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1 Introduction

1.1 Blazars

In this thesis we examine internal radiation processes of extragalactic objects called

blazars. In a nutshell, as a member of the group of the active galactic nuclei (Schlick-

eiser, 2002) a blazar is a very compact, supermassive astrophysical entity. It is charac-

terised by a strong short-time energy variability (non-thermal spectrum ranging from

very low radio frequencies to high-energy γ-rays) of the flares in its relativistic jets in

the order of days with a high degree of polarization. The apparent compactness and

rapid energy variability of blazars is a consequence of the particular angle of observa-

tion since the jet is pointing in the general direction of the Earth, so that we observe

(nearly) downward the jet. Blazars can be divided into two groups

Group 1: Highly variable quasars or so-called Optically Violent Variable quasars

Group 2: BL Lacertae (BL Lac) objects

There are a few objects that exhibit a mixture of properties from both blazar groups

designated intermediate blazars. It is assumed that Optically Violent Variable quasars

are intrinsically powerful radio galaxies, whereas BL Lacertae objects are intrinsically

weak radio galaxies (Xie et al., 1993). The host galaxies with presumed central su-

permassive black holes are giant ellipticals for both group 1 and group 2. The name

”blazar” emerged from the combination of these two groups.

Like in the standard scenario for all active galactic nuclei (Antonucci, 1993), blazars

are expected to be powered by various matter, e.g. gas and dust, spirally falling into

the central black hole of the host galaxy. Due to this process a hot accretion disc

of size ∼ 10−3 parsecs generating immense amounts of energy arises. This energy is

transferred to electromagnetic radiation and several elementary particles, e.g. electrons

and positrons. A highly energetic plasma in the form of discrete plasmoids (usually a
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1 Introduction

Figure 1.1: Schematic model of the outer part of an active galactic nuclei jet system
extracted from Schlickeiser (2002).

proton-electron plasma) is transported away from the blazar in a pair of relativistic jets

expanding over tens of kiloparsecs, perpendicular to the accretion disc from the central

black hole. Strong magnetic fields and exceeding winds produced by the accretion disc

and the opaque torus of hot gas localized several parsecs away from the black hole (see

Figure 1.1) lead to a collimation of the jets.

Interactions between high-energy photons, relativistic particles and the strong mag-

netic fields within the plasmoids produce the observed synchrotron radiation in the

radio to X-ray spectrum and inverse Compton radiation in the X-ray to γ-ray range.

The origins of the high-energy photons and particles, the nature of the interactions

as well as the configuration of the magnetic fields are specified in the introductions of

Chapters 2 and 3.
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1.2 Elementary radiation processes

Blazars show a huge enhancement of the observed emission in their jets due to

relativistic effects (relativistic aberration, time dilation) called relativistic beaming

(Ghisellini et al., 1993) and an apparent superluminal characteristic within the first few

parsecs of their jets (Mutel et al., 1990). Here, we apply theoretical emission models

with standard linear and recently introduced nonlinear electron synchrotron cooling

(Schlickeiser and Lerche, 2007) to blazars radiating in the high-energy γ-ray regime.

These objects are called TeV-blazars. Famous members are for example Markarian

421, Markarian 501 and PKS 2155-304.

1.2 Elementary radiation processes

1.2.1 Synchrotron emission

A part of the blazar radiation emission model considered in Chapter 3 is a synchrotron

self-Compton emission model based on the assumption that internally created syn-

chrotron radiation is inverse Compton scattered to higher energies by its generating

electron population. Synchrotron radiation is a form of electromagnetic radiation pro-

duced by the acceleration of relativistic, charged particles in magnetic fields. Here, we

consider only the synchrotron emission of relativistic electrons and positrons. A de-

tailed discussion of synchrotron emission including the necessary synchrotron radiation

formulas is provided in Chapters 2.3.1 and 3.1.1. In Figure 1.2 we show the observed

multi-wavelength spectrum of the blazar Markarian 421. The low-energy peak is related

to the synchrotron radiation, while the high-energy peak is assigned to the synchrotron

self-Compton or inverse Compton scattering process.

1.2.2 Inverse Compton scattering of internally generated photons

The differential inverse Compton scattering rate, ṅs, in a coordinate system comoving

with the radiation source (unprimed quantities) is given by Dermer et al. (1992)

ṅs(εs,Ωs) =

∫ ∞

1

∮
ne(γ,Ωe)

d3N

dt dΩs dεs
dΩe dγ, (1.1)

where γ is the normalised energy of a single electron, εs the normalised energy of a

scattered photon, N the scattered photon number, ne the differential electron density

3



1 Introduction

Figure 1.2: The multi-wavelength power spectrum of Markarian 421 extracted from
T.C. Weekes (2000) showing a low-energy peak related to synchrotron ra-
diation and a high-energy peak assigned to the synchrotron self-Compton
process.

and Ωs and Ωe are the solid angles of the scattered photons and electrons, respectively.

The single electron differential scattering rate reads

d3N

dt dΩs dεs
= c

∫ ∞

0

∮
(1− β cosψ)n(ε,Ω)

d2σ

dεsdΩs

dΩ dε (1.2)

with the normalised energy of an incoming photon ε, the differential synchrotron photon

density n and ψ = ∠
(
~ve, ~kph

)
. ~ve is the velocity of the electron and ~kph is the wave vec-

tor of the incoming photon. The differential Klein-Nishina cross section, d2σ/(dεsdΩs),

is on the one hand implemented in its Thomson limit (Chapter 3.1) via a δ-distribution

approximation (Dermer and Schlickeiser, 1993)
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1.2 Elementary radiation processes

ṅs(εs, τ) =
cσT

3π

∫ ∞

0

n(ε, τ)

∫ 1/ε

1

ne(γ, τ)δ
(
εs − γ2ε

)
dγ dε (1.3)

and otherwise to its full extent (Chapter 3.2). There, it has the most compact form in

the rest frame of the electrons (primed quantities) (Jauch and Rohrlich, 1976)

d2σ

dε′sdΩ
′
s

=
r2
0

2
· ε

′2
s

ε′2

(
ε′

ε′s
+
ε′s
ε′
− sin2 χ′

)
δ
(
ε′s − ε′0

)
, (1.4)

where

ε′0 =
ε′

1 + ε′(1− cosχ′)
(1.5)

and χ = ∠
(
~ks, ~kph

)
with the wave vector ~ks of the scattered photon. We assume

isotropic electron and photon distributions in the comoving frame. Hence, the dif-

ferential Compton scattering rate does not depend on the direction of the outgoing

photons, so that (1.1) can be reduced to

ṅs(εs) =

∫ ∞

1

ne(γ)
d2N

dt dεs
dγ. (1.6)

Following the work by Arbeiter et al. (2005) we can write

d2N

dt dεs
' πr2

0c

2γ2εs

∫ ∞

0

n(ε)

ε2

∫ ∞

0

∫ 1

−1

δ(ε′s − ε′0)H
(
ε′ − ε

2γ

)
H(2γε− ε′)

· ε
′3
s

ε′

(
ε′

ε′s
+
ε′s
ε′
− sin2 χ′

)
d cosχ′ dε′ dε,

(1.7)

where H(·) denotes the Heaviside step function. Using the so-called head-on approxi-

mation (Arbeiter, 2005) and εs = γε′s
(
1−β cosχ′

)
we obtain for the high-energy regime

ε� εs ≤ 4εγ2/(1 + 4εγ) (Blumenthal and Gould, 1970; Jones, 1967)

d2N

dt dεs
' 2πr2

0c

γ2

∫ ∞

0

n(ε)

ε
H
(
1− Λ(ε, εs)

)
H(εs − ε)

·
((

1− Λ(ε, εs)
)(

1 + 2Λ(ε, εs)
[
1 + εsε

])
+ 2Λ(ε, εs) ln

(
Λ(ε, εs)

))
dε,

(1.8)
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1 Introduction

with Λ(ε, εs) = εs/(4γ
2ε(1− εs/γ)), and for the low-energy regime ε/4γ2 ≤ εs � ε

d2N

dt dεs
≈ πr2

0c

2γ4

∫ ∞

0

n(ε)

ε

(
4γ2εs
ε

− 1

)
dε. (1.9)

The detailed calculations can be found in Appendix A. In the following discussion

of the synchrotron self-Compton intensities and fluences we use only the dominating

contribution (1.8) of the differential scattering rate for a single electron and neglect

(1.9).

1.3 Aim of the thesis

Blazar emission models include, in general, various processes that are responsible for

the creation of or have an influence on the radiation, e.g. cooling processes, diffusion,

collisions or injections (perturbations). The aim of this thesis is to investigate a new

nonlinear electron synchrotron cooling behaviour due to an assumed partition condition

between the energy density of the ambient magnetic field and that of the relativistic

electrons in the plasmoids.

This nonlinear cooling behaviour is very distinct from the standard linear electron

cooling because of the consideration of the time-dependence of the magnetic field,

which has a massive influence on the evolution of the electrons. Therefore, we solve

the electron kinetic differential equation for the linear as well as for the nonlinear

electron synchrotron cooling in the case of multiple instantaneous injections of mono-

energetic ultra-relativistic electrons. Afterwards, we apply the obtained solutions to

the synchrotron self-Compton process in a δ-distribution approximation and compare

the results with an actual time-averaged blazar spectrum to determine the quality of

the models in comparison to each other. To generalise these results we also analytically

compute the synchrotron self-Compton emissions without making use of approxima-

tions, i.e. with the full Klein-Nishina cross section.
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2 Synchrotron cooling processes in

flaring TeV blazars

A field of current activity in theoretical astroparticle physics represents the modelling

of the broadband photon spectra of non-thermal radiation sources (e.g. blazars) show-

ing two broad spectral components (see Figure 1.2). The quantitative reproduction

of the detected spectra is exceptionally successful using homogeneous one-zone models

(Mastichiadis and Kirk, 2002) under simplified assumptions for relativistically propa-

gating regions of emission in the jets of active galactic nuclei. In this work we discuss

such a model and its applicability.

The first step in initialising such a model is to set up physical assumptions about

the origin of the low-energy and high-energy components of the spectra. It is generally

accepted that the low-energy component consists of non-thermal radiation from high-

energy relativistic electrons (Böttcher, 2007), where synchrotron radiation is favoured.

The high-energy component is assumed to be created by inverse Compton emission

(Chapter 3). In addition to the synchrotron radiation model for the low-energy spec-

tral component, other propositions such as electrostatic bremsstrahlung (Schlickeiser,

2003) or Jitter radiation (Medvedev et al., 2007; Workman et al., 2008) are discussed.

All these models have in common that the evolving energy distribution of the radi-

ating particles (electrons) is determined by a time-dependent kinetic equation for the

volume-averaged relativistic electron population in the plasmoid (Kardashev, 1962),

governing the competition between the injection, escape and energy loss processes.

Here, we assume electron energy losses in form of a synchrotron cooling with a con-

stant magnetic field B (standard linear electron synchrotron cooling) on the one hand

and on the other a partition condition between the energy densities of the magnetic

field (UB(t) = B(t)2/8π) and the relativistic electrons

7



2 Synchrotron cooling processes in flaring TeV blazars

Ue(t) = mec
2

∫ ∞

0

γ N(p, t) dp (2.1)

(nonlinear electron synchrotron cooling), first introduced by Schlickeiser and Lerche

(2007) and expressed by a constant partition parameter eB = UB(t)/Ue(t). This ap-

proach appears reasonable because particle-in-cell simulations of the observed spectral

energy distributions (Böttcher and Chiang, 2002; Dermer and Schlickeiser, 2002) pro-

vide the best results in agreement to the experimental data (e.g. Aharonian et al.,

2006, 2007) if a partition condition is assumed although there is no obvious physical

justification for this behaviour. However, the success of this assumption in explaining

the observational findings when modelling the spectra of active galactic nuclei vin-

dicates its application. Hence, the magnetic field strength becomes time-dependent,

B(t) =
√

8πeBUe(t), adopting itself to the actual kinetic energy density of the radiat-

ing electrons in these sources, leading to twofold consequences:

1. Focusing only on the synchrotron radiation of relativistic electrons the energy

loss rate depends on the kinetic energy density of the radiating particles, which

is an integral over the electron differential spectral density (2.1). The synchrotron

radiation cooling of the relativistic electrons shows, thus, nonlinear behaviour.

We could consider the synchrotron radiation of heavier charged particles such as

hadrons (Reimer et al., 2004) and muons (Böttcher and Reimer, 2004), the Thom-

son cross section of hadrons of charge Ze and mass Amp σH = Z4m2
eσT/A

2m2
p =

2.96·10−7σT is, however, six orders of magnitude smaller than the electron Thom-

son cross section σT = 6.65 · 10−25cm2 and therefore, we can neglect this contri-

bution.

2. The synchrotron photon emissivity and fluence will be modified as compared to

the standard case of a constant magnetic field.

This magnetic field is most likely generated from the interaction of the relativisti-

cally moving emission knot (plasmoid) with the ambient interstellar and intergalactic

mediums that are also responsible for the injection of the ultra-relativistic particles by

the relativistic pick-up process (Gerbig and Schlickeiser, 2007; Pohl and Schlickeiser,

8



2.1 Linear and nonlinear electron synchrotron cooling in the case of two

instantaneous monoenergetic injections

2000; Stockem et al., 2007). Further information regarding the relativistic collisions

of plasma shells can be found in Frederiksen et al. (2004), Jaroschek et al. (2005),

Kapetanakos (1974), Lee and Lampe (1973), Ng and Noble (2006), Nishikawa et al.

(2003), Sakai et al. (2004), Silva et al. (2003) and Tatarakis et al. (2003).

The nonlinear cooling effect was discussed and compared to the linear cooling process

in Schlickeiser and Lerche (2007, 2008) for the cases of one instantaneous injection of

monoenergetic ultra-relativistic electrons and an instantaneous injection of power-law

distributed electrons. In Chapters 2.1 and 2.2 we consider, for the first time, the

cases of two and multiple instantaneous injections of monoenergetic ultra-relativistic

electrons, respectively. We calculate in detail all necessary physical quantities for two

injections with strengths q0 and q1 at times t0 and t1. It can be shown that asymptotic

analytical solutions can only be found for four or less injections, so that numerical

methods have to be applied for a number of injections ≥ 5. The necessity of discussing

multiple injections into a physical system where partition conditions hold is obvious:

why should nature stop at one injection?

This chapter is structured as follows: First, we solve the basic time-dependent

volume-averaged kinetic equations for the linear (UB = const., B = const.) and the

nonlinear (UB = UB(t), B = B(t)) case. Second, we derive the time-dependent syn-

chrotron radiation spectra and synchrotron fluences for both cases and finally examine

extensively the obtained differences. All necessary mathematical details can be found

in Appendices B and C.

