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Abstract

Since their discovery in 1610 by Galileo Galilei, Saturn’s rings continue to fascinate both

experts and amateurs. Countless numbers of icy grains in almost Keplerian orbits reveal

a wealth of structures such as ringlets, voids and gaps, wakes and waves, and many more.

Grains are found to increase in size with increasing radial distance to Saturn. Recently

discovered “propeller” structures in the Cassini spacecraft data, provide evidence for the

existence of embedded moonlets. In the wake of these findings, the discussion resumes

about origin and evolution of planetary rings, and growth processes in tidal environments.

In this thesis, a contact model for binary adhesive, viscoelastic collisions is developed that

accounts for agglomeration as well as restitution. Collisional outcomes are crucially deter-

mined by the impact speed and masses of the collision partners and yield a maximal impact

velocity at which agglomeration still occurs. Based on the latter, a self-consistent kinetic

concept is proposed. The model considers all possible collisional outcomes as there are co-

agulation, restitution, and fragmentation. Emphasizing the evolution of the mass spectrum

and furthermore concentrating on coagulation alone, a coagulation equation, including a

restricted sticking probability is derived. The otherwise phenomenological Smoluchowski

equation is reproduced from basic principles and denotes a limit case to the derived coagu-

lation equation.

Qualitative and quantitative analysis of the relevance of adhesion to force-free granular

gases and to those under the influence of Keplerian shear is investigated. Capture probabil-

ity, agglomerate stability, and the mass spectrum evolution are investigated in the context

of adhesive interactions. A size dependent radial limit distance from the central planet is

obtained refining the Roche criterion. Furthermore, capture probability in the presence of

adhesion is generally different compared to the case of pure gravitational capture. In con-

trast to a Smoluchowski-type evolution of the mass spectrum, numerical simulations of the

obtained coagulation equation revealed, that a transition from smaller grains to larger bod-

ies cannot occur via a collisional cascade alone. For parameters used in this study, effective

growth ceases at an average size of centimeters.
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Chapter 1

Introduction

Granular matter is defined as a large collection of mesoscopic objects which interact via

inelastic collisions. Mesoscopic is a relative term ranging from submicron dust particles to

millimeter size sand grains to boulder size rocks within planetary rings to even automobiles

in traffic flow. Granular matter can be further classified as granular solids, granular liquids,

and granular gases. The different physical states describe different density packings. This at

first glance exotic matter can be found in everyday life in form of sugar, coffee powder, bot-

tles, etc. Most commonly know to anyone from childhood, sand provides the best example

of granular matter. Dry sand alone comes in various appearances and can be used to build

“solid” castles or “flow” down a sandpile in an avalanche. As examples of granular matter

cover as wide range, so do its applications. Industrial interest are high and concentrate on

transport problems. These may concern pharmaceutical products, fruits or corn (Gan-Mor

and Galili, 2000), or even traffic flows in congested areas (Wolf et al., 1996; Helbing, 2001).

Granular gases are dilute systems of granular matter and are treated according to thermo-

dynamics and kinetic theory of gases. It is sufficient to consider binary contacts which are

merely inelastic, physical collisions among constituents. This energy dissipation is mainly

responsible for structure evolution, clustering, and the permanent cooling of ensembles in

the absence of external energy sources (Haff, 1986; Petzschmann et al., 1999). Although

these systems are usually in non-equilibrium states, they are attributed with typically equi-

librium terms as e.g. temperature. In general, a granular temperature is defined via the mean

random velocity of the ensemble. However, under anisotropical conditions one isotropic

temperature is no longer sufficient and has to be replaced by a temperature tensor. Apart

from theoretical considerations, experimental realizations of granular gases are rather hard

to achieve, since earth-bound laboratories are subject to gravity.

The most spectacular granular gases cannot be found on Earth but in space. Planetary

rings, surrounding all the giant planets of the Solar system, are truly beautiful examples

of their kind. Countless numbers of particles ranging in size from microns up to house-

sized boulders revolve the central planet on almost Keplerian orbits and thereby create a

wealth of features such as voids and gaps, ringlet structures, waves and wakes, “spokes”,

“propellers”, and many more. Displaying a variety of masses, sizes, and physical processes,

ring systems around Jupiter, Saturn, Uranus, and Neptune, although being generally alike,

are as different from one another as one can imagine (see Burns, 1999; Esposito, 2002, for

a general introduction).

9



10 CHAPTER 1. INTRODUCTION

Figure 1.1: An image of Saturn and its main rings taken by the Cassini spacecraft (Plan-

etary Photojournal, JPL, PIA06193) while approaching the planet in 2004. The A ring

(outermost) and the brighter B ring are separated by the darker Cassini division. A much

fainter ring, the C ring, lies yet inside the B ring. The Cassini division was the first structure

observed in 1675 by Giovanni Cassini and has been associated with the proof that the ring

is divided into many ringlets.

Yet common to planetary rings is their existence inside the Roche limit of any of the giant

planets. The Roche limit denotes the distance from the central planet inside which a fluid

particle would be disrupted by tidal stresses (Roche, 1847; Chandrasekhar, 1969; Albers

and Spahn, 2005). Latter become more important closer to the planet and compete against

coagulation1. James Clark Maxwell in 1859 already noted that the tendency of particles

to coagulate into narrow rings opposes the disintegration process. Closely connected to

this fact is the question about the origin and formation of planetary ring systems. While

there are two major theories none specific could be singled out so far. On one hand, rings

may originate from the same process as regular satellites and are simply the uncoagulated

remnants of satellites that failed to form (Harris, 1984; Esposito, 2002). Clearly, in this case

they must be as old as the Solar system. On the other hand, they may be simply the result

of a disruption from a preexisting body. This could either mean a satellite previously in

orbit around Saturn (Colwell and Esposito, 1992, 1993; Colwell et al., 2000) or remnants

of a comet that came too close to the central planet (Dones, 1991). Tiscareno et al. (2006,

(Spahn and Schmidt, 2006); see also Fig.1.4) discovered four building-sized moonlets in the

Saturn A ring. They argue in favor of the latter formation scenario. However, the question

of origin still remains open.

Apart from these more general questions, three size populations have to be mentioned: dust

(spreading throughout the entire system), centimeter sized grains to boulders of tens of me-

1Coagulation, aggregation, and agglomeration are widely used throughout this thesis. In principle denoting

different physical scenarios, they will be referred to the same thing, i.e. the sticking of two grains nevertheless

if they form a new spherical grain or retain their shape. Otherwise, coagulation refers to the merging of two

droplets while agglomeration and aggregation refer to the simple attachment of two grains without changing

their shape.
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ters (making up the main rings in case of Saturn), and moonlets up to satellites dominating

the outer regions. These populations interact in form of resonances and gaps in the rings,

created by satellites or embedded moons found to be coexisting within the Roche zone

(Sicardy, 2005). The dynamics of a dense planetary ring is mainly determined by the grav-

ity of the central body and the ring itself as well as by mutual inelastic collisions among the

constituent grains. Energy is constantly being replenished due to viscous shearing. This is

a result of the collective motion in the central gravity field, which in turn will be dissipated

as heat during particle encounters. Mutual particle collisions are the main source of dis-

sipation. The conserved angular momentum, on one hand, and inelastic particle collisions

on the other are reasons for the extremely low vertical height of a planetary ring (Schmidt

et al., 1999). Viscous heating due Keplerian shear balances the energy loss due to inelas-

tic collisions. A quasi-equilibrium granular temperature crucially determines lifetimes and

structures of the rings (Goldreich and Tremaine, 1978). The vertical extent or the ring is

correlated to its granular temperature. The dust population, having a larger random walk

speed, shows a broader spatial distribution than meter-sized grains. This segregation in size

does not only appear on vertical scale but radially as well. While being by far thinner than

100 meters the radial extent of Saturn’s rings is more than 120,000 kilometers.

In contrast to the previously mentioned dense rings, dusty rings as e.g. the tenuous Jovian

rings or the G and E ring of Saturn are not driven by collisions. Dust grains, generally

charged, are subject to a variety of perturbing non-gravitational forces such as the Lorentz

force due to the magnetic field of the central planet, direct Solar radiation pressure, Pointing-

Robertson drag, or plasma drag. The E ring is the broadest ring of the Saturn system where

dust is thought to originate from the surfaces of embedded moons (Showalter et al., 1991;

Horanyi et al., 1992; Hamilton and Burns, 1994; Spahn et al., 1999, 2006a). As in case of the

Jovian moons, their surfaces are exposed to a continuous bombardment of micrometeroids

(Krivov et al., 2003; Sremčević et al., 2003, 2005). Enceladus, one of the embedded moons

among Rhea, Tethys, and Mimas, recently made headlines for its prominent south pole

source of dust (Spahn et al., 2006b), which proves to be the dominant source to replenish

the E ring. Another example of optically thin dusty structures are Martian dust tori, first

proposed by Soter (1971). These putative dusty complexes, originating from the Martian

satellites Phobos and Deimos, still remain undetected, but are theoretically studied in great

detail (e.g. Krivov and Hamilton, 1997; Makuch et al., 2005, 2006).

Saturn’s rings are by far the most prominent and best studied among planetary rings. Since

their discovery in 1610 by Galileo Galilei, they continue to fascinate both experts and am-

ateurs. The rings mainly consist of icy grains as it has been inferred from spectrometry

measurements (Planetary Photojournal, JPL, PIA05075). Radio occultation data suggests

grain sizes ranging from centimeters up to tens of meters in the main rings (Marouf et al.,

1983; Zebker et al., 1985; Showalter and Nicholson, 1990). Grains show no significant

water ice pollution due to micrometeoroid bombardment (Cuzzi and Estrada, 1998). This

points to rather young or freshly replenished material. Evidence from the Visual and In-

frared Mapping Spectrometer (VIMS) of the Cassini spacecraft (Planetary Photojournal,

JPL, PIA06349), see Fig. 1.2) suggests larger grain sizes with increasing distance to Saturn.

The Roche limit, as mentioned above, marks the borderline to denote the onset of growth

processes and the existence of satellites. The disruption of a solid body with finite internal

strength has been analyzed in various studies and a critical distance to a central body as a
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Figure 1.2: An increasing grain size is indicated by data from the visual and infrared map-

ping spectrometer (VIMS) on board of the Cassini spacecraft (Planetary Photojournal, JPL,

PIA06349). Tidal shear counteracting agglomeration can be responsible for an radially de-

pendent, upper limit size of the size distribution.

function of the satellite’s size has been obtained (Aggarwal and Oberbeck, 1974; Dobrovol-

skis, 1990; Davidsson, 1999, 2001). Accretion within the Roche zone could yield temporary

aggregates such as dynamic ephemeral bodies (DEBs) (Weidenschilling et al., 1984). Re-

gions featuring a vivid size distribution dynamics such as the prominent F ring (Showalter

et al., 1992; Porco et al., 2005) provoke questions about the likeliness of growth processes.

The possibility of particles sticking has been inferred from laboratory experiments (Hatzes

et al., 1991; Tremaine, 2003) but still lacks a theoretical modeling. However, a more de-

tailed model of particle interactions including adhesive effects has not been studied in detail

up to now but could significantly help to understand size and velocity distributions that are

otherwise still poorly known. The relevance of particle adhesion is still putative.

Recently, propeller structures have been discovered in Cassini data (Tiscareno et al., 2006;

Spahn and Schmidt, 2006) clearly indicating the existence of embedded moonlets as pre-

dicted by Showalter et al. (1986) (Spahn and Wiebicke, 1988; Spahn and Sremčević, 2000;

Sremčević et al., 2002). Embedded moons can create gaps in the rings and leave traces as

wavy, gap edges. This lead to the prediction of the existence of the moon Pan (Showalter

et al., 1986; Spahn and Sponholz, 1989) which has later on been discovered while carefully

re-examining Voyager data (Showalter, 1991). Since with the current technology moonlets

escape direct detection, they may only be observed indirectly with respect to structures they

produce (Seiß et al., 2005). There are, for instance, plenty of clumpy rings or ringlets that

could be explained by embedded but yet unseen moons. In case of the F ring, those moon-

lets denote a reasonable explanation (Kolvoord et al., 1990; Kolvoord and Burns, 1992)

to account for its azimuthal structure. Larger clumps are submitted to fragmenting and

accreting collisions and thereby release large amounts of temporary dust (Barbara and Es-

posito, 2002), which could support the observed vivid size distribution (Murray et al., 1997;

Poulet et al., 2000b). Particles, clumps, and moonlets are constantly fragmenting, eroding,

but also recreating in agglomeration (Esposito et al., 2006) leaving questions about the age

and origins about these moonlets in the same way as does apply to the entire ring system.

In the light of these newly attained data from the Cassini spacecraft the discussion freshly
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Figure 1.3: ”Dynamical Ephemeral Bodies” in the rings of Saturn as imagined by William

K. Hartmann. From this position, Saturn fills most of the image in the background. Particles

might temporarily aggregate into larger bodies, eventually sheared apart again by dynamical

forces in the rings. Jacques Cassini, son of Giovanni Cassini, suggested in 1715 that the

rings are made of many small satellites orbiting the planet which, however, are too small to

be seen. Later, at the end of the 18th century, Laplace proved the rings ringlet structure on

the base of centrifugal forces.

resumes, whether these moonlets are remnants of a catastrophic disruption of a former satel-

lite or were formed and reshaped by accretion and fragmentation during the evolution of the

rings.

The question about planet formation is, besides appearance and evolution of planetary rings,

another interesting subject where the theory of granular gases is applied. After gas of the

pre-planetary disk condensated into heavy elements, cohesive collisions of grains lead to

the formation of yet larger bodies (Hartmann, 1978; Weidenschilling et al., 1984). So called

planetesimals will then either grow via further cohesive collisions or through gravitational

instability (Safronov, 1969; Goldreich and Ward, 1973) and will eventually form protoplan-

ets. The nonlinear increase of a privileged planetesimal’s cross section together with an al-

most steady granular temperature of smaller grains leads to the so-called “runaway” growth

of the largest planetesimal in a certain region. This considerably amplifies the growth of

planets (Wetherill, 1990; Wetherill and Stewart, 1993).

The formation of planets according to these current theories crucially depends on whether

collisional growth is possible. How smaller grains aggregate up to planetesimals sizes is still

not fully understood. The link between grains and planetesimals could be the “missing” link

of planetogeny. Since experiments in this field of research are restricted to numerical sim-

ulations only, planetary rings may serve as a “laboratory” for planet formation scenarios.

Although we are merely deemed to observe than to actually set up an experiment, under-

standing their dynamics is promising. It may provide answers to whether larger bodies

can grow in a tidal environment and if it occurs via a collisional cascade of agglomeration

as currently assumed. Since mutual collision, either scattering or physical ones, shape a
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Figure 1.4: Collection of images of the Cassini spacecraft taken during orbit insertion in

July 2004 (Planetary Photojournal, JPL, PIA07792). The most left part of the figure shows

Saturn’s main rings where the narrow F ring (bottom structure) is clearly separated from the

A ring. Further up, the dark Cassini division and brighter B ring can be seen. As theoret-

ically predicted, propeller like structures were found indicating the existence of embedded

moonlets (Tiscareno et al., 2006). They are highlighted in the two close-up of an A ring re-

gion. Raising questions about origin and formation of the ring itself, these structures belong

to one of the most striking findings of the Cassini mission.

planetary ring, collisions could bear the answers to at least some issues.

Since the Cassini spacecraft entered orbit around Saturn in July 2004, it continues to trans-

mit astonishing data and pictures with resolutions so far unreached. A more detailed under-

standing of the underlying, physical collision dynamics together with a combined kinetic

treatment may grasp the very essence of planetary rings.

This thesis proposes a contact model for adhesive, viscoelastic collisions of solid, homo-

geneous spheres. The model allows for agglomeration as well as restitution. Influences

on the stability of agglomerates and capture probability in a gravitational field of a central

body are discussed. Furthermore, a general kinetic concept is proposed and discussed in

the context of growth processes based on the introduced collision dynamics. This work is

organized as follows: Chapter 2 introduces a model of granular particle collisions. After

commemorating the basics of contact dynamics, adhesive, viscoelastic collisions are dis-

cussed in detail. In particular, applications to ice at low temperatures are emphasized. A

brief overview on simulations about planetary rings is given in Chapter 3. In order to show

general effects of adhesive particle collision introduced in Chapter 2 on orbit dynamics,

the stability of a two-body agglomerate and the mutual capture probability of two colliding

grains is analyzed analytically and numerically. Result are discussed mainly in context of

Saturn’s rings. Implications with respect to pre-planetary aggregation are also addressed.

In Chapter 4, growth processes are treated in terms of kinetic theory, while a general ki-

netic concept is proposed. The study concentrates on effects of adhesive collisions, and

a coagulation equation is derived from basic principles. The otherwise phenomenological

Smoluchowski equation (Smoluchowski, 1916) emerges as a limit case. A comparison of the

former and the latter is given and its implications discussed. The conclusions in Chapter 5

summarize the results and give a brief outlook on future studies and possible applications.



Chapter 2

Granular Particle Collisions

Besides external forces, granular particles are subject to mutual collisions. In general, these

interactions can be classified into long-range forces, such as gravity or electrostatic forces,

and short-range interactions, such as contact forces. In case of relatively dilute systems,

granular gases such as planetary rings, it is sufficient to consider binary collisions only.

Any such collision can result in (i) agglomeration, (ii) restitution, or (iii) fragmentation

(Spahn et al., 2004). Agglomeration becomes possible if attractive forces and dissipation

dominate repulsive ones, while fragmentation, i.e. cratering and shattering impacts, occurs

if relative velocities are large enough to erode attractive bonds. However, the main emphasis

of this work is placed on aggregation and restitution.

In this chapter, we propose a dynamic contact model for adhesive, viscoelastic particles. The

collision dynamics is described analytically in Sec. 2.2 and solved numerically in Sec. 2.3.

A simplified, but reasonable, model is introduced in Sec. 2.3.1 and applied to icy grains in

Sec. 2.4.1. A summary on model applicability and limitations is given at the end of this

chapter.

2.1 Coefficients of Restitution

In this Section, we introduce the coefficients of restitution which are the most important

parameters in describing granular gases. Besides a general theoretical interest, they are

applied to agricultural studies of transport (Gan-Mor and Galili, 2000). There, the restitu-

tion coefficients of potatoes and tomatoes are investigated in order to allow for optimized

fruit sorting mechanisms. Later on, these parameter will prove to be the decisive aspect to

characterize a collisional outcome.

A collision between two solid, homogeneous spheres, (m1,~r1) and (m2,~r2) with velocity ~̇r1

and ~̇r2 and spin ω1 and ω2 can completely be described according to

~rc =
m1~r1 +m2~r2

m1 +m2

; ~d = ~r2−~r1 , (2.1)

where ~rc and ~d denote the center of mass and relative distance between the grains, re-

spectively. In terms of relative motion it is convenient to use the effective mass1 meff =
m1m2/(m1 + m2). While the center of mass motion is continuous during collision ~̈rc = 0,

1Effective values are generally obtained as xeff = x1x2/(x1 + x2).

15



16 CHAPTER 2. GRANULAR PARTICLE COLLISIONS

the relative motion changes according to conservation of energy and momentum. At the

very instant of the collision the dynamics can be treated in the collisional plane with ~ed

being its normal and ~d = d~ed . The impact is composed of its normal ~N ‖~ed and tangential

component ~T ⊥~ed . The relative velocity at impact is given by the relative surface velocity.

It additionally accounts for each particles’ rotation and thus reads

~g = (~̇r2−~ω2×R2~ed)− (~̇r1 +~ω1×R1~ed)

= ~̇r2−~̇r1−R2~ω2×~ed−R1~ω1×~ed , (2.2)

where Ri are the respective particle radii (Hertzsch et al., 1995; Brilliantov et al., 1996). The

related normal and tangential impact velocity read ~gN = (~̇r2−~̇r1) ·~ed = ~̇d and ~gT = (~̇r2−
~̇r1−R2~ω2−R1~ω1)×~ed . In case of perfectly elastic collisions no energy is dissipated and the

process itself is reversible in time. In case of inelastic collisions and thus any real material

application, energy is no longer conserved and expressed as a broken symmetry in time as

illustrated in Fig. 2.1. The amount of dissipated, relative kinetic energy is characterized by

the coefficients of restitution2, where εN refers to normal and εT to tangential motion. They

denote the ratio of relative impact speed before and after collision as

g ′N = −εNgN ; εN ∈ [ 0,1] (2.3)

g ′T = εTgT ; εT ∈ [−1,1] (2.4)

where primed variables denote values after collision. The actual amount of dissipated en-

ergy in case of restitution can be written as (Brilliantov et al., 1996)

∆E = (∆EN)+(∆ET) =
meff

2
g 2

N (ε 2
N −1)+

meff

2
κ12g 2

T (ε 2
T −1), (2.5)

where κ12 accounts for the particle’s moment of inertia. In case of uniform spheres κ12 =
2/7. Elastic and inelastic collisions can be distinguished as ∆E = 0 for elastic and ∆E < 0

for inelastic collisions. The limit case of ∆E = −Ekin = −meff~g
2/2 denotes aggregation,

where both particles stick together and move at the unchanged center of mass speed~̇rc since

~̈rc = 0. The normal coefficient of restitution εN ranges between zero and unity i.e. between

purely dissipative and perfectly elastic impacts. The tangential restitution coefficient εT, on

the other hand, denotes a sliding motion for εT ≥ 0 and a spin-reversal for εT < 0. In case

of ideally smooth surfaces εT = 1 and furthermore independent of the grain material.

Thus, as long as the duration of a collision is negligibly small its outcome is fully determined

by the coefficients of restitution. Given a particular material, simulations or experiments

denote ways to obtain these parameters. Pade approximation and the method of inverse

collision are usually applied to obtain analytical expressions for εN (Ramı́rez et al., 1999).

However, dissipation cannot satisfyingly accounted for in an analytic manner.

We will provide a detailed overlook on contact dynamics and propose a collision model

denoting a significant extension to previously existing models.

2A third coefficient, the coefficient of binormal restitution εB, denotes the second tangential component

perpendicular to the previous two. It, however, is usually disregarded in theoretical and experimental studies.

The change of angular momentum for the binormal component is related to the radius of the contact area,

whereas for the tangential one it is related to the radius of the spheres. Thus, the change of angular momentum

is in case of binormal motion always smaller than in case of tangential motion.
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b
~g

~ed = −~e ′dχ

~g ′

~g ′ ~g

~ed

~e ′d
ϕ

(a) elastic collision

~g
b

χ
~ed = −~e ′d

~ed

~g

~g ′ = ǫ~g

~g ′ = 1

ǫ
~g

~e ′d
ϕ

(b) inelastic collision

Figure 2.1: Sketch of the geometrical relations of velocities involved during collision. The

collisions are rotationally symmetric with respect to ϕ and have an impact parameter b.

Incoming particles will be scattered and ejected at an angle χ. Solid vectors denote the

forward (+t) and dashed ones the time reversed collision (t→−t). For inelastic collisions

the symmetry with respect to time is broken. The ejection angle χ is thus smaller than in the

elastic case. Velocities are reduced by a factor of ε or in case of the time reversed collision

have to be larger by exactly this factor.
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2.2 Contact Model

Although particles in space can have all kinds of shapes, compositions, and surface struc-

tures, a simple model should suffice at this point. Grains are assumed to be solid, homo-

geneous spheres of mass m and radius R with perfectly smooth surfaces, i.e. εT = 1, for

simplicity. At this point, we concentrate on the normal component of relative motion ~N.

If two particles collide they will temporarily experience a compression which can be defined

as

ξ = R1 +R2−|~r2−~r1| (2.6)

where ξ ≥ 0 denotes the effective normal deformation if the particles are in contact and

ξ < 0 the actual distance between the particle’s surfaces, otherwise.

Material deformations have been studied extensively and, depending on the materials con-

sidered, may feature elastic, adhesive, viscoelastic, plastic, or even a mix of these types of

behavior. Here, we shall revisit the basic theoretical considerations (see e.g. Landau and

Lifshitz, 1959; Tschoegl, 1989) in order to compile a new model of contact dynamics.

A given point within a solid body is attributed with a position vector~x. Any deformation can

be expressed as dx′i = dxi +ui(xi +dxi)−ui(xi) = dxi +dui where~u denotes the deformation

and i indicates the according Cartesian coordinate. In case of small deformations dui =
ui + uikdxk. Within the limit of linear elastic theory, higher order derivatives are neglected.

