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CHAPTER 1

I NTRODUCTION

1.1 Kurzzusammenfassung

Das thermische Verhalten eines Kometenkernes, die Entstehung und Entwicklung der Neu-
tralgasumgebung (der sogenannten kometaren Koma), der Plasmaumgebung des Kometen,
sowie seine Interaktion mit dem Sonnenwind werden in dieserArbeit studiert. Das Ziel ist
es, ein umfassendes Modell eines Kometen und seiner Umgebung zu entwickeln. Mit diesem
Modell lassen sich dann physikalische Parameter in der Kometenumgebung und deren Ent-
wicklung in Abhängigkeit vom heliozentrischen Abstand der Kometen 46P/Wirtanen und
67P/Churyumov-Gerasimenko bestimmen. Insbesondere solluntersucht werden, welche Ef-
fekte die Kometenumgebung auf das Radiosondierungs-Experiment (RSI = Radio Science
Investigations) auf der Raumsonde ROSETTA haben wird. Die Mission ROSETTA soll im
Februar 2004 gestartet werden und etwa 10 Jahre später den Kometen 67P/Churyumov-
Gerasimenko bei einem Abstand von ca. 4 Astronomischen Einheiten (AE) erreichen, und
ihn dann auf seiner Bahn begleiten. Ursprünglich war Komet46P/Wirtanen als Zielkomet
für die Mission vorgesehen. Nachdem der Start von ROSETTA im Januar 2003 aufgrund
von Problemen mit der vorgesehenen Startrakete verschobenwerden musste, war der Zeit-
plan der Mission nicht einzuhalten und es wurde ein neuer Zielkomet ausgewählt. Komet
46P/Wirtanen dient nun noch als mögliches Ersatzziel, falls in der nächsten Startphase wieder
Probleme auftauchen sollten. Die hier entwickelten Modelle beziehen sich im allgemeinen
auf beide Kometen, da diese sich in vielen Dingen ähnlich sind, wie zum Beispiel Orbitpa-
rameter, Größenordnung des Kometenkerns und Zusammensetzung. Im Einzelnen werden
die Unterschiede in der Diskussion der Ergebnisse ausgearbeitet.
Die Wärmediffusion im Kometenkern wird hier mit einem eindimensionalen Modell be-
schrieben. Um eine Aussage über die Temperaturverteilungund das Sublimationsverhalten
für die gesamte Oberfläche des Kometen machen zu können, wird ein Gitter von eindimen-
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sionalen Modellen über den Kometenkern verteilt. Die physikalischen Bedingungen an der
Oberfläche werden durch ein Energiegleichgewicht beschrieben und gehen als Randbedin-
gung in die Modellrechnungen ein. Viele der in den Modellen zu berücksichtigenden Para-
meter sind derzeit nur ungenau bekannt. Diese nicht zu vermeidende Ungenauigkeit spiegelt
sich in der Variationsbreite der Ergebnisse wieder. Die Wärmediffusion im Kometenkern
wird mit einer Energie-Erhaltungsgleichung beschrieben.Diese beinhaltet Wärmeleitung
durch das poröse Kometenmaterial und Wärmetransport in Form von latenter Wärme durch
den Fluss von Gas innerhalb des Kometenkerns. Die Anwendbarkeit der einzelnen Modell-
studien lässt sich zur Zeit wohl am Besten überprüfen, indem man die Gasproduktionsrate
mit beobachteten Daten vergleicht. Die Ergebnisse der Modelle beinhalten auch Karten der
Oberfläche des Kometenkerns mit der Temperaturverteilungoder der Verteilung der lokalen
Gasproduktionsrate an bestimmten heliozentrischen Abst¨anden.
Das Neutralgas in der kometaren Koma wird mit den Methoden der Hydrodynamik beschrie-
ben. Dieses Vorgehen ist gerechtfertigt, wenn das Verhalten des Neutralgases in der Koma
durch Teilchenstöße dominiert ist. Dieses stoßdominierte Regime kann je nach Gaspro-
duktionsverhalten des Kometen sehr unterschiedlich ausgedehnt sein. Bei heliozentrischen
Abständen von mehr alsrh

� 2�5 AE und einem Gasproduktionsverhalten, wie es für die
Kometen 46P/Wirtanen und 67P/Churyumov-Gerasimenko abgeschätzt wird, wird das hy-
drodynamische Regime den Kometenkern möglicherweise nicht vollständig umschließen.
Bei kleineren Abständen von der Sonne dehnt sich der Bereich voraussichtlich über mehrere
hundert bis tausend Kilometer um den Kometen aus. Der Massenfluss des expandierenden
Staub-Gas-Gemisches wird die Bahn eines Raumfahrzeuges inder Umgebung des Kome-
ten stören. Die Beschleunigung, die ein Raumfahrzeug aufgrund des Gas-Massenflusses
erfährt, wird mit den Modellergebnissen abgeschätzt. Die sich ergebendëAnderung der
Geschwindigkeit verursacht eine Dopplerverschiebung derFrequenz des von dem Raum-
fahrzeug ausgesendeten Radiosignals. Diese Dopplerverschiebung ist eine der Messgrößen
des Experimentes RSI. Aufgrund der großen Rechenzeit, die einzelne Modellstudien benö-
tigen, werden Fallstudien an bestimmten heliozentrischenAbständen diskutiert. Es ergibt
sich, dass die Beschleunigung von ROSETTA durch den Gasfluss selbst beirh

� 3 AE noch
so groß sein kann, dass die mit dem RSI-Experiment geplantenMessungen der Koeffizienten
des Gravitationspotentials des Kometenkernes gestört werden können.
Der ionisierte Anteil der Kometenumgebung kann auch mit demRSI-Experiment untersucht
werden. DieÄnderungen und der Absolutwert des Elektroneninhaltes in der Sichtlinie zwis-
chen ROSETTA und dem Beobachter auf der Erde sind die entsprechenden Messgrößen.
Die Dichte des kometaren Plasmas wird mit einem eindimensionalen Modell abgeschätzt.
Dieses Modell bezieht sich auf die Achse Komet-Sonne und entspricht in etwa der Beobach-
tungsrichtung in der Hauptmissionsphase der ROSETTA Mission. Die bei früheren Arbeiten
bei dem Kometen 1P/Halley angewendete Annahme des photochemischen Gleichgewichts
im ionisierten Teil der inneren Koma lässt sich nicht ohne Weiteres auf Kometen mit einer
schwächeren Gasproduktionsrate übertragen. Das Temperaturprofil der Elektronen entlang
der Achse Komet-Sonne wird in dem Zusammenhang ebenfalls mit einigen Annahmen ab-
geschätzt. Die sich ergebenden Plasma- und Elektronendichten lassen einen nur geringen
Effekt der ionisierten Koma auf das Radioträgersignal erwarten.
Abschließend wird noch die Wechselwirkung des Kometen mit dem Sonnenwind untersucht.
Dabei werden aus der Theorie der Magneto-Hydrodynamik abgeleitete Formeln eingesetzt,
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die die Abstände der Bugstoßwelle, der Ionopause (bzw. Grenzfläche der magnetischen
Kavität) und den Abstand des̈Uberganges vom stoßfreien Sonnenwindregime zu der von
Stößen mit dem Neutralgas dominierten Kometenumgebung bestimmen. Diese Abstände
werden in Abhängigkeit vom jeweiligen heliozentrischen Abstand für 67P/Churyumov-Ge-
rasimenko und 46P/Wirtanen berechnet. Dabei wird auch die Variation der Parameter des
Sonnenwindes und des interplanetaren Magnetfeldes mit demAbstand von der Sonne berück-
sichtigt. Es ergibt sich, dass nur mit geringfügigen Effekten auf das Radioträgersignal von
ROSETTA zu rechnen ist. Um die Lage und das Verhalten der Plasmagrenzflächen mit dem
RSI-Experiment zu untersuchen, müssen daher geeignete Strategien insbesondere mit Bezug
auf die Umlaufbahn von ROSETTA um den Kometen entwickelt werden.

1.2 Abstract

Models of the thermal behaviour of a cometary nucleus, the evolution of the neutral gas coma,
the ionized cometary coma and of the interaction of the cometary plasma with the solar wind
are studied in this work. The general aim is to develop a global model of the comet and its
environment in order to characterize the physical conditions around comets 67P/Churyumov-
Gerasimenko and 46P/Wirtanen with respect to the heliocentric distance. The results also
provide estimates of the effects of the cometary environment on the radio science investiga-
tions experiment (RSI) aboard the spacecraft ROSETTA. After the launch that is scheduled
for February 2004, the ROSETTA mission is planned to encounter comet 67P/Churyumov-
Gerasimenko and accompany it on its orbit. Comet 46P/Wirtanen has been the original target
comet, but serves now as back-up target due to the postponement of the ROSETTA launch in
January 2003.
The model of the heat diffusion within the cometary nucleus is one-dimensional. A grid of
one-dimensional models is distributed over the nucleus in order to determine the tempera-
ture distribution and the sublimation characteristics of the comet on the whole surface of
the comet. A heat balance equation is applied as boundary condition on the surface. Many
parameters that have to be accounted for in a heat diffusion model are not precisely known
to date. The variation of these parameters within reasonable limits yields a wide range of
possible results. The heat diffusion within the cometary nucleus is derived from an energy
conservation equation that includes heat conduction through the porous cometary material
and heat convection due to the transport of latent heat by thegas phase within the nucleus.
Model results are evaluated by a comparison of modeled and observed global gas production
rates. Exemplary maps of the local temperature distribution and local sublimation rates at
particular heliocentric distances are also provided.
The neutral gas coma of the comet is modeled with a hydrodynamic approximation. This
method is justified within a collision dominated regime. Dueto the expected weak gas pro-
duction of a comet at large heliocentric distances, this hydrodynamic regime might be small
and might not enclose the whole nucleus. When the comet approaches the sun and the gas
production increases, the hydrodynamic regime extends to cometocentric distances of several
hundred or thousand kilometer. The gas mass flux within the coma perturbs an orbiting space-
craft. The acceleration of the spacecraft due to the gas massflux is evaluated with the model
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results. The resulting change in velocity can be measured asa Doppler shift of the recorded
frequency of the carrier signal. Case studies at several heliocentric distances are carried out.
It turns out that even at heliocentric distances of�3 AU the drag force of the gas can become
strong enough to perturb the measurements of the second order gravity coefficients, which is
a primary science objective of RSI.
The ionized coma of a comet can also have an effect on the carrier signal. Changes of the
electron content in the line of sight between spacecraft andobserver at earth are in principle
observable. A one-dimensional model of the plasma density at the comet-sun axis is devel-
oped. The assumption of photochemical equilibrium is not necessarily justified within the
coma of weak outgassing comets. The continuity equation of the plasma density has to be
solved without this simplifying assumption. A model of the electron temperature profile is
also generated. The transition from a regime where electrons are effectively cooled to a re-
gion with temperatures of the electron fluid similar to solarwind levels is assumed to set in
at the position of the thermal electron collisionopause. The plasma densities obtained from
the ionospheric model indicate only minor effects on the carrier signal.
The interaction of the cometary plasma with the solar wind isalso studied. The respective
standoff distances of the bow shock, the cavity surface and the collisionopause of comets
67P/Churyumov-Gerasimenko and 46P/Wirtanen are determined with respect to the helio-
centric distance. The variation of the solar wind parameters with heliocentric distance is
accounted for. Effects of transient solar events, such as solar flares or coronal mass ejections,
are discussed. It can be concluded that the plasma environment of comets 67P/Churyumov-
Gerasimenko and 46P/Wirtanen and their interaction with the solar wind will have only a mi-
nor effect on the carrier signal. Special scenarios might beneeded in order to locate plasma
boundaries within the cometary environment with RSI.

1.3 Motivation

The general motivation of the ROSETTA mission is the study of the comet and its environ-
ment and the implications to the origin of comets, origin of the solar system and the relation-
ship between cometary and interstellar material. The special mission scenario distinguishes
ROSETTA clearly from other cometary missions. The target comet willbe studied for many
months while it approaches the sun on its orbit. This provides the opportunity to study the de-
pendency of the cometary parameters on the heliocentric distance. With the planned landing
on the nucleus, the cometary material can be studied in-situfor the first time. The difference
to other missions that usually provide snapshot-like impressions of comets comes at the cost
of a long mission duration (mainly due to the interplanetarytraveltime) and a large budget.

Besides the general interest in comets and their relationship to the origin of the solar system,
the cometary environment needs to be studied in order to evaluate the effects on a spacecraft
and its navigation at a comet. Therefore the information on comets and their environment
available to date is gathered and combined to develop a comprehensive model of comets.
Many physical effects need to be simplified or parameterizedin order to keep the model
manageable.
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The model results therefore provide general estimates of the physical conditions of the comet
and its environment and estimates of the effects on the carrier signal that are to be expected
for ROSETTA at 67P/Churyumov-Gerasimenko. Special attention is givento the variation of
the results with respect to the variation of the heliocentric distance during the planned prime
mission of ROSETTA.

1.4 Cometary missions

First in-situ observations of the cometary environment were provided by the ICE encounter
at 21P/Giacobini-Zinner in September 1985. In 1986 a swarm of spacecraft flew by comet
1P/Halley with the european GIOTTO mission being the highlight. The flyby distance of
GIOTTO was less than 600 km at March, 13 1986, and it provided the firstimages of a
cometary nucleus. Two russian spacecraft (VEGA 1+2) and two spacecraft from Japan (SAKI -
GAKE and SUISEI) also visited 1P/Halley in March 1986. Other successful encounters with
comets to date are GIOTTO at 26P/Grigg-Skjellerup in July 1992 and DEEP-SPACE-1 at
19P/Borrelly in September 2001. All encounters took place at approximately the same helio-
centric distance of 1 AU. ROSETTA will be the first spacecraft to accompany a comet on its
orbital path and study the cometary environment with respect to the variation of the heliocen-
tric distance of a comet. Comet 67P/Churyumov-Gerasimenkois selected as the target comet
for the ROSETTA mission.
The spacecraft CONTOUR has been scheduled to meet at least two comets, but this mission
has been lost after launch. Other encounters that are currently planned are a flyby of the
spacecraft STARDUST at comet 81P/Wild-2 in January 2004, and a flyby and collisionof an
impactor of the mission DEEP IMPACT at comet 9P/Tempel-1 in July 2005.
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CHAPTER 2

THE ROSETTA MISSION

The ROSETTA mission has been selected as a planetary corner stone mission by an ESA
committee in 1993. The objective is a rendezvous with a cometand a landing on its nu-
cleus. Therefore the space probe needs to reach the same orbit around the sun as the comet.
ROSETTA has originally been scheduled to launch in January 2003. Dueto a failure of a previ-
ous Ariane launcher, the launch has been postponed and the optimal launch window to reach
the original target comet 46P/Wirtanen could not be used. Due to this postponement, the
project had to chose a new scenario to reach its mission objectives. Comet 67P/Churyumov-
Gerasimenko has been selected as the new target for ROSETTA.

The main scientific objectives of the ROSETTA mission are the study of the origin of comets,
the relationship between cometary and interstellar material and its implications with regard
to the origin of the Solar System. The aim is the global characterization of the nucleus, the
determination of dynamic properties, surface morphology and composition, and the determi-
nation of the chemical, mineralogical and isotopic compositions of volatiles and refractory
elements in a cometary nucleus. The study of the developmentof cometary activity and the
processes in the surface layer of the nucleus and the inner coma (dust/gas interaction) are fur-
ther goals of the mission. The evolution of cometary activity with respect to the heliocentric
distance will also be studied1.

2.1 TheROSETTASpacecraft

Most scientific instruments on the orbiter need to be accommodated on one side of the space-
craft, which must permanently face the comet during the operational phase of the mission.

1see http://sci.esa.int/rosetta for more details
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The maximum launch mass ismsc
� 2900 kg, with a propellant portion of more than 50%.

This mass limit is governed by the launch capability of the Ariane-5 launcher.

The ROSETTA design is based on a box-type central structure, 2�8m x2�1m x2�0m, on which
all subsystems and payload equipments are mounted. Two solar panels, each of 32m2, are
giving a total span of about 32m. The maximum cross section of the spacecraft therefore
is Asc

� 70m2, which has to be considered when estimating non-gravitational forces on the
spacecraft, such as the drag force of the neutral gas sublimating from the comet surface or
the solar radiation pressure.
The two solar wings extend from the ’side’ faces. The instrument panel should point almost
always towards the comet, while the antenna and solar arraysare directed towards earth and
sun, respectively.

2.2 Radio Science Investigations

Radio Science Investigations (RSI) use the radio subsystemonboard the spacecraft for scien-
tific studies. The analysis of frequency shifts, signal power and the polarization of the radio
carrier waves are examined. The variation of these parameters allows conclusions concerning
the motion of the spacecraft, perturbing forces acting on the spacecraft and the propagation
medium of the carrier signal [Pätzold et al., 2000]. RSI uses two radio link modes. The
two-way radio link with an uplink radio signal and a simultaneous downlink at different fre-
quencies, and the one-way mode with a dual-frequency downlink. The latter mode is only
intended for occultation experiments.

2.2.1 Scientific Objectives

The primary science objectives of RSI at the comet are the determination of [Pätzold et al.,
2000]:

- the mass and the bulk density,
- the second order and degree gravity field coefficients,
- the gas and dust mass flux on the spacecraft,
- the abundance of mm-dm size cometary dust,
- the size, shape and internal structure of the nucleus,
- and the plasma content in the line-of-sight.

Additionally, a search for gravitational waves and the sounding of the solar corona is pro-
posed. The mass and the density of asteroids can also be determined, when the flyby geome-
try is favorable.

2.2.2 Radio Subsystem

The spacecraft has three antenna systems: a fully steerableparabolic high gain antenna
(HGA) with 2�2 m diameter, a fixed parabolic medium gain antenna of 0�6 m diameter and
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two low gain antennas. The HGA is the main antenna for receiving and transmitting com-
munication signals. The transponder consist each of S-bandand X-band transmitter and
receiver.
The carrier frequencies, the signal amplitudes and the polarization of the radio signals are
monitored at the ground station.

2.3 Other Experiments

The Orbiters scientific payload includes 11 experiments anda Lander which is equipped with
its own payload of scientific instruments. The scientific instruments on the orbiter include:

- an UV spectrometer (ALICE),

- a radio sounding experiment, intended for a tomography of the nucleus (CONSERT),

- a dust mass spectrometer (COSIMA),

- dust velocity and impact measurements (GIADA),

- micro-imaging dust analysis (MIDAS),

- a microwave spectrometer (MIRO),

- an imaging experiment (OSIRIS),

- a neutral gas and ion mass spectrometer (ROSINA),

- plasma measurements (RPC),

- radio science investigations (RSI),

- and a visible and infrared thermal imaging spectrometer (VIRTIS).

The ROSETTA Lander carries nine experiments and a drilling system to take samples of sub-
surface material. The Lander instruments are designed to study the composition and structure
of the nucleus material. A detailed description and currentstatus can be found on the web-
pages of the mission1.

1http://sci.esa.int/rosetta
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CHAPTER 3

POSSIBLE TARGET COMETS

Due to the postponement of the ROSETTA launch, comet 67P/Churyumov-Gerasimenko has
been selected as the new target comet, with a rendezvous in 2014. Comet 46P/Wirtanen is
intended as back-up target if problems with the next launch option should arise. The general
properties currently known for both comets are summarized below.

3.1 46P/Wirtanen

Comet 46P/Wirtanen was discovered in 1948 during examination of photographic plates
by C. Wirtanen of the Lick Observatory in California. With the exception of 1980 Comet
46P/Wirtanen has been observed during every close approachto the Sun since its discovery.
It was particularly closely monitored during the observational campaign in 1996 and 1997,
after the comet was chosen as the target for the Rosetta mission in 1995. The 1996 apparition
has been used for a better determination of the orbit and the activity throughout the orbit has
been studied.

The nucleus spin period of 46P/Wirtanen is estimated from the analysis of the observed
lightcurve as� 6 h. The estimate of the radius of the nucleus is 550 m (e.g.Lamy et al.
[1998];Boehnhardt et al.[2002]). The assumed bond albedo for this size estimate is 0�04.

3.2 67P/Churyumov-Gerasimenko

Comet 67P/Churyumov-Gerasimenko was discovered on a photograph by K. I. Churyumov in
1969. The plate was originally exposed for a different cometby S. I. Gerasimenko. The comet
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has been observed in several apparitions since, with probably the best observing conditions
during 1982.
Comet 67P/Churyumov-Gerasimenko shows an asymmetry aboutperihelion in observed gas
production rates, with peak productivity occurring shortly after perihelion [Osip et al., 1992].
The estimated radius of 67P/Churyumov-Gerasimenko is 1�98 km and the spin period of the
nucleus is estimated as 12�3 h (unpublished results by P. Lamy [2003]).

3.3 Orbital Elements

The osculating orbital elements (heliocentric, ecliptic,J2000) for both comets given in Table
3.1 are taken from the JPL DASTCOM Database Browser1.

46P/Wirtanen 67P/C-G
Orbital period [years] 5.44 6.57
Perihelion distance [AU] 1.06 1.29
Aphelion distance [AU] 5.13 5.72
Orbital eccentricity [deg] 0.658 0.632
Orbital inclination [deg] 11.72 7.12
Semi-major axisa [AU] 3.094 3.507
Longitude of the Ascending NodeΩ [deg] 82�17 50�95
Year of discovery 1948 1969

Table 3.1: Orbital elements for comets 46P/Wirtanen and 67P/Churyumov-Gerasimenko

3.4 Timeline and Geometric Considerations

The mission scenarios at comets 46P/Wirtanen and 67P/Churyumov-Gerasimenko have dif-
ferences mainly in time of the prime mission and in observational geometry. At comet
67P/Churyumov-Gerasimenko the prime mission is planned for the perihelion passage of
the comet in the year 2015. With the orbital elements listed in Table 3.1 the corresponding
distances between comet, sun and earth can be derived. In Figure 3.1 the resulting distances
for the scenario at 67P/Churyumov-Gerasimenko are plotted. The solid line represents the
distance between the comet and the sun. The perihelion passage is expected to occur in Oc-
tober 2015. The rendezvous of ROSETTA with the comet is planned for November 2014.
At this time the comet will be approximately at 3�5 AU distance from the sun. The closest
distance between the line of sight (or the ray path between earth and comet/spacecraft) and
the sun, indicated by the dotted line, decreases significantly during a solar conjunction. If the
distance becomes less than�40 solar radii (or�0�2 AU), the solar corona can be sounded by
the radio signal. This is a secondary science objective of the RSI experiment [Pätzold et al.,
2000]. At the same time, the solar corona can perturb radio science measurements at the

1http://ssd.jpl.nasa.gov/dastcom.html
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Figure 3.1: Distances between comet 67P/Churyumov-Gerasimenko and sun (solid line),
67P/Churyumov-Gerasimenko and earth (dashed line), and closest distance between the line of sight
and the sun (dotted line) at the time of the proposed prime mission.

comet during a solar conjunction. A corresponding situation is expected in January/February
2015 and again in September/October 2016 for the 67P/Churyumov-Gerasimenko scenario
(see Figure 3.1).

The scenario at 46P/Wirtanen is plotted in Figure 3.2. A solar conjunction does occur in this
scenario in December 2011/January 2012, and from February to April 2013. The perihelion
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Figure 3.2: Distances between comet 46P/Wirtanen , sun and earth at the time of the proposed
prime mission. Line styles are chosen similar as in Figure 3.1.

passage of 46P/Wirtanen is expected in July 2013. The geocentric distance of 46P/Wirtanen
during the intended prime mission is always larger than 2 AU,indicating poorer conditions
for earth-bound observations of comet 46P/Wirtanen (when compared with the intended sce-
nario at comet 67P/Churyumov-Gerasimenko). See also Appendix E for more details of the
observational geometry.



CHAPTER 4

THERMAL MODEL OF A COMETARY NUCLEUS

In the following sections information on cometary nuclei and the theory for a thermal one-
dimensional model of a cometary nucleus with emphasis on thesurface boundary is pre-
sented. The developed theory is applied to model comets in the orbit of 46P/Wirtanen and
67P/Churyumov-Gerasimenko and present the results.

4.1 Introduction

The interpretation of the few existing comet images leads tothe following general assump-
tions: A comet nucleus is of irregular shape, the surface is very dark with a mean bond
albedo of 0�01�0�04. The surface varies in topography, roughness, structureand albedo.
There are only very few craters visible (compared to images of asteroids) [Keller et al., 1988;
Soderblom et al., 2002], indicating a young and active surface. The low bulk density of the
nucleus (estimates range from� 100 kg/m

�3 to �1500 kg/m
�3) indicates a high porosity of

the cometary material (see e.g. [Sagdeev et al., 1988] orHughes[1996]). The dark appear-
ance of the surface may be caused by organic and silicate components, asThompson et al.
[1987] propose. They also mention that surface roughness and porosity of the matrix of the
near-surface material are important for the understandingof the low albedo. The porosity also
has an effect on the heat diffusion within the nucleus since the convective transport of heat is
attenuated when the material is not compact. In fact, the transport of energy by gas diffusion
may be an equally important process and enhance the transport of heat by convection within
the porous material [Kehse, 1994].

The initial parameters for the one-dimensional thermal model of the cometary nucleus are
summarized and applied to a grid of models distributed over the surface of the model comet.
Boundary conditions variable in space and time are therefore accounted for. The results
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provide maps of local surface temperatures, local gas production rates and, when integrating
over the surface, the total gas production rate. Estimates of the total gas production rates for
various heliocentric distances exist from observations, which allows calibration of parameters
and confirmation of model results.

The main task of the model is to provide estimates of the totalgas production rates and initial
conditions for a hydrodynamic simulation of the inner coma of the considered comet. Special
care is therefore taken for the surface boundary of the nucleus and the interior is modeled as
simply as possible.

4.2 The Cometary Nucleus

The expected general features of cometary nuclei are discussed in this section. The struc-
ture, composition, and detailed model assumptions are presented. The ranges for important
model parameters are given. A short overview of existing models of the heat diffusion within
cometary nuclei is given.

4.2.1 Observations of Cometary Nuclei

The observation of comets with telescopes has some limitations. Only the dust and gas enve-
lope can currently be observed with earth-bound telescopes. At large heliocentric distances,
where the dust envelope may disappear, the resolution of thetelescopes is too low to observe
the nucleus in detail. So only in-situ observations providedirect information of a cometary
nucleus.

Only two cometary nuclei are known from imaging experiments. GIOTTO took images with
the best resolution of the nucleus of 1P/Halley from a distance of approximately 600 km in
1986 [Keller et al., 1986]. These images were the first direct observations of a cometary nu-
cleus. Shape, morphology and photometric characteristicscould be studied for the first time.
Most comet models today are based on these observations. Recently, on September 22, 2001,
has another comet been imaged: the probe DEEP SPACE 1 flew by 19P/Borrelly within 2170
km distance [Soderblom et al., 2002].
Other encounters with comets did not provide images of cometary nuclei. ICE at comet
21P/Giacobini-Zinner did not have a camera and when GIOTTO reached comet 26P/Grigg-
Skjellerup in 1992, the camera experiment had already been destroyed from dust grain im-
pacts during the encounter with 1P/Halley.

4.2.2 Structure

The detailed structure of cometary nuclei is not yet known. There are several models of the
structure of the interior of a comet (see also Figure 4.1): from the so called icy conglomerate
or dirty snow ball[Whipple, 1950], or theprimordial rubble pile[Weissman, 1986], to theicy-
gluemodel byGombosi and Houpis[1986] and thefluffy aggregatemodel byDonn [1991].
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Figure 4.1: Various models of cometary nuclei: (top left) dirty snowball [Whipple, 1950], (top
right) fluffy aggregate [Donn, 1991], (bottom left) primordial rubble pile [Weissman, 1986], (bottom
right) icy-glue model [Gombosi and Houpis, 1986] (image reproduced from Donn [1991]).

So far no model can be excluded by observations because only remote observations exist.
Images from GIOTTO seem to favor the icy-conglomerate model. The ROSETTA mission
(especially the Lander) should be helpful to distinguish between these models.
A homogeneous structure of a porous matrix in the inner part of the nucleus is assumed in the
model developed here, with possible stratification close tothe surface due to the depletion of
volatile species by sublimation in this region.

4.2.3 Composition

The composition of cometary surface material has never beenmeasured directly. Therefore
only indirect methods can be used to determine the composition of a comet nucleus. Spectral
analysis and satellite measurements of the dust, gas and plasma environment provide the best
clues to the basic cometary material to date. Dust is draggedby the gas from the surface and
reflects the sunlight, therefore absorption lines in the reflected light can be studied to deter-
mine the dust composition. Gas can be released directly fromthe surface by sublimation, by
diffusion of sublimated gas through porous material from within the nucleus, or from grains
of dust that are in the coma and still contain volatile species (e.g. Huebner and Benkhoff
[1999]). Photochemistry is assumed to have strong influenceon the neutral gas. The original
species dissociate and become ionized. Mainly daughter products of the original molecules
can therefore be observed. They absorb and re-emit photons and can therefore be studied in
emission lines. Since the 1970s cometary comae have been studied with UV spectroscopy
from space. This way the major volatile constituents of manycomets have been observed.
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Although the observed comets have differences with respectto gas production rate, gas/dust
ratio, heliocentric distance and observation geometry. Their ultraviolet spectra appear ap-
proximately similar. This indicates a common chemical composition. See e.g.Huebner and
Benkhoff[1999] for more details.

The compositions of the gas and the plasma environment at 1P/Halley have been measured di-
rectly by a neutral mass spectrometer (NMS) on board the GIOTTO spacecraft. Results show
that water vapor and daughter products dominate the inner coma of the comet [Krankowsky
et al., 1986].
Besides water typical elements are: Carbon Monoxide (the second most abundant gas in
the coma of 1P/Halley), Carbon Dioxyde, Methanol(CH3OH), Methane (CH4), Ammonia
(NH3), molecular Nitrogen (N2), Formaldehyde (H2CO), Hydrogen Cyanide (HCN) and
Methyl Cyanide (CH3CN). Other possible components are e.g.H2S�C2H2 [Krankowsky,
1991;Rickman, 1991].

A possible chemical differentiation in the surface layers would enable any comet to appear
to have anH2O dominated ice component due to the depletion of more volatile elements by
sublimation. This appearance therefore does not reflect theinitial composition which may be
found in deeper layers under the surface (e.g.Houpis et al.[1985]). A process that mitigates
the chemical differentiation is the loss of surface material during the orbit. Capria et al.
[1996] estimate a loss of material at the surface of a 46P/Wirtanen model comet that reduces
the radius by up to 10 m during one orbit. It may therefore be possible that a significant
amount of ice components more volatile than water appear at or close to the surface.

A body composed of one dust component (for simplicity),H2O as the major ice component
and possible minor components of higher volatility (e.g.CO, CO2) below the surface is
assumed in the model developed here. Thermal conductivity varies with depth. Gas flux of
highly volatile species from sublimation fronts below the surface layer of the nucleus into the
coma is not explicitly modeled.