2.1 Linear and nonlinear electron synchrotron cooling

in the case of two instantaneous monoenergetic

injections

In the following, a comoving coordinate system is chosen for the discussion of the linear

and nonlinear cooling processes of relativistic electrons in the interior of the radiation

source due to synchrotron radiation in a large-scale magnetic field of random orienta-

tion.

9



2 Synchrotron cooling processes in flaring TeV blazars

Two competitive processes govern the intrinsic evolution of the plasmoid. The in-

stantaneous injection of ultra-relativistic electrons γk � 1 at the rate Q(γk, t), where

γk is the electron energy of the k-th injection, and the electron synchrotron losses.

Kardashev (1962) derived a partial differential equation describing the time-dependent

evolution of the volume-averaged relativistic electron population inside such a radiat-

ing source

∂n(γ, t)

∂t
− ∂

∂γ

(
|γ̇|n(γ, t)

)
= Q(γ, t), (2.2)

where n(γ, t) is the volume-averaged differential number density, |γ̇| = D0γ
2 the energy

loss rate responsible for the electron cooling and D0 = 4σT/(3mec) ·UB. Assuming the

electrons to be ultra-relativistic (γ � 1) for all times, the relation p ' mec γ holds,

implying the connection N(p, t) = n(γ, t)/mec between the particular differential elec-

tron number densities leading to an energy integrated kinetic energy density of the

relativistic electrons Ue(t) = mec
2
∫∞

0
γ n(γ, t) dγ.

Suppose that two monoenergetic injections occur at times t0 and t1 at the rate

Q(γ, t) = q0δ(γ − γ0)δ(t− t0) + q1δ(γ − γ1)δ(t− t1), (2.3)

the solution of the kinetic equation (2.2) in the case of linear cooling, i.e. for a con-

stant energy density UB, resulting in a constant D0, reads in the different time regimes

(Appendix B)

nL(γ, t | t0 ≤ t < t1) = q0H(γ0 − γ)δ
(
γ − γ

(0)
L (t)

)
(2.4)

and

nL(γ, t | t0 < t1 ≤ t) = q0H(γ0 − γ)δ
(
γ − γ

(0)
L (t)

)
+ q1H(γ1 − γ)δ

(
γ − γ

(1)
L (t)

)
, (2.5)

respectively, where

γ
(k)
L (t) =

γk

1 +D0γk(t− tk)
(2.6)

denotes the time-dependent linear electron Lorentz factors with k = 0, 1.

10



2.1 Linear and nonlinear electron synchrotron cooling in the case of two

instantaneous monoenergetic injections

The nonlinear case is based on the assumption of partition, i.e. the magnetic

field energy density UB(t) = eBUe(t) = eBmec
2
∫∞

0
γ n(γ, t) dγ depends on an en-

ergy integral of the actual electron spectrum. Therefore, the energy loss rate is

|γ̇| = A0γ
2
∫∞

0
γ n(γ, t) dγ with the abbreviation A0 = 4cσT eB/3. The solutions for

the kinetic equation in the two time regimes yield (Appendix C)

nNL(γ, t | t0 ≤ t < t1) = q0H(γ0 − γ)δ
(
γ − γNL

)
(2.7)

and

nNL(γ, t | t0 < t1 ≤ t) = q0H(γ0 − γ)δ
(
γ − γ

(0)
NL

)
+ q1H(γ1 − γ)δ

(
γ − γ

(1)
NL

)
(2.8)

with

γNL =
γ0√

1 + 2q0A0γ2
0(t− t0)

(2.9)

and

γ
(k)
NL = γ0γ1

(√
2qA0γ2

0γ
2
1(t− t1) +

(
q̂1γ0 + q̂0γ1

√
2q0A0γ2

0(t1 − t0) + 1
)2

+ (−1)kq̂|k−1|

(
γ1

√
2q0A0γ2

0(t1 − t0) + 1− γ0

))−1

,

(2.10)

where q ≡ q0 + q1 and q̂k ≡ qk/q. As we can see from (2.10) the two injections are

coupled in the nonlinear cooling case due to the time dependence of the magnetic field

energy density. We will examine this particular behaviour in the following sections.

The results of the linear and nonlinear electron synchrotron cooling in the case of

one instantaneous monoenergetic injection Q(γ, t) = q0δ(γ − γ0)δ(t − t0) discussed in

Schlickeiser and Lerche (2007) can be trivially reproduced by setting q1 = 0.

11



2 Synchrotron cooling processes in flaring TeV blazars

2.2 Linear and nonlinear electron synchrotron cooling

in the case of multiple instantaneous

monoenergetic injections

For m+ 1 injections the kinetic equation (2.2) reads for the linear cooling case

∂n(γ, t)

∂t
−D0

∂

∂γ

(
γ2n(γ, t)

)
=

m∑
k=0

qkδ(γ − γk)δ(t− tk), (2.11)

yielding for the time domain tm−1 < tm ≤ t the generalised solution

nL(γ, t) =
m∑

k=0

qkH(γk − γ)δ
(
γ − γ

(k)
L

)
, m ∈ N, (2.12)

which is simply a superposition of the single-injection solutions.

In the nonlinear case, the successively injected electron populations have a strong

impact on each other due to the significant time- and injection-number-dependence of

the magnetic field (see Chapter 2.3.1), so that the gyrofrequency ν0(t) (Appendix D)

describes coupled states of the Lorentz factors (2.10) leading to a generalised differ-

ential equation of the function T (τ) (see Appendix C), where τ = A0t is a new time

variable

dT

dτ
=

m∑
k=0

qk
H
(
T − T (τk)

)
T − T (τk) + xk

, (2.13)

yielding for the domain τm−1 < τm ≤ τ the indefinite integral

∫ m∏
k=0

(
T − T (τk) + xk

)
m∑

k=0

qk
T − T (τk) + xk

m∏
l=0

(
T − T (τl) + xl

) dT = τ + const. (2.14)

For each value m a different transcendental equation for T solving the integral follows,

therefore, no general expression for T and hence, for the density function n(γ, t) can

be found analytically. Additionally, a limit for reasonable analytical approximate solu-

tions is reached with systems containing four instantaneous monoenergetic injections

12



2.3 Intrinsic optically thin synchrotron radiation

because systems with injections ≥ 5 implicate polynomials of degree ≥ 5 in T with

undetermined coefficients (see Appendix C) where roots cannot be found analytically,

as shown already by Abel (1826). Thus, solutions have to be found numerically for

m ≥ 4 injections. Analytical solutions for m = 2 and m = 3 can be calculated similar

to the case of two injections (m = 1) presented in the above subsection.

2.3 Intrinsic optically thin synchrotron radiation

2.3.1 Optically thin synchrotron intensities

We investigate the differences between single and multiple instantaneous injections

of monoenergetic electrons. Therefore, it is sufficient to examine only the regime of

optically thin radiation. The description of the optically thick contribution works anal-

ogous.

The optically thin synchrotron intensity I from relativistic electrons in a homoge-

neous source of radius R is (Chapter 3.1.1)

I(ν, t) =
R

4π

∫ ∞

0

n(γ, t)P (ν, γ)dγ, (2.15)

where n(γ, t) is the volume-averaged differential particle density and

P (ν, γ) = P0
ν

γ2
CS

(
2ν

3ν0γ2

)
(2.16)

the pitch-angle averaged synchrotron power of a single electron (Crusius and Schlick-

eiser, 1986, 1988) with P0 = 8.763 · 10−29erg and the electron gyrofrequency ν0 =

eB/(2πmec). The function CS(z) can be approximated by the expression

CS(z) ' z−2/3
(
0.869 + z1/3 exp (z)

)−1

. (2.17)

Using the results derived in Chapter 2.1 and 2.2 we obtain for the optically thin syn-

chrotron intensities for the linear and nonlinear case each for the domains t0 ≤ t < t1

and t0 < t1 ≤ t

13



2 Synchrotron cooling processes in flaring TeV blazars

IL(fL, tL|tL,0 ≤ tL < tL,1)/IL,0 =
q0
γ2

0

fL

(
1 + tL − tL,0

)2
CS
(
fL

(
1 + tL − tL,0

)2)
(2.18)

and

IL(fL, tL|tL,0 < tL,1 ≤ tL)/IL,0 =
fL

γ2
0

·

[
q0
(
1 + tL − tL,0

)2
CS
(
fL

(
1 + tL − tL,0

)2)

+ q1

(
γ0

γ1

+ tL − tL,1

)2

CS

(
fL

[
γ0

γ1

+ tL − tL,1

]2)]
(2.19)

as well as

INL(fNL, tNL|tNL,0 ≤ tNL < tNL,1)/INL,0 =
q0
γ2

0

fNL

(
1 + tNL − tNL,0

)

· CS
(
fNL

(
1 + tNL − tNL,0

)5/4
) (2.20)

and

INL(fNL, tNL|tNL,0 < tNL,1 ≤ tNL)/INL,0 =

fNL ·

[
q0γ

(0)
NL

−2
(tNL) · CS

(
ν

ν
(0)
NL(tNL)

)
+ q1γ

(1)
NL

−2
(tNL) · CS

(
ν

ν
(1)
NL(tNL)

)] (2.21)

with IL,0 ≡ RP0νL|t=t0/(4π), INL,0 ≡ RP0νNL|t=t0/4π, the frequencies fL = ν/νL|t=t0

and fNL = ν/νNL|t=t0 , the times tL = D0γ0t and tNL = 2q0A0γ
2
0t and the characteristic

nonlinear frequencies ν
(k)
NL as functions of the characteristic nonlinear Lorentz factors

(2.10) (see formula (D.5)).

In Figures 2.1 and 2.2, we show the synchrotron light curves for two injections for

the linear and the nonlinear case with a variation in the injection times of the second

injection tL,1 and tNL,1 while the frequencies fL and fNL remain at one constant value.
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2.3 Intrinsic optically thin synchrotron radiation

Figure 2.1: Normalised synchrotron light curves IL/IL,0 as functions of the time tL
in the linear cooling case at the frequency fL = 10−5 for three second
injection times tL,1 = 250 (solid curve), tL,1 = 350 (dashed curve & solid
curve for tL < 250) and tL,1 = 400 (dash-dotted curve & dashed curve for
250 ≤ tL < 350 & solid curve for tL < 250).

Figure 2.2: Normalised synchrotron light curves INL/INL,0 as functions of the time tNL

in the nonlinear cooling case at the frequency fNL = 10−5 for three second
injection times tNL,1 = 4000 (solid curve), tNL,1 = 9000 (dash-dotted curve
& solid curve for tNL < 4000) and tNL,1 = 14000 (dashed curve & dash-
dotted curve for 4000 ≤ tNL < 9000 & solid curve for tNL < 4000).

15



2 Synchrotron cooling processes in flaring TeV blazars

The first injection occurs at t0 = 0 with q0 = q1 = 105 and γ0 = γ1 = 107 in all

figures. In the linear case we can recognise the simple superposition of the indepen-

dent Green’s-solutions (2.19) due to the constancy of the magnetic field throughout all

times going from the domain of the first injection t0 ≤ t < t1 to the domain t0 < t1 ≤ t

governed by both injections.

Figure 2.3: Normalised magnetic field B(t)/B0 as a function of the time tNL in the
nonlinear cooling case for the second injection time tNL,1 = 1000.

In contrast, the magnetic field for the nonlinear cooling depends on time as well as

the number, strength and energy of injections as shown in Figure 2.3 for tNL,1 = 1000.

Here, the magnetic field discontinuously peaks when the second injection takes place

because of the coupling of the nonlinear characteristic Lorentz factors (2.10) in the

second domain

B(t0 ≤ t < t1) = B0

(∫ ∞

0

γ n(γ, t) dγ

)1/2

= B0
√
q0γNL

B(t0 < t1 ≤ t) = B0

√
q0γ

(0)
NL + q1γ

(1)
NL,

(2.22)

where B0 ≡ c
√

8πmeeB, explaining the behaviour of the functions in Figure 2.2.
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2.3 Intrinsic optically thin synchrotron radiation

Figure 2.4: Normalised synchrotron light curves IL/IL,0 as functions of the time tL in
the linear cooling case at three different frequencies fL = 10−5 (dash-dotted
curve), fL = 10−4 (dashed curve) and fL = 5 · 10−4 (solid curve) for the
second injection time tL,1 = 50.

Figure 2.5: Normalised synchrotron light curves INL/INL,0 as functions of the time tNL

in the nonlinear cooling case at three different frequencies fNL = 10−5

(dash-dotted curve), fNL = 10−4 (dashed curve) and fNL = 5 · 10−4 (solid
curve) for the second injection time tNL,1 = 1000.
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2 Synchrotron cooling processes in flaring TeV blazars

Figure 2.6: Synchrotron intensity IL/IL,0 as a function of the frequency fL in the linear
cooling case at four different times tL = 30 (solid curve), tL = 50.1 (dash-
dotted curve), tL = 55 (dashed curve) and tL = 70 (dotted curve). The
second injection occurs at tL,1 = 50.

Figure 2.7: Synchrotron intensity INL/INL,0 as a function of the frequency fNL in the
nonlinear cooling case at four different times tNL = 3000 (solid curve),
tNL = 4001 (dash-dotted curve), tNL = 4100 (dashed curve) and tNL =
5000 (dotted curve). The second injection occurs at tNL,1 = 4000.
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2.3 Intrinsic optically thin synchrotron radiation

The synchrotron light curves for fixed second injection times but different frequencies

are presented in Figures 2.4 and 2.5. In Figures 2.6 and 2.7, we display the synchrotron

spectra for both cooling cases at different times tL and tNL, whereas a second injection

occurs at times tL,1 = 50 and tNL,1 = 4000. In the two diagrams the spectra each show a

low-frequency and a high-frequency maximum shortly after the second injection (dash-

dotted and dashed curves) noticeable in the crossing-regions of the zoomed-in light

curves in Figure 2.8 exemplified for the linear cooling case.

Figure 2.8: Normalised synchrotron light curves IL/IL,0 as functions of the time tL in
the linear cooling case in the vicinity of the time of the second injection
tL,1 = 50 at six different frequencies fL = 10−5 (dash-dotted curve), fL =
10−4 (dashed curve), fL = 5 · 10−4 (solid curve), fL = 10−2 (space-dashed
curve), fL = 10−1 (solid curve with stronger curvature) and fL = 5 · 10−1

(long-dashed curve).