The strain tensor or differential deformation3 is given by

uik =
∂ui

∂xk

=
1

2

(

∂ui

∂xk

+
∂uk

∂xi

)

=

(

uik−
1

3
δikull

)

+
1

3
δikull . (2.7)

Any deformation may be split into a shearing deformation without volume changes (the

expression in brackets has a vanishing trace uii = 0) and pressure-driven deformation, that

do invoke volume but no shape changes (uik = const.δik). ull denotes the relative volume

change dV ′/dV or cubic strain with dV ′ = dV (1+ull), and δik is Kronecker’s delta. In case

of ideal elastic, infinitesimal deformations, the stress tensor σ̂ does only depend on strain

σel
ik =Cikjl ujl where Cikjl accounts for material parameters. Thus an ideal elastic body shows

no stress without a deformation and vice versa. Material’s elasticity is given by bulk and

shear modulus. An isotropic medium can be characterized by two Lamé constants (λI,λII).

In this case Cikjl takes a simplified form4 and the generalized Hook’s law reads

σel
ik = λIδikull +2λIIuik . (2.8)

The material immediately responds to applied stresses and there is no need to indicate a

time dependence or neither stress nor strain. Since there exists no perfectly elastic material,

material dependent dissipation is inevitable.

Viscosity is, besides plasticity, one way to account for dissipation. It is generally veloc-

ity dependent and denotes a rather intuitive way to describe inner friction (cf. a damped

3While the subscript i denotes Cartesian coordinates, Einstein’s summation rule applies hereafter. Note, the

strain tensor is symmetric uik = uki.
4While the stress-strain relation here is expressed in terms of Lamé constants for simplicity, it may also be

written using e.g. Young modulus Y and Poisson ratio ν, or elasticity parameters EI and EII. However, all of

these definitions yield the same and may be transformed into each other (cf. Eq. (2.18)).
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harmonic oscillator). Viscosity arises as a memory effect. Materials need a characteristic

time to respond to external stresses. Purely viscous materials react immediately whereas

all energy will be dissipated as heat. Stress then has to be considered as a time dependent

function since it does not depend on strain alone but on strain history as well. The viscoelas-

tic behavior can be described in analogy to Eq. (2.8) where a correspondence principle is

applied to σvis
ik ∼ u̇ik. This correspondence principle states that “if an elastic solution is

known, substituting the Laplace transforms of stress and strain and the corresponding re-

sponse functions for the elastic constants, immediately furnishes the viscoelastic solution”

(Tschoegl, 1989). Thus, the stress strain-rate relation reads

σvis
ik (t) =

Z t

0
λIψ(t− p)δiku̇ll(p)dp+2

Z t

0
λIIψ(t− p)u̇ik(p)dp (2.9)

where ψ(t) characterizes the stress relaxation function. This approach is also known as the

Boltzmann superposition principle (Tschoegl, 1989; Greenwood and Johnson, 1981). The

stress strain-rate relation may therefore be written as

σvis
ik (t) = ηIδiku̇ll(t)+2ηIIu̇ik(t) . (2.10)

The total stress for a viscoelastic material can be written as σik = σel
ik +σvis

ik and represented

as an electric circuit where dashpots and springs are connected either in series, in parallel,

or in combination of both. The dashpot is then dissipating energy with a distinct delay while

the spring is merely storing energy (see e.g. Tschoegl, 1989; Hudson, 1980).

Internal forces fi can be expressed as fi = ∂σik/∂xk and the equation of motion for a con-

tinuous medium reads

ρ
∂2ui

∂t2
=

∂σik

∂xk

+ρFi , (2.11)

where Fi denote external forces as e.g. gravity. Assuming no apparent external forces Fi = 0

and substituting Eqs. (2.8) and (2.10) in Eq. (2.11) yields

ρ
∂2ui

∂t2
= λII

∂2ui

∂x2
k

+(λI +λII)
∂2uk

∂xi∂xk

+ηII

∂2u̇i

∂x2
k

+(ηI +ηII)
∂2u̇k

∂xi∂xk

. (2.12)

Eqs. (2.11) reads in a coordinate-free form ρ~̈u = ∇ · σ̂+ρ~F and thus (2.12) may be rewritten

using the vector identity ∆~x = ∇(∇ ·~x)−∇× (∇×~x) and ∇ · σ̂ = ∇ · (σ̂el + σ̂vis) as

ρ~̈u = λII∆~u+(λI +λII)∇(∇ ·~u)+ηII∆~̇u+(ηI +ηII)∇(∇ ·~̇u) . (2.13)

Let us introduce material dependent longitudinal cl and transversal ct speed of sound as

c 2
l = (λI + 2λII)/ρ and c 2

t = λI/ρ. Corresponding viscous parameters read p 2
l = (ηI +

2ηII)/ρ and p 2
t = ηI/ρ. Equation (2.13) can be rewritten as

~̈u = c2
l ∇(∇ ·~u)− c2

t ∇× (∇×~u)+ p2
l ∇(∇ ·~̇u)− p2

t ∇× (∇×~̇u) . (2.14)

Furthermore, scaling Eq. (2.14) with a characteristic time T and length X results in

V 2

c2
l

~̈u = ∇(∇ ·~u)− c2
t

c2
l

∇× (∇×~u)+
1

T

(

p2
l

c2
l

∇(∇ ·~̇u)− p2
t

c2
l

∇× (∇×~̇u)

)

, (2.15)
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where V denotes the characteristic speed V = X/T . If the characteristic deformation speed

is much smaller than the speed of sound V ≪ cl, no solid body (acoustic) waves will be

excited. In other words, the collision time τ is sufficiently larger than the largest period of

any vibration of either bodies. If additionally the dissipation in the bulk is low, i.e. p 2
l /X

and p 2
t /X are of the order of unity, Eq. (2.14) reduces to the static problem ∇ · σ̂ = 0 and

a collision can be described as passing through consecutive equilibrium states. In case of

rocky or icy materials the speed of sound is about kms−1 and thus low-velocity collisions

as e.g. the random-walk speed in unperturbed planetary rings of mms−1 to cms−1 result in

quasistatic or quasiadiabatic deformations.

In the following we will consider the static solutions of spheres in contact and will con-

centrate on normal deformations. This results in normal forces only, where ~F ‖~ed . For

simplicity, only their absolute values are given (|~F| = F). Since particles are thought to

have smooth surfaces no friction will be present.

2.2.1 Elastic Contact of Two Spheres (Hertz theory)

The static problem of two perfectly elastic spheres in contact has been initially addressed

by Hertz (1882) and has ever since entered textbooks (see e.g. Landau and Lifshitz, 1959).

We will sketch this theory here in a simplified form. If both particles are in touch they will

form a circular contact area of radius a. The problem itself goes back to the elastic contact

of two flat surfaces. However, the geometry of the curved particle surface has to be taken

into account. Thus, the effective deformation introduced in Eq. (2.6) can also be written as

ξ = (uz)1 +(uz)2−A(x2 + y2) , (2.16)

where (uz)n denotes the normal compression of each sphere and 2A = (1/R1 +1/R2) = R −1
eff

their curvature. Within the contact area surfaces are regarded as plane. Thus the textbook

solution of two flat surfaces in contact can be applied and the normal stress tensor load then

reads

σel
zz = (2λII +λI)uzz +λI

(

uxx +uyy

)

=
3Fel

2πa2

√

1− 1

a2
(x2 + y2) . (2.17)

Fel denotes the applied force which is directly proportional to the pressure distribution over

the contact area. Lamé ’s constants may be expressed in terms of more directly accessible

material constants such as Young modulus Y and Poisson ratio ν as

λI =
Y ν

(1+ν)(1−2ν)
, λII =

2Y

1+ν
. (2.18)

Solving the static problem for boundary conditions of a flat surface yields

(uz)n =
1−ν2

n

πYn

Z Z

σel
zz(x

′,y′)
√

(x− x′)2 +(y− y′)2
dx′dy′ . (2.19)

Introducing the effective material parameter Eeff with En = Yn/(1− ν2
n) and substituting

Eq. (2.19) into (2.16) results in

1

πEeff

Z Z

σel
zz(x

′,y′)
√

(x− x′)2 +(y− y′)2
dx′dy′ = ξ+A(x2 + y2) . (2.20)



2.2. CONTACT MODEL 21

With Eq. (2.17) and by comparing the coefficients in Eq. (2.20) follows

ξ =
3Fel

4πEeff

Z ∞

0

dw

(a2 +w)
√

w
=

3Fel

4Eeff

1

a
(2.21)

A =
3Fel

4πEeff

Z ∞

0

dw

(a2 +w)2
√

w
=

3Fel

4Eeff

1

2a3
. (2.22)

Since A = 2/Reff, Eq. (2.21) and (2.22) fix the relation between contact radius a and com-

pression ξ

ξ =
a2

Reff

, (2.23)

which reinserted into Eq. (2.21) yields

Fel(ξ) =
4

3
Eeff

√
Reff ξ3/2 . (2.24)

This relation may be rewritten as

Fel(a) =
4

3

Eeff

Reff

a3 and ξ(a) =
a2

Reff

. (2.25)

Equation (2.25) is valid for the normal contact of spherical particles with smooth surfaces.

The proportionality of ξ to a2 will henceforth be referred to as Hertzian relation. If non-

spherical particles were under consideration, the contact area would be elliptical instead

of circular. The corresponding problem can nevertheless be mapped onto the circular case

while force-deformation relations remain the same (Landau and Lifshitz, 1959; Hertzsch

et al., 1995).

2.2.2 Extension to an Adhesive Elastic Contact

While elasticity gives rise to repulsive forces alone, actual surface structures may lead to

attractive short-range interactions. In the context of smooth particle surfaces, the effects

of adhesion on a static elastic contact based on Hertz’s theory (see Sec. 2.2.1) have been

studied by Johnson et al. (1971). They introduced a surface energy US = −πγSa2 where

γS denotes the surface energy per unit area of both spheres as γS = γ1 + γ2− γ12. Compared

to a pure elastic contact, an adhesive one increases the apparent load compared to a pure

elastic contact. This marks the essence of the JKR theory (Johnson, Kendall, and Roberts)

which can be expressed as a superposition of the Hertzian stress distribution and a negative

flat punch σ static
zz = σel

zz +σad
zz (Muller et al., 1980) where

σad
zz = − 3Fad

2πa2

(

1− 1

a2
(x2 + y2)

)−1/2

. (2.26)

The resulting equation for the apparent outer force compared to the actually applied stress

reads (Johnson et al., 1971, Eq. (19))

Fapplied = Factual +3πγSReff +
√

6πγSReffFactual +(3πγSReff)2 . (2.27)

Applying the Hertzian elastic force Fapplied = Fel(a) as in Eq. (2.25) and solving for Factual,

Eq. (2.27) yields

Factual(a) =
4

3

Eeff

Reff

a3−
√

8πEeffγS a3/2 . (2.28)
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In this static approach, an equilibrium deformation ξad with the corresponding contact radius

a3
ad =

9π

2

γSR2
eff

Eeff

(2.29)

will form for Factual(aad) = 0 and a resulting adhesive bond

Fbond =
3

2
πγSReff (2.30)

is independent of elastic material properties. Fbond denotes the actual force that has to

be applied in order to separate the two surfaces and thus destroy an adhesive bond. In

this approach specific surface structures can only be accounted for in terms of γS. Larger

contact areas result in a higher surface energy whereas the adhesive bond strength is linearly

dependent on the effective grain radius. The corresponding ξ-a relation can thus be derived

and the total force-deformation relation yields

Fstatic(a) =
4

3

Eeff

Reff

a3−
√

8πEeffγS a3/2 = Fel(a)+Fad(a) (2.31)

ξ(a) =
a2

Reff

−
√

2πγS

Eeff

a1/2 . (2.32)

Equation (2.32) reduces to the Hertzian relation (Eq. (2.25)) in case of a pure elastic contact

γS = 0. In case of non-spherical particles, relations can be mapped onto the spherical case

(Johnson and Greenwood, 2005) as before.

2.2.3 Viscoelastic Effects

As discussed above imperfect materials introduce an inner friction and thus energy dissi-

pation to deformation processes. Nevertheless, within the limits of the quasistatic approx-

imation, deformations are not explicitely time dependent and still satisfy the equilibrium

solution. According to Secs. 2.2.1 and 2.2.2, a quasi-adiabatic deformation ui(xi, t) is para-

metrically dependent on the compression ξ. In particular, ui(xi, t)≈ ui(xi,ξ) = ũi(xi,a). The

strain rate may then be written as

u̇ik(xi, t) ≈ ξ̇
∂

∂ξ
uik(xi,ξ) = ȧ

∂

∂a
ũik(xi,a) , (2.33)

and Eq. (2.10) becomes

σvis
ik = ξ̇

∂

∂ξ
(ηIδikull +2ηIIuik) ∼ ξ̇

∂

∂ξ
σ static

ik [λn↔ ηn] , (2.34)

where the elastic constants λn have been exchanged with according viscoelastic ones ηn

(Hertzsch et al., 1995; Brilliantov et al., 1996). Even in the presence of adhesion stresses

and deformations in a viscoelastic solid may be inferred from the corresponding elastic

problem by applying the Boltzmann superposition principle. Especially for low-velocity

deformations it is sufficient to exchange the elastic moduli with their corresponding relaxed

ones (Greenwood and Johnson, 1981) (see also Sec. 2.2). Concentrating on the collisional

contact problem where

σel
zz(x,y,0) = λI(uxx +uyy +uzz)+2λIIuzz =

3Fel

2πa2

√

1− 1

a2
(x2 + y2) (2.35)

σad
zz(x,y,0) = λI(uxx +uyy +uzz)+2λIIuzz =

3Fad

2πa2

[

1− 1

a2
(x2 + y2)

]−1/2

(2.36)
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we transform the coordinates according (x′= αx; y′ = αy; z′= z) and thus map σ static
ik [λn↔

ηn] onto σ static
ik (Eq. (2.8)). In order to exchange the material constants, β is temporarily

defined as

β =
2ηII +ηI

2λII +λI

(2.37)

and from Eq. (2.34) follows

σvis
zz (x,y,0) = ξ̇

∂

∂ξ

[

(2ηII +ηI)uzz′ +ηIα(uxx′ +uyy′)
]

(2.38)

= ξ̇
∂

∂ξ
β

[

(2λII +λI)uzz′ +
2λII +λI

2ηII +ηI

ηIα(uxx′ +uyy′)

]

. (2.39)

Let then α be

α =
λI

ηI

2ηII +ηI

2λII +λI

.x (2.40)

We further obtain

σvis
zz (x,y,0) = ξ̇

∂

∂ξ
β
[

(2λII +λI)uzz′ +λI(uxx′ +uyy′)
]

(2.41)

= ξ̇
∂

∂ξ
β
[

λI(uxx′ +uyy′ +uzz′)+2λIIuzz′
]

(2.42)

= ξ̇
∂

∂ξ
β

3Fel

2πa′2

√

1− 1

a′2
(x′2 + y′2) (2.43)

= ξ̇
∂

∂ξ

β

α2

3Fel

2πa2

√

1− 1

a2
(x2 + y2) . (2.44)

In analogy to elastic stresses, Eq. (2.44) has to be integrated with respect to the contact

area in order to obtain a force relation. The dissipative force is given by Fvis(ξ, ξ̇) ∼
ξ̇ ∂/∂ξ [Fstatic(ξ, ξ̇)] (cf. Eq. (2.34)) and can be expressed as

Fvis(ξ, ξ̇) = ξ̇
∂

∂ξ
(AvisFel(ξ)+BvisFad(ξ)) . (2.45)

The proportionality factor5 (see Eq. (2.44)) reads

Avis = Bvis =
β

α2
=

(

ηI

λI

)2
2λII +λI

2ηII +ηI

=
η2

II

ηI +2ηII

(1−ν2)(1−2ν)

νY
. (2.46)

in accordance with (Hertzsch et al., 1995). Avis and Bvis describe the viscous relaxation

time ([Avis] = [Bvis] = s) and are material specific values. They remain widely unknown

since there are no appropriate ways to measure them. The dissipative force corresponding

to Eq.(2.31) reads

Fvis(a, ȧ) = ȧ

(

4Avis

Eeff

Reff

a2− 3

2
Bvis

√

8πEeffReff a1/2

)

∼ ȧ
∂

∂a
Fstatic(a) . (2.47)

5Although Avis and Bvis are the same parameter they will be distinguished here for an easier handling in

later discussions (see Sec. 2.3.1)
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As for the superposition principle the total stress consists of a static and a viscous part

σik = σ static
ik +σvis

ik and thus the total force reads

Ftotal(a) = Fstatic(a)+Fvis(a) (2.48)

where Fstatic(a) and Fvis(a) are defined according to Eqs.(2.31) and (2.47). In contrast to

Hertzsch et al. (1995) and Brilliantov et al. (1996), the presented model denotes an extended

collision model. We are now able to allow for adhesive interactions in a non-static contact.

2.3 Equations of Motion

The contact dynamics is based on the time evolution of the compression ξ(t). Within the

limits of the quasistatic approximation it is described by an ordinary differential equation

based upon field equation (2.11)

meff ξ̈(t)+Fstatic(ξ(t))+Fvis(ξ(t)) = 0 (2.49)

ξ̇(0) = vimp ; ξ(0) = ξinit .

Since contact forces (see Eqs. (2.31), (2.32), and (2.47)) cannot easily be expressed as

functions of ξ, the contact dynamics can likewise be solved in terms of contact radius a.

The equation of motion then reads

meff ä(t)+meff
ξ′′(t)
ξ′(t)

ȧ2(t)+
Fstatic(a(t))

ξ′(t)
+

Fvis(a(t))

ξ′(t)
= 0 (2.50)

ȧ(0) =
(

ξ′t=0

)−1
vimp ; a(0) = ainit ,

where (.)′ denotes the partial derivative with respect to a. They are obtained by differenti-

ating Eq. (2.32) accordingly and read

∂ξ

∂a
=

2a

Reff

− 1

2

√

2πγS

Eeff

a−1/2 (2.51)

∂2ξ

∂a2
=

2

Reff

+
1

4

√

2πγS

Eeff

a−3/2 . (2.52)

The initial point for contact forces to set in is at the very first touching of both particles at

ξinit = ξ(0) = 0 (see Eq. (2.6)). According to Eq. (2.32), the corresponding initial contact

area a0, however, is larger then zero

a3
0 = 2π

γSR2
eff

Eeff

, (2.53)

which is the result of an instantaneous reorganization of the surfaces upon contact. Thus,

particles will share a common contact area πa2
init where ainit = a0. This has also been re-

ferred to as “jumping in” and “out of” contact. It has been noticed in experiments (Muller

et al., 1980; Greenwood, 1997) and is accompanied by the formation of a “bottle-neck” in

between the particle surfaces which in theory is specific to the JKR approach6. This kind of

initial “snapping” denotes an irreversible energy loss of Esnap.

6However, there are still discussions about what exactly ainit would be. Either contact dynamics starts at

first contact where ξ = 0 and thus ainit = a0 or at the equilibrium contact radius ainit = aad where ξ > 0 and

thus the particle centers must have moved instantaneously. These two possibilities are discussed in more detail

later (see Sec. 2.4.2).
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A main feature of any dissipative contact dynamics is the asymmetric loading and unloading

stages of the collision indicating a broken time symmetry (cf. Sec. 2.1). The compression

can be described as a damped nonlinear oscillation. Although the dynamics is very sensi-

tive to material parameters, two different collisional outcomes, aggregation and restitution,

can be expounded. Short-range forces are able to prevent a post-collisional separation at

the end of a collision at time t = τN and compression ξfinal = ξ(τN). It has been shown

in experiments of adhesive collisions that a tearing off occurs rather late at ξfinal < 0 and

afinal > 0 (Muller et al., 1980; Greenwood, 1997). The final contact radius afinal = asep where

Ftotal(a) assumes its minimum of −3πγSReff/2 is determined by ∂/∂a (Ftotal(asep)) = 0 and

∂2/∂a2 (Ftotal(asep)) > 0, yielding

a3
sep =

9π

8

γSR2
eff

Eeff

. (2.54)

At this point, where a post-collisional separation occurs, Ftotal = Fbond exactly matching the

force necessary to break the bond and separate the grains (cf. Eq. (2.30)). However, there

is experimental evidence that the force necessary to separate the particles is larger than that

to overcome the surface forces alone. It is larger by a factor which is very dependent upon

the separation rate (Greenwood and Johnson, 1981). Anyhow, fast initial as well as slow

final snapping dissipate energy. The latter is given by the final contact area related to asep.

The energy needed to deform two grains from one initial contact area a1 to a second one a2

reads

∆E(a1→a2) =

ξ2
Z

ξ1

Ftotal(ξ̃)dξ̃ =

a2
Z

a1

Ftotal(ã)
∂ξ̃

∂ã
dã (2.55)

= πγS (a2−a1)(a2 +a1)+
8

15

Eeff

R2
eff

(a5
2−a5

1)

−20

21

√
2πγSEeff

Reff

(a
7/2

2 −a
7/2

1 ) . (2.56)

The terms on the right-hand side of Eq. (2.56) signify in the order of their appearance

surface energy for a given contact (cf. introduction of adhesive contacts in Sec. 2.2.2),

restored elastic energy, and an additional adhesive term. The latter actually corrects the

elastic energy for the fact that particles, while being deformed, attract and repel each other

at the same time. The energy stored in a contact of arbitrary contact radius a (i.e. integrating

from a = 0 to a) yields

Esnap = πγS a2 +
8

15

Eeff

R2
eff

a5− 20

21

√
2πγSEeff

Reff

a7/2 . (2.57)

Obtaining the coefficient of restitution εN, as introduced in Sec. 2.1, as the ratio of separation

and impact speed but independently of the definition of either ξinit or ξfinal by

εN =
ξ̇(τ)

ξ̇(0)
⇐⇒ εN =

ȧ(τ) ·ξ′(a(τ))

ȧ(0) ·ξ′(a(0))
=

ȧ(τ) ·ξ′(afinal)

ȧ(0) ·ξ′(ainit))
, (2.58)

it is possible to distinguish between agglomeration and restitution in terms of the impact

speed vimp. Agglomeration, i.e. εN = 0, indicates a complete dissipation of the relative

kinetic energy of normal motion ḋ = ξ̇(τN) = 0, whereas restitution εN > 0 implies a post-

collisional separation of both particles at ḋ = −ξ̇(τN) > 0. For a purely elastic impact
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(εN = 1), no kinetic energy is dissipated. It has to be noted that considering initial and final

surface reorganization in terms of Esnap, impact vimp, and separation speeds vsep, and thus

the restitution coefficient εN have to be corrected according to Eq. (2.57).

2.3.1 Approximation for Hertzian Relation

Assuming the Hertzian relation ξReff = a2 to be valid and considering maximal dissipation

Bvis = 0, Eqs. (2.25) and (2.47) become

Fstatic(ξ) =
4

3
Eeff

√
Reff ξ3/2−

√

8πEeffγS (Reffξ)3/4 (2.59)

Fvis(ξ) = 2Eeff

√
Reff ξ̇ ξ1/2 , (2.60)

respectively. The resulting equation of motion reads (Spahn et al., 2004)

meff ξ̈(t)+
3

2
AvisHξ(t)1/2 ξ̇(t)+Hξ(t)3/2−

√

6πγSHReff ξ(t)3/4 = 0 (2.61)

where in order of their appearance the acceleration terms signify inertia, viscoelastic dis-

sipation, elasticity, and adhesion with the Hertzian factor H = 4Eeff

√
Reff/3. Further on,

γS = γ1 + γ2, i.e. γ12 = 0, as for particles in a vacuum space (Attard and Parker, 1992).

