern margin of the Eastern Black 

Sea Basin is bordered by the Shatskii Ridge in the north-east and the Eastern Pontides 

thrust belt in the south-east (Robinson et al., 1995; Robinson, 1996) (Fig. 4.1). The Eastern 

Black Sea Basin opened due to the separation of the Mid Black Sea High and the Shatsky 

Ridge by rotation about a pole west of Crimea (Spadini et al., 1996; Robinson et al., 1996), 

but the opening time is still uncertain and interpretations vary from Jurassic time (Golmshtok 

et al., 1992) to end-Cretaceous (Nikishin et al., 2003) and Paleocene/Eocene (Robinson et 

al., 1996; Spadini et al., 1996; Cloething et al., 2003). The Geology of Georgia is 

characterized by two major thrust belts: the ESE trending Greater Caucasus Thrust Belt in 

the north and the E-W trending Adjara Trialet Belt in the south (Fig. 4.1). The Adjara Trialet 

Belt appears to be a Palaeogene extensional basin closed during the Late Eocene or 

Oligocene (Robinson et al., 1997). The thrust belts are separated by two foreland basins, 

the Rioni Basin extending to the Black Sea in the west (Fig. 4.1) and the Kartli Basin in the 

east extending into the Caspian Sea (Banks et al., 1997). These basins are of flexural origin 

developed mainly during the Miocene through the loading of the Adjara Fold Belt (Banks et 

al., 1997; Robinson, 1997). A basement high, the Dziruli Massif, separates the basins and 

acts as the main source of the basinal sediments (Robinson et al., 1997). The Rioni Basin 

includes thick upper Miocene to Quarternary deposits, onlapping the Shatskii Ridge in the 

north and merging eastward with the post-rift fill of the Eastern Black Sea Basin (Banks et 

al. 1997; Robinson et al., 1997). The sequence is characterized by numerous 

unconformities related to the development of submarine canyons transferring sediments to 

the Black Sea (Banks et al., 1997). 

The survey area off Batumi is located within the offshore extension of the Rioni 

Basin and characterized by a complex system of W-E striking canyon and ridge structures 

(Fig. 4.2). At the ridges numerous gas seeps were recorded as acoustic anomalies in 

unprocessed side-scan sonar data collected during the Poseidon cruise P317/4 in 

October/November 2004 (Klaucke et al., 2005, 2006). The seeps had been known from 

previous investigations in Russia (Meisner, pers. comm.). Most gas flares were observed on 

the Kobuleti Ridge at the so-called Batumi Seep Area in water depths of 850-900 m (Fig. 

4.2).
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4.4 Data 

In the frame of the interdisciplinary METRO project, a multichannel seismic survey 

was carried out at the Georgian Continental Margin offshore Batumi using the TTR-15 

cruise with the Russian research vessel Professor Logachev in June 2005. The main 

objective of this cruise was to study the distribution and characteristics of gas seeps, gas 

and gas hydrate occurrences in a complex canyon-ridge system. The main seismic source 

was a Sodera GI-Gun with 2 x 1.7 l chamber volume, but along one line (Geob05-057, 

location is shown in Fig. 4.2) a Mini GI-Gun was deployed with a chamber volume of 2 x 

0.18 l to get a higher resolution image of the uppermost 500 ms TWT. Both guns were 

Figure 4.2: Bathymetric map of the study area offshore Batumi (Georgia). The detailed 
bathymetric data in the southern study area were collected during the P317 cruise 
using a 50 kHz ELAC Bottomchart Mk-II multibeam system (Klaucke et al., 2005). 
Areas not covered by the multibeam data are filled with the GEBCO 1-min grid. The 
black lines represent the seismic profiles. The white stars show the locations of the 
seeps detected by Klaucke et al. (2006). 
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operated with a mean air pressure of 140 bar supplied by two shipboard compressors. The 

data were acquired by a 100 m long streamer section with 16 channels of 6.25 m group 

length recorded at 4 kHz sampling frequency over an interval of 5 seconds. In total, 12 

seismic lines were recorded with a total length of 324 km (Fig. 4.2).  

After trace editing and geometry processing the seismic data were processed 

including NMO-corrections, bandpass frequency filtering with a frequency content of 20/40 - 

200/400, FK-filtering with a wave number range between -0.25 and +0.25, CMP-sorting, 

stacking with a CMP distance of 10, 15 or 20 m, and final time migration. Other methods 

applied during the cruise include sediment sampling with gravity corer, multi corer, TV-grab 

and autoclave piston corer, ROV dives, as well as acoustic investigations with side-scan 

sonar and subbottom profiler.

4.5 Results 

4.5.1 The canyon-ridge system offshore Batumi 

The study area offshore Batumi is located at water depths of 600-1600 m and 

characterized by 6 W-E trending submarine canyons separated by 6 ridges of varying 

dimension and morphology (Figs. 4.2-4.6). In the southern part of the study area high 

resolution multibeam bathymetric data collected in 2004 (Klaucke et al., 2006) allow to trace 

the canyon-ridge system and give detailed information about their structures, which is not 

possible in the north due to the lack of high resolution bathymetry and low seismic coverage 

with a line spacing of 6-7 km. From south to north the canyons and ridges identified were 

named as follows: Natanebi Canyon, Adjara Ridge, Central Canyon, Kobuleti Ridge, Supsa 

Canyon, Poti Ridge, Northern Canyon (Klaucke et al., 2006), R1 Ridge, C1 Canyon, R2 

Ridge, C2 Canyon and R3 Ridge (Fig. 4.2).  

Most of the ridges, in particularly those in the south, are characterized by continuous 

well stratified reflectors with signal penetration down to about 800 ms TWT below seafloor 

(bsf). The sediments are partly tectonically disturbed by normal faults, as e.g. at the 

Kobuleti, Poti, R2 and R3 Ridge (Figs. 4.3-4.6). In the north, the ridges show a more 

irregular relief and the reflection characteristics become chaotic and change laterally, thus 

continuous reflectors alternate with chaotic reflection patterns and units of washed out 

reflections (Figs. 4.3-4.6). The steep flanks of the ridges are mainly characterized by 

erosion and often affected by slope failures (Figs. 4.3, 4.5, 4.6). At several ridge flanks 

blocks characterized by a chaotic to acoustic transparent seismic facies were observed, 

which are typical for slumps, imaged by homogeneous seismic pattern without internal 

structure (Figs. 4.3-4.5).  
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Figure 4.3: Time migrated image of seismic line GeoB05-056 crossing the central study 
area and the Batumi Seep. The Batumi Seep is located above several near vertical 
faults reaching down to a BSR. Slump deposits with a thickness of 70 ms TWT at a 
depth of 60 ms TWT bsf at the Northern Canyon show sharp boundaries to the 
surrounding strata and are most likely originated from the flank of the R1 Ridge. See Fig. 
4.2 for location of line. 
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Figure 4.4: Time migrated seismic profile GeoB05-061. The BSR below the Kobuleti Ridge 
is shifted upward in the vicinity of a fluid migration zone towards a potential seep site (S1) 
on the seafloor. The location of the line is shown in Fig. 4.2. 
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Furthermore, we observed slides, which are characterized by downward moved blocks 

including continuous well stratified reflectors without internal deformation, as e.g. identified 

at the flanks of the Adjara Ridge (Figs. 4.3, 4.4). The flanks complicated by slumps and 

slides often show faults nearby, but faults were observed at flanks without slope failures as 

well (Figs. 4.3-4.5). The most noticeable ridge structure is the Adjara Ridge, rising up to 500 

m above the canyon floor into water depths of 500 m. The Adjara Ridge has extremely 

steep flanks with slope angles of about 6° at the southern and 8-10° at the northern side. 

Diapiric structures characterized by acoustic transparency were observed beneath several 

ridges (Figs. 4.3-4.6). The Kobuleti Ridge, with a height of about 400 m above the canyon 

floor, significantly widens from about 4 km in the east to more than 20 km in the west and 

splits into 2 crests in about 1000 m water depth. These crests are separated by a 4200 m 

wide and 130 m deep channel (Fig. 4.5). The northern crest continues E-W trending, but the 

southern crest changes to the SW, which lead to increased width of the channel (Fig. 4.2). 