For later times the spectra (dotted curves) converge against the low-frequency maxi-

mum form of a one-injection spectrum (solid curves) because the high-frequency maxi-

mum is shifted to lower frequencies and additionally it decreases for the nonlinear case

more rapid in time than the low-frequency maximum. As one can see, the particles

already being present in a system with nonlinear cooling are emitting higher energetic

synchrotron radiation due to the increase in magnetic field energy while the new par-
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2 Synchrotron cooling processes in flaring TeV blazars

ticles are entering the system. This does not happen in the linear cooling case because

the magnetic field is constant during the second injection.

2.3.2 Optically thin synchrotron fluences

The time-integrated synchrotron fluence

F (ν) =

∫ ∞

t0

I(ν, t)dt (2.23)

has to be split into two integrals over the specified injection time-domains each for the

linear and nonlinear cooling cases

F (ν) =

∫ t1

t0

I(ν, t|t0 ≤ t < t1)dt+

∫ ∞

t1

I(ν, t|t0 < t1 ≤ t)dt. (2.24)

The fluence for the linear electron cooling then reads

FL(ν) = H0

[
q0

∫ t1

t0

ν

ν
(0)
L

CS

(
ν

ν
(0)
L

)
dt+

∫ ∞

t1

(
q0

ν

ν
(0)
L

CS

(
ν

ν
(0)
L

)
+ q1

ν

ν
(1)
L

CS

(
ν

ν
(1)
L

))
dt

]

= H0

[
q0

∫ ∞

t0

ν

ν
(0)
L

CS

(
ν

ν
(0)
L

)
dt+ q1

∫ ∞

t1

ν

ν
(1)
L

CS

(
ν

ν
(1)
L

)
dt

]
(2.25)

using (2.18) and (2.19) with H0 ≡ 3RP0ν0/(8π). Transforming dt into dν
(k)
L leads to

the expression

FL(ν) =
H

′
0

ν3/2

[
q0

∫ ν
(0)
L |t=t0

0

(
ν

ν
(0)
L

)5/2

CS

(
ν

ν
(0)
L

)
dν

(0)
L

+ q1

∫ ν
(1)
L |t=t1

0

(
ν

ν
(1)
L

)5/2

CS

(
ν

ν
(1)
L

)
dν

(1)
L

]
.

(2.26)

Substituting f
(k)
L = ν/ν

(k)
L the fluence yields
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2.3 Intrinsic optically thin synchrotron radiation

FL(ν) =
FL,0

ν1/2

[
q0

∫ ∞

f
(0)
L |t=t0

f
(0)
L

1/2
CS
(
f

(0)
L

)
df

(0)
L + q1

∫ ∞

f
(1)
L |t=t1

f
(1)
L

1/2
CS
(
f

(1)
L

)
df

(1)
L

]
,

(2.27)

where FL,0 ≡
√

3ν0H0/(2
3/2D0). Here, we use the asymptotic expansion of the function

(2.17)

CS(z) '


a0z

−2/3 , z � 1

z−1 exp (−z) , z � 1

(2.28)

with a0 = 1.151 to derive the asymptotic behaviour of the fluence integrals for low and

high frequencies ν. The calculations for these integrals are analogous to the calculations

of Schlickeiser and Lerche (2007) due to the superposition of the single instantaneous

monoenergetic injection character of the linear solution (2.5). For low frequencies

ν � 1 we obtain

FL(ν � 1) =
FL,0

ν1/2

[
q0

(
c0 −

6a0

5

(
f

(0)
L |t=t0

)5/6
)

+ q1

(
c0 −

6a0

5

(
f

(1)
L |t=t1

)5/6
)]
, (2.29)

where c0 = 0.866. In the high-frequency range ν � 1 we get

FL(ν � 1) =
FL,0

ν1/2

[
q0

(
f

(0)
L |t=t0

)−1/2

exp
(
−f (0)

L |t=t0

)
+q1

(
f

(1)
L |t=t1

)−1/2

exp
(
−f (1)

L |t=t1

)]
.

(2.30)

With the intensities (2.20) and (2.21) the nonlinear fluence yields immediately

FNL(ν) =
RP0ν

4π

[∫ t1

t0

q0γ
−2
NLCS

( ν

νNL

)
dt

+

∫ ∞

t1

(
q0γ

(0)
NL

−2
CS
( ν

ν
(0)
NL

)
+ q1γ

(1)
NL

−2
CS
( ν

ν
(1)
NL

))
dt

]
.

(2.31)

The first integral gives after similar substitutions
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2 Synchrotron cooling processes in flaring TeV blazars

FNL(ν) =
FNL,0

ν3/5

∫ fNL|t=t1

fNL|t=t0

f
3/5
NLCS

(
fNL

)
dfNL, (2.32)

where FNL,0 ≡ RP0/(5πA0) ·
(
3c
√

2eBr0q0/π/2
)8/5

. We find for the asymptotic fre-

quency regimes

FNL(ν � 1) =
15a0FNL,0

14ν3/5

(
fNL|t=t1 − fNL|t=t0

)
(2.33)

and

FNL(ν � 1) =
FNL,0

ν3/5
Γ

(
3

5
, fNL|t=t0 , fNL|t=t1

)

≈ FNL,0

ν3/5

(
fNL

−2/5
|t=t0

exp

[
−fNL|t=t0

]
− fNL

−2/5
|t=t1

exp

[
−fNL|t=t1

])
.

(2.34)

To solve the second integral of (2.31) we introduce a new time-variable

ω =
√
ω0(t− t1) + ω2

1 (2.35)

with ω0 ≡ 2qγ2
0γ

2
1A0 and ω1 ≡ q̂1γ0 + q̂0γ1 ·

√
2q0γ2

0A0(t1 − t0) + 1. Additionally we

substitute

κ0 ≡ q̂1

(
γ1

√
2q0γ2

0A0(t1 − t0) + 1− γ0

)
and κ1 ≡ −

q0κ0

q1
,

so that the characteristic nonlinear Lorentz factors read γ
(k)
NL = γ0γ1/(ω + κk). The

fluence then transforms into

FNL(ν) = G0ν

∫ ∞

ω1

ω

[
q0(ω + κ0)

2CS

(
ν(ω + κ0)

2

ζγ
5/2
0 γ

5/2
1

√
q0

ω+κ0
+ q1

ω+κ1

)

+ q1(ω + κ1)
2CS

(
ν(ω + κ1)

2

ζγ
5/2
0 γ

5/2
1

√
q0

ω+κ0
+ q1

ω+κ1

)]
dω

(2.36)
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2.4 Discussion

with G0 ≡ RP0/(2πω0γ
2
0γ

2
1) and ζ ≡ 3c

√
2eBr0/π/2. To simplify the argument of the

function CS(·) we investigate the asymptotes ω � κk and ω � κk. We can assume

that q0 ≈ q1 because for qk � q|k−1| we would obtain the case for one monoenergetic

instantaneous injection. The asymptotic behaviour for ω � κ0 can be omitted since

this case does not belong to the domain of integration γ0 + q0κ0/q1 ≤ ω ≤ ∞. For

ω � κ0 (2.36) reduces to

FNL(ν) =
2qG0

ω0γ2
0γ

2
1

ν

∫ ∞

ω1

ω3CS

(
νω5/2

ζq1/2γ
5/2
0 γ

5/2
1

)
dω. (2.37)

Replacing νω5/2/(ζq1/2γ
5/2
0 γ

5/2
1 ) = y the integral (2.37) reads

FNL(ν) = F̃NL,0ν
−3/5

∫ ∞

y0

y3/5CS(y)dy, (2.38)

where F̃NL,0 ≡ 4ζ8/5q9/5γ2
0γ

2
1G0/(5ω0) and y0 ≡ y|ω=ω1 . Then we derive for the low-

frequency domain ν � 1

FNL(ν � 1) = F̃NL,0ν
−3/5

(∫ ∞

0

y3/5CS(y)dy − a0

∫ y0

0

y−1/15dy

)

= F̃NL,0ν
−3/5

(
0.793− 15

14
a0y

14/15
0

)
≈ 0.793F̃0,NLν

−3/5

(2.39)

and for the high-frequency domain ν � 1

FNL(ν � 1) = F̃NL,0ν
−3/5

∫ ∞

y0

y−2/5 exp (−y)dy

= F̃NL,0ν
−3/5Γ

(3
5
, y0

)
≈ F̃NL,0ν

−3/5y
−2/5
0 exp (−y0).

(2.40)

2.4 Discussion

For powerful cosmic non-thermal radiation sources such as blazars and γ-ray burst

sources it is very likely to observe multiple injections of ultra-high energy radiating

particles in these sources via a relativistic pick-up process (Pohl and Schlickeiser,
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2 Synchrotron cooling processes in flaring TeV blazars

2000). Therefore, we generalised the illustrative case of only one instantaneous in-

jection of monoenergetic particles into sources with assumed time-dependent magnetic

field strength that adjusts itself to the actual kinetic energy density of the injected

relativistic particles (partition condition) discussed in Schlickeiser and Lerche (2007).

We solved the linear and nonlinear kinetic equation for the intrinsic temporal evolu-

tion of the relativistic particles each in the domain of the first (t0 ≤ t < t1) and second

injection (t0 < t1 ≤ t) in detail for two instantaneous monoenergetic injections and gave

a short overview of analytically obtaining solutions for m+ 1 injections. The solutions

of the linear kinetic differential equation in the domain t0 < t1 ≤ t serve as a simple

superposition of Green’s functions, while the solutions of the nonlinear equation show

a more complex form due to the nonlinear dependence of the synchrotron loss term on

an energy integral of the particle number density leading to a magnetic field coupling

of both particle injection populations. Then we calculated the corresponding optically

thin synchrotron radiation intensities and synchrotron fluences for each cooling case.

We reproduced not only the differences both in the spectral distributions and syn-

chrotron light curves in the domain t0 ≤ t < t1 presented in Schlickeiser and Lerche

(2007), we also found further significant differences in the domain t0 < t1 ≤ t, e.g.

a sudden increase in the intensity in the nonlinear light curves or a low- and a high-

frequency synchrotron maximum in the linear and nonlinear spectral synchrotron dis-

tributions instead of only one low-frequency maximum as in the single-injection spectral

synchrotron distributions.

This is caused by the dependence of the magnetic field on time as well as on the

number of injections. Thus, we demonstrated that the coupling of the magnetic field

energy density to the kinetic energy density of the injected particles results in a com-

pletely different cooling behaviour compared to sources with a constant magnetic field

changing both the synchrotron emissivity and the intrinsic temporal evolution of the

relativistic electron energy spectrum especially after the occurrence of a second in-

jection. The predictions of the spectral behaviour as functions of time or frequency

provide conclusive tests for the existence of a linear or nonlinear cooling in flaring

non-thermal sources like the flaring blazar jet PKS 2155-304 (see Chapter 3.1.5).
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3 Synchrotron self-Compton radiation

process

A process for the energy loss of ultra-relativistic electrons in cosmic-ray sources named

inverse Compton scattering has been considered to be very likely responsible for the pro-

duction of the high-energy radiation emitted by active galactic nuclei. In this process

low-energy photons are scattered to higher energies by relativistic electrons within the

jets of the sources. There are several possible external and internal generators for the

low-energy photon field like the accretion disc of the central black hole (Dermer et al.,

1992; Dermer and Schlickeiser, 1993), the broad-line region (Sikora et al., 1994), dust

surrounding the active galactic nuclei (Arbeiter et al., 2002; Blazejowski et al., 2000) or

synchrotron radiation produced by the jet itself. In this chapter the process of interest

is the inverse Compton scattering of internal synchrotron radiation called synchrotron

self-Compton scattering (Maraschi et al., 1992).

Numerical models were applied in most of the studies of the synchrotron self-Compton

process, e.g. Böttcher (2007), Chiaberge and Ghisellini (1999), Dermer et al. (1997),

Mastichiadis and Kirk (1997) and Sokolov et al. (2004). In this thesis we investigate an-

alytically the influence of a nonlinear electron synchrotron cooling on the synchrotron

self-Compton process following the analysis of the flaring of TeV blazars due to the

synchrotron self-Compton process for a linear synchrotron radiation cooling behaviour

of the injected electrons (Schlickeiser and Röken, 2008).

Therefore, we assume that a flare of the emission knot occurs at the time t = t0

due to a single uniform instantaneous injection of monoenergetic ultra-relativistic elec-

trons. The emission knot itself moves with a relativistic bulk speed V with respect

to an external observer. We model the emission knot as a spherical magnetised, fully

ionised plasma cloud of radius R consisting of cold electrons and protons with a uniform

density distribution and a randomly oriented large-scale time-dependent magnetic field
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3 Synchrotron self-Compton radiation process

B(t) that adjusts itself to the actual kinetic energy density of the radiating electrons in

these sources, yielding the nonlinear synchrotron radiation cooling behaviour discussed

in Chapter 2. The existence of the magnetic field is mandatory for the generation of

synchrotron radiation and hence, the synchrotron self-Compton process.

In Schlickeiser and Röken (2008) the synchrotron self-Compton process was applied

to a linear electron synchrotron cooling where a δ-distribution approximation (Der-

mer and Schlickeiser, 1993; Reynolds, 1982) was used for the computation of the

inverse Compton scattering rate ṅs. Here, we determine the nonlinear synchrotron

self-Compton emission using the same δ-distribution approximation. Afterwards, we

compare in Chapter 3.1.5 the linear to the nonlinear model by application on the data

record of the PKS 2155-304 flare on MJD 53944.

Most of the calculations of radiation quantities have been based on such rather simple

approximations. Hence, another advantage of this thesis is to determine the inverse

Compton scattering rate, the synchrotron self-Compton intensities and fluences for

the special class of synchrotron photon densities and electron populations discussed in

Chapter 2 for the full Klein-Nishina cross section and, therefore, in obtaining more

general results (Chapter 3.2).

3.1 Nonlinear synchrotron self-Compton emission in

the δ-distribution approximation

3.1.1 Intrinsic synchrotron radiation formulas

For practical reasons, we use another approximation for the pitch-angle averaged syn-

chrotron power of a single electron in vacuum than that, which we applied in Chapter

2.3

P (ν, γ) = P0νsW

(
ν

νsγ2

)
, (3.1)

as well as another definition of the gyrofrequency νs = 3eB(t)/(4πmec). The function

W
(
ν/(νsγ

2)
)

yields approximately
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3.1 Nonlinear synchrotron self-Compton emission in the δ-distribution approximation

W

(
ν

νsγ2

)
' a0

(
ν

νsγ2

)1/3

exp

(
− ν

νsγ2

)
, (3.2)

exhibiting a similar asymptotic behaviour as the function CS(·) defined in (2.17) and,

therefore, it appears appropriate to use it for the calculations of the intrinsic syn-

chrotron radiation formulas.

