The LUCIFER Control Software:
Operational and Observational Characteristics
and NIR Spectroscopy of Galaxy Centers

Dissertation

zur
Erlangung des Grades
,,Doktor der Naturwissenschaften”
der Fakultat fir Physik und Astronomie
an der Ruhr-Universitat Bochum

vorgelegt von
Dipl. Phys. Volker Knierim
aus
Mettingen

Bochum 2009



1. Gutachter: Prof. Dr. Ralf-Jirgen Dettmar
2. Gutachter: Prof. Dr. Susanne Hiittemeister

Datum der Disputation: 16.07.2009

This document has been created with IATEX 2¢



To my wife



Throughout this thesis the following typesetting conventions are used:

typewriter text indicates a software component, e.g., GratingUnit refers to the software service.

slanted text is used to identify physical components, .e.g., the Grating Unit of the LUCIFER
instrument. Additionally, this style is also used to emphasize the corresponding text.
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Chapter

Introduction

The night sky above the earth has fascinated humans at least since the beginning of civiliza-
tion some 4000 years ago. For example, the Nebra Sky Disk is an impressive evidence of early
astronomical interest (Meller 2002; Schlosser 2002). However, for more than three millennia ob-
servations were limited by the only available detector, the human eye. This changed when Galileo
Galilei started to use a telescope to observe the universe 400 years ago. While the detections
were still dependent on the eye, the light collecting area was not limited by the pupil of the eye
anymore. It was now possible to see fainter objects that were previously unknown, and familiar
objects, e.g., the moon and the five known planets, could be studied in greater detail because of
the magnification telescopes provide. The new discoveries by Kepler led to a revolution of the
view of the world, putting the earth, and thus also mankind, out of the center of the universe.
Shortly afterwards, in 1687 Isaac Newtons “Philosophiae Naturalis Principia Mathematica” put
physics on a new mathematical foundation.

The photographic plate replaced the eye as the primary detector in astronomy in the nineteenth
century. It was now possible to image fainter astronomical objects with longer integration times
and high spatial resolution. With the rapid evolution of electronics during the last century, other
detectors like photomultipliers were developed. These had the benefit of higher dynamical range
and sensitivity compared with photographic plates but lacked the spatial resolution of them. Only
with the invention of Charge Coupled Devices (CCDs), which combine high sensitivity, greater
dynamical range (10° compared to 103 for photographic plates, Kitchin 2008) and high spatial
resolution, the “ideal” detector for optical astronomy was found. In the near infrared (NIR),
similar progress has been made for detectors in the last decades.

While the detectors grew more and more sophisticated over time, so did the instruments
that were built and attached to the telescopes. Today they provide different operation modes to
allow imaging and/or spectroscopy, using focal reducers and different cameras to alter the optical
setup of the telescope they are attached to. This allows to study different scientific questions in
different wavelength regimes with the same telescope, maximizing its output. At the same time
the complexity of, and technical challenges faced by the instruments have grown significantly. For
example, for optical instruments only the detector, i.e., the Charge Coupled Device (CCD), needs
to be cooled, in the NIR the whole instrument must ideally be cooled to suppress the thermal
emission of the instrument itself.

A new instrument for the Large Binocular Telescope (LBT) is the LBT NIR spectroscopic Util-
ity with Camera and Integral-Field Unit for Extragalactic Research (LUCIFER). Itis fully cryogenic,



1. INTRODUCTION 1.1. The Large Binocular Telescope

Figure 1.1: The LBT on Mt. Graham shortly after sunset. The photo was taken during the
commissioning run in September 2008.

working at temperatures of Ta~70K and provides multiple operation modes for imaging, long slit
spectroscopy (LSS) and multi object spectroscopy (MOS). Two identical instruments, LUCIFER 1
and LUCIFER 2 will finally be installed at the LBT. In the following, the term LUCIFER is used to
describe properties that are common to both instruments. The individual instruments are explicitly
referred to when necessary.

This chapter gives a brief overview, introducing the two main components, namely the LBT and
the LUCIFER instrument. Following this description, some general particularities about observing
in the NIR wavelength regime are provided. The chapter closes with an outline of the aims of this
thesis.