The release of heat due toH2O ice crystallization will be neglected in the calculations.It
is assumed that the main part of the ice close to the surface has already changed from the
initially amorphous state to a crystalline structure, which is consistent with an estimation
made for comet 67P/Churyumov-Gerasimenko byEspinasse et al.[1991]. This should be a
reasonable assumption for most short period comets.

The dust/ice mass ratioRdi is an initially free parameter in the model. The estimated order of
magnitude of the dust/gas ratio by the GIOTTO-DIDSY experiment at 1P/Halley was close to
unity [McDonnell et al., 1987]. This experiment was not sensitive to the higher massrange in
which a large amount of the cometary dust is expected to be emitted, asHughes[1996] points
out. From the cosmic abundance of elements a dust/ice mass ratio of Rdi

�1
�
2�2 is expected

[Hughes, 1996]. Other theoretical estimates of the dust/gas ratio at comets give the same
order of magnitude (e.g.Greenberg[1982];Delsemme[1982; 1991]). Since the surface layer
of comets may be depleted of volatiles, the dust to ice mass ratio can locally be significantly
larger and a dust mantle might exist.
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4.2.4 Albedo

The surface of comets appears to be very dark in the visible range. The mean bond albedo
a at 1P/Halley was estimated to bea � 0�02�0�04 [Keller et al., 1986] and even lower at
19P/Borrelly (a � 0�01�0�03 [Soderblom et al., 2002]).
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Figure 4.2: Effective radius of 46P/Wirtanen versus assumed
values of the comets mean bond albedo

The dark appearance of the
surface may be due to or-
ganic and silicate components,
as Thompson et al.[1987]
propose. They also men-
tion that surface roughness
and the porosity of the ma-
trix of the material are im-
portant for understanding the
low albedo. The low albedo
of cometary grains has also
been deduced by e.g.McDon-
nell et al.[1991].

A value ofa � 0�03�0�04 for
the mean bond albedo is ap-
plied in the calculations. The
uncertainty in the mean bond
albedo is of particular interest
when determining the size of a cometary nucleus from images taken by telescopes in the
visible range. FollowingKeller [1990], the effective radius of a cometRc is derived from
the normalized (to a heliocentric and geocentric distance of 1AU) measured magnitude of the
nucleusmc as:

log Rc
� 2�14�0�2mc�0�5loga � (4.1)

In Figure 4.2 the variation of the effective radius of comet 46P/Wirtanen with assumed values
for the mean bond albedo are plotted, as derived from Equation (4.1). The radius is assumed
to beRc

� 600m fora � 0�04, which is consistent with the results from observations (see
Lamy et al.[1998]; Boehnhardt et al.[2002]). This indicates the uncertainty of the derived
radius of the nucleusRc, since in the case of 46P/Wirtanen a value ofa � 0�02 instead of
a � 0�04 would change the derived radiusRc by � 30 %. A similar uncertainty exists for
comet 67P/Churyumov-Gerasimenko . The radius of the model comet has therefore to be
varied when varying the mean bond albedo.

4.2.5 Thermal Skin Depth

The application of a one-dimensional model is justified onlywhen volume effects in the
interior can be neglected. It turns out that the skin depth ofthermal signals is expected to be
so low that the simplification is acceptable, as shown below.
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When constant thermal conductivityk, densityρ and heat capacityc are assumed for the
cometary material, Equation (4.9) can be written as∂T

∂t
� κ ∆T, with the thermal diffusivity

κ � k
�
ρc. The thermal diffusivity therefore controls the heat diffusion within the considered

medium. The thermal skin depthδth of the heat wave generated during a full orbit of a comet
can then be estimated as [McKay et al., 1986]:

δth
�

�
κ Π
π

� (4.2)

with the duration of the heat pulseΠ. The thermal skin depth is the depth at which the
amplitude of a sinusoidal temperature variation with a period Π equal to the orbit period is
reduced by the factor 1

�
e.

For a general estimate ofδth one can apply the orbit periods of comets 46P/WirtanenΠW
�

5�43a and 67P/Churyumov-GerasimenkoΠCG
� 6�57a. With a mean density of the nucleus

ρ � 600 kg/m3, a value for the thermal conductivity of the orderh �k � 0�1 W/(m K) (see
Section 4.3.3) andc�1350 J/(kg K) (see Section 4.4), and get for both cometsκ�1�2�10

�7

m2/s.

The skin depth of the heat wave then isδth
� 2�6 m for 46P/Wirtanen andδth

� 2�8 m for
67P/Churyumov-Gerasimenko . The temperature in the interior of such a homogeneous struc-
tured comet approximately 10 m below the surface should therefore be uniform and depend
only on the average thermal conditions. The time scaleτT for a temperature signal to reach
a certain depthd can be estimated asτT

� d2�κ. An average temperature in a depth of 50 m
is with the above approximation of thermal diffusivity established after� 680 years. Since it
is not known if a particular comet has a stable orbit over thatperiod of time, the knowledge
of the temperature profile in the comet nucleus would in principle provide clues to possible
previous major changes in orbit parameters.
A constant mean temperature below a depth of 50 m is assumed inthe model comet. The
lower boundary of the nucleus model can therefore be placed at a depth of 50 m.

This estimate neglects surface erosion which would tend to reduce the thickness of the shell of
variable temperatures. It also neglects possible heat transport by vapor flow into the interior
which would increase the layer of temperature variability and accelerate the heat transport
into the interior. Changes in the chosen parameters with depth due to possible changes in
composition or compactness of the body (a dust mantle or morevolatile ice species in deeper
layers) are also neglected.

The uncertainty of the deviation of the thermal skin depth due to the choice of parameters is
very large. The variation of e.g. the Hertz factorh, which has an estimated range of several
orders of magnitude (see Section 4.4), is therefore able to change the estimate of the thermal
skin depth by a factor of the square root of its magnitude range.

It can be concluded that a skin depth of the orderδth
� 1�10 m is a reasonable first order

approximation. For a heat diffusion model of the comet it is implied that volume effects due
to the assumed spherical shape can be neglected for the timescales considered in this work.
A one-dimensional model is a good first order approximation to derive heat diffusion within
the nucleus.
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With the above estimate, the thermal skin depth of the diurnal temperature variation is of the
order of 0�01 m, if the rotation period of the nucleus is of the order of 10h. This corresponds
to the current estimate for comets 46P/Wirtanen and 67P/Churyumov-Gerasimenko (see Sec-
tion 4.4). The derived values of the thermal skin depth are inagreement with computations
by e.g.Rodionov et al.[2002]

4.2.6 Heat and Gas Diffusion Models

As described in the previous sections, cometary nuclei are assumed to be composed of various
ices and dust. Silicate and organic materials are expected in the dust. The ice consists initially
of mainly H2O and one can include several minor components of higher volatility, like e.g.
CO, orCO2. The heat from solar irradiation is either reflected, re-radiated, used to evaporate
ices, or penetrates into the nucleus where it can also evaporate ices. In general, the heat
transport mechanism into the nucleus is either solid-stateheat conduction of the porous ice-
dust matrix, vapor flow through the pores of the matrix including re-deposition, or thermal
radiation [Benkhoff, 1999a; Orosei et al., 1999]. Heat transport by vapor flow is only effective
at high temperatures - for water vapor the effect is only minor belowT � 180 K [Kehse, 1994]
and becomes dominant at temperatures aboveT � 210 K [Tancredi et al., 1994]. The gas
flux usually is described in the Knudsen regime, which is a first approximation that seems
reasonable in comparison to the uncertainties of other parameters of the models, like dust
to ice ratio, porosity or heat conductivity of the porous matrix [Benkhoff and Boice, 1996;
Benkhoff, 1999a]. Detailed studies of the near surface layer of a cometary nucleus were
carried out by e.g.Markiewicz et al.[1998];Skorov and Rickman[1995; 1999];Skorov et al.
[1999];Gutiérrez et al.[2001; 2003].

The vapor from the sublimation of the ices diffuses through the pores of the nucleus and can
be re-deposited in lower temperature areas, like the deep interior of the nucleus, or escape
into the coma. A chemical differentiation might occur due tothe different volatility of the ice
components [Espinasse et al., 1991; 1993].

The thermal evolution of a comet nucleus has been modeled by many authors with compa-
rable assumptions. The earliest concept of the comet nucleus suggested a compact ice-dust
mixture, asWhipple[1950] proposed. Therefore the first models only consideredheat con-
duction as an energy transport mechanism, e.g.Smoluchowski[1981]; Weissman and Kieffer
[1981]; Klinger [1983]; Podolak and Herman[1985]; Herman and Weissman[1987]. The
additional energy transport due to gas diffusion within thenucleus was first implemented
in models bySmoluchowski[1982] andSquyres et al.[1985]. Most models were used to
study the surface temperatures and resulting sublimation rates. The sublimation rate (or gas
production rate) has been derived by spacecraft measurements and has been estimated from
ground based observations, so these model results can be verified [Benkhoff, 1999b]. The
more recent model calculations, like e.g.Benkhoff and Huebner[1996]; Benkhoff[1999b];
Orosei et al.[1999], also include a variation of mixing ratios and an evolution of the surface
(build-up of a dust mantle or surface erosion).
Laboratory experiments also simulated cometary material in an interplanetary environment
and helped to assess the importance of processes involved, like the so calledKOSI-experiments
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[Grün et al., 1991], or experiments by other groups likeBar-Nun et al.[1985]; Bar-Nun and
Laufer[2003]. Thermal results from the KOSI-experiments have been modeled e.g. bySpohn
and Benkhoff[1990]. Based on these modelsKehse[1994] studied latitude dependent irra-
diation by adding a second dimension, but only porous water ice bodies were studied in that
work.

Huebner et al.[1999] compared various published state-of-the-art models and their results
and concluded that there is no general agreement on the parameterization of processes:”We
must conclude that at present nucleus models have only limited credibility” (Huebner et al.
[1999], p.1297). Included in this work of the so calledComet Nucleus Model Teamwere
models byBenkhoff and Boice[1996]; Coradini et al.[1997]; Enzian et al.[1997]; Kührt
and Keller[1994]; Orosei et al.[1999]; Prialnik [1992] andTancredi et al.[1994]. Only the
very simple model of a pure porous water ice body leads to an agreement in the resulting
surface temperatures and gas release rates. When more volatile ice components and dust are
added, the results differ by as much as 3�4 orders of magnitude for local sublimation rates
(only one point at the surface was compared) [Huebner et al., 1999]. In order to understand
these huge differences further investigations have been announced, with the intention to pub-
lish a reference model in the future. These further investigations include the application of
the following processes [Huebner et al., 1999]: the power balance, temperature profiles in
the interior of the nucleus, determination of the effectivethermal conductivity, energy flow
profiles in the nucleus, gas flux profiles in the nucleus, porosity profiles in the nucleus, and
density profiles in the nucleus. Not included in their work are effects of irregular shape or
topography effects, which was studied in more detail by e.g.Gutiérrez et al.[2001].

This highlights the uncertainties when modeling a comet nucleus and indicates the need
for detailed measurements on a real comet nucleus. With thisin mind, the estimates from
the previous sections are used to develop a thermal model that yields gas production rates
which match observed gas production rates of comets 67P/Churyumov-Gerasimenko and
46P/Wirtanen .

4.3 Thermal Model of a Cometary Nucleus

The model of the nucleus is assumed for simplicity to be spherical. A grid of one-dimensional
models of the heat and gas distribution, with grid points every 5� in latitude and longitude
is used to cover the whole surface. The initial free parameters are the mean density of the
nucleusρn, the dust to ice mass ratioRdi, the radius of the poresrpo and the Hertz parameter
h. The general behavior of the comet nucleus can also be chosenin terms of orbital elements,
spin period, obliquity of the spin axis and radius of the comet. Some processes are param-
eterized in the model, such as the evolution of the surface (dust mantle), the gas flux within
the nucleus, the attenuation of the solar radiation by the coma, or the energy input from gas
particles from the coma that are deposited at the surface. The physical context is described in
the following sections.
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4.3.1 Energy and Mass Conservation in a Porous Medium

The model nucleus is assumed to be a porous mixture of dust andice. The pores contain
vapor of the sublimated ice components. The dust to ice ratioof the solid matrix is defined as

Rdi
�

ρd

∑i ρi
� (4.3)

with the specific densities of the dust componentρd and the ice componentsρi . The total
bulk density of the matrixρt can then be written asρt

� ρd
�ρi . It is assumed thatρn

� ρt ,
neglecting at this point the specific density of the gas component within the nucleus̃ρg

�Ψρg,
whereΨ is the porosity of the material. The ice component can be split into different specific
ice densities, i.e.ρi

� ρH2O
�ρCO

�ρCO2

�
���. The specific densities are derived from the

dust to ice ratio as:

ρi
�

ρn

Rdi
�

1
(4.4a)

ρd
� ρn�ρi � (4.4b)

The porosityΨ is the fraction of a unit volume that contains pores. The solid material then
fills the fraction 1�Ψ of a unit volume. In this work, the porosity of the material isfound
by relating the specific densitiesρd �ρi to the corresponding densities of compact material
ρd�c�ρi �c (e.g.Tancredi et al.[1994]):

Ψ � 1�
ρd

ρd�c �
ρi

ρi �c � (4.5)

The local icy area fraction of the surface of the material is derived as (e.g.Crifo [1997]):

A0
�

1
1
�

Rdi
�
ρi �c�ρd�c� � (4.6)

Using the densities of the compact material implies that theporosity can be neglected when
determining the illuminated icy fraction at the surface layer. The consequence of applying the
densities of the compact materials is that with a dust-to-ice mass ratio ofRdi

� 1 the icy area
fraction of the surface is larger than 0�5 due to the smaller mass per volume of the compact
ice component.
In order to vary the amount of dust at the surface without explicitly tracking the mass balance,
a dusty layer at the surface is parameterized by assuming that the value ofA0 at the surface
varies with heliocentric distance.

The conservation of mass leads to the continuity equation for the densityρ, if only gas is
assumed to escape from the matrix:

∂ρ
∂t

� ∇
�
ρ̃gvg� � 0 � (4.7)

whereρ̃gvg is the gas flux within the pores, with the specific gas densityρ̃g
�Ψρg�n, where

ρg�n is the density of the considered gas and the velocity of the gas vg. Equation (4.7) can be
split into a continuity equation for the gas and a continuityequation for the dust/ice matrix:

∂ρ̃g

∂t
�

�∇ ρ̃gvg
�

q�g � (4.8a)

∂ρd�i
∂t

� q�g � (4.8b)
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with the net sublimating or depositing mass flux rateq�g .
Local thermal equilibrium between the gas and the solid matrix is assumed. For the temper-
ature of the gasTg and the solid matrixTm therefore appliesTg

� Tm.
The conservation of energy in one dimension (with depthz), neglecting gravity and viscous
effects, can then be written as (e.g.Steiner and K̈omle[1991]):�

ρnc
�
T � � ρ̃gcg� ∂T

∂t
�

∂
∂z

�
k
�
T�∂T

∂z��cgρ̃gvg
∂T
∂z
�Lhq�g � (4.9)

with the specific heat of the solid phasec
�
T � and the gas componentcg, the thermal conduc-

tivity k, the latent heat of sublimationLh and the net sublimating or depositing flux rateq�g .
The first term on the right-hand side is energy transport due to heat conduction, and the sec-
ond and third terms are energy transport by the gas phase caused by advection and transport
of latent heat.

The second term on the left-hand side will be neglected, since the energy necessary to heat the
gas phase and build up the vapor pressure is negligible compared with the energy needed to
heat the solid matrix, when water ice is the dominant ice species (ρi � ρ̃g). This assumption
may be incorrect when more volatile species are major ice components, asSteiner and K̈omle
[1991] point out. The second term on the right-hand side, theenergy transport due to advec-
tion, has been shown to be negligible in a porous ice matrix when compared to the transport
of latent heat [Fanale et al., 1990;Steiner and K̈omle, 1991], hence will be neglected in this
work.

4.3.2 Sublimation Rate

In order to derive the flux rate of sublimated moleculesqg from a homogeneous icy surface,
the kinetic theory model described e.g. byDelsemme and Miller[1971] is applied:
When the saturated pressure of the neutral gasps is at equilibrium with the sublimating ice
ps

� nkT is used, with the number densityn and the homogeneous surface temperatureT.
The kinetic model of deposition implies that all molecules that collide with the surface are
deposited, and when assuming steady state the depositing flux rateq

�

g at equilibrium equals
the sublimating flux rateq�g . If now the gas pressure is assumed to be zero (vacuum), the
depositing flux drops to zero, but the sublimating flux does not change, which has been veri-
fied experimentally asDelsemme and Miller[1971] state. The sublimation rate into vacuum
can now be predicted fromq

�

g at equilibrium, which is known in terms of flux density from
kinetic theory in the Knudsen-Regime (e.g.Kittel and Krömer[1993]):

qg(vacuum)� q
�

g (eq)
�
� q�g (eq)� �

1
4

n v̄ � (4.10)

with n � ps
�
kT and the mean speed of molecules ¯v. For a Maxwell velocity distribution at

temperatureT the mean speed is

v̄ �

�
8kT
πm

� (4.11)

with the mass of a moleculem. The temperature is assumed to be the temperature of the
considered surface elementT �Ts. Applying the ideal gas law and Equation (4.11), one gets
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for Equation (4.10)
�
particles/(m2 s)�:

qg
�

ps�
2πmkT

� (4.12a)

or in terms of the mass flow ratemqg one gets in units of
�
kg/(m2 s)�:

mqg
� ps

�
m

2πkT
� (4.12b)

or the also often used term ˜qg in units of
�
mol/(m2 s)�:

q̃g
� ps

�
µ

2πRT
� (4.12c)

with the molar mass of a moleculeµ. With the assumption of thermal equilibrium the gas
pressureps above an ice surface is often derived with an approximate expression from the
Clausius-Clapeyron equation (e.g.Fanale and Salvail[1984]):

ps
� p0 e

�Lh��RT� �
Pa� � (4.13)

The parametersa � p0 and b � Lh
�
R are derived from laboratory experiments and have

values ofa � 3�56 � 1012 Pa andb � 6141�667 K [Fanale and Salvail, 1984]. This kind of
approximation to the gas pressure implies that the latent heat of sublimation does not depend
on the temperature in the considered temperature regime andhas the valueLh

� bRgas
�

5�1 �104 J/mol� 2�8 �106 J/kg. The latent heat of sublimation of water ice is, however,
not independent of temperature (see Section 4.4). An empirical formulation for the saturated
water vapor pressure over ice is provided by e.g.Benkhoff and Huebner[1995]:

log
�
p̃s� � 4�07023�2484�986

�
T
�

3�56654 log
�
T��0�00320981T

�
Pa� � (4.14)

In Figure 4.3 the ratio of the saturated vapor pressures overwater ice from Equation (4.14) and
(4.13) are plotted. It can be concluded that in the temperature regime of� 120K�220K the
difference is only marginal, while at lower temperatures the difference becomes significant.
The error made by using Equation (4.13) to derive the saturated pressure of water is not
significant, since the results for temperatures belowT � 120K indicate a negligible water
production rate. Equation (4.13) is therefore applied in the model calculations and the latent
heat of water sublimation is considered as depending on temperature (see Section 4.4). The
use of Equation (4.13) has the advantage of providing a simple analytical expression for the
thermal conductivity of the pores (see Section 4.3.3).

If the modeled ice contains more than just one component, sublimation rates for each com-
ponent have to be calculated. Stationary sublimation from ahomogeneous plane surface
with a homogeneous mixture of ice components is assumed in this case, with mainly water
and additional minorCO2 or CO components. If e.g.CO2 is considered as an additional
component, the saturated vapor pressure is derived from Equation (4.13) with parameters
a�1�2264 � 1012 Pa andb�3167�8 K [Fanale and Salvail, 1987]. ForCO ice the parame-
ters area�1�2631� 109 Pa andb�764�16 K [Fanale and Salvail, 1990]. This corresponds
to a constant latent heat ofLh

�
CO2�� 2�63�104 J/mol andLh

�
CO�� 0�6�104 J/mol.



26 THERMAL MODEL OF A COMETARY NUCLEUS

80 100 120 140 160 180 200 220
temperature [K]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

pr
es

su
re

 r
at

io

Figure 4.3: Pressure ratiop̃s�ps from Equations (4.14)
and (4.13) versus temperature

Water ice is assumed to be the
single ice species in the surface
layer of the nucleus, implying
that all more volatile species
were already depleted in the
surface layer during previous
orbits.

The assumptions concerning
the sublimation are simplify-
ing. The nucleus surface and
the pore walls are not expected
to be plane homogeneous sur-
faces. At least within the
pores the sublimation into vac-
uum is a reasonable assump-
tion. When considering the
surface of the nucleus, the re-
turn flux from the collision
dominated inner coma has to

be accounted for, which influences the thermal balance at thesurface. This is discussed
by e.g.Crifo [1987];Skorov and Rickman[1998], who consider a thin non-equilibrium layer
next to the surface before the gas reaches a temperatureTg and a pressurepg at the inner coma
boundary. The resulting effects are taken into consideration when determining the energy bal-
ance at the surface (Section 4.3.4) and when determining theinner boundary conditions for
the hydrodynamic model of the neutral gas environment (Chapter 5).

4.3.3 Thermal Conductivity and Gas Flux

The thermal conductivity of the matrix materialk
�
T � is a combination of the thermal conduc-

tivity of the considered ice species and the dust component.The values are given in Section
4.4. The energy transport due to transport of latent heat by the gas phase within the pores will
now be defined as thermal conductivity of the poreskpo

�
T�. The effective thermal conduc-

tivity keff of the porous medium will be derived. In general,keff is a function of temperature,
composition, and porosity.

The energy conservation equation (4.9) includes the sourcetermLhq�g (the last term on the
right-hand side). The source term can be derived by multiplying the equation of the conser-
vation of mass (4.8a) with the latent heat of sublimationLh and one gets:

Lhq�g � Lh
∂ρ̃g

∂t
�

Lh ∇ ρ̃gvg � (4.15)

The first term on the right-hand side can be neglected in the considered temperature regime,
as e.g.Hagermann[1996] shows. The term can therefore be written asLhq�g � Lh∇ρ̃gvg.
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The mean free pathΛ of molecules in the pore system is derived as:

Λ �
1�
2nσ

� (4.16)

Water ice is assumed to be the dominant species. A temperature of the ice of 200 K, with the
collision cross section for waterσ �5�10

�19 m
�2 [Crovisier, 1984], and applying the ideal

gas law, assuming the pressure in the pores to be saturated (by applying Equation (4.14)) to
determine the number densityn, yields a mean free path ofΛ � 0�17 m which is larger than
the typical assumed pore diameter ofd � 10�1000µm (e.g.Horányi et al.[1984]; Klinger
et al. [1996]).

If the Knudsen NumberKn �Λ
�
d �1, the collisions between gas molecules and pore walls

are more frequent than collisions between molecules. The gas flow through the porous
medium is then best described as a diffusion process, and viscous flow, where particle col-
lisions are dominant, can be neglected. Therefore the concept of the Knudsen-Regimeis
applied.

The mass flux̃ρgvg depends in the Knudsen-Regime on the pressure gradient∂P
�
∂z and can

be described as depending on the gradient of the sublimationrate q̃g (e.g. Kehse[1994]),
which for a dust-ice mixture can be written as:

ρ̃gvg
�
�f A0rpo∇q̃g

�
T � � (4.17)

with the radius of the poresrpo and the structural parameterf . The parameterf describes
the effective flow area for the gas phase per unit cross section. The parameterf is defined
in different ways by various authors (e.g.Fanale and Salvail[1984]; Mekler et al.[1990];
Espinasse et al.[1991]; Steiner and K̈omle [1991]). The choice off can lead to over- or
under-estimation of the effect of the gas phase on the energytransport. The discussion of
Steiner and K̈omle[1991] is followed in this work with:

f � 1�
�

1�Ψ � (4.18)

When applying Equations (4.12c) and (4.13), and using∂qg
�
∂z� ∂qg

�
∂T ∂T

�
∂z, one gets

ρ̃gvg
�
�f A0rpoq̃g

�
T �

�
�

1
2
� b

T� 1
T

∂T
∂z

� (4.19)

In the considered temperature regime one hasb
�
T � 1

�
2, one can therefore neglect the first

term in the brackets. The energy transport of the gas phase can now be written as:

Lhq�g �
�kpo

�
T �∇T � (4.20)

with thethermal conductivity of the pores

kpo
�
T� � f A0 rpo q̃g

�
T � b

T2 Lh � (4.21)

In general, the effective thermal conductivitykeff
�
T�, which could be measured experimen-

tally, should be a function of the individual thermal conductivities. keff
�
T� is approximated

in this work by adding the individual thermal conductivities keff
�
T� � k

�
T��kpo

�
T�. This

can be viewed as an upper boundary of the real effective thermal conductivity asHagermann
[1996] and references therein point out.
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Figure 4.4: Typical thermal conductivities of the matrix ma-
terial (dashed), the gas phase within the pores (dotted) andthe
effective thermal conductivity (solid)

Typical thermal conductivities
are plotted in Figure 4.4. The
assumed parameters for this
example are: pore radiusrpo

�

100µm, porosity Ψ � 0�5,
Hertz factorh � 10

�2 and dust
to ice mass ratioRdi

� 1�0.
The assumed pore radius has
a strong effect on the result-
ing thermal conductivity of the
poreskpo, which is plotted as
dotted line in Figure 4.4. The
dashed line is the thermal con-
ductivity of the dust-ice mix-
ture of the matrix material. In
the given example, a signifi-
cant effect ofkpo onkeff is visi-
ble above a temperature ofT �

220K.
Instead of solving the coupled
differential equations of heat

and gas diffusion within the comet nucleus, the heat equation in the following version is
solved in this work:

ρnc
�
T � ∂T

∂t
�

∂
∂z

��
keff

�
T �� ∂T

∂z� � (4.22)

4.3.4 Boundary Conditions

The energy due to insolation of the cometary surface is balanced by various different pro-
cesses. The low albedo of cometary nuclei (see Section 4.2.4) reflects only about 1%-4%
of the solar energy back into interplanetary space. Other processes are the heating of the
material at the surface and phase changes of cometary material. The energy at the surface
is also balanced by transport processes, like thermal re-radiation, heat conduction within the
solid material of the comet, heat convection due to gas flux within the nucleus and thermal
radiation inside the pores of the nucleus material. The thermal radiation inside the pores is
the least effective transport process in the considered temperature regime (e.g.Horányi et al.
[1984]) and will be neglected in this work.

In Figure 4.5 a schematic view of the energy balance for a surface element is plotted. A pos-
sible stratification below the surface is indicated by the different grayscales. Some important
parameters are assigned to the physical processes for convenience.

The surface temperature of a modeled dust/ice-body is derived from the energy balance equa-
tion for the considered surface celli:

Seff
�
1�ai �cosθiCi

r2
h

� εiσT4
s�i �AiLhΦs�i �Ts�i ��keff

�
T � ∂Ts

∂z ����
i

� (4.23)
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Figure 4.5: A schematic view of the energy balance and the
important parameters at each surface element

with the effective solar radi-
ation at the surfaceSe f f, the
bond albedoai, the zenith an-
gle of the sunθ, Ci

� 1
�
0

if the cell is / is not illumi-
nated, the infrared emissivity
ε, the surface TemperatureT,
the Stefan-Boltzman constant
σ, the latent heat of sublima-
tion Lh, the thermal conductiv-
ity k

�
T�, the local icy area frac-

tion at the surfaceA (see Equa-
tion (4.6)), the normal direction
to the surfacez and the subli-
mating gas mass flux rateΦ ��
1�α�mqg

1. The value ofα in
this trans-sonic regime has been derived by e.gCrifo [1987] and has the recommended value
of α � 0�25, which is adopted in the model calculations.

The term on the left-hand side of equation (4.23) is the solarenergy input. The radiative
transfer properties of the inner coma are parameterized. The effective solar radiation at the
surface is determined asSeff

� S0 �e�τ �sc, with the solar constantS0, the optical depthτ
and the flux of indirect light scattered onto the nucleus by the comasc. For simplicity the
parametersτ andsc are set to zero in this work. This can be easily changed for detailed
parameter studies with the provided model routines.

The right-hand side of equation (4.23) includes the terms ofthermal re-radiation, sublimation
of the ice component at the surface and diffusion of heat to/from the interior of the nucleus.
The heat diffusion is solved as described in Section 4.3.1. The mass flux into the coma
is in this model derived from the sublimation rate at the surface. Gas diffusion within the
porous medium is only considered as a mechanism to transportenergy. This implies that any
molecule sublimated within the pores is re-deposited. Thisassumption therefore restricts the
model to just one sublimation front at the surface when considering the global gas production
rate.

1The term�1�α� is included to account for the energy provided by the re-depositing flux from the coma, as
proposed byCrifo [1987]. The value ofα is correlated to the Mach numberM of the sublimated gas emerging
from the surface. The velocityv0 of the emerging gas depends on the characteristics of the surface.Delsemme
and Miller [1971] obtain a value ofv0 �0�6v̄, with the mean speed of a Maxwell distribution ¯v. This is the mean
value forv0 as a compromise between the case of a solid plane sublimatingsurface without any pores down to
the molecular level and the case of a surface with deep and narrow pores oriented at random. With the speed
of soundvs � �γ kTg�m�1�2, the temperature of the gasTg and the heat capacity ratioγ, one gets an estimated
value ofM � 0�8 for water vapor.Huebner and Markiewicz[2000] derive the Mach number of the gas when
the Maxwell distribution is reestablished a few mean free path lengths above the surface. The derived Mach
numbers have a value slightly larger than one (M � 1�08�1�14), depending on the degrees of freedom of the
considered gas.Skorov and Rickman[1998] use a direct simulation Monte Carlo method to model gas flow in a
Knudsen layer above a cometary surface and obtain a value ofM �1�2 at the exterior boundary of the Knudsen
layer.
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At the inner boundary the heat flux has to vanish:

∂T
∂z ����

z�0

� 0 � (4.24)

The inner boundary can be either the center of the comet nucleus or the lower boundary of
the layer of variable temperatures.

4.3.5 Numerical Scheme

To solve the partial differential equation (4.22) numerically, a finite difference approximation
with an FTCS scheme is used (e.g.Press et al.[1986]). See Appendix B for details.

The computations start at aphelion with a constant initial temperature throughout the nucleus.
The respective heliocentric distance is derived from the standard formulas for orbit determi-
nations (e.g.Green[1985]) by calculating the mean anomaly, the eccentric anomaly (using
the Newton-Raphson formula), and then the heliocentric distance at each time step. The os-
culating orbital elements of each considered comet were used as input (see Section 3.3). With
the obliquity, the angle between the ascending node and the subsolar point at perihelion and
the eccentric anomaly, the latitude of the subsolar point and the zenith angle at each point can
be derived at each time step.
Case studies for model comets in the orbits of 46P/Wirtanen and 67P/Churyumov-Gerasi-
menko are computed. The osculating orbital elements and general estimates for both comets
are given in Chapter 3. The obliquity (the angle between orbit normal and spin axis) is a free
parameter of the model. Most model runs were initiated with zero obliquity.