In the nonlinear cooling case the gyrofrequency is a time-dependent function due to

the imposed partition condition between the energy densities of the magnetic field and

the relativistic electrons leading to a time-dependence of the magnetic field

B(t) =
√

8πeBUe = c
√

8πeBmeq0γNL(t). (3.3)

Hence, we obtain for the gyrofrequency

νs = ν0(1 + τ − τ0)
−1/4, (3.4)

where ν0 ≡ 3e
√
eBq0γ0/(2πme). The synchrotron intensity from relativistic electrons

expressed by the volume-averaged differential density n(γ, t) for a homogeneous source

of radius R reads

I(ν, t) =
j(ν, t)R

D(ν, t)

(
1− exp

(
−D(ν, t)

))
'


j(ν, t)R , D(ν, t) ≤ 1

j(ν, t)R

D(ν, t)
, D(ν, t) > 1

(3.5)

depending on the spontaneous synchrotron emission coefficient

j(ν, t) =
1

4π

∫ ∞

0

n(γ, t)P (ν, γ) dγ =
a0P0ν

2/3
s ν1/3

4π

∫ ∞

0

n(γ, t)γ−2/3 exp

(
− ν

νsγ2

)
dγ

(3.6)

and the synchrotron optical depth, D(ν, t) = µ(ν, t)R, where µ(ν, t) is the synchrotron

absorption coefficient,
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3 Synchrotron self-Compton radiation process

D(ν, t) =
R

8πmeν2

∫ ∞

0

n(γ, t)

γ2

d

dγ

(
γ2P (ν, γ)

)
dγ

=
a0P0Rν

2/3
s

6πmeν5/3

∫ ∞

0

n(γ, t)γ−5/3

(
1 +

3ν

2νsγ2

)
exp

(
− ν

νsγ2

)
dγ.

(3.7)

In a strict sense the approximations in (3.5) are valid only for the cases D(ν, t) � 1

and D(ν, t) � 1. We use, however, an analytic continuation of the approximated

synchrotron intensity in order to cover the whole D(ν, t)-space. This approximation

is justified because the calculations shown in Chapters 3.1.4 and 3.1.5 indicate its

accuracy.

3.1.2 Synchrotron radiation intensities

Inserting the nonlinear electron density distribution (2.7) into the synchrotron emis-

sivities (3.6) and (3.7) and carrying out the γ-integrations, we obtain in terms of the

normalised frequency ω = ν/(ν0γ
2
0)

j(ω, τ) =
a0P0q0ν0

4π
ω1/3(1 + τ − τ0)

1/6 exp
(
−ω(1 + τ − τ0)

5/4
)

(3.8)

and

D(ω, τ) =

(
ω1

ω

)5/3(
1+τ−τ0

)2/3
(

1+
3

2
ω
(
1+τ−τ0

)5/4
)

exp
(
−ω
(
1+τ−τ0

)5/4
)
, (3.9)

where we used the characteristic frequency

ω1 ≡
(
a0P0q0R

6πmeν0γ5
0

)3/5

. (3.10)
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3.1 Nonlinear synchrotron self-Compton emission in the δ-distribution approximation

3.1.3 Synchrotron photon density distribution

With the synchrotron intensities (E.6), (E.7) and the definition ε0 ≡ hν0γ
2
0/(mec

2) we

obtain for the differential synchrotron photon number density

n(ε, τ) =
4π

hcε
I

(
ε

ε0
, t

)
(3.11)

for the case of optically thin energies

n(ε > εt, τ) =
4πI0

hcε
1/3
0 ε2/3

(1 + τ − τ0)
1/6 exp

(
− ε

ε0
(1 + τ − τ0)

5/4

)
(3.12)

and for optically thick energies

n(ε ≤ εt, τ) =
4πI0ε

hcε20ω
5/3
1

(1 + τ − τ0)
−1/2

(
1 +

3ε

2ε0
(1 + τ − τ0)

5/4

)−1

, (3.13)

where εt = ε0ωt is the transition energy from the optically thin to the optically thick

synchrotron emission regime. The time variation of the transition frequency ωt and

the synchrotron intensity I can be found in Appendix E.

3.1.4 Synchrotron self-Compton emission

The differential number density of Compton scattered synchrotron photons in the δ-

distribution approximation is given by (1.3). The limit imposed on the γ-integral

restricts the scattering to the Thomson regime. Here, we neglect effects due to stim-

ulated synchrotron self-Compton emission and absorption leading to the synchrotron

self-Compton intensity

Ic(εs, τ) = Rjc(εs, τ) =
hRεs
4π

ṅc(εs, τ). (3.14)

Inserting the relativistic electron distribution (2.7) into equation (1.3) we obtain

ṅc(εs, τ) =
cσT q0
3πγ2

0

(1 + τ − τ0)H

(
γ0√

1 + τ − τ0
− εs

)
n

(
εs(1 + τ − τ0)

γ2
0

, τ

)
. (3.15)

Equation (3.14) then yields
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3 Synchrotron self-Compton radiation process

Ic(εs, τ) =
cσThRq0εs

12π2γ2
0

(1 + τ − τ0)H
(

γ0√
1 + τ − τ0

− εs
)
n

(
εs(1 + τ − τ0)

γ2
0

, τ

)
. (3.16)

Making use of the synchrotron photon number densities (3.12) and (3.13) we find for

the synchrotron self-Compton intensity

Ic

(
εs ≤

εtγ
2
0

1 + τ − τ0
, τ

)
=

RσT q0I0

3πγ4
0ε

2
0ω

5/3
1

ε2s(1 + τ − τ0)
3/2H

(
γ0√

1 + τ − τ0
− εs

)

·
[
1 +

3

2

εs
ε0γ2

0

(1 + τ − τ0)
9/4

]−1

(3.17)

and

Ic(εs >
εtγ

2
0

1 + τ − τ0
, τ) =

RσT q0I0

3πγ
2/3
0 ε

1/3
0

ε1/3
s (1 + τ − τ0)

1/2H

(
γ0√

1 + τ − τ0
− εs

)

· exp

(
−εs(1 + τ − τ0)

9/4

ε0γ2
0

)
,

(3.18)

respectively.

We introduce a strictly increasing function to simplify later expressions and relations

εk(τ) =
εt(τ)γ

2
0

1 + τ − τ0
. (3.19)

For times τ − τ0 less and greater than ω
−20/33
1 ≡ τ1 (see Appendix E) we obtain, con-

tinuating analytically the τ -domain,

εk(τ − τ0 ≤ τ1) =
ε0ω1γ

2
0

(1 + τ − τ0)3/5
(3.20)

and

εk(τ − τ0 > τ1) =
ε0γ

2
0

(τ − τ0)9/4
ln

(
3

2
ω

5/3
1 (τ − τ0)

11/4

)
, (3.21)

respectively, using equations (E.2) and (E.5).
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3.1 Nonlinear synchrotron self-Compton emission in the δ-distribution approximation

3.1.5 Synchrotron self-Compton fluences

We discuss the synchrotron self-Compton fluence distribution described by the time-

integrated synchrotron self-Compton intensity (3.14)

F (εs) =

∫ ∞

t0

Ic(εs, t) dt =
1

2A0q0γ2
0

∫ ∞

τ0

INL
c (εs, τ) dτ (3.22)

in two scattered photon energy ranges: for energies εs > εk(τ0) = εk,max only the

optically thin synchrotron photon distribution (3.18) contributes, whereas at lower

energies εs ≤ εk(τ0) = εk,max both the optically thin and thick parts (3.17) and (3.18)

of the synchrotron photon distribution have to be taken into account.

High scattered photon energies

For energies εs > εk(τ0) = εk,max only equation (3.18) contributes, so that

F
(
εs > εk(τ0)

)
=

RσT I0

6πA0γ
8/3
0 ε

1/3
0

ε1/3
s

∫ ∞

τ0

(1 + τ − τ0)
1/2 exp

(
−εs(1 + τ − τ0)

9/4

ε0γ2
0

)

·H
(

γ0√
1 + τ − τ0

− εs

)
dτ.

(3.23)

Substituting z = 1 + τ − τ0 yields

F
(
εs > εk(τ0)

)
=

F0ε
1/3
s

γ
13/6
0 ε

1/3
0

∫ (γ0/εs)2

1

z1/2 exp

(
−εsz

9/4

ε0γ2
0

)
dz, (3.24)

where

F0 ≡
RσT I0

6πA0γ
1/2
0

. (3.25)

We obtain with the new variable y = ε2sz/γ
2
0

F
(
εs > εk(τ0)

)
=

F0γ
5/6
0

ε
1/3
0 ε

8/3
s

∫ 1

(εs/γ0)2
y1/2 exp

(
−γ

5/2
0 y9/4

ε0ε
7/2
s

)
dy. (3.26)
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3 Synchrotron self-Compton radiation process

Defining s = y9/4 and εf ≡ γ
5/7
0 /ε

2/7
0 the fluence reads

F
(
εs > εk(τ0)

)
=

4F0ε
7/6
f

9ε
8/3
s

∫ 1

(εs/γ0)9/2

s−1/3 exp

(
−
[
εf
εs

]7/2

s

)
ds. (3.27)

For high scattered photon energies εf < εs ≤ γ0 the argument of the exponential func-

tion in the integral of equation (3.27) becomes very small for all values of s yielding

approximately

F
(
εs > εf > εk(τ0)

)
=

4F0ε
7/6
f

9ε
8/3
s

∫ 1

(εs/γ0)9/2

s−1/3 ds =
2F0ε

7/6
f

3ε
8/3
s

(
1−

[
εs
γ0

]3)
. (3.28)

For scattered photon energies εk(τ0) ≤ εs < εf we substitute v = s
(
εf/εs

)7/2
to obtain

for the fluence (3.27)

F
(
εf > εs ≥ εk(τ0)

)
=

4F0

9ε
1/3
s ε

7/6
f

∫ (εf /εs)7/2

ε
7/2
f εs/γ

9/2
0

v−1/3e−v dv =
4F0

9ε
1/3
s ε

7/6
f

Γ

(
2

3
,
ε
7/2
f εs

γ
9/2
0

,

[
εf
εs

]7/2
)

(3.29)

in terms of the generalised incomplete gamma function Γ(·, ·, ·). The second argument

ε
7/2
f εs/γ

9/2
0 is much smaller than unity for all scattered photon energies εk(τ0) ≤ εs < εf ,

while the third argument
(
εf/εs

)7/2
is much larger than unity, so that the generalised

incomplete gamma function can be asymptotically expanded (Abramowitz and Stegun,

1972) leading to the approximated fluence distribution

F
(
εf > εs ≥ εk(τ0)

)
=

4F0

9ε
1/3
s ε

7/6
f

Γ

(
2

3

)
. (3.30)

Low scattered photon energies

For low scattered photon energies εs ≤ εk(τ0) = εk,max equations (3.17) and (3.18)

contribute to the spectral fluence. Starting with the scattered photon range εk(τ1) ≤
εs ≤ εk(τ0) we find substituting as before
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3.1 Nonlinear synchrotron self-Compton emission in the δ-distribution approximation

F
(
εk(τ1) ≤ εs ≤ εk(τ0)

)
=

1

2A0q0γ2
0

(∫ ∞

τ0

Ic(εs ≤ εk(τ), τ)H
(
εk(τ − τ0 ≤ τ1)− εs

)
dτ

+

∫ ∞

τ0

Ic(εs > εk(τ), τ)H
(
εs − εk(τ − τ0 ≤ τ1)

)
dτ

)

=
RσT I0
6πA0γ2

0

(
ε2s

γ4
0ε

2
0ω

5/3
1

∫ (ε0ω1γ2
0/εs)5/3

1

z3/2

[
1 +

3εsz
9/4

2γ2
0ε0

]−1

dz

+
ε
1/3
s

γ
2/3
0 ε

1/3
0

∫ (γ0/εs)2

(ε0ω1γ2
0/εs)5/3

z1/2 exp

(
−εsz

9/4

γ2
0ε0

)
dz

)
.

(3.31)

The integrand of the first integral can be approximated within the domain of integra-

tion by

z3/2

[
1 +

3εs
2γ2

0ε0
z9/4

]−1

≈ z3/2. (3.32)

Using this approximation and the previous substitutions we obtain for the fluence

F
(
εk(τ1) ≤ εs ≤ εk(τ0)

)
=

RσT I0
6πA0γ2

0

(
2ε2s

5γ4
0ε

2
0ω

5/3
1

([
ε0ω1γ

2
0

εs

]25/6

− 1

)

+
4ε

1/3
0 γ

2/3
0

9ε
1/3
s

Γ

(
2

3
,
γ

11/2
0 ε

11/4
0 ω

15/4
1

ε
11/4
s

,

[
εf
εs

]7/2))
.

(3.33)

The dominating contribution to the fluence represents again synchrotron photons from

the optically thin part of the synchrotron spectrum

F
(
εk(τ1) ≤ εs ≤ εk(τ0)

)
=

4F0

9ε
1/3
s ε

7/6
f

Γ

(
2

3

)
. (3.34)

For scattered photon energies εs < εk(τ1) the fluence reads
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3 Synchrotron self-Compton radiation process

F
(
εs < εk(τ1)

)
=

1

2A0q0γ2
0

(∫ ∞

τ0

Ic(εs ≤ εk(τ), τ)H
(
εk(τ − τ0 > τ1)− εs

)
dτ

+

∫ ∞

τ0

Ic(εs > εk(τ), τ)H
(
εs − εk(τ − τ0 > τ1)

)
dτ

)
.

(3.35)

Using the substitutions and approximations applied before we obtain

F
(
εs < εk(τ1)

)
=

4F0

9ε
1/3
s ε

7/6
f

Γ

(
2

3
, 1

)
. (3.36)

Again the contribution representing the optically thick part of the spectrum is negli-

gibly small compared to the contribution representing the optically thin part demon-

strating that the fluence distribution ∝ ε
−1/3
s also holds in the scattered photon energy

range εs < εk(τ1).