1.1 The Large Binocular Telescope

The LBT is part of the Mt. Graham International Observatory near Safford, Arizona. It is located
at Emerald Peak on Mt. Graham at an elevation of 3220 m. The LBT is the first telescope built
with two 8.4 m mirrors on one common mount, providing the same light collecting area as one
single mirror with 11.8 m diameter. The distance between the centers of the two mirrors is 14.4 m
which results in the resolving power of an 22.6 m mirror when used in interferometric mode. It is
currently the largest telescope in the world working at optical and NIR wavelengths (Hill & Salinari
2004). The main mirrors have a focal length of 9.6 m, which gives a focal ratio of f/1.14 for the
primary mirrors and thus allows a compact telescope design. Different focal stations are used for
each mirror. These are the prime focus, a direct Gregorian focus, three Bent Gregorian foci, plus
one additional Nasmyth focus. The prime focus instruments as well as the secondary and tertiary
mirrors are mounted on swing arms that can be moved in and out. Changing between the different
foci is therefore quickly possible. Two of the Bent Gregorian foci will be used for interferometric
instruments which, obviously, need both mirrors at the same time. The other focal stations are
equipped with similar or twin instruments that can be used independently for each mirror. An
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LARGE
BINOCULAR
TELESCOPE

LBC Red \ |
. Spectrograph
Thermal IR Nuller /
Beam Combiner .
i

LBC Blue
LINC/NIRVANA LUCIFER 1
Near IR/Visible LUCIFER 2
Beam Combiner LA

PEPSI 2

PEPSI 1

MODS 1

Figure 1.2: The location of the various instruments at the telescope. The image was taken from
the Max-Planck-Institut fur Astronomie, Heidelberg, Press Release 04-09-21, an online version is
available at www.aip.de/pepsi. See also table 1.1.

Table 1.1: Instruments for the LBT and their focal stations.

Focal station Left Mirror Right Mirror
Prime LBC?Red LBC Blue
Additional Nasmyth PEPSI® 1 PEPSI 2

Direct Gregorian MODS€ 1/PEPSI'1  MODS 2/PEPSI 2
Bent Gregorian front LUCIFERY 1 LUCIFER 2

Bent Gregorian center LBTI¢

Bent Gregorian back LINC/NIRVANAf

“Large Binocular Camera

bPotsdam Echelle Polarimetric and Spectroscopic Instrument

“Multi Object Double Spectrograph

ILBT NIR spectroscopic Utility with Camera and Integral-Field Unit for Extragalactic Research
°LBT Intefrerometer

LBT INteferometric Camera / Near-IR Visible Adaptive iNterferometer for Astronomy

exception is the PEPSI instrument. This instrument uses two foci (the Direct Gregorian and the
additional Nasmyth) per mirror. The additional Nasmyth focus is mounted permanently, while
the Direct Gregorian focus is shared with the MODS instrument, which has to be removed first
when PEPSI should be used at this focal station. Tab. 1.1 and Fig. 1.2 give an overview of all
instruments of the LBT.

When the telescope is fully operational, both secondary mirrors of the LBT will be adaptive
and are designed to give a focal ratio of f/15 for the Gregorian foci instruments. The mirror shells

13



1. INTRODUCTION 1.2. The LUCIFER instrument

Figure 1.3: LUCIFER mounted at the LBT. To the left, the 8.4 m primary mirror of the telescope
as well as the swing arm holding the tertiary mirror are visible. The yellow structure beneath the
instrument is the bridge that is used when the mask cabinet exchange is made. The photo was
taken during the commissioning run in February 2009.

with a diameter of 911 mm and a thickness of only 1.6 mm are mounted on 672 actuators, sitting
on a hexapod structure (Martin et al. 2006). Due to delays in the construction of the thin mirror
shells, a rigid secondary mirror has been constructed and is used for the commissioning of the first
LUCIFER instrument. The commissioning of the adaptive secondary mirror will follow afterwards.

1.2 The LUCIFER instrument

The LUCIFER instrument is a collaboration between five different German institutions:
e Landessternwarte Heidelberg (LSW)
e Max-Planck-Institut fiir Astronomie, Heidelberg (MPIA)
e Max-Planck-Institut fiir Extraterrestrische Physik, Garching (MPE)
e Astronomisches Institut Ruhr-Universitait-Bochum (AIRUB)
e Fachhochschule fiir Gestaltung Mannheim

The wavelength covered by the instrument ranges from 0.9 um to 2.5 um and thus includes the
z, J, H and K NIR bands. As can be seen in Tab. 1.1, two LUCIFER instruments will be built and
installed at the LBT. An integral field unit will not be installed in any of the instruments, however.
Mandel et al. (2006) outlines the main optical characteristics of the LUCIFER instrument. These
are summarized in Table 1.2.