The number of grid points in the space domain is of the order 103 and can be varied. The cor-
responding spatial resolution depends on the size of the considered nucleus or layer of tem-
perature variability, respectively. The spatial resolution close to the surface is at maximum
of the order 10

�1 m, which is approximately the thermal skin depth of the dailytemperature
variations (see Section 4.2.5).
One-dimensional thermal diffusion models are allocated toequidistant points along a merid-
ian and are computed with the appointed time step. The temperature distribution and gas
production rate for the whole surface is derived by storing results of a full rotation at the con-
sidered orbit position. This strategy reduces computational resources and makes the model
computations faster than a complete coverage of the surface.
One time step in the model calculations is the rotation period of the considered comet di-
vided by the number of grid points of the hydrodynamic model in the longitudinal direction.
With a longitudinal resolution of five degree, the resultingtime step is about 500 s for comet
67P/Churyumov-Gerasimenko and about 300 s for comet 46P/Wirtanen.

4.4 Physical Parameters

The model comet is assumed to be of spherical shape. Other shapes have been studied by
e.g.Gutiérrez et al.[2001], who pointed out that the topography can have a significant effect
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on the energy balance at the surface. Since the shape of the target comet of the ROSETTA

mission is not yet known, topography effects are neglected.

When modeling the structure of the nucleus one can either usethe porosityΨ and the dust/ice
ratioRdi as free parameters and determine the mean density of the nucleus via Equation (4.5),
or derive the porosity from an assumed mean density of the nucleusρn and the dust/ice ratio
Rdi. The latter way is used in this work (see Table 4.1), sinceρn andRdi will hopefully
be provided by the experiments aboard ROSETTA. The Hertz factorh is used to correct
the effective area of the matrix material through which heatflows. It is assessed with the
assumption of two spheres of radiusR that are pressed together and have a contact area of
radiusrc, soh � r2

c
�
R2. The estimated value ofh (e.g. Huebner et al.[1999]) has a large

range and can be used to effectively dim or amplify the heat diffusion by the solid matrix
within the nucleus.

ρn mean density of the nucleus 500�1000 kg/m3

Rdi dust/ice mass ratio 0�1�100
h Hertz factor 10

�5
�10

�2

rpo mean pore radius [m] 10
�6
�10

�4

Table 4.1: Range of free parameters used in the model calculations

In Table 4.2 some physical parameters with respect to the considered components are listed.
Following Huebner et al.[1999], the specific heatc and the heat conductivityk of aCO ice
component is assumed to be the same as for theH2O component. The specific heat and the
heat conductivity of water ice is taken fromKlinger [1981]. The specific heat and the heat
conductivity of the dust component and the density of the compact iceρi �c is taken from
Ellsworth and Schubert[1983]. The compact density of the dust material is an average of the
considered species as listed inGrün and Jessberger[1990].

Parameter H2O CO Dust
c
�
T � specific heat [J kg

�1 K
�1] 7�5T

�
90K 7�5T

�
90K 1200

k
�
T � heat conductivity [W m

�1 K
�1] h567

�
T h567

�
T h4�2

ρc density of compact material [kg/m3] 930 930 3000

Table 4.2: Physical parameters for the ice and dust components

For water ice the latent heat of sublimation is given as (e.g.Espinasse et al.[1993]:

Lh
� 2�888�106

�1116T
�
J
�
kg� � (4.25)

This represents the energy to release water molecules (in kg) from an ice surface. The lower
limit of latent heat of sublimation of aCO molecule in a water ice matrix is given byEnzian
et al. [1998] asLh

�
CO�� 2�3�105 J/kg.

Since only a homogeneous surface is considered in this work,the local icy area fractionA0

equals the total icy area fraction of the nucleusAn. In some model calculationsAn is varied
with respect to the heliocentric distance. This parameterizes a variation of the dust to ice
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mass ratioRdi that might occur due to the possible build-up of a dusty layerat the surface
when the ice is sublimated. Comet images suggest a strong variation ofA0 across the surface
of a comet. The results here can be viewed as the corresponding homogeneous comet with
an averaged icy area fraction.

4.5 Calibration and Results

The thermal model provides the temperature distribution within the comet nucleus as well
as temperatures and sublimation rates at the surface for discrete surface elements evenly dis-
tributed over the nucleus.
As soon as ROSETTA reaches its target the validity of the assumptions and the reliability of
the results can be tested in detail. With presently available datasets only the general behavior
and global results of the model can be verified. The quantity that can be currently used best
to evaluate model results is the global gas production rate of a comet, which can be obtained
from remote sensing measurements. These measurements usually involve additional assump-
tions about the gas distribution within the cometary coma, such as symmetrical radial outflow,
exponential decay of the species, or a constant outflow velocity (e.g.Feldman[1982]).
It should also be noted that a particular sublimation rate from a comet surface can be obtained
by thermal models with different parameter settings. Resulting gas production rates that are
consistent with observations therefore only indicate the applicability of a particular model.

Results of 4 different exemplary cases for comet 67P/Churyumov-Gerasimenko and 2 differ-
ent cases for comet 46P/Wirtanen are presented. Many more case studies were carried out.
They are consistent with the conclusions drawn here. The chosen parameter settings for the
models with the orbit parameters of comet 46P/Wirtanen are summarized in Table 4.3. The
difference between model W1 and W2 is the assumed dust to ice mass ratio and a decreasing
icy area fractionAn at the surface with heliocentric distance for model W2.

46P/Wirtanen model W1 model W2
ρn [kg/m3] mean density of the nucleus 500 500
Rdi Dust/ice mass ratio 1 10
h Hertz factor 10

�2 10
�2

rpo mean pore radius [m] 10
�4 10

�4

A icy area fraction A0 An
�
rh�

ω Obliquity of spin axis 0� 0�

Table 4.3: Parameter settings for 46P/Wirtanen -like model comets

The variation with heliocentric distancerh is derived asAn
�
rh��A0

�
Rph

�
rh�2, with the initial

valueA0 as derived from Equation (4.6) and the perihelion distanceRph of the comet. This
variation was derived empirically by comparing modeled andobserved gas production rates
(see below).

H2O production rates derived from observations at 46P/Wirtanen and results from models
W1 and W2 are plotted in Figure 4.6. Observed production rates are taken fromSchulz and
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Figure 4.6: Observed and modeled production rates at comet 46P/Wirtanen, see text for details.

Schwehm[1999]. ObservedC2 production rates are plotted as an example for other observed
species at 46P/Wirtanen, which have at most the order of magnitude of theC2 component (see
Schulz and Schwehm[1999]). Data obtained on the inbound part of the orbit (pre-perihelion)
are indicated by diamonds. Data from post-perihelion are represented by asterisk symbols.
No general difference between pre- and post-perihelion is visible in the data.

The gas production rate from the model comet is derived by adding up the calculated local
gas production rates of each surface element. The two model results for comet 46P/Wirtanen
produce a comparable amount of gas at perihelion (see Figure4.6), with slightly lower gas
productionQg from model W2 caused by a larger dust to ice mass ratio (see Table 4.3). The
steeper decrease with heliocentric distance in model W2 is obtained by the variation of the icy
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area fraction as described above. The variation withr
�2
h is empirically derived by comparing

results with the observed gas production rate at distancesrh � 2AU. This dependence indi-
cates and parameterizes the stepwise blow-off of a dust mantle at the surface with increasing
gas production at pre-perihelion, or the build-up of a dust mantle due to the attenuation of the
gas production with increasing heliocentric distance at post-perihelion, respectively.

The largest observed gas production rates ofH2O around perihelion are not reproduced in the
models. In order to match these production rates, a significantly larger amount of sublimating
ice would be required at the surface. This can be obtained by an additional blow-off of parts
of a dusty surface crust, which uncovers a fresh icy surface.This process is not explicitly
included in the models.

In order to obtain a quick method to determine the gas production rateQg of 46P/Wirtanen
consistent with the model results at a particular heliocentric distance, a function is fitted to
model W2. This model reproduces the observedH2O production rates at distances larger than
� 1�3 AU better than model W1 (see Figure 4.6). The fit plotted witha dashed line in Figure
4.6 is calculated as:

Qg
�
46P/Wirtanen�� 2�5�1028 exp

�
�

� rh

1�06AU�1�78� �
1
�
s�� (4.26)

and has only small deviations from the results of model W2. The deviations are less than
the range of errors of the observations indicated by the error bars in Figure 4.6. Therefore
Equation 4.26 is an acceptable fit. This approximation is used when the gas production rate
Qg of 46P/Wirtanen is needed in other model computations, especially in Chapter 6.

Since the estimated radius of 67P/Churyumov-Gerasimenko is larger by a factor of 3�3 than
the radius of 46P/Wirtanen, the total surface area of 67P/Churyumov-Gerasimenko is larger
by a factor of 10�9 (assuming spherical nuclei). The observed gas productionrates have the
same order of magnitude at 1�3 AU of up to 1028 1/s (see Figures 4.6 and 4.7). From this it
can be concluded that the amount of ice available for sublimation must be smaller at comet
67P/Churyumov-Gerasimenko, or that a different process consumes much of the incoming
energy (such as a more effective heat transport into deeper layers).

67P/C-G M1 M2 M3 M4
ρn [kg/m3] mean density of the nucleus 800 800 800 600
Rdi Dust/ice mass ratio 10 100 100 100
h Hertz factor 10

�2 10
�3 10

�3 10
�3

rpo mean pore radius [m] 10
�4 10

�4 10
�4 10

�4

A icy area fraction A0 An
�
rh� 0�1 �An

�
rh� 0�5 �An

�
rh�

ω Obliquity of spin axis 0� 0� 0� 30�

Table 4.4: Parameter settings for 67P/Churyumov-Gerasimenko -like model comets

Lower gas production rates can be obtained for example by increasing the dust to ice mass
ratio, by increasing the obliquity of the spin axis to reducethe area per rotation that is reached
by solar radiation, by assuming an irregular shape that creates shadows on the day-side hemi-
sphere, or by increasing the effective thermal conductivity. The latter procedure would re-
quire the inner nucleus to be relatively cold, but also thermally well coupled to the surface.
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Figure 4.7: Observed and modeled production rates at comet 67P/Churyumov-Gerasimenko;
M3=solid, M4=dashed-dotted, fit = dashed, see text for details.

The varied parameters in the models for comet 67P/Churyumov-Gerasimenko presented here
are: the dust to ice mass ratio, the Hertz factor, the icy areafraction at the surface and the
obliquity of the spin axis. Details are listed in Table 4.4.

Results from different models of comet 67P/Churyumov-Gerasimenko are plotted in Fig-
ure 4.7. Also included are observed gas production rates. Remotely measured gas pro-
duction rates at various heliocentric distances are available insiderh

� 1�9 AU for comet
67P/Churyumov-Gerasimenko. The summarized gas production rates were provided by the
’Group of Cometary Atmospheres and Extra-Solar Planets’ from the DLR in Berlin, Ger-
many1.

1http://berlinadmin.dlr.de/Missions/corot/caesp/comet db.shtml
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Observed production rates of theOH molecule at comet 67P/Churyumov-Gerasimenko vary
over approximately an order of magnitude at perihelion distance, as can be seen in Figure 4.7.
This is probably a consequence of the recurrent observed sudden brightening of the comet
at or shortly after perihelion1. TheOH production rate is assumed to be equal to theH2O
production rate when comparing observations with model results.

Models M1 and M2 overestimate the gas production rate by about an order of magnitude
inside 2 AU (see Figure 4.7). From the results at comet 46P/Wirtanen the variation of the
icy area fractionAn with heliocentric distance is adopted in model M2, which also includes
a dust to ice mass ratio enhancement by a factor of ten when compared with model M1. The
progression of the modeled gas production rate with heliocentric distance seems reasonable
for model M2, with an overestimation of the absolute values.The icy area fraction at the
surfaceAn is therefore reduced by a factor of 10 in model M3, which produces results that
correspond well with the observed production rates. The large variation at perihelion distance
is not reproduced by the model. Since model M3 matches the observed production rates
inside 2 AU, this model is used as a reference model for other calculations where the gas
production rate is involved (especially in Chapter 6).

Model M4 is used to demonstrate that the set of parameters to reproduce observed gas pro-
duction rates is not unique. The resulting gas production rates of model M4 are indicated
by the dashed-dotted line in Figure 4.7. The main differencewith the other models is the
assumed obliquity of the spin axis ofω �30�. Also varied are the mean density of the model
cometρn and the icy area fraction at the surfaceAn (see Table 4.4). The observed gas produc-
tion rates are reproduced with accuracy similar to model M3.With increasing heliocentric
distances models M3 and M4 have larger differences. The modeled gas production rates at
3 AU distance areQg

� 6 �1024 1/s for model M3 andQg
� 3 �1025 1/s for model M4 re-

spectively. This indicates the large factor of uncertaintyin the modeled gas production rates,
which was also concluded byHuebner et al.[1999].

A fit consistent with results from model M3 and M4 and with observations was derived as

Qg
�
67P/Churyumov-Gerasimenko�� 1�0�1028 exp

�
�

� rh

1�29AU�2�3� �
1
�
s�� (4.27)

This fit is represented by the dashed line in Figure 4.7. This formula is used to derive gas
production rates of 67P/Churyumov-Gerasimenko at particular heliocentric distances.

Results from models W2 for 46P/Wirtanen and M3 or M4 for 67P/Churyumov-Gerasimenko
therefore represent reasonable conditions at the surface of the respective comet. Figures
4.8 (M3), 4.9 (W2) and 4.10(M4) show maps of the resulting surface temperatures of these
models at heliocentric distances of 5�0 AU, 2�0 AU and 1�3 AU. Isotherms are plotted at
equidistant levels of 10 K. The subsolar point in each map is at 180 degree longitude. In
Figures 4.8 and 4.9 the subsolar point is at the equator.

The general appearance shows a steep temperature increase on the surface shortly after local
sunrise (90 degree longitude), a temperature maximum at thelatitude of the sub solar point,
which trails local noon (180 degree longitude) due to the thermal inertia of the material, and

1see e.g. http://berlinadmin.dlr.de/Missions/corot/caesp/cometdb.shtml
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Figure 4.8: Contour plot of surface temperatures [K] of the model nucleus in the orbit of
67P/Churyumov-Gerasimenko, model M3.
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Figure 4.9: Contour plot of surface temperatures [K] of the model nucleus in the orbit of
46P/Wirtanen, exemplary from model W2.
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Figure 4.10: Contour plot of surface temperatures [K] of the model nucleus in the orbit of comet
67P/Churyumov-Gerasimenko with an obliquity of the spin axis of 30�, model M4.
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a relatively slower, more gradual decay of the temperature during local evening and night
hours. The polar regions remain at low temperatures when zero obliquity is assumed. The
lowest temperatures occur just before local sunrise. The temperature maximum and the max-
imum difference between day and night temperatures increases with decreasing heliocentric
distance. The absolute value of the temperature insiderh

� 2 AU is controlled by the dust
to ice ratio at the surface. Dusty surfaces reach significantly higher temperatures, while icy
surfaces use much of the incoming energy for the sublimationprocess. The absolute temper-
atures at the surface can therefore not be directly connected to local sublimation rates. The
icy fraction area has to be taken into account.

The differences between Figures 4.8 and 4.9 are caused by thesmaller rotation period of
comet 46P/Wirtanen and the differences in the assumed mean density of the nucleus and in
the dust to ice mass ratio. The differences between Figures 4.8 and 4.10 are mainly caused
by the assumed tilt of the spin axis versus normal of the orbital plane.

One conclusion that can be drawn concerning the temperatures at the surface is that almost
any temperature between 80 K and the black body temperature at the considered heliocen-
tric distance can be computed with the considered range of the free parameters for comet
models. The results are principally in agreement with results obtained by e.g.Enzian et al.
[1999] who derive similar maps of surface temperatures for comet 46P/Wirtanen. They used
a different composition of the nucleus, so the absolute values are not directly comparable.
The differences can become very large with different model approaches or different param-
eter settings, asHuebner et al.[1999] point out. A direct comparison with other models
is therefore expected to result in large differences. The local production rate of a point on
the equator, as given in the work ofHuebner et al.[1999] for reference, can be reproduced
with the same order of magnitude. The models discussed inHuebner et al.[1999] account
for surface evolution which is parameterized in this work. Absolute values are therefore not
expected to be exactly reproducible.

The local sublimation ratesqg can be plotted in the same way as the local temperatures. As an
example, a result from model M3 is discussed with Figure 4.11. The surface grid is identical
to the maps of the temperatures, with the subsolar point at 180� longitude. The heliocentric
distance in this example is 2 AU. Figure 4.11 represents the corresponding sublimation rates
to the temperatures at 2 AU presented in Figure 4.8. The largest sublimation rates occurring
are of the orderqg

� 1021 m
�2s

�1 in the subsolar region. Isolines of the gas production
rate are not at equidistant levels. The wave-like pattern ofthe isolines at high latitudes is an
artificial effect of the resolution of the grid. The global pattern is comparable to the behavior
of the temperatures on the surface, with much larger variations across the surface due to
the exponential dependence of the sublimation rate on the temperature. The gas production
is slightly asymmetric to the sun direction in accordance with the asymmetric temperature
distribution. Concluding can be noted that the gas production is expected to be primarily
on the day-side and negligible on the night-side of a cometary nucleus at this heliocentric
distance. This is also valid for other heliocentric distances, if the only ice species within the
surface layer of the nucleus is water ice, as can be concludedfrom the presented temperature
distributions.
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�1] for model M3

In conclusion it can be noted that observed gas production rates are reproduced for both
comets. The parameter settings required to reproduce observed gas production rates are dif-
ferent for 46P/Wirtanen and 67P/Churyumov-Gerasimenko models. The observed produc-
tion rates are matched mainly by varying the icy area fraction at the surface. Since the model
comets are homogeneous, this variation dims or amplifies thegas production in every sur-
face element. It should be possible to obtain the same resultby varying the icy area fraction
locally, which would create more or less active area fractions on the surface. An irregularly
shaped nucleus could also reduce sublimation rates by shadowing parts of the surface (e.g.
Gutiérrez et al.[2001]). Other parameters that affect results significantly are the Hertz factor
h and the obliquity of the spin axis. The variation of the albedo or the infrared emissivity
within reasonable limits has only minor effects on the results. It should be noted that a vari-
ation of the albedo has an effect on the estimated size of the nucleus, hence modifying the
modeled global gas production rate by modifying the total surface area. This effect has not
been studied in detail.

The results indicate a higher abundance of dust on the surface of comet 67P/Churyumov-
Gerasimenko which is in accordance with observations. The amount of dust on the surface is
expected to vary significantly with heliocentric distance.The icy area fraction in model M3
reaches maximum values ofAn

� 0�003 at perihelion distance.
The large observed gas production rates of 46P/Wirtanen at perihelion distance indicate ac-
tivity of a large fraction of the surface. A variation with heliocentric distance is also expected
at 46P/Wirtanen. Model W2 has a maximum icy area fraction ofAn

� 0�24 at perihelion
distance. To obtain gas production rates similar to the maximum of the observed rates, a
significantly larger amount of the surface needs to sublimate gas, or additional sublimation
from below the surface needs to be assumed.
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Gas or dust jets that are observed in the cometary coma seem toindicate inhomogeneities
of the sublimation process. These jets can be produced by local active areas due to inho-
mogeneities at the surface or by an irregular shaped nucleus, as e.g. Crifo and Rodionov
[1997a;b] point out. A jet-like feature could also be produced by locally enhancing the quan-
tity of dust grains which are dragged away by the sublimatinggas. Model results obtained
here do not provide inhomogeneities at the surface that produce any jets. If jets are to be
modeled, the dust to ice mass ratio could for example be varied at any surface element which
would produce regions of different activity on the surface.This can be done in future work.

The thermal model has also been applied to a model comet in theorbit of 1P/Halley. Results
from a model run compared with observed gas production ratesare presented in Appendix C.
The gas production rates could be reproduced with reasonable parameter settings for comet
1P/Halley.

An improvement concerning the range of the considered parameters can be expected from the
ROSETTA mission. The uncertainties concerning the results from thermal models are shared
in neutral gas models of the cometary environment when thermal models are used to derive
boundary conditions. The calibration of thermal models with observed gas production rates
is therefore a reasonable method to derive plausible boundary conditions for the cometary
coma.



CHAPTER 5

THE NEUTRAL COMA

In this chapter a model of the neutral gas environment (orcoma) of the comet is developed
and discussed. The gas production of the nucleus is expectedto be weak at large heliocentric
distances. Collisions between emerging molecules can thenbe neglected and the evolution of
the gas coma can be described as free molecular flow. Collisions between molecules become
more and more important when the comet approaches the sun dueto larger gas production
rates. The gas flow can be described by using hydrodynamic principles when molecular
collisions become a dominant process in the coma. The hydrodynamic regime of the coma
will be studied in more detail in this chapter, and model results will be discussed. At the inner
radial boundary of the hydrodynamic regime, which is located at a distance of a few mean
free paths of the emerging gas particles above the surface ofthe nucleus, physical conditions
based on the results from the thermal model of the nucleus aredefined. The effect of the
hydrodynamic gas flow on the ROSETTA spacecraft will also be studied. The ZEUS code,
which has been developed at the Laboratory of ComputationalAstrophysics at the University
of Illinois, is used to model the hydrodynamic part of the neutral gas coma.

5.1 Introduction

The sublimation of gas and the detaching of dust grains from the surface of the comet nucleus
results in an emerging flux of neutral particles. The gravitational field of the comet is weak,
the gas flux expands almost freely into the ambient space. Neutral molecules become dis-
sociated and ionized and the dust may fragmentate and release trapped volatile components.
They also interact with the solar wind. When the outgassing of the nucleus is strong enough,
it creates a hydrodynamic regime where collisions between molecules dominate, eventually
surrounding the nucleus. The termcollisional comais applied in the sense of the importance
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of collisions between molecules. The collision dominated part of the coma is, in this work,
referred to as the collisional coma.

At the time ROSETTA reaches its target comet the heliocentric distance will be approximately
3�4 AU. The first aim will be to characterize the nucleus as precisely as possible so that the
lander can be deployed successfully. This task will be achieved by mapping the surface with
cameras and by determining the gravity field of the nucleus. To map the gravity field, it is im-
portant to determine the orbit of the spacecraft around the nucleus to high precision. In order
to do so, all perturbing forces have to be evaluated. The orbit of ROSETTA is planned to be in
the range of a few kilometer cometocentric distance in earlymission phases [Pätzold et al.,
2001]. Non-gravitational perturbing forces are e.g. the radiation pressure and drag force due
to the emerging gas flux. The latter can be computed from a model of the collisional inner
coma. The coma is expected to be mainly collisionless at 3�4 AU heliocentric distance, al-
though the gas production rate of water and more volatile components is not exactly known.
Using results from the thermal model, the water production rate can be estimated to be in the
range ofQg

� 1025
�1026 1/s for both potential target comets at 3 AU.

The extension of the collisional coma needs to be evaluated in order to obtain a reasonable
estimate of the size of the volume that can be modeled with a hydrodynamic approxima-
tion. The deviation from a Maxwellian velocity distribution function of the expanding gas
increases with decreasing density due to the declining importance of thermalizing collisions.
The assumption of a sharp transition from collision dominated regime to free molecular flow
yields a rough estimate of the cometocentric distance of this transition. In reality this tran-
sition is expected to be more gradual and to depend on the chemical composition of the
collisional coma. The justification of the assumption of thedominance of collisions in the
modeled volume will be tested a-posteriori with model results. For simplicity, the size of
the collision dominated regimeRHD is assumed to be quantified by the distance at which
the mean free path of the molecules equals their radial distance [Wallis, 1974]. Alternate
definitions determine the radius of the collisional coma as distance where the probability of
an outflowing particle to escape to infinity without another collision is 0�5 or 1 (e.g.Festou
[1981]; A’Hearn and Festou[1990]; Hodges Jr.[1990]). This approach leads results of the
same order of magnitude, if the outflow velocity is assumed toremain constant [A’Hearn and
Festou, 1990].
As first order approximation a spherical symmetric coma withradial emerging gas flux, dom-
inated by water vapor, is assumed. The density of the neutralgasnn can then be written as
(neglecting losses caused by ionization)nn

� Qg
��

4πvnr2�, with the radial velocity of the
emerging moleculesvn and the cometocentric distancer. Typical velocitiesvn measured by
GIOTTO at comet 1P/Halley are of the order 1 km/s [Krankowsky et al., 1986]. The velocity
is lower closer to the nucleus in the case of an adiabatic spherical expansion. Depending
on the temperature of the gas, the modeled velocity has typical values of the order of a few
hundred meter per second. For a sketchy estimate of the size of the hydrodynamic regime
RHD one can therefore write (e.g.Wallis [1974]):

RHD
�

�
2σ Qg

4 π vn
� (5.1)

with the collision cross sectionσ � 5 �10
�19 m2 for water molecules [Crovisier, 1984].

With the determined gas production rates of 67P/Churyumov-Gerasimenko or 46P/Wirtanen
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at 3�4 AU (see Section 4.5) and assumingvn
� 500 m/s, one getsRHD

� 1�10 km. With
a gas production ofQg

� 1028 1/s for comet 67P/Churyumov-Gerasimenko at perihelion one
getsRHD

� 1000 km. It is therefore clear that the size of the part of the coma where a hy-
drodynamic model can be applied is relatively small atlarge heliocentric distances. Using
this model, one can only a-posteriori determine to which cometocentric distance the hydro-
dynamic approach is correctly applicable, as mentioned above.

The emerging fluid from the nucleus is initially a mixture of gas (containing probably many
different species) and dust particles of various sizes. Since the gravity of the nucleus is
expected to be negligible, the fluid expands freely into the ambient space, with a velocity that
is expected to be close to sound velocity. It is expected thatchemical and photo-chemical
reactions, dust fragmentation and gas/dust grain interactions are important processes close
to the nucleus. AsCrifo [1991] points out, this regime can be described in hydrodynamic
terms as an underexpanded jet. The gradual transition to a collisionless regime, where the
distribution function of the gas velocity deviates from theMaxwell-Boltzmann shape, will
have effects on the fluid components not to be reproduced in this model.

The shape of the nucleus can also have an effect on the gas flow in the coma, as can be con-
cluded from e.g.Crifo and Rodionov[1997b]. Since the shape of comets 67P/Churyumov-
Gerasimenko and 46P/Wirtanen is not yet known, this effect can be neglected here. The
overall appearance of the collisional gas coma is likely notto be predictable to a high ac-
curacy with this model, due to the increasing deviation fromthe hydrodynamic assumptions
that comes with increasing cometocentric distance that is not accounted for. The aim of the
model is to evaluate the effects of the gas coma on the radio science experiment (RSI). The
strongest effect expected is the drag force due to the combined gas and dust mass flux, which
will perturb the orbital motion of the spacecraft and will therefore be directly measurable as
Doppler effect on the carrier signal. As long as the orbit is well within RHD, the model can
be used to estimate orbit perturbations caused by gas drag.

5.1.1 Composition of the Coma

Since the physical and chemical conditions vary considerably within the coma, measurements
of the composition usually face large uncertainties. In-situ measurements by spacecraft pro-
vide local quantities at specific times. Even remote measurements usually cover only frac-
tions of the coma and use models to extrapolate the measurements. Some species may not be
observable at all by remote techniques due to their spectralemission characteristics, or the
resolution constraints of the used instrument.

It becomes evident from many comet observations that theH2O molecule is the dominant
gas species in the inner coma of comets in the inner solar system (e.g.Shimizu[1991]). Its
relative abundance may change at larger heliocentric distances. A general introduction to the
chemistry and solar wind interaction of the coma is providedby e.g.Huebner et al.[1991].

At comet 46P/Wirtanen the neutral speciesOH �CN�C3�C2�NH �NH2�CS�H andO have been
observed, with the relative abundance ofOH typically 3 to 4 orders of magnitude larger than
all other species observed [Schulz and Schwehm, 1999]. The same can be concluded from
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observations of comet 67P/Churyumov-Gerasimenko , as can be seen from the data base for
comet 67P/Churyumov-Gerasimenko provided by the ’Group ofCometary Atmospheres and
Extra-Solar Planets’ at the DLR1.
The dust component in the coma is dominating the appearance of remotely observed comets
in the visible range. Dust grains are dragged by the gas from the cometary nucleus. The
typical size of the grains is assumed to range from 10

�7
�10

�2 m. The dust to gas mass ratio
is in general estimated to be of the order of unity [Grün and Jessberger, 1990].
In the model developed here it is assumed thatH2O is the dominant gas species in the hydro-
dynamic regime and dust has no significant effect on the gas flow.

5.1.2 Models of the cometary coma

Models of the inner coma differ mainly in the considered processes. The general task is
an estimation of the distribution of matter within the coma,the dynamical properties of the
constituents, and the chemical composition. A comprehensive coma model, including all rel-
evant physical processes, has not yet been successfully developed. Many published works
concentrate on particular details within cometary comae. Some take special care of the inter-
face between nucleus and coma. The sublimating gas is not in thermal equilibrium within a
boundary layer, which has to be accounted for by either simplifying assumptions or by mod-
eling these conditions (e.g.Crifo [1987]; Crifo and Rodionov[1997a]; Skorov and Rickman
[1998; 1999];Rodionov et al.[2002]).
Other models give special attention to the interaction of the gas and the dust component
within the cometary coma. Examples can be found in e.g.Marconi and Mendis[1983];Gom-
bosi et al.[1985];Kitamura[1986];Kömle and Ip[1987];Körösmezey and Gombosi[1990];
Sekanina[1991];Crifo et al. [1995];Combi et al.[1997];Müller [1999].
Chemical reactions of constituent within the coma are considered in greater detail by e.g.Op-
penheimer[1975]; Schmidt et al.[1988], and the interaction with the solar wind is contained
in e.g.Mendis and Houpis[1982];Wegmann et al.[1987].
The collisionless regime where the hydrodynamic approximation can not be used is modeled
by e.g.Festou[1981]; Huebner and Keady[1984]; Combi and Smyth[1988a]; Hodges Jr.
[1990];Xie and Mumma[1996]. A regime where collisions between particles are rare is usu-
ally approximated with the so calledMonte-Carlomodels, as discussed in e.g.Combi and
Smyth[1988a].

In this work the collision dominated regime of the inner comais modeled with a hydrody-
namic approximation, as e.g. inCrifo et al. [1995]. The aim is an estimation of physical
conditions in the collisional coma in order to evaluate effects on the RSI experiment. The
model developed here can therefore be assigned to the category of hydrodynamic models
with emphasis on the cometary boundary layer, since a thermal model of the nucleus is used
to determine boundary conditions at the nucleus-coma interface, and since effects from dust
and species other thanH2O are neglected. The details are described in the following sections.