AIC model selection test

Figure 3.1 shows the linear (dashed curve) and nonlinear (solid curve) fits to the time-

averaged spectrum observed from PKS 2155-304 on MJD 53944 (Aharonian et al.,

2007). For the generation of these fits we first had to transform the calculated fluence

distributions from the comoving frame into the observer frame (asterisked quantities)

F ∗(ε∗s) = D3F (εs) = D3F (ε∗s/D), (3.37)

followed by the construction of the linear model parametric function

F ∗
L(ε∗s) = PL,1

1−
(

ε∗s
PL,2

)7/3

ε∗s
1/4
(
Γ
(

7
12

)−1
+ 7

12

( ε∗s
PL,3

)7/4
) (3.38)
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3.1 Nonlinear synchrotron self-Compton emission in the δ-distribution approximation

Figure 3.1: Time-averaged spectrum observed from PKS 2155-304 on MJD 53944 (Aha-
ronian et al., 2007). The dashed line represents the fit for the linear cooling
case (Schlickeiser and Röken, 2008), whereas the solid curve illustrates the
fit for the nonlinear cooling case.

(results from the linear synchrotron self-Compton fluence distribution in the δ-distribution

approximation (Schlickeiser and Röken, 2008)) with the parameters PL,1 = D11/4F0/ε
3/4
f ,

PL,2 = Dγ0 and PL,3 = Dεf and the nonlinear model parametric function

F ∗
NL(ε∗s) = PNL,1

1−
(

ε∗s
PNL,2

)3

ε∗s
1/3
(

9
4
Γ
(

2
3

)−1
+ 3

2

( ε∗s
PNL,3

)7/3
) (3.39)

with PNL,1 = D10/3F0/ε
7/6
f , PNL,2 = Dγ0 and PNL,3 = Dεf from our calculated fluence

distributions, which we fitted (3 parameters, 14 degrees of freedom) to the PKS 2155-

304 data.
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3 Synchrotron self-Compton radiation process

Finally we carried out a so-called AIC model selection test (Akaike, 1974) that

measures the quality of a fit of a statistical model, i.e. the precision and complexity of

the model, where the preferred model is that with the smallest AIC value. We found

the linear fit with an AIC value of 13.37 and a reduced χ2-value of 1.37 to be more

consistent with the data than the nonlinear fit with an AIC value of 30.15 and a reduced

χ2-value of 3.67. The parameters were determined to be PL,1 = 5.5·10−10±1.671·10−11,

PL,3 = 0.433 ± 0.017 and PNL,1 = 1.007 · 10−9 ± 3.396 · 10−11, PNL,3 = 0.619 ± 0.03.

The fits turn out to be independent of the parameters PL,2 and PNL,2, because both

functions (3.38) and (3.39) converge as long as the relation ε∗s/P2 < 1 is satisfied leading

always to the parameters listed above. Note that the test was performed for only one

specific data record for which the linear fit was found to be the best. To be conclusive,

more tests have to be performed.

3.2 Linear and nonlinear synchrotron self-Compton

emission with the full Klein-Nishina cross section

3.2.1 Linear and nonlinear synchrotron self-Compton intensities

For the differential scattering rate ṅs(εs, τ) we use the dominating high-energy contri-

bution (1.8) yielding (see Appendix A)

ṅs(εs,Ωs) = 2πr2
0c

∫ ∞

1

ne(γ)

γ2

∫ ∞

0

n(ε)

ε
H
(
1− Λ(ε, εs)

)
H(εs − ε)

·
((

1− Λ(ε, εs)
)(

1 + 2Λ(ε, εs)
[
1 + εsε

])
+ 2Λ(ε, εs) ln

(
Λ(ε, εs)

))
dε dγ.

(3.40)

Consequently, we have to distinguish between the three cases εΛ(ε, εs) < εs < εt,

εt < εΛ(ε, εs) < εs and εΛ(ε, εs) < εt < εs. For the linear cooling case the transition

energy εt reads (Schlickeiser and Röken, 2008)
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3.2 Linear and nonlinear synchrotron self-Compton emission with the full

Klein-Nishina cross section

εLt = ε0


ωL

1 (1 + τ) , τ ≤
(
ωL

1

)−1/3

1

τ 2
ln

(
3

2

(
ωL

1

)5/3
τ 5

)
, τ >

(
ωL

1

)−1/3

(3.41)

and for the nonlinear electron cooling case

εNL
t = ε0


ωNL

1 (1 + τ)2/5 , τ ≤
(
ωNL

1

)−20/33

1

τ 5/4
ln

(
3

2

(
ωNL

1

)5/3
τ 11/4

)
, τ >

(
ωNL

1

)−20/33
.

(3.42)

Here, we discuss only the case εt < εΛ(ε, εs) < εs as explained below in Chapter 3.2.2.

Therefore, we define the functions

εLk (τ) =
4γ2

0ε0ω
L
1

1 + τ
(3.43)

and

εNL
k (τ) =

4γ2
0ε0ω

NL
1

(1 + τ)3/5
(3.44)

with ωL,NL
1 =

(
a0P0q0R/(6πνL,NLmeγ

5
0)
)3/5

, νL = 3eB/(4πmec) and νNL =

3e
√
eBq0γ0/(2πme).

Linear electron cooling

To compute the linear differential scattering rate we insert the linear differential elec-

tron density (Schlickeiser and Lerche, 2007)

nL
e (γ) = q0H

(
γ0 − γ

)
δ

(
γ − γ0

1 + τ

)
(3.45)

and the linear synchrotron photon density

nL(ε, τ) =
4πI0

hcε
1/3
0 ε2/3

(1 + τ)2/3 exp

(
− ε

ε0
(1 + τ)2

)
(3.46)

37



3 Synchrotron self-Compton radiation process

into equation (3.40). Then we obtain

ṅL
s (εs, τ) = n0(1 + τ)8/3H

(
γ0

εs
− 1− τ

)∫ εs

Λ̄L(εs,τ)

ε−5/3 exp
(
−f(τ)ε

)

·
((

1− ΛL(ε, εs, τ)
)(

1 + 2ΛL(ε, εs, τ)
[
1 + εsε

])
+ 2ΛL(ε, εs, τ) ln

(
ΛL(ε, εs, τ)

))
dε

(3.47)

with the constant n0 ≡ 8π2r2
0q0I0/(hε

1/3
0 γ2

0) and the functions f(τ) = (1 + τ)2/ε0,

ΛL(ε, εs, τ) = εs(1 + τ)2/(4γ2
0ε(1 − εs(1 + τ)/γ0)) and Λ̄L(εs, τ) ≡ εΛL(ε, εs, τ). Trans-

forming dε into dΛL(ε, εs, τ) we find

ṅL
s (εs, τ) = n0(1 + τ)8/3Λ̄L(εs, τ)

−2/3H

(
γ0

εs
− 1− τ

)∫ 1

Λ̄L(εs,τ)/εs

ΛL(ε, εs, τ)
−1/3

· exp

(
−f(τ)Λ̄L(εs, τ)

ΛL(ε, εs, τ)

)(
a1(εs, τ) + a2(εs, τ)ΛL(ε, εs, τ)− 2ΛL(ε, εs, τ)

2

+ 2ΛL(ε, εs, τ) ln
(
ΛL(ε, εs, τ)

))
dΛL(ε, εs, τ),

(3.48)

where a1/2(εs, τ) = 1± 2εsΛ̄L(εs, τ). As shown in Chapter 3.2.2 we expect a change of

the intensity and fluence behaviours to occur only at high energies, so that (3.48) is

sufficiently well approximated by

ṅL
s (εs, τ) ≈ n0(1 + τ)8/3a1(εs, τ)Λ̄L(εs, τ)

−2/3H

(
γ0

εs
− 1− τ

)∫ 1

Λ̄L(εs,τ)/εs

ΛL(ε, εs, τ)
−1/3

· exp

(
−f(τ)Λ̄L(εs, τ)

ΛL(ε, εs, τ)

)(
1− ΛL(ε, εs, τ)

)
dΛL(ε, εs, τ).

(3.49)

Substituting s = f(τ)Λ̄L(εs, τ)ΛL(ε, εs, τ)
−1 we obtain
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3.2 Linear and nonlinear synchrotron self-Compton emission with the full

Klein-Nishina cross section

ṅL
s (εs, τ) = n0(1 + τ)8/3a1(εs, τ)f(τ)2/3H

(
γ0

εs
− 1− τ

)

·
∫ f(τ)εs

f(τ)Λ̄L(εs,τ)

s−5/3e−s

(
1− f(τ)Λ̄L(εs, τ)

s

)
ds,

(3.50)

which is solved by generalised incomplete Gamma functions

ṅL
s (εs, τ) = n0(1 + τ)8/3a1(εs, τ)f(τ)2/3H

(
γ0

εs
− 1− τ

)[
Γ

(
−2

3
, f(τ)Λ̄L(εs, τ), f(τ)εs

)

− f(τ)Λ̄L(εs, τ)Γ

(
−5

3
, f(τ)Λ̄L(εs, τ), f(τ)εs

)]

≈ n0(1 + τ)8/3a1(εs, τ)f(τ)2/3H

(
γ0

εs
− 1− τ

)[
Γ

(
−2

3
, f(τ)Λ̄L(εs, τ)

)

− f(τ)Λ̄L(εs, τ)Γ

(
−5

3
, f(τ)Λ̄L(εs, τ)

)]
.

(3.51)

We, thus, find the linear synchrotron self-Compton intensity to be

IL
c (εs, τ) = IKN

0 εs(1 + τ)8/3a1(εs, τ)f(τ)2/3H

(
γ0

εs
− 1− τ

)

·
[
Γ

(
−2

3
, f(τ)Λ̄L(εs, τ)

)
− f(τ)Λ̄L(εs, τ)Γ

(
−5

3
, f(τ)Λ̄L(εs, τ)

)]
,

(3.52)

where IKN
0 ≡ hRn0/(4π). In Figures 3.2 and 3.3 we show the linear synchrotron in-

tensity (3.52) as a function of the energy εs at four different times (τ = 0, 10, 102, 103)

and as a function of the time τ at four different energies (εs = 103, 104, 105, 106).
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3 Synchrotron self-Compton radiation process

Figure 3.2: Normalised linear synchrotron intensity IL/I0 as a func-
tion of the energy εs at four different times τ =
0 (solid curve), 10 (dotted curve), 102 (dashed curve) and
103 (dash-dotted curve).

Figure 3.3: Normalised linear synchrotron light curve IL/I0 as a func-
tion of the time τ at four different energies εs =
103 (solid curve), 104 (dotted curve), 105 (dashed curve) and
106 (dash-dotted curve).
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3.2 Linear and nonlinear synchrotron self-Compton emission with the full

Klein-Nishina cross section

Nonlinear electron cooling

With the nonlinear differential electron density (2.7) and the nonlinear synchrotron

photon density (3.12) with t0 = 0 the differential scattering rate reads

ṅNL
s (εs, τ) ≈ n0(1 + τ)7/6b1(εs, τ)g(τ)

2/3H

(
γ2

0

ε2s
− 1− τ

)

·
[
Γ

(
−2

3
, g(τ)Λ̄NL(εs, τ)

)
− g(τ)Λ̄NL(εs, τ)Γ

(
−5

3
, g(τ)Λ̄NL(εs, τ)

)]
,

(3.53)

where g(τ) = (1+τ)5/4/ε0, Λ̄NL(εs, τ) = εs(1+τ)/(4γ2
0(1−εs

√
1 + τ/γ0)) and b1(εs, τ) =

1+2εsΛ̄NL(εs, τ), applying the same substitutions and approximations as for the linear

case. We obtain for the intensity

INL
c (εs, τ) = IKN

0 εs(1 + τ)7/6b1(εs, τ)g(τ)
2/3H

(
γ2

0

ε2s
− 1− τ

)

·
[
Γ

(
−2

3
, g(τ)Λ̄NL(εs, τ)

)
− g(τ)Λ̄NL(εs, τ)Γ

(
−5

3
, g(τ)Λ̄NL(εs, τ)

)]
.

(3.54)

In Figures 3.4 and 3.5 we present the nonlinear synchrotron intensity (3.54) as a func-

tion of the energy εs at five different times (τ = 0, 10, 102, 103, 105) and as a function

of the time τ at four different energies (εs = 103, 104, 105, 106). The different electron

synchrotron cooling behaviours can be well observed by comparing for example Figures

3.2 and 3.4. We can see that the functional behaviour of the linear intensity distribu-

tion at τ = 102 fits the behaviour of the nonlinear intensity distribution at later times

τ > 102 due to a faster linear cooling process.

3.2.2 Linear and nonlinear synchrotron self-Compton fluences

Here, we only have to examine the range for high scattered photon energies εs >

4γ2
0ε0ω

L,NL
1 = εL,NL

k,max because the effect of the full Klein-Nishina cross section becomes

apparent just in the high-energy scattered photon regime for both the linear and non-

linear case as shown in the following subsections. For energies much lower than a

characteristic energy εs < εL,NL
f we find the same solutions as in Chapter 3.1.5 and
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3 Synchrotron self-Compton radiation process

Figure 3.4: Normalised nonlinear synchrotron intensity INL/I0 as
a function of the energy εs at five different times
τ = 0 (solid curve), 10 (dotted curve), 102 (dashed curve),
103 (dash-dotted curve) and 105 (long-dashed curve).

Figure 3.5: Normalised nonlinear synchrotron light curve INL/I0 as a
function of the time τ at four different energies εs =
103 (solid curve), 104 (dotted curve), 105 (dashed curve) and
106 (dash-dotted curve).
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Klein-Nishina cross section

Schlickeiser and Röken (2008), leading to the conclusion that the fluence behaviour

for εs < εL,NL
k,max is identical to the δ-distribution approximated Thomson regime fluence

behaviour. Thus, we need only the optically thin synchrotron photon distributions

(3.12) and (3.46) for the calculation of the synchrotron self-Compton fluence.

Linear electron cooling

With the linear synchrotron self-Compton intensity distribution (3.52) the synchrotron

self-Compton fluence (3.22) reads for εs ≥ εLk,max = 4γ2
0ε0ω

L
1 and t0 = 0

FL(εs) = FL
0 εs

∫ ∞

0

(1 + τ)8/3a1(εs, τ)f(τ)2/3H

(
γ0

εs
− 1− τ

)

·
[
Γ

(
−2

3
, f(τ)Λ̄L(εs, τ)

)
− f(τ)Λ̄L(εs, τ)Γ

(
−5

3
, f(τ)Λ̄L(εs, τ)

)]
dτ,

(3.55)

where FL
0 = hRn0/(4πD0γ0). We start with the computation of the fluence contribu-

tion for the first summand of the function a1(εs, τ). Substituting a new time-variable

z = 1 + τ we obtain

F
(1)
L (εs) = FL

0

εs

ε
2/3
0

∫ γ0/εs

1

z4

[
Γ

(
−2

3
,

εsz
4

4γ2
0ε0
(
1− εsz/γ0

))

− εsz
4

4γ2
0ε0
(
1− εsz/γ0

)Γ(−5

3
,

εsz
4

4γ2
0ε0
(
1− εsz/γ0

))] dz.
(3.56)

Transforming y = εsz/γ0 and defining εLf ≡
(
γ2

0/(4ε0)
)1/3

, the integral yields

F
(1)
L (εs) = FL

0

γ5
0

ε
2/3
0 ε4s

∫ 1

εs/γ0

y4

[
Γ

(
−2

3
,

(
εLf
εs

)3
y4

1− y

)

−
(
εLf
εs

)3
y4

1− y
Γ

(
−5

3
,

(
εLf
εs

)3
y4

1− y

)]
dy.