Here, the initial conditions are a bit easier to determine. Initial contact of the particles will

occur at ξinit = 0 at a corresponding contact radius of ainit = 0. Both particles separate if

a compression of ξfinal = ξinit = 0 is reached. Agglomeration and restitution are crucially

determined by the impact speed vimp. While smaller impact speeds (vimp < vcr) will lead to

agglomeration, higher impact speeds (vimp > vcr) cause restitution. In case of agglomeration

when ξ̇(τN) = 0, a nonzero compression in accordance with Eqs. (2.29) and (2.61) remains

ξad =
a2

ad

Reff

=

(

6πγSReff

H

)2/3

(2.62)

which actually is independent of the impact speed. It denotes the second fixed point solu-

tion of the contact dynamics additional to ξ = 0 and arises from an equilibrium between

elastic restoring and adhesive attractive forces Fstatic(ξad) = Fel(ξ)−Fad(ξ) = 0. Figure 2.2

qualitatively compares the impact dynamics of different scenarios. Fixing the impact speed,

merely the kind of contact was altered to be purely elastic, viscoelastic, purely adhesive

elastic, or combined adhesive viscoelastic. An elastic contact (solid line) shows no dissipa-

tion and is reversible in time. This is clearly visible in the symmetric deformation during the

first positive half-cycle. Although the overall shape of the deformation in time does change

a bit7, the same symmetry applies in terms of this simplified approach in case of an adhesive

elastic contact (dotted line). Compression will be higher since superposed attractive forces

are active during contact. However, only with the introduction of dissipation the dynam-

ics becomes irreversible. Coefficients of restitution are less than one, the collision time τN

is prolonged, and only in this case sticking is possible (dashed-dotted line). The adhesive

viscoelastic contact continues to oscillate but is continuously damped until the equilibrium

deformation ξad has been reached. Thus, if Esnap = 0, adhesion alone is not sufficient to

enable aggregation. As elasticity, adhesion is a purely conservative force in the limit of

this approximation. No hysteresis applies. Only in the presence of dissipation can particles

eventually stick together.

7Adhesion generally features a hysteresis which is not apparent anymore in the limit of this approximation.
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Figure 2.2: Qualitative solution of Eq. (2.61) for pure elastic (solid), viscoelastic (dashed),

pure adhesive elastic (dotted), or combined adhesive viscoelastic contacts (dashed-dotted)

for same material parameters and impact speed vimp. Introducing adhesion clearly increases

the overall compression. But only the introduction of dissipation, in this case viscous dissi-

pation, prolongs the collision time τ and breaks the symmetry with respect to time in both

cases. Furthermore, only the combined effects of adhesion and dissipation lead to sticking if

Esnap = 0. Thus, within the Hertzian approximation dissipation crucially influences whether

a collision will result in either agglomeration or restitution.

2.4 Full Numerical Solution

Numerically solving Eq. (2.50) yields the restitution coefficient εN as a function of the

impact speed vimp as presented in Fig. 2.3. We applied material parameters as given in

Table 2.1 and used equally sized (µ = 1) particles of 2 cm radius. The general behavior

of εN is similar for different materials: small impact velocities result in an aggregation of

particles (εN = 0) and after a more or less steep increase of εN it decreases again for larger

impact speeds. In order to show the influence of the surface tension γS on εN, Fig. 2.4 shows

the restitution coefficient for the same material but arbitrarily changed surface tensions.

Material Y [Pa] ν ρ [kgm3] γ [Nm−1] Eeff [Pa]

Quartz 5.4×1010 0.17 2.6×103 0.025 2.78×1010

Graphite 1.0×1010 0.32 2.2×103 0.075 5.57×109

Ice 7.0×109 0.25 1.0×103 0.370 3.73×109

Table 2.1: Material parameters for various materials (Dominik and Tielens, 1997). Since

we consider only collisions among particles of the same material the effective elasticity

Eeff is given above. However, collisions between grains of different materials can easily be

computed using appropriate material constants.
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Figure 2.3: Coefficient of restitution for different materials as given in Table 2.1. Material

response and thus collisional outcome are overall different and range from almost no ag-

gregation at all for reasonable impact speeds to a significant amount of sticking. However,

for materials presented here the dissipated energy amounts to at least half the kinetic impact

energy.
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Figure 2.4: Coefficient of restitution for icy particles with artificially varying surface ten-

sions γS in order to illustrate the influence of this parameter. Higher values of γS will lead

to higher critical impact speeds as well as to overall more dissipative contacts within 10%.

Note, Esnap = 0 for the Hertzian approximation.

2.4.1 Application to Ice at Low Temperatures

Numerically solving the simplified Eq. (2.61) using material properties for ice at low tem-

peratures as given in Table 2.1 yields aggregation as well as restitution (Albers and Spahn,
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2006). The viscous parameter of Avis = 10−4 s were fitted to results in (Brilliantov et al.,

1996). Restitution occurs for higher impact speeds (vimp > vcr), where both particles sep-

arate as indicated by ξ < 0. Gray curves depict this in Fig. 2.5. Displayed impact speeds

have been chosen to illustrate the transition from agglomeration to restitution.8 It is clearly

visible in this direct comparison of different impact speeds for a single material, that any

aggregative collision reaches its equilibrium compression ξad independent from vimp. ξad

ranges within 10−7 to 10−5 m for grains of mm up to tens of meters in size, which is the size

range of particles in planetary rings. The amount of dissipated energy ∆E ′
kin = (1− ε2

N)Ekin

is illustrated in Fig. 2.6 for varying impact speeds via the restitution coefficient obtained

by Eq. (2.58). In case of the Hertzian approximation, restitutive collisions including adhe-

sion are generally more dissipative than pure viscoelastic ones, i.e. εN is overall smaller

(see Sec. 2.3.1 and in particular Fig. 2.2). This finding is in accordance with experimental

observations by Hatzes et al. (1991).

For perfectly smooth, icy spheres the restitution coefficient has been obtained numerically

and analytically in previous studies (Dilley, 1993; Brilliantov et al., 1996; Thornton, 1997)

and measured in lab experiments (Bridges et al., 1984; Hatzes et al., 1988; Supulver et al.,

1995; Dilley and Crawford, 1996; Higa et al., 1998) with respect to an application to plan-

etary rings. Experiments that studied collisions of frost covered icy particles (Hatzes et al.,

1991; Bridges et al., 1996; Supulver et al., 1997) observed not only the restitution but also

an agglomeration of grains under certain impact conditions. Theoretical considerations can

account for both physical scenarios, restitution and agglomeration, if attractive forces are

considered (e.g. Spahn et al., 2004; Albers and Spahn, 2006). Purely viscous surface layers

however, can enable the complete dissipation of relative kinetic energy but will not result in

the creation of a bond between the grains (Albers, 2002; Hertzsch, 2002)

Bridges et al. (1984) measured εN for ice particles of 2.75 cm radius in head-on collisions at

low temperatures. Assuming a pure viscoelastic contact, i.e. applying γS = 0 to Eq. (2.61),

it is possible to reproduce their results qualitatively (dotted line in lower part of Fig. 2.6).

Numerical results may be fitted to match experimental ones (as done in Brilliantov et al.,

1996). Their results are depicted as the dashed-dotted line in Fig. 2.6. An agglomeration of

particles has been observed in experiments with frost covered icy grains of 2.5 cm radius

(Hatzes et al., 1991; Bridges et al., 1996). Particles had different frost coatings of various

thicknesses. The measured sticking velocities were around 0.03 cms−1 but never exceeded

0.4 cms−1. Results obtained in our numerical studies for the critical impact speed vcr are in

good agreement with these observations. Note, that for a proper comparison of these results,

R2→∞ has to be considered in order to account for a flat wall used in these experiments as

one of the collision partners. Repeated collisions significantly change the surface structure

by compressing the frost layer and thus strongly influence the sticking behavior (Hatzes

et al., 1988). This leads to an overall more elastic contact, which is not accounted for in the

present model. The sticking forces vary widely with the surface structure and impact speeds,

where in this model Fbond does not depend on either one but merely on the effective grain

size Reff. For the same reason, ξad does not depend on vimp in deviation from experimental

findings. However, especially for varying surface structure and multiple collisions, γS is

widely unknown.

Previous studies (Dilley, 1993; Dilley and Crawford, 1996; Higa et al., 1998) indicated the

8For the same reason increasing impact speeds vimp are chosen in Figs. 2.5-2.8.
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Figure 2.5: Contact Dynamics: The numerical solution of Eq. (2.61) for spherical icy grains

(R = 2cm,µ = 1) provides details about the indentation ξ(t) (upper part) and the resulting

contact force F(ξ) (lower part) for varying impact velocities vimp. Increasing impact speeds

denote the transition between agglomeration and restitution. Any non-restitutive collision

is a damped oscillation. In case of aggregation (τN→ ∞, vimp < vcr) a nonzero deformation

ξad remains as given in Eq. (2.62), while the resulting force still vanishes (black lines).

A remaining contact force Fad according to Eq.(2.30) balances elastic repulsion leading to

F(ξ) = 0. The maximum penetration increases with increasing impact speed. Grey lines

denote restitutive impacts occurring at higher vimp.
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Figure 2.6: Restitution coefficient: Increasing impact speeds give rise to different impact

scenarios: agglomeration and restitution. Both outcomes can be easily distinguished in

terms of the restitution coefficient εN(vimp) (lower part) (εN = 0: aggregation ←→ εN >

0: restitution). The indentation speed ξ̇(t) (upper part) is illustrated for icy grains (R =
2cm,µ = 1) as in Fig. 2.5 and vanishes in case of aggregation. The adhesive viscoelastic

impact model is in qualitatively good agreement with lab measurements. Impacts are overall

more dissipative than in the pure viscoelastic case in agreement with experimental findings

(Hatzes et al., 1991).
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importance of the size of colliding grains, yielding more elastic contacts for larger particles

than for smaller ones. The size dependence of the collision dynamics of Eq. (2.61) is illus-

trated in terms of the collision time τN (Fig. 2.7, upper part) and the restitution coefficient

εN (Fig. 2.7, lower part). The collision time τN increases with a decreasing impact speed. It

usually ranges within a few milliseconds for cm-sized grains, but abruptly reaches infinity

in case of agglomeration (vimp ≤ vcr). Collisions themselves are more and more conserva-

tive for larger particles as indicated in Fig. 2.7. This trend towards pure elasticity also holds

for contacts of different proportions (µ 6= 1). Our results are in fair agreement with their

findings as given in Higa et al. (1998) for frosted-surface ice.

In our numerical simulations, the collisional outcome is determined by the impact velocity

on one hand and by grain sizes on the other. A mass-velocity parameter space is thus divided

into sections of agglomeration and restitution (Spahn et al., 2004). Smaller particles (mm

in size) are very likely to stick to each other or to larger ones, whereas larger particles have

to have a rather small impact velocity in order to agglomerate. Nevertheless, the critical

velocity for restitution to occur becomes drastically smaller for increasing masses as shown

in Fig. 2.8.

2.4.2 Comparison of Approximative and Full Dynamics

In this Section two previously discussed approaches of treating the collision dynamics are

compared. The approaches will hereafter be denoted as scenario A) and B) and denote:

A) Solving Eq. (2.50) in terms of the contact radius a while ainit = a0 and afinal = asep

taking into account initial and final snapping energies.

B) Solving Eq. (2.61) in terms of the compression ξ (Spahn et al., 2004; Albers and

Spahn, 2006).

As long as the collision duration τN is negligible compared to timescales of ensemble dy-

namics, only the outcome of a collision is important to further kinetic studies. Since εN

defines agglomeration and restitution as revealed before, we concentrate on this parameter

for this comparison.

Two major assumptions distinguish approach B) from A):

• The actual ξ-a relation (see Eq. (2.32)) is approximated by the Hertzian relation

(Eq. (2.25))

• The dissipation is approximated by its major contribution via Avis and thus Bvis = 0.

For comparison, different numerical solutions of εN are shown in Fig. 2.9 for exemplary

material parameters of ice (Table 2.1). Grey lines denote simulation results according to the

full dynamics (A) whereas black lines refer to results obtained according the approximative

equation (B). Applying the same parameters to either Eq. (2.50) or (2.61), and thus solv-

ing either scenario A) or B) respectively, it becomes clear that the main difference between

both approaches does not arise from a Hertzian contact area assumption (a2 ∼ Reff). Thus,

applying the exact ξ-a relation does not significantly improve the approximation. How-

ever, varying the dissipative parameters Avis and Bvis only slightly, results in more drastic

changes. In this sense, it is possible to imitate results obtained by Eq. (2.61) by putting

Bvis = 0 in Eq. (2.50) within a few percent of accuracy. Note, Eq. (2.49) coincides with
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Figure 2.7: Size dependence: The collision time τN increases with increasing particle sizes

(upper part). It is plotted for varying impact speeds vimp and different particle size ratios

µ. For larger grains it can be described by a power law τN ∼ Rk where the index k =
50/3≈ 16.7. A collision of cm-sized grains e.g. occurs within milliseconds. Larger grains

show more elastic collisions (lower part). Despite its dependence on vimp (cf. Fig. 2.6), the

restitution coefficient εN is qualitatively insensitive to vimp compared to its size dependence.

Smaller grains stick together below a certain impact speed vcr, which is smaller for larger

particles (see also Fig. 2.8). Thin solid and dashed line denote the model presented in Dilley

and Crawford (1996, Fig. 1) with parameters taken from Higa et al. (1998).
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Figure 2.8: Critical velocity: The critical impact speed vcr is obtained from numerical solu-

tions of Eq. (2.61). The size (upper part) and size ratio dependence (lower part) are shown

for different proportions. In general, smaller and slower grains tend to agglomerate while

others do restitute. The gravitational escape velocity vesc is given as a reference in either

grey lines (upper part) or as a grey shaded area (lower part). The influence of either adhesive

processes or gravitational influence can therefore be clearly distinguished.
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Eq. (2.61) for Bvis = 0. The additional damping term related to Bvis arising from the su-

perposed adhesive force will always give a “positive” feedback due to its sign and actually

decrease the effect of dissipation. This is clearly visible in Fig. 2.9, in particular for the

gray, dashed-dotted line, since restitution coefficients are generally larger for Bvis 6= 0 than

for Bvis = 0. Even while Bvis = 0 the full dynamics does not reach the amount of dissipation

as the approximative one (cf. the grey and black solid lines in Fig. 2.9). Thus, approach

B) denotes a good approximation. Further investigations will show the overall impact of

accounting for adhesive interactions. Uncertainties of e.g. viscous parameters can easily be

improved by fitting to experimental data.
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Figure 2.9: Restitution coefficients for different dynamical approaches: Gray lines refer to

Eq. (2.50) which has been solved where ainit = a0 and a f inal = asep were applied. Initial and

final snapping energies Esnap have been disregarded while different damping parameters Avis

and Bvis were applied. Black lines denote Eq. (2.49) which in case of Bvis = 0 coincides with

Eq. (2.61) (Albers and Spahn, 2006). The restitution coefficient εN is mainly influenced by

different damping conditions. The approximation of applying the Hertzian relation is of

minor importance.

However, as shown in Fig. 2.9, the influence of initial and final snapping energies has been

neglected. Since these energies would be dissipated, the effect of their inclusion can easily

be estimated:

• If energy is dissipated for a surface reorganization and slight compression of the

grains during initial snapping, the actual impact speed vimp will be smaller than the

normal component of the particle’s relative impact velocity gN, chosen as the apparent

impact speed in the results presented. The graph of the restitution coefficient would be

shifted towards higher impact velocities without changing its actual shape. Collisions

with impact speeds usually resulting in restitution would partially result in aggrega-

tion. Additionally, even in the absence of viscous dissipation, Avis = Bvis = 0, ag-

glomeration becomes possible. All relative kinetic energy would be dissipated while

forming an equilibrium contact area. Therefore, due to a hysteresis, purely adhesive



36 CHAPTER 2. GRANULAR PARTICLE COLLISIONS

elastic collisions are irreversible and can lead to sticking in terms of approach A),

whereas dissipation and adhesion is necessary to enable agglomeration in terms of

approach B).

• Energy can only be dissipated during final snapping if particles separate. Thus, final

snapping does influence restitution alone. The separation speed g ′N would then be yet

smaller if corrected for the dissipated energy. The curve of the restitution coefficient

could simply be multiplied with an impact speed dependent correction factor smaller

than unity. Contrary to initial snapping, final snapping does influence the shape of the

restitution coefficient but does not change the critical impact speed vcr. Thus, it may

be neglected while numerically determining the latter.

However, what happens during an initial contact is a complex surface reorganization and

deformation of the material which is not covered by the presented continuum contact model,

i.e. neither scenario A) nor B). Here, this would go into too much detail and miss the point

of this study, namely to show the general effects of adhesive particle collisions on a granular

ensemble either force-free or in a central field. Therefore, the actual energy lost during first

contact will be approximated by Eq. (2.57) for a = ainit and has been quantified in Table 2.2

in terms of velocities for different contact radii a0, aad, and asep. Values have exemplary

been chosen for radii of R = 0.02 cm and R = 2 m, and size ratios of µ = 1 and µ = 103

for different materials as given in Table 2.1. Presenting the velocity rather than the energy

Esnap allows for a simple estimate of how much the impact speed g would change by v if

the effect of either initial or final snapping is taken into account. Note, Esnap is related to

the relative kinetic energy by Esnap = Ekin = meff v2/2. Particles “jumping” into contact

forming ainit of either a0 or aad will dissipate the corresponding amount of energy and the

apparent impact speed would read vimp = gN− v, whereas in case of separation at a contact

radius of asep the separation speed reads g ′N = ξ̇(τN)− v. The restitution coefficient is then

given by εN = g ′N/gN as usual.

In case of scenario A) there is yet another, additional uncertainty about the initial contact

area ainit. There have been discussions about whether particles would form an initial contact

area of radius ainit = a0 or an equilibrium contact with radius ainit = aad. The latter not only

assumes a surface reorganization but also a non-negligible motion of the particle’s centers

which is not covered by the model introduced here. In case of ainit = a0 only the surface

reorganization is assumed to happen instantaneously while the following motion, the actual

relative motion i.e. including the particles being pulled together in the first place, can be

covered by the equations of motion presented here. We prefer the first (ainit = a0) and have

used it in previous numerical solution. However, this discussion is of purely theoretical

interest. It is quantified in Table 2.2 and additionally illustrated in Fig. 2.10. The influence

of different initial conditions is negligible with respect to the critical velocity vcr and leads

to only 10% of change in the overall restitution.

Thus, to summarize and finalize the comparison of both approaches:

• Scenario A)

– Description of the collision dynamics in terms of the contact radius a allows for

an accurate treatment of the ξ-a relation.

– Unresolved discussion about the initial contact radius points towards ainit = a0,

however, proves to be of purely theoretical interest.
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a0 [µm] v [cm/s] aad [µm] v [cm/s] asep [µm] v [cm/s]
×10−4 ×10−4 ×10−4

R
=

0
.0

2
m µ
=

1

Quartz 10 11 14 27 9 10

Graphite 26 52 33 125 21 44

Iron 32 221 42 531 27 188

Ice 50 335 65 803 41 284
µ

=
1
0

3 Quartz 17 13 22 30 14 11

Graphite 41 59 53 141 34 50

Iron 51 248 67 596 42 211

Ice 79 375 104 901 65 319

R
=

2
.0

m µ
=

1

Quartz 224 0.2 294 0.6 185 0.2

Graphite 553 1.1 724 2.7 457 1.0

Iron 693 4.8 908 11.4 572 4.0

Ice 1075 7.2 1410 17.3 888 6.1

µ
=

1
0

3 Quartz 356 0.3 466 0.7 294 0.2

Graphite 877 1.3 1150 3.0 724 1.1

Iron 1099 5.3 1441 12.8 908 4.5

Ice 1706 8.0 2236 19.4 1409 6.9

Table 2.2: Velocity corrections for various materials to be applied for different contact radii:

Contact radius and related velocity for 2 cm sized particles. Numerical results obtained

by Eq. (2.50) have to be corrected by a factor of v obtained by meff v2/2 = Ekin = Esnap

(Eq. (2.57)). In case of a0 and aad, the actual impact speed reads vimp = gN− v, while for

asep the actual separation speed reads g ′N = ξ̇(τN)−v. However, since v ranges from µms−1

to mms−1 corrections are only of minor influence.

– Including initial and final snapping energies would further diminish differences

between scenario A) and B).

– Initial and final snapping in scenario A) are not completely understood and as-

sumed to happen instantaneously. Additionally, they are neither covered by

scenario A) nor B).

– The experimentally observed bottle-neck creation before separation implies a

material flow, definitely breaching the assumption of two flat surfaces in contact

(cf. Sec. 2.2.1).

– Sticking is possible even without viscous dissipation.

• Scenario B)

– It introduces a robust model that can easily be implemented in further applica-

tions.

– Viscous dissipation crucially influences whether grains do stick or not.

– Results obtained by scenario B) are well confirmed by a number of experiments

(cf. Sec. 2.4.1) and reproduce characteristic features that have been observed

such as the oscillating relative motion, the occurrence of sticking as well as the

generally smaller value of the restitution coefficient εN (Hatzes et al., 1991),

the size dependence (Dilley, 1993; Higa et al., 1998) and the general sensitive

dependence on the deformation rate (Greenwood and Johnson, 1981).
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Figure 2.10: Restitution coefficient for different initial and final contact radii in Eq. (2.50).

Although the absolute values of εN does change the critical velocity vcr and the overall shape

are the same. Differences sum up to about 10% where changes including corrections with

respect to Esnap are negligible.

Despite minor differences leading to discrepancies within about 10% of the restitution co-

efficient, scenario B) denotes a reasonable, consistent model in order to treat the collision

dynamics of adhesive, viscoelastic particles. It furthermore serves as an upper limit case for

agglomeration since maximal dissipation is assumed. Results obtained by Eq. (2.61) denote

a robust base and will be applied hereafter.

2.5 Applicability and Limitations

In this Chapter a model for low-velocity collisions of adhesive, viscoelastic particles was

derived. It has been applied to various material parameters and compared to experimental

data of ice at low temperatures to further detail. Being in fair agreement with experiments,

it provides an essential, theoretical tool to cover the collisional interactions of granular

particles in a more general context. This dynamical model meets the expectations in or-

der to investigate coexisting collisional agglomeration and restitution on many-particle sys-

tems. Although collisional growth is possible it may be unlikely to account for a reasonable

growth of larger objects. Nevertheless, as in case of pure gravity, smaller grains are likely

to stick to larger ones, sensitively influencing the size distribution of such system. In the

following chapters this model will be implemented in further studies on granular gases as

there are the orbital evolution of two interacting grains under the influence of gravity and

collisions (see Chapter 3) and a general kinetic study on growth processes (see Chapter 4).

However, the model presented here does neither include any specific surface coatings or

textures nor repeated collisions. Since neither Eq. (2.50) nor Eq. (2.61) is valid for the tan-

gential component of the contact dynamics, it only partially accounts for oblique impacts.

If tangential loads are present in adhesive contacts studies showed a reduced contact load
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compared to the adhesive elastic one (Savkoor and Briggs, 1977). Note, that for an adhe-

sive elastic contact the load was increased compared to the pure elastic, Hertzian case. For a

better understanding, future models should yield a combined description including the col-

lisional spin evolution. Furthermore, the model is limited by the quasistatic approximation,

i.e. small viscosities and low impact velocities. It therefore cannot account for any sort of

fragmentation. Impact speeds allowing for fragmentation denote the uppermost limit for

even an extrapolated application of this theory.

Additionally, the currently published literature on material constants as well as the experi-

mental findings on critical impact speeds is not satisfying. Elastic properties are well cov-

ered for a wide range of materials whereas viscoelastic properties and surface tensions are

poorly known. Viscous parameters such as Avis have been numerically fitted and showed

that in a range of cms−1 to dms−1 with parameters between Avis ∈ [0.8,1.0]×10−4 s a good

agreement between theory and experiments can be achieved as has been done for purely

viscous contacts before (Brilliantov et al., 1996). Anyhow, we would welcome more exper-

iments on aggregative collisions. These would eventually improve theoretical modeling.
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Chapter 3

Orbit Dynamics of Two Particles

Subject to a Central Mass

The dynamics of granular gases under Keplerian shear differs fundamentally from force-

free granular ensembles. Planetary rings mark the most striking examples of the first. Addi-

tional perturbations and the collective ensemble dynamics give rise to interesting structures

such as voids and gaps. These ensemble assume a disk-like appearance due to the conserva-

tion of angular momentum. Examples vary from galactic disks, accretion disks, to planetary

rings. Although different in nature, these astrophysical disks are subject to the same fun-

damental physical processes. Hydrodynamic modeling is one of the theoretical approaches

to describe either planetary rings (Stewart et al., 1984; Shu et al., 1985b,a; Schmit and

Tscharnuter, 1995, 1999; Spahn and Sremčević, 2000; Schmidt et al., 2001), accretion disks

(Lynden-Bell and Pringle, 1974; Papaloizou and Lin, 1989; Kleiber and Glatzel, 1999), or

galactic disks (Toomre, 1964; Binney and Tremaine, 1987). While direct collisions among

the constituents can be neglected in galactic disks1, they have a major impact in dense plan-

etary rings. Due to inelastic collisions, latter are extremely flattened. Especially important

to planetary rings’ dynamics is the epicyclic motion of the particles that can be taken into

account in a kinetic description of the N-particle dynamics (Goldreich and Tremaine, 1978;

Shukhman, 1984; Araki and Tremaine, 1986). Besides these methods, also Monte-Carlo

like N-body simulations of planetary rings (Frezzotti, 2001) and a local simulation method

(Wisdom and Tremaine, 1988; Salo, 1991; Lewis and Stewart, 2000; Salo et al., 2001; Seiß

et al., 2005) are employed. A detailed description of the latter may be found in Salo (1995).