1http://berlinadmin.dlr.de/Missions/corot/caesp/comet db.shtml



5.2 HYDRODYNAMIC SIMULATION OF THE NEUTRAL COMA 47

5.2 Hydrodynamic Simulation of the Neutral Coma

The procedure applied to model the neutral gas coma is presented in this section. Special
attention is given to the interface between results from thethermal model of the nucleus and
the inner boundary of the neutral gas coma.

5.2.1 Hydrodynamic Approximation

The velocity distribution becomes a local Maxwellian distribution function, if collisions
within the gas are dominant. Due to the fast decrease of the neutral gas density with come-
tocentric distance, the assumption of local thermal equilibrium of the gas phase becomes
critical. The velocity distribution function of the neutral particles within a sphere of radius
RHD is assumed to be Maxwellian. The gas can then be described with the macroscopic terms
mass densityρ, scalar pressurep and bulk velocityv. The fluid in the coma is assumed to
be isentropic and compressible. If one neglects viscosity,thermal conductivity and relaxation
effects, the temporal and spatial evolution can be described in the following form of the con-
tinuity equations for mass, momentum, and energy, which is also referred to as the 5-moment
approximation (e.g.Schunk[1977]). The equations of hydrodynamics can then be writtenas
(e.g.Landau and Lifschitz[1991]):

∂ ρ
∂t

�∇ � �ρv� � Qρ � (5.2a)

∂
∂t

�
ρv� � ∇ � �ρvv�� ∇p

� ρ∇Φ �Qm � (5.2b)

∂
∂t

�
1
2

ρv2 � ρε� � ∇ �
�
ρv

�
v2

2
�

w�� � Qe � (5.2c)

with the gravitational potentialΦ, the specific internal energyε, and the specific enthalpy
w � ε �pV � ε �p

�
ρ. The inhomogeneous terms are source/sink terms for mass (Qρ), mo-

mentum (Qm) and energy (Qe). The first term in brackets on the left-hand side of Equation
(5.2c) is the energy per unit volume for a volume element of the considered fluid as sum of
the kinetic energy and internal energy density (per unit volume)e� ρε.
The inhomogeneity terms might be due to e.g. condensation orvaporization of grains (Qρ),
radiation pressure or gas to dust momentum transfer (Qm), also to photolytic heating, radiative
cooling or gas to dust energy transfer (Qe) (e.g.A’Hearn and Festou[1990];Gombosi[1991]).
Equations (5.2) are simplified in this work by neglecting these inhomogeneous terms. The
gas flux is assumed to be adiabatic and the dust component and effects from solar radia-
tion are neglected for simplicity. The gas component withinthe coma is expected to have
a larger effect on the spacecraft than the dust due to low relative velocities. A distributed
source of gas from grains within the coma that include volatile elements is also neglected.
The photodissociation of water molecules is expected to be the major external energy source
in the innermost coma [Gombosi, 1991]. The photodissociation rate for water molecules
is of the order of 10

�5 1/s (see Table 6.1). The scale length for photodissociationthen is
Lpd

� vn
�
Ipd
� 5 �104 km, when the mean radial velocity of the particles is assumedto be

500 m/s. This is at least one order of magnitude larger than the range to which the hydro-
dynamic approximation is applied at comets 46P/Wirtanen or67P/Churyumov-Gerasimenko
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(see Section 5.1). It is therefore sustainable to neglect the energy source term. A set of cou-
pled hyperbolic partial differential equations has now to be solved. The hyperbolic character
of the equations allows discontinuous solutions, such as e.g. shocks.

5.2.2 TheZEUS Code

The ZEUS code has been developed as magneto-hydrodynamical (MHD) code for astro-
physical purposes at the Laboratory of Computational Astrophysics, National Center for
Supercomputing Applications, University of Illinois. Thethree-dimensional version ZEUS-
3D, which is an ideal (non-resistive, non-viscous, adiabatic, non-relativistic) MHD equa-
tion solver, using the method of finite differences, is applied in this work. ZEUS allows
explicitly to reduce the code to hydrodynamic equations by excluding all terms that involve
magnetic fields, making the code also efficient for HD applications. An introduction to the
two-dimensional version and studied test cases are provided by Stone and Norman[1992].
The coupled partial differential equations of hydrodynamics solved by the ZEUS code are:

∂ ρ
∂t

�∇ � �ρv� � 0 � (5.3a)

∂
∂t

�
ρv� � ∇ � �ρvv�� ∇p

� ρ∇Φ � 0 � (5.3b)

∂e
∂t

� ∇ �ev �
�p∇v � (5.3c)

These equations correspond to Equations (5.2) when neglecting the inhomogeneous terms
and when assuming the gas flow in the coma to be adiabatic. An internal energy equation
(5.3c) is applied instead of the conservation law for the total energy, which improves the
accuracy of the code for supersonic flows [Stone and Norman, 1992].
Gravitational effects in the collisional coma are neglected and the set of equations is closed
with the ideal gas law. For an ideal gas with constant specificheat, one has:

p � n kB T � e�
1

γ�1
p � (5.4)

with the number densityn, the Boltzmann constantkB, the ratio of specific heatsγ, and the
internal energy densitye.

Spherical coordinates are used in the model calculations. The applied grid usually has a
resolution of 34�72�100 grid points (latitude x longitude x radial distance) plus additional
ghost zones, which are needed to apply the boundary conditions correctly. In some cases a
resolution of 86�179�100 was used. The surface grid points are equidistant, the grid is
ratioedin radial direction, with each zone growing by 2�5 % of the previous inner zone.

The second-order accuratevan Leer-method is applied as interpolation scheme in this work.
This scheme uses a piecewise linear function to represent the distribution of a quantity within
a zone. It has improved accuracy when compared with the first-order accurate donor-cell
scheme, and does not consume as much CPU time as the piecewiseparabolic advection (PPA)
scheme, which is third-order accurate [Stone and Norman, 1992].
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An artificial viscosity is included in the simulation in order to provide correct jump conditions
and shock velocities at shocks within the computed domain. The approach ofvon Neumann
and Richtmyeras described inStone and Norman[1992] is applied. Coefficients of viscosity
are defined in each direction and a separate scalar artificialpressure is defined in each step.

5.2.3 Boundary Conditions

The gas emerging from the surface of the nucleus is initiallynot in thermal equilibrium. The
velocity distribution does not obey a Maxwell distributionfunction. The inner radial bound-
ary of the hydrodynamic regime of the coma is therefore not the nucleus itself, but is located
at a distance of a few mean free paths of the emerging molecules above the surface where
a Maxwellian velocity distribution is established. The outer boundary in radial direction is
nominally located at the distance where the mean free path ofthe molecules becomes larger
than the radial distance. This boundary is estimated to be atthe radial distanceRHD (see
Equation (5.1)).
The applicability of the hydrodynamic approach within thisregion can only be confirmed
a-posteriori, when the local number density in each modeledvolume is known. The applied
spherical coordinate system has its origin in the center of the nucleus, zero degree longitude
in anti-solar direction, and zero degree latitude at the north pole. In this work, only cases
where the spin axis of the nucleus is parallel to the normal ofthe orbital plane of the comet
are studied.
The boundary of the grid in longitudinal direction is set to periodic boundary conditions.
Since the polar regions are problematic to model with a spherical coordinate system, a cone
with an aperture angle of 5� at each pole is cut out of the model volume, and outflowing
boundary conditions at the cone are assigned (following e.g. Crifo and Rodionov[1997a]).

Outflowing boundary conditions are applied for the outer radial boundary. The values at the
inner radial boundary (inflowing boundary conditions) are derived from the results of the
thermal model of the comet nucleus. The values are not transferred directly, but with a cor-
rection that is due to the conditions in the near-surface boundary layer. Within this boundary
layer, which is expected to have the thickness of a few lengths of the mean free path of the
emerging molecules, the gas flux is best described in the Knudsen regime.Skorov and Rick-
man[1998; 1999] have modeled this Knudsen layer with a Monte Carlo type method. They
use the following relations for a single species fluid, corresponding to earlier applications by
e.g.Crifo [1987];Crifo and Rodionov[1997a]:
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where the subscriptg indicates values at the inner boundary of the hydrodynamic regime,Ts

is the temperature at the surface of the nucleus,pr is a convenient reference pressure at the
surface [Crifo, 1987], and where erfc is the error function.S�M�γ

�
2 is a dimensionless
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speed, with the Mach numberM and the heat capacity ratio of the moleculesγ. The as-
sumption of a constantγ implies rotational modes of theH2O molecule to be in local thermal
equilibrium and vibrational modes to be unexcited (e.g.Crifo and Rodionov[1999]). A dif-
ferent treatment would require a treatment of radiative transfer within the coma, the effect on
the thermodynamics of the collisional inner coma is expected to be minor [Crovisier, 1984].
Using the saturation pressureps (Equation (4.13)) as reference pressurepr in Equation (5.5b)
would imply a surface of plain ice (e.g.Crifo [1987]; Crifo and Rodionov[1997a]). This
overestimates the density and the pressure of the coma gas inthe case of a dust-ice mixture
at the surface. In this case only a fraction of each surface element contains ice available for
sublimation. The local icy area fractionA0 (Equation (4.6)) is used to determine the reference
pressure at the surface aspr

�A0 ps.

The dust component can ‘mass load’ the gas phase by fragmentation or by releasing initially
trapped volatiles, hence delay the transition to sonic velocities and increase the lateral flow
of the gas [Keller et al., 1990]. Such effects are neglected in this work for simplicity.
A numerical model of the non-equilibrium layer above a planesurface of water ice bySkorov
and Rickman[1998] implies a maxwellization of the gas flow within a rangeof about 10�12
mean free paths. The derived relations between the macroparameters of the flow at this
distance are:

Tg

Ts

� 0�6
pg

Pr

� 0�2 � (5.6)

The derived local Mach number isM � 1�2. These values are adopted when determining the
boundary conditions at the inner radial boundary in the model developed here. The assigned
positions of the one-dimensional thermal models at the surface of the nucleus are located at
the same latitude and longitude as the grid points of the inner radial boundary of the coma
model.

5.2.4 Non-Gravitational Forces acting onROSETTA

Effects of solar radiation pressure and gas drag force acting on the spacecraft are discussed in
this section. These effects are expected to be the most important non-gravitational forces on
a spacecraft in low orbit (with a low relative velocity to thecomet). Additional effects, e.g.
due to thermal radiation from the comet, scattered radiation from within the coma, reflected
radiation from the nucleus, or dust mass flux are not considered here.
The orbit perturbation of a spacecraft caused by gas drag is difficult to model in great detail,
since the interaction of the gas particles varies with different spacecraft surfaces. The varying
orientation of the spacecraft with respect to the gas flux hasalso to be taken into account
[Montenbruck and Gill, 2000]. The interaction is simplified in this work by assuming an
average drag coefficient for the whole spacecraft. The drag force is directed mainly in radial
direction due to the radial outgassing of the comet. Since the orbital velocity of the spacecraft
is expected to be significant less than 1 m/s for an orbital radius of less than 10 km (e.g.
Pätzold et al.[2001]), the velocity of the spacecraft can be neglected here. The acceleration
of the spacecraft due to gas dragadragcan then be estimated as [Montenbruck and Gill, 2000]:

adrag
�

1
2

CD
Asc

msc
ρv2ev � (5.7)
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with the drag coefficientCD, the total cross sectional area of the spacecraftAsc, the mass of
the spacecraftmsc, the velocity of the gasv and the direction vector of the velocityev

� v
�
v,

which is directed mainly radially away from the nucleus. Thedrag coefficientCD is dimen-
sionless and describes the interaction of the gas with the surface material of the spacecraft.
For free molecular flow conditions (when the mean free path ofparticles is much larger than
the dimension of the spacecraft), typical values ofCD range from 1�5�3�0. In the case
of continuum flowCD is reduced to about unity [Montenbruck and Gill, 2000]. The value
CD

� 1 is assumed in this work, since orbital distances of a few kilometer are considered,
where the mean free path of the particles is about or less thanthe scale size of the spacecraft.
The cross sectional area of the spacecraft isAsc

� 70 m2 (see Section 2.1), with solar panels
of � 34 m2. The launch mass of the spacecraft will bemsc

�2900kg. The mass is reduced to
msc

�2000 kg by the time ROSETTA reaches the comet. A mass ofmsc
�2000 kg is assumed

for estimates of the non-gravitational forces acting on ROSETTA.
The magnitude of orbit perturbations caused by gas drag is compared with perturbations due
to solar radiation pressure. The solar radiation pressure is determined by the energy of the
solar fluxΦ that passes through an area per unit time. Hence, the solar radiation pressure
acting on a satellite isP �Φ

�
c with the velocity of lightc, if it is assumed that the surface of

the satellite absorbs all incoming photons. WithΦ � S0 at 1 AU andS0
� 1367 W/m2 (see

Appendix A)P� is defined as the solar radiation pressure at 1 AU:

P� �
S0

c
� 4�56�10

�6 �N/m2� � (5.8)

However, in reality the incoming radiation is partly absorbed and partly reflected. When
assuming that the solar panels of the spacecraft are always directed towards the sun, the
accelerationa� of the spacecraft can be determined as [Montenbruck and Gill, 2000]:

a� �
�P�CR
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� (5.9)
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Figure 5.1: Acceleration ofROSETTA due to so-
lar radiation pressure in the range1�6 AU.

with r0
� 1 AU, and the heliocentric dis-

tance of the spacecraftrh in AU. The ra-
diation pressure coefficientCR depends on
the material and is derived fromCR

�1
�ε,

with the reflectivityε. The reflectivity of
solar panels is given asε � 0�21, the re-
flectivity of e.g. a high-gain antenna asε �

0�30 [Montenbruck and Gill, 2000]. When
determining the acceleration due to solar
radiation, a total cross sectional area of 70
m2 and a radiation pressure coefficient of
CR

� 1�21 is assumed in this work to keep
calculations simple.
The resulting acceleration of ROSETTA in
the considered range of heliocentric dis-
tances is plotted in Figure 5.1. The abso-
lute value around the perihelion distance of
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comets 67P/Churyumov-Gerasimenko or 46P/Wirtanen is slightly underestimated due to the
assumption of a constant mass of the spacecraft. The variation shown in Figure 5.1 is con-
trolled by the inverse square dependency on the heliocentric distance.

5.3 Results

Results from the hydrodynamic model and the implied effectson a spacecraft in low or-
bit around the comet are presented here. Many model runs werecarried out for comet
46P/Wirtanen before the postponement of the ROSETTA mission in January 2003. However,
since the conditions at the surface of 67P/Churyumov-Gerasimenko and 46P/Wirtanen do not
differ too much at a certain heliocentric distance (see Section 4.5), the results for the coma
are comparable. Probably the most important difference is the smaller size of the nucleus of
46P/Wirtanen. Since the gas production rate of both comets has about the same order of mag-
nitude at a particular heliocentric distance, the number density of the gas close to the surface
is larger for comet 46P/Wirtanen if a spherically symmetriccoma is assumed. If the estimate
of the sizes of the nuclei of 67P/Churyumov-Gerasimenko and46P/Wirtanen is correct, it can
be inferred that the amount of ice available for sublimationmust be significantly smaller at
comet 67P/Churyumov-Gerasimenko.
Two different cases are presented here: Case 1 is a model of the coma of 67P/Churyumov-
Gerasimenko at 3 AU heliocentric distance. It is assumed that H2O is the only ice component
in the surface layer. The day-side of the nucleus then strongly dominates the gas production
as results of the thermal model show. In case 2 the coma of 46P/Wirtanen is modeled at
a heliocentric distance of 2 AU. An additional constant source of gas is added to theH2O
sublimation, accounting for possible more volatile species sublimating from deeper layers
at a constant rate. All computations are terminated when a steady state within the mod-
eled volume is established. Additional case studies of 67P/Churyumov-Gerasimenko and
46P/Wirtanen at their respective perihelion distance are added in Appendix D.

5.3.1 Case 1:H2O Sublimation at 3 AU, 67P/C-G

Results from model M3 of the thermal model of the cometary nucleus are used to derive the
physical conditions at the inner radial boundary (see Table4.4 and Figures 4.8). The initial
state of the coma is a spherically symmetric thin gas distribution that decreases with the
inverse square of the cometocentric distance. The initial velocity is purely radial at the speed
of sound. The computed volume is a sphere with a radius of 20 kmcentered on the cometary
nucleus, excluding the polar cones. Results are provided ona grid of 100�36�72

�
r�θ�φ�

points. Sublimation is assumed to be controlled byH2O as the only ice component in the
dust-ice mixture at the surface. The sublimation is dominant on the day-side of the nucleus
and yields a collisional coma restricted to the day-side part of the coma. For simplicity, results
in the equatorial plane of the comet are discussed. The spin axis of the comet is assumed to
be perpendicular to the orbital plane of 67P/Churyumov-Gerasimenko, the equatorial plane
therefore coincides with the orbital plane of the comet.
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Figure 5.2: Number density nn [cm
�3] of the neutral gas in the equatorial plane, logarithmically

scaled. Isolines indicate the distribution of the number density at levels spaced by an uniformly dis-
tance of0�2. Exemplary result for 67P/Churyumov-Gerasimenko at3 AU.

In Figure 5.2 the resulting number density in the equatorialplane is plotted for a heliocen-
tric distance of 3 AU. At this heliocentric distance the ROSETTA mission is expected to have
started scientific operations. The sun is on the left-hand side of the picture. The spin of the
comet nucleus is anti clockwise, the terminator (the plane perpendicular to the comet-sun
axis that includes the center of the comet) is perpendicularto the plotted plane innorth-south
direction. The highest number densities (nn

� 1�9 �1011cm
�3) occur close to the surface

in the subsolar region. The low number densities on the night-side of the comet in this ex-
ample yield a deviation from the assumption that this regionis collision dominated. The
strong decrease of the local sublimation rate in the terminator region with increasing longi-
tudinal and latitudinal distance from the subsolar point results in a discontinuous transition
to the night-side coma. The resulting radial flow of the neutral gas is comparable to a jet
with a very wide aperture angle. The size of the hydrodynamicregime is estimated to be of



54 THE NEUTRAL COMA

-15 -10 -5 0 5
km

-10

-5

0

5

10

km comet-sun-axis

HD regime
3.0AU

Figure 5.3: Extent of the collisional coma in the equatorial plane. The shaded area is dominated
by collisions. Collisions are negligible in the night-sidecoma. Exemplary result for 67P/Churyumov-
Gerasimenko at3 AU.

the orderRHD
� 1�10 km (see Equation (5.1)) for a spherically symmetric neutral coma

of 67P/Churyumov-Gerasimenko at a distance of 3 AU from the sun. The approximately
axial-symmetry of the sublimation process with respect to the comet-sun axis yields a similar
distribution of the number density of the gas particles on the day-side of the collisional coma.
A better resolution of the grid in the terminator region might produce different results, be-
cause the transition from day-side to night-side conditions would become more gradual. Gas
flux from the day-side to the night-side coma would probably arise.

The respective mean free path of the particles within the modeled volume can be determined
with the knowledge of the distribution of the number density. The shaded area in Figure
5.3 indicates the extent of the hydrodynamic regime for thisparticular scenario at 3 AU
heliocentric distance. The mean free path of the particles at the boundary of the shaded area
equals their cometocentric distance. The collision dominated regime does not enclose the
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Figure 5.4: Gas pressure p [Pa] in the equatorial plane, logarithmically scaled. Exemplary result
for 67P/Churyumov-Gerasimenko at3 AU.

whole cometary nucleus. It is restricted to the day-side neutral coma and has a size of a few
kilometers. Its outer radial boundary is not resolved with this model due to the restriction to
20 km around the nucleus. The outer radial boundary of the modeled volume is visible in
the corners on the left-hand side of Figure 5.3. The model results are not reliable outside the
hydrodynamic regime. Conclusions from this model, such as the acceleration of a spacecraft
due to gas drag, can therefore refer only to the day-side partof the coma.

In Figure 5.4 isolines of the logarithmically scaled pressure in the equatorial plane at 3 AU
heliocentric distance are plotted. The pattern corresponds in principle to the distribution of
the number density, as expected. The highest values of the pressure (pmax

� 4�5 �10
�4 Pa)

appear in the subsolar region close to the surface. The variation of the pressure is almost
symmetric to the comet-sun axis. The difference between thetransition to the night-side
from local morning (upper part) and local evening (lower part) is not resolved in this plot.
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and the mean free path (mfp) of particles, the radial velocity vr and the resulting acceleration of the
spacecraft. Exemplary result at a heliocentric distance of3 AU.

In order to estimate the effects of the coma on a spacecraft atthe model comet, the physical
conditions along the comet-sun axis are studied. Profiles ofthe number density, the mean
free path, the radial velocity and the resulting acceleration of an orbiting spacecraft with the
specifications of the ROSETTA probe that crosses the comet-sun axis are plotted in Figure
5.5. The number density and the mean free path are logarithmically scaled. The dots on the
line of the number density indicate the position of the modeled cells.
Several quantities are included in Figure 5.5, making a comparison more convenient. The
corresponding number density of a spherical symmetric comawith an equal gas production
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Figure 5.6: Profile of the number density nn, radial velocity vr and the resulting acceleration of a
spacecraft with an orbital distance of5 km. Exemplary result at a heliocentric distance of3 AU.

rate is plotted with a dashed line on the panel of the number density. The number density at
the comet-sun axis of the model comet is significantly higherdue to the sublimation limited to
the day-side part of the nucleus. Only about a quarter of the surface contributes significantly
to the gas production of the nucleus (see e.g. 4.11). The variation with cometocentric distance
indicates an inverse square dependency of the neutral gas number density. Gas number den-
sities that locally match a dependency with the inverse square on the cometocentric distance
are therefore not necessarily the result of a spherically symmetric sublimation process.

The dashed line in the panel of the mean free path in Figure 5.5indicates the corresponding
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cometocentric distance. The intersection of these lines would indicate the outer boundary
of the collision dominated hydrodynamic regime. In the casestudied here this boundary is
outside the modeled range of the comet-sun axis.
The panel of the radial velocity includes the correspondingsound velocity, indicated by the
dashed line. It can be concluded that the gas expansion remains supersonic throughout the
collisional coma. The resulting acceleration of a spacecraft that crosses the comet-sun axis is
plotted in the lowest panel in Figure 5.5. The model results yield a maximum acceleration of
adrag

� 10
�5 m/s2 close to the nucleus.

The physical conditions for a spacecraft with an orbital distance of 5�1 km are plotted in
Figure 5.6. The subsolar point is at 180� longitude (Φ), local sunrise atΦ � 90� and local
sunset atΦ � 270�. The dominant feature is the difference between day and night. The num-
ber density is plotted in the top panel. The right-hand side of the panel (local afternoon and
evening) reflects the decrease of the sublimation rate with decreasing surface temperatures
(see Section 4.5). The steep increase of the number density at Φ � 90� corresponds to the
steep rise of the surface temperature at local sunrise on thenucleus. The kink in the line
at Φ � 310� corresponds to the actual boundary of the modeled surface, as stored for this
particular heliocentric distance (see Section 4.3.5 for details).

The radial velocity component at the orbital distance is plotted in the second panel. The
variation of the velocity between day and night is the resultof the initialization with constant
Mach number, hence depending on the temperature distribution on the surface.

The resulting acceleration of a spacecraft orbiting at a cometocentric distance of 5�1 km is
plotted in the third panel. The dashed line indicates the acceleration due to solar radiation
pressure at 3 AU heliocentric distance. The spacecraft is assumed to have a cross section
of 70 m2 and a mass of 2000 kg. The resulting acceleration due to solarradiation pressure
is 6�4 �10

�8 m/s2 (see Equation (5.9)). The acceleration due to gas drag is larger in the
subsolar region of the orbit and much lower in the night side coma. In the subsolar region
the forces are acting in opposite directions. These non-gravitational forces have to be con-
sidered from two points of view. The stability of the orbit isnot only interesting for exact
measurements from the instruments, but also for the safety of the ROSETTA mission (see e.g.
Schwinger[2001]). Also, effects of the second order gravity coefficient can be weaker than
the acceleration due to non-gravitational forces for orbital distances larger thanr �5km (e.g.
Pätzold et al.[2001]). The gravity mapping campaign therefore needs a good estimate of the
non-gravitational forces to optimize the orbital strategy.

5.3.2 Case 2: Strong Sublimation at 2 AU, 46P/Wirtanen

Comet 46P/Wirtanen at a heliocentric distance of 2 AU is modeled in this second scenario.
TheH2O gas production rate as computed in the thermal model W2 is used to determine the
conditions at the inner radial boundary of the coma model, with a global gas production rate
of Qg

�10271/s. A constant spherically symmetric gas production of 10261/s is added in order
to account for possible more volatile species producing gasfrom a sublimation front below
the surface. This magnitude of gas production was proposed by e.g.Enzian et al.[1999]
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for the production of carbon-monoxide for a model comet in the orbit of 46P/Wirtanen. The
initial state of the coma is a thin spherically symmetric density distribution with a constant
radial expansion velocity. The outer radial boundary of themodeled volume is at 100 comet
radii.

In Figure 5.7 the number density of the neutral gas and velocity vectors of the gas in the
equatorial plane within 20 comet radii are plotted. Isolines of the number densitynn in units
109cm

�3 are plotted. The vectors of the velocities are projected in the equatorial plane. The
overall appearance of the number density is almost spherically symmetric, but not centered
on the origin of the cometocentric coordinate system. The center of this distribution has a
slight offset in the sun direction. This is a result of the stronger outgassing of the comet in
sun direction. The velocity field is almost radial. A slight tendency towards the point of local
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sunrise is identifiable, which is towards the top of the image. This is the initially least dense
region due to the smallest sublimation rates on the surface.

Figure 5.8 shows radial profiles along the comet-sun axis of the logarithmically scaled num-
ber densitynn and mean free path of particlesm f p, the radial velocityvr and the resulting
acceleration of the spacecraft.
Included in Figure 5.8 are the corresponding number densityof the spherically symmetric
coma with equal gas production rate (dashed line in first panel), the cometocentric distance



5.3 RESULTS 61

             
109

1010

1011

nu
m

be
r 

de
ns

ity
 [c

m
-3
]

46P/Wirtanen at 2.00 AU
equatorial plane, s/c orbit at  6.3 km

             
0

200

400

600

800

1000

v r
 [m

/s
]

             
-80
-60
-40
-20

0
20
40
60

v φ
 [m

/s
]

0 30 60 90 120 150 180 210 240 270 300 330 360
φ [deg]

10-7

10-6

10-5

s/
c 

ac
ce

l. 
[m

/s
2 ]
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velocity component vr , the longitudinal velocity component vΦ and the resulting acceleration of the
spacecraft. Exemplary result at a heliocentric distance of2AU.

(dashed line in second panel) and the local speed of sound (dashed line in third panel). The
distribution of the number density has an inverse square dependency on the cometocentric dis-
tance, almost matching the spherically symmetric distribution. This is a result of the strong
outgassing of more volatile species on the night-side of thenucleus, reducing the variation of
the density distribution close to the surface.
The computed volume remains dominated by collisions. The local mean free path of parti-
cles remains below the cometocentric distance, as the second panel of Figure 5.8 shows. The
radial velocity of the expanding gas is plotted in the third panel. The gas expands with super-
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sonic velocities and reaches values of aboutvr
�1km/s atr �10 km cometocentric distance.

The results are in principle agreement with model results ofe.g.Combi and Smyth[1988b].

The acceleration of the spacecraft due to solar radiation pressure at 2 AU heliocentric dis-
tance isa� �9�7�10

�8m/s2 (see Equation (5.9)). The acceleration due to gas drag therefore
exceeds the acceleration caused by solar radiation pressure within the considered range of the
comet-sun axis.
In Figure 5.9 the conditions along a virtual orbit in the equatorial plane at a cometocentric
distance ofr � 6km are plotted. The day-night variation of the number density is visible
in the first panel. The variations of the number density and the radial velocity component
(second panel) between day and night are relatively small when compared with the results
for 67P/Churyumov-Gerasimenko at 3 AU (see Figure 5.6). Thevelocity component in lon-
gitudinal direction is plotted in the third panel of Figure 5.9 (positive in the direction of
increasingΦ). A flow from the day-side to the night-side coma is indicated. The tangential
velocity components reach values of� 5% of the radial velocity at this cometocentric dis-
tance. The fourth panel in Figure 5.9 shows the resulting absolute of the acceleration of an
orbiting spacecraft. The orientation of the solar panels towards the sun and the tangential gas
mass flux is taken into account in the computations. The acceleration has a maximum in the
subsolar region of the coma and two local minima at the terminator, where the orientation
of the solar panels is perpendicular to the surface. The acceleration of the spacecraft is then
derived from the size of the main body of the spacecraft. The acceleration due to gas drag
exceeds 10

�7m/s2 throughout the orbit.

5.3.3 Consequences for RSI

The acceleration of the spacecraft can be measured with the RSI experiment, if the velocity
change has a component in the direction of the line-of-sight. A terminator orbit might be an
interesting choice as long as the angle between orbit normaland line-of-sight is large enough.
The orientation of the solar panels would minimize the crosssection of the spacecraft in the
direction of the gas flux. This would be interesting for the gravity mapping campaign in
early phases of the mission. During a solar opposition (lineup of sun - earth - comet) this
configuration is not favorable. The acceleration due to gravity then is mainly perpendicular to
the line-of-sight, minimizing the effect on the carrier signal. The angle between line-of-sight
for an earth observer and comet-sun axis is given in AppendixE.

An alternative strategy might be as follows: The spacecraftrevolution period for an orbital
radius ofr � 5 km has the order of 100 hours [Pätzold et al., 2001]. The estimated spin peri-
ods of comets 67P/Churyumov-Gerasimenko and 46P/Wirtanenare of the order of 10 hours.
The best way to minimize the perturbation due to gas drag without losing the information
of the gravity coefficients therefore probably is a polar orbit perpendicular to the terminator
orbit, with measurements on the night-side part of the orbitwhile the nucleus spins under
the spacecraft. This would allow to map the gravity of the whole nucleus within a few orbits
[Pätzold et al., 2001].

The maximum of the gas and dust mass flux can be obtained with the same orbital strategy,
i.e. on the day-side part of the same orbit, where the effect of the mass flux is expected to
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be maximal. The perturbation of the orbit can become strong enough to make operation and
navigation of a spacecraft challenging, as e.g.Pätzold et al.[2001] mentions.