(3.57)

For scattered photon energies εLk,max ≤ εs < εLf the integrands contribution for y � 1

is dominating, so that (3.57) can be reduced to
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3 Synchrotron self-Compton radiation process

F
(1)
L (εs) = FL

0

γ5
0

ε
2/3
0 ε4s

∫ 1

εs/γ0

y4

[
Γ

(
−2

3
,

(
εLf
εs

)3

y4

)
−
(
εLf
εs

)3

y4 Γ

(
−5

3
,

(
εLf
εs

)3

y4

)]
dy.

(3.58)

Partial integration leads to the solution

F
(1)
L (εs) = FL

0

γ5
0

ε
2/3
0 ε4s

(
1

5

[
Γ

(
−2

3
,

(
εLf
εs

)3
)
−
(
εs
γ0

)5

Γ

(
−2

3
,

(
εLf
)3
εs

γ4
0

)

+

(
εs
εLf

)15/4

Γ

(
7

12
,

(
εLf
)3
εs

γ4
0

,

(
εLf
εs

)3
)]

− 1

9

[(
εLf
εs

)3

Γ

(
−5

3
,

(
εLf
εs

)3
)

−
(
εLf
)3
ε6s

γ9
0

Γ

(
−5

3
,

(
εLf
)3
εs

γ4
0

)
+

(
εs
εLf

)15/4

Γ

(
7

12
,

(
εLf
)3
εs

γ4
0

,

(
εLf
εs

)3
)])

(3.59)

consisting of incomplete and generalised incomplete Γ-functions multiplied by simple

power functions. The argument (εLf /εs)
3 is much larger than unity while the argument(

εLf
)3
εs/γ

4
0 is much smaller than unity. Hence, the fluence (3.59) can be approximated

by

F
(1)
L (εs) =

4FL
0 γ

5
0

45ε
2/3
0

(
εLf
)15/4

ε
1/4
s

Γ

(
7

12

)
. (3.60)

For large scattered photon energies εLf < εs ≤ γ0, we split expression (3.57) for the

fluence into two integrals, and after partial integration we obtain for the first integral

∫ 1

εs/γ0

y4Γ

(
−2

3
,

(
εLf
εs

)3
y4

1− y

)
dy = −1

5

(
εs
γ0

)5

Γ

(
−2

3
,

(
εLf
)3
εs

γ4
0

1

1− εs

γ0

)

+
1

5

(
εs
εLf

)2 ∫ 1

εs/γ0

(
1− y

y

)5/3(
4y3

1− y
+

y4

(1− y)2

)
exp

(
−
(
εLf
εs

)3
y4

1− y

)
dy.

(3.61)

Because all integrals in the high-energy scattered photon range are finally of the form

of the integral on the right-hand-side of (3.61), we solve this in detail to demonstrate

the used analytical methods. For this purpose the exponential function can be Taylor-

expanded leading to
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∫ 1

εs/γ0

y4/3(1− y)2/3 exp

(
−
(
εLf
εs

)3
y4

1− y

)
dy =

∞∑
n=0

1

n!

(
−
[
εLf
εs

]3
)n ∫ 1

εs/γ0

y4n+4/3

(1− y)n−2/3
dy.

(3.62)

The denominator of the integrand can be written as a generalised geometric series

∞∑
k=0

(a)k
xk

k!
=

1

(1− x)a
, (3.63)

where (a)k = a · (a+ 1) · (a+ 2) · ... · (a+ k− 1) is the Pochhammer symbol. Thus, the

integral is simply solved by a sum of hypergeometric functions

∞∑
n=0

∞∑
k=0

(n− 2/3)k

n!k!

(
−
[
εLf
εs

]3
)n ∫ 1

εs/γ0

y4n+k+4/3 dy =

∞∑
n=0

1

n!

(
−
[
εLf
εs

]3
)n

y4n+7/3

4n+ 7/3
2F1

(
4n+

7

3
, n− 2

3
; 4n+

10

3
; y

)∣∣∣∣1
εs/γ0

.

(3.64)

The dominating contribution of the sum is of zeroth order, so that we obtain approxi-

mately
3

7
y7/3

2F1

(
7

3
,−2

3
;
10

3
; y

)∣∣∣∣1
εs/γ0

. (3.65)

The whole solution of the integral (3.61) reads

− 1

5

(
εs
γ0

)5

Γ

(
−2

3
,

(
εLf
)3
εs

γ4
0

1

1− εs

γ0

)
+

1

5

(
εs
εLf

)2
(

12

7
y7/3

2F1

(
7

3
,−2

3
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10

3
; y

)∣∣∣∣1
εs/γ0
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3

10

· y10/3
2F1

(
10

3
,
1

3
;
13

3
; y

)∣∣∣∣1
εs/γ0

)
= −1

5
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εs
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)5

Γ

(
−2

3
,

(
εLf
)3
εs

γ4
0

1

1− εs

γ0

)
+

(
εs
εLf

)2
(

1

14

· Γ
(

2

3

)
Γ

(
10

3

)
− 12

35

(
εs
γ0

)7/3

2F1

(
7

3
,−2

3
;
10

3
;
εs
γ0

)
− 3

50

(
εs
γ0

)10/3

2F1

(
10

3
,
1

3
;
13

3
;
εs
γ0
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.

(3.66)

45



3 Synchrotron self-Compton radiation process

The second integral of (3.57)

−
(
εLf
εs

)3 ∫ 1

εs/γ0

y8

1− y
Γ

(
−5

3
,

(
εLf
εs

)3
y4

1− y

)
dy =

−
(
εLf
εs

)3 ∞∑
n=0

∫ 1

εs/γ0

yn+8 Γ

(
−5

3
,

(
εLf
εs

)3
y4

1− y

)
dy,

(3.67)

yields the solution

(
εLf
εs

)3

Γ

(
−5

3
,

(
εLf
)3
εs

γ4
0

1

1− εs

γ0

) ∞∑
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(εs/γ0)
n+9
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(
εs
εLf
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;n+
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3
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+
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2F1

(
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10

3
,−2

3
;n+

13

3
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))∣∣∣∣∣
1

εs/γ0

.

(3.68)

Defining generalised dual hypergeometric functions

k
pDl

q

[
c1, ..., ck; d1, ..., dl

a1, ...ap; b1, ..., bq

∣∣∣∣x
]

:=
∞∑

n=0

(a1)n...(ap)n

(b1)n...(bq)n

xn

n!
kFl

(
c1, ..., ck; d1, ..., dl;x

)
, (3.69)

the solution (3.68) can be written in a more compact form

1

9

(
εLf
)3
ε6s

γ9
0

Γ

(
−5

3
,

(
εLf
)3
εs
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εLf

)2
(

4
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1

εs/γ0

.

(3.70)
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The whole first fluence contribution (3.57) then reads

F
(1)
L (εs) =

FL
0 γ

5
0

ε
2/3
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(
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ε2s
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)
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0
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(3.71)

We obtain for the second term of a1(εs, τ) for εLk,max ≤ εs < εLf a negligibly small fluence

contribution

F
(2)
L (εs) =

2FL
0 γ

5
0ε

5/4
s

77ε
2/3
0

(
εLf
)21/4

Γ

(
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)
� F

(1)
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and for εLf < εs ≤ γ0
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)
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+
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(3.73)

where the total fluence is finally FL(εs) = F
(1)
L (εs) + F

(2)
L (εs).

Nonlinear electron cooling

Using the nonlinear synchrotron self-Compton intensity (3.54) the nonlinear synchrotron

self-Compton fluence reads for εs ≥ εNL
k,max = 4γ2

0ε0ω
NL
1

FNL(εs) = FNL
0 εs

∫ ∞
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(1 + τ)7/6b1(εs, τ)g(τ)
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)]
dτ,

(3.74)

where FNL
0 = hRn0/(8πA0q0γ

2
0). Defining εNL

f = γ
5/7
0 /(4ε0)

2/7 and using the same

methods as for the linear case we obtain for εNL
k,max ≤ εs < εNL

f
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and

F
(2)
NL(εs) =
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as well as for εNL
f < εs ≤ γ0

F
(1)
NL(εs) =

FNL
0 γ6

0

ε
2/3
0

(
εNL
f

)7/3
ε
8/3
s

(
81

220
− 1

2

(
εs
γ0

)3

2F1

(
3,−2

3
; 4;

εs
γ0

)
− 1

12

(
εs
γ0

)4

· 2F1

(
4,

1

3
; 5;

εs
γ0

)
− 1

3

(
εNL
f

)7/3
ε
11/3
s

γ6
0

Γ

(
−2

3
,

(
εNL
f

)7/2
εs

γ
9/2
0

1

1− εs

γ0

)

+
4

21

(
εNL
f

)35/6
ε
14/3
s

γ
21/2
0

Γ

(
−5

3
,

(
εNL
f

)7/2
εs

γ
9/2
0

1

1− εs

γ0

)
2F1

(
1,

21

2
;
23

2
;
εs
γ0

)

− 2

7
y3 2

3D1
2

[
n+ 3,−5/3;n+ 4

1, 3, 21/2; 4, 23/2

∣∣∣∣y
]∣∣∣∣∣

1

εs/γ0

− 1

21
y4 2

3D1
2

[
n+ 4,−2/3, n+ 5

1, 4, 21/2; 5, 23/2

∣∣∣∣y
]∣∣∣∣∣

1

εs/γ0

)
(3.77)
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(3.78)

In Figures 3.6 and 3.7, we show the linear, (3.71) and (3.73), and the nonlinear flu-

ence distribution (3.77) and (3.78) (solid curves) in comparison to the δ-distribution
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approximated Thomson regime restricted fluence distributions (dashed curves)

F δ
L(εs) =

12

7
FL,δ

0

εf
ε2s

[
1−

(
εs
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]

(3.79)

and
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NL(εs) =

2

3
FNL,δ

0

ε
7/6
f

ε
8/3
s

[
1−

(
εs
γ0

)3
]
. (3.80)

Despite the different functional form of the full Klein-Nishina fluence distributions

and the approximated fluence distributions in the high-energy regime in both electron

synchrotron cooling cases the plots look nearly identical (except for negligible small

variations in the magnitude) due to the averaged cancellation of the significant addi-

tional contributions of the full Klein-Nishina fluence distribution among each other.

3.3 Discussion

Schlickeiser and Lerche (2007) developed a nonlinear model for the synchrotron radi-

ation cooling of ultra-relativistic particles in powerful non-thermal radiation sources

assuming a partition condition between the energy densities of the magnetic field and

the relativistic electrons. Here, we used this model in order to calculate the synchrotron

self-Compton process in flaring TeV blazars and compared it to the results obtained

with the standard linear synchrotron cooling model.

For simplicity, we chose the case of instantaneously injected monoenergetic rela-

tivistic electrons as an illustrative example, although other injection scenarios like the

instantaneous injection of power-law distributed electrons (Schlickeiser and Lerche,

2008) are also possible. After the nonlinear electron synchrotron radiation cooling

the created synchrotron photons with non-relativistic energies are multiple Thomson

scattered off the cooled electrons in the source (synchrotron self-Compton process).

We calculated the optically thin and thick synchrotron radiation intensities as well as

the synchrotron photon density distributions in the emission knot as functions of fre-

quency and time. These synchrotron photons serve as target photons in the synchrotron
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3.3 Discussion

Figure 3.6: Normalised linear fluence distributions for the full Klein-Nishina cross sec-
tion (solid curve) and for the δ-distribution approximated cross section
(dashed curve) for εLf < εs ≤ γ0 with γ0 = 107.

Figure 3.7: Normalised nonlinear fluence distributions for the full Klein-Nishina cross
section (solid curve) and for the δ-distribution approximated cross section
(dashed curve) for εNL

f < εs ≤ γ0 with γ0 = 107.
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3 Synchrotron self-Compton radiation process

self-Compton process. Using the Thomson approximation of the inverse Compton cross

section we determined the synchrotron self-Compton intensity and fluence for a non-

linear electron cooling. It is shown that the optically thick synchrotron radiation

component provides only a negligible contribution to the synchrotron self-Compton

quantities at all frequencies and times as in the linear cooling case.

In the following, we compared the linear to the nonlinear fluence distribution fitting

both to the observed TeV fluence spectrum of PKS 2155-304 on MJD 53944 and per-

formed a statistical quality-of-fit test (AIC test). For this particular data record we

found the linear model to be more appropriate than the nonlinear. To transform this

indication into a solid conclusion we have, thus, to perform tests on more statistical

ensembles.

Nonetheless, the excellent agreement of both, linear and nonlinear synchrotron self-

Compton fluence spectra with the observation of the gamma-ray flare of PKS 2155-304

support the injection scenario of monoenergetic electrons by the relativistic pick-up

process.

To generalise the δ-distribution approximation results we discussed the linear and

nonlinear synchrotron self-Compton scattering processes of flaring TeV blazar sources

utilising the full Klein-Nishina cross section for the computation of the inverse Comp-

ton scattering rate.

We obtained only fluence distributions with additional non-vanishing contributions

in the high-energy regime εL,NL
f < εs ≤ γ0 of the scattered photons, e.g. generalised

incomplete Γ-functions or the new generalised dual hypergeometric functions. Surpris-

ingly, for the special class of electron and synchrotron photon distributions used in this

work these contributions cancel each other out in average. Hence, it can be justified to

model the photon spectra by applying the δ-distribution approximation for the calcu-

lation of the differential inverse Compton scattering rate for electron and synchrotron

densities of the form (3.45), (3.46) as well as (2.7) and (3.12).
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4 Summary and Conclusions

In this thesis, we investigated analytically the double-peak profile of the emission

of powerful cosmic non-thermal radiation sources with dominant magnetic field self-

generation like TeV blazars. Therefore, we used the well established linear model and

for the first time the recently introduced nonlinear electron synchrotron cooling model

developed by Schlickeiser and Lerche (2007).