The sediments of the channel and the southern crest are characterized by transparent units, 

separated by some strong continuous reflectors becoming chaotic below 200 ms TWT bsf, 

while those of the northern crest are presented by closely spaced strong stratified reflectors 

down to 450 ms TWT bsf (Fig.4.5). The ridges in the north are characterized by an irregular 

relief, tend to asymmetric geometry and show less dimensions and heights (Figs. 4.3, 4.4, 

4.6). For example, the Poti Ridge rises only 150-200 m above the canyon floor and has a 

steep southern, but smooth dipping northern flank (Figs. 4.3, 4.4, 4.6). The R1 Ridge has a 

flat southern flank with wavy relief (Fig. 4.6). 

Beneath the canyons signal penetration varies from 200 to 800 ms TWT depending 

on the reflection characteristics, which can be divided into two typical seismic facies: (1) 

Discontinuous high amplitude reflectors with a thickness of 100-200 ms occur beneath the 

strong seafloor reflection at the southernmost Natanebi and Central Canyon, as well as in 

the eastern part of the C2 Canyon (Figs. 4.3. 4.4, 4.6). High amplitude reflection patches 

occur also at a depth of 160 ms TWT bsf beneath the axis and at 500 ms TWT bsf beneath 

the northern wall of the Natanebi Canyon (Fig. 4.4), as well as at depths of 280-900 ms 

TWT bsf at the C2 Canyon and its walls (Figs. 4.5, 4.6). (2) The central canyons are 

characterized by more or less well stratified, but lateral relatively limited parallel reflectors of 

varying amplitudes alternating with units of chaotic reflection patches and acoustic void 

zones (Figs. 4.3-4.6). The canyons in the south are deep and narrow with steep eroded 

walls. To the north, the morphology of the canyons changes showing irregular relief with 

indistinct incisions (Figs. 4.3-4.6). Several canyons show a meander pattern and changes of 

trend direction, e.g. the Central Canyon, which changes its trend direction from the E-W 

direction downslope to the south and connects with the straight W-E trending Central 

Canyon at about 1300 m water depth (Fig. 4.2). 
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Figure 4.5: Time migrated image of line GeoB05-054 crossing the western study area. 
The Kobuleti Ridge is subdivided into two crests showing two mound structures at its 
edges, underlain by diapiric structures. See Fig. 4.2 for location of line. 
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Figure 4.6: The time migrated seismic profile GeoB05-067 in the north-eastern 
survey area. Thick parallel reflectors form a basin beneath the Northern Canyon. 
The walls of the C1 and C2 Canyons show terraces, which are characterized by 
acoustic transparency. Numerous Bright Spots occur at different depths beneath 
the C2 Canyon extending towards the R3 Ridge. The location of the line is shown 
in Fig. 4.2. 
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4.5.2 Diapiric structures 

Beneath the ridges several diapiric zones have been identified in the seismic data, 

characterized by acoustic transparent updoming structures onlapped by upward bulged 

reflectors (Figs. 4.3-4.6). Limited signal penetration of our high resolution data inhibits the 

observation of structures beneath 1 s TWT bsf, thus most diapirs could not be traced along 

the ridges. The central part of the Adjara Ridge is acoustically masked by a diapiric

structure, which seems to pierce the seafloor as a steep ridge (Figs. 4.3, 4.4). In the 

subsurface of the Kobuleti Ridge upward bulged weak reflectors indicate the presence of 

two diapiric folds rising up to 500 ms TWT beneath the Iberia and Pechori Mound (Fig. 4.5). 

In the central and eastern portion of the study area no diapir could be observed at the 

Kobuleti Ridge due to the acoustic transparency below ~200 ms TWT (Figs. 4.3, 4.4), but 

Tugolesov et al. (1985) described a diapir trending along the Kobuleti Ridge at greater 

depth. The diapiric structure beneath the R1 Ridge has steep flanks and reaches almost up 

to the seafloor (Fig. 4.3), uplifting the sediments of the southern flank. Generally the 

sediments above the diapirs are fractured and disturbed. No diapirs are observed beneath 

the ridges further north.

4.5.3 Gas seeps  

Offshore Batumi several gas seeps have been identified as acoustic anomalies in 

the water column and as high backscatter patches on the seafloor on side-scan sonar 

records collected during the P317 cruise in 2004 (Klaucke et al., 2005, 2006). The seeps 

are located either on the Kobuleti Ridge or at the northern flank of the Adjara Ridge 

(Klaucke et al., 2006) (Fig. 4.2). The largest seep area, named Batumi Seep Area, is 

located at about 850 m water depth on the Kobuleti Ridge (Fig. 4.2) (Klaucke et al., 2006) 

and was chosen for further detailed investigations within the TTR-15 cruise. During seismic 

profiling further structures most probably associated with gas discharge were observed, e.g. 

the so-called Colxheti Seep, the Pechori and Iberia Mounds, as well as three additional 

potential seep sites (Fig. 4.2).  

The Batumi Seep Area 

The Batumi Seep Area is imaged by two seismic profiles, shot along and 

perpendicular to the Kobuleti Ridge (Fig. 4.2). Two close-ups of the Batumi Seep Area are 

shown in Fig. 4.7. On the seismic data the seep area is characterized by a shallow buildup 

rising about 10 m with strong seafloor reflection and lateral dimensions of 1200 m in the 

ESE-WNW direction and 600 m in the SSE-NNW direction (Fig. 4.7). At the uppermost 60 

ms TWT bsf chaotic strong reflection patches are imaged (Fig. 4.7).
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Figure 4.7: Close-ups of seismic lines GeoB05-56 (top) and GeoB05-62 (bottom), 
crossing the Batumi Seep in the NW-SE and W-E direction, respectively. See Fig. 
4.2 for location of the lines and the seep. 
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Beneath and in the surrounding subsurface of the seep, the sediments are 

characterized by continuous parallel reflectors. At a depth of about 200 ms TWT bsf in 

average, a BSR can be traced along the Kobuleti Ridge (Fig. 4.7). Below the BSR, the 

seismic signal is significantly attenuated. On profile GeoB05-056, several near vertical faults 

with vertical offsets of up to 15 ms TWT are observed beneath and in the surrounding of the 

Batumi Seep probably striking in the E-W direction (Fig. 4.7). Few faults reach up to the 

seafloor; others trace through the BSR.

The Colxheti Seep Area 

The Colxheti Seep Area is located at the flank of the northern crest on the 

westernmost Kobuleti Ridge at water depth of 1200 m (Fig. 4.8) and is characterized by a 

cone-shaped elevation with a height of 20 m and a width of 1400 m. The buildup is 

asymmetric with a steep southern flank with a dipping angle of 12°, but a smooth northern 

flank dipping with about 2° against the crest (Fig. 4.8). The seafloor reflection is indistinctly 

imaged at the southern flank, but the top and the northern side are characterized by weak 

discontinuous reflectors on the seafloor. Beneath the seep structure, weak reflection 

patches with a thickness of 170 ms TWT occur. Upward bulged sediments indicate the 

presence of a diapiric structure at 250 ms TWT bsf.   

Figure 4.8: Time migrated seismic section of line GeoB05-064 
showing the Colxheti Seep. The location of the line is shown in 
Fig. 4.2. 
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Potential seeps S1-S3 

Three potential seep sites are observed on the eastern Kobuleti (S1) and on the 

western (S2) and eastern (S3) Poti Ridge (Figs. 4.4-4.6). The seeps are indicated by 

vertical acoustic transparent zones with widths of 60-180 m. The acoustic void zones almost 

reach up to the seafloor, but with exception of the S3 location the seafloor does not show 

weakened reflections or morphological irregularities as at the Batumi and Colxheti Seep. At 

the S3 potential seep site, the void zone traces through the seabed and a very small 

pinnacle with a height of about only 2 m is observed on the flat top of the Poti Ridge. The 

margins of the transparent zone are bordered by downward bended reflectors (Fig. 4.6). 

The potential seep S1 on the Kobuleti Ridge reaches through the BSR, which is significantly 

uplifted nearby to 75 ms TWT bsf (Fig. 4.4). The S2 and S3 potential seeps are flanked by a 

Bright Spot (Figs. 4.5, 4.6). 