A more detailed understanding of the underlying collision dynamics provides better insights

into the evolution of planetary rings. Simulations done so far did only account for either

a constant (Wisdom and Tremaine, 1988; Ohtsuki, 1993) or, more advanced, a velocity

dependent coefficient of restitution (Salo, 1991; Salo et al., 2001; Schmidt et al., 2001) but

did not allow for a vanishing restitution.

However, numerical simulations, as mentioned above, are quite time consuming and CPU

demanding. Since the relevance of adhesive collision to planetary rings is still putative, we

use a simplified approach to point out possible influences. Results will show whether an

implementation of adhesion into large-scale simulations might be worthwhile. Here, the

1Stars within a galactic disk have a small cross-section and are massive enough for gravitational scattering

to outweigh physical collisions.
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collision dynamics presented in the previous chapter is applied to the relative orbital motion

of two grains. Its effects are studied in an analytical approach in Sec. 3.1 and compared to

simple numerical simulations in Sec. 3.2. Results are discussed in the context of Saturn’s

rings but can easily be translated to other planetary ring systems. For an application to pre-

planetary disks, the influence of their gas component is considerable and results are only

partially applicable.

3.1 Analytical Estimates

Considering two particles of masses, m1 and m2, in orbit about a central mass M, their

equations of motion including pairwise interactions (PI) read

m1~̈r1 = −GMm1~r1

r3
1

+PI [ (~r1−~r2) ] , (3.1)

m2~̈r2 = −GMm2~r2

r3
2

+PI [ (~r2−~r1) ] . (3.2)

Their dynamics may as well be expressed in their center of mass frame

~rc =
m1~r1 +m2~r2

m1 +m2

, ~d = ~r2−~r1 , (3.3)

where ~d denotes the relative distance between both particles as in Eq. (2.1). After series

expanding the central gravity around~rc and changing to a co-moving frame, the equations

of motion may be written as

d2~rc

dt2
= −GM

~rc

r3
c

, (3.4)

~̈d +2~Ω× ~̇d + ~Ω× (~Ω× ~d) = −Ω2

(

~d− 3(~d ·~rc)~rc

r2
c

)

+PI [ ~d ] . (3.5)

where ~Ω = Ω~ez with Ω =
√

GM/r3
c denotes the Keplerian orbit frequency. Equation (3.5)

describes the relative motion and covers all inertia forces. As shown in Chapter 2, the

collision dynamics allows for agglomeration and restitution. Since the dynamical timescales

of restituting collisions, τN ∼ ms for cm-sized grains, are by orders of magnitude smaller

than the average time between collisions for Saturn’s rings, particle impacts are considered

as instantaneous hereafter. Thus, only the collisional outcome is important to the dynamical

evolution of the system, validating kinetic assumptions (e.g. Longaretti, 1989; Spahn et al.,

2004). In case of restitution, particles are henceforth only influenced by the central body,

their mutual gravity and mutual collisions. Agglomeration, on the other hand, revealed a

remaining attractive bond (~Fbond = Fbond~ed , Eq. (2.30)), which has to be taken into account

for any ongoing orbital motion as a constant attractive force. In order to account for both

collisional outcomes, particle interactions PI [ d ] must be expressed accordingly

PIrest [ ~d ] = −G
m1m2

d2
~ed , (3.6)

PIagg [ ~d ] = −
(

G
m1m2

d2
+

3

2
πγSReff d

)

~ed , (3.7)
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where the former refers to restitution and the latter to agglomeration. An agglomerate of two

grains is moving at the grains’ center of mass velocity ~̇rc. Exposed to tidal shear it can only

exist, if it’s internal bonds are strong enough to support it. Here, they are denoted by adhe-

sive bonds Fbond. Additional to tidal disruptions, further perturbations as other collisions or

scattering might destroy an agglomerate. Processes considered as erosion or fragmentation

together with agglomeration could ensure a steady size distribution and will be discussed

in subsequent chapters. In Sec. 3.1.1 the stability of aggregates in a tidal environment with

respect to adhesive bonds is discussed qualitatively. Thus, instead of solving the dynamics

of Eqs. (3.4)-(3.7) we will determine whether adhesion plays a noticeable role.

3.1.1 Stability of Two-Body Agglomerates

In this section, the stability of an agglomerate held together by adhesion and mutual gravity

is discussed. A critical distance rcrit from the planet’s center is found by analyzing particular

grain configurations in orbit about a central planet. Any agglomerate, which is closer to the

central body than this critical distance (r < rcrit), will inevitably be torn apart. Hereafter,

agglomerates able to resist the tidal shear are referred to as stable and those torn apart

as unstable. In order to determine the functional dependence of the borderline between

stability and instability, two solid, spherical grains of arbitrary size are assumed to have

formed an agglomerate according to Sec. 2.2.2 and ”place” it at an arbitrary orbit location.

At this point, complex dynamics such as the likelihood of a collision is waived in order to

appraise the general effects of adhesion.

As shown in Sec. 2.3.1, the contact of such aggregates is static d̈ = ḋ = 0 and implies a

constant distance d = R1 +R2−ξad = const. Since ξad is of the order of 10−7−10−5 m, it

is thus negligible and the second part of Eq. (3.3) can be approximated by d ≈ R1 +R2. The

properties of such two-particle agglomerates are particle radius R = R1, size ratio µ = R2/R1,

spin angular velocity α̇(t), orientation α(t), and surface energy γS. According to Fig. 3.1 we

introduce ~d = d~ed = d cosα~er +d sinα~eϕ. For simplicity and in order to give a conservative

estimate for maximal sizes of stable agglomerates, we assume ~ω ⊥ ~d and ~d||~r, denoting

maximum tidal and centrifugal forces, where ω is the spin of the aggregate. Equation (3.5)

and Eq. (3.7) yield

−Ω2d(1−3cos2 α)− G(m1 +m2)

d2
+(α̇+Ω)2d− 3

2
π

γSReff

meff

= 0 . (3.8)

The equilibrium distance rcrit emanates from the orbit frequency Ω2
crit = GM/r3

crit and can be

obtained by solving Eq. (3.8). Note, α̇ denotes the spin with respect to the co-moving frame

while the total spin is given by ω = α̇ + Ω. It is sufficient to exceed the maximum bond

strength once at a single point in time in order to break the bond. The further on motion

is irrelevant and thus α = 0 as a snapshot in time is assumed and will serve to describe the

maximal tidal shear. However, although α = 0 different rotation rates may be discussed.

For convenience, we denote α̇ = kΩcrit, where k is a real number. The critical orbit distance

results in

r3
crit =

GMd meff [(k +1)2 +2]

AD+SG
, (3.9)

where AD = 3 πγSReff/2 and SG = G m1m2 d−2 refer to adhesive and gravitational particle
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interactions, respectively. Resolving the aggregate properties given above, Eq. (3.9) yields

r3
crit =

24GMρR3µ2(1+µ)3 [(k +1)2 +2]

(1+µ3)[27γS(1+µ)+32πGρ2µ2R3]
, (3.10)

which further reduces in case of equally sized grains (µ = 1) to

r3
crit =

48GMρR3[2+(k +1)2]

27γS +16πρ2GR3
. (3.11)

particle 1

~r2

~r1

~d
~er

~ed~eϕ

α
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Figure 3.1: Schematic top-on view: The center of mass ~rc of two orbiting particles is re-

volving anti-clockwise around the central body. Particles in contact may agglomerate and

are able to spin around their main axis. The co-moving frame originates at~rc(~er, ~eϕ) and

the relative motion can be described in (~ed ,~e⊥). In case of two particles in contact α denotes

the orientation of the agglomerate.

Generally, the critical distance rcrit may as well be obtained as an effective value according

to

1
(

rcrit

)3
=

1
(

r SG

crit

)3
+

1
(

r AD

crit

)3
, (3.12)

where

(r SG

crit)
3

=
3M [(k +1)2 +2]

4πρ

(1+µ)3

(1+µ3)
, (3.13)

(r AD

crit)
3 =

8GMρ [(k +1)2 +2]

9γS

µ2(1+µ)2

(1+µ3)
R3 . (3.14)

Yet additional attractive forces can easily be implemented. It is important to mention, that

the inclusion of adhesion allows for a size dependent critical distance to the planet expressed

by Eq. (3.12). Equation (3.13) denotes the equilibrium distance, if mutual gravity is con-

sidered alone. It then depends only on the agglomerate proportions but does otherwise not
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imply any critical agglomerate sizes. Note, the critical distance, as well as the adhesive

bond, does not depend on the mechanical properties of the grains.

Figure 3.2 illustrates rcrit in case of two radially-aligned, and synchronously rotating parti-

cles in contact. Results are given with respect to the Saturnian system, mass MS and radius

RS, and material parameters of ice at low temperatures are applied as provided in Table 2.1.

The critical range rcrit is sensitive to agglomerate sizes and clearly arises as an effective

value of pure adhesive, Eq. (3.14), and gravitational particle interaction, Eq. (3.13). The

asymptotic limit for large bodies coincides with the outer edge of the B ring for µ = 1. It

denotes the asymptotic value for larger bodies (R→ ∞) that are liable to gravity. In case

of smaller grains (R < 10 m), adhesion dominates where rcrit ≈ r AD

crit. As soon as smaller

particles stick to larger ones (µ≪ 1 or µ≫ 1), these agglomerates are stable even as close

to Saturn as the D ring. In the lower part of Fig. 3.2, the obvious symmetry with respect to

µ is visible. Aggregates become unstable for 0.1 < µ < 10. The remaining parameter space

refers to stable radially-aligned agglomerates.

In case of non-synchronously spinning aggregates (k 6= 0) centrifugal forces additionally

tear at an adhesive bond. Figure 3.3 shows the influence of different spin configurations.

Non-spinning aggregates (ω = 0, k =−1) logically appear to be the most stable ones. Any

rotation, clockwise or anti-clockwise, shifts rcrit farther outward. Only smaller aggregates

can sustain themselves at high rotation rates.

Rotation rates of ring particles have been investigated in previous studies for non-gravitating

particles (Salo, 1987), gravitating particles of identical size (Salo, 1995), and gravitating

particles with size distribution (Ohtsuki, 2005), and revealed a decreasing spin rate with

increasing particles size. Spin rates of moonlets embedded in planetary rings were discussed

in (e.g. Morishima and Salo, 2004; Ohtsuki, 2004). It has further been shown, that not

only the average rotation rate but also the spin dispersion is of major importance to the

dynamics of rings. But implementing a spin dispersion ∼ 1/(R(1+µ)) (Salo, 1987) shows

no significant influence on rcrit. Resulting variation in rcrit remain within 0.05RS.

Weidenschilling et al. (1984, pp. 376-377) gave expressions for the distance where the net

attraction between two spherical, radially-aligned particles in contact is zero. They consid-

ered several cases as follows: equally sized bodies in synchronous rotation (their Eq. (2))

and not rotating (their Eq. (3)); a small particle resting on a larger one in synchronous rota-

tion (their Eq. (4)) and not rotating (their Eq. (5)). Applying these parameters to Eq. (3.9),

we find a good agreement with our results as shown in Fig. 3.4. Each thick horizontal line

is denotes one particular set of parameters, which is reproduced as an asymptotic limit in

case of large R.

Longaretti (1989) deduced a critical density in case of only gravitational attraction. He

also noted that aggregates with µ 6= 1 effectively attract each other, implying an indirect

dependence of these findings on the radial distance. Much before the more recent studies,

Roche (1847) investigated the existence of satellites around central bodies and derived the

closest distance from a planet of radius Rplanet and density ρplanet at which a homogenous,

self-gravitating liquid satellite of density ρsatellite can exist in a circular orbit in synchronous

rotation. This limit distance became known as the Roche limit given by

rRoche

Rplanet

= 2.456

(

ρplanet

ρsatellite

)1/3

(3.15)
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Figure 3.2: Stability region I: The critical distance rcrit in Saturnian radii RS is illustrated

for two radially-aligned (α = 0), and synchronously rotating (k = 0) particles in contact of

different proportions. Grey shaded regions denote certain rings as a reference. Either the

proportion µ (upper) or the agglomerate or grain size R (lower) has been kept constant and

the dependence on either of them is given for γS = 0.74.

Not only the existence of satellites but also the onset of growth processes, limited by tidal

stresses, is usually denoted by the Roche limit (Roche, 1847; Chandrasekhar, 1969). Since

the Saturnian ring system mainly consists of icy particles (ρ = 103 kg m−3), the correspond-

ing classical Roche limit is located at 2.2 Saturn radii (mid A ring). However, as long as
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Figure 3.3: Stability region II: The critical distance rcrit in Saturn radii RS is illustrated

for different agglomerate spins ω = α̇ + Ω. Values represent snapshots of radial alignment

(α = 0) and equal sizes (µ = 1). Any spin of an agglomerate shifts rcrit farther outward.

Non-rotating and aggregates (ω = 0, α̇ = −Ω) reveal the closest equilibrium distance and

are thus the most stable but also unlikely ones. rcrit is depending on |ω| only and is thus

symmetric with respect to prograde and retrograde spins.
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gravity is considered alone these criteria do only depend on the distance from the central

planet and the size ratio of colliding grains (Weidenschilling et al., 1984; Ohtsuki, 1993)

but not the total size of the agglomerate as it has also been observed by Cassini.

Figure 3.4: Comparisons: The critical distance rcrit is plotted for different parameter sets

(µ,ω) each with α = 0. Thicker and thinner horizontal lines refer to adaptive Roche limits

presented in Weidenschilling et al. (1984) (dotted - their Eq. (2); dashed - their Eq. (3); solid

- their Eq. (4); dashed-dotted - their Eq. (5)) and limits given by gravity only, respectively.

These emerge as asymptotic values only and are not valid for all sizes. The critical distance

is definitely size dependent. Saturn’s rings are sketched as a reference where for rcrit ≤ 1

we find the planet itself.

However, stability seems to be highly pronounced compared to observations implying ag-

glomerates of tens of meters in size. Hatzes et al. (1991) obtained maximum sizes for

N-body agglomerates in a tidal regime of about R = 6m for 10 cm and R = 70m for 1

meter-sized spherical particles. But since no other perturbing or erosive processes, such as

e.g. further collisions, have been considered, results presented here denote an upper limit of

particle sizes for a given location. Including all these processes, grain sizes are expected to

be much smaller as as adumbrated below.

3.1.2 Collisional Stability Estimate of Two-Body Agglomerates

As for the stability discussion in Sec. 3.1.1, a rough estimate for the effects of including

erosive processes is presented in this section. To this aim, we check the bond strength (adhe-

sive and gravitational) against the impact energy of yet another body. A sufficient break-up

energy Ebreak = QMcoll is required to ensure the destruction of the agglomerate, where Q de-

notes the critical specific energy per unit mass (Durda et al., 1998) and Mcoll = 4πρR3
coll/3

describes the mass of the impacting body with radius Rcoll. This critical specific energy

accounts for the internal strength (elastic energy of deformation, number and strength of
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internal bonds between constituents, etc.) and the gravitational binding energy. The impact

energy must exceed Ebreak to destroy the target.

Agglomerates discussed in this section are built in a rather simple way, because they contain

only a single bond with a binding energy of Ebond = Ead + Egrav. The adhesive energy2 is

then determined by

Ead =
Z ξad

0
Fstatic(ξ)dξ =

36

7
(6π5)1/3

[

γ5
SR4

eff

E2
eff

]1/3

, (3.16)

where Fstatic and ξad are given in Eq. (2.59) and (2.62), respectively. The gravitational

potential reads Egrav = Gm1m2 d−1. Although impact velocities can reach escape velocities

of the largest ring boulders (Ohtsuki, 1993), vcoll = 3d Ω/2 is assumed for simplicity. In

doing so, we evaluate the influence of further collisions. Anyhow, higher-velocity impacts

result in even more destructive encounters producing smaller debris. Our estimates denote

upper limits. This is supposed to serve as an exemplary correction of results on stability

obtained in the previous section.

In analogy to Sec. 3.1.1, rcrit emanates from Ωcrit and reads

r3
crit =

9GMS

8

meffMcoll

(Ead +Egr)(meff +Mcoll)
. (3.17)

Fig. 3.5 shows the limiting distance for agglomerates of equally sized constituents but dif-

ferent sizes of an impacting third body. We chose equally-sized constituents since they

represent a limit case of least stable aggregates. The stability region is by far not as pro-

nounced as in Sec. 3.1.1. Maximum sizes are within the range of decimeters for the inner

rings, which is fairly close to Voyager and Cassini observations. Smaller agglomerates are

not as easily broken as larger ones, since adhesive bonds are relatively stronger and tidal

forces weaker (cf. previous sections). It implies that smaller particles reside closer to the

planet than larger. This tendency is retained and again matches observations.

3.1.3 Summary

In terms of these analytical estimates, agglomerates are most fragile if they consist of equal

sized particles. Small particles stick more easily to larger ones (indicated by a comparably

high critical velocity, see also Fig. 2.8). Additionally, the stability zone for µ 6= 1 (see

Fig. 3.2) is definitely broader. For µ ≈ 1, particles are located outside, whereas smaller

particles resting on a larger one, are well inside the Hill-sphere of the latter (Ohtsuki, 1993).

Therefore, the agglomeration of smaller particles (µ 6= 1) appears always possible, further

promoting the existence of regolith layers. Their thickness will strongly depend on the size

of the largest body of the agglomerate and thus indirectly on the radial distance from the

central planet. Regolith layers, in turn, strongly determine the elasticity of further impacts.

Hence, the average elasticity of a collision may not only be dependent on the impact speed

but is also determined by the location within the rings.

2For reasons given above (cf. Sec. 2, in particular Sec. 2.4.2), details of the collision dynamics including the

interparticle bond will be adopted according to the approximative description given in Sec. 2.3.1. Note, that the

adhesive part of the static force is a potential force. The bond energy is thus different from the final snapping

energy Esnap.
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Figure 3.5: Collisional stability: The critical distance rcrit is plotted for an agglomerate

(µ = 1) impacted by a grain of radius Rcoll = nR, where n∈ [0.5, 0.65, 1.0, 2.0]. Collisional

erosive processes enormously limit the agglomerate sizes to a few decimeters in size.

Grain sizes are obviously mainly determined by collisions and not by tidal stresses (cf.

Longaretti, 1989). Impact energies are underestimated leading to larger stable agglomerates

than can be expected in reality. However, these estimates provide a rough upper limit for

stability and as all calculations in Sec. 3.1.1 and 3.1.2 should just be taken as guidelines for

further, more detailed studies.

3.2 Numerical Simulations

For a more precise analysis of the dynamics of Eqs. (3.4-3.7) we perform at least simple nu-

merical studies. This allows to account for collision frequency and likelihood of a collision.

3.2.1 Orbital Motion and Hill’s Equations

The dynamics of two particles, m1 and m2, in a co-rotating frame is given by Eqs. (3.4-3.7).

Here, the equations of motion describe the center of mass and the relative motion. Consid-

ered masses are by far smaller than the mass of the central body3, here Saturn, MS≪m1,m2.

Hill’s equations4 (Hill, 1878) may be applied to almost circular orbits. This approach is

usually applied to the restricted three-body problem and denotes a linearization of general

equations, where a test particle is studied in a system of a secondary object orbiting the

central body. The study of mutual collisions and gravitational scattering is much easier in

the framework of these equations. A scattering matrix for a test particle under the gravita-

tional influence of an embedded moon, has been obtained by the same approach (Spahn and

3However, presented analysis is valid for any central mass M.
4Hill’s equations were introduced to study the lunar orbit and denote a linearization of the otherwise nonlin-

ear potential force of a central body GM~r/r3.
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Wiebicke, 1988; Spahn and Sremčević, 2000; Sremčević et al., 2002). Somewhat closer to

this thesis, Ohtsuki (1993) investigated collision and capture probability for two particles in

orbit about a central body based on the relative orbital motion.

Hill’s equations are usually used to study the so called restricted three-body problem, i.e.

the motion of a test particle m2 in the central field MS and field of the secondary body m1

(MS >> m1 >> m2). However, in this thesis we follow studies of Nakazawa and Ida (1988)

and Ohtsuki (1993), where the relative motion of two particles (m1 ∼ m2) is described

in terms of Hill’s equations. As described in detail in Nakazawa and Ida (1988), Hill’s

equation may be rewritten using Eq. (3.3) and yield in Cartesian coordinates, the center of

mass motion with respect to the central body~rc = (xc,yc,zc)

ẍc = +2 Ωc ẏc +3 Ω 2
c xc

ÿc = −2 Ωc ẋc

z̈c = − Ω 2
c zc (3.18)

and the relative motion ~d = (x,y,z)

ẍ = +2 Ωc ẏ+3 Ω 2
c x− ν

r3
x

ÿ = −2 Ωc ẋ − ν

r3
y

z̈ = − Ω 2
c z− ν

r3
z (3.19)

where ν is given by

ν =
m1 +m2

MS

a 3
c Ω3

c , (3.20)

and ac and Ωc denote the semimajor axis and orbit frequency of the center of mass, re-

spectively. The system is naturally described in a non-dimensional form where time and

distance are normalized by Ω−1
c and ach,

t̃ = t Ωc (3.21)

~̃d = (x̃, ỹ, z̃) =
(x,y,z)

ac h
, (3.22)

and h denotes the reduced Hill radius of the two grains defined by

h =

(

m1 +m2

3MS

)1/3

. (3.23)

Rescaling Eqs. (3.19) as introduced in Eqs. (3.21) and (3.22), the relative motion may be

expressed as

¨̃x = +2 Ωc ˙̃y+3 Ω 2
c x̃− x̃

r3

¨̃y = −2 Ωc ˙̃x − ỹ

r3

¨̃z = − Ω 2
c z̃− z̃

r3
. (3.24)
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If the relative distance d̃ between both particles is sufficiently large, the mutual interaction

term can be neglected and the system of equations (Eq. (3.24)) describes a Keplerian motion

with the analytical solution (Petit and Henon, 1987)

x̃(t̃) = b̃− ẽcos(t̃− τ)

ỹ(t̃) = −3

2
b̃(t̃−φ)+2ẽsin(t̃− τ)

z̃(t̃) = ı̃sin(t̃−ω) , (3.25)

where the set of equivalent Keplerian orbital elements of relative motion reads: b̃ semimajor

axis (here also denoting the impact parameter), ẽ eccentricity, ı̃ inclination, τ longitude of

perihelion, ω longitude of ascending node, and φ time of pericenter passage. The first three

shape the orbit and are defined in terms of orbital elements of masses m1 and m2 as

b̃ =
b

ach
=

b1−b2

ach

ẽ =
e

h
=

1

h

[

e2
1 + e2

2−2e1e2 cos(τ2− τ1)
]

ı̃ =
i

h
=

1

h

[

i21 + i22−2i1i2 sin(ω2−ω1)
]

. (3.26)

Note that even if e1 6= 0 and e2 6= 0 the resulting eccentricity ẽ can be zero. The latter three

are angular orbital elements determining orientation of and position on the relative orbit.