We assumed a flare to occur in the emission knot, propagating in the jet of an active

galactic nucleus, at the time t = t0 due to the uniform instantaneous injection of mono-

energetic ultra-relativistic electrons via the relativistic pick-up process. At later times

the electrons are subjected to a linear or nonlinear synchrotron radiation cooling. In

the first, linear scenario the magnetic field is constant, while in the second the magnetic

field is time-dependent and adjusts its strength to the energy density of the injected

electrons. These synchrotron photons produced in this way most probably cause the

low-energy peak in the blazar spectra. Afterwards, they are multiple Thomson scat-

tered off their generating electrons. This is the so-called synchrotron self-Compton

process, which we presumed to be responsible for the high-energy peak.

For our investigation of the low-energy peak, we succeeded in working out the differ-

ences between single and multiple instantaneous injections of monoenergetic relativistic

electrons by solving the linear and nonlinear kinetic equations for the intrinsic temporal

evolution of relativistic electrons and by calculating the associated radiation formulas.

This is of great interest, because it is very likely that electron injections into the plas-

moids occur repeatedly, so that this would explain substructures in high-resolution

measurements of the synchrotron peak. Substructures in a system with nonlinear elec-

tron cooling would be completely different to those of a system with linear electron

cooling, since the nonlinear model magnetic field depends on time and on the number

of injections (see for example Figures 2.6 and 2.7), whereas the linear model magnetic

field is constant.
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4 Summary and Conclusions

For our study of the high-energy peak we computed the optically thin and thick syn-

chrotron radiation intensities and photon density distributions of one instantaneous

injection of monoenergetic electrons in the emission knot as functions of frequency and

time analytically, followed by the synchrotron self-Compton intensity and fluence using

the δ-distribution approximation in the Thomson limit of the inverse Compton cross

section. For all times and frequencies the optically thin part of the synchrotron radia-

tion process is demonstrated to provide the dominating contribution to the synchrotron

self-Compton quantities, while the optically thick part is always negligible.

In the following, we compared the linear to the nonlinear synchrotron radiation cool-

ing models using one of the data records of the time-averaged spectra of PKS 2155-304

on MJD 53944 favouring a linear cooling of the injected monoenergetic electrons. The

surprisingly good agreement of both, the linear and nonlinear cooling models with the

data strongly supports the theory of the relativistic pick-up process of simple monoen-

ergetic electrons operating in this source.

Finally, to obtain most general results, we applied the full Klein-Nishina cross section

to the inverse Compton scattering rate. We found, for the first time, that functional

differences in comparison to the δ-distribution approximation occurred only in the

high-energy regime of the synchrotron self-Compton intensity and fluence distributions.

These unanticipatedly compensate each other in average, so that the less intricate δ-

distribution approximation appears to be appropriate for future calculations with the

special class of density distributions utilised in this work.

Prospective topics regarding the subject discussed here can be addressed. Numerical

simulations of the synchrotron intensity and fluence distributions for more than four

injections are required, as well as an analytical description of the intrinsic optically

thick synchrotron radiation formulas for multiple injections in the nonlinear electron

synchrotron cooling case for the claim of completeness. Moreover, to obtain definite

results in favour of the linear cooling model, further quality-of-fit tests on additional

data records have to be performed.

In conclusion, we notice that our investigation of emission processes in powerful

cosmic non-thermal radiation sources with dominant magnetic field self-generation in-

dicates that these arise most likely from the instantaneous injection of monoenergetic

electrons via the relativistic pick-up process (see Figure 3.1). Also, conceivable sub-

structures in the synchrotron emission peak can be explained by the scenario of multiple

monoenergetic injections.
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A Single electron differential

scattering rate

To solve the ε′-integration in the single electron differential scattering rate

d2N

dt dεs
' πr2

0c

2γ2εs

∫ ∞

0

n(ε)

ε2

∫ ∞

0

∫ 1

−1

δ(ε′s − ε′0)H
(
ε′ − ε

2γ

)
H(2γε− ε′)

· ε
′3
s

ε′

(
ε′

ε′s
+
ε′s
ε′
− sin2 χ′

)
d cosχ′ dε′ dε

(A.1)

we have to transform the Dirac distribution

δ(ε′s − ε′0) =
(
1− ε′s

(
1− cosχ′

))−2

· δ
(
ε′ − ε′s

1− ε′s
(
1− cosχ′

)). (A.2)

We then obtain

d2N

dt dεs
' πr2

0c

2γ2εs

∫ ∞

0

n(ε)

ε2

∫ 1

−1

ε′2s
1− ε′s

(
1− cosχ′

)([1− ε′s
(
1− cosχ′

)]−1

− ε′s
(
1− cosχ′

)
+ cos2 χ′

)
H

(
ε′s

1− ε′s
(
1− cosχ′

) − ε

2γ

)

·H
(

2γε− ε′s
1− ε′s

(
1− cosχ′

)) d cosχ′ dε.

(A.3)

The scattered photon energy in the electron rest frame with respect to the scattered

photon energy in the comoving frame ε′s = εs/(γ(1−β cosχ′)) yields, using the head-on

approximation, εs = γε′s(1 + β cosψ′
s). Substituting η = 1− β cosχ′ we obtain
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A Single electron differential scattering rate

d2N

dt dεs
' πr2

0cεs
2γ4

[
1− εs

γ

]−1 ∫ ∞

0

n(ε)

ε2

∫ 2

1/2γ2

1

η2

(
η2 + 2

(
1− η

)
+

ε2s
γ2
(
1− εs/γ

))

·H
(

2εs

ε
(
1− εs/γ

) − η

)
H

(
η − εs

2γ2ε
(
1− εs/γ

)) dη dε,
(A.4)

where β ≈ 1 leading to 1−β = 1/(γ2(1+β)) ≈ 1/(2γ2). With c1 ≡ 2+ε2s/(γ
2(1−εs/γ)),

c2 ≡ εs/(2γ
2ε(1− εs/γ)) and c3 ≡ 4γ2c2 the η-integration can be solved by

∫ 2

1/2γ2

(
1− 2

η
+
c1
η2

)
H
(
η − c2

)
H
(
η − c3

)
dη =

[
H
(
η − c2

)
H
(
c3 − η

)

·
(
η − 2 ln (η)− c1

η

)
−H

(
c3 − c2

)
H
(
η − c2

)(
c2 − 2 ln (c2)−

c1
c2

)

+H
(
c3 − c2

)
H
(
η − c3

)(
c3 − 2 ln (c3)−

c1
c3

)]∣∣∣∣2
1/2γ2

.

(A.5)

After inserting the boundaries of integration and simple algebra we obtain

H

(
ε− εs

4γ2
(
1− εs

γ

)︸ ︷︷ ︸
=: εΛ(ε, εs)

)
H(εs − ε)

·

[ high-energy contribution︷ ︸︸ ︷
1 + 2 ln

(
εs

4γ2ε
(
1− εs

γ

))− ε2s + εs/ε

2γ2
(
1− εs

γ

) + 2εεs +
4γ2ε

(
1− εs

γ

)
εs

]

−H(ε− εs)H
(
4γ2εs − ε

)

·

[ low-energy contribution︷ ︸︸ ︷
1

2γ2︸︷︷︸
→ 0

−4γ2 + 2 ln

(
4γ2εs

ε
(
1− εs

γ

)︸ ︷︷ ︸
→ 4γ2εs/ε

)
− 2ε2s

1− εs

γ︸ ︷︷ ︸
→ 2ε2s � 4γ2

− 2εs

ε
(
1− εs

γ

)︸ ︷︷ ︸
→ 2εs/ε

+
εεs
2γ2︸︷︷︸
→ 0

+
ε

εs

(
1− εs

γ

)
︸ ︷︷ ︸
→ ε/εs

]

56



≈ H
(
1− Λ(ε, εs)

)
H(εs − ε)

[(
1− Λ(ε, εs)

)( 1

Λ(ε, εs)
+ 2
[
1 + εsε

])
+ 2 ln

(
Λ(ε, εs)

)]

+H(ε− εs)H
(
4γ2εs − ε

)[
4γ2 + 2 ln

(
ε

4γ2εs

)
+

2εs
ε
− ε

εs︸ ︷︷ ︸
→ 4γ2

]
.

(A.6)

Thus, (A.4) reads

d2N

dt dεs
' πr2

0c

2γ4

∫ ∞

0

n(ε)

ε

(
4γ2H

(
1− Λ(ε, εs)

)
H(εs − ε)

·
[(

1− Λ(ε, εs)
)(

1 + 2Λ(ε, εs)
[
1 + εsε

])
+ 2Λ(ε, εs) ln

(
Λ(ε, εs)

)]

+H(ε− εs)H
(
4γ2εs − ε

)[
4γ2 εs

ε
− 1

])
dε.

(A.7)
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A Single electron differential scattering rate
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B Solution of the electron kinetic

equation with two injections for

linear cooling

Inserting the energy loss rate |γ̇| = D0γ
2 with the constant rate D0 into the kinetic

equation (2.2) yields

∂n(γ, t)

∂t
−D0

∂

∂γ

(
γ2n(γ, t)

)
= q0δ(γ − γ0)δ(t− t0) + q1δ(γ − γ1)δ(t− t1). (B.1)

With the time variable τ = D0t and the function R = γ2n the kinetic equation reads

∂R(γ, τ)

∂τ
− γ2∂R(γ, τ)

∂γ
= q0γ

2δ(γ − γ0)δ(τ − τ0) + q1γ
2δ(γ − γ1)δ(τ − τ1). (B.2)

Substitution of x = γ−1 finally yields

∂R(x, τ)

∂τ
+
∂R(x, τ)

∂x
= q0δ(x− x0)δ(τ − τ0) + q1δ(x− x1)δ(τ − τ1). (B.3)

This equation is immediately solved by Laplace transformations with respect to τ and

x. Multiplying (B.3) with e−sx and integrating over the positive x-space we obtain

using F (s, τ) =
∫∞

0
e−sxR(x, τ)dx∫ ∞

0

e−sx∂R(x, τ)

∂τ
dx︸ ︷︷ ︸

=
∂F (s,τ)

∂τ

+

∫ ∞

0

e−sx∂R(x, τ)

∂x
dx︸ ︷︷ ︸

=e−sxR(x,τ)

∣∣∞
0

+sF (s,τ)

= q0δ(τ − τ0)

∫ ∞

0

e−sxδ(x− x0)dx

+ q1δ(τ − τ1)

∫ ∞

0

e−sxδ(x− x1)dx.

(B.4)
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B Solution of the electron kinetic equation with two injections for linear cooling

Under consideration of the boundary condition R(0, τ) = 0 we find

∂F (s, τ)

∂τ
+ sF (s, τ) = q0δ(τ − τ0)e

−sx0 + q1δ(τ − τ1)e
−sx1 . (B.5)

The second Laplace transformation Q(s, w) =
∫∞

0
e−wτF (s, τ)dτ with the boundary

condition F (s, 0) = 0 results, after a simple equivalence transformation, in

Q(s, w) =
q0e

−sx0e−wτ0 + q1e
−sx1e−wτ1

s+ w
. (B.6)

Thus, the original function R(x, τ) is

R(x, τ) = q0H(x− x0)δ(x− x0 − τ + τ0) + q1H(x− x1)δ(x− x1 − τ + τ1). (B.7)

The linear electron density distribution can be computed to

n(γ, τ) = γ−2R(γ, τ) = q0H(γ0 − γ)δ
(
γ − γ

(0)
L

)
+ q1H(γ1 − γ)δ

(
γ − γ

(1)
L

)
(B.8)

with γ
(k)
L = γk/(1 + D0γk(t − tk)). The solution for the kinetic equation for m + 1

injections

∂n(γ, t)

∂t
−D0

∂

∂γ

(
γ2n(γ, t)

)
=

m∑
k=0

qkδ(γ − γk)δ(t− tk) (B.9)

can be easily found generalising the result (B.8)

n(γ, τ) =
m∑

k=0

qkH(γk − γ)δ
(
γ − γ

(k)
L

)
. (B.10)
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C Solution of the electron kinetic

equation with two injections for

nonlinear cooling

Under the partition condition eB = UB(t)/Ue(t) the evolution of the population of

relativistic electrons is described by the kinetic equation

∂n(γ, t)

∂t
− A0

(∫ ∞

0

γn(γ, t)dγ

)
∂

∂γ

(
γ2n(γ, t)

)
= q0δ(γ − γ0)δ(t− t0)

+ q1δ(γ − γ1)δ(t− t1).

(C.1)

The substitution of τ = A0t and S = γ2n results in the equation

∂S(γ, τ)

∂τ
− γ2

(∫ ∞

0

S(γ, τ)

γ
dγ

)
∂S(γ, τ)

∂γ
= q0γ

2δ(γ − γ0)δ(τ − τ0)

+ q1γ
2δ(γ − γ1)δ(τ − τ1).

(C.2)

Once again we use the variable x = γ−1. Hence, the kinetic equation readily yields

∂S(x, τ)

∂τ
+

(∫ ∞

0

S(x, τ)

x
dx

)
∂S(x, τ)

∂x
= q0δ(x− x0)δ(τ − τ0)

+ q1δ(x− x1)δ(τ − τ1).

(C.3)

Defining a function T (τ) through the integro-differential equation∫ ∞

0

S(γ, τ)

γ
dγ = U(τ) =

dT (τ)

dτ
(C.4)

we obtain the form
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C Solution of the electron kinetic equation with two injections for nonlinear cooling

∂S(x, T )

∂T
+
∂S(x, T )

∂x
= q0δ(x− x0)

δ(τ − τ0)

U(τ)
+ q1δ(x− x1)

δ(τ − τ1)

U(τ)
. (C.5)

Laplace transformations regarding x and T (see Appendix B), requiring the boundary

conditions S(x, 0) = 0 and
∫∞

0
e−wTS(0, T ) dT = 0, constitute the solution

S(x, T ) = q0δ
(
x− x0 − T (τ) + T (τ0)

)
H
(
T − T (τ0)

)
+ q1δ

(
x− x1 − T (τ) + T (τ1)

)
H
(
T − T (τ1)

)
.