The Pechori and Iberia Mound 

Figure 4.9: Close-up of the Pechori and Iberia Mound located on the westernmost 
portion of the Kobuleti Ridge. Location is shown in Fig. 4.2. 
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Two mounds were identified at the northern edges of the two crests forming the 

westernmost portion of the Kobuleti Ridge (Fig. 4.9). The mounds, named Iberia and 

Pechori Mound, are cone-shaped with heights of about 75 m and a diameter of 2000-2500 

m with steep slope angles of 9-10° (Fig. 4.9). Both, in particularly the Pechori Mound, are 

characterized by a strong seafloor reflection on the top. In the subsurface the upper 50 ms 

TWT at the Iberia and 90 ms TWT at the Pechori Mound are represented by weak chaotic 

reflection pattern (Fig. 4.9). Beneath, a zone as wide as the diameter of the mounds 

characterized by acoustic transparency with sharp borders to the surrounding well stratified 

sediments can be traced down to the diapirs. The surrounding strata are partly disrupted by 

near vertical faults with vertical offsets of some 10 ms TWT (Fig. 4.9). Above and at the 

flanks of the diapirs small Bright Spots occur at a depth of 200-250 ms TWT bsf near the 

transparent zones.  

4.6 Interpretation and Discussion 

4.6.1 Gas seeps offshore Georgia 

Gas seeps are common along the continental slopes of the Black Sea and have 

been intensively studied since the last decades, but seeps off Georgia are rarely 

documented yet. Recently, numerous gas seeps have been observed on the continental 

slope off Georgia in deep water of about 850-900 m within the gas hydrate stability field 

(Egorov et al., 2003; Klaucke et al., 2006). The Batumi Seep area covers an area of 0.5 km² 

on the Kobuleti Ridge and is the largest seepage area investigated offshore Georgia so far 

(Klaucke et al., 2006). Our multichannel seismic data show that the parallel reflectors of the 

subsurface sediments at the Batumi Seep are displaced by several near vertical faults, 

which partly pierce the seafloor in the range of the seep area (Fig. 4.7). With exception of 

narrow and diffuse acoustic void zones beneath the Batumi Seep on line GeoB05-062 (Fig. 

4.7), no indications for gas migration could be identified in the seismic data, thus we can 

only presume that gas discharge at the seep is probably controlled by upward migration of 

fluids and gas along faults, although the void zones in line 062 could not be correlated to 

faults. The void zones on line 062 are located west and eastward of the faults imaged on 

line 056 (Fig. 4.7), and no direct relations to faults is possible. The presence of smaller 

faults, however, is indicated by small disturbances of seismic reflectors (2-3 ms TWT) 

beneath the Batumi Seep on line 062 (Fig. 4.7). The side-scan sonar image of the Batumi 

Seep on Fig. 4.10 shows, that the seafloor within the seep area is structured by numerous 

NW-SE trending faults (Klaucke et al., 2006). One of these faults coincides with a 

subsurface fault observed on the seismic line GeoB05-056 (location is shown in Fig. 4.10), 

suggesting that the faults on the seafloor represent the surface expression of the 
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subsurface faults observed in the seismic data. The surface faults crossing line GeoB05-

062 could not be connected to subsurface faults on the seismic profile.  

Figure 4.10: 75 kHz DTS-1 side-scan sonar image and interpretation of the 
Batumi Seep Area (Klaucke et al., 2006). The seismic profiles crossing the 
seep are imaged as red lines. 
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Further potential seeps, named S1, S2 and S3, are indicated by narrow vertical 

acoustic transparent zones interpreted as conduits of focused upward gas/fluid migration, 

as gas/fluids affect seismic amplitudes leading to lost of seismic signal energy (e.g. Max, 

1990). These so-called gas columns with a width up to 180 m (Figs. 4.4-4.6) were observed 

on the eastern Kobuleti, and the western and eastern Poti Ridge. At S1 and S2, the gas 

columns do not reach to the seafloor and no morphological expressions or seismic 

irregularities are observed on the seafloor. Thus, we suggest that these seeps are probably 

not active. Rising fluids might be trapped in the near subsurface, or flow might occur only 

episodically. At S3, the gas column can be traced through the seafloor and a small 

morphological irregularity (relief) indicates that this location is probably recently active. Gas 

discharge in the deep water of the Black Sea has been related to mud volcanoes at water 

depths down to 2200 m (Ivanov et al., 1996, 1998; Limonov et al., 1997; Woodside et al., 

1997), but most gas seeps off Batumi are not associated with upward material transport 

(Klaucke et al., 2006). Our acoustic data (seismic, side-scan sonar and subbottom profiler) 

also do not show evidences for mud transport at the Batumi Seep as well as the potential 

seep sites, such as high morphological elevations and mud flows on the seafloor, and the 

cores collected during the TTR-15 cruise lack mud breccia. However, free gas bubbles are 

present above the Batumi Seep, identified as acoustic anomalies in the water column of 

unprocessed side-scan sonar records collected by Klaucke et al. (2006). Gas bubbles were 

also observed during the TTR-15 cruise by video observations with the ROV and in the 

water column while core retrieving. 

In contrast to the Batumi Seep, the Pechori and Iberia Mounds observed at the 

western edge of the Kobuleti Ridge are large structures and characterized by wide acoustic 

transparent zones beneath, which we interpreted to represent the feeder channels. We 

suggest that the mounds are formed by upward rising gas saturated material along the 

acoustic transparent feeder channel. The feeder channel is connected to the diapirs 

beneath, which most probably represents the source of the material. Displaced reflectors 

north and south of the feeder channel beneath the Iberia Mound and several near vertical 

faults in the surrounding of the feeder channels indicate that upward migration is bound to 

faults, as the horizontal layered strata do not provide stratigraphic migration pathways. Mud 

volcanoes are characterized by the extrusion of mud (e.g. Dimitrov, 2002). As no mud flows 

have been identified on the side-scan sonar data, the Pechori and Iberia Mound probably do 

not represent mud volcanoes. Other positive morphological features related to gas escape 

might be carbonate or mud mounds as well as outcropping diapirs (e.g. Hovland and Judd, 

1988). Sampled mud breccia at the Pechori Mound suggests that these structures might be 

mud mounds related to upward mud transport by fluid migration from the diapirs or might 

represent diapiric mounds due to diapiric upward mud transport. However, in contrast to the 



Chapter 4  120 

Batumi Seep, the mounds show wide conduits beneath, indicating intensive transport of 

gassy material. The Colxheti Seep located 2500 m southwest of the Iberia Mound looks 

quite different compared to the Batumi Seep. While the Batumi Seep rises only about 10 m 

and no wide conduits for fluid migration are imaged in the subsurface, the cone-shaped 

Colxheti Seep is twice as large and is characterized by an extensive zone of acoustic 

transparency beneath, indicating transport of gassy material. Thus we suggest that the 

Colxheti Seep is rather a mound structure than a simple gas seep. Geochemical analyses 

show that the Batumi Seep is a simple pure gas system dominated by methane, while 

higher hydrocarbons occur at the Colxheti Seep and the Pechori Mound (Bohrmann, 

unpublished data). High hydrocarbons indicate a deeper source of portions of the gas, 

which at the mounds might be sourced in the diapirs and transported upward together with 

the mud. Several potential hydrocarbon source rocks occur in western Georgia, but their 

offshore extension is uncertain (Robinson et al., 1997). Most mud volcanoes in the Black 

Sea are sourced in the Maikop Formation (Ivanov et al., 1996), which most probably is the 

source of the seeps in our study area as well.  

4.6.2 Gas and gas hydrate occurrences related to gas seeps 

Most seeps off Batumi are located within the gas hydrate stability zone, meaning 

that free gas coexists with gas hydrate. Based on a pure methane system and sea water 

salinity of 33.5 ‰ (Dickens and Quinby-Hunt, 1994), the upper theoretical phase boundary 

of the gas hydrate stability zone in the study area is expected at water depths of about 720 

m (calculated according to Sloan (1998) at typical Black Sea bottom water temperature of 

9°C). Gas hydrates have been sampled at several locations in the study area, but a BSR 

was identified only at the Kobuleti Ridge in the surrounding of the Batumi Seep at water 

depths between 800 and 1000 m (Figs. 4.3, 4.4, 4.7, 4.11). The BSR trends along the ridge 

at depths ranging between 75 and 260 ms TWT bsf. With exception of the shallowest depth 

of 75 ms TWT bsf observed next to the potential seep site S1, the depth of the BSR shows 

only small variations in depth between 170 and 230 ms TWT bsf (Fig. 4.11).  