3.2.2 Binary Particle Collisions

In planetary rings particle collisions are an essential component of rings’ dynamics and

occur several times per orbit. As demonstrated in Sec. 2 and applied in Sec. 3.1, collisions

happen almost instantaneously compared to the timescale of orbital motion. Thus, only the

outcome of the collision and therefore the coefficient of restitution is important for a further

dynamical evolution. A collision model as introduced in Sec. 2 can be applied straight away.

To outline this task one has firstly to detect a collision and secondly to “correct” the rebound

velocity for εN.

As an initial orbital setup, the masses, m1 and m2, may be placed at a sufficiently large

relative azimuthal distance where their gravitational interaction is negligible. Fixing the

relative orbital elements (b̃ , ẽ , ı̃ , τ , ω , φ) the set of Eq. (3.25) is applied to obtain

corresponding initial Cartesian coordinates at t̃ = 0. For simplicity, φ is not directly chosen

in numerical simulations. Instead we use an azimuthal, Cartesian distance referred to as

ỹmax. It ensures a sufficiently large relative distance and is defined as ỹmax = max[ 40, 20ẽ ]
(Ida and Nakazawa, 1989; Ohtsuki, 1993). Due to their mutual gravity grains attract each

other and in case they do not collide are at least scattered. Any scattering, geometrical or

physical, changes the grain’s velocity and the velocity distribution. Therefore, effects of

self-gravity are crucial as has been shown in various studies (Salo et al., 2004; Lewis and

Stewart, 2005).

In order to illustrate the relative motion, Fig. 3.6 shows trajectories obtained by Eq. (3.24)

where b̃ = 1.79 , ẽ = 0 , ı̃ = 0 , τ = 0 , ω = 0 , ỹmax = 40 , and rp = 0.97 are applied as

initial conditions. The gray area (x̃ 2 + ỹ 2 + z̃ 2 < 1) describes the effective target of relative

motion. An impact can be illustrated as a point mass hitting a second particle of radius

R1 + R2 instead of two separate grains approaching each other. Identical initial conditions
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but different coefficients of restitution5 are chosen. Note, since the same initial conditions

are applied in all cases, the incoming trajectory is always the same and enters the plot at

the top. However, rebound trajectories differ and are denoted as solid, dashed-dotted, and

dotted lines. For εN = 1 no energy is dissipated (solid line). Reducing the value of εN

clearly diminishes the relative distance after impact, since the rebound velocity is smaller

(dashed-dotted line). Yet further increasing dissipation decreases the separation speed such

that the trajectory is completely changed by mutual gravity.
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Figure 3.6: Comparison of different trajectories corresponding to different εN are obtained

by solving Eq. (3.24) using the same initial conditions: b̃ = 1.79 , ẽ = 0 , ı̃ = 0 , τ = 0 ,

ω = 0 , ỹmax = 40 , rp = 0.97 . The more dissipative the impact the more important mutual

gravity becomes to the ongoing relative motion. Note, results are shown in units of their

Hill scaling and the gray area denotes the target of effective size R1 +R2.

3.2.3 Capture Probability

Since we are not primarily interested in details of orbital motion but in the overall influence

of collision dynamics, it is sufficient to concentrate on values such as collision and capture

probability. Despite the investigation of special cases it is more interesting to obtain results

with respect to an entire grain ensemble. Therefore, it is necessary to implement the dis-

tribution of orbital elements while preparing sets of initial conditions. The angular orbital

elements (τ, ω) are drawn uniformly within τ ∈ [0,2π] and ω ∈ [0,π]. The third angular

orbital element φ should only ensure a sufficiently large initial distance between the grains

5Since the description in terms of Hill’s equations does not include the spin of particles, the tangential

coefficient of restitution εT can safely be put to unity.
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as mentioned before. Semimajor axis b̃, or impact parameter, as well as eccentricity and

inclination are discussed below.

In general, particles collide more than once and, correspondingly to that, the trajectory is

very complex and chaotic (Petit and Hénon, 1986). Following Ohtsuki (1993) we use the

Jacobi constant

EJ =
1

2
( ˙̃x 2 + ˙̃y 2 + ˙̃z 2)+U(x̃, ỹ, z̃) , (3.27)

where

U(x̃, ỹ, z̃) = −3

2
x̃ 2 +

1

2
z̃ 2− 3

r̃
+

9

2
, (3.28)

which is the integral of motion (energy integral) of Hill’s equations valid between two col-

lisions. The Jacobi integral can also be expressed in terms of the relative orbital elements

as (Ohtsuki, 1993)

EJ =
1

2
(ẽ 2 + ı̃ 2)− 3

8
b̃ 2− 3

r̃
+

9

2
. (3.29)

The additive constant 9/2 of the energy integral is chosen in such a way that U = 0 at

the Hill’s sphere border. Therefore in order to save CPU time, we can use the following

criterion for the capture EJ < 0, evaluated after each collision, as particle cannot escape the

potential well. Additionally, if particles stick together an adhesive bond, Eq. (2.30). If this

bond is found to be stronger than disruptive inertia forces, grains will be captured.

The impact parameter b̃ may be chosen with respect to the likeliest collision orbits of two

grains. We choose b̃min ≤ b̃ ≤ b̃max where b̃min = 8/(2.5 + 2ẽ) and b̃max = (12 + 4(ẽ 2 +
ı̃ 2)/3)1/2 as was used in comparable studies (Ida and Nakazawa, 1989). This helps to save

CPU time, while concentrating on actual collision orbits. Two additional orbital elements,

ẽ and ı̃, remain to be fixed.

Eccentricity and inclination determine the relative orbital velocity as ṽ 2 = ẽ 2 + ı̃ 2 (Ohtsuki,

1993) and thus effectively correspond to the granular temperature of the ensemble. The two-

body escape velocity vesc reads

vesc =

√

2G(m1 +m2)

R1 +R2

=

√

6

rp

, (3.30)

where rp denotes the scaled sum of particle radii as

rp =
R1 +R2

ach
=

(

9MS

4πρ

)1/3

· 1

ac

· (R1 +R2)

(R 3
1 +R 3

2 )1/3
, (3.31)

with ac being the semimajor axis of the center of mass. In case of equal sized particles

(µ = 1), and thus R1 = R2, neither rp nor ac are dependent on the size of the individual

particles and both are inversely proportional to each other rp∼ 1/ac. Additionally, rewriting

Eq. (3.31) yields

rp =

(

9MS

4πρ

)1/3

· 1

ac

· 1+µ

(1+µ3)1/3
, (3.32)
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clearly independent of the actual grain size. As characteristic for gravity, only the size ratio

µ matters. Choosing a value of rp clearly fixes a particular application where then only an

initial velocity has to be adjusted. Examples of possible applications are given in Table 3.1

(cf. Ohtsuki, 1993, Table 1). In case of collisions, rp does further denote the scaled minimal

distance two particles can have.

Central Body Orbit Location µ = 0.1 µ = 1 µ = 10 µ = 100

Sun Saturn 0.9×10−3 1.2×10−3 0.9×10−3 0.8×10−3

Jupiter 1.6×10−3 2.3×10−3 1.6×10−3 1.5×10−3

Earth 8.3×10−3 1.2×10−3 0.8×10−3 7.6×10−3

Saturn Titan 0.06 0.1 0.07 0.06

Enceladus 0.35 0.5 0.3 0.3
1.5 RS 0.9 1.3 0.9 0.9
2.0 RS 0.7 1.0 0.7 0.6
2.3 RS 0.6 0.9 0.6 0.5

Table 3.1: Values of rp for different regions of interest. Choosing a particle size ratio µ addi-

tionally to central mass, here MS, and semimajor axis ac clearly determines the application.

Examples are given with respect to Saturn’s rings and other systems (cf. Ohtsuki, 1993,

Table 1) where a density of ρ = 103 kgm−3 is applied. The main rings of Saturn cover a

parameter range of roughly rp ∈ [0.5,1.5].

With a set of independently chosen initial parameters (b̃, ẽ, ı̃,τ,ω), collision pcoll and capture

counters pcapt can be defined as (Ohtsuki, 1993)

pcoll(b̃, ẽ, ı̃,τ,ω) =

{

1 if particles collide

0 otherwise
(3.33)

and

pcapt(b̃, ẽ, ı̃,τ,ω) =

{

1 if Jacobian integral is negative after impact

0 otherwise
. (3.34)

Basically, simply counting all positive events is sufficient in order to obtain the according

probabilities. This is correct if the initial variables are uniformly distributed. However, the

distribution of the impact parameter b̃ and especially the distributions of eccentricities ẽ and

inclinations ı̃ are not uniform. Leaving ẽ and ı̃ aside, the corresponding equations for col-

lision Ccoll(ẽ, ı̃) and capture rate Ccapt(ẽ, ı̃) read (Nakazawa et al., 1989; Ida and Nakazawa,

1989)

Ccoll(ẽ, ı̃) =

b̃max
Z

b̃min

db̃

2π
Z

0

dτ

π
Z

0

dω
3

2
|b̃|(2π)−2 pcoll(b̃, ẽ, ı̃,τ,ω) (3.35)

and

Ccapt(ẽ, ı̃) =

b̃max
Z

b̃min

db̃

2π
Z

0

dτ

π
Z

0

dω
3

2
|b̃|(2π)−2 pcapt(b̃, ẽ, ı̃,τ,ω) . (3.36)
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Only colliding grains may capture each other and the capture probability Pcapt is a condi-

tional probability expressed as

Pcapt(ẽ, ı̃) =
Ccapt

Ccoll

. (3.37)

At this point we will follow two exemplary applications given in Ohtsuki (1993), namely

for rp = 0.008, i.e. collisions between planetesimals in heliocentric orbits of ac = 1 AU, and

rp = 0.1. The capture probability is obtained as a function of relative velocity ṽ as illustrated

in Fig. 3.7. Eccentricity ẽ and inclination ı̃ are chosen to match relative velocities ṽ while

b̃, τ, and ω are drawn uniformly. In contrast to Ohtsuki (1993), who employed extensive

numerical calculations by splitting the parameter space into a grid and laboriously scanning

for collision orbits, a Monte-Carlo approach is employed in our study. It allows for a good

statistical representation of results with fewer collisions. Simulation results are presented

in Fig. 3.7. Each data point is obtained by averaging over 1000 collisions. A fair agreement

of both methods is reached as demonstrated in Fig. 3.7 for both εN = 0.9 and εN = 0.5.

Instead of fixing the coefficient of restitution εN to a constant value as done by most authors,

the collision model presented in Chapter 2 is applied. Since Eq. (2.61) does not only depend

on the size ratio µ of both grains but on their actual size R as well, an additional parameter,

not covered by (Ohtsuki, 1993), is introduced. Additionally, the possibility of aggregation

raises questions whether cohesive forces overall increase the capture probability. Therefore,

whenever a collision is detected, Eq. (2.61) is applied to obtain the appropriate restitution

coefficient. The normal rebound velocity is then calculated accordingly while the tangential

restitution is fixed to εT = 1 at all times. As mentioned above, we define a capture, if

the Jacobian integral (Eq. (3.29) is less than zero after impact, and stop the simulation.

If the normal impact speed is sufficiently low, grains will form a sticking bond (εN = 0)

according to Chapter 2. This bond is given by Eq. (2.30) and may prevent a post-collisional

separation. In our numerical study it became evident, that the majority of sticking contacts

leads to capture.

Another effect is found in case of small impact speeds: during repetitive collisions sliding

motion may occur, especially if εT = 1. In particular, the likelihood of such sliding is in-

creased due to a vanishing normal restitution coefficient for relatively small impact speeds.

Comparable studies noticed this effect as well, as it causes numerical difficulties (Petit and

Henon, 1987; Wisdom and Tremaine, 1988; Ohtsuki, 1993). In the present numerical study,

the motion of particles in contact is covered in terms of spherical coordinates while keeping

r = R1 +R2 as long as the attractive bond according, Eq. (2.30), is stronger than disruptive

inertia forces. At this point of contact, the relative motion is restricted to r = const and

the remaining two angular degrees of freedom are solved using Hill’s equation in spherical

coordinates. This rolling motion is traced unless it continues for more than 2π. If so, we

additionally define a capture event. Friction naturally restricts the sliding phase.

In order to quantify these result more precisely and also to be able to directly compare to

results of Sec. 3.1, the orbit dynamics will be applied directly to the Saturnian system in the

next section.

3.2.4 Applications to Saturn’s Rings

In order to study planetary rings and to obtain capture probabilities, we randomly choose the

initial orbital elements as before, since this approach allows for less extensive simulations.
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Figure 3.7: Capture probability of two grains in orbit around a central body as a function

of scaled orbital velocity ṽ/vesc. Integrations were done for rp = 0.008 and rp = 0.1 in

direct comparison to Ohtsuki (1993, Eq. (3.21), Fig. 3 and Fig. 4). Simulations are in good

agreement with his results. Upper part: Higher relative velocities cause captures to be less

probable for εN = 0.9 than for εN = 0.5, where the capture probability is overall increased

due to a higher dissipation during collisions. An analytical expression may be found in

Ohtsuki (1993, Eq. (3.21)). Numerical results match the analytic expression quite well.

Lower part: The general behavior of Ccapt remains. However, the analytics does not match

numerics anymore since it has been obtained in the limit of high velocity collisions (rp≪ 1).



58 CHAPTER 3. ORBIT DYNAMICS OF TWO PARTICLES

For a direct application to a particular system, it is essential to choose an appropriate veloc-

ity distribution. While angular orbital elements remain uniformly distributed, eccentricities

and inclinations have to be properly weighted.

Various authors studied this problem (Petit and Henon, 1987; Ida and Makino, 1992; Lis-

sauer, 1993; Ohtsuki and Emori, 2000) and found that eccentricities ẽ and inclinations ı̃

obey Rayleigh distributions

f (ẽ, ı̃) =
2ẽ

ẽ 2
0

exp

[

− ẽ 2

ẽ 2
0

]

· 2ı̃

ı̃ 2
0

exp

[

− ı̃ 2

ı̃ 2
0

]

. (3.38)

The velocity distribution f (ẽ, ı̃) is normalized and parameters ẽ0 and ı̃0 denote the root

mean square values ẽ 2
0 = 〈ẽ 2〉 and ı̃ 2

0 = 〈ı̃ 2〉, respectively. The ratio of ẽ 2
0 to ı̃ 2

0 is found

to vary from 1 to about 2 in different problems. Since it apparently plays no significant role

(Sremčević et al., 2002) this value will be fixed to 2 in accordance with Ohtsuki (1993).

Thus, the velocity dispersion is determined by either the eccentricity or inclination alone.

Let us concentrate on eccentricities ẽ where the root mean square value reads

ẽ0 = 2 ı̃0 =
1√
2

c0

acΩc

. (3.39)

A single parameter c0 thus characterizes average orbital velocities and thus the velocity dis-

persion. In further numerical calculation values of c0 in the range of mms−1 to cms−1 are

applied. Random scaled eccentricities ẽ and inclinations ı̃, are drawn according to the distri-

bution, Eq. (3.38). Since ẽ and ı̃ are properly chosen there is no need for further corrections

of Pcapt. Thus, Eqs. (3.35) and (3.36) provide collision and capture rates resulting in capture

probability according to Eq. (3.37).

Covering Saturn’s main rings in the range of r ∈ [1.6,2.5] RS, particle sizes and size ratios

appropriate for Saturn’s rings are used. In contrast to Sec. 3.2.3 and Fig. 3.7, where only

1000 collisions per data point were calculated, 5000 collisions are simulated to increase

the accuracy of Pcapt. First, a constant restitution coefficient of εN = 0.3 is applied, for

simplicity, denoting the rough average of the velocity dependent restitution of viscoelastic

grains (cf. Chapter 2) also found in experiments. Note, that in this first numerical ex-

periment adhesion is not taken into account. The capture probability is this case is only

determined by gravity and dissipation as particle interactions. The size ratio µ is fixed to 1,

c0 = 0.002 ms−1 and the particle sizes vary from 0.1 to 1 m. Establishing a grid of 15×15

data points corresponding to 5000 collisions each, we obtained results presented in Fig. 3.8,

where a radial pattern emerges. The capture probability increases with increasing distance.

No variation of Pcapt with respect to the particle size is visible. Thus, the capture probabil-

ity depends on radial distance only. Below 1.8 RS (B to C ring region) capture probability

effectively reaches zero. The maximum values of Pcapt in this setup are found beyond the

F ring and take values of Pcapt ≈ 0.35. The capture probability of equally sized grains does

not exceed 30% throughout the main rings.

The radial pattern in Fig. 3.8 coincides with considerations on agglomerate stability ac-

counting for gravitational interactions only (cf. Sec. 3.1). The general behavior is thus the

same as for the limit case of larger bodies of Eq. (3.9) which is illustrated in a direct com-

parison to Weidenschilling et al. (1984) in Fig. 3.4. These findings generally agree with the

idea of the Roche limit. Neither the stability criterion nor the numerically obtained capture

probability show a particle size dependence! The capture probability may only generally
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Figure 3.8: Logarithmic capture probability Ccapt as a function of radial distance and particle

size for a constant coefficient of restitution εN = 0.3. Clearly, a radial pattern of increasing

Ccapt emerges. Capture is more probable at farther distances. This is an expected finding

since gravitational influences of the central body become weaker. The plot consists of 15×
15 data points of Ccapt averaged over 5000 simulated collisions each. Capture probability

does not exceed 30% throughout the main rings. For distances closer to Saturn than 1.8 RS

the capture probability effectively reaches zero.

be increased by further reducing the coefficient of restitution. Ohtsuki (1993) expects no

accretion at all within Saturn’s rings if no cohesive forces besides gravity are considered.

Weidenschilling et al. (1984) argues that accretion is at least possible for smaller particles

being captured by larger ones. In that case rp is smaller than unity and µ 6= 1. Next, we

demonstrate how sensitive adhesion modifies this picture.

Applying the collision model of adhesive, viscoelastic spheres (cf. Chapter 2) as described

in Sec. 3.2.3 yields a completely different result. Figure 3.9 shows the logarithmic capture

probability obtained by Monte-Carlo simulations in analogy to those presented in Fig. 3.8.

The average capture probability is smaller than for a constant restitution. However, accre-

tion is generally possible as close to Saturn as 1.6 RS for particles up to 0.5 m in radius

indicated by Pcapt > 0. The particle size dependence coincides with the main outline given
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Figure 3.9: Logarithmic capture probability as a function or radial distance and particle size

for εN as provided by Eq. (2.61). The plot resolution is the same as in Fig. 3.8. In contrast

to a constant restitution coefficient the possibility of agglomeration allows for a particle size

dependence as already found in Sec. 3.1. Capture in general is possible throughout the main

rings. However, particular features raise additional questions of naturally preferred regions

in tidal environments.

in Sec. 3.1. The capture probability as well as agglomerate stability are certainly dependent

on grain size and not only on the size ratio.

For yet smaller particles than 0.1 m capture probability reaches unity regardless of the

distance to the central planet. Larger grains than a meter in size show a minimal capture

probability. However, additional cohesive forces do not simply increase the apparent capture

probability. Both, an increase and decrease of Pcapt can be found giving rise to interesting

patterns further to be examined. This crucial difference clearly indicates the importance of

including cohesive forces while considering planetary ring dynamics. Although the Roche

zone for ice is located within the A ring at about 2.2 RS, accretion is possible in the inner

rings if adhesive forces are taken into account. An upper critical grain size may be inferred

denoting the upper limit of the size distribution as a function of radial distance.

Increasing the average velocity by an order of magnitude to c0 = 0.02 m s−1 surprisingly
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Figure 3.10: Logarithmic capture probability in analogy to Fig. 3.9 while in this case the

average ensemble temperature is higher since c0 = 0.02 m s−1. The same gray levels as

in Fig. 3.9 has been applied for an easier comparison. The general impression remains the

same although particular feature are more pronounced then for c0 = 0.002 m s−1. Certain

ring regions seem to preferably allow for aggregation. Note, these results are based on

collision dynamics and mutual gravity only.

yields nearly the same results as in Fig. 3.9. Minor differences, only apparent after a closer

inspection, can be seen in Fig. 3.10 where the same gray scale is applied to allow for an

easy comparison. In general, the major pattern is almost the same as for c0 = 0.002 m s−1.

However, features are more pronounced. The capture probability for larger bodies is yet

smaller while in case of smaller particles it remains the same. On average the capture

probability is lower as expected since higher impact speeds lead to higher rebound velocities

and thus larger EJ. Seemingly, the capture probability is only weakly depending on the

granular temperature. Anyway, particular particle sizes seem more likely in certain regions

of the rings. This general trend cannot be explained by a rather “plain” radial dependence.

Changing the particle size ratio to µ = 100 yields a capture probability as shown in Fig. 3.11.

Smaller grains up to 0.2 m have the highest capture probability throughout the rings. Larger

bodies are generally less likely to be caught. Interestingly, at 2.4 RS a sudden increase of
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Figure 3.11: Logarithmic capture probability as a function or radial distance and particle

size for a size ratio of µ = 100 and c = 0.002 ms−1. In general, small grains are more

likely to be caught than larger ones and capture probabilities differ by at least an order of

magnitude at according places. As in Figs. 3.9 and 3.10, an increase region of increased

capture probability Pcapt occurs at 2.4 RS probably extending to farther distances. Note, the

gray scale is not the same as for µ = 1.

Pcapt of almost one order of magnitude occurs while increasing the radial distance. This

feature is independent of the grain size and falls in line with observations made in case of

µ = 1 (cf. Figs. 3.9 and 3.10). Applying µ = 0.01, while keeping all other parameters the

same, yields an overall capture probability of unity. This asymmetry with respect to µ arises

from fixing the size of one of the masses and not the sum of both.

However, numerical results are by far richer in structure than predicted by the stability

estimates. Although perfectly in line with Sec. 3.1, the likelihood of a collision and the

actual velocity at impact do influence capture probability. Despite the general trend of

smaller particles being more easily caught than larger ones, numerous interesting feature

arise. However, the most striking among them, appears at about 2.3 to 2.4 RS (roughly F

ring and beyond). While smaller bodies up to 0.3 m still subordinate to the same pattern

in Pcapt as closer to the planet, at this given distance even larger bodies up to 0.7 m in size
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still show Pcapt = 0.05. Closer to Saturn bodies of this size more or less do not accrete

at all. Additionally, at yet farther distances than 2.4 RS, bodies of 0.7 m do not accrete

that efficiently anymore. This “tongue”-shaped region surprisingly coincides with the F

ring region otherwise known to be dynamically active and fast evolving. At this point

it is worthy to emphasize that the presented results are based on relative orbit dynamics

including an adhesive, viscoelastic collision model. The dynamical features found are in

so far independent from additional possible perturbations such as embedded moons and

satellites. The particular region of the F ring seems dynamically different from the rest

of the rings even though the shepherding moons, Prometheus and Pandora, and possible

embedded moons or clumps are not considered in our study.

3.3 Summary and Conclusions

Results presented in this chapter cover analytical as well as numerical investigations. Al-

though two different things, namely stability and capture probability are studied, both ap-

proaches complement each other quite nicely. In the limitations of this study, spin and rota-

tional degrees of freedom are either partially (Sec. 3.1) or not accounted for at all (Sec. 3.2).

However, follow-up collisions, likeliness of collisions, as well as the possibility of aggre-

gation seem to be more fundamental than actual rotations. Here, results are presented with

respect to the Saturnian rings but are applicable to other tidal regimes.

Many authors concerned about the grain sizes in planetary rings have considered only grav-

ity as an attractive force. But critical limit distances as the Roche limit can merely determine

radial limit distances and thus denote only a rough indication for actual grain sizes. No size

dependence can be extracted. Gravity and a constant, non-zero restitution coefficient allow

only for a radial dependence of stability and capture probability as shown in numerical sim-

ulations (Sec. 3.2). Only the combined consideration of mutual gravity and adhesive forces,

or more generally, internal strength, allows for a critical radial distance to the central body as

a function of a corresponding critical grain size as given by Eqs. (3.12-3.14). The proposed

collision model of adhesive, viscoelastic particle interactions enables a non-zero likelihood

of capture as close to Saturn as 1.6 RS. In the same way the stability of agglomerates is

ensured. A general trend is that agglomerate sizes increase with increasing distance to the

planet. This if further endorsed by an enhanced capture probability at the same time. Larger

grains are expected at farther distances from Saturn as observed by the VIMS-experiment

on board the Cassini spacecraft (see Fig. 1.2). Extracted agglomerate sizes and a “transi-

tion” size of about 0.5 m with respect to the capture probability (cf. Sec. 3.2) point towards

decimeter-sized grains for the inner ring system. This roughly coincides with observations

(Marouf et al., 1983; Showalter and Nicholson, 1990; French and Nicholson, 2000), where

sizes range between a few centimeters and a few meters have been observed.