(C.6)

Solving the nonlinear kinetic equation for m+ 1 injections

∂n(γ, t)

∂t
− A0

(∫ ∞

0

γn(γ, t)dγ

)
∂

∂γ

(
γ2n(γ, t)

)
=

m∑
k=0

qkδ(γ − γk)δ(t− tk) (C.7)

we find the solution

S(x, T ) =
m∑

k=0

qkH(T − T (τk))δ(x− xk − T (τ) + T (τk)). (C.8)

With xk ≥ 0 and the solution (C.6) the integro-differential equation (C.4) reads

dT

dτ
= q0

H
(
T − T (τ0)

)
T − T (τ0) + x0

+ q1
H
(
T − T (τ1)

)
T − T (τ1) + x1

. (C.9)

Since dT/dτ =
∫∞

0
γ n dγ ≥ 0 is an averaged energy density that vanishes only before

the first injection and after all injected particles have cooled down, T is required to be

strictly increasing in the time between. Hence, the image set T = {T (τ0) < T (τ1) ≤
T (τ)} can be reduced to the subset T = {T (τ0) < T (τ1) ≤ T (τ) | τ0 < τ1 ≤ τ} which is

analogous to the equivalencesH
(
T−T (τ0)

)
⇔ H(τ−τ0) andH

(
T−T (τ1)

)
⇔ H(τ−τ1),

so that within the interval τ0 < τ1 ≤ τ equation (C.9) yields

dT

dτ
=

q0
T − T (τ0) + x0

+
q1

T − T (τ1) + x1

. (C.10)

This differential equation can be converted into the simpler form
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C.1 The case ξ � 1

dT

dτ
=

qT + q0s1 + q1s0

T 2 + (s0 + s1)T + s0s1

, (C.11)

where q ≡ q0 + q1 and sk ≡ xk − T (τk). A transformation with the function ξ =

qT + q0s1 + q1s0 and the constants z0 ≡ (s0− s1)(q0− q1) and z1 ≡ q0q1(s0− s1)
2 leads

to the equation

dξ

dτ
=

q3ξ

ξ2 + z0ξ − z1

, (C.12)

which can be easily integrated yielding∫
ξ2 + z0ξ − z1

ξ
dξ =

ξ2

2
+ z0ξ − z1 ln (ξ) = q3τ + const. (C.13)

This transcendental equation has to fulfil the relations ξ ≥ 0 and dξ/dτ ≥ 0, resulting

in the inequality

ξ2 + z0ξ − z1 > 0 (C.14)

with the solutions ξ > q1(s0 − s1) for s0 − s1 > 0 and ξ > −q0(s0 − s1) for s0 − s1 < 0.

To obtain analytical solutions of equation (C.13), we analyse the two domains ξ � 1

and ξ � 1.

C.1 The case ξ � 1

For ξ � 1 equation (C.13) approximately reads

ξ2

2
+ z0ξ = q3τ + const., (C.15)

which can be easily solved using the quadratic formula. The constant can be deter-

mined by applying the boundary condition T (τ1) at the time of the second injection.

So one obtains for the initial function T
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C Solution of the electron kinetic equation with two injections for nonlinear cooling

T (τ) = q̂0
(
T (τ0)−x0

)
+q̂1

(
T (τ1)−x1

)
+

√
2q(τ − τ1) +

(
q̂0[T (τ1)− T (τ0) + x0] + q̂1x1

)2
,

(C.16)

where q̂k ≡ qk/q. To calculate T (τ0) and T (τ1) the intervals τ < τ0 < τ1 and τ0 ≤ τ < τ1

have to be examined first.

Throughout the whole time interval τ < τ0 < τ1 differential equation (C.9) leads to

the solution T (τ) = 0. To assure the continuity of T at the transition of the intervals

it is inevitable to demand that T (τ0) = 0. With this condition equation (C.9) reads

for τ0 ≤ τ < τ1

dT

dτ
=

q0
T + x0

(C.17)

leading to

x0T +
T 2

2
= q0τ + const., (C.18)

where const. = −q0τ0. This equation is solved by

T (τ) = −x0 +
√

2q0(τ − τ0) + x2
0. (C.19)

Again it is essential to require in order to guarantee the continuity of T the constant

T (τ1) to be

T (τ1) = −x0 +
√

2q0(τ1 − τ0) + x2
0. (C.20)

The second solution of (C.16) and (C.19) can be omitted because we demanded T (τ)

to be strictly increasing over the complete time interval.

In terms of τ the solution (C.6) reads for the different time domains

S(x, T | τ0 ≤ τ < τ1) = q0H(x− x0)δ

(
x−

√
2q0(τ − τ0) + x2

0

)
(C.21)

and
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C.1 The case ξ � 1

S(x, T | τ0 < τ1 ≤ τ) = q0H(x− x0)

· δ

(
x−

√
2q(τ − τ1) +

(
q̂1x1 + q̂0

√
2q0(τ1 − τ0) + x2

0

)2

+ q̂1

(
x1 −

√
2q0(τ1 − τ0) + x2

0

))
+ q1H(x− x1)

· δ

(
x−

√
2q(τ − τ1) +

(
q̂1x1 + q̂0

√
2q0(τ1 − τ0) + x2

0

)2

+ q̂0

(√
2q0(τ1 − τ0) + x2

0 − x1

))
.

(C.22)

With these the nonlinear solution for the electron density distribution n(γ, t) can be

calculated to

n(γ, t | t0 ≤ t < t1) = q0H(γ0 − γ)δ
(
γ − γNL

)
(C.23)

n(γ, t | t0 < t1 ≤ t) = q0H(γ0 − γ)δ
(
γ − γ

(0)
NL

)
+ q1H(γ1 − γ)δ

(
γ − γ

(1)
NL

)
, (C.24)

where

γNL =
γ0√

1 + 2q0A0γ2
0(t− t0)

(C.25)

is the characteristic nonlinear Lorentz factor for the single-injection scenario and

γ
(k)
NL = γ0γ1

(√
2qA0γ2

0γ
2
1(t− t1) +

(
q̂1γ0 + q̂0γ1

√
2q0A0γ2

0(t1 − t0) + 1
)2

+ (−1)kq̂|k−1|

(
γ1

√
2q0A0γ2

0(t1 − t0) + 1− γ0

))−1 (C.26)
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C Solution of the electron kinetic equation with two injections for nonlinear cooling

are the characteristic nonlinear Lorentz factors for the double-injection scenario with

k = 0, 1.

C.2 The case ξ � 1

Considering the boundary inequality (C.14) coupled to the special case ξ � 1 we ob-

tain the relation

q1(s0 − s1) < ξ � 1 for s0 > s1 ⇒ q1
(√

2q0(τ1 − τ0) + x2
0 − x1

)
� 1

and

−q0(s0 − s1) < ξ � 1 for s0 < s1 ⇒ q0
(
x1 −

√
2q0(τ1 − τ0) + x2

0

)
� 1.

These particular relations hold only for small injection strengths qk and for small in-

jection sequences τ1 − τ0 assuming nearly identical injection energies γk. Here, both

cases can be omitted because on the one hand the injection of relativistic particles

of the ambient interstellar and intergalactic mediums into the plasmoid is of intense

strength (order of magnitude ∼ 105) due to the plasmoids size in correlation with the

outer particle density and on the other hand the plasmoid collects relativistic parti-

cles sweeping through the interstellar and intergalactic mediums via a pick-up process,

which is assumed here to be a discrete collection process, so that it is essential that

the system consisting of the plasmoid and the interstellar and intergalactic mediums

needs some time after each injection to adjust and collect enough particles for another

injection.
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D Optically thin synchrotron radiation

intensities

The structure of the electron spectrum is given in both the linear and the nonlinear

cooling cases by n(γ, t) = q0H(γ0 − γ)δ(γ − γ(0)(t)) + q1H(γ1 − γ)δ(γ − γ(1)(t)). Thus

the synchrotron intensity (2.15) for the domain t0 < t1 ≤ t reads

I(ν, t) =
RP0ν

4π

[
q0γ

(0)−2
CS

(
ν

ν(0)

)
+ q1γ

(1)−2
CS

(
ν

ν(1)

)]
. (D.1)

The linear cooling case yields

IL(ν, t) ' 3RP0ν0

8π

(
q0

[
0.869

(
ν

(0)
L

ν

)1/3

+ exp

(
ν

ν
(0)
L

)]−1

+ q1

[
0.869

(
ν

(1)
L

ν

)1/3

+ exp

(
ν

ν
(1)
L

)]−1) (D.2)

with the characteristic frequencies

ν
(k)
L =

3

2
ν0γ

(k)
L

2
=

3ν0γ
2
k

2
(
1 +D0γk(t− tk)

)2 . (D.3)

In the nonlinear cooling case, however, the electron gyrofrequency is a function of time

due to the time-dependence of the magnetic field

ν0(t) =
eB(t)

2πmec
= c

√
2eBr0π−1

∫ ∞

0

γ nNL(γ, t) dγ = c

√
2eBr0π−1

(
q0γ

(0)
NL + q1γ

(1)
NL

)
.

(D.4)
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D Optically thin synchrotron radiation intensities

The constant r0 = 2.82 · 10−13cm denotes the classical electron radius. Using the non-

linear characteristic frequencies

ν
(k)
NL =

3

2
ν0(t)γ

(k)
NL

2
=

3

2
c

√
2eBr0π−1

(
q0γ

(0)
NL + q1γ

(1)
NL

)
γ

(k)
NL

2
(D.5)

the nonlinear optically thin synchrotron intensity can be obtained

INL(ν, t) ' 3RP0c

8π

√
2eBr0π−1

(
q0γ

(0)
NL + q1γ

(1)
NL

)

·

[
q0

(
0.869

(
ν

(0)
NL

ν

)1/3

+ exp

(
ν

ν
(0)
NL

))−1

+ q1

(
0.869

(
ν

(1)
NL

ν

)1/3

+ exp

(
ν

ν
(1)
NL

))−1]
.

(D.6)

The detailed calculations for the domain t0 ≤ t < t1 can be found in the appendices of

Schlickeiser and Lerche (2007).
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E Synchrotron optical depth and

photon spectra

E.1 Optical depth

The synchrotron emission of ultra-relativistic electrons is optically thin for frequencies

and times satisfying the condition D(ω, τ) ≤ 1 and optically thick for D(ω, τ) > 1.

The transition occurs at the frequency ωt(τ) defined by D(ω, τ) = 1. For τ − τ0 � 1

(and its analytical continuation) the optical depth (3.9) reduces to

D(ω, τ − τ0 ≤ 1) '
(
ω1

ω

)5/3

(1 + τ − τ0)
2/3 (E.1)

as long as τ − τ0 ≤ ω−4/5. In this range the transition frequency reads

ωt(τ − τ0 ≤ ω−4/5) ' ω1(1 + τ − τ0)
2/5. (E.2)

In the domain τ−τ0 � 1 (and its analytical continuation) the optical depth simplifies to

D(ω, τ−τ0 > 1) '
(
ω1

ω

)5/3

(τ−τ0)2/3

(
1+

3

2
ω(τ−τ0)5/4

)
exp

(
−ω(τ − τ0)

5/4
)
. (E.3)

Substituting z = ω(τ − τ0)
5/4 and expanding asymptotically for z > 1 as well as for

z ≤ 1 we find

D(z) = ω
5/3
1 ω−11/5z8/15

(
1 +

3

2
z

)
e−z ' ω

5/3
1 ω−11/5


z8/15 , z ≤ 1

3

2
z23/15e−z , z > 1

(E.4)
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E Synchrotron optical depth and photon spectra

with the proper transition frequency

ωt(τ) '


ω1(τ − τ0)

2/5 , τ − τ0 ≤ ω
−20/33
1

(τ − τ0)
−5/4 ln

(
3

2
ω

5/3
1 (τ − τ0)

11/4

)
, τ − τ0 > ω

−20/33
1 .

(E.5)

In Figure E.1, we present the time-dependence of the transition frequency. For small

times τ − τ0 ≤ 1 the transition frequency is constant at the value ω1. After this it

increases linearly to its maximum ω
25/33
1 at τ − τ0 = ω

−20/33
1 followed by a decrease

proportional to τ−5/4 at times τ − τ0 > ω
−20/33
1 .

Figure E.1: Normalised synchrotron transition frequency ωt as a function of the time
τ in the nonlinear cooling case plotted for ω1 = 10−15. The instantaneous
injection of monoenergetic ultra-relativistic electrons occurred at τ0 = 0.

E.2 Synchrotron spectra

According to (3.5) the synchrotron intensity in the optically thick frequency domain

ω ≤ ωt is given by
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E.2 Synchrotron spectra

I(ω ≤ ωt, τ) '
j(ω, τ)R

D(ω, τ)
= I0ω

−5/3
1

ω2

(1 + τ − τ0)1/2
(
1 + 3

2
ω(1 + τ − τ0)5/4

) , (E.6)

where I0 ≡ a0P0q0Rν0/(4π). In the optically thin frequency interval ω > ωt we obtain

I(ω > ωt, τ) ' j(ω, τ)R = I0ω
1/3(1 + τ − τ0)

1/6 exp
(
−ω(1 + τ − τ0)

5/4
)
. (E.7)

In Figure E.2, we show the intensity distribution as a function of the frequency ω at

various times τ = 0, 104, 109 and 1011. Consequently the transition intensity reads

Itrans(τ) = I(ωt, τ) = I0ω
−5/3
1

ω2
t

(1 + τ − τ0)1/2
[
1 + 3

2
ωt(1 + τ − τ0)5/4

] . (E.8)

Applying the transition frequencies (E.2) and (E.5) we obtain for the transition inten-

sity at normalised times τ − τ0 ≤ ω
−20/33
1

Itrans(τ − τ0 ≤ ω
−20/33
1 ) ' I0

ω
1/3
1 (1 + τ − τ0)

3/10

1 + 3
2
ω1(1 + τ − τ0)33/20

, (E.9)

whereas at times τ − τ0 > ω
−20/33
1 the result is

Itrans(τ − τ0 > ω
−20/33
1 ) ' 2I0

3ω
5/3
1

ln
(

3
2
ω

5/3
1 (τ − τ0)

11/4
)

(τ − τ0)3
. (E.10)

At small times τ − τ0 ≤ 1 the transition intensity turns out to be

Itrans(τ − τ0 ≤ 1) ' I0ω
1/3
1 . (E.11)

The time-dependence of the transition intensity is presented in Figure E.3.
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E Synchrotron optical depth and photon spectra

Figure E.2: Synchrotron intensity distribution as a function of the frequency ω at dif-
ferent times τ = 0 (solid curve), τ = 104 (dash-dotted curve), τ = 109

(dotted curve) and τ = 1011 (dashed curve). The injection occurred at
τ0 = 0 with the parameter ω1 = 10−15.

Figure E.3: Synchrotron transition intensity Itrans/I0 as a function of the time τ plotted
for ω1 = 10−15 at the injection time τ0 = 0.
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Löcher

Betreuer: Prof. Dr. Ian Lerche, Prof. Dr. Reinhard Schlickeiser

Promotion, Theoretische Physik, seit April 2007

Ruhr-Universität Bochum

Thema: Nonlinear electron synchrotron cooling and synchrotron

self-Compton flaring of TeV blazars

Betreuer: Prof. Dr. Reinhard Schlickeiser