As the gas composition at the Batumi Seep is dominated by methane with small 

amounts of ethane (unpublished data), we calculated a gas hydrate phase diagram for a 

two phase gas hydrate system with a composition of 99.9 % methane and 0.01% ethane at 

seawater salinity of 33.5 ‰ (after Sloan, 1998) (Fig. 4.12). Using the average water depth in 

the area of the BSR of 900 m, 9°C bottom water temperature and a geothermal gradient of 

30°C/km, the lower limit of the gas hydrate stability zone (GHSZ) is expected at about 110 

bsf (Fig. 4.12). The actual observed average depth of the BSR is located at 190 ms TWT 

bsf (~150 m with a sediment velocity of 1600 m/s), thus about 40 m beneath the calculated 

depth (Fig. 4.12).
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Downward shifts of the base of gas hydrate stability zone (BGHSZ) for example can 

be caused by reduced temperature or salinity (e.g. Kvenvolden, 1993). As the study area is 

located at an active seep site characterized by upward rising, probably warm, fluids, 

temperature would be expected rather to be increased than reduced. To prove the influence 

of salinity, we examined the gas hydrate stability phase diagrams for different salinities as 

well as for a pure water system without changing the other parameters. Three curves, 

calculated with salinities of 33.5‰, 15‰ and 0‰, are shown in Fig. 4.12. The calculations 

show, that changes in salinity significantly influence the phase boundary of the gas hydrate 

stability. The average depth of the BSR can be best adjusted with a salinity of about 15‰, 

which leads to a theoretical depth of the BGHSZ of about 150 m (Fig. 4.12). 

Figure 4.11: Distribution and depth in s TWT bsf of the Bright Spots and the BSR, 
together with the location of the diapiric structures and the vent sites (mound 
structures, Batumi and Colxheti Seep, and the potential seep locations). The 
bathymetric contours are calculated from the bathymetric grid shown in Fig. 4.2. 
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 Pore water analyses show that chloride concentrations decline almost linearly from 

about 350 mM at the sediment-water interface to 250 mM in a sediment depth of 530 cm 

(Haeckel, pers. comm.), supporting that gas hydrates are probably formed at low salinity 

shifting the BGHSZ towards higher temperatures. Possible explanations for low salinity 

Figure 4.12: Gas hydrate stability fields, calculated for methane 
dominated gas system with 99.9% methane and 0.01% ethane with 
salinities of 33.5‰, 15‰ and pure water (according to Sloan, 1998). 
The depth of the BGHSZ is calculated at 900 m water depth with a 
bottom water temperature of 9°C and a constant temperature gradient 
of 30°C/km. The average depth of the BSR is imaged as pink line.  
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values are a downward diffusion of Cl- ions from sediments deposited under modern marine 

salinities into underlying limnic sediments with low salinities deposited during the last glacial 

periods (Manheim and Chan, 1974), or in the upflow of low salinity fluids in the range of the 

Batumi Seep. The Black Sea in general is characterized by low salinity due to restricted 

water exchange with the Mediterranean Sea. The brackish and oxic surface waters with a 

salinity of about 18‰ are separated by a stable halocline from the deep anoxic bottom 

waters with a salinity of about 22‰ (e.g. Murray et al., 1991).  

Fig. 4.13 images a line drawing of the profile GeoB05-062 along the Kobuleti Ridge 

with the direct relationship between the BSR and the theoretical BGHSZ at salinity of 15‰. 

Although the average depth of the calculated BGHSZ fits with the average depth of the 

BSR, the direct relation along the profile shows significant variations and discrepancy 

between observed and calculated BGHSZ.  

The theoretical BGHSZ reflects the seafloor topography, but the BSR shows anomalies and 

does not exactly mimic the seafloor as expected. Thus, the BSR partly is located at 

shallower depth despite increased water depth. The BSR strongly fluctuates around the 

theoretical curve and partly the BSR is located above and partly beneath the theoretical 

BGHSZ. Only at the easternmost part of the line, the observed and calculated depths show 

Figure 4.13: Line drawing of line GeoB05-062 with the theoretical depth of the BGHSZ at 
a salinity of 15‰ and the depth of the BSR on the seismic section. The graph shows 
great depth variations between calculated and observed BGHSZ along the profile. 
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a good match (Fig. 4.13). This discrepancy indicates local variations of the factors 

influencing the BGHSZ, most probably in temperature and salinity, along the Kobuleti Ridge. 

The low average depth of the BSR in general suggests low salinity of about 15‰, but the 

profile suggests that the BSR is locally uplifted or shifted downward due to changes in 

salinity and/or temperature. However, we can only speculate about possible reasons for the 

BSR depth variations without heat flow measurements and a limited number of pore water 

analyses.

Figure 4.14: Gas hydrate stability diagram with a salinity of 15‰ 
together with the calculated BGHSZ at a water depth of 810 m (=S1) 
(according to Sloan, 1998; with 9°C bottom water temperature and a 
geothermal gradient of 30°C/km). From the depth of the BSR at S1, the 
new temperature gradient of 45°C/km was calculated. 
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The BSR is located shallower than the theoretical BGHSZ beneath the Batumi Seep 

and near the potential seep S1 (Fig. 4.13), which might indicate that increased temperature 

due to the rise of warm fluids uplifted the BGHSZ. North of the Batumi Seep and south of 

S1, the BSR is shifted downward to abnormally low depth with respect to the water depth, 

which may reflect reduced temperature at greater distance to the seeps. The most 

pronounced and abrupt uplift of the BSR to 74 ms TWT bsf (~60m) is found in direct vicinity 

to the potential S1 seep, which is located 7 km eastward of the Batumi Seep (Figs. 4.4, 

4.11). This might reflect significantly increased heat flow leading to an upward shift of the 

BGHSZ. Assuming a salinity of 15‰, an increased temperature gradient of 45°C/km would 

uplift the BGHSZ from the expected 110 m for about 50 m to the observed depth of 60 m 

(Fig. 4.14). Although fluid flow is indicated by an acoustic void zone beneath the seafloor, 

no indications for gas discharge, such as irregularities or reduced reflection amplitudes, are 

observed on the seafloor, suggesting that most of the gas is probably trapped close to the 

subsurface below the BSR or within the GHSZ due to the absence of qualified migration 

pathways to the seafloor. Faults seem to act as migration pathways for the Batumi Seep 

Area, but such faults were not identified for the potential S1 seep site (Fig. 4.4).  

Bright Spots are high amplitude reflections, which generally are interpreted to result 

from high-impedance contrasts between gas-poor strata and gas-rich sediments beneath. 

The presence of free gas in sediments significantly decreases the sediment velocity, thus 

Bright Spots usually are characterized by inverse polarity (e.g. Max, 1990). In the study area 

Bright Spots are widespread at different depths (Fig. 4.11), suggesting that gas 

accumulation is associated with fluid migration from greater depth. Bright Spots were found 

at and beneath the approximate depth of the BGHSZ (calculated with reduced salinity of 

15‰) and can be distinguished into two depth zones. Numerous Bright Spots were 

observed at about 200 ms TWT bsf coinciding with the average depth of the BSR. These 

Bright Spots are related to the ridges and dominate at the westernmost part of the Kobuleti 

Ridge in the surrounding of the Iberia and Pechori Mound, as well as near the potential 

seeps S1-S3. Additionally some Bright Spots at similar depth level were observed at the 

northern Ridges and on the eastern Kobuleti Ridge in elongation to the BSR. The latter are 

interpreted to represent the fragmentary continuation of the BSR (Fig. 4.11). Thus, we 

speculate that all Bright Spots located in the depth range of the BSR probably represent the 

BGHSZ, but we are aware that gas could also be stratigraphically trapped by impermeable 

layers located near the depth of the BGHSZ. In this case we would expect that the Bright 

Spots are bound to a stratigraphic layer. The lateral variability of the reflection 

characteristics and disruption of strata by diapiric structures make it difficult to trace 

reflectors. On line 056 (Fig. 4.3) two Bright Spots located close together definitely occur 

within different stratigraphic units. Moreover, these Bright Spots are not related to a strong 
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reflector, which might indicate the boundary between different permeable horizons, but 

occur within a zone of low reflectance indicating homogeneous strata. This contradicts with 

the theory that the Bright Spots are lithologic gas traps. On the other hand, discordant 

layering of the Bright Spots would directly evidence that they are related to the stability field 

of gas hydrates, as the phase boundary of gas hydrate runs along isotherms (e.g. Shipley et 

al., 1979; Dillon & Paull, 1983). Most Bright Spots occur within chaotic reflection pattern and 

have small dimension, thus the relationship between the Bright Spots and the surrounding 

strata could not be clearly identified. Several Bright Spots seem to crosscut strata (Fig. 4.5), 

but on the eastern Poti Ridge a Bright Spot clearly is conform to strata (Fig. 4.6). Thus, with 

reflection seismic methods alone, the specific cause of the Bright Spots remains uncertain. 