Based on Sec. 3.1, equally sized agglomerates appear more fragile than those consisting of

differently shaped grains. They are easier to be disrupted by either tidal forces or further

impacts of third objects. However, larger assemblies of grains, N > 2, may as well be com-

pactified during yet additional impacts and would thus become more robust. Additionally,

capture is less probable in case of µ = 1 than otherwise. This general qualitative trend co-

incides with analytical estimates as well as numerical simulations. Smaller grains resting

on larger ones are first of all more stable and second more likely to be captured, as is true

in a purely gravitational interaction as well. Results on stability and capture probability
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further promote the existence of regolith layers throughout the main rings. Their thickness

most probably varies with radial distance to the central body. Since regolith layers cannot

be treated as perfectly smooth spheres anymore, the elasticity of follow-up impacts may

depend on their orbit locations and would be decreased with increasing layer thickness.

Furthermore, this implies a not only material and impact speed dependent but also location

dependent restitution coefficient. This aspect is not included in current literature and would

be worthwhile to investigate.

Regolith layers, are likely to be very common, and moreover, are likely to be transient fea-

tures, since they are apparently as easily established as destroyed. Shattering impacts may

temporarily deliver vast amounts of regolith dust into orbit, which eventually will be re-

accumulated. This could provide the base to account for a vivid size distribution dynamics

within the F-ring. An apparently increased capture probability at orbit distances between

2.3 to 2.4 RS could enhance such structural reorganizations. A dynamical combination of

agglomeration and fragmentation based on collision dynamics implies that small particles

can denote the essence of fast dynamical processes. Whether these processes would be per-

fectly balance is still disputable. A resulting, merely transient dynamics without leading to

effective growth processes could be detectable in form of brightness fluctuations. Models

proposed and observations made (Showalter, 1998; Poulet et al., 2000b,a; Barbara and Es-

posito, 2002; Showalter, 2004) would be endorsed while general pattern of ringlet structures

and indications about the number of possible moons could be extracted.



Chapter 4

Kinetic description

In the context of the description of granular gases, concepts of kinetic theory are widely

used. Dry granular matter is well described by Boltzmann or Chapman-Enskog equations

(Boltzmann, 1896; Chapman and Cowling, 1970; Resibois et al., 1977), where the number

of colliding particles is conserved. These models have been extended to allow for inelas-

tic collisions and finite size effects (Goldreich and Tremaine, 1978; Araki and Tremaine,

1986; Jenkins and Richman, 1985). This description fails if either attractive forces play a

role and/or the relative (thermal) velocity of the particle ensemble becomes large enough to

erode the particles. In these cases coagulation and fragmentation change the mass distribu-

tion, the total number of particles, and their individual masses while the total mass is con-

served. The interplay between coagulation and fragmentation is important in many fields,

but corresponding integro-differential equations mainly focus on the mass distribution only

(Silk and Takahashi, 1979; Barrow, 1981; Bishop and Searle, 1983; Family et al., 1986).

Coagulation equations are generally based on the Smoluchowski equation (Smoluchowski,

1916) and have been modified to account for a restricted coagulation domain (Menci et al.,

2002; Mamon, 1992). Many authors introduced “hybrid” models, where the mass evolution

is treated with a kinetic-like equation (fragmentation or coagulation), while the velocity and

spatial evolution is considered separately (particle in a box or similar approximation (e.g.

Greenberg et al., 1978; Wetherill and Stewart, 1993; Krivov et al., 2000)).

All possible collisional outcomes i) coagulation1, ii) restitution, and iii) fragmentation2 sen-

sitively depend on collision dynamics (cf. Chapter 2 and e.g. Spahn et al. (2004)). The pre-

dominance of the coagulation, the restitution, or the fragmentation regime can vary strongly

for different systems and determines the width of the respective domain, roughly sketched in

Fig. 4.1. Planetary rings, on one hand, are dominated by restitution where the random walk

speed is relatively low (mm/s - cm/s) and tidal forces compete with coagulation (Stewart

et al., 1984; Salo, 1995; Albers and Spahn, 2006, and cf. Chapter 3). On the other hand, in

pre-planetary disks the restitution regime almost shrinks to a narrow line (Blum and Wurm,

2000) due to larger relative velocities of the grains and less important tidal forces. Yet dif-

ferent from such disks as planetary rings or pre-planetary3 disks are ensembles dominated

1Note, that aggregation and coagulation are different processes where the latter is applied to the merging of

two liquid droplets while the first denotes agglomeration of two solid grains as discussed in Chapter 2. However,

we concentrate on coagulation for simplicity and will nevertheless apply previously obtained results.
2Fragmentation may include cratering as well as shattering impacts.
3The ensembles show a significant amount of gas besides the grain population. Gas effects the effective

net growth as well as the restitution coefficient (Wurm et al., 2004). It therefore cannot be neglected if one

65
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by fragmentation as e.g. the Edgeworth-Kuiper belt (Stern, 1995; Krivov et al., 2005) or

debris disks such as Vega (Thébault et al., 2003).
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Figure 4.1: “Phase diagram” for different collisional outcomes in the plane defined by the

(effective) mass and the impact speed. Domains are defined by critical impact velocities for

either restitution (solid line) or in case of higher impact velocities for fragmentation (dashed

line) to occur.

4.1 Time Evolution of the Ensemble

4.1.1 General Considerations

Denoting the particle’s mass M, location vector ~R, velocity~V , and the time t, the generalized

distribution function F = F(M,~R,~V , t) with dimension [F] = kg−1 m−6 s3 is introduced

and denotes the number of particles dN in a phase space volume element d3V d3R dM by

dN = F(M,~R,~V , t) d3V d3R dM. In order to emphasize the essentials only spherical particles

will be discussed here. In analogy to the Stoßzahlansatz introduced by Boltzmann the time

evolution of F referring to a given point in phase space is the difference between gain G
and loss terms L

D

Dt
F(M,~R,~V , t) =

dF

dt

∣

∣

∣

∣

coagulation

+
dF

dt

∣

∣

∣

∣

restitution

+
dF

dt

∣

∣

∣

∣

fragmentation

. (4.1)

Each part corresponds to gains and losses generated by the three collisional outcomes: (i)

coagulation, (ii) restitution, and (iii) fragmentation. In this context the system dynamics is

implicitly given by the total time derivative D/Dt = ∂/∂t +~V ·∂/∂~R + ~f ·∂/∂~V where ~f =
−∂/∂~R Φext(~R)/M and separated from mutual particle interactions Φij covered by G and L .

Here, particle interactions in form of physical collisions of two particles, ~x1 = (m1,~r1,~v1)
and~x2 = (m2,~r2,~v2), will be discussed. At this point, their mutual gravitational influence is

deliberately neglected. Two major assumptions are generally made:

A) Low density assumption:

If the system under consideration is sufficiently dilute, particle contacts are binary

describes pre-planetary disks.
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collisions only. In terms of the BBGKY-hierarchy4, it furthermore ensures a cut-off of

higher correlation (m > 3). Thus, binary interactions in general may be considered as

a scattering of grains into and out of a given phase space volume d7X . It furthermore

justifies the gain and loss approach.

B) The molecular chaos assumption:

In order to apply this simple ansatz of a master or balance equation, the particle dis-

tribution functions must be uncorrelated. Therefore, following the BBGKY hierarchy

the two-particle distribution function is expressed as

F (2)(~x1,~x2, t) = F (1)(~x1, t) ·F (1)(~x2, t) , (4.2)

where the usually added correlation term h(~x1,~x2, t) is considered negligible.5

A collision of two particles,~x1 and~x2, is accounted for by the collision kernel W (~x1,~x2,~X)
that includes all information about the changes of F , in mass, space, and velocities, at

a given collision point ~X = (M,~R,~V ) and may be interpreted as a collision probability.

Thus, W (~x1,~x2,~X) d7X denotes a number of particles where W has the dimension [W ] =
kg−1 m−6 s2 . Now, picturing a particle immersed in an ensemble and moving along with

it, every possible collision with any possible other particle has to be accounted for. Thus,

• gain G is the number of collisions in ∆t by which a particle in (m,m + ∆m;~r,~r +
∆~r;~v,~v+∆~v) is deflected into the phase space interval under consideration (M,~R,~V )

G =
Z

d7x1

Z

d7x2 W (G )(~x1,~x2,~X) F(~x1) F(~x2) . (4.3)

• loss L is the number of collisions in ∆t by which the particles are scattered out of the

volume under consideration (M,~R,~V )

L =
Z

d7x1

Z

d7x2 W (L )(~x1,~x2,~X) F(~x1) F(~x2) . (4.4)

The evolution of a distribution function F(~X , t) in time is given by the basic kinetic equation

D

Dt
F(~X) =

Z

d7x1

Z

d7x2

(

W (G )(~x1,~x2,~X)−W (L )(~x1,~x2,~X)
)

F(~x1) F(~x2) , (4.5)

where

W (G /L )(~x1,~x2,~X) = σ vimp F δ(~r1−~r2) P (~x1,~x2,~X) . (4.6)

The flux of incoming particles σ vimp F contains the geometrical cross section σ and the

relative impact speed of both grains vimp = |~g| = |~v2 −~v1|. It furthermore accounts for

focusing effects F , thus denoting a possibility to at least partially incorporate long-range

particle interactions as e.g. gravitational focusing in terms of the Safronov factor F = FSaf =
(1+v2

esc/g2) (Safronov, 1969; Stewart and Ida, 2000) or Coulomb forces (Ivlev et al., 2002),

that can either increase or decrease the effective cross section. This may be illustrated as

4In general, dynamics is described in terms of an N-particle distribution function. The BBGKY hierarchy

introduces reduced distribution functions for one, two, and more particles. The time evolution of the nth order

distribution function is then determined by the order n+1.
5For simplicity, F(1)(~x, t) will further on be denoted as F(~x, t) as introduced above.
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an either larger or smaller volume occupied by the grains. The geometrical cross section of

two spherical particles reads

σ(m1,m2) = π

(

3

4πρ

)2/3
(

m
1/3

1 +m
1/3

2

)2

, (4.7)

where ρ denotes the grain’s density. The δ-function δ(~r1−~r2) provides the impact con-

dition, i.e. whether particles do collide or not and additionally serves as a normalization.

The distribution P = P (~x1,~x2,~X) accounts for the collisional outcome as there can be (i)

coagulation, (ii) restitution, and (iii) fragmentation (cf. Chapter 2). It contains information

about the number of remaining particles, and conservation of energy and momentum after

the impact. In case of fragmentation, it additionally gives the fragment mass and velocity

distribution. Thus,
R

d7X P denotes the number of fragments Nf where P has the dimension

[P ] = kg−1 m−6 s3 . In general, Nf > 2, since Nf = 1 and Nf = 2 refer to coagulation and

restitution, respectively. In particular, P reads for different collision scenarios:

• “producing” one particle: (gain term of coagulation)

If two particles,~x1 and~x2, coagulate they will form a single spherical particle of mass

M = m1 + m2 and velocity ~V =~vc at point ~R, where ~vc denotes the center of mass

velocity of both grains. Thus,

P (~x1,~x2,~X) = δ(~R−~r1) δ(M− (m1 +m2)) δ(~V −~vc) . (4.8)

• “destroying” one particle: (loss term of coagulation or fragmentation)

If two particles collide and will either form a single one as above or will, even if only

partially, be destroyed, they are lost to that particular phase space volume. This can

be expressed as

P (~x1,~x2,~X) = δ(~R−~r1) δ(M−m1) δ(~V −~v1) . (4.9)

• “generating” a new distribution of particles: (gain term of fragmentation)

In case of fragmenting collisions, debris has a distinct mass and velocity distribution

that can generally be given as p(~x1,~x2,~X) with dimension [p] = kg−1 m−3 s3 . Lab-

oratory experiments and theoretical discussions provide details about the distribution

and may “simply be plugged in” at this point. Thus the only condition that is neces-

sary in this general framework is to account for the actual location of the particle at

impact

P (~x1,~x2,~X) = δ(~R−~r1) p(~x1,~x2,~X) . (4.10)

• “changing” the velocity of particles: (gain and loss term of restitution)

In case of restitution the mass distribution will remain unchanged whereas the veloc-

ity distribution is changed according to the geometry of the impact and the particle

properties. Thus, one has to account for energy and momentum conservation only

P (~x1,~x2,~X) = δ(~R−~r1) δ(M−m1) δ(~vc−~v ′c ) δ(
1

2
(~g−~g ′)) . (4.11)

Any possible scenario could be expressed in terms of integration kernels or transition prob-

abilities. This kinetic approach is rather general and as usual gains complexity with in-

cluding more and more dynamical details. However, any of the outcomes is determined
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by the masses of both particles, m1 and m2, and the relative impact velocity ~g according to

Fig. 4.1 and in agreement with Chapter 2. If the impact velocity is smaller than a critical

velocity for restitution to occur~gc, the outcome can only be a coagulating collision. In case

of high impact velocities a second critical velocity ~gf, distinguishes between fragmentation

and restitution. These critical parameters are either obtained by theoretical modeling (cf.

Sec. 2.4.1) or experimentally for either coagulation (e.g. Hatzes et al., 1991; Dilley and

Crawford, 1996) or fragmentation (e.g. Higa et al., 1998). In terms of kinetic theory these

are merely input parameters and will henceforth be treated as such.

4.1.2 Equations for Coagulation and Fragmentation

Changes to the mass distribution are introduced by coagulation (c) and fragmentation ( f ).
Restitution, however, may only indirectly contribute while modifying the velocity distri-

bution. Velocities, and especially the relative velocity, determine not only the outcome of

a collision but the collision probability as well, which gives a direct feedback to the size

distribution. Restitutive collisions, which can be very frequent after shattering impacts can

rapidly thermalize the ensemble (Salo, 1995). Considerable changes of the mass distribu-

tion require a huge number of collisions whereas for thermalization only a few of them are

necessary. Thus, in order to extract the essence of possible growth processes or considerable

changes of the size or mass distribution, in this section we concentrate on coagulation and

fragmentation alone.

In terms of the “phase diagram” in Fig. 4.1 there remain only the corresponding two do-

mains and Eq. (4.5) may be written as (Spahn et al., 2004)

D

Dt
F(~X) = G (c/f) (~X)−L (c/f) (~X) . (4.12)

It is easier to express all velocities in the center of mass frame where ~vc and ~g denote

the center of mass and relative velocity according to ~vc = (m1~v1 + m2~v2)/(m1 + m2) and

~g =~v2−~v1. The velocity of each particle is then expressed as~v1 =~vc−m1 ~g/(m1 +m2) and

~v2 =~vc + m2 ~g/(m1 + m2). The two dynamical domains, defined by ~gc and ~gf and denoted

by D c/f, give rise to the following gain and loss expressions

G (c/f) (~X) =

∞
Z

0

dm1

∞
Z

0

dm2

Z

R3

d3vc

Z

Dc/f

d3g W
(c/f)
G (M,~V ;m1,m2,~g) F(~x1) F(~x2)

(4.13)

L (c/f) (~X) =

∞
Z

0

dm1

∞
Z

0

dm2

Z

R3

d3vc

Z

Dc/f

d3g W
(c/f)
L (M,~V ;m1,m2,~g) F(~x1) F(~x2) .

(4.14)

Note, that these equations have already been integrated with respect to δ(~r1−~r2). In case

of coagulation the according kernels may written according to Eqs. (4.6), (4.8), and (4.9) in

a more compact way as

W
(c)

G /L =
1

2
σ |~g| F (m1,m2,~g) δ(mG /L −M) δ

(

~vG /L −~V
)

, (4.15)

where mG = m1 + m2 and mL = m2, and ~vG = (m1~v1 + m2~v2)/(m1 + m2) and ~vL = ~v2.

The factor of 1/2 arises due to the symmetry with respect to an exchange of particles.
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Fragmentation on the other hand forms post-collisional mass and velocity distributions as

indicated before. In contrast to coagulation where a single particle with a distinct mass

and velocity is created, fragments may cover a broad range of masses and velocities which

are difficult to derive from basic principles. Gain and loss term may then be formulated

in accordance to Eqs. (4.6), (4.10), and (4.9) as follows (Krivov et al., 2000; Spahn et al.,

2004; Krivov et al., 2005)

W
(f)

G /L = σ |~g| F (m1,m2,~g)
[

T (M,~V |m1,m2,~g)−δ(m2−M) δ(~v2−~V )
]

, (4.16)

where T denotes the normalized distribution of fragments. Neglecting the direct effects of

restitutive collisions, critical velocities for coagulation and fragmentation to occur can be

considered to be almost the same gc ≈ gf, which is very likely in pre-planetary disks.

4.2 Evolution of the Mass Distribution

All information about the ensemble is stored in the generalized distribution function whereas

the physical interactions are covered by the integral kernels. This, however, is a highly com-

plex problem to be investigated in this general manner. Concentrating on a particular part

of the distribution function as e.g. the mass distribution or the velocity distribution alone,

would simplify the analytical treatment of this problem. Both examples are already known

in literature and treated in a more phenomenological way as the Smoluchowski (Smolu-

chowski, 1916) and the Boltzmann equation (Boltzmann, 1896), respectively. In the follow-

ing, we emphasize the mass distribution considering coagulation and continue in the line of

this thesis, i.e. determining overall influences of aggregating collisions.

4.2.1 General Assumptions

In order to extract information about sizes alone, a separation ansatz for the distribution

function may be applied

F(~x, t) = n(m,~r, t) · f (m,~v) , (4.17)

where n(m,~r, t) denotes the size and space, and f (m,~v) the velocity distribution. As a

first step and in order to continue analytically a Maxwellian velocity distribution with a

dispersion according to energy equipartition vth =
√

(2T/meff) (Ivlev et al., 2002; Lee,

2000) is assumed, where T denotes the granular temperature and kB = 1. Furthermore, the

ensemble is thermalized having the same granular temperatures at any point, i.e. T = T1 =
T2. Then,

F(~x1, t) ·F(~x2, t) = n(m1,~r1, t) f (m1,~v1) ·n(m2,~r2, t) f (m2,~v2) (4.18)

= n(m1,~r1, t) ·n(m2,~r2, t)

×C1 exp
[

−m1

2T
~v 2

1

]

C2 exp
[

−m2

2T
~v 2

2

]

(4.19)

where C1 and C2 are the normalization constants. Since m1~v
2

1 + m2~v
2

2 = (m1 + m2)~v
2

c +
meff~g

2 the distribution functions read

F(~x1, t) F(~x2, t) = n(m1,~r1, t) ·n(m2,~r2, t)

×C~vc exp

[

−(m1 +m2)

2T
~v 2

c

]

C~g exp
[

−meff

2T
~g 2
]

, (4.20)
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where

C~vc =

(

(m1 +m2)

2πT

)3/2

and C~g =
(meff

2πT

)3/2

= v−3
th π−3/2 . (4.21)

4.2.2 Coagulation Equation

Apart from considering all complex dynamical interactions of fragmentation and coagula-

tion, many systems can be described by coagulation or fragmentation alone. While concen-

trating on coagulation, only growth processes are taken into account. At this point it will

be interesting to restrict interactions to physical collisions and to apply results obtained in

Chapter 2. Then, restitution is implicitly included.

The influence of physical collisions is best studied in the free case, where all external forces

are neglected, i.e. D/Dt→ ∂/∂t. Equation (4.12) then reads

∂

∂t
F(~X) = G (c)(~X)−L (c)(~X) . (4.22)

Using the separation ansatz and in particular Eq. (4.20) allows for the direct evaluation of at

least some of the integrals. Eq. (4.12) is written in its explicit and complete form together

with Eqs. (4.13), (4.15), (4.20), and (4.21). They can simply be integrated with respect to

mass m2 using δ(mG /L −M) and ~V using δ(~vG /L −~V ). Expressing m1 as m hereafter for

convenience, Eq.(4.20) can be written as

∂

∂t
n(M,~R, t) =

1

2

M
Z

0

dm

Z

R3

d3vc

Z

Dc

d3g σ |~g| F (m,M−m,~g) n(m,~r, t)n(M−m,~r, t)

× C
(G )

~vc
exp

[

− M

2T
~v 2

c

]

C
(G )

~g exp
[

−meff

2T
~g 2
]

−n(M,~R, t)

∞
Z

0

dm

Z

R3

d3vc

Z

Dc

d3g σ |~g| F (m,M,~g) n(m,~r, t)

× C
(L )

~vc
exp

[

−(M +m)

2T
~v 2

c

]

C
(L )

~g exp
[

−meff

2T
~g 2
]

, (4.23)

where

C
(G )

~vc
=

(

M

2πT

)3/2

, C
(G )

~g =
(meff

2πT

)3/2

= v
(G )

th π−3/2 , (4.24)

C
(L )

vc =

(

M +m

2πT

)3/2

, C
(L )

~g =

(

Mm

2πT (m+M)

)3/2

= v
(L )

th π−3/2 , (4.25)

and

(

v
(L )

th

)2

=
(

v
(G )

th

)2(

1− m

M

)2

. (4.26)

The integration with respect to~vc is easily done provided a thermalization of the ensemble

can be assumed. As mentioned above, restitutive collisions occurring for velocities higher

than the critical impact speed |~g| > |~gcr| = |~gc| may sufficiently contribute to this process.
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Equation (4.23) yields a coagulation equation accounting for a possible restriction of the

dynamical domain D c and reads

∂

∂t
n(M,~R, t) =

1

2

M
Z

0

dm

Z

Dc

d3g
σ |~g|

π 3/2(v
(G )

th )3
F (m,M−m,~g)

× n(m,~r, t) n(M−m,~r, t) exp

[

− ~g 2

(v
(G )

th )2

]

−n(M,~R, t)

∞
Z

0

dm

Z

Dc

d3g
σ |~g|

π3/2(v
(L )

th )3
F (m,M,~g)

× n(m,~r, t) exp

[

− ~g 2

(v
(L )

th )2

]

. (4.27)

The critical velocity~gcr restricts the probability of coagulation. Its three spatial components

(vcr, tcr,bcr) may be considered separately, where then results obtained in Chapter 2 may be

easily applied. Excluding any particle interaction besides direct collisions, i.e. F (m,M−
m,~g) = F (m,M,~g) = 1, and excluding any binormal particle motion by approximating

εB ≈ εT and thus bcr ≈ tcr, the following integral generally accounts for the reduced phase

space

C̃ (vth,vcr, tcr) =
Z

Dc

d3g |~g| exp[− ~g 2

v 2
th

] =
Z

Dc

d3g f (~g) . (4.28)

vcr and tcr denote the critical normal and possible tangential impact speed. Even if binormal

motion is omitted completely, εB = 1, the corresponding velocity space would yet be larger

since bcr → ∞ and thus bcr ≫ tcr. Choosing bcr ≈ tcr, the dynamical domain and can be

considered as a limit case within this study. As it is apparent, only particles approaching

each other can collide and therefore~g ·~ed ≥ 0, where~ed is the unit vector~ed = (~r2−~r1)/|~r2−
~r1| as defined in Chapter 2.

The integration of Eq. (4.28) is presented in Appendix A and yields

C̃ (vth,vcr, tcr) =
Z

Dc

dg g3 exp[− g 2

v 2
th

] = 2π [ IntegralA + IntegralB ] ,(4.29)

as given in Eq. (A.6) together with Eqs. (A.4) as IntegralA and (A.5) as IntegralB. The

full equation may be found in Appendix A and will be applied in numerical simulations

below. Restricting merely the absolute value of the critical velocity gcr instead of single

components yields an equation much easier to handle (cf. Eq. (A.11), Spahn et al. (2004))

C̃ (vth,gcr) =
Z

Dc

dg f (~g) = 2π

gcr
Z

0

d3g

π/2
Z

0

dϑ g3 cosϑsinϑ exp[− g 2

v 2
th

] . (4.30)

In general, both approaches show the same behavior and may be written as C̃ = πv 4
thC . The

asymptotic limit for either vcr→ ∞ and tcr→ ∞, Eq. (A.9), or gcr→ ∞, Eq. (A.12), yields

the same result

lim
tcr→∞

lim
vcr→∞
C̃ (vth,vcr, tcr) = lim

gcr→∞
C̃ (vth,gcr) = πv4

th . (4.31)
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Obviously, one may write C = 1 in these limit cases. These correction factors corresponding

to either gain or loss only differ in according thermal velocities, either v
G
th or vLth. The exact

behavior of C as a function of impact speed gcr is shown in Fig. 4.2. Clearly, coagulation is

always possible in the above mentioned limit cases. However, if a critical impact velocity is

applied an almost non-continuous transition occurs denoting the separation of coagulation

and restitution. If normal and tangential components of ~gcr are considered separately as

in Eq. (4.29), the transition is not that sudden anymore and a local minimum of transition

probability arises. Thermal velocities merely shift the transition zone in favor of restitution.