5.3.4 Discussion

The developed model provides the physical conditions of thecollision dominated inner coma.
The application of the results derived from the thermal model, which were used to determine
the conditions at the inner radial boundary, yields reasonable estimates of the conditions in
the coma that will be encountered by the ROSETTA mission. The modeling of jets is not
included in this work, but can be carried out with the developed model by adjusting the
parameters at the inner radial boundary, or by further developing the thermal model of the
cometary nucleus. The results presented here therefore represent average conditions in the
cometary coma at particular heliocentric distances. The implications for the RSI experiment
on ROSETTA are: Firstly, the orbit strategy for the gravity mapping campaign needs to be
carefully developed, secondly the drag force due to the gas mass flux can reach (and exceed)
the order of magnitude of the solar radiation pressure at heliocentric distances of 3AU. Fi-
nally, the collisional coma of a comet might be significantlydifferent if gas production from
more volatile species than water is present.
The determination of the boundary conditions is in principle in accordance with the proceed-
ing proposed by e.g.Crifo and Rodionov[1997a]. The reference pressure used at the surface
is adjusted in order to account for the dust-ice mixture present on the surface. Instead of using
the saturation pressureps

�
T� as reference, as proposed by e.g.Crifo and Rodionov[1997a]

or Rodionov et al.[2002], the reference pressure is adjusted with the local icy area fraction
of each surface elementA0.

In general, one can conclude that the gas distribution has a dependence on the inverse square
of the cometocentric distance. A spherically symmetric coma observed remotely does not
necessarily indicate a spherically symmetric sublimationprocess. Therefore the total gas
production rates derived from remote observations may be overestimated. The matching of
the modeled density distribution within the coma with observed densities is possible, how-
ever. This can be achieved by iteratively adjusting the thermal model of the cometary nucleus
and then adjust the inner boundary conditions of the coma model. This proceeding would
probably provide a more realistic computation of the total gas production rate, albeit on the
cost of much modeling work.

The model results are in principle agreement with other models of the neutral gas coma of
comets. Differences result from different assumptions concerning the boundary condition on
the surface of the nucleus. The combination of a thermal model of the cometary nucleus with
a hydrodynamic simulation of the neutral gas coma was also modeled by e.g.Rodionov et al.
[2002]. Their model is also able to account for various shapes of cometary nuclei and gas-
dust interaction. It was successfully applied to the coma ofcomet 1P/Halley (e.g.Szeg̈o et al.
[2002]). The application to comet 46P/Wirtanen with a homogeneous spherical nucleus (e.g.
Crifo and Rodionov[1997a]) provides comparable results to the model developed in this
work, although no thermal model of the cometary interior is used in the work ofCrifo and
Rodionov[1997a].
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Two additional cases are added in Appendix D. Results for 67P/Churyumov-Gerasimenko
and 46P/Wirtanen at their respective perihelion distance are shown. The results indicate the
variability of possible conditions in the cometary coma.



CHAPTER 6

I ONIZED COMA AND I NTERACTION WITH THE

SOLAR W IND

The cometary plasma environment and its interaction with the solar wind is studied in this
chapter. The general pattern of the interaction, the production and loss of plasma particles,
and a simplified model of the ionized coma are discussed.

6.1 Introduction

The RSI experiment can be affected by the ionized component of the cometary coma. The
absolute value of the total electron content in the line of sight can be determined from the
differential propagation delay of a carrier signal in a two-way mode [Pätzold et al., 2000]. A
phase shift of the frequency of the carrier signal is expected when the radio wave propagates
through an ionized medium. An estimate of the number densityof ions (and electrons) is
needed in order to evaluate the effect of the ionized cometary coma on the carrier signal.

In-situ observations of the cometary plasma environment have so far been made only at
heliocentric distances around 1 AU from four different comets (chronologically ordered):
21P/Giacobini-Zinner in 1985 (e.g.Ogilvie et al. [1986]), 1P/Halley in 1986, 26P/Grigg-
Skjellerup in 1992 (e.g.Johnstone et al.[1993];Neubauer et al.[1993]) and 19P/Borrelly in
2001 (e.g.Reisenfeld et al.[2002]; Young et al.[2003]). At this distance from the sun active
comets have developed a complex interaction pattern with the solar wind due to large gas
production rates and high ionization rates.

The expanding neutral gas of the coma is ionized mainly by photoionization caused by solar
UV- and EUV- radiation, as well as by impact ionization or by charge exchange reactions
with solar wind particles (mainlyH�). The assumption of photochemical equilibrium, which
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Figure 6.1: A schematic view of the global pattern of the comet - solar wind interaction at 1 AU for
active comets (from Flammer [1991])

produces reasonable results for comet 1P/Halley at the timeof the GIOTTO encounter (e.g.
Cravens[1989]), is not necessarily justified at comets with a weakergas production. If pho-
tochemical equilibrium can not be assumed, a continuity equation for the cometary ions has
to be solved to estimate the plasma densities with respect tothe cometocentric distance. A
simple one-dimensional model of the plasma densities with respect to the comet-sun axis is
developed in Section 6.4. The variation with heliocentric distance and solar activity condi-
tions is also studied.

The global pattern of the interaction of a comet with the solar wind is sketched in Figure 6.1
(reproduced fromFlammer[1991]). In a reference frame at rest with the comet, the cometary
ions are in general much slower than the solar wind and have more mass than average solar
wind particles. The solar wind picks up the cometary plasma particles, hence is mass loaded
and decelerated. When this mass loading reaches a critical value a shock forms upwind of the
comet, according to magneto-hydrodynamic theory. Inside this bow shock the solar wind is
further decelerated and enhanced mass loading occurs. Additional important features that are
expected at a comet are the collisionopause (also named cometopause by some authors), and a
magnetic barrier with the magnetic pile up boundary (MPB) asouter boundary and the cavity
surface as inner boundary around the magnetic-field-free cavity. At the collisionopause the
regime changes from the collisionless solar wind flow to a regime dominated by collisions
with neutral gas particles.
The interplanetary magnetic field is enhanced in the magnetic barrier and the field lines are
draped around the comet in this region. The formation of these features depends on the
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production rate of neutral gas and the solar wind parametersand therefore varies at different
comets and with heliocentric distance.

The cavity surface (or ionopause) forms where the magnetic pressure of the solar wind and the
draped magnetic field is balanced by the drag force of the radial outflowing neutral cometary
particles on the stagnant ions [Ip and Axford, 1987]. The development of the cavity surface
therefore depends strongly on the outgassing of the cometary nucleus. The cavity surface is
the outer boundary of a magnetic field free region around the cometary nucleus. Inside the
cavity surface only plasma of cometary origin exists. If thegas production of the comet is
too low to maintain a cavity, the solar wind plasma can reach the surface of the nucleus.
An inner shock was predicted as the supersonic to subsonic transition feature of the velocity
of the cometary ions inside the cavity surface (see Figure 6.1), but has not been observed by
GIOTTO, see e.g.Goldstein et al.[1992]. A piling up of the cometary ions just inside the
cavity surface, which would enhance the electron - ion recombination rate and neutralize the
plasma instead of decelerating it to subsonic velocities, has been proposed as an explanation
by Cravens[1989]. SeeFlammer[1991] for a review of this region.

In order to study the ionized cometary coma, the variation ofthe general physical conditions
due to varying heliocentric distance and due to varying solar activity has to be characterized.
The modeling of the parameters of the solar wind and the variations due to the state of so-
lar activity are described in the following sections. In Section 6.6 the different interaction
features will be discussed.

6.2 Solar Wind Parameters

The spatial and temporal variation of the solar wind parameters is studied by many authors.
A straightforward approach is used to model solar wind parameters between 1 AU and 6 AU,
principally consistent with the Parker model [Parker, 1958]. Many dynamic features of the
solar wind are neglected for simplicity. Plasma density, magnetic field and temperature of
protons and electrons are expressed with simple power laws.Their respective dependence on
heliocentric distance is plotted in Figure 6.2.

Plasma Density

The plasma density of the solar wind is assumed to fall off with the inverse square of the
heliocentric distancerh, complying with a spherical expanding gas at constant velocity. Data
analysis shows a small deviation from a purer

�2
h dependency [Schwenn, 1990;Richardson

et al., 1995], but fluctuations and small deviations are neglectedhere for simplicity. Therefore
the number densitynsw of protons in the solar wind is modeled as:

nsw
�

n0

r̂2
� (6.1)

with n0
� number density at 1 AU, typically 3�10 cm

�3 [Schwenn, 1991] and the heliocen-
tric distance in astronomical units ˆr � rh

�
1AU.
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Figure 6.2: Variation of solar wind parameters with distance between 1 and 6 AU

Velocity

The flow speed of the solar wind is assumed to be constant over the range of 1 to 6 AU. An
increase with increasing distance of a few percent in the inner heliosphere was predicted by
Schwenn[1990]. Analysis byRichardson et al.[1995] showed no general radial gradient in
the velocity data observed by IMP 8 at 1 AU and VOYAGER 2 between 5�40 AU. An average
solar wind speed ofvsw

� 350 km/s is usually assumed in the calculations made here. This
corresponds to conditions in an average slow solar wind in the ecliptical plane. The variability
of the solar wind velocity is neglected here.

Interplanetary Magnetic Field

The general features and predictions of the Parker model have been confirmed by data anal-
ysis of many spacecraft. Although certain deviations exist[Mariani and Neubauer, 1990],
the approach of the Parker model is used in this work. Fluctuations and dynamic effects are
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neglected, since the general behavior of the comet - solar wind interaction is studied. The
radial variation of the radial component of the magnetic field is therefore computed as :

Br
�
r �� Br0

r̂2
� (6.2)

with Br0
� radial field component at 1 AU, typically in the range of 2�10 nT. The helio-

centric variation of the field magnitudeB depends on the solar angular rotation rateΩ and is
derived as:

B
�
r ��Br

�
r �
�

1
� �

Ωr
vsw� � (6.3)

Proton and Electron Temperatures

For the heliocentric variation of the proton temperature inthe solar wind, observational results
from the work ofRichardson et al.[1995] are applied. IMP 8 and VOYAGER 2-Data is used
to derive the power law fit

Tp
�α r̂

�0�53�0�02
� (6.4)

with α � 3�77�104 K, when using data obtained inside 19 AU.

In order to model the temperature of the solar wind electronswith respect to the heliocentric
distance, an empirical polytrope law for thermal electronsthat has been derived bySittler Jr.
and Scudder[1980] from VOYAGER 2 and MARINER 10 measurements is applied:

Te
� 5�5�104 � r̂

�0�185K � (6.5)

6.3 Solar Activity & Predictions

The 11-year activity cycle of the sun is visible, for example, in the number of sunspots which
have been observed daily since 1749 at the Zurich Observatory. Monthly averages of the
sunspot numbers (officially named theBoulder sunspot numberand computed by the NOAA
Space Environment Center1) are plotted in Figure 6.3.

1http://sec.noaa.gov
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Figure 6.3: Monthly averaged sunspot numbers, computed by the NOAA Space Environment Center

In order to estimate the state of activity during the time of the prime mission of ROSETTA,
which would be 2012-2013 for comet 46P/Wirtanen and 2015 forcomet 67P/Churyumov-
Gerasimenko, predictions of the 10.7cm solar flux as computed by K. Schatten and provided
by the NASA Goddard Space Flight Center1 are used. For details about the prediction tech-
nique seeSchatten and Pesnell[1993] and references therein. The 10�7 cm solar flux mea-
sures the integrated emission at a wavelength of 10�7 cm from all sources present on the
solar disc. It is of thermal origin and related to the amount of magnetic flux. An advantage
over other indices of solar activity is the independence of terrestrial weather conditions. The
quantity of the flux is given in solar flux units (sfu� 10

�22 m
�2 Hz

�2).

Three datasets are plotted in Figure 6.4. The upper curve represents monthly averages of the
flare activity index. This quantitative daily flare index is defined asFI � i �t, wherei repre-
sents the optical importance coefficient of a flare inHα (spectral line at 121�567 nm) andt the
duration of the flare in minutes (inHα). The daily sums of the index are divided by the total
observation time per day. For more details see Section 6.7.1and e.g.Özg̈uc et al.[2002] and
references therein. The data plotted was provided by the National Geophysical Data Center
(NGDC) in Boulder, USA2.
The curve below is a composite of measured solar 10�7 cm flux, provided by the Dominion
Radio Astrophysical Observatory, Canada3, and the predictions of solar 10.7cm flux.
The state of solar activity is well represented in the solar flux data and as can be seen in
Figure 6.4 it correlates well with the flare index. Thereforestrong flares should be expected
mainly during solar maximum conditions and only few strong flares during solar minimum
conditions. With reference to the prime mission of the ROSETTA mission, the predictions of
the solar flux are plotted. The three curves represent mean fluxes withearly (dash-dotted),
nominal(dotted), andlate (dashed) timing, taking into account the uncertainty in thetiming

1The original source (http://denali.gsfc.nasa.gov/926/schatten/sunpredlatest.htm)has been disappeared from
the web by the time this work is published. Results consistent with the data used here are published bySello
[2003].

2ftp://ftp.ngdc.noaa.gov/STP/SOLARDATA/SOLAR FLARES/INDEX
3http://www.drao-ofr.hia-iha.nrc-cnrc.gc.ca/indexeng.shtml
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Figure 6.4: Flare activity, solar 10.7cm flux and predictions. The flare activity index (upper solid
line) corresponds well with the measured solar flux data (lower solid line). The dashed and dotted
lines indicate predicted solar radio flux, see text.

of the cycles at the time the predictions were made (1998). From these predictions one would
expect maximum to intermediate activity conditions for the46P/Wirtanen mission scenario
and minimum conditions for the mission scenario at 67P/Churyumov-Gerasimenko . There-
fore the chances of seeing effects of solar flares in the environment of comet 67P/Churyumov-
Gerasimenko during the ROSETTA mission are low, while 46P/Wirtanen would have been a
better target from this point of view.
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6.4 Cometary Plasma

In this section the cometary plasma environment will be studied. The solar radiation as the
main ionization source and important processes within the ionized cometary coma, such as
impact ionization and dissociative recombination, are discussed. A model for the electron
temperature profile along the comet-sun axis is developed.

In the outward directed flow of neutral particles with a velocity of the order of 1 km/s, colli-
sions and reactions decrease with the distance to the comet.The most important subsequent
process for the particles is ionization. The ionization process for cometary neutrals is dom-
inated by photoionization (solar UV), followed by charge exchange and impact ionization.
Photoionization takes place throughout the cometary atmosphere (see also Section 6.4.2),
and charge exchange and impact ionization are strongest upwind of the comet. Typical reac-
tions with a cometary neutral particleM, such asH2O, CO, O, H are [Huebner et al., 1991;
Cravens, 1991b]:

M + hν �

� M� �
e
�

photoionization,
M + H�sw �

� M� �
H f ast charge exchange,

M + e
�

�

� M� �
e
� �

e
�

impact ionization.

The time scale for ionization is of the order of 106 s at 1 AU, which results in a characteristic
ionization length scale of 106 km from the nucleus at 1 AU [Huddleston et al., 1990].

Processes involving solar radiation such as ionization anddissociation vary with the solar
activity. For the model computations, the solar activity ofthe particular time frame has to
be estimated. As discussed in Section 6.3, the sun should be shortly after activity maxi-
mum at the time of the prime mission at 46P/Wirtanen (2011-2013), and is expected near
activity minimum at the time of the prime mission at comet 67P/Churyumov-Gerasimenko
(2014/2015).

Only water reactions will be considered in this work. This isa reasonable simplification,
since water is supposed to be by far the most dominant speciesin the inner coma of comet
46P/Wirtanen (see e.g.Fink et al. [1998]; Stern et al.[1998]; Schulz and Schwehm[1999]).
At 1P/Halley, the proportion ofH2O was about 80% or more [Cravens, 1989].

The ions formed fromH2O molecules in the cometary coma are mainlyH2O�, H3O�, H�,
OH� andO� (e.g.Schmidt et al.[1988];Wegmann et al.[1999]). The processes involved are
discussed in the following sections.

6.4.1 Solar UV Spectrum

The photochemical processes involved in the cometary environment are dominated by solar
UV radiation of wavelengths shorter than 200nm. In this wavelength region dust has to
be considered only as an absorber, and multiple scattering or thermal re-radiation can be
neglected [Gombosi et al., 1986]. The detailed photon flux for many wavelength intervals
in the UV range (most in 5�10nm bins) can be found in the literature (e.g.White [1977];
Gombosi et al.[1986];Huebner et al.[1992] and references therein).
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Figure 6.5: Top: The solar UV flux at 1 AU for maximum conditions (solid) and minimum condi-
tions (dotted), Bottom: max/min solar UV flux ratio; data taken from Gombosi et al. [1986]

The variation with solar activity is large for some wavelength regions in the UV range. In
Figure 6.5 (top) the solar UV flux is plotted. The data is takenfrom Gombosi et al.[1986].
For active solar conditions (solid line), the flux is essentially larger. The UV flux varies by a
factor of typically 2 - 3, for some wavelength regions by morethan an order of magnitude,
as can be seen in Figure 6.5 (bottom), which effects the lifetimes of neutral gas particles
within the coma [Oppenheimer and Downey, 1980;Budzien et al., 1994]. Since no adequate
observational database exists, empirical models have beenused to consider the variability
with the solar 11-year cycle, usually by correlation between measured solar irradiances and
solar activity data (see e.g.Lean et al.[1992];Richards et al.[1994]).
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As pointed out byHäberli et al. [1997], the detailed ionizing spectrum does not necessar-
ily have to be considered when the coma is expected to remain optically thin, which is a
reasonable assumption at comets 46P/Wirtanen and 67P/Churyumov-Gerasimenko (see Sec-
tion 6.4.2). Since the attenuation of particular spectral lines does not have to be taken into
account in such a scenario, one can use wavelength-integrated ionization rates (see Section
6.4.3). Additionally it should be noted that the solar radiation is not emitted isotropically, and
therefore the observed spectrum at earth may not be the same at a comet [Stix, 1989;Rous-
selot et al., 1993]. For example, the variation with the rotational period of the sun reaches
25% at 120nm[Stix, 1989]. This kind of variation is neglected in the model, because the aim
of this work is only to model the general behavior of the comet- solar wind interaction.

Solar maximum conditions are assumed in the model calculations for the scenario at comet
46P/Wirtanen and solar minimum conditions are assumed for the comet 67P/Churyumov-
Gerasimenko scenario for simplicity.

6.4.2 Optical Depth of the Coma in the UV Range

In order to derive the optical depth of the coma in the UV range, the density distribution of
the neutral gas and the absorption cross sections of these particles in the UV range have to be
known. For simplicity, a spherically symmetric neutral gascoma is assumed here to estimate
the optical depth. This simplification is widely used in cometary studies. It is a basic assump-
tion in the so calledHasermodel (e.g.Festou[1981];Cochran[1985]). The realistic pattern
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Figure 6.6: Absorption (solid) and ionization (dot-
ted) cross sections for H2O molecules in the UV range,
data taken from Gombosi et al. [1986]

in the coma should differ from
this assumption in the innermost
region. Without the appearance
of strong jets, spherically sym-
metry is a good approximation,
as can be seen in the results
from the hydrodynamic simula-
tions of the neutral gas environ-
ment of 46P/Wirtanen (see Chap-
ter 5). Using the HD-model, a
more realistic and detailed pro-
file of the number density and
the outflow velocity can be con-
structed. This should be done if a
strong asymmetry in the coma due
to jets or other asymmetric flow
patterns is expected, as for ex-
ample at comet 67P/Churyumov-
Gerasimenko. This will not be
evaluated further at this point,
since only the general behavior is
studied here. In Figure 6.6 the
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(a) optical depth at 46P/Wirtanen
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(b) optical depth at 67P/Churyumov-Gerasimenko

Figure 6.7: Derived optical depth at the sub solar point for 46P/Wirtanen at perihelion and for
solar maximum conditions (a), and for comet 67P/Churyumov-Gerasimenko at perihelion for solar
minimum conditions (b)

cross section of absorption (solid line) and photoionization (dotted line) is plotted. Direct
ionization is important for wavelengths up to 100 nm, while dissociation and subsequent ion-
ization occurs mainly at longer wavelength (see also Section 6.4.3). The cross sections for
H2O have typical values of 10

�18
�10

�17 cm2 in the UV range.

If the number densitynn
�
r �of neutral particlesn as a function of radial distancer and the total

absorption cross section of these particlesσabs
�
λ� as a function of wavelengthλ are known,

the optical depthτ
�
λ�r � can be calculated as:

τ
�
λ�r ��∑

n
σabs

�
λ�

� ∞

r
nn

�
r �dr� � (6.6)

Assuming spherical symmetry, which is a reasonable first order approximation (see also Sec-
tion 5.3), the density distribution in the coma is derived as(e.g.Galeev et al.[1985]):

nn
�
r �� Qg

4πvnr2 exp
�
�

r I i

vn
� � (6.7)

whereIi is the total ionization rate. With the largest observed production rate at 46P/Wirtanen
(1�06AU) of Qg

� 3 �1028 s
�1 [Fink et al., 1998;Schulz and Schwehm, 1999] andQg

�

1�1028 s
�1 at comet 67P/Churyumov-Gerasimenko (1�36 AU) [Osip et al., 1992], a typical
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outflow velocity of the ordervn
� 1 km/s [Krankowsky et al., 1986] and an ionization fre-

quency as derived in Section 6.4.5, the calculated column density of the neutral gas becomes
6�24�1016 cm

�2 along the comet-sun axis at the perihelion of comet 46P/Wirtanen for solar
maximum conditions, and 2�63�1016 cm

�2 for the perihelion of comet 67P/Churyumov-
Gerasimenko at solar minimum. These values are derived fromthe integral of Equation
(6.6), truncating the integration at 109 km cometocentric distance, well beyond the exponen-
tial drop off of the neutral gas density due to the ionizationprocess (see Equation (6.7)).
The derived optical depth from Equation (6.6) for the subsolar point of 46P/Wirtanen and
67P/Churyumov-Gerasimenko at perihelion is plotted in Figure 6.7. For comet 46P/Wirtanen
solar maximum conditions were applied, while minimum conditions were used for comet
67P/Churyumov-Gerasimenko.
At 46P/Wirtanen, between approximately 50 nm and 100 nm, theoptical depth reaches values
larger than unity and the irradiation therefore has to be considered as attenuated (see Figure
6.7(a)). The largest ionization rates for these wavelengths are therefore not at the surface,
but approximately at that cometocentric distance whereτ

�
λ�r �� 1, which still is deep in the

inner coma at approximately 2 km distance. However, the optical depth at 67P/Churyumov-
Gerasimenko is well below unity for all wavelength bins in the UV-range, as can be seen in
Figure 6.7(b). The difference to comet 46P/Wirtanen is mainly caused by the larger radius of
the comet nucleus and the lower gas production rate of 67P/Churyumov-Gerasimenko (about
a factor 3), resulting in a lower number density close to the surface. The difference in solar
activity has only a minor effect in these calculations, altering the exponential part of Equation
(6.7). The coma is therefore assumed to be optically thin in the model calculations.

The optical depth of the dust component at 1P/Halley during the GIOTTO encounter has been
estimated asτdust

� 0�28 [Keller et al., 1987]. The optical thickness of the dust component
is therefore assumed to be� 1 everywhere in the models developed here, due to the lower
dust production rate in smaller comets - about a factor of 120at 46P/Wirtanen [Jockers et al.,
1998], and a factor of 40 at comet 67P/Churyumov-Gerasimenko [Osip et al., 1992].

6.4.3 Photoionization and Photodissociation

In Section 6.4.2 it is shown that the coma can be considered optically thin for the solar
UV radiation in most cases. Absorption effects within the coma can therefore be neglected.
Häberli et al. [1997] point out that in this case the spectrum of the ionizing radiation does
not have to be considered in detail, and wavelength-integrated ionization frequencies can be
used.

Listed in Table 6.1 are wavelength-integrated ionization and dissociation frequencies, given
by Gombosi et al.[1986]; Huebner et al.[1992] andSchunk and Nagy[2000]. The chem-
ical reaction rates are taken fromMarconi and Mendis[1982] andGombosi et al.[1996].
Additional reactions are listed inSchmidt et al.[1988] andHäberli et al.[1997].

The resulting total photoionization frequencyνph for H2O at 1 AU, including the branches
leading toH2O�, OH� andH�, is νph

� 4�03�10
�7 s

�1 for solar minimum conditions and
νph

� 1�02�10
�6 s

�1 for solar maximum conditions.
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�
10
�6 s

�1� �
10
�6 s

�1�
solar min solar max

photoionization frequencies
H2O

�
hν �

� H2O��
e 0.334 0.828

�

� H��
OH

�
e 0.0131 0.0407

�

� OH��
H

�
e 0.0554 0.151

OH
�

hν �

� OH��
e 0.247 0.652

O
�

hν �

� O��
e 0.212 0.588

H2
�

hν �

� H�2 �
e 0.0541 0.115

�

� H��
H

�
e 0.00952 0.0279

H
�

hν �

� H��
e 0.0726 0.172

photodissociation frequencies
H2O

�
hν �

� OH
�

H 10.3 17.6

H2O
�

hν �

� H
�

H
�

O 0.755 1.91
chemical reaction rates

�
10
�6 cm

�3 s
�1�

H2O
�

H2O� �

� H3O��
OH 0.00205

H2O
�

OH� �

� H3O��
O 0.0013

�

� H2O��
OH 0.0016

H2O
�

H� �

� H2O��
H 0.0082

H2O
�

O� �

� H2O��
O 0.0023

H2
�

H2O� �

� H3O��
H 0.0014

H2
�

OH� �

� H2O��
H 0.00105

OH
�

OH� �

� H2O��
O 0.0007

Table 6.1: Photoionization and photodissociation frequencies of H2O and daughter products (from
Huebner et al. [1992]) and chemical reaction rates in the cometary environment (from Marconi and
Mendis [1982]; Gombosi et al. [1986]).

6.4.4 Impact Ionization and Charge Exchange

Neutral molecules can be ionized by hot cometary electrons or solar wind electrons if the
energy of the electrons exceeds the ionization energy of theneutral molecules. Electron im-
pact ionization should be strongest around the thermal electron collisionosphere (see Section
6.4.9), where the temperature of the electrons is high enough (almost at solar wind level, see
Section 6.4.8) to cause ionization and the number density ofthe electrons is large. Further
away from the nucleus the electron density drops to solar wind levels and this ionization pro-
cess becomes negligible [Gombosi et al., 1996]. The time scale for electron impact ionization
is in general a function of the electron temperature, numberdensity and distribution function.
Cravens et al.[1987] conclude that the impact ionization rate reaches values as high as 50%
of the photoionization rate for solar minimum conditions at1 AU. The importance of impact
ionization decreases when the photoionization rates are 2-3 times larger during solar max-
imum conditions. In particular regions around the comet, impact ionization may still be a
dominant process, probably due to an energy peak in the electron flux [Cravens et al., 1987].
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Körösmezey et al.[1987] calculate steady state photoelectron fluxes in orderto derive sec-
ondary ionization and electron heating rates due to photoelectrons. Two limiting cases are
studied: one without any photoelectron transport (local energy deposition), which is applica-
ble where collisions of electrons with neutrals are frequent (see Section 6.4.9), and one with
electron transport along a stationary parallel magnetic field, which can be applied outside
this collision zone. If photoelectron transport is accounted for, the impact ionization rates
of photoelectrons are reduced by about a factor of 2. The secondary impact ionization rates

Solar
Activity H2O� OH� H�

Conditions

min 5�77�10
�8 6�16�10

�9 4�37�10
�9

max 1�88�10
�7 1�98�10

�8 1�39�10
�8

Table 6.2: Secondary impact ionization rates by photoelec-
trons at 1 AU as derived by K̈orösmezey et al. [1987]. The ion-
ization rates are given in [s

�1].

νimp for H2O without photo-
electron transport, as derived
by Körösmezey et al.[1987],
are listed in Table 6.2. The im-
pact ionization rate is assumed
to be coupled to the photoion-
ization rate in the calculations
of this work, since the oc-
currence of photoelectrons de-
pends on the solar irradiation.
With respect to the ionization
rates given in Table 6.2 and the
conclusion for the photoioniza-
tion rates in Section 6.4.3 the

impact ionization rate is assumed to beνimp
� 0�2νph everywhere in the coma. Since ioniza-

tion rates due to solar wind electrons are not derived here, which would require a more sophis-
ticated model that considers variations with cometocentric distance, this approach seems rea-
sonable as a first order approximation of the total ionization rate due to impacts of cometary
and solar wind electrons. Local effects, such as high energyelectrons that reach regions of
high neutral particle number densities and may locally enhance the importance of impact
ionization, are neglected.

Cometary ions can also be created by charge exchange with ions from the solar wind. Charge
exchange may become an important solar wind ion loss processaround the collisionopause,
asShelley et al.[1987] point out.Gombosi[1987] proposes anavalancheof charge exchange
in this region. The rate of charge exchangeνcx between the neutrals and the solar wind ions is
determined asνcx

�σcxnswvsw. For a solar wind velocityvsw of 350 km/s, a charge exchange
cross sectionσcx of 2�1 �10

�15 cm2 [Huddleston et al., 1990], and a number densitynsw of
5 cm

�3, this would result in a rate of charge exchange ofνcx
� 3�7�10

�7 s
�1.

If considered in detail in the cometary environment, the variation with velocity of the charge
exchange cross sectionσcx has to be taken into account (e.g.Wallis and Ong[1975]). In
general, the process of charge exchange is variable within the cometary environment, since
the mass flux varies with cometocentric distance. At a certain point within the coma the
charge exchange effect can become important. In this work this effect is neglected and a
constant ionization rate is applied to determine the general comet - solar wind interaction. A
rate of ionization caused by charge exchange processes is assumed to be at a level of 10% of
the photoionization rate in this work.
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6.4.5 Total Ionization Frequency

The totalH2O ionization frequencyIi is a combination of the wavelength integrated photoion-
ization frequencies (see Section 6.4.3), impact ionization and charge exchange processes.

Ii � νph
�νimp

�νcx � (6.8)

whereνph is the photoionization rate,νimp is the impact ionization rate andνcx is the rate
of charge exchange between the neutrals and the solar wind ion flux. For solar maximum
conditions the resulting total ionization frequency at 1 AUis Ii � 1�33�10

�6 s
�1, while

for solar minimum conditions the frequency at 1 AU isIi � 5�24�10
�7 s

�1. For different
heliocentric distancesrh the total ionization frequency is scaled with 1

�
r2
h. This neglects a

possible different behavior with heliocentric distance ofthe respective ionization processes.
It is nevertheless a reasonable first order approximation, since only the general behavior is
studied here.

6.4.6 Ion-Molecule Reactions

The ionH3O� was the most abundant observed ion in the inner coma at comet 1P/Halley out
to r � 2�5�104 km [Balsiger et al., 1986;Eberhardt and Krankowsky, 1995]. The chemical
formation ofH3O� is mainly due to the reaction ofH2O� with neutral water molecules:

H2O��
H2O �

�H3O��
OH � (6.9)

Other chemical reactions with reaction rates are listed in Table 6.1 and discussed in the work
of Wegmann et al.[1999], for example. They are not further evaluated here, since in this work
only a water dominant inner coma andH3O� as the dominant ion species is considered. Out-
side the collision dominated regime these reactions can be neglected and other ions become
more abundant. Ion densities then follow anr

�x dependency, withx � 2 for all ion species
[Altwegg et al., 1993].