As the Bright Spots are not bound to a stratigraphic layer and due to their constant depth at 

the average depth of the BSR with low depth variations of maximum 80 ms TWT, we 

suggest, that the Bright Spots reflect patches of a BSR, formed nearby seeps and mounds, 

where upward fluid migration provides enough gas to form gas hydrate. As intensively 

discussed for the BSR above, the depth variations of the Bright Spots might then be 

explained by variations in temperature or salinity as well. In the Sorokin Trough, Bright 

Spots, which have been related to the base of gas hydrate stability zone, are interpreted to 

be associated with locally fluid flow near mud volcanoes (Wagner-Friedrichs et al., in 

review). The Bright Spots off Batumi also are correlated to seeps associated with high fluid 

flow. The distribution of the Bright Spots and the BSR shows that all seeps are linked to 

shallow gas accumulation (Fig. 4.11).

Bright Spots located beneath the BGHSZ at depths between 300 and 1000 ms TWT 

bsf are most likely related to different gas charged horizons reflecting an alternation of 

porous sediments acting as potential gas reservoir and more impermeable sediments 

representing seals for the ascending gas. These Bright Spots have increased lateral 

dimension and are concentrated at the canyons and canyon walls while the upper Bright 

Spots are limited to the ridges (Fig. 4.11). This indicates that fluid migration pathways are 

associated with the ridges facilitating fluid upflow into the GHSZ. At the canyons, Bright 

Spots occur where strata is horizontal or onlaps diapirs, thus gas cannot migrate further 

upward along permeable layers and is trapped at greater depth (Figs. 4.4-4.6).  

No Bright Spots occur within the gas hydrate stability zone, but additional strong 

reflection patches are observed directly beneath the seafloor at the Batumi Seep. High 

reflectance might be caused by free gas charged sediments alternating with gas poor 

impermeable horizons trapping gas charged zones (Holbrook, 2001); thus the reflection 

patches should be attributed to Bright Spots. But, high amplitude reflection anomalies within 

the GHSZ might also represent gas hydrate, which would lead to enhanced impedance 

contrast to the surrounding sediments, as sediments with high gas hydrate saturation are 
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characterized by significantly increased sediment velocity generating enhanced reflectance 

(e.g. Holbrook et al., 2002). Similar patchy reflections at seep sites were observed at the 

upper 40 m bsf on the southern summit of Hydrate Ridge (ODP Leg 204). The reflection 

patches could be attributed to massive gas hydrates with concentrations of up to 30% of the 

pore space, generated due to focused fluid flow (e.g. Tréhu et al., 2006). Torres et al. 

(2004) modeled that abundant supply of free gas is required to form such massive gas 

hydrates, which lead to the generation of brines when salts are excluded as hydrate forms.

Another explanation for strength reflectance could be authigenic carbonate precipitations, 

which are common at gas seeps formed due to focused fluid flow by anaerobic oxidation of 

methane (e.g. Greinert et al., 2001). Observed gas bubbles at the Batumi Seep show the 

presence of free gas, but within the sediments free gas concentration probably is not high 

enough to generate Bright Spots, as gas trapped and accumulated within the GHSZ would 

be transformed into gas hydrate. Thus, we propose that the reflection patches beneath the 

buildup of the Batumi Seep directly reflect the presence of gas hydrates. Hence, the 

reflections have not been attributed to the Bright Spots. This is confirmed by coring and 

side-scan sonar data of the Batumi Seep: Samples at the Batumi Seep are significantly 

enriched in gas hydrates (unpublished data), and different high backscatter intensities 

observed at the Batumi Seep were interpreted by Klaucke et al. (2006) to reflect carbonate 

precipitations and concentrations of gas hydrate in the uppermost sediment coverage (Fig. 

4.10). Thereby, gas hydrates cover the whole area of the buildup characterized by the 

reflection patches on the seismic data. Several small zones additionally contain carbonates. 

Gas hydrates and carbonates are characterized by different backscatter images on the side-

scan data, but cannot be distinguished on our seismic data. The intensive gas hydrate 

concentrations may have been formed due to focused fluid flow towards the Batumi Seep.

The origin of the gas at the seeps off Batumi might be related to: (1) in situ gas 

generation, (2) dissociation of gas hydrates and (3) gas/fluid migration from greater depth. 

Assuming that in situ gas generation by microbial transformation of organic matter is 

constant within the study area, the local and patchy distribution of gas accumulation at 

different depths indicates that fluid/gas discharge predominantly is supplied by upward fluid 

migration from sources at greater depth. Gas geochemistry of the Batumi Seep show that 

the expelling fluids probably have a thermogenic source mixed with biogenic gas (Blinova et 

al., 2005; Klaucke et al., 2006). Gas seeps are usually related to focused fluid flow (Judd, 

2003), which is bound to the ridges in the study area and might initiate the dissociation of 

gas hydrates, leading to further dewatering (Suess et al., 1999), which forces fluid venting 

(Greinert et al., 2001). 
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4.6.3 Role of diapirism for fluid migration pathways and for the evolution of the 
complex canyon-ridge system off Batumi 

Compressional deformation in the south-eastern Black Sea due to the thrusting of 

the Greater Caucasus in the north and the Adjara Trialet Fold Belt in the south lead to the 

protrusion of several W-E trending diapiric structures within the clays of the Maikop 

Formation. The thick argillaceous Maikop Formation deposited in Oligocene-Lower Miocene 

time in the Black and Caspian Sea, as well as in the surroundings, is considered to be the 

main hydrocarbon source rock in this region. In the south-eastern Black Sea the Maikop 

Formation is located at a depth of 1-4 km (Tugolesov et al., 1985; Banks et al., 1997; 

Starostenko et al., 2004). Offshore Batumi, the diapirs are trending along the ridge 

structures (Tugolesov et al., 1985). On our seismic data several diapiric structures have 

been identified, namely at the R1, Kobuleti and Adjara Ridge (Figs. 4.3-4.6), but the limited 

signal penetration in general and the high gas content, as observed beneath the Kobuleti 

Ridge, inhibit to identify structures beneath 0.8-1 s TWT bsf.  

The direct link between the diapirs and the ridge structures indicates that the 

diapirism significantly has influenced the development of the canyon-ridge system off 

Batumi. We think that the growth of the diapirs have guided the course of the canyons. The 

canyons off Batumi are dominated by erosive features, which indicate erosive down cutting 

by turbidity currents as found for many canyon systems (Stow and Myall, 2000). The 

protrusion of diapirs bulges the sediments above, which leads to subsidence nearby 

generating elongated depressions between the diapiric structures. The depressions act as 

preferred pathways for turbidity currents. The erosive power of turbidity currents formed 

proto canyons. Once these proto canyons were formed, subsequent turbidity currents 

deepen and widen the canyon. Due to missing bathymetric coverage close to the coast we 

cannot trace the canyons to sources on land (such as rivers) but high terrigeneous sediment 

input from land is the most likely source for frequent turbidity activity. Recently, there are no 

large river systems onshore in the range of the study area, but several smaller rivers in 

Georgia flow into the Black Sea between Poti and Batumi (Google Earth vs. 4.0.4416 beta, 

2006), which might have been more dynamic and active at past periods of sea level low 

stand during last glacial periods, hence supplying large amounts of sediments to the slopes. 

The source provinces of the Georgian rivers are the glaciers of the Caucasus. Recently, the 

total volume of river sediment transport into the Black Sea represents 11100 m³/a, of which 

6700 m³/a are transported on to the slope (Jaoshvili, 2000); thus sediment transport 

probably is sufficient to generate periodic turbidites on the slope. 

The diapiric uplift and the resulting over-steepen of the canyon flanks directly affect 

their stability. Faults developed at the flanks of the ridges (Figs. 4.3-4.6) act as preferred 

gliding planes for slumps and slides towards the canyon floor, which is a common process 
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for canyon widening. Slumps and slides constitute an important component of the canyon 

deposition in addition to deposits from turbidity currents. Several slump/slide blocks and 

scars occur at the canyon walls, which partly could be associated with faults (Figs. 4.3-4.5). 