Therefore, in case of a generally restricted coagulation domain the coagulation equation

Eq. (4.27) reads (Spahn et al., 2004)

∂

∂t
n(M,~r, t) =

1

2

M
Z

0

dm
σ (v
G
th)√
π
C (v
G
th,~gcr) n(m,~r, t) n(M−m,~r, t)

−n(M,~r, t)

∞
Z

0

dm
σ (vLth)√

π
C (vLth,~gcr) n(m,~r, t) . (4.32)

Equation (4.32) is a coagulation equation describing the evolution of the mass spectrum in

time when the considered dynamical regimes include coagulation and restitution. In the

asymptotic limit of ~gcr → 0 the dynamical regime will denote restitution alone. Then, the

coagulation equation reduces to ∂/∂t n(M,~r, t) = 0 as obviously no mass changes are to be

expected. The opposite limit case of ~gcr → ∞ results in a simplified coagulation equation

referring to coagulation alone. It is identical to the Smoluchowski equation and is discussed

in the next section.

4.2.3 The Smoluchowski Equation

If any possible collision leads to coagulation, the velocity phase space is not reduced at

all. The correction factor (either Eq. (4.29) or (4.30)) becomes unity C̃ → 1 as shown in

Eq. (4.31) and illustrated in Fig. 4.2. Coagulation alone is the only possible collisional

outcome. Equation (4.32) then reduces to

∂

∂t
n(M,~r, t) =

1

2

M
Z

0

dm
σ (v
G
th)√
π

n(m,~r, t) n(M−m,~r, t)

−n(M,~r, t)

∞
Z

0

dm
σ (vLth)√

π
n(m,~r, t) . (4.33)

This equation has otherwise been stated in a phenomenological way and is also known as the

Smoluchowski equation (Smoluchowski, 1916; Chandrasekhar, 1943). However, as shown

above, it is possible to analytically derive this equation from basic principles6.

Apart from more general assumptions in terms of kinetic theory as the Stoßzahlansatz, the

molecular chaos assumption, and the low density assumption which have been listed in

Sec. 4.1.1, additional restrictions have to be applied in order to reproduce Eq. (4.33). They

6In analogy to the derivation of the coagulation equation, the Boltzmann equation can be reproduced using

Eqs. (4.5) and (4.11).



74 CHAPTER 4. KINETIC DESCRIPTION

0.0001 0.01 1 100
gcr @m�s D

0.2

0.4

0.6

0.8

1

C
o
rr

ec
ti

o
n

F
a
ct

o
r

C

Quantified Restricted Coagulation Probability

C=1

vth =0.1m�s, vcr = gcr , tcr = 10 m�s

vth =1m�s, vcr = gcr , tcr = 10 m�s

vth =10m�s, vcr = gcr , tcr = 10 m�s

vth =0.1m�s, modulus restricted

vth =1m�s, modulus restricted

vth =10m�s, modulus restricted

Figure 4.2: Quantified correction factor for different thermal velocities as a function of

the critical impact velocity gcr. Results are computed according to either Eq. (4.29) (black

lines) or Eq. (4.30) (gray lines). gcr denotes the normal critical impact speed vcr for the

first and the absolute critical impact speed |~gcr| for the latter. A critical tangential tcr is

fixed as tcr = 10 m s−1 for illustration. The introduction of a critical velocity and thus a

restricted coagulation domain clearly leads to a sharp transition from restitution to coagula-

tion. The larger the critical velocity, the broader the coagulation domain becomes implying

an increasing C . Eventually, C → 1 for gcr → ∞ denoting the Smoluchowski limit case of

C = 1.

mainly denote simplifications made beforehand in order to proceed analytically. Neverthe-

less, these are not only necessary for reproducing but in turn are to be kept in mind while

applying or adopting the Smoluchowski equation. Thus, systems described by Eq. (4.33)

implicitly obey the following:

• separable distribution function F(~x, t) according to Eq. (4.17)

• coagulation probability reaches unity implying sticking upon every contact

• well-defined velocity distributions, here Maxwellians, and energy equipartition

Note, that in general all well-defined velocity distributions yield a similar result. Such

may e.g. be Rayleigh or three-axial Gaussian distributions.

Equation (4.33), and thus the Smoluchowski equation, is widely used in terms of molec-

ular dynamics (Ernst et al., 1984). Most of the equations applied are Smoluchowski-type

equations. They only differ in the mass dependence of the kernel K(m1,m2). Although

analytical solutions can be obtained (Safronov, 1969; Trubnikov, 1971; Silk and Takahashi,

1979; Wetherill, 1990) these equations are mainly solved numerically. For a detailed review

on aggregation processes see Leyvraz (2003).
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4.3 Numerical simulations

In order to quantify analytical results of the previous sections numerical simulations are

needed. In order to implement an integro-differential equation as Eq. (4.32) numerically,

continuous equations alike are discretized thereby assuring conservation principles. Here,

the conservation of total mass is the only conservation principle mandatory to account for. A

minimum mmin and maximum mass mmax are introduced while discretizing the mass spec-

trum itself. Two different approaches can generally be taken in order to assign a certain

mass bin. Moving “batches” or bins may be introduced as in Wetherill and Stewart (1993).

There, the mass of each according bin is not fixed but varied appropriately to match mass

conservation. In contrast to the previous method, we use fixed mass bins while mass con-

servation is accounted for by the discretized coagulation equation. A brief description of

the discretization can be found in Appendix B.

In general, discrete time t and mass m are introduced as independent variables. A discrete

mass spectrum of 200 mass bins ranges between mmin = 10−9 kg and mmax = 106 kg for

corresponding sizes of rmin = 0.1 mm and rmax = 10 m. Bins are equidistantly distributed

on a logarithmic scale. Approximately 5000 adaptive time steps within the interval of t ∈
[0,1012] s≈ 31710 years are chosen for each simulation. Mass gain and loss in a single bin

is restricted to a fixed percentage of current content of the corresponding bin, respectively.

Since there is no explicit time dependence in the coagulation equation, this requirement

determines the adopted time step ∆ti. Values n(m, t) smaller than 10−20max[n(m, t)] at given

time t are considered as zero. The numerical code was tested using initial conditions and

analytical solutions of the Smoluchowski equation derived by Silk and Takahashi (1979) and

Trubnikov (1971), and were in good agreement as shown below. The latter case investigates

an integration kernel of the form K(m1,m2) = m1 + m2 and its analytical and numerical

solution using Eq. (4.33) and (Trubnikov, 1971, their Eq. (31)) of the number density per

unit mass n(m, t) is shown in Fig. 4.3 as a function of mass m. Mass changes in specific

bins are restricted to 5% and 0.15% for gain and loss, respectively. Numerical results and

analytical solution show a good agreement.

An initial distribution of the form n(m, t = 0) = C0 m exp[−C1m], where C0 and C1 are

constants, is taken as provided in Silk and Takahashi (1979, p. 244 (ii)). The initial particle

number density is obtained by an Earth mass evenly spread in a circumsolar disk with a

semi-opening angle of 3 degrees placed in between Venus and Mars. In this case a lower

accuracy was sufficient and gain and loss restrictions are merely 50% and 25% respectively.

A good agreement has been reached as shown in Fig. 4.4. Deviations for the lower part

of the distribution function from the analytical solution arise for three reasons. First, it

denotes an approximative solution for a power-law kernel W ∼ m
λ/2

1 m
λ/2

2 (λ = 1/6), with

Dirac’s delta function as initial condition and C = 1. Nevertheless, the agreement further

validates the numerical code and gives analytic tools to study unrestricted growth in time

(C → 1). Thus, numerically solving the Smoluchowski equation, Eq. (4.33), for a total mass

Mtot = MEarth and a characteristic values vchar = 1 ms−1 and Rchar = 1 cm, yields results

shown in Fig. 4.4. In case of C = 1, the Smoluchowski limit case, the mean mass 〈m〉
of the ensemble is steadily increasing. Growth will effectively continue until all available

grains have coagulated into one single, big body of mass 〈m〉 = Mtot. The shape of the

distribution function itself is perfectly self-similar and literally merely shifted through the

mass spectrum. Growth occurs homogeneously and the creation of larger bodies is just a

matter of time. This perfectly demonstrates a Smoluchowski-type ensemble evolution.
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Figure 4.3: Solution of the Smoluchowski equation, Eq. (4.33), for initial condition and

analytical solution as provided in Trubnikov (1971). The number density per unit mass

n(m, t) is plotted at different time steps as function of mass m. Thick gray long-dashed lines

denote the simulation results while thinner black dashed lines show the analytical solution

at according time steps. In this test case, units are arbitrary.
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Figure 4.4: Solution of Eq. (4.33) using initial conditions as provided in Silk and Takahashi

(1979) for a total mass Mtot of Earth and a thermal velocity vth = 1 ms−1 of centimeter sized

grains. The mass spectrum m n(m, t) is plotted for different time steps up to 3000 years. A

solid line denotes the initial condition n(m, t = 0). As time is passing grains continuously

coagulate resulting in a steadily increasing mean mass 〈m〉. Growth will effectively continue

until all available grains have coagulated into one single, big body of mass m = Mtot. This

perfectly demonstrates the essence of Smoluchowski-type ensemble evolution.

Using initial settings as for the comparison to Silk and Takahashi (1979), numerical in-

tegrations of different collision scenarios are performed. Thermal velocities vth, are fixed
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in every simulation since Eq. (4.32) describes a thermalized ensemble. They denote the

granular temperature T of the system which is attributed by a characteristic particle size

Rchar and velocity vchar as T = 3 mcharv
2

char/2 where mchar is the corresponding characteristic

mass. Characteristic sizes are fixed to centimeter sized grains and velocities are chosen out

of vchar ∈ [0.1,1.0,10.0] ms−1. Thermal velocities exemplary illustrated in Fig. 4.5.Critical

velocities have been obtained in analytical (Dominik and Tielens, 1997; Brilliantov and

Poeschel, 2005) and numerical studies (Spahn et al., 2004; Albers and Spahn, 2006) and

may simply be applied here (cf. Chapter 2). Larger critical velocities allow for broader co-

agulation domains as shown in Fig. 4.2. Thus, possible impact speeds of two grains leading

to coagulation range from 0 to gcr. However, gcr itself is determined by the masses of the

same two grains and varies for each possible pair of colliding masses.
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Figure 4.5: Critical velocities gcr in comparison with the two-body escape velocity vesc

and thermal velocities vth corresponding to different characteristic values vchar (according

to T = 3 mchar v 2
char/2 and T = meff v 2

th/2 with Rchar = 1 cm). While the escape velocity

is increasing with larger mass, critical velocities are generally decreasing. Dominik and

Tielens (1997, Eq. (9)) and Brilliantov and Poeschel (2005, Eq. (8.101)) obtained critical

velocities in form of power-laws. The critical velocity obtained in Chapter 2 clearly differs

from the previous two. Although being approximated for higher masses by a power-law

(Spahn et al., 2004, Eq.(11)), gcr exponentially approaches infinity for smaller grains. Thus,

gcr > vth for smaller grains and denotes the necessary condition to allow for coagulation in

a thermalized ensemble. All critical velocities shown are either analytically or numerically

obtained. To our knowledge of the current literature, detailed measurements of the mass-

dependent gcr are still missing.
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The above mentioned different scenarios are accounted for by different integral kernels

K(m1,m2) = σvthC(vth,~gcr)/
√

π, cf. Eq. (4.32). Although clearly velocity dependent are

merely functions of two interacting masses, m1 and m2. Their mass dependence K(m1,m2)
is further qualified by different correction factors C (m1,m2) = C(vth,~gcr(m1,m2)) arising

from different domains D c and thus gcr(m1,m2). At this point, we will concentrate on three

major cases as there are: (a) C = 1 as the Smoluchowski limit, (b) C according to Eq. (4.29),

and (c) C according to Eq. (4.30) as examples for a restricted coagulation.

Covering mass ranges from mmin to mmax the three integration kernel K(m1,m2) are shown

in Fig. 4.6 for a characteristic velocity of vchar = 1 ms−1 of centimeter sized grains. The

trivial case of C = 1 (Smoluchowski limit) denotes a coagulating event at any given contact

of any m1 and m2 but has not been illustrated. The left and right part of Fig. 4.6 denote cases

of restricted coagulation clearly indicated by dark regions. The left part of Fig. 4.6 shows

the integration kernel K(m1,m2) where the critical velocity is defined as the maximum of

the two-body escape vesc and absolute critical impact speed gcr obtained as vcr in Chapter 2.

Using Eq. (4.30) grains heavier than 1 g almost do not coagulate. Only larger ones with

more than 100 kg are again able to noticeably influence each other for µ = 1 due to their

mutual gravity (vesc). Smaller ones may always stick to larger ones. However, a “gap” exists

for intermediate sized grains. The right part of Fig. 4.6 shows the influence of a tangential

critical velocity tcr besides the normal one vcr. Although the rotational degrees of freedom

are not accounted for within this context, we assume an estimate of tcr from a very basic

consideration. Let us assume a complete transformation of relative tangential kinetic energy

Et = meffv
2

t /2 into rotational energy of two grains rotating around each other with respect

to their common center of mass. Then, there exists a maximum spin of the agglomerate

when the sticking bond Fad according to Eq. (2.30) outbalances centrifugal forces. If the

grains rotate faster, the sticking bond will be broken. Finding this maximum rotation fre-

quency gives a maximum tangential impact speed v max
T = tcr. Here, neither gravitational

influences in form of vesc nor mutual attraction of grains are considered. The general be-

havior of K(m1,m2) remains similar although coagulation probabilities are generally higher

than before. A belt of coagulation can be found for masses between 10−4.5 and 10−3 kg.

An additional region of less likely coagulation appears for smaller grains of almost equal

size. Agglomerates are more stable for smaller grains resting on larger ones (µ 6= 1 and

cf. Eq. (2.30)) and are likely to withstand inertia forces. Naturally, domains are symmet-

ric with respect to an exchange of particles and thus a reflexion along the diagonal where

m1 = m2. A symmetric kernel K(m1,m2) is mandatory in order to conserve the mass in the

coagulation equation.

But different from growth processes predicted by the Smoluchowski equation as shown

above, a restricted coagulation domains leads to inhibited growth. The numerical integra-

tion of Eq. (4.32) using Eq. (4.30) with respect to the mass spectrum is shown in Fig. 4.7 for

different time steps up to 4000 years. Initial particle density and thermal velocity are chosen

as in the previous case. Using the critical velocity obtained in Chapter 2 (cf. Fig. 2.8) for

parameters roughly those of ice at low temperatures, the initial stages are exactly the same

as for C = 1. Grains stick at any given contact and growth steadily continues. The mean

mass 〈m〉 continuously increases until a certain size is reached and the evolution of the mass

spectrum comes to a halt. At that point, the distribution function n(m, t) becomes narrower

and constituents simply “pile” up in a small range of masses. Growth is further on inhibited

and does not continue beyond this certain threshold mass or size. Coagulation probability

is effectively zero and the entire system is frozen in an almost steady-state. Even if the sim-
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Figure 4.6: Integration ranges for masses used in numerical simulations. The same gray

scales are applied in all subfigures. White regions denote areas of high coagulation proba-

bility while darker ones indicate less likely coagulating collisions. In all cases, the thermal

velocity is chosen as vth = 0.1 m s−1. Domains are symmetric with respect to an exchange

of particles and thus a reflexion along the diagonal where m1 = m2. Left part: Restricted

coagulation using C according to Eq. (4.30) plus effects of gravitational captures accounted

for in terms of escape velocity vesc. Right part: Restricted coagulation using C according

to Eq. (4.29) where a normal vcr and tangential critical velocity tcr is applied.

ulation is continued beyond 3000 years no significant growth can be observed. No larger

bodies will form and the maximum grain size will be within centimeters. The particular

critical size is determined by the ratio of gcr and vth. Coagulation can still take place, but

the growth rate is enormously decreased.

On the other hand, solving Eq. (4.32) using Eq. (4.29) while applying the same initial con-

ditions and parameters as above yields results presented in Fig. 4.8. Results obtained in

Chapter 2 with respect to the critical velocity are taken as a normal critical impact speed

gcr = vcr since the presented collision dynamics covered the normal component only. How-

ever, Eq. (4.29) accounts for a tangential cut-off speed as well. It can be estimated by a

maximum spin of the agglomerate as explained before. Applying these two critical veloc-

ities, the evolution of the mass distribution is shown up to 3000 years and generally shows

the same features as those in Fig. 4.7. The evolution starts slower than the one where only

the absolute value of the impact speed is restricted (cf. Fig. 4.7). The distribution func-

tion further on develops a second peak as µ = 1, i.e. same sized bodies, are not favored to

coalesce (Fig. 4.6 exemplifies this). Thus a part of the ensemble experiences a delayed evo-

lution. However, reaching the critical grains size the distribution “piles” up and the second

peak follows in line. Although growth is more irregular for two restrictive components the

overall outcome is the same. Reaching a certain critical grain size of about centimeter sized

grains, effective growth ceases. Even longer simulation times do not result in any further

growth. The main aspect, as before, is that the evolution of the mass distribution comes to

a halt and no larger bodies can form in this process of pure coagulation.

The character of obtained solutions is insensible to changes of the initial conditions. While

collision frequency and growth rate do change, time is scalable in terms of the disk param-
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Figure 4.7: Solution of Eq. (4.32) using Eq. (4.30) while applying the same initial condition

n(m, t = 0) and parameters as in Fig. 4.4. The used critical velocity has been obtained in

Chapter 2 (cf. Fig. 2.8) and is given in Fig. 4.5 for comparison. gcr is then applied as

a cut-off for the absolute value of relative impact speed. The mass distribution is plotted

for different time steps up to 4000 years. After a couple of years of Smoluchowski-like

continuous growth, the evolution of the mass spectrum comes to a halt. At an average size

of merely cm-sized grains, particles do not coagulate anymore. Coagulation probability

is effectively zero, thereby “freezing” the entire system. An almost steady-state has been

reached. No larger bodies will form, even if the simulation is continued in time. Note that

this is not a result of a balanced equilibrium between erosive and agglomerating processes.

eters. In general, the result of the numerical solutions is unsurprisingly coagulation that

evolves to higher masses during time. In Fig. 4.9 the mass distribution for different time

steps according Eqs. (4.32) and (4.30) is shown (black lines) and compared to results ob-

tained using C = 1 (Eq. (4.31) and the Smoluchowski equation (gray lines). This is basically

a direct comparison of Figs. 4.4 and 4.7 where in the first case, the ensemble’s mean mass is

continuously growing in time, and in the latter the growth stops after a time which depends

on the ratio of gcr and vth. By then smaller grains will have coagulated into or onto larger

ones. Nevertheless, grain size did not exceed centimeters and these particles never reached

the point where their mutual gravitational influence could significantly contribute. For the

thermal velocity we used vth = 1 ms−1 for 1 cm particles as given in Colwell and Taylor

(1999) for the sake of possible astrophysical applications. All simulations are initiated from

the same initial distribution. It is clearly visible that up to 107 s growth evolves in the exact

same manner for C → 1 and C (gcr,vth). After that for C (gcr,vth) the creation of larger bodies

is prevented while the width of the distribution decreases. Thus, due to the restricted coag-

ulation an approximately monodisperse distribution establishes. The diamonds in Fig. 4.9

represent an approximate asymptotic analytical solution (Silk and Takahashi, 1979) for a

power-law kernel W ∼m
λ/2

1 m
λ/2

2 (λ = 1/6), with Dirac’s delta function as the initial condi-

tion and C = 1. The differences in lower masses arise due to the assumed power-law kernel

and initial delta-function. Nevertheless, the agreement further validates our numerical code

and gives analytic tools to study unrestricted growth in time (C → 1).
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Figure 4.8: Solution of Eq. (4.32) using Eq. (4.29) while applying the same initial condi-

tion n(m, t = 0) and parameters as in Fig. 4.4. The mass spectrum m n(m, t) is plotted for

different time steps up to 3000 years. Although growth is more irregular than in case of

Eq. (4.30) a critical mass is reached as in Fig. 4.7.

The growth rate is obtained as 〈m〉 ∼ ρ6/5T 3/5t6/5 where ρ is the disk mass density (ρ =
R

dm m n(m)) and T the granular temperature. Figure 4.10 shows 〈m〉 as a function of time

for different granular temperatures T ∼ v 2
th and gcr, obtained from simulations with C = 1

and C (gcr,vth). In the latter case, the growth can again be restored, but at a slower rate.

Variations of vth also shift the onset of laggard growth. As long as vth > gcr holds, the

growth process will be inhibited in its evolution. To provoke a case of perfect coalescence

the thermal velocity and thus the granular temperature has to be small enough, implying a

dynamically cold ensemble. Since gcr is a material-dependent quantity, perfect coalescence

cannot be obtained for thermal velocities applied here. In case of silicates, ice, or metal-rock

composites gcr remains fairly small.

4.4 Summary and Conclusions

In this chapter a self-consistent treatment of mass, spatial, and velocity distribution in terms

of a general kinetic concept is introduced. All possible outcomes of a binary, physical

collision are incorporated and denote coagulation, restitution, and fragmentation. They

can be understood as domains in a parameter space of mass and impact velocity as was

shown in Fig. 4.1. These domains are defined by mass dependent critical impact speed

for either restitution or fragmentation to occur, which merely represent input parameters

to the kinetic description. Thus, these dynamical domains can naturally be described as

coexisting regimes. Separating coagulation from restitution, the critical velocity obtained

in Chapter 2 for icy grains has been applied. Coagulation has been emphasized as adhesive

particle interaction denote the main subject of study. Fragmentation may be accounted for

by denoting a critical speed for fragmentation to occur and a preferred size and velocity

distribution function for the debris. A further generalization and thus future perspective

could be the combined description of fragmentation and coagulation.
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Figure 4.9: The time evolution of the mass spectrum m n(m, t) in case of C = 1 (gray lines)

and C (gcr,vth) according to Eq. (4.30) (black lines), where vth = 1 ms−1 and a characteristic

grain size of Rchar = 1 cm. Any pair of graphs refers to a distinct time step. Snapshots in

time are taken for each elapsed order of magnitude, showing a perfect match to a Smolu-

chowski evolution at the beginning but a drastic difference for later stages. The diamonds in

Fig. 4.9 represent an approximate asymptotic analytical solution (Silk and Takahashi, 1979)

for a power-law kernel W ∼ m
λ/2

1 m
λ/2

2 (λ = 1/6), with Dirac’s delta function as the initial

condition and C = 1.

Concentrating on the evolution of the mass distribution a general coagulation equation has

been derived. It may partially account for long-range interactions and implicitly includes

restitution as well. A correction factor C to the probability of physical agglomeration has

been found to account for reduced coagulation. Besides commonly used assumptions in

the context of kinetic descriptions as the Stoßzahlansatz, separable generalized distribution

function, and molecular chaos and low-density assumptions, Maxwellian velocity distri-

butions are assumed in order to allow for an analytical treatment. Furthermore, energy

equipartition is assumed. Despite knowing that these assumption are rather restrictive for

a general discussion, the otherwise phenomenological Smoluchowski equation has been re-

produced. It denotes a limit case of C → 1 and implies coagulation at any possible contact.

However, assumptions made in order to derive this equation are, on the other hand, condi-

tions that a system of application has to fulfill.

In the limit of this study, only spherical particles and effective coagulation rather than ag-

glomeration have been assumed for the sake of simplicity. Agglomeration and thus a growth

of fractal shaped bodies (Kempf et al., 1999) can be accounted for by m∼ RDf were Df de-

notes the fractal dimension. Rotational degrees of freedom are generally treatable in the

same manner but would significantly increase the complexity of the problem.