6.4.7 Recombination

Within the ionosphere the lifetime of anH2O� ion is about 100 s. MainlyH2O��OH� and
H� ions are created due to dissociation and ionization processes, and almost all of them are
converted toH3O� ions via ion-neutral reactions [Cravens, 1989]. The main loss process for
H3O� ions is dissociative recombination:

H3O��
e
�

�

�H2O
�

H � (6.10)

Following e.g.Cravens[1989], the dissociative recombination rate coefficientα is given as:

α �α0

�
300
Te

�
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whereTe is the electron temperature andα0
� 7 �10

�7 cm3/s is the recombination rate
coefficient.Mul et al. [1983] have measured the temperature dependency ofα0 in laboratory
experiments, concluding that the recombination rate deviates from theT

�0�5
e dependency for

polyatomic ions. In order to correctly approximate the recombination rate this work uses
(following e.g.Eberhardt and Krankowsky[1995];Gombosi et al.[1996]):

α
�
Te��α0

�
300
Te

Te �200 K (6.11a)

α
�
Te�� 2�342α0 T0�2553�0�1633 logTe

e Te �200 K � (6.11b)

This recombination rate is applicable for the two most abundant ions in a water dominated
coma,H2O� andH3O�, as laboratory experiments show [Heppner et al., 1976;Mul et al.,
1983]. The uncertainty of this recombination rate is estimated as�15%. Recombination
rates for other ions can be found in e.g.Schunk and Nagy[2000].

The total loss rateLi of ions (and electrons) due to dissociative recombination is a function
of the number density of ionsni :

Li
�α

�
Te� n2

i � (6.12)

6.4.8 Electron Temperature

The recombination rate of the ions within the coma is coupledto the temperature of the elec-
trons. Lower electron temperature results in a higher recombination rate as can be seen from
Equations (6.11a) and (6.11b). The ion density in the coma therefore also depends on the
electron temperature.
The electron population in the cometary environment has three sources: solar wind electrons,
electrons from the photoionization of cometary gases, and secondary electrons from the ion-
ization of cometary molecules by electrons, fast neutrals and ions. The solar wind electrons
represent the hot component in the electron distribution and correspond to a Maxwellian en-
ergy distribution with a temperature of about 105 K at 1 AU (see Section 6.2).
Since the electron temperature profile can not be calculatedself-consistently in an ideal
single-fluid MHD-approach, a temperature profile with a simple scaling approach is derived
in this work. In general, the electron temperature in the cometary coma will not be the same
as the ion temperature [Gombosi et al., 1996].
The excess energy in the photoionization process with solarUV radiation is of the order of
10�15 eV [Huebner et al., 1992]. Secondary electrons also have energies of the orderof
a few tens of eV [Eberhardt and Krankowsky, 1995]. Cooling mechanisms for electrons in
the cometary environment are electron-neutral elastic collisions, electron-ion Coulomb col-
lisions, dissociative recombination with ions, rotational and vibrational excitation of neutral
molecules by electron impact, and electronic excitation [Cravens and K̈orösmezey, 1986;
Cravens, 1991a]. Within the inner coma, the electrons are effectively cooled to about the
temperature of the neutral gas, as has been modeled by various authors, such asMarconi
and Mendis[1983]; Körösmezey et al.[1987]; Gan and Cravens[1990]; Eberhardt and
Krankowsky[1995]; Häberli et al. [1995], as shown in Figure 6.8. GIOTTO observations
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at 1P/Halley show that the ion and gas temperatures within the cavity surface are low and ap-
proximately constant [Lämmerzahl et al., 1987;Schwenn et al., 1987]. At the cavity surface
the measured ion temperature increases rapidly, while the gas temperature shows no discon-
tinuity [Lämmerzahl et al., 1987;Schwenn et al., 1987]. The ion density then significantly
piles up by a factor of about 3�4 near a cometocentric distance of 104 km [Balsiger et al.,
1986;Altwegg et al., 1993]. The nature of this pile up is still not fully understood. Possible
explanations are a reduced ion recombination rate caused byan increasing electron tempera-
ture, dynamical pile-up, or enhanced ionization rates due to electron impact [Ip and Axford,
1987;Cravens, 1989]. This enhancement of the ion density - and the derivedelectron tem-
perature profile - is not only a short-lived transient phenomenon which can be assumed due to
in-situ observations of the VEGA-1 spacecraft [Vaisberg et al., 1987] and due to an analysis
of the radio signals of both VEGA missions [Andreev and Gavrik, 1993;Pätzold et al., 1997].

Figure 6.8: Electron temperature profiles at 1P/Halley,
published by various authors. Chart reproduced from Häberli
et al. [1996]

Several theoretical approaches to
the electron temperature profile,
such as Marconi and Mendis
[1983]; Körösmezey et al.[1987];
Gan and Cravens[1990]; Hueb-
ner et al. [1991], show a good
agreement inside the cavity sur-
face, but large differences outside
(see Figure 6.8). Häberli et al.
[1996] conclude that photoioniza-
tion can not be the only impor-
tant energy source for the elec-
trons outside the cavity surface
and show that at least additional
heating by solar wind electrons
has to be considered. They pro-
pose an enhancement in the so-
lar wind electron density that is
proportional to the compression of
the interplanetary magnetic field in front of the cavity surface. This would provide enough
energy for the electrons to reach a temperature that can explain the ion pile-up.

An additional possible heating mechanism for electrons is magnetic field reconnection that
can occur in the region of the magnetic barrier and in the plasma tail. Magnetic reconnection
at comets is discussed byNiedner, Jr.[1984], for example. However, cold electrons (below an
energy limit of 10 eV) could not be measured by the GIOTTO electron analyzer and therefore
the total energy distribution of the electrons in that region could not be determined.

If the electron thermal pressure has to remain sufficiently small to avoid seriously distorting
the magnetic field profile, the increased electron temperature should not immediately reach
solar wind levels [Cravens, 1989]. Therefore other effects should be considered additionally
to explain this ion pile up.Cravens[1989] favor an enhanced ionization frequency due to im-
pact ionization, whileAltwegg et al.[1993] indicate a significant dynamic pile up process as
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Figure 6.9: Example of an electron temperature profile
as derived for comet 67P/Churyumov-Gerasimenko

explanation. These effects will be ne-
glected in this work when modeling
the plasma environment for simplic-
ity.

An electron temperature profile with
the following properties is used in
this work: a constant electron tem-
perature inside the thermal electron
collisionopause (TEC, see Section
6.4.9), a steep temperature increase
(with r2 dependency) within 5000
km to a level of 104 K, and a constant
temperature at this level further out
(neglecting a slow increase to solar
wind levels of the electron tempera-
ture). This profile is shifted along the
comet-sun axis with the position of
the TEC.

The increase of the electron temper-
ature is assumed to have ar2 depen-
dency, corresponding to the decreas-
ing importance of collisions with
neutral particles, which have ar

�2

dependency of the number density
(see Equation (6.7)). The scale size
of the increasing part of the profile is
adopted from the 1P/Halley results,

since it has not been modeled in more detail in this work. Thisassumption results in a
steeper electron temperature profile for comets with a higher gas production. An example of
the derived electron temperature profile for comet 67P/Churyumov-Gerasimenko at 1�3 AU
is plotted in Figure 6.9. The calculated position of the TEC is at� 30 km cometocentric
distance in this example.

6.4.9 Thermal Electron Collisionopause

In order to match conditions at various heliocentric distances, the electron temperature profile
has to be scaled.Gan and Cravens[1990] link the sharp jump in the electron temperature
to the fading of the main cooling process for electrons: the collisions between the cometary
neutrals and the electrons. This boundary is named thethermal electron collisionopause
(TEC) [Gan and Cravens, 1990]. Transport processes such as heat conduction or plasma
convection dominate outside this boundary, while inside the TEC collisional processes like
electron-neutral cooling are more important. In order to estimate the cometocentric distance
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of the inner edge of the TEC the same procedure as with the estimation of the collisionopause
is applied here (see Section 6.6.3). A spherically symmetric distribution of the neutral gas
density is assumed, ignoring depletion due to ionization:

RTEC
�

σel Qg
�
rh�

4 π vn
� (6.13)

with the gas production rateQg
�
rh� derived from Equations (4.27) for 67P/Churyumov-

Gerasimenko or Equation (4.26) for 46P/Wirtanen, respectively. For electron energies be-
tween 0�1 eV and 102 eV, the effective total inelastic electron impact cross-section for water
is in the rangeσel

� 10
�17

�10
�14 cm2, asGan and Cravens[1990] provide from their

study of the rotational, vibrational and electronic excitation cross sections and cooling rates
by water vapor.
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Figure 6.10: Cometocentric distance of the thermal
electron collisionopause (TEC) as derived from Equation
(6.13). The horizontal line indicates the surface of the nu-
cleus

Usingσel
� 10

�15 cm2, which is ap-
plicable for electrons with a temper-
ature of the order of 104 K [Gan
and Cravens, 1990] and for the con-
ditions at 1P/Halley at 1 AU (Qg =
1030 s

�1 andvn
� 1000 m/s), the de-

rived cometocentric distance of the
TEC isRTEC

�8000 km. This corre-
sponds very well with the position at
which the steep increase in the elec-
tron temperature is modeled, as can
be seen in Figure 6.8.
Therefore the derived cometocentric
distance of the TEC from Equation
(6.13) is used to estimate the cometo-
centric distance at which the electron
temperature increases as described in
Section 6.4.8.

The cometocentric distance of the in-
ner edge of the TEC as derived for
comet 67P/Churyumov-Gerasimenko is plotted with respect to the heliocentric distance in
Figure 6.10. The respective gas production rateQg is derived from the results of the thermal
model (Equation (4.27)). The surface of the comet is indicated by the horizontal line at 2 km
distance in Figure 6.10. The line indicating the TEC is dashed for standoff distances closer
than 3 km from the comet surface. The TEC does separate significantly from the surface of
the comet only inside approximately 2�0 AU. A temperature increase that starts at the surface
is assumed for heliocentric distances larger than 2 AU. The effect of the electron tempera-
ture on the density of ions within the coma is expected to be minor for larger heliocentric
distances. The decrease of the recombination rate due to theincrease of the electron tem-
perature is expected to have a significant effect in a photochemically controlled regime. The
assumption of photochemical equilibrium within the inner coma is only valid under certain
conditions, which will be discussed in the next section.
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6.5 Stationary Plasma Model 1D

In order to estimate the plasma parameters in the cometary environment, a stationary one-
dimensional model along the comet-sun axis is applied. Two scenarios are studied: photo-
chemical equilibrium is assumed in the first case. This has been applied successfully at comet
1P/Halley, where the conditions in the coma justified this assumption (e.g.Cravens[1989]).
However, it is not necessarily applicable at smaller comets. Therefore the continuity equation
for ions is solved without assuming photochemical equilibrium in the second case.
Effects caused by the solar wind are neglected in these models for simplicity. The respective
gas production rates of comets 67P/Churyumov-Gerasimenkoand 46P/Wirtanen at the cor-
responding heliocentric distance are derived from the results of the thermal modeling of the
comets (Equations (4.27) and (4.26)).

6.5.1 Case 1: with Assumption of Photochemical Equilibrium

For simplicity, the ionosphere is assumed to consist of one single charged ion species. Quasi-
neutrality is assumed for the plasma. The one-dimensional continuity equation for the ion (or
electron) densityni in spherical coordinates then is (e.g.Cravens[1989]):

∂ ni

∂t
�

div
�
ni v��Pi

�
r ��Li

�
r � � (6.14)

with the cometocentric distancer, the plasma velocityv �vrer , the local production ratePi
�
r �

and the local loss rateLi
�
r �.

If photochemistry is more important than transport processes, the transport terms can be
neglected and the ion continuity equation (6.14) reduces to:

∂ ni

∂t
�Pi �Li � (6.15)

Steady state conditions are assumed for studies at particular heliocentric distances. The num-
ber density of ions in the cometary environment can then be found by equating the local ion
production ratePi

�
r � to the local ion loss rateLi

�
r �. The spatial asymmetry of the distribu-

tion of the neutral gas within the coma is neglected and Equation (6.7) is applied to estimate
the local number density of the neutral gasnn

�
r �. The local ion loss rate is calculated from

Equation (6.12) and the ion production rate isPi
� Ii nn, with the total ionization rateIi (see

Section 6.4.5). The number density of cometary ions then is (Pi
� Li):

ni
�
r ��

�
Ii nn

�
r �

α
�
r � � (6.16)

with the recombination rateα as defined in Equation (6.11). Therefore the number density
of ions follows in principle a cometocentric 1

�
r dependency, if the assumption of photo-

chemical equilibrium is applicable. Deviations from this dependency are expected where the
recombination rateα is not constant, or if variations of the ionization rateIi are considered.
A general 1

�
r dependency has been observed at 1P/Halley for distances up to approximately

104 km [Altwegg et al., 1993].
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(a) time-scales at 46P/Wirtanen ; solar maximum
conditions
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Figure 6.11: Characteristic time scales for ions at 46P/Wirtanen (a) and67P/Churyumov-
Gerasimenko (b) at their respective perihelion distance. Photochemical equilibrium can be assumed
when the chemical lifetime of ions (indicated by the solid line) is less than the transport time (indicated
by the dashed line).

Characteristic scales for the chemical lifetime of ions arecompared with the transport time of
ions in Figure 6.11, in order to estimate the size of the region, where the assumption of pho-
tochemical equilibrium can be applied. The chemical lifetime of anH3O� ion is τc

� 1
�
αni .

The transport time in the radial flow is estimated asτt
� r

�
v, with the cometocentric distance

r and the plasma velocityv [Cravens, 1989]. The plasma velocity is assumed to be controlled
by collisions with the neutral particles. It is therefore assumed to equal the velocityvn of the
neutral gas particles, which is of the order ofv � vn

� 1 km/s. The assumption of photo-
chemical equilibrium is applicable, if the photochemical lifetime is shorter than the transport
time. In Figure 6.11 the time-scales at 46P/Wirtanen and 67P/Churyumov-Gerasimenko are
compared at the respective perihelion of the comets.

It can be generally concluded that the assumption of photochemical equilibrium is not nec-
essarily applicable at comets 67P/Churyumov-Gerasimenkoand 46P/Wirtanen. The charac-
teristic transport time of ions at comet 67P/Churyumov-Gerasimenko is always shorter than
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their chemical lifetime (see Figure 6.11(b)). At comet 46P/Wirtanen at perihelion, the chem-
ical lifetime of ions just reaches the same order of magnitude as their transport time (Figure
6.11(a)). An ionization rate that corresponds to solar maximum conditions is assumed for the
46P/Wirtanen case.
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Figure 6.12: Stationary one-dimensional model of a pho-
tochemical controlled coma; Top: ion density, dashed line for
results outside the regime where photochemically equilibrium
can be assumed; Bottom: Neutral gas density of a spherically
symmetric coma; 46P/Wirtanen at perihelion

In principle, the following is ap-
plicable to the coma of comet
46P/Wirtanen at perihelion inside
approximately 1000 km (see Fig-
ure 6.11(a)). Transport processes
are neglected and photochemical
equilibrium in the coma is as-
sumed (Pi

� Li). The assumed
ionization rateIi at 1 AU is taken
from Section 6.4.5, the ion pro-
duction rate then isPi

�
r �� Iinn

�
r �,

with the number density of neutral
gasnn

�
r � as derived from Equa-

tion (6.7). The dissociative re-
combination rate of ions is de-
termined as described in Section
6.4.7. With these assumptions
the number density of ions in the
inner coma can be derived from
Equation (6.16).

In Figure 6.12 the resulting ion
and neutral gas number densities
are plotted. At the ionization
scale length of�106 km the num-
ber density of the neutral particles
shows the drop off due to the ex-
ponential term in Equation (6.7).
The ion number density generally
follows the same pattern with the
exception of the region where the
electron temperature rises, which
leads to the local maximum atr �

5 �103 km. In this region the recombination rate decreases due to increasing electron tem-
perature. The ion number density has the largest values close to the surface, because the coma
is assumed to remain optically thin. The assumption of photochemical equilibrium is, in the
case studied here, not applicable beyondr � 103 km (see Figure 6.12) and the ion densities
at larger distances are therefore not correctly estimated.This is indicated by using a dashed
line for larger distances.
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6.5.2 Case 2: Numerical Solution of the 1D Continuity Equation

The assumption of photochemical equilibrium is not applicable, if the transport terms in the
continuity equation (6.14) can not be neglected. The full 1Dcontinuity equation then has to
be solved in order to derive the ion density within the cometary coma. Interaction with the
solar wind is neglected and it is again assumed that the radial velocity of the plasma is the
same as the outflow speed of the neutral gas (vr

� vn
� 1 km/s), due to collisions between

ions and neutral particles. This is applicable in the collision dominated inner coma and at
larger distances if other possible acceleration mechanisms (such as e.g. external magnetic
fields) are neglected. The continuity equation for the neutral gas is used to to write:

div v � �

1
nn

dnn

dt

�
�

1
nn

�
∂nn

∂t
�

vn
∂ nn

∂r � � (6.17)

with the radial velocity of the neutral gasv � vner . By combining Equations (6.14) and
(6.17), and assuming stationarity one gets:

vr

ni

∂ni

∂r
�

vr

nn

∂nn

∂r
�

Pi
�
r ��Li

�
r �

ni
� (6.18)

The application of this scenario is limited to inside 106 km cometocentric distance, which
is approximately similar to the ionization scale length. Therefore the exponential term in
Equation (6.7) is neglected. When also applyingPi

�
r �� Ii nn andLi

�
r ��α n2

i one gets:

∂ni

∂r
�

IiQg

4πv2r2 �

αn2
i

vr
�

2ni

r
� (6.19)

In order to numerically solve this equation, a Runge-Kutta scheme is applied (see e.g.Press
et al. [1986]). The solutions for various heliocentric distancesare plotted in Figure 6.13.
The gas production rate of comet 67P/Churyumov-Gerasimenko with respect to the helio-
centric distance was derived from Equation (4.27), the ionization and recombination rates
were determined as described in Sections 6.4.5 and 6.4.7. The dashed line represents the case
1 scenario (photochemical equilibrium assumed) for a heliocentric distance of 1�3 AU. The
corresponding solution of Equation 6.19 at 1�3 AU has much lower ion densities and does not
feature the local peak at 6�103 km, because the second term on the right-hand side is not
strong enough to have any visible effect in this scenario. Atthe surface, the initial ion den-
sity is assumed to be very small (ni0

� 10
�6 cm

�3). Therefore the density rises at first then
follows an 1

�
r dependency. The same pattern is visible at all heliocentricdistances studied

out to 4 AU, with decreasing absolute values due to the decreasing gas production rate with
increasing heliocentric distance.
A more comprehensive model including the interaction with the solar wind and the inter-
planetary magnetic field is needed in order to model a more realistic ion density distribution
within the cometary ionosphere. The above approximation atleast gives reasonable orders of
magnitude of the cometary contribution to the ion column density, which is the quantity that
can be measured with the RSI experiment, if the ion densitiesare large enough.



88 IONIZED COMA AND INTERACTION WITH THE SOLAR WIND

100 101 102 103 104 105 106

cometocentric distance [km]

10-4

10-2

100

102

104

106
io

n 
nu

m
be

r 
de

ns
ity

 [c
m

-3
] photochem. equil.

at 1.3 AU

1.3 AU

2.0 AU

3.0 AU

4.0 AU

67P/C-G

Figure 6.13: Number density of ions at various heliocentric distances; Numerical solution of Equa-
tion (6.19)

6.5.3 Conclusions

In relation to the ion pile-up region observed at 1P/Halley one can conclude from these cal-
culations that a similar pile-up of ions at 67P/Churyumov-Gerasimenko or 46P/Wirtanen is
not expected. The steep rising of the electron temperature profile at the TEC does not result
in a significant change of the ion density. The full solution of the continuity equation with-
out the assumption of photochemical equilibrium does not feature this pile-up. If at comets
67P/Churyumov-Gerasimenko or 46P/Wirtanen an ion pile-upis observed at all then other
explanations, like locally enhanced ionization processesor dynamic effects, will be needed.
The electron temperature profiles considered here have onlya very minor effect on the ion
distribution within the coma for the scenario of case 2.
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rh column density�
AU� �

cm
�2�

1�3 9�1�1010

1�5 4�6�1010

2�0 6�9�1009

2�5 7�0�1008

3�0 4�5�1007

3�5 1�7�1006

4�0 3�7�1004

Table 6.3: Estimated column densi-
ties of ions (electrons) from the surface
along the comet-sun axis for various
heliocentric distances, see text for de-
tails

The total column density along the comet-sun axis as
derived from the results in Section 6.5.2 are listed in
Table 6.3. These are integrated densities from the sur-
face out to 106 km cometocentric distance, which is
a rough estimate of the cometary contribution to the
plasma content along the comet-sun axis.
No strong effects on the carrier signal are expected in
relation to RSI in general. The sensitivity of RSI for
variations of the electron content in the line of sight
is of the order of 10

�2 hexem at one second integra-
tion time [Pätzold et al., 2000], with 1 hexem� 1012

cm
�2. The sensitivity of RSI to determine the total

electron content in the line of sight is of the order of
1 hexem. The relative velocity between spacecraft and
comet is relatively low (of the order of m/s [Pätzold
et al., 2001]) when compared with flyby velocities of
other cometary missions (of the order of km/s). The variation of the electron content in the
line of sight is therefore expected to result from the variation of the plasma density in the
cometary coma and not from the changing observational geometry. The variation of the elec-
tron content in the line of sight of the carrier signal can be obtained with RSI, if the orbit of
the spacecraft has a favorable geometry for this objective.Eclipses of the spacecraft are the
most promising scenarios to determine column densities.

Apart from the simplifying assumption of spherical symmetry, the global gas production rate
Qg may also vary with time. With the assumed radial outflow velocity of vn

� 1 km/s, the
distribution of the neutral gas at 106 km distance reflects the gas production of� 10 days
earlier. The variation ofQg with time may therefore have an effect on in-situ measurements
of the ion density which is not accounted for in the model. This problem has also been noted
by e.g.Huddleston et al.[1993].

A three-dimensional MHD-model would be required to cover the ionosphere in more detail
without many of the limiting assumptions. This is beyond thescope of this work. Since the
detectability of the ionosphere with RSI will be a challenging task, the detailed structure of
the ionosphere is not studied here.

6.6 Interaction with the Solar Wind

The comet - solar wind interaction is studied in this section. The solar wind is mass loaded
and various plasma features in the cometary environment areformed. Standoff distances
for the bow shock, the collisionopause and the cavity surface are derived. They strongly
depend on the heliocentric distance and cometary activity.A one-fluid MHD approach is
used to estimate the size of the interaction regions, although this approach simplifies the
multi-fluid environment, as has been pointed out by e.g.Sauer et al.[1990]. However, with
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the MHD approach an estimate of the size of the main plasma boundaries is possible, as has
been shown at comets 1P/Halley and 26P/Grigg-Skjellerup. More detailed simulations of the
plasma environment with a multi-fluid model can be found in e.g.Sauer et al.[1996] orSauer
and Dubinin[1999].

6.6.1 Cometary Pick-up Ions in the Solar Wind

Neutral cometary particles are ionized by solar UV radiation and added to the ambient solar
wind plasma. These freshly ionized cometary particles modify density, momentum and en-
ergy of the plasma flow. This process is calledmass loadingor pick-up. In a reference frame
at rest with the interplanetary magnetic field the pick-up process depends on the orientation
of the velocity of the cometary ions. For a perpendicular orientation, the pick-up is controlled
by the macroscopic fields and an adiabatic approximation with a ratio of the specific heat of
γ � 2 can be adopted. If the orientation is oblique, the distribution of the injected particles is
isotropized and plasma instabilities dominate the coupling between cometary and solar wind
ions. The ratio of specific heats becomesγ � 5

�
3 in that scenario (see e.g.Flammer[1991]

for more details).

The pick up process is handled as simple as possible in this work, i.e. that the ions are imme-
diately embedded in the solar wind flow, with a perpendicularorientation between the solar
wind velocity and the interplanetary magnetic field. Only the contribution of the mass of the
ionized particle is considered.

The mass flux ratio is denoted here as ˆx � ρv
�
ρswvsw, with the unperturbed mass flux of the

solar windρswvsw. Biermann et al.[1967] determined a critical value of ˆxc
� 4

�
3 for the

mass flux ratio, at which themass loadedor contaminatedsolar wind forms a shock. From
numerical models values of ˆxc

� 1�185 forγ � 2 andx̂c
� 1�323 forγ � 5

�
3 were obtained

for a sonic Mach number ofM � 2 at the shock front [Flammer, 1991].

Following Cravens[1989] andHuddleston et al.[1990], a single species of ions moving ra-
dially outward from the nucleus at a constant velocityvi is assumed. The velocity of the ions
vi is assumed to be similar to the outflow velocity of the neutralgasvn

� 1 km/s. A constant
photoionization rate, depending on the solar activity, andconstant charge exchange and col-
lisional ionization rates, which depend on the instantaneous solar wind flux, are applied. The
total ionization rateIi is given in Section 6.4.5. The density of cometary neutral particlesnn

is given in Equation (6.7).

Sincevi � vsw, only the mass of the freshly ionized cometary particles contributes signifi-
cantly to the mass flux. The cometary ion flux along the comet-sun axis at pointx0 can then
be derived by integrating the ion production rate back alongthe axis, which is assumed to be
the trajectory of the implanted ions:

nivi
�

� ∞

x0

Qg Ii
4 π vn r2 exp

�
�

Ii r
vn � dS � (6.20)

wheredSis the integration path.
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The total ion mass flux along the comet-sun axis is then given by the solar wind component
and the cometary pickup ion source:

ρv � ρswvsw
�ρivi � (6.21)

or in terms of the mass flux ratio (or normalized mass flux):

ρv
ρswvsw

� 1
� nivi

nswvsw

mi

msw
� (6.22)

where the ions of the comet are assumed to be of the water groupwith an effective mass
mi

� 20 amu, and the solar wind protons plus alpha particles are taken asmsw
� 1�15 amu

[Huddleston et al., 1992]. The mass flux ratio along the comet-sun axis can now bedeter-
mined by applying Equations (6.20) and (6.22).

6.6.2 Bow Shock / Bow Wave

Biermann et al.[1967] predict steady-state mass loading with cometary ions as long as the
normalized mass flux stays below a critical value. When the critical value is reached, a shock
forms upstream of the comet, which diverts the flow around thecomet. Numerical simula-
tions by e.g.Schmidt and Wegmann[1982] show that a shock wave with the Mach number
M � 2 forms in the contaminated solar wind at a cometocentric distance that corresponds to
a critical value of ˆxc

� 1�185. In a MHD model applied to comet 26P/Grigg-Skjellerup the
results for the Mach number vary betweenM � 1�4 andM � 1�7 [Schmidt et al., 1993]. The
resulting critical value for the mass flux is ˆxc

� 1�09 for a specific heat ratio ofγ � 2 for the
plasma.
Wallis [1973] discusses a weakly-shocked plasma flow and argues that photoionization and
charge exchange can gradually and smoothly decelerate the solar wind without the forma-
tion of a shock in certain configurations. The termbow waveor bow wave transitionap-
peared as a description of crossings of a spacecraft into themagnetic sheath region without
clear identifications of a shock, as observed at the inbound trajectory of GIOTTO at comet
26P/Grigg-Skjellerup, for example [Neubauer et al., 1993;Rème et al., 1993]. In the work of
Sauer et al.[1990] the transition at 1P/Halley is described with a multi-fluid approach, which
agrees well with the measurements. The plasma interaction of weakly outgassing comets
(Qg � 5 �1026 1/s) with the solar wind is also modeled byBogdanov et al.[1996], who
conclude that no bow shock will appear under such conditions. This would apply to comet
67P/Churyumov-Gerasimenko beyond� 2 AU (see Figure 4.7).

In the simplified model of the bow shock used in this work, it isassumed that the solar wind
flow is one-dimensional. It is therefore not deflected from its original direction, and the speed
is determined by the ions picked up along the streamline and not by the flow on neighboring
streamlines.

The density of the neutral gas is derived from Equation (6.7)with the assumption of spherical
expansion and constant radial outflow velocityvn of the neutral particles, taking into account
a loss due to photoionization with a rate ofIi. The normalized mass flux is then calculated by
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combining Equations (6.20) and (6.22) [Galeev et al., 1985]:

x̂ � 1
� Qg mi Ii

4π vn ρswvsw

� ∞

r

1

r
�

2
exp

�
�r �Ii
vn � dr�

� 1
� Qg mi Ii

4π vn ρswvsw

�
1
r

exp

�
�rI i

vn �� Ii
vn

E1

�
rI i

vn�� � (6.23)

where the exponential integralE1
�
x� � �Ei

�
�x� can be found in standard mathematical ta-

bles, e.g.Abramowitz and Stegun[1970]. A solution of Equation (6.23) for the standoff
distance of the bow shockRB can not be expressed in a simple form. The standoff distance
RB can be found by deriving the distance at which ˆx � x̂c for a given shock strength.

If the standoff distance of the bow shockRB is assumed to be much less than the ionization
scale length (L � vn

�
Ii), the exponential term in Equation 6.7 can be neglected and Equation

(6.23) reduces to [Biermann et al., 1967]:

x̂ � 1
� Qg mi Ii

4π vn ρswvsw

1
r

� (6.24)

The standoff distance of the bow shockRB can now be found for a specified value of ˆxc in
Equation (6.24):

RB
�

Qg mi Ii
4π vn ρswvsw

�
x̂c�1� � (6.25)

The condition for a fully developed quasi-perpendicular shock is thatRB is larger than at least
an ion gyroradius at the shock front. A typically gyroradiusis of the order of 103 km at 1 AU
and 104 km at 4 AU [Flammer, 1991].

The variation with heliocentric distance ofRB depends on the heliocentric distance varia-
tions of Qg, Ii and ρswvsw, which are described in earlier sections. The results for comet
67P/Churyumov-Gerasimenko are plotted in Figure 6.14. Theapplied critical value of the
normalized mass flux is ˆxc

�1�185, which is the recommended value for a shock Mach num-
ber ofM � 2 and a specific heat ratio ofγ � 2 [Flammer, 1991].