Due to the growth of a diapir the sediments at the southern flank of the Adjara Ridge have 

been tilted southward and at the northern side a large slide event occurred (Fig. 4.4). Faults

observed at the flanks without slump scarps, e.g. at R2 Ridge (Figs. 4.3, 4.6) and at Pechori 

Mound (Fig. 4.5), indicate that faults were present first and were not caused by slump 

events, reflecting that fault-controlled processes play an important role in the development 

of the canyons. The erosion of the canyon flanks by the passage of large turbidity currents 

can also destabilize the wall sediments by over-steepening, leading to slumps, slides and 

debris flows (McCaffrey and Kneller, 1998). Gas hydrate dissociation due to slope failure 

might play an important role for gas seeps at the flanks of the ridges, such as the potential 

seep site S2, located at the flank of the Poti Ridge, and the Pechori and Iberia Mounds at 

the edges of the Kobuleti Ridge (Figs. 4.3, 4.5).

The Natanebi and Central Canyon, as well as the eastern part of the C2 Canyon are 

interpreted to represent recently active canyons, indicated by the high amplitude reflections 

at their floors (Figs. 4.3, 4.4, 4.6). These discontinuous reflectors most likely represent 

coarse grained sediments with increased content of terrigeneous material derived at the 

base of turbidity currents with origin on the shelf or the upper slope. Stratified reflections are 

absent, which indicates the lack of continuous hemipelagic sedimentation, most likely due to 

sediment transport through the canyons in the younger past. The central canyons are 

dominated by continuous reflectors, representing most probably hemipelagic sedimentation, 

partly disrupted by chaotic and acoustic transparent facies with thickness of about 30-40 m 

(Figs. 4.3-4.5), locally increasing to 90 m, e.g. at the slump at the Northern Canyon (Fig. 

4.3). This seismic facies indicates homogeneous and hemipelagic sedimentation at long 

periods of canyon inactivity interrupted by slumps from the canyon walls or fine grained 

distal turbiditic deposits. At these canyons slope failures probably are the main processes 

for canyon deposition and widening. Only the C1 Canyon shows evidence for recent activity. 

At its landward potion, the C1 Canyon is characterized by a well pronounced axial v-shaped 

incision flanked by acoustically homogeneous terraces (Fig. 4.6). We suggest that the 

terraces represent a slump event, which blocked the active canyon. Ongoing turbidity 

activity incised the slump block, but turbidites appear not to be very dynamic as no 

evidences for recent turbidity activity is observed on the profiles further downslope. The 

sandy turbiditic deposits at the active canyons represent potential gas reservoirs and 

interbedded fine grained and hemipelagic sediments might act as a potential seal for gas. At 

active canyons with assumed coarse sediments, Bright Spots indicate the presence of free 
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gas, while at the inactive canyons with hemipelagic sediments Bright Spots are rare (Figs. 

4.3, 4.4, 4.6). 

Diapirism influences fluid migration pathways, as fractures and over-steepened 

flanks created during the growth of the diapirs represent potential fluid migration pathways 

controlling the distribution of the gas seeps associated with the ridge structures. Beneath 

the Batumi Seep no diapir has been observed in our seismic data, which probably is due to 

the limited signal penetration. However, as Tugolesov et al. (1985) described a diapiric ridge 

trending along the Kobuleti Ridge perpendicular to the slope, we assume that the diapiric 

structure observed at the westernmost Kobuleti Ridge continues beneath the Batumi Seep. 

Therefore, on the example of the Batumi Seep, we suggest a model, how the diapirism 

might control the canyon-ridge system and influence fluid migration pathways (Fig. 4.15).  

Figure 4.15: Schematic sketch of the interactions between different 
geological processes within the study area, on the example of the 
Batumi Seep: the diapirism primarily controls the evolution of fluid 
migration pathways at the flanks and tops of the grown diapirs. 
Depressions between growing diapirs guide the courses of the 
canyons by generating weakness zones and synclines acting as 
preferred pathways for turbidity currents. Faults are potential glide 
planes for slides and slumps. 
The green lines represent Bright Spots; the red arrows mark potential 
fluid migration pathways. 
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Upward bulged sediments at the flanks of the diapirs allow fluid migration parallel to 

strata along more permeable horizons towards the top of the diapirs. Faults develop at the 

flanks of the diapirs due to over-steepened sediments; these faults are potential pathways 

for focused upward fluid migration. The parallel bulged layered sediments above the diapir 

generally inhibit upward fluid migration, thus upflow of fluids/gas occurs where faults 

developed during the diapiric growth above. Additionally, the evolution of faults and upward 

fluid migration probably are forced by the N-S oriented tectonic loading of the thrust belts. 

Bright Spots often observed nearby diapirs support that fluid migration is linked to the 

diapirism. Simultaneously faults at the canyon flanks control the slope stability and may 

induce slope failures filling and widening the canyons. Turbidity currents are considered to 

be the main erosional process forming the canyons. The course of the currents is guided by 

depressions evolved between the growing diapirs.

4.7 Conclusions 

The canyon-ridge system offshore Batumi is directly controlled by the growth of 

diapiric structures, which are located beneath the ridges. Depressions evolved due to 

subsidence between the diapirs guided turbidity currents, which cut the canyons deeply into 

pre-existing strata. Faults develop at the canyon flanks during the diapiric uplift. The faults 

directly impact the slope stability as they act as gliding planes for slope failures.

Faults developed at the flanks and above the diapirs as well as upward bulged 

strata present potential fluid migration pathways, hence controlling the distribution of fluid 

migration towards the seafloor and discharge offshore Batumi. Seeps are therefore 

associated with the ridges. The tectonic loading of the thrust belts in the north and the south 

is believed to be the main driving force for upward fluid migration. Our seismic data reveal 

four seeps and three potential seeps. The largest and most active seep is the Batumi Seep, 

which is located in 870 m water depth on the Kobuleti Ridge. The Batumi Seep is 

characterized by a small buildup with a height of 10 m and high amplitude reflection patches 

directly beneath the seafloor, interpreted to represent either gas hydrates or carbonate 

precipitates. Gas emissions at the Batumi Seep are related to fluid migration along near 

vertical faults. Fluid migration is imaged as narrow vertical acoustically void zones in the 

seismic data. Based on so-called gas columns towards the seafloor, three potential seep 

sites have been determined at two ridges, but only one of these sites probably is active. 

Bright Spots are widely distributed in the study area, indicating local gas accumulation at 

different depth. Gas accumulations are probably related to upward fluid migration from 

greater depth. Coarse grained canyon fill facies from turbidites, dominating at the northern 

and southern canyon floors, might act as near surface gas reservoirs as well. A BSR trends 

along the Kobuleti Ridge, but BSRs lack in the remaining study area, indicating the 
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presence of high permeable gas/fluid migration pathways towards the Kobuleti Ridge. The 

low average depth of the BSR could be explained by low salinity of only 15‰ due to either 

the limnic period of the Black Sea in glacial time or the upflow of low salinity fluids. 

Discrepancy between the depth of the BSR with respect to the theoretical BGHSZ indicate 

local variations of temperature or/and salinity. Numerous Bright Spots could be attributed to 

the depth of the BGHSZ and thus are interpreted to represent patches of the BSR. Potential 

vents are related to these Bright Spots, indicating that shallow gas reservoirs control 

seepage off Batumi. Only the Pechori and Iberia Mound as well as the Colxheti Seep are 

interpreted to be formed by upward transport of mud, most likely sourced in the diapiric 

structures beneath. The material flux at the other seeps, i.e. Batumi, and the potential seeps 

S1, S2, and S3, is probably low.  
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5 Summary and outlook 

The Black Sea contains thick gas rich sediments in an anoxic environment providing 

best conditions to study seafloor seepage, which is widely distributed along the continental 

slopes of the Black Sea. In two areas of the Black Sea, the Sorokin Trough off Crimea and 

the continental slope off Batumi (Georgia), the distribution, structure and evolution of two 

different vent systems and their relationship to near-subsurface structures have been 

investigated by means of high resolution multichannel seismic and additional acoustic data. 

The interpretation of the seismic data shows that the distribution of seafloor seepage in both 

regions is controlled by fluid migration along permeable pathways associated with diapiric 

uplift in the subsurface. However, morphological structures, types and evolution styles of the 

seepage systems in these areas significantly vary. In the Sorokin Trough, seepage is 

expressed by intensive material upflow and the formation of mud volcanoes; at the 

continental slope off Batumi gas seeps with low material flux dominate. This thesis provides 

new insights into the distribution and structure of different mud volcano types in the Sorokin 

Trough and seep structures off Batumi. The evolution of the mud volcanoes in the Sorokin 

Trough and the seeps off Batumi is directly linked to faults, controlling fluid migration; faults 

are well imaged on the seismic data below and in the direct vicinity of the seepage sites.