Numerical simulations of the full coagulation equation, Eq. (4.32) in Sec. 4.3, lead to the

conclusion that considering coagulation alone while starting with an ensemble of smaller
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Figure 4.10: The evolution of the mean mass 〈m〉 in time is shown as black thin lines for

different ratios of gcr and vth. The influence of thermal velocity vth and threshold velocity

gcr is demonstrated. Gray curves denote the evolution of the mass spectrum according to the

Smoluchowski equation, Eq. (4.33). Whenever vth≫cr the growth process is almost stopped

which implies that it takes aeons for larger bodies to form. With ten times higher gcr (or ten

times lower vth) growth can be continued at a slower rate beyond the critical size of 1 cm.

grains does not result in the formation of larger bodies. After a certain time an almost

monodisperse mass distribution establishes and very slowly continues to develop in favor

of larger bodies. A simple correction for rotational degrees of freedom does not change

this rather general result. Changing ensemble parameters such as critical impact speeds or

its thermal velocity, and thus its temperature, in a reasonable way does not influence the

ceasing growth. Using other estimates of gcr (Dominik and Tielens, 1997; Brilliantov and

Poeschel, 2005) which yield yet lower critical velocities (cf. Fig. 4.5), coagulation would

stop even earlier. Additionally, if the critical velocity never exceeds the thermal velocity,

which applies to all pure power-law solutions of the critical velocity, coagulation does not

take place at all. However, changing the parameters to vchar = 0.05 ms−1 and Rchar = 1 cm

while artificially increasing the critical velocity as in Chapter 2 by a factor of ten, the region

of ceased growth can be overcome in a reasonable time. Inhibited or laggard growth are

inevitable. Furthermore, in the absence of additional physical processes, that could alter the

coagulation probability K(m1,m2), coagulation alone is not sufficient to produce larger bod-

ies. These results suggest severe implications for the scenario of planetary growth, since and

“easy” transition from centimeter-sized particles to planetesimals seemingly does not occur

(for parameters used in this study). A constant supply of smaller grains due to fragmenting

collisions has been investigated aside, since smaller grains have an effectively higher stick-

ing probability (cf. Chapters 2 and 3). First results of this ongoing study, however, allow for

the combined description of fragmentation and coagulation under certain assumptions. No

significant growth is found although smaller grains are constantly replenished. Merely an

almost steady-state is reached and the coagulation process still ceases at about centimeter
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sized grains. This is in agreement with other studies who merely employ the Smoluchowski

equation while feeding smaller grains. They observe a quasi-stationary state Dullemond

and Dominik (2005) that in their case slows down the growth which happens to quick com-

pared to timescales appropriate in planet formation. Although the approach of this study is

different, we agree on the main observation that fragmentation does neither speed up nor

favor growth.

Effects of perturbations such as turbulent velocity fields or the “simple” tracing of granu-

lar temperature instead of assuming an average thermal Brownian velocity could denote a

next step to tackle this problem and investigate to further depth. The existence of an al-

ready large body, i.e. approximately 103 kg, enabling the possibility of runaway growth

(Safronov, 1969) could furthermore resolve this dilemma. Additionally, instabilities such

as gravitational instability (Goldreich and Ward, 1973) which would set in at an average

size of centimeter-sized grains or vortices in a gaseous disk (Kley et al., 1993) could en-

force an ongoing growth beyond the found critical grain size by collective effects. Particles

have to grow at least to meter-sized bodies in order to decouple from turbulence (Weiden-

schilling, 1995). However, at this point, it remains unresolved how larger bodies become to

be. Further investigations are mandatory in order to deepen the understanding of restricted

growth.



Chapter 5

Summary and Conclusions

The relevance of particle adhesion to the size distribution dynamics of either force-free

granular gases or those under the influence of Keplerian shear has been studied. This de-

notes an extension to the otherwise dry granular matter approach. A main application to the

presented theoretical models are the planetary rings of Saturn. Generally, implications are

given of accretion and growth of larger bodies in accretion disks and planetary rings.

The work presented in this thesis addresses three main aspects:

• Development of a contact model for low-velocity collisions of adhesive, viscoelas-

tic granular particles. Based on a static contact model (Johnson et al., 1971), an

existing viscoelastic collision model (Brilliantov et al., 1996) has been extended to ac-

count for adhesive particle interactions (Spahn et al., 2004; Albers and Spahn, 2006).

It allows for agglomeration and restitution which can be distinguished in terms of

the restitution coefficient. Furthermore, it provides a size dependent critical velocity

which denotes the maximum impact speed at which agglomeration is still possible.

• Introduction of a self-consistent kinetic concept accounting for agglomeration,

restitution, and fragmentation. A master equation including all three collisional

outcomes describes the evolution of mass, spatial, and velocity distribution of an

ensemble. In particular, a coagulation equation is derived from basic principles. It

covers the evolution of the mass spectrum in coagulation and restitution domains and

reproduces the otherwise phenomenological Smoluchowski equation as a limit case.

• Qualitative and quantitative analysis of the relevance of adhesion to the size

distribution in force-free ensembles and those under the influence of Keplerian

shear. Capture probability, agglomerate stability, and the occurrence of growth are

investigated in the context of adhesive interactions. Their impact on agglomerate

sizes in planetary rings has been shown (Albers and Spahn, 2006). In contrast to the

Roche limit, a critical grain size has been obtained for a given orbit location. Nu-

merical simulations of the derived coagulation equation yield maximum grain sizes

of about centimeters (Spahn et al., 2004) and thus question the formation of larger

bodies.
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5.1 Results

A binary contact model for adhesive, viscoelastic collisions has been developed. It’s validity

within the quasistatic approximation restricts impact speeds to below the material’s speed

of sound and is thus not capable of describing a fragmenting collision. It, however, ac-

counts for agglomeration and restitution and reproduces experimentally observed collision

features such as an oscillatory motion during collision, the formation of an inter-particle

bond in case of agglomeration, and the overall reduced restitution coefficient compared to

purely viscoelastic contact. The model is in agreement with experimental findings for ice

at low temperatures and impact speeds up to decimeters per second, suitable for an appli-

cation to planetary rings, reproduces fairly well measured size and velocity dependences of

the normal restitution coefficient εN. The collisional outcomes are distinguished in terms

of εN. Denoting a complete dissipation of relative kinetic energy, εN vanishes in case of

agglomeration. For impact speeds below mms−1 of centimeter-sized grains, any collision

will result in agglomeration. A critical maximal impact velocity for agglomeration to occur

has been obtained as a function of the colliding masses. This denotes a single parameter

characterizing any impact and thus an essential input parameter allowing for a combined

treatment of agglomeration and restitution in terms of kinetic theory.

A self-consistent treatment of mass, spatial, and velocity distribution of an ensemble in

terms of kinetic theory has been proposed in this thesis. Since critical velocities, either

for agglomeration or for fragmentation to occur, are merely input parameters, the collision

model provides a link to treat dynamical regimes in a combined manner. The kinetic model

covers agglomeration, restitution, as well as fragmentation. Conservation laws such as the

conservation of mass and momentum as well as collision conditions are naturally accounted

for in appropriate integral kernels. Emphasizing the evolution of the mass distribution, a co-

agulation equation has been derived from basic principles. It includes a restricted domain

for possible coagulation. The restitution domain is implicitly included, since it does not af-

fect the mass spectrum at all. Fragmentation has been disregarded in order to concentrate on

growth processes alone. The otherwise phenomenological Smoluchowski equation has been

reproduced as a limit case of infinite critical velocity. Solving the full coagulation equation

revealed that, contrary to Smoluchowski continuous growth, any coagulation ceases if the

mean mass of the size distribution reaches about centimeter sized grains. This critical size

is determined by the ratio of critical and thermal velocity of the ensemble. Changing this

ratio does still not allow for a growth on timescales appropriate for e.g. planet formation.

While probing for the influence of particle adhesion on ensemble dynamics, the orbit evolu-

tion of two grains has been studied analytically and numerically under conditions of Saturn’s

rings. The adhesive bond in case of a two-body agglomerate, together with their gravita-

tional attraction, allows to withstand Keplerian shear. A critical radial distance from the

central planet has been obtained as a function of the agglomerate size and provides an esti-

mate refining the Roche criterion. The Roche limit denotes a limit case of the present study

in case of large bodies, i.e. in the limit of gravitational interactions alone. In turn, a critical

agglomerate size at a given radial distance from the planet has been obtained that provides

an upper cut-off of the size distribution. A general trend of increasing particle sizes with

increasing distance to Saturn is in agreement with data from the Visual and Infrared Map-

ping Spectrometer (VIMS) onboard the Cassini spacecraft (Planetary Photojournal, JPL,

PIA06349).
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Furthermore, the two-body capture probability has been obtained as a function of radial

distance and particles size with respect to Saturn’s rings. If only gravitational interactions

and a constant, non-zero coefficient of restitution (contrary to the findings in this thesis)

are applied, capture probability is only dependent on the radial distance to the central body.

The actual grain or agglomerate size is unimportant, while the size ratio denotes the only

important information. Implementing the collision model developed in this thesis results

in drastic changes. Despite the first intuition that adhesion increases stability and capture

probability in general, this has not been confirmed. A particles size of about 0.5 m denotes a

transition size where the capture probability drops by one order of magnitude, leaving larger

particles less likely to be caught. In addition, an interesting region is found at about 2.3-2.4
Saturn radii where a “tongue”-like feature of enhanced capture probability coincides with

the outer boundary of main rings and the orbit location of the “lively” F ring (Showalter

et al., 1992; Barbara and Esposito, 2002; Showalter, 2004; Porco et al., 2005; Murray et al.,

2005).

5.2 Limitations

In the line of this work a number of simplifying assumptions are made. Future progress can

be achieved by improving various aspects listed below:

• Grains are assumed as smooth and spherically homogeneous. Furthermore, two

solid grains are assumed to coalesce instead of aggregate in the kinetic approach.

However, treating fractal growth in terms of kinetic theory is possible (Kempf et al.,

1999). Multiple collisions could prove fatal for growing agglomerates and decrease

the likelihood of coagulation. Additionally, surface irregularities could be modeled

as random deviations from the surface normal.

• Contact model allows for low-velocity impacts only. It’s validity is restricted to

impact speeds much below the material’s speed of sound (quasistatic approximation).

Crack propagation and eventual break-up of grains cannot be accounted for, at least

not in a simple manner.

• Rotational degrees of freedom of the particles and friction are neglected. The

proposed collision model covers only the normal component of contacts. Collisions

are generally assumed as frictionless, i.e. εT = 1 for the tangential restitution in

particular. Oblique impacts are treated here, but only in the frictionless case. With

respect to the kinetic theory, rotational degrees of freedom are neglected due the

increasing complexity of the problem.

• Details of the kinetic concept covers coagulation alone. Although the proposed

kinetic concept covers coagulation, restitution, and fragmentation, the emphasis has

been put on the mass distribution dynamics, where fragmentation was disregarded.

Provided for a contact model to cover break-ups and debris’ size and velocity distri-

bution, fragmentation can be tackled by the presented kinetics. An alternative would

be to use phenomenological equations describing the fragment generation, as it has

been done by Krivov et al. (e.g. 2005).

Some of above limitations were taken deliberately since the emphasis of this thesis is on

adhesion and aggregating or coagulating processes. Thus, they not necessarily denote limi-

tations to the model as such.
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5.3 Conclusions and Future Perspectives

This thesis demonstrates the relevance of particle adhesion in physical problems of interest.

Even in cases when adhesion does not contribute to effective growth, it strongly influences

the dynamics and kinetics of granular gases. Including adhesion denotes a significant ex-

tension to dry granular media. Besides a purely theoretical interest, we seek a deeper un-

derstanding of structure evolution in granular gases, shaping of planetary rings, and planet

formation.

The presented kinetic model incorporates coagulation, restitution, and fragmentation, and

seems to be the proper tool to tackle collision-dominated systems. Numerous authors suc-

cessfully applied kinetic theory to planetary rings (e.g. Goldreich and Tremaine, 1978;

Hameen-Anttila, 1978; Araki and Tremaine, 1986; Frezzotti, 2001). Collective effects can

be described in a self-consistent way and vivid dynamical processes, as suspected to dom-

inate the F ring of Saturn, could provide an interesting application in order to further test

adhesive interactions. Due to the two shepherding moons, Prometheus and Pandora, this re-

gion is dynamically complex and far enough from Saturn so that weak tidal stresses promote

capture. The Cassini mission continues to bring a wealth of data and much more detailed

and complex pictures of the F ring is emerging. The time is ripe to extend previous studies

(Barbara and Esposito, 2002), utilizing more detailed collision models, including possible

adhesion, and spatial and, most importantly, velocity distributions (e.g. Krivov et al., 2005,

who used an orbital elements description).

The F ring hosts transient features as brightness fluctuations (Showalter et al., 1992), that

could originate either from a population of hidden moonlets or larger chunks in that region

(Barbara and Esposito, 2002) or from micrometeoroid impacts (Showalter, 2004). In both

cases, regolith would be released on impact. Collision dynamics, agglomerate stability, as

well as capture probability, promote the existence of regolith layers varying in thickness

according to the size of the underlying body and its radial distance to the central body. Mul-

tiple subsequent collisions, that were not considered in context of this study, could shatter

these regolith layers, thereby temporarily releasing vast amounts of small particles. Fre-

quent collision could also compactify loose agglomerates. In both cases, future collisions

might be more elastic than before. If the mean thickness of the regolith layer depends on

the radial orbit location, so does the restitution coefficient. Including adhesion leads to a

radial dependence of accretion rate and the maximum size of aggregates.

An application of the kinetic theory with respect to planet formation leads to question the

current opinion about the formation of larger bodies. In the absence of gas, adhesion and

gravity alone do not provide an effective growth on reasonable timescales to grow planets.

According to the restricted coagulation, presented in this thesis, effective growth ceases at

an average size of centimeter-sized grains. Even constantly replenishing smaller grains by

cratering or fragmenting larger bodies, does not change the result that this is not effective

to build larger bodies. It merely leads to a stagnant growth as observed in test cases in

this study or applications to Smoluchowski growth (Dullemond and Dominik, 2005). In the

absence of other physical processes, such as perturbations as e.g. gravitational instabili-

ties (Goldreich and Ward, 1973) or turbulent velocity fields (Sekiya, 1998), the process of

planet formation as we understand it today is questionable. Undergoing a purely collisional

cascade is apparently not sufficient to create a planet, the link between small bodies and

planetesimals being still missing.
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Sremčević, M., Krivov, A. V., and Spahn, F. (2003). Impact-generated dust clouds around

planetary satellites: asymmetry effects. Planetary and Space Science, 51:455–471.
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Appendix A

Integration with Respect to Relative

Velocity while Accounting for a

Restricted Volume

The dynamical domains as illustrated in Fig. 4.1 yield a restricted phase space volume of

considered velocities. The corresponding equation was introduced in Chapter 4 as Eq. (4.28)

and reads

C̃ (vth,vcr, tcr) ≡ C̃ (vth,~gcr) =
Z

Dc

d3g |~g| exp[− ~g 2

v 2
th

] =
Z

Dc

d3g f (~g) , (A.1)

where vcr and tcr denote the critical normal and possible tangential impact speed while the

binormal component, usually denoted as bcr, has been omitted.

In order to solve Eq. (A.1) we change to spherical coordinates. The transformation reads

d3g = g2 sinϑ dg dϑ dϕ, while gx = g cosϕ sinϑ, gy = g sinϕ sinϑ, and gz = g cosϑ. Or,

gx = tcr, gy = bcr, and gz = vcr. The binormal component will be omitted and approximated

as mentioned in Chapter 4 by εB ≈ εT i.e. bcr ≈ tcr for simplicity, which results in a ϕ-

symmetric tangential cut-off speed. The corresponding velocity space D c is illustrated in

the left part Fig. A.1 and takes the shape of a cylinder given by normal vcr and tangential

critical speeds tcr. With respect to the ϕ-symmetry there is only a rectangle to be considered

further where ϑ and g can be expressed in terms of vcr and tcr. In order to cover the entire

area we split it along its diagonal into part A and B referring to either ϑ or θ. The integration

limits may then be expressed as

(A) 0 < ϑ < ϑA = arctan(tcr/vcr) and 0 < g < gA = vcr

√
1+ tan2 ϑ ,

(B) 0 < θ < θB = arctan(vcr/tcr) and 0 < g < gB = tcr

√
1+ tan2 θ ,

where the identity 1+ tan2 x = cos−2 x = sec2 x has been applied.
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t
cr

A

B

~g · ~e
d
≥ 0

v
cr

ϑ

θ

Figure A.1: The shape of the velocity volume considered is a cylinder. Due to the ϕ-

symmetry the integration domain is further given by a rectangle and may be divided ac-

cording to limits described in A and B. The integration is split into two parts referring to

either ϑ or θ.

Accordingly, the integral is split into two parts and yields
Z

Dc

d3g f (~g) = 2π [ IntegralA + IntegralB ] (A.2)

= 2π











ϑA
Z

0

dϑsinϑ

gA
Z

0

dg g2 f (~g)







+







θB
Z

0

dθsinθ

gB
Z

0

dg g2 f (~g)









 .

The integrals evaluate to

IntegralA = 2π

ϑA
Z

0

dϑ sinϑ

gA
Z

0

dg g3 exp[− g 2

v 2
th

]

= πv 4
th







1−

√

(

1+
t 2
cr

v 2
cr

)−1

− exp

[

−v 2
cr

v 2
th

]

+

√

(

1+
t 2
cr

v 2
cr

)−1

exp

[

−v 2
cr

v 2
th

(

1+
t 2
cr

v 2
cr

)−1
]

+
vcr

vth

√
π

(

Erf

[

vcr

vth

√

1+
t 2
cr

v 2
cr

]

−Erf

[

vcr

vth

]

)

− vcr

vth

√
π

2

(

Erf

[

vcr

vth

√

1+
t 2
cr

v 2
cr

]

−Erf

[

vcr

vth

]

)}

, (A.3)

which can be further simplified, and reads

IntegralA = πv 4
th







1− exp

[

−v 2
cr

v 2
th

]

−

√

(

1+
t 2
cr

v 2
cr

)−1
(

1− exp

[

−v 2
cr

v 2
th

(

1+
t 2
cr

v 2
cr

)−1
])

+

√
π

2

vcr

vth

(

Erf

[

vcr

vth

√

1+
t 2
cr

v 2
cr

]

−Erf

[

vcr

vth

]

)}

. (A.4)
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In order to evaluate the 2nd part, B, it is sufficient to exchange vcr and tcr, i.e. gA becomes

gB and ϑA becomes θB, respectively.

IntegralB = πv 4
th







1− exp

[

− t 2
cr

v 2
th

]

−

√

(

1+
v 2

cr

t 2
cr

)−1
(

1− exp

[

− t 2
cr

v 2
th

(

1+
v 2

cr

t 2
cr

)−1
])

+

√
π

2

tcr

vth

(

Erf

[

tcr

vth

√

1+
v 2

cr

t 2
cr

]

−Erf

[

tcr

vth

]

)}

. (A.5)

The relative size of the phase space volume C̃ (vth,vcr, tcr) then reads according to Eq. (A.1)

C̃ (vth,vcr, tcr) =
Z

Dc

dg g3 exp[− g 2

v 2
th

] = 2π [ IntegralA + IntegralB ] . (A.6)

Its asymptotic behavior is given by

lim
tcr→∞
C̃ (vth,vcr, tcr) = πv4

th

{

1− exp

[

−v2
cr

v2
th

]

+
π

2

vcr

vth

(

1−Erf

[

vcr

vth

])}

, (A.7)

lim
vcr→∞
C̃ (vth,vcr, tcr) = πv4

th

{

1− exp

[

− t2
cr

v2
th

]

+
π

2

tcr

vth

(

1−Erf

[

tcr

vth

])}

, (A.8)

while the limiting value reads

lim
tcr→∞

lim
vcr→∞
C̃ (vth,vcr, tcr) = πv4

th . (A.9)

Thus, (A.7) and (A.8) refer to integration domains g ∈ [0,vcr/cosϑ] and ϑ ∈ [0,π/2], and

g ∈ [0, tcr/sinϑ] and ϑ ∈ [0,π/2], respectively, while still ϕ ∈ [0,2π].

However, instead of using single components of the critical velocity, the absolute value

of |~gcr| = gcr may be applied. Then, the phase space volume under consideration in that

case is not a cylinder anymore as illustrated in Fig. A.1, but a half-sphere of radius gcr

since, as before, only approaching particles are able to collide. Transforming Eq. (A.1) into

spherical coordinates d3g = g2 sinϑ dg dϑ dϕ , but applying appropriate integration limits

as g ∈ [0,gcr] , ϕ ∈ [0,2π] , and ϑ ∈ [0,π/2] to become d3g = 2πg2 dg, yields

C̃ (vth,gcr) =
Z

Dc

d3g f (~g) = 2π

gcr
Z

0

dg g3 exp[− g 2

v 2
th

] (A.10)

= πv4
th

{

1−
(

1+
g2

cr

v2
th

)

exp

[

−g2
cr

v2
th

]}

. (A.11)

The asymptotic limit remains the same

lim
gcr→∞
C̃ (vth,gcr) = πv4

th . (A.12)
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Appendix B

Discretization of the Integral

Equation

In the following a brief overview of the discretization of Eq. (4.32) is given. Gain and loss

term must be transformed independently. Since the transformation of the loss term is easier

to perform we will start with the loss term and then consider the gain term.

Equation (4.32) can be written as

∂

∂t
n(M,~r, t) =

[

∂

∂t
n(M)

]

G

−
[

∂

∂t
n(M)

]

L

(B.1)

where the spatial dependence has been dropped for simplicity. The loss term may be split

in two parts

[

∂

∂t
n(M)

]

L

= n(M)

∞
Z

0

dm K(m,M) n(m) (B.2)

= n(M)

M
Z

0

dm K(m,M) n(m)+n(M)

∞
Z

M

dm K(m,M) n(m) (B.3)

= [ Integral1 + Integral2 ] . (B.4)

Integral1 and Integral2 may be separately transformed into

Integral1 =

∞
Z

0

dm1

m1
Z

0

dm2 δ(m1−M) K(m1,m2) n(m1) n(m2) (B.5)

and

Integral2 =

∞
Z

0

dm2

∞
Z

m2

dm1 δ(m2−M) K(m1,m2) n(m1) n(m2) . (B.6)

Note, that a symmetric kernel K(m1,m2) = K(m2,m1) has been assumed and denotes a

crucial condition to ensure mass conservation. Transforming the integration domain

0≤ m2 ≤ ∞

m2 ≤ m1 ≤ ∞

}

⇐⇒
{

0≤ m1 ≤ ∞

0≤ m2 ≤ m1
(B.7)
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Integral2 may be written as

Integral2 =

∞
Z

0

dm1

m1
Z

0

dm2 δ(m2−M) K(m1,m2) n(m1) n(m2) . (B.8)

The actual discretization is done according to

Z

dm1 −→∑
im1

∆m1 and

Z

dm1 δ(m1−M)−→∑
im1

δim1,iM . (B.9)

Then, Eq. (B.2) may be rewritten using L(m1,m2) = K(m1,m2)n(m1)n(m2) and Eqs. (B.5)

and (B.8)

[

∂

∂t
n(M)

]

L

=
Z ∞

0
dm1

Z m1

0
dm2 δ(m1−M) L(m1,m2)

+
Z ∞

0
dm1

Z m1

0
dm2 δ(m2−M) L(m2,m1) (B.10)

=⇒
∞

∑
im1=0

im2≤im1

∑
im2=0

∆mim2
δim1,iM L(im1, im2)

+
∞

∑
im1=0

im2≤im1

∑
im2=0

∆mim1
δim2,iM L(im1, im2) (B.11)

Equation (B.11) is then implemented in numerical algorithms. The gain term is treated in a

similar manner and reads

[

∂

∂t
n(M)

]

G

=⇒
∞

∑
im1=0

im2≤im1

∑
im2=0

∆mim1
∆mim2

L(im1, im2)
(mim1

+mim2
)

∆MiMMiM

. (B.12)

In this way the conservation of mass is exactly enforced, which can be proven by similar

transformations as above.
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