6.6.3 Collisionopause and Magnetic Pile-Up Boundary

Three plasma discontinuities were expected prior to the first encounters at comets. The bow
shock/bow wave, the cavity surface, and an inner shock, at which deflection of the outflowing
cometary plasma toward the downstream region occurs [Wallis and Dryer, 1976]. These fea-
tures are also shown in Figure 6.1. An inner shock has not beenobserved at 1P/Halley, which
was theoretically explained later on. A piling up of cometary ions just inside the cavity sur-
face resulting in an enhanced electron - ion recombination rate with the plasma being neutral-
ized instead of flowing downstream has been suggested byCravens[1989] as an explanation.
See e.g.Flammer[1991] for more details. An additional boundary was detected at r � 105

km distance byGringauz et al.[1986b;a], which was named thecometopause, and seems to
coincide with the predicted so calledcollisionopause(e.g.Mendis et al.[1986; 1989]). The
data from VEGA observations were interpreted as indicating an increase incometary ion den-
sity, decrease of proton density, heating of protons, and change of flow direction.Goldstein
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et al. [1992] point out that observations by GIOTTO are inconclusive concerning this bound-
ary layer. A magnetic pile-up boundary (MPB)has been observed by the magnetometer in
this region [Neubauer, 1987], which was referred to as the cometopause by e.g.Rème et al.
[1987]. After arguments against the ’VEGA-like’ concept of a cometopause [Rème et al.,
1994], at least the MPB seems to be an established intrinsic cometary feature [Mazelle et al.,
1995], since it was also observed by GIOTTO at comet 26P/Grigg-Skjellerup [Neubauer et al.,
1993]. It is therefore distinguished only between a collisionopause and a MPB and the name
cometopauseis not used in this work. The region of the collisionopause was modeled with a
multi-fluid approach by e.g.Sauer et al.[1990], who are able to explain many observations
and argue that cometary shocks in the ideal MHD sense do not exist.

However, the collisionopause can be viewed as a transition from the collisionless plasma
flow to a flow dominated by collisions with the outflowing neutrals. The strong deceleration
of the solar wind is expected to occur at a cometocentric distance along the comet-sun axis
of [Mendis et al., 1986]:

Rcl
�

σ Qg

4 π vn
� (6.26)

whereσ is the collision cross-section. Thus, atRcl the total momentum transfer collision
mean free path between the average ion in the inflowing contaminated solar wind and the out-
flowing cometary neutrals is equal to the radial distance. The distance of the collisionopause
may be chemically separated for different species, since the momentum transfer collision
cross-sectionsσ are different for different ions [Gringauz et al., 1986b]. The range for typ-
ical values ofσ given byMendis et al.[1986] is σ �

�
2�3�5� �10

�15 cm2. The subsolar
distance of a collisionopause is estimated by applying a value ofσ � 3�10

�15 cm2.

The collisionopause is supposed to be relatively sharp, associated with the increasing effi-
ciency of the momentum transfer between the ions and the neutrals due to the continuously
decreasing relative velocity at the collisionopause [Ip, 1989]. However, during the GIOTTO

observations this transition was not as sharp as during the Vega observations [Balsiger et al.,
1986] and also a sudden jump in the magnetic field was observed[Neubauer et al., 1986],
which was not observed by the VEGA 1 and 2 spacecraft [Riedler et al., 1986]. It has also
been noted by various authors before the 1P/Halley missionsthat the charge exchange effect
may play a major role in this interaction region [Wallis and Ong, 1975;Ip and Axford, 1982;
Galeev et al., 1985].

The MPB was observed by GIOTTO at comets 1P/Halley and 26P/Grigg-Skjellerup (e.g.
Neubauer[1987]; Neubauer et al.[1993]). It appears as a sharp increase in the magnetic
field magnitude, and marks the outer boundary of the induced magnetosphere of the comet
where the field line draping becomes efficient in addition to the pile-up effect [Mazelle et al.,
1995]. The sharpness was different in inbound and outbound crossings, therefore the detailed
nature of this boundary is still under discussion and there seems to be no simple way to es-
timate the standoff distance of this feature at other comets. At comet 26P/Grigg-Skjellerup,
which had an estimated gas production rate of 6�7 �1027 s

�1, the magnetic pile-up region
was observed at a length of 2500 km along the GIOTTO trajectory [Neubauer et al., 1993]
(the closest approach was at less than 200 km [Grensemann and Schwehm, 1993]). If comet
67P/Churyumov-Gerasimenko reaches the same gas production rate around perihelion, a
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magnetic pile-up region of comparable size has to be expected. For larger heliocentric dis-
tances a more sophisticated model has to be developed to predict the size of the magnetic
pile-up region.

6.6.4 Cavity Surface / Ionopause

Inside the collisionopause, the solar wind is rapidly decelerated and chemical reactions and
dissociative recombination become important. This also leads to an increase of the magnetic
field strength and the magnetic barrier region is formed where the solar wind plasma pressure
is converted to magnetic pressure. When the outgassing is strong enough the build up of
the magnetic barrier terminates at the cavity surface, where the dominant radial forces on
a plasma element in this region are balanced, namely the inward directed magneticJ �B-
force and the outward ion-neutral frictional force (e.g.Cravens[1991b]). A region of plasma
particles of purely cometary origin is created inside the cavity surface. As a non-magnetized
body, the inner region of the cometary coma has no magnetic field and is called magnetic
cavity. In the real 3D case, slippage of magnetic flux tubes across the flanks of the cavity
attenuates the build up of the magnetic barrier and therefore Ohmic dissipation of currents is
expected to be important in this region [Mendis et al., 1986]. The inner edge of the magnetic
barrier has been namedcontact surface, cavity surfaceor ionopause. As Neubauer[1988]
points out, the name contact surface may be misleading, since this boundary can be described
as tangential discontinuity and not as contact discontinuity (see e.g.Landau and Lifschitz
[1967]). The term cavity surface will be used in this work. A number of models study the
plasma environment of comets and derive the important processes that lead to the magnetic
cavity, see e.g.Mendis et al.[1986]; Baumg̈artel and Sauer[1987]; Ip and Axford[1990];
Cravens[1989; 1991b].

Neubauer[1988] suggests that a pressure gradient at the cavity surface may also contribute to
the equilibrium of forces. A possible increase of the sum of the ion and electron temperatures
Te

�
Ti would create such a gradient. Magnetic field reconnection asdiscussed by e.g.Niedner,

Jr. [1984] is mentioned as a possible heating mechanism.

When adding the momentum equations for all species, neglecting mass loading and gravity,
one obtains a single fluid momentum equation for the bulk flow velocity v (e.g. Cravens
[1991b]):

ρ
d v
dt

� J �B�∇
�
pe

�
pi ��ρνin

�
v�vn� � (6.27)

whereρ �mini
�

mene is the plasma mass density,νin is the ion-neutral momentum transfer
collision frequency,pe and pi the electron and ion pressure andvn the outflow velocity of
the neutrals. Using Ampére’s law,∇ �B � µ0J, the J �B-force can be separated into a
magnetic pressure gradient force�∇

�
B2�2µ0� and a curvature force

�
B �∇B

�
µ0�, with the

permeability of spaceµ0
�4π 10

�7 H/m (e.g.Cravens[1991b]). The ion-neutral momentum
transfer collision frequency can be written asνin

�kD nn, wherekD is the ion-neutral collision
rate coefficient. TheH2O drag onH3O� is estimated byMendis et al.[1989] to bekD

�10
�9

cm3/s. They also estimate that this drag is comparable to or evenlarger than that between
H2O andH2O�. An additional mass loading term was included in the momentum balance
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equation byHaerendel[1987], which produces only secondary effects [Cravens, 1991b] and
will be neglected here.

The aim here is an estimate of the cometocentric distance of the cavity surface with respect
to the heliocentric distance of the comet. A region of stagnant cold plasma in which the
magnetic field is amplified and all of the solar wind ram pressure is converted to magnetic
pressure is assumed, neglecting curvature effects and obtaining the magnetic field strengthBs

in that region as (e.g. [Ip and Axford, 1990]):

B2
s

2µ0

� nswmswv2
sw � (6.28)

Analytical expressions for the field strengthB
�
r � at the cavity surface and the cometocen-

tric distance of the cavity surface have been obtained by several authors by integrating the
simplified form of the momentum equation (6.27) and usually by assuming photochemical
equilibrium at the corresponding distance to derive ion number densities, see e.g.Mendis
et al. [1989]; Flammer [1991]; Cravens[1991b]. Since the assumption of photochemi-
cal equilibrium is not necessarily applicable at comets 67P/Churyumov-Gerasimenko and
46P/Wirtanen, as has been shown in Section 6.5.1, the discussion of Ip and Axford[1990] is
adopted and the location of the cavity surfaceRCS is derived as follows:
At the point whereBs reaches its maximum (dBs

�
dr � 0) it is assumed that the frictional

momentum on the plasma due to the radial outflowing neutrals has to be balanced by the
curvature force [Ip and Axford, 1990]:

B2
s

µ0 RCS

� kD ni mi nn vn � (6.29)

The radius of the curvature is assumed to be similar to the radial distance. The number density
of the neutralsnn is derived from Equation (6.7) with neglection of the exponential term for
simplicity, since it is expected thatRCS� vn

�
Ii . It follows:

RCS
� µ0 kD Qg mi ni

4 π B2
s

� (6.30)

with the mean mass of a cometary ionmi and the ion number densityni as derived in Section
6.5.2. The condition for a well defined cavity surface is thatRCS is larger than the gyroradius
of the ions in that region, which is of the order 102 km [Flammer, 1991].

One main concern about the cavity surface is the stability ofthis feature. Various authors
argue that the ion-neutral frictional force can be destabilizing and that MHD instabilities
might occur at the cavity surface (e.g.Mendis and Houpis[1982]; Ip and Axford[1988];
Cravens[1991b]). On the other hand, asErshkovich et al.[1989] point out, recombination of
ions results in a plasma momentum loss and causes stabilization, although this effect may not
be strong enough to quench the instability completely. In ananalysis of the stability of the
cavity surface,Ershkovich et al.[1989] conclude that the cavity surface at 1P/Halley should
remain stable and that no effective penetration of magneticfield into the cavity should occur,
although possible destabilizing mechanisms do exist.Ip and Axford[1990] conclude that the
cavity surface is stable when photoionization and recombination effects are accounted for. At
comet 67P/Churyumov-Gerasimenko it will therefore be interesting to study the development
of a stable cavity surface.
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Figure 6.14: Standoff distances of the interaction regions with the solar wind at comets
67P/Churyumov-Gerasimenko and 46P/Wirtanen

6.6.5 Results for 67P/Churyumov-Gerasimenko and 46P/Wirtanen

The resulting sizes along the comet-sun axis of the main interaction regions for comets
67P/Churyumov-Gerasimenko and 46P/Wirtanen are plotted in Figure 6.14. The sizes are
derived as described in the Sections 6.6.2, 6.6.3 and 6.6.4.The differences between the
comets appear due to different gas production rates (see Section 4.5) and different ionization
rates (solar minimum conditions at 67P/Churyumov-Gerasimenko and maximum conditions
at 46P/Wirtanen , see Section 6.3).
The collisionopause depends only on cometary parameters, it therefore does not vary with
solar wind conditions and should remain relatively stable at particular heliocentric distances.
It is plotted with dotted lines in Figure 6.14. The bow shock and the cavity surface depend
on solar wind conditions. The plotted standoff distances therefore are distances expected for
average solar wind conditions in the ecliptical plane. The solar wind parameters at 1 AU
adopted here aren0

� 5 cm
�3 andvsw

� 350 km/s, see Section 6.2 for reference. Dashed
lines indicate unrealistic sizes of the features, i.e. whenthe standoff distance is larger than
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the respective estimate of the ion gyroradius. Particularly the size of the magnetic cavity is
so small at both comets that it remains questionable whetherthis feature will fully develop at
all.

Comet 67P/Churyumov-Gerasimenko :
At 1�3 AU, the cavity surface is nominally located atRCS

� 40 km subsolar distance (Figure
6.14(a)), which makes its appearance questionable. This standoff distance is slightly less
than the estimated cavity surface standoff distance at comet 26P/Grigg-Skjellerup at 1�01
AU: 60�80 km [Huddleston et al., 1992]. This is probably caused by the larger perihelion
distance of 67P/Churyumov-Gerasimenko and smaller ion densities at the cavity surface,
sinceHuddleston et al.[1992] use a formula forRCS, where photochemical equilibrium is
assumed.
The estimated subsolar standoff distance of the bow shock at1�3 AU is RB

� 7 �103 km,
slightly less than the observed distance at 26P/Grigg-Skjellerup (RB

� 2�104 km [Neubauer
et al., 1993]). This is a result of the weaker gas production of 67P/Churyumov-Gerasimenko
and probably also due to differences in the assumed solar wind conditions. The standoff dis-
tance is clearly less than the ionization scale length and itis therefore reasonable to apply
Equation (6.25).
The standoff distances of the cavity surface and the bow shock decrease quickly with in-
creasing heliocentric distances. An appearance of a fully developed bow shock is therefore
not expected outside�2 AU. Bow shock and cavity surface are therefore not expectedat the
time when ROSETTA is planned to reach comet 67P/Churyumov-Gerasimenko at� 3�5 AU
heliocentric distance.

Comet 46P/Wirtanen :
The features at 46P/Wirtanen appear at larger cometocentric distances at the corresponding
heliocentric distance (Figure 6.14(b)). As mentioned above, this is caused by larger gas pro-
duction rates and different solar conditions. The featurestherefore have a better chance to
fully develop at comet 46P/Wirtanen. The bow shock might appear inside� 2�5 AU and
is located atRB

� 4�5 �104 km at perihelion. The cavity surface has a subsolar standoff
distance ofRCS

� 200 km at perihelion. A larger gas production rate and ion number den-
sity are the main reasons for the larger standoff distance when compared with the result for
comet 67P/Churyumov-Gerasimenko. The standoff distancesof the cavity surface and the
collisionopause have similar values close to perihelion at46P/Wirtanen. This is an artificial
result, because the ion number density at perihelion of comet 46P/Wirtanen was derived with
the maximum of the observed gas production rates, while the gas production rate for the
estimation of the distance of the collisionopause was derived from Equation (4.26).

A variation of the solar wind parameters changes the position of the bow shock and the
cavity surface. Increasing the number density in the solar wind by a factor of two halves the
standoff distances of bow shock and cavity surface. A variability of at least a factor of 2 must
be expected in the parameters of the solar wind in the ecliptical plane for the heliocentric
distances considered here. The indicated distances in Figure 6.14 are therefore estimates for
average solar wind conditions.
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6.7 Transient Solar Events

In this section the effects on the cometary environment of some transient solar events are dis-
cussed. Solar flares enhance the radiative solar output and the ionization frequency respec-
tively, and therefore can change the interaction pattern with the solar wind due to enhanced
cometary plasma densities, which will be briefly discussed below. The effects of enhanced
flux of energetic particles in the solar wind due to solar flares on the cometary environ-
ment will not be studied in this work. Interplanetary coronal mass ejections usually feature
enhanced plasma densities, larger plasma velocities and enhanced magnetic field strength,
which has an effect on the global interaction pattern of the comet with the solar wind, as
will be presented below. Flares and CMEs occur more often during the maxima of the solar
activity cycle. Therefore the mission scenario at comet 46P/Wirtanen would be more conve-
nient for observations than the mission scenario at comet 67P/Churyumov-Gerasimenko (see
Section 6.3).

6.7.1 Solar Flares

Solar flares are generally described as transient energy releases in sunspot regions. They fea-
ture enhanced radiation across the electromagnetic spectrum and release energetic particles
into the interplanetary space. It is distinguished betweenimpulsive and gradual flares. Fully
developed flares combine these basic types and feature a brightness increase (typically sev-
eral minutes long, the ’impulsive’ or ’flash’ phase), with bursts inγ-rays,x-rays, EUV and
microwave radiation, followed by a slow decay (30 minutes tohours long, ’main’ or ’decay’
phase). Large flares may be visible in the optical range as ’white-light’ flares [Stix, 1989].

Satellite observations of flare emissions are made in different spectral bands: usuallyx-ray,
EUV, UV and optical. The EUV and UV bands are interesting in the context of enhanced
ionization frequencies at comets. Typically, the energy flux of flares peaks with a normalized
value of 1�1�1�6 [Horan et al., 1983]. Some flares might even reach a factor of 2�3 of the
normal energy flux, which has been observed at different heliocentric distances [Horan et al.,
1982;Kazachevskaya et al., 1990;Neidig et al., 1994].

When modeling effects of solar flares on the cometary environment, the ionization rate can
be increased by a factor of 2�3 for a particular time period in the order of the flare duration.
This results in transient increased ion densities. The increased ion densities would mainly
effect the standoff distance of the cavity surface and the column density of ions and electrons.
Since the appearance of the cavity surface is questionable,and the timescales of the activity
of flares is relatively short, further studies were not carried out. Effects on RSI are expected
to be minor.
The enhanced ionization rate can also increase the standoffdistance of the bow shock, which
is plotted in Figure 6.15 for an ionization rate increased bya factor of three. The real effect of
a flare on the bow shock distance is expected to be much smaller, due to the small timescale
of the flare.
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6.7.2 Coronal Mass Ejections

Coronal Mass Ejections (CMEs) are large explosion-like events in the solar corona that usu-
ally have curvilinear shapes, suggesting magnetically closed regions that are eruptively blown
out. They apparently result from a restructuring process ofmagnetic fields in the low corona.
Their spatial distribution varies with solar activity, occurring at all solar latitudes during so-
lar maximum and mainly in equatorial regions during solar minimum. The rate of CMEs
depends on the sensitivity of the coronograph used. Observations by the SOHO LASCO in-
strument indicate a rate of about 0.8 CMEs per day at solar minimum and about an order of
magnitude larger during a solar activity maximum [Lang, 2001].
When ICMEs (Interplanetary CMEs) are observed in situ, theyare usually identified from
several plasma signatures, e.g. the presence of bidirectional halo electrons, high alpha/proton
density ratios or low proton temperatures. They are often coincident with magnetic clouds,
which feature high magnetic field intensities and a rotationof the IMF by � 180� [Smith
et al., 2001]. A large event with a high level of transient activitywas observed e.g. around
14 July 2000, which was namedThe Bastille Day Event. The observed transit speed of the
Bastille Day shock at 1 AU was 1480 km s

�1 [Watari et al., 2001].
In order to model effects of ICMEs on the cometary environment (see Section 6.7.3), the
number density of the solar wind plasma is enhanced by a factor of ten and the solar wind
velocity by a factor of two, which is consistent with observations of CMEs at 1 AU (see e.g.
Smith et al.[2001]). For larger heliocentric distances the jump in the velocity has decreased,
as is noted by e.g.Burlaga et al.[2001]. Since the model is only applied to the comet - solar
wind interaction inside�2�5 AU, this effect is neglected. Results are included in Figure 6.15.

6.7.3 Possible Effects on Radio Science

The transient events discussed here are expected to occur with a higher probability at comet
46P/Wirtanen, since the proposed mission scenario takes place during or shortly after solar
maximum, while the proposed mission scenario at comet 67P/Churyumov-Gerasimenko is
expected to take place in solar minimum conditions (see Section 6.3).
ICMEs are known to have an effect on the carrier signal and they should therefore be carefully
monitored. However, the effects on the cometary environment that are measurable with RSI
are expected to be small, so that special strategies are needed to detect them. Since ROSETTA

is intended to have a relatively low orbit velocity, fluctuations of the plasma boundaries will
only be visible when the considered feature (e.g. cavity surface or bow wave) sweeps across
the carrier signal in a favourable observational geometry.This is not expected to happen
when the spacecraft is in low orbit around the nucleus. Orbits with a large cometocentric
distance might be a possibility to detect plasma boundarieswith RSI.

In Figure 6.15 the derived standoff distances of the bow shock are plotted. The line in the
center (solid + dashed) is the same as in Figure 6.14. It indicates the average position of
the bow shock during undisturbed solar wind conditions. Theadditional nominal standoff
distances of the bow shock during ICME conditions in the solar wind (the lower dotted line)
and during conditions produced by a solar flare (the upper dotted line) are plotted. With ICME
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Figure 6.15: Nominal standoff distances of the bow shock at comet 67P/Churyumov-Gerasimenko
(solid + dashed line), additional standoff distances of thebow shock during flare conditions (upper
dotted line), and with CME conditions (lower dotted line)

conditions, the bow shock shifts closer to the comet by aboutan order of magnitude, which
is mainly due to the factor ten enhancement in assumed plasmadensities. Such conditions
are only applicable during a particular (small) time frame.The lower dotted line therefore
represents the standoff distance of the bow shock for a shorttime period only. After the
ICME has passed the comet, the bow shock will return to the average standoff distance that
matches undisturbed solar wind conditions. The cavity surface would also shift about an
order of magnitude and then reaches the surface of the comet,which is therefore not included
in Figure 6.15.
When the ionization rate at the comet incerases due to a solarflare, the standoff distance of the
bow shock also increases. Effects of a factor of 3 increased ionization rates are represented
by the upper dotted line in Figure 6.15. The standoff distance of the bow shock therefore has
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the ability to shift by more than an order of magnitude with the assumed variability in the
solar wind conditions.

Transient solar events will be interesting to study, but their effects on the cometary environ-
ment may be difficult to detect by radio science alone. If no other measurements at earth are
able to monitor the solar CME activity, RSI may be able to report such events in the line of
sight.
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CHAPTER 7

DISCUSSION AND OUTLOOK

The comprehensive model of a comet and its environment developed here allows the estimate
of many physical parameters that can be expected when approaching comet 67P/Churyumov-
Gerasimenko with the ROSETTA spacecraft. The main focus of this work is the variation of
the physical conditions with the variation of the heliocentric distance of the comet. Many
involved parameters have large uncertainties, the resultsare therefore general estimates of the
physical conditions to be expected. The special requirement to predict effects on the radio
science experiment RSI on ROSETTA led to the simplification of some involved physical
processes.

The modeling of the heat diffusion within the cometary nucleus is needed for the character-
ization of the physical conditions on the surface with respect to the heliocentric distance of
the comet. The focus of the modeling is the determination of local and global gas production
rates of the comet. The possible variation of the involved parameters leads to a wide range of
possible results. The variation of the composition of the nucleus, its porosity and the effective
thermal conductivity within reasonable limits leads to a wide range of possible gas production
rates. The model results are compared with remote observations of gas production rates of
comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen in order to evaluate the applicabil-
ity of the considered set of parameters. It is shown that a particular set of parameters does not
result in a unique behavior of the sublimation rate with heliocentric distance. In particular the
obliquity of the spin axis of the cometary nucleus might havean important effect on the ther-
mal behavior of the cometary nucleus. The thermal model is restricted to spherical shapes of
cometary nuclei, since the shapes of comets 67P/Churyumov-Gerasimenko or 46P/Wirtanen
are not known to date. Another constraint is the homogeneityof the material, which has the
advantage of minimizing computational resources, but which probably has to be changed in
future work. The thermal model provides temperatures and local sublimation rates on the
assigned grid points on the surface of the nucleus. These grid points match the longitude
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and latitude position of the grid point at the inner boundaryof the hydrodynamic model of
the neutral gas coma. The results are in principle agreementwith results from other thermal
models, although published model results vary over a wide range. The variation of the gas
production rate of comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen with heliocentric
distance is described with a fit to the respective model results. This allows a fast first order
approximation of physical conditions in the environment ofthese comets.

The collision dominated regime of the neutral gas coma of thecomet is modeled with a hy-
drodynamic approximation. A fully time dependent, three-dimensional hydrodynamic code,
the ZEUS-code, is applied. The size of the hydrodynamic regime is estimated by assuming
a spherically symmetric coma. The de-facto applicability is confirmed a-posteriori by com-
paring the resulting mean free path of the gas particles withtheir respective cometocentric
distance. It turns out that the hydrodynamic regime probably does not enclose the complete
cometary nucleus at heliocentric distances of approximately 3AU. The extent of the hydro-
dynamic regime becomes much larger when the comet approaches the sun, although it is
still possible that the night-side coma of a comet remains collisionless (see Appendix D.1).
The conditions at the inner radial boundary, at a distance ofa few mean free paths above the
surface of the nucleus, are determined in accordance with the proposed proceeding by e.g.
Crifo and Rodionov[1997a]. One important difference to the cited work is that the reference
pressure used here is not the saturation pressure above a surface of pure iceps

�
T �, but the

saturation pressure adjusted with the icy area fractionA0 in order to account for the dust-ice
mixture present on the surface.
The model results correspond to the general appearance of cometary comae as a radial ex-
panding gas with velocities of the order of a few hundred meter per second to� 1 km/s. A
restriction of the gas production to particular areas on thecometary surface might produce
discontinuities in the flow that separate regions of different conditions. This applies to the
difference between the day-side and the night-side coma, asthe scenarios at 67P/Churyumov-
Gerasimenko studied in this work indicate. It can also be an effect of areas of different activity
(varying the amount of ice available for sublimation), as e.g. the work ofCrifo and Rodionov
[1997a] implies.
The gas mass flux within the coma yields an acceleration of a spacecraft in orbit around the
considered comet. This acceleration results in orbit perturbations that put the safety of the
ROSETTA mission at risk [Schwinger, 2001]. It can also perturb the measurement of the
higher order gravity coefficients, as e.g.Pätzold et al.[2001] point out. The developed model
of the inner coma does provide an estimate of this perturbingforce with respect to the po-
sition of the spacecraft within the coma and with respect to the heliocentric distance. At a
heliocentric distance of 3 AU the resulting acceleration ofthe spacecraft is comparable to or
larger than the acceleration due to solar radiation pressure, even if only water ice is assumed
as ice component in the nucleus. The difference between day-side and night-side coma can
reach many orders of magnitude. At smaller heliocentric distances the gas mass flux will
probably perturb orbits with small orbital distances (� 10 km) in a way that the orbit can
become unbound.

The RSI experiment can also be affected by the ionized component of the cometary coma.
The absolute value of the total electron content in the line of sight can be determined from the
differential propagation delay of a carrier signal in a two-way mode. A phase shift of the fre-
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quency of the carrier signal is expected when the radio wave propagates through an ionized
medium. The number density of ions (and electrons) is estimated with a one-dimensional
model of the cometary ionosphere in order to evaluate the effect on the carrier signal. The
neutral gas coma is assumed to be spherically symmetric in this model. The variation of
the solar radiation with the solar activity cycle is taken into account. The state of solar
activity is estimated for the mission scenarios at comets 46P/Wirtanen and 67P/Churyumov-
Gerasimenko. Since the assumption of photochemical equilibrium is not necessarily applica-
ble at comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen, a one-dimensional continuity
equation for the plasma density is solved, neglecting the interaction with the solar wind and
assuming quasi-neutrality of the plasma. The electron temperature profile along the comet-
sun axis is assumed to be similar to the profile derived at comet 1P/Halley, but scaled to a
smaller comet and to larger heliocentric distances. This isdone by determining the position
of the thermal electron collisionopause (TEC). The electrons are cooled to temperatures of
the order 102 K inside the TEC by collisions with neutral gas particles. Photoionization and
solar wind electrons produce an electron fluid in excess of 104 K outside the TEC. The scale
size of the transition between these regimes is assumed to besimilar to the estimates of the
scale size at 1P/Halley.
The resulting ion (end electron) densities in the cometary environment are low so that the
possibility of a survey with RSI remains questionable. A special orbit strategy is needed for
the determination of the electron content, with a transientoccultation of the spacecraft by the
comet probably being the most promising scenario.

The standoff distances of various plasma boundaries that appear in the interaction with the so-
lar wind are also estimated. The distances of the bow shock and the cavity surface are derived
with magneto-hydrodynamic principles, as successfully applied e.g. at comet 1P/Halley and
at 26P/Grigg-Skjellerup (only the bow shock has been detected here). The variation of the
standoff distances with heliocentric distance is calculated. The variation of the solar wind pa-
rameters with heliocentric distance is also taken care of. The results indicate a much smaller
scale size of the interaction pattern when compared with comet 1P/Halley, and a similar or
slightly smaller size when compared with comet 26P/Grigg-Skjellerup. A detection with the
RSI experiment might be possible when transient solar events, such as solar flares or coronal
mass ejections, move these boundaries across the position of the spacecraft or across the line
of sight between spacecraft and ground station. In such a scenario it might be challenging to
distinguish between the effect of the transient solar eventitself and the effect of the cometary
contribution on the carrier signal.

The general conclusion concerning RSI is that the neutral coma will have the largest effect on
the carrier signal, probably masking the effects of the higher order gravity coefficients. The
orbit strategy for ROSETTA needs to be carefully developed not only to accomplish the scien-
tific objectives of RSI, but also to minimize the resulting risk for the complete mission. The
effect of the ionized coma is expected to be very small and therefore also needs a favorable
orbital strategy to be surveyed.

Future work should include different shapes of cometary nuclei. The effort for the heat diffu-
sion model of the nucleus probably involves mainly the consumption of more computational
resources. The effect on the model of the neutral gas coma is then accounted for by applying
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the results of the nucleus model as inner radial boundary conditions. A three-dimensional
grid that matches the actual shape of the nucleus then needs to be defined. The effect of
gas jets within the cometary coma needs also to be evaluated.This can also be achieved
by modifying the heat diffusion model of the nucleus. The conditions at each position of a
one-dimensional model can therefore be varied.

Detailed models of the conditions at 67P/Churyumov-Gerasimenko or 46P/Wirtanen are only
possible when many parameters of their nuclei are determined in greater detail. The know-
ledge of the shape of the nucleus, as well as the composition of the nucleus and the orientation
of the spin axis and spin period will improve the accuracy of the existing models. This will
probably not be possible until ROSETTA reaches its target. At this time the real challenge for
the modeling begins, because many parameters will be definedwith a much better accuracy
and the model results can be verified or discarded by measurements. Up to then the models
can be used to develop an optimized orbital strategy for ROSETTA.



CHAPTER 8

ZUSAMMENFASSUNG

Das in dieser Arbeit entwickelte Modell eines Kometen und seiner Umgebung ermöglicht
die Einschätzung der in der Kometenumgebung zu erwartenden physikalischen Verhältnisse.
Motiviert ist diese Arbeit durch die derzeitige Vorbereitung der ROSETTA Mission und ins-
besondere des Experimentes zur Radiosondierung am Kometen(RSI = Radio Science In-
vestigations). ROSETTA wird nach dem für Februar 2004 geplanten Start den Kometen
67P/Churyumov-Gerasimenko ansteuern und diesen auf seiner Umlaufbahn über mehrere
Monate begleiten. Der Komet 46P/Wirtanen ist als Ersatz-Ziel vorgesehen, falls es bei dem
Starttermin erneut Probleme geben sollte.
Die prinzipielle Motivation der ROSETTA Mission ist die Untersuchung des Ursprunges von
Kometen, der Bedeutung von Kometen bei der Entstehung des Sonnensystems und der Be-
ziehung zwischen Kometen und der interstellaren Materie. Die wichtigsten wissenschaft-
lichen Ziele des RSI-Experimentes beinhalten die Bestimmung des kometaren Gravitations-
feldes, Untersuchung des Kometenkerns, der Neutralgas-Koma, sowie der Plasmaumgebung
des Kometen. In dieser Arbeit wird mit der globalen Modellierung des Kometen die Grös-
senordnung der zu erwartenden Effekte auf das Radioträgersignal abgeschätzt. Dies dient
nicht nur der Einschätzung der Wichtigkeit der einzelnen Effekte, sondern liefert auch die
Möglichkeit eine sinnvolle Strategie bei der konkreten Missionsplanung zu entwickeln.