Faults primarily occur above and at the flanks of the diapirs. Hence, the development of the 

faults is considered to be related to the diapirism. The evolution of the mud volcanoes is 

directly bound to the near-surface diapirs; seismic data show that the mud volcanoes are 

located directly above or at the edges of E-W- trending diapiric ridges associated with the 

Maikop Formation. The link between mud volcanoes, diapirs and fault systems well imaged 

on the seismic data suggests that the mud volcanoes are fed from the diapirs by fluid 

migration along faults. The fluids probably are sourced within the Maikop Formation, 

released at great depth during smectite-illite transformation. Different depositional 

environments in the Sorokin Trough influence the sediment permeability and hence affect 

the evolution mechanism of the mud volcanoes in the Sorokin Trough, which is reflected in 

the high morphological variability of the mud volcanoes. 

In the Sorokin Trough, 25 mud volcanoes have been analyzed and characterized 

based on high resolution multichannel seismic and Parasound sediment echosounder data 

collected during the Meteor cruise M52/1. With exception of the Kazakov mud volcano, all 

mud volcanoes are associated with near-subsurface mud diapirs. The protrusion of the 

diapiric ridges, mainly striking in the W-E direction, resulted from the N-S oriented 

convergence between the Crimean Mountains in the North and the buried Tetyaev and 

Shatsky Ridges in the South. Deep single channel seismic data collected by the SSC 

“Yuzhmorgeologia” of Gelendzhik in 1979 reveal that the diapirs are related to the Maikop 

Formation, a prominent thick clayey Oligocene-Miocene series with great hydrocarbon 
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source potential deposited in the Black Sea and surrounding areas. The mud volcanoes are 

clustered north of the buried Tetyaev Rise and Shatsky Ridge, as the ridges act as barrier 

for lateral fluid migration resulting in over-pressured fluids, preferentially released at faults. 

The deep seismic data reveal numerous faults within and beneath the Maikop Formation 

reaching into the Pliocene and Quaternary sediments. Near-surface faults develop during 

the diapiric uplift primarily above and at the over-steepened flanks of the diapirs. Fluid 

migration from great depth along deep and near-surface faults controls the evolution of the 

mud volcanoes. The mud volcanoes highly vary in morphology and size, and could be 

catalogued into four morphological types: (1) cone-shaped structures, (2) collapsed 

depression structures, (3) collapsed depression structures with one or more cones inside, 

and (4) one flat-topped structure. The great morphological variability reflects different driving 

mechanisms depending on the availability of permeable fluid migration pathways and the 

depositional environment. Three areas with different sedimentologic and structural 

environments could be distinguished, which are dominated by specific morphological types 

of mud volcanoes. The data show a change of violent eruptions creating collapsed 

depression structures in the west where hemipelagic sediments dominate to quite mud 

extrusions forming cone-shaped mud volcanoes in the East, which are intensively 

influenced by homogeneous fan deposits of the Palaeo Don-Kuban Fan. In Area 1, located 

in the western Sorokin Trough, collapsed depression structures predominate, which are 

formed by explosive eruptions due to over-pressured fluids. Low permeable horizons within 

the hemipelagic sediments act as traps for rising fluids leading to increased pore pressure 

and over-pressured fluids. Seal failure results in violent eruptions and sudden release of 

fluids/gas, forming the collapsed structures. Bright Spots widely distributed in this area 

nearby mud volcanoes indicate the presence of trapped gas. The homogeneous Palaeo 

Don-Kuban Fan sediments at the central plain (Area 2) and the eastern portion of the 

Sorokin Trough (Area 3) are characterized by increased permeability leading to reduced 

pore fluid pressure. This setting results in more quiet mud extrusions reflected by cone-

shaped structures. In Area 2, high mud flow rates along faults with great offsets of about 20 

m lead to the largest mud volcano structures in the Sorokin Trough: the Nioz and Kazakov 

mud volcano with dimensions of up to 2000 m in width and about 100 m in height. The small 

cone-shaped mud volcanoes observed in Area 3 indicate less frequent mud extrusions or 

low mud flow rates. In the easternmost Sorokin Trough, the mud volcanoes are 

concentrated above a morphological high, which is underlain by a diapiric ridge. 

Stratigraphically controlled fluid migration along dipping strata towards the high might supply 

mud extrusions, which results in moussy and fluid rich eruption products. 

  A new 3D seismic dataset across the Sevastopol mud volcano in the western 

Sorokin Trough provides detailed information about the three dimensional structure of a 
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collapsed mud volcano structure and its spatial relationship to the subsurface structures in 

the Black Sea for the first time. The analyses show that faults acting as potential fluid 

migration pathways play an important role for the evolution of the mud volcano. The 

Sevastopol mud volcano is characterized by an 1100 x 1700 m large depression with a 

depth of about 25 m, including three NNW-SSE trending mounds of asymmetrical shape 

with heights up to 35 m. The Sevastopol mud volcano is located above a syncline 

developed between two diapiric ridges. The interpretation of the data shows that fluid 

migration along the deep fault system developed during the growth of the diapirs between 

the ridges feds the mud volcano from the diapiric ridges. The well bedded hemipelagic 

sediments of the basins surrounding the mud volcano inhibit significant vertical fluid 

migration and provide suitable traps for gas/fluids. An evolution model established for the 

Sevastopol mud volcano suggests that trapped over-pressured fluids induced a violent 

explosion after seal failure, leading to sudden release of gas and mud, and creating the 

collapsed depression of the Sevastopol mud volcano. The destroyed sediments fell back 

into the depression. Permeability of these sediments is increased allowing subsequent 

effusive fluid and mud flow extrusion, which formed the cones inside of the depression. High 

amplitude reflections (Bright Spots) indicate the accumulation of free gas above and at the 

flanks of the diapiric structure. The depth of the Bright Spots almost coincides with the 

approximate calculated depth of the BGHSZ. As the depth of the Bright Spots is constant 

along the trend of the diapiric ridge and only slightly increases at its northern flank, we 

suggest that the Bright Spots represent the BGHSZ. Warm fluids rising towards the mud 

volcano might explain the shallower depth of the Bright Spots with respect to the BGHSZ. 

Increased temperatures then might have uplifted the BGHSZ into the depth of the Bright 

Spots. Assuming that the Bright Spots represent the BGHSZ, the average depth of the 

Bright Spots (270 mbsf) suggest an increased temperature gradient of 37°C/km. The depth 

variations of the Bright Spots indicate that the BGHSZ is strongly controlled by fluid flow. 

Changes of the temperature gradient from 29°C to 52°C/km would explain the observed 

variations in depth. Gas and gas hydrates are suggested to occur locally where strong fluid 

flow occurs directly linked to the mud volcanism. We propose that gas hydrates are present 

above one of the diapric ridges and in the surrounding of the mud volcano and its feeder 

channel. Gas/fluids might migrate laterally from the feeder channel into the surrounding 

strata. Permeable upward bulged layers act as pathways to the diapiric top where gas/fluids 

are trapped and imaged as Bright Spots. Microfaults above the diapiric ridges act as fluid 

migration pathways into the GHSZ. The activity of the mud volcano probably is controlled by 

episodic fluid flow, which inhibits the generation of a BSR.  

A new high resolution seismic dataset off Batumi (Georgia), acquired during the 

TTR-15 cruise in June 2005, reveal numerous deep water gas seeps in a complex canyon-
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ridge system. The development of the canyon-ridge system off Batumi is attributed to the 

protrusion of diapiric structures associated with the ridges. Depressions developed between 

growing diapirs and guided turbidity currents, which preferentially used pre-existing 

morphological depressions. These depressions were deepened by the erosive power of the 

turbidity currents. Faulting and over-steepening of the canyon flanks is forced by the diapiric 

uplift. Both, faulting and over-steepening, directly affects slope stability and induces slope 

failures, such as slumps and slides, which are a common process of canyon widening.