Viele der involvierten Parameter sind derzeit nur sehr ungenau bekannt, da Kometen bisher
nicht direkt untersucht werden konnten. Die wichtigsten Ergebnisse sind vom Kometen
1P/Halley bekannt, der 1986 von mehreren Raumfahrzeugen untersucht wurde. Die größte
Annäherung erfolgte dabei durch die Mission GIOTTO, die in einer Entfernung von unter 600
km den Kometenkern vorbei geflogen ist.

Die Ergebnisse der Modellrechnungen können nur eine generelle Einschätzung der physi-
kalischen Verhältnisse liefern. Der Schwerpunkt dieser Arbeit liegt auf der Ermittlung der
Verhältnisse bei Variation des heliozentrischen Abstandes des Kometen. Die Kometenumge-
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bung wird im Wesentlichen durch das Sublimationsverhaltendes Kometenkerns bestimmt.
Dieses Verhalten wird mit einem eindimensionalen Wärmediffusionsmodell simuliert, wel-
ches unter Anderem lokale und globale Gasproduktionsratenberechnet. Die mögliche Va-
riationsbreite der zu berücksichtigenden Parameter erzeugt eine entsprechend große Variati-
onsbreite in den Ergebnissen. So führt zum Beispiel die Variation der chemischen Zusam-
mensetzung des Kometenkerns, der Porosität des Materialsoder der effektiven Wärmeleit-
fähigkeit zu Unterschieden in der sich ergebenden Gasproduktionsrate, die durchaus mehr
als einen Faktor 10 betragen können. Um diese Unsicherheiten zu minimieren, wird die
simulierte Gasproduktionsrate des Kometen mit Beobachtungsdaten von 67P/Churyumov-
Gerasimenko und 46P/Wirtanen verglichen. Mit diesem Vergleich wird also die Anwend-
barkeit der gewählten Parameter überprüft. Dabei wird gezeigt, dass ein Satz von gewählten
Parametern keine einmaligen Ergebnisse in Bezug auf das Sublimationsverhalten liefert, son-
dern dass ein ähnliches Verhalten auch auf andere Weise simuliert werden kann. So kann zum
Beispiel auch die Neigung der Rotationsachse gegen die Bahnebene des Kometen das Sub-
limationsverhalten stark beeinflussen. In dieser Arbeit wird das Wärmediffusionsmodell des
Kometen nur auf sphärisch geformte Kometenkerne angewendet, da die tatsächliche Form der
Kometenkerne von 67P/Churyumov-Gerasimenko und 46P/Wirtanen noch nicht bekannt ist.
Eine weitere Vereinfachung stellt die Annahme der Homogenität des Materials dar, welche
den Vorteil einer effizienten Nutzung der zur Verfügung stehenden Computer-Ressourcen
für zahlreiche Parameter-Studien bietet. Diese Vereinfachung wird mit steigender Entwick-
lungsstufe der Modelle in Zukunft nicht mehr sinnvoll sein.

Mit dem Wärmediffusionsmodell werden Temperaturen und Sublimationsraten an diskreten
Gitterpunkten auf der Oberfläche des Kometenkernes berechnet. Diese Gitterpunkte ent-
sprechen in ihrer Position bezüglich lokaler Längen- undBreitengrade den innersten Git-
terpunkten des hydrodynamischen Modells der inneren Neutralgas-Koma. Die Ergebnisse
der Kernmodellierungen stimmen mit den Ergebnissen anderer Modelle prinzipiell überein.
Dabei ist zu berücksichtigen, dass die bisher veröffentlichten Modelle große Unterschiede in
den Ergebnissen aufweisen.
Die Abhängigkeit der Gasproduktionsrate der Kometen 67P/Churyumov-Gerasimenko und
46P/Wirtanen vom heliozentrischen Abstand wird jeweils mit einer Formel beschrieben, die
den Ergebnissen der modellierten Gasproduktionsraten angepasst ist. Mit einer solchen Ab-
schätzung lassen sich viele weitere physikalische Bedingungen in den Umgebungen dieser
Kometen zumindest grob einschätzen.

Der stoßdominierte Bereich der Neutralgas-Koma wird mit einem hydrodynamischen Mo-
dell simuliert. Dabei wird ein numerisches Modell verwendet, das die hydrodynamischen
Gleichungen in drei Dimensionen voll zeitabhängig löst.Dieses Modell hat den NamenZeus
und wurde an derUniversity of Illinois, im Laboratory of Computational Astrophysics, Na-
tional Center for Supercomputing Applicationsentwickelt. Der innere Rand des simulierten
Gebietes liegt dabei nicht unmittelbar auf der Oberfläche des Kometenkernes, sondern be-
findet sich wenige mittlere freie Weglängen der abströmenden Partikel oberhalb, da die Ge-
schwindigkeitsverteilung der Teilchen in dieser Grenzschicht nicht einer Maxwell-Verteilung
entspricht. Erst wenn die Verteilung einer Maxwell-Verteilung entspricht, lässt sich der Be-
reich mit den makroskopischen Parametern der Hydrodynamikbeschreiben.
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Die Größe des in dieser Arbeit simulierten Volumens ist variabel und wird abhängig vom
Sublimationsverhalten des Kometenkerns gewählt. Die Ausdehnung des hydrodynamischen
Regimes wird dazu zunächst, unter der Annahme einer sphärisch symmetrischen Koma mit
vorgegebener Gasproduktionsrate, abgeschätzt. Dabei geht man von einem stoßdominierten
Bereich aus, solange die mittlere freie Weglänge der einzelnen Teilchen kleiner ist, als der
jeweilige Abstand vom Kometenkern. Ob der simulierte Bereich tatsächlich mit einer hydro-
dynamischen Näherung beschrieben werden kann, lässt sich erst am Ende einer Simulation
bestimmen, wenn die Verteilung des Gases in dem Volumen bekannt ist. Dabei ergibt sich
für die untersuchten Fälle, dass das hydrodynamische Regime bei einem heliozentrischen
Abstand von 3 AE den Kometenkern noch nicht notwendigerweise umschließt, sondern nur
ein Teil der Koma auf der Tagseite des Kometen stoßdominiertist. Bei der Annäherung
eines Kometen an die Sonne wird die Ausdehnung des stoßdominierten Bereiches aufgrund
der zunehmenden Gasproduktionsrate größer. Auch bei einem Abstand von 1�3 AE kann es
vorkommen, dass die Nachtseite der Koma nicht von Stößen dominiert wird, wie aus einem
Beispiel im Anhang (D.1) erkennbar ist.

Die jeweiligen Randbedingungen am̈Ubergang vom Kometenkern in die Koma werden ent-
sprechend der vorgeschlagenen Vorgehensweise aus der Arbeit von z.B.Crifo und Rodionov
[1997a] bestimmt. Im Gegensatz zu der zitierten Arbeit wird hier aber nicht der lokale Sätti-
gungsdruck des Gases als Referenzdruck an einem Oberflächenelement verwendet, sondern
der Sättigungsdruck wird noch durch einen Faktor modifiziert, der den Anteil an sublimieren-
dem Eis in einem Oberflächenelement beschreibt. Der Flächenanteil von Eis in dem Staub-
Eis Gemisch wird dabei aus den Parametern des Kernmodelles berechnet.

Die Ergebnisse der hydrodynamischen Simulation stimmen mit der allgemeinen Vorstellung
der inneren kometaren Koma überein. Das sublimierte Gas strömt mit Geschwindigkeiten
von einigen hundert Metern pro Sekunde bis� 1 km/s im Wesentlichen radial vom Kome-
ten weg. Bei einer Sublimation von diskreten Gebieten auf der Oberfläche können Diskon-
tinuitäten im Gas entstehen, die unterschiedliche physikalische Bedingungen in der Koma
räumlich trennen. Dies kann zum Beispiel für Unterschiede zwischen der Koma auf der
Tagseite und der Nachtseite zutreffen, wie die Beispiele f¨ur den Kometen 67P/Churyumov-
Gerasimenko in dieser Arbeit zeigen. Solche Diskontinuit¨aten können auch auftreten, wenn
Gebiete unterschiedlicher Aktivität auf der Oberfläche scharf begrenzt aneinander liegen,
wodurch sogenannte Gas-Jets entstehen können (z.B.Crifo und Rodionov[1997a]).

Der Massenfluss des Staub-Gas Gemisches in der Koma erzeugt eine Beschleunigung eines
Raumfahrzeuges, das sich in der Umgebung des Kometen befindet. Die Beschleunigung
kann je nach den Ausmaßen des Raumfahrzeuges und der Gasproduktionsrate so groß wer-
den, dass ein gebundener Orbit um den Kometen nicht ohne Weiteres möglich ist. In Bezug
auf ROSETTA wird festgestellt, dass die gesamte Mission durch die Möglichkeit eines Ab-
sturzes auf den Kometenkern gefährdet ist [Schwinger, 2001]. Desweiteren können auch die
Messungen des Gravitationsfeldes durch das RSI Experimentgestört werden [Pätzold et al.,
2001]. Mit dem hier entwickelten Modell der inneren Koma lassen sich die Kräfte, die durch
die Strömung des Neutralgases auf ROSETTA ausgeübt werden abschätzen. Dabei kann die
Position des Raumfahrzeuges innerhalb der Koma berücksichtigt werden. Die Abhängigkeit
der Größenordnung der Störung vom heliozentrischen Abstand des Kometen wird durch die
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Betrachtung unterschiedlicher Fallstudien berücksichtigt. Bei einem heliozentrischen Ab-
stand von 3 AE kann die Beschleunigung von ROSETTA durch den Gasfluss die gleiche
Größenordnung erreichen, wie die Beschleunigung durch den Strahlungsdruck der Sonne.
Das trifft auch zu, wenn ausschließlich Wasser als Eiskomponente im Kometen angenommen
wird. Der Unterschied in der Beschleunigung durch den Gasdruck zwischen Tag- und Nacht-
seite der Koma kann dabei viele Größenordnungen betragen.Bei größerer Annäherung an
die Sonne kann die Beschleunigung durch den Gasfluss erheblich zunehmen.

Der ionisierte Anteil des Gases in der Kometenumgebung hat auch einen Effekt auf das Ra-
dioträgersignal von ROSETTA. Der Elektroneninhalt im Sehstrahl kann aus der Bestimmung
der differentiellen Laufzeitverzögerung des Radiosignals berechnet werden (z.B.Pätzold
et al. [2000]). Eine Phasenverschiebung des Signals tritt zudem auf, wenn sich das Radiosig-
nal durch ein ionisiertes Medium ausbreitet. Um die diesbezüglichen Effekte der Kome-
tenumgebung für das RSI Experiment einzuschätzen, wird ein eindimensionales Modell der
kometaren Ionosphäre entlang der Achse Komet-Sonne entwickelt. Dabei wird der Einfach-
heit halber angenommen, dass das Neutralgas eine sphärisch symmetrische Verteilung hat.
Die Änderung der solaren Strahlung im UV-Bereich im Verlauf dessolaren Aktivitäts-Zyklus
wird in dem Modell berücksichtigt. Entsprechend der aktuell verfügbaren Vorhersagen für
die Entwicklung des Aktivitätszustandes der Sonne wird angenommen, dass die Sonne im für
67P/Churyumov-Gerasimenko geplanten Missionszeitraum im Aktivitätsminimum ist. Das
geplante Szenario für 46P/Wirtanen lässt einen Aktivit¨atszustand nahe eines solaren Maxi-
mums erwarten. Es wird gezeigt, dass für 67P/Churyumov-Gerasimenko und 46P/Wirtanen
die Annahme eines photochemischen Gleichgewichtes in der inneren Koma nicht gerechtfer-
tigt ist. Daher wird die Anzahldichte der Ionen in der Koma mit einer Kontinuitätsgleichung
für die Ionendichte berechnet. Dabei wird der Einfluss des Sonnenwindes vernachlässigt und
Quasi-Neutralität des Plasmas angenommen.

Bei der Berechnung der Plasmadichte geht die lokale Temperatur des Elektronen-Fluids
mit ein. Diese kann, wie Messungen bei 1P/Halley andeuten, stark variieren. Ein Profil
der Elektronentemperatur entlang der Achse Komet-Sonne wird dazu modelliert. Dabei
wird angenommen, dass das Profil im Prinzip dem Temperaturverlauf entspricht, wie er
bei 1P/Halley bestimmt wurde, nur dass es entsprechend des Größenunterschiedes zwischen
1P/Halley und 67P/Churyumov-Gerasimenko bzw. 46P/Wirtanen skaliert werden kann. Auch
die Variation in Abhängigkeit vom heliozentrischen Abstand des Kometen wird berück-
sichtigt. Dies wird erreicht, indem die Ausdehnung des Bereiches bestimmt wird, in dem
Stöße mit Neutralteilchen die Elektronen effektiv kühlen können. Die äußere Grenzfläche,
bis zu der dieser Prozess möglich ist, wirdthermal electron collisionopause(TEC) genannt.
Innerhalb der TEC werden die Elektronen durch die Stöße mitden Neutralteilchen auf Tem-
peraturen von der Größenordnung 102 K gehalten. In größeren Entfernungen vom Kometen
erreichen die Temperaturen der Elektronen durch den Photoionisationsprozess und durch den
Beitrag von Elektronen aus dem Sonnenwind eine Größenordnung von 104 K - 105 K. Es
wird angenommen, dass die Ausdehnung desÜberganges zwischen diesen beiden Regionen
von den Abschätzungen bei 1P/Halley übernommen werden kann.

Das Modell der kometaren Ionosphäre ergibt Anzahldichtenfür Ionen (und Elektronen), die
so niedrig sind, dass eine Untersuchung mit dem RSI Experiment aufgrund des Auflösungs-
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vermögens schwierig werden dürfte. Eine günstige Orbitstrategie wird nötig sein, um den
kometaren Beitrag zum Elektroneninhalt im Sehstrahl überhaupt bestimmen zu können. Am
vorteilhaftesten erscheint diesbezüglich eine Bahn, dieeine vorübergehende Bedeckung der
Raumsonde durch den Kometen beinhaltet, da in diesem Fall Regionen mit unterschiedlichen
Eigenschaften mit dem Sehstrahl relativ schnell durchlaufen werden können.

Bei der Wechselwirkung des kometaren Plasmas mit dem Sonnenwind und dem interpla-
netaren Magnetfeld treten Grenzflächen auf, die mit den Methoden der Magneto-Hydro-
dynamik beschrieben werden können. Die kometozentrischen Abstände dieser Grenzflächen
werden hier dementsprechend abgeschätzt. Dieses Vorgehen lieferte bereits bei dem Kome-
ten 1P/Halley und 26P/Grigg-Skjellerup sinnvolle Ergebnisse. In dieser Arbeit werden die
Abstände der Bugstoßwelle, der Ionopause und der sogenannten Collisionopause, die den
Übergang vom stoßfreien Bereich in den von Stößen mit kometaren Neutralteilchen do-
minierten Bereich markiert, in Abhängigkeit vom heliozentrischen Abstand des berücksich-
tigten Kometen berechnet. Dabei geht die Variation der Parameter des Sonnenwindes in
Bezug auf den Abstand von der Sonne mit ein. Die Ergebnisse zeigen, dass der Bereich
der Wechselwirkung mit dem Sonnenwind bei den Kometen 67P/Churyumov-Gerasimenko
und 46P/Wirtanen kleiner ist, als bei 1P/Halley. Die Größenordnung ist vergleichbar mit
den beobachteten und modellierten Verhältnissen beim Kometen 26P/Grigg-Skjellerup. Eine
Erkennung der Grenzflächen mit dem RSI Experiment scheint möglich, wenn transiente so-
lare Ereignisse, wie zum Beispiel Effekte durch solareFlaresoder koronale Massenauswürfe,
diese Grenzflächen über das Raumfahrzeug hinweg oder durch den Radiostrahl bewegen. In
einem solchen Fall dürfte allerdings auch die Trennung vonder interplanetaren Störung und
dem kometaren Beitrag im Radioträgersignal anspruchsvoll sein.

Mit Bezug auf das RSI Experiment lässt sich zusammenfassen, dass der größte Effekt auf das
Radioträgersignal durch die Neutralgas-Koma erwartet wird. Die Bestimmung des Gravita-
tionsfeldes des Kometenkerns kann dabei beeinträchtigt werden. Eine Strategie für die Um-
laufbahn um den Kometenkern muss unter diesem Gesichtspunkt entwickelt werden. Dieser
Schluss bezieht sich nicht nur auf die wissenschaftlichen Ziele des RSI Experimentes, son-
dern zusätzlich auf die Sicherheit der gesamten ROSETTA Mission. Es wird nur ein kleiner
Einfluss des kometaren Plasmas auf das Radioträgersignal erwartet, daher wird auch hierfür
eine günstige Strategie bei der Wahl der Umlaufbahnen nötig sein.

In künftigen Arbeiten sollte der Einfluss von anders geformten Kometenkernen genauer ana-
lysiert werden. In Bezug auf das Modell der Wärmediffusionim Kometenkern wird der
Arbeitsaufwand nach der Festlegung sinnvoller Randbedingungen im Wesentlichen einen
höheren Rechenaufwand bedeuten. Der Effekt auf die Neutralgasumgebung geht dann direkt
über die Bestimmung der Randbedingungen ein. Der Aufwand bei der hydrodynamischen
Simulation besteht dann im Wesentlichen darin, ein der Formdes Kometen angepasstes Git-
ter zu definieren.
Der Effekt von Jets in der Koma sollte ebenso genauer untersucht werden. Auch das kann
erreicht werden, indem das Modell des Kometenkerns modifiziert wird. Dazu können die
Modellparameter an jedem Oberflächenelement einzeln variiert werden.

Detailliertere Modelle der Kometen 67P/Churyumov-Gerasimenko und 46P/Wirtanen sind
voraussichtlich erst möglich, wenn viele der Modellparameter besser bestimmt sind. Die
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genauere Kenntnis der Form des Kometenkerns, seiner chemischen Zusammensetzung, der
Lage der Rotationsachse und der Rotationsperiode wird die Genauigkeit der derzeit existie-
renden Modelle deutlich verbessern können. Dies wird vermutlich erst möglich sein, sobald
ROSETTA den Zielkometen erreicht. Erst dann werden die Ergebnisse der gegenwärtigen
Modelle wirklich bewertet werden können. Bis dahin müssen die heutigen Kenntnisse zur
Optimierung der Orbit-Strategie für ROSETTA verwendet werden.



APPENDIX A

PHYSICAL CONSTANTS

S0 solar constant at 1 AU 1367�0 [W m
�2]

AU astronomical unit 1�4959787�1011 [m]
σ Stefan-Boltzmann constant 5�670400�10

�8 [W m
�2 K

�4]
kB Boltzmann constant 1�3806503�10

�23 [J K
�1]

Rg molar gas constant 8�314472 [J K
�1 mol

�1]
NA Avogadro constant 6�02214199�1023 [mol

�1]
amu atomic mass unit 1�66053873�10

�27 [kg]
eV electron volt 1�602176462�10

�19 [J]
c speed of light in vacuum 2�99792458�108 [m/s]

Table A.1: Physical constants used in the calculations

The solar constant is assumed to be constant in the considered time period. It is known that
the solar energy output varies slightly with the solar cycleand a small trend is suspected from
the available measurements1. The implied uncertainty is of the order of 1%.
The other physical constants in Table A.1 are the values recommended by the NIST Physics
Laboratory2.

1see e.g. http://remotesensing.oma.be/solarconstant/solar.html for more details
2http://physics.nist.gov/cuu/index.html



APPENDIX B

FINITE DIFFERENCE SCHEME FOR THE HEAT

DIFFUSION EQUATION

The numerical scheme applied to solve Equation (4.22) is a FTCS (Forward Time Centered
Space) finite difference approximation. Since Equation (4.22) corresponds to a nonlinear
diffusion problem, due to the dependence of the thermal conductivity on temperature, the
approximation proposed byPress et al.[1986] is used.

c1
∂ T
∂t

�
∂
∂z

D
�
T � ∂ T

∂z
(B.1)

is approximated as:

c1
T i�1

j �T i
j
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D j�1�2
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T i
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T i
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j�1��

∆z�2 � (B.2)

with the subscripti indicating the time steps and the subscriptj indicating the discretized
space domain, and with

D j�1�2 �
1
2

�
D �T i

j�1��D �T i
j �� � (B.3)

In this formulationD corresponds to the thermal conductivitykeff
�
T� andc1 is ρnc

�
T �.

The stability criterion for the scheme (B.2) is [Press et al., 1986]:

∆t �min
j

��∆z�2 c1

2 D j�1�2� � (B.4)



APPENDIX C

THE THERMAL M ODEL APPLIED TO

1P/HALLEY

In Figure C.1 the resulting gas production rates from a thermal model applied to comet
1P/Halley are plotted. The parameter settings are (notation as in Chapter 4)ρn

� 800 kg,
Rdi

� 100,h � 10
�3, A � A0

�
rh, andω � 0�. The observed gas production rates are taken

from Fink and DiSanti[1990] andSchloerb et al.[1987]. Production rates derived at the
inbound part of the orbit are plotted with diamonds, the outbound measurements are plotted
as stars. The dashed line is a fit to the data fromFink and DiSanti[1990]. The solid line is
the resulting gas production rate from the model run. The effective radius of the spherical
model comet is assumed to beRc

� 5�6 km. This value and the orbital parameters for comet
1P/Halley are taken from the JPL DASTCOM database1.

Since no data are available for heliocentric distances larger thanrh
� 2�9 AU, the large de-

viation between model results and fit can not be judged. However, since the fit is based on
observations alone, it should not be extrapolated beyondrh

� 2�9 AU. Insiderh
� 2�0 AU

the model result overestimates the gas production rate. Theicy area fraction on the surface is
� 5 % at perihelion distance. Treating the evolution of the icyarea fraction with heliocentric
distance differently or taking a possible obliquityω �� 0� into account might produce even
better results.
The magnitude of observed gas production rates for comet 1P/Halley can be reproduced with
reasonable model parameter settings.

1http://ssd.jpl.nasa.gov/dastcom.html
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Figure C.1: Results from the thermal model applied to 1P/Halley. Some observed production rates
(diamonds = inbound, stars = outbound), fit to a data-subset (dashed line) [Fink and DiSanti, 1990],
and model results (solid line) are plotted.



APPENDIX D

ADDITIONAL RESULTS OF THE COMA MODEL

Two additional results from the hydrodynamic modeling are presented here. The coma of
comets 67P/Churyumov-Gerasimenko and 46P/Wirtanen at approximately their respective
perihelion distance is modeled. The inner radial boundary conditions are derived from the
heat diffusion models of the comets. At comet 46P/Wirtanen an additional constant source
of gas is added, accounting for possible sublimating ices from below the surface.

D.1 67P/Churyumov-Gerasimenko at 1.3 AU

Results from the hydrodynamic modeling of the neutral coma of comet 67P/Churyumov-
Gerasimenko at 1�3 AU are presented here. The conditions at the inner radial boundary are
derived from the results of model M3 of the heat diffusion model of the nucleus. In Figure
D.1 isolines of the number density and vectors of the velocity are plotted. The vectors of
the velocities are projected in the equatorial plane. The sun is to the left of the chart and
the comet spins in an anti clockwise sense. The gas production is almost symmetric to the
comet-sun axis. It is dominant on the day-side of the nucleus. The appearance is jet-like
caused by the sharp transitions to the night-side coma. Thisis a result of the large difference
of the appearing temperatures between the day-side and the night-side on the surface of the
nucleus (see Figure 4.8(c)). The dominant gas expansion on the day-side is bounded by
a discontinuity in the terminator region, and therefore thegas is not expanding spherically
symmetric. The result is a night-side inner coma that is not dominated by collisions. The
velocities in the day-side coma remain at a constant level and the expansion is purely radial.
The night-side coma has very low number densities, since no lateral flow from the denser
region on the day-side exists.
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Figure D.1: Logarithmically scaled number density nn [cm
�3] of the neutral gas. Isolines indicate

the distribution of the number density at levels spaced by anuniformly distance of0�2. Velocities are
projected in the equatorial plane. The respective length ofthe plotted arrows indicates the velocity in
units of (km/s)�4. Exemplary result for 67P/Churyumov-Gerasimenko at1�3 AU.

The general appearance of the resulting coma is comparable to a spherically symmetric coma
on the day-side that is not centered on the origin of the cometocentric coordinate system, but
has an offset in the sun direction by about the radius of the comet.

A radial profile at the comet-sun axis of the number densitynn, mean free path of particles
m f p, radial velocityvr , and the resulting acceleration of the spacecraft is plotted in Figure
D.2. The dashed lines represent the corresponding number density of a spherically symmetric
coma with the same gas production rate (first panel), the cometocentric distance (second
panel) and the speed of sound (third panel).

It can be concluded that the gas expands supersonically, that the number density depends on
the cometocentric distance with the inverse square, and haslarger number densities than a
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Figure D.2: Radial profile at comet-sun axis of the logarithmically scaled number density nn and
mean free path of particles m f p, the radial velocity vr and the resulting acceleration of the spacecraft.
Exemplary result at a heliocentric distance of1�3 AU for 67P/Churyumov-Gerasimenko .

spherically symmetric coma in the day-side part of the coma.The velocity remains atvr
�

400 m/s in the inner coma. The resulting absolute of the acceleration of the spacecraft caused
by gas drag exceeds the radiation pressure by about 3 orders of magnitude at a cometocentric
distance ofr � 5 km.

Profiles on a virtual orbit at a cometocentric distance of 5 kmin the equatorial plane are
plotted in Figure D.3. Included in the plot are the number density, the radial component of
the velocity, and the resulting acceleration of the ROSETTA spacecraft. The number density
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Figure D.3: Profile in the equatorial plane of 67P/Churyumov-Gerasimenko of the number density
nn, the radial velocity component vr and the resulting acceleration of the spacecraft. Exemplary result
at a heliocentric distance of1�3AU.

differs many orders of magnitude between the day-side and the night-side coma. The more
gradual decrease on the evening sideΦ � 270� results from the temperature distribution on
the surface. The radial gas velocities on the day-side coma are also larger than on the night-
side. The acceleration of the spacecraft exceeds the acceleration caused by the radiation
pressure (indicated by the dashed line in the third panel of Figure D.3) by about two orders
of magnitude. The radiation pressure is dominant for this scenario on the night-side part of
the orbit.



D.2 46P/WIRTANEN AT 1.1 AU 121

-20 -10 0 10 20
-20

-10

0

10

20

-20 -10 0 10 20
comet radii

-20

-10

0

10

20
co

m
et

 r
ad

ii

   
   

10

      10

   
   

50

   
   

50

   
  1

00

nn [109 cm-3]
rh = 1.1AU

comet-sun-axis

Figure D.4: Isolines of the number density nn of the neutral gas at levels 1,5,10,50,100,500,1000 in
109cm

�3. The projected vectors of the velocities are normalized to alength of [(km/s)�4]. Exemplary
result in the equatorial plane of 46P/Wirtanen at1�1 AU.

D.2 46P/Wirtanen at 1.1 AU
The inner radial boundary in this scenario is determined from model W2 of the heat diffusion
model of the nucleus. An additional constant source of gas ofthe order of 1026 molecules/s
is added in order to account for the possible sublimation of more volatile species from subli-
mation fronts below the surface.
The number density and the projected velocity components inthe equatorial plane of comet
46P/Wirtanen at 1�1 AU heliocentric distance are plotted in Figure D.4. Isolines of the num-
ber densities are plotted. The arrows indicate direction and strength of the velocity. The sun
is to the left and the comet is rotating in anti clockwise direction in this chart.
The appearance of the inner coma is similar to a spherically symmetric coma with an offset
of the center in the sun direction. This is a result of the stronger sublimation on the day-side
of the nucleus.
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and mean free path of particles m f p, the radial velocity vr and the resulting acceleration of the
spacecraft [m/s2]. Exemplary result at a heliocentric distance of1�1 AU for 46P/Wirtanen .

Radial profiles along the comet-sun axis of the number density, mean free path of particles,
radial velocity, and the resulting acceleration of the spacecraft due to gas drag are plotted
in Figure D.5. The included dashed lines represent the corresponding number density of a
spherically symmetric coma with the same gas production rate (first panel), the cometocentric
distance (second panel) and the speed of sound (third panel). It can be concluded that this
region of the coma expands supersonically, has a larger number density than a spherically
symmetric coma, and remains collision dominated in the considered range.



D.2 46P/WIRTANEN AT 1.1 AU 123

             
1010

1011

nu
m

be
r 

de
ns

ity
 [c

m
-3
]

46P/Wirtanen at 1.10 AU
equatorial plane, s/c orbit at  6.3 km

             
0

200

400

600

800

1000

v r
 [m

/s
]

             
-100

-50

0

50

100

v φ
 [m

/s
]

0 30 60 90 120 150 180 210 240 270 300 330 360
φ [deg]

10-6

10-5

10-4

s/
c 

ac
ce

l. 
[m

/s
2 ]

Figure D.6: Profile in the equatorial plane of 46P/Wirtanen of the numberdensity nn, the radial
velocity component vr , the longitudinal velocity component vΦ and the resulting acceleration of the
spacecraft. Exemplary result at a heliocentric distance of1�1AU.

Profiles on a virtual orbit at a cometocentric distance ofr � 6 km in the equatorial plane are
plotted in Figure D.6. Included in the plot are the number density, the radial and longitudinal
components of the velocity, and the resulting accelerationof the ROSETTA spacecraft. The
number density differs about a factor of 3 between the day-side and the night-side coma.
The radial gas velocities on the day-side coma are approximately similar to the values on
the night-side. The longitudinal velocity component indicates a gas flow component away
from the dense subsolar region. The gas flux remains mainly radial. The acceleration of
the ROSETTA spacecraft with such an orbital distance has values between10

�6 m/s2 and
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10
�4 m/s2. The orientation of the solar panels is assumed to be perpendicular to the comet-

sun axis throughout the complete orbit.



APPENDIX E

OBSERVATIONAL GEOMETRY FOR

67P/CHURYUMOV -GERASIMENKO

In Figure E.1(a) the earth orbit projected on the orbital plane of comet 67P/Churyumov-
Gerasimenko is plotted. Cometocentric coordinates are applied, and the comet-sun axis is
fixed. The time frame from June 2014 to December 2015 is plotted. An solar opposition and
a solar conjunction occur during early phases of this time frame. The kink in the projected
path of the earth does occur close to the perihelion passage of the comet (see also Figure 3.1).

The corresponding absolute angle between the line-of-sight (between earth and comet) and
the comet-sun axis is shown in Figure E.1(b).This angle becomes larger than 30 degrees ap-
proximately�3 months around the perihelion passage. It can be concluded that the received
radio signals will propagate through the interaction pattern that develops between the solar
wind and the comet on the upwind side. This is of particular interest for the considerations
of the plasma environment (see Chapter 6).
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Figure E.1: The orbit of earth in cometocentric coordinates, projectedin the orbital plane of
67P/Churyumov-Gerasimenko (left). Absolute of the angle between the line of sight and the comet-sun
axis during the time frame of the proposed prime mission (right).
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für die Möglichkeit diese Arbeit am Institut für Geophysik und Meteorologie der Universität
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