Numerous gas seeps occur at water depths of 850-1200 m on the top or flanks of the 

ridges. The distribution of the seeps is controlled by fluid migration along pathways 

associated with the diapiric uplift beneath the ridges. Faults at the flanks and above the 

diapirs, as well as over-steepened strata at the diapir flanks provide potential fluid migration 

pathways towards the seafloor. Thus, fluid migration and seepage is focused towards the 

ridges. Four seepage sites and three potential seep locations were identified on the seismic 

data. The Batumi Seep, the largest and most active seep, is located in 870 m water depth 

on the Kobuleti Ridge. It has only a low seafloor expression with a height of 10 m. High 

amplitude reflection patches directly beneath the seafloor are interpreted to represent either 

gas hydrate deposits or carbonate precipitates, most likely formed due to focused fluid flow 

towards the vent site. Fluid migration beneath the Batumi Seep is fault-controlled. The 

potential seep sites were assigned by near-subsurface gas columns reaching towards the 

seafloor on the Kobuleti and Poti Ridge. Only one of these sites is believed to be active, as 

the gas column distorts the seafloor reflection and a small pinnacle is built. Widely 

distributed Bright Spots at different depth levels indicate local gas accumulation related to 

upward fluid migration from greater depth. All seeps are related to shallow gas accumulation 

trapped near diapiric structures. Gas/fluid migration appears to be focused towards the 

Kobuleti Ridge, as high gas and gas hydrate occurrences are indicated by a BSR trending 

along the Kobuleti Ridge. The depth of the BSR is located 40 m below the theoretical depth 

of the BGHSZ for a methane-seawater system. The discrepancy in depth could be 

explained by abnormal low salinity pore fluids of only 15‰ shifting the BGHSZ downward to 

the observed depth of the BSR. The low salinity may reflect the limnic period of the Black 

Sea in glacial time or the upflow of low salinity fluids. Reduced temperature would 

downward shift the BGHSZ as well, but nearby vent sites, we rather would expect high than 

reduced temperatures. Thus, we calculated with a given temperature gradient of 30°C/km. 

The depth variations of the BSR with respect to the theoretical BGHSZ observed along the 

Ridge might be explained by local changes in temperature or salinity. BSRs lack in the 

remaining study area, but Bright Spots at same depth are suggested to represent patches of 

the BSR formed where sufficient gas is supplied by local fluid flow. 
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This thesis provides new insights into morphology, distribution and evolution of 

seafloor seepage structures at two different vent systems of the Black Sea. The 

investigations show that seepage is related primarily to fluid migration along faults 

developed during the growth of diapiric structures. However, several questions remain 

unsolved. Although seepage in both areas is associated with near-subsurface diapiric 

ridges, only the Sorokin Trough is characterized by high material flux resulted in the 

formation of numerous mud volcanoes. In contrast, vent sites off Batumi are dominated by 

gas seeps with low material flux and no mud volcanoes are known up to now. It can only be 

speculated about the differences concerning the driving mechanism for material upward 

transport, such as the lack of extensive fault zones in the area off Batumi. Another 

explanation might be that the mobilization of mud in the Sorokin Trough is supported by 

intensive faulting at great depth within the Maikop Formation, hence facilitating fluid 

migration through the diapirs into the sediments above and to the seafloor. Offshore Batumi, 

fluid migration rather appears to occur along strata and faults in the surrounding of the 

diapirs than through the diapirs. Moreover, the diapirs off Batumi are located at greater 

depth, suggesting that stronger driving forces would be required to transport the mud 

towards the seafloor. As only few seismic profiles exist offshore Georgia further data 

coverage is needed to obtain the detailed distribution of the subsurface structures and to 

investigate the direct link between fluid migration pathways, diapiric structures and 

distribution of seeps in this area. In the Sorokin Trough different deposition regimes affect 

the eruption style and the morphological shape of mud volcanoes. It remains unclear, 

whether this can be contributed to the seeps off Batumi as well, as data coverage is too low. 

The seeps of Batumi are characterized by low morphological expression and there might be 

furthermore seeps not yet identified. Hence, further profiling with hydroacoustic methods is 

needed to identify possible seep locations by the detection of flares, seafloor backscatter 

anomalies and/or amplitude anomalies in the subsurface indicating vent sites. Although gas 

hydrates have been sampled in both areas, a BSR has only been identified on the Kobuleti 

Ridge off Batumi. Bright Spots at the depth of the BGHSZ are attributed to the stability field 

of gas hydrates. This suggests that local gas and gas hydrate accumulation related to 

focused fluid migration at vent sites and mud volcanoes, although gas hydrate can be 

present, even when a BSR lacks. The depth bsf of the BSR off Batumi is exceptionally high, 

but possible explanations remain speculative. Further investigations should include 

intensive temperature and pore water measurements and analyses to prove whether 

changes in temperature or salinity fit with the depth of the BSR.  

Studies in the Sorokin Trough show a great morphological variability of mud 

volcanoes and different evolution models are presented in this thesis. A remaining question 

is weather the mud volcanoes are recently active, which could not be concluded from our 
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seismic data. The Dvurechenskii mud volcano is well known to be an active seep, but what 

is about the other mud volcanoes? Intensive flare imaging by side-scan sonar and 

echosounder profiling across mud volcanoes, as e.g. collected across the Batumi Seep off 

Georgia, would show release of free gas bubbles and evidence active sites. Additionally, 

exact coring at mud volcanoes would be necessary, as well as video observation to observe 

free gas bubbles. Furthermore, heatflow measurements as at the DMV might indicate active 

seeps. All mud volcanoes are related to near subsurface faults, but closely spaced parallel 

seismic lines are needed to identify the spatial distribution and detailed relation of fault 

systems, diapirs and mud volcanoes. The fault system beneath the Sevastopol mud volcano 

is absent east of the mud volcano, but continues to the West. Due to the limited extension of 

the 3D survey it remains open how far the fault can be traced westward, and whether the 

faults at the M3 and M4 mud volcano belong to the same fault system. Based on the 3D 

seismic studies Bright Spots near the Sevastopol mud volcano are interpreted to represent 

the upward shifted BGHSZ due to rise of warm fluids and gas hydrate deposits were 

suggested to be present above. Only few cores exist for the Sevastopol mud volcano, which 

did not contain gas hydrates but presence of gas hydrate might be overlooked. Locations of 

expected gas hydrate occurrences could be selected from our seismic data, as e.g. above 

the Bright Spots north of the Sevastopol mud volcano and at the margin of the depression. 

Nothing is known about the heat flow values at and in the surrounding of the Sevastopol 

mud volcano. Hence, well directed sedimentological, geochemical, and geophysical 

investigations of Sevastopol mud volcano would allow to prove the results presented in this 

thesis.

The Sevastopol mud volcano is the first mud volcano in the Black Sea detailed 

imaged by a three dimensional seismic survey. The 3D investigations give detailed 

information about the three dimensional spatial geometry of a collapsed mud volcano and 

its subsurface structures, such as faults acting as fluid migration pathways. The studies 

allowed drawing conclusions on the evolution of such type of mud volcano. For a better 

understanding of the factors influencing the distribution and evolution of the different mud 

volcano types leading to the great morphological variability observed, as well as to obtain 

the geometrical relationships to subsurface structures, e.g. diapirs and fluid migration 

pathways, additional 3D surveys across other mud volcano types in the Sorokin Trough 

would be useful. Interesting mud volcano structures would be the cone-shaped Istanbul 

mud volcano, the DMV, which is a very active mud volcano with flat top, and an additional 

collapsed structure. Additionally to the multichannel reflection seismic data, in the 3D area 

across the Sevastopol mud volcano, an OBS/OBH dataset was recorded simultaneously. 

From this data, a velocity model will be calculated at the Leibniz Institute of Marine Sciences 

(Kiel). A combination of the amplitude analyses from the multichannel seismic data and the 
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velocity information from the OBS/OBH data would enable precise detection of gas and gas 

hydrates, and would allow quantifying the gas hydrate content. 

Presently, during the Meteor-cruise M72/3B proceeding in April 2007 in the frame of 

the METRO project, new data for a better understanding of the distribution and driving 

mechanisms of seep sites, as well as to investigate how the character of a vent system is 

related to fluid migration pathways and sedimentary and tectonic structures, will be collected 

in different areas of the Black Sea (Shatsky Ridge and Tuapse Trough offshore Russia, 

Batumi Seep Area offshore Batumi (Georgia), and Archangelsky Ridge offshore Samsun 

(Turkey)). Additionally to side-scan sonar and multichannel seismic profiling, 

sediment sampling with multi corer, TV grab and autoclave piston corer will 

complete the investigations. During this cruise, also shallow seeps will be investigated in 

order to study seeps at the transition zone of the GHSZ. 
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