14



1.2. The LUCIFER instrument 1. INTRODUCTION

Table 1.2: Optical Characteristics of the LUCIFER instrument.

Observing mode Field of View Resolution?
Seeing limited imaging 4 x 4 N.A.
Seeing limited LSS 4 x & 10000
Seeing limited MOS 4 x & 10000

Diffraction limited imaging 30" x 30” N.A.
Diffraction limited LSS 30" x 30" 37100

maximum possible resolution for this mode

There are five different observation modes foreseen for the instrument. Two of these modes
are practically identical, namely the seeing limited long slit spectroscopy mode and the seeing
limited multi object spectroscopy mode. Both use masks that are inserted into the focal plane
of the instrument. The difference between the two modes lies in the availability of the masks
for users. For LSS the masks are stored permanently in the instrument and available for all
astronomers. The MOS masks are individually cut for each approved science project and inserted
into the instrument prior to the planned observation. The main benefit of LUCIFER is, that this
mask exchange can be carried out while the instrument is cold and thus no time is lost for warming
up of the instrument and cooling it down again. To achieve this, the masks are inserted into a
cabinet which is placed in one of the auxiliary cryostats. Two cryostats are then evacuated and
cooled down the day before the mask exchange should take place. The empty cryostat is attached
to an airlock located at the back of the instrument. The old cabinet that is currently inside of
the instrument is moved through the airlock into the empty cryostat. Once this procedure is
finished the first cryostat is removed and the second one — with new masks — is attached to the
instrument. The cabinet with the new masks is moved through the airlock into the instrument.
This mask exchange procedure can be carried out during daytime and therefore no time is lost for
observations at night.

As can bee seen from Fig. 1.4 and Fig. 1.5, which show the optical path of the beam inside
the LUCIFER instrument from two different viewing angles, the optical design of the instrument
is very compact. The figures mentioned above as well as the following brief description are taken
from Seifert (2002). Light enters the instrument through the entrance window, which is tilted
by 15° and coated to reflect the visible light to the adaptive optics (AO) wavefront sensor. The
focal plane is located 11.66 cm behind this entrance window and is the place where the MOS
masks are inserted by the mask handling robot. After passing the focal plane the light enters
the bent collimator of the instrument. The collimator consist of three lenses and four mirrors,
two of which are movable. The first mirror (M1) is called the Alignment Mirror and intended to
stay practically fixed during the operation of the instrument. It is only moved for initial optical
alignment of the instrument. The second movable mirror (M4) is called Compensation Mirror
and used to compensate movements of the image on the science detector caused by instrument
flexure due to changing gravity vectors during observations. More information about the movable
mirrors will be given in section 2.3.3.

The light propagates to the Grating Unit and is either reflected by a mirror (imaging mode
of the instrument) or dispersed by one of the gratings in the spectroscopic mode. It subsequently
passes through one of the three cameras called N1.8, N3.75, and N30, with focal lengths of

15
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Figure 1.4: Optical path of the LUCIFER instrument tilted to show most optical components

(Seifert 2002).
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Figure 1.5: Optical path of the LUCIFER instrument (view from back) (Seifert 2002).
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1.3. NIR Astronomy 1. INTRODUCTION

Table 1.3: List of the filters currently installed inside LUCIFER 1.
Position  Filter Wheel 1 Filter Wheel 2

1 Brackett-y clear
2 OH-hole 10607 blind
3 clear unused
4 blind unused
5 Y1 1000 J

6 Y2 1070 unused
7 Paschen-v unused
8 Paschen-( Ks
9 J-low 1200 unused
10 J-high 1297 z
11 PV-lens? unused
12 OH-hole 1190 H
13 Fell 1644 unused
14 H, (1-0)S1 K

15 Hel 1086 order separation

“numbers indicate the central wavelength of the filter in nanometers
bpupil viewer

180 mm, 375 mm, and 3000 mm, respectively. The N1.8 and N3.75 cameras are used in seeing
limited mode of the instrument and provide the full field of view (FOV) of 4’ x 4’ of LUCIFER.
The N30 camera is used in diffraction limited mode only and provides a FOV of 30” x 30”. The
light passed through both filter wheels, each of which can be equipped with up to 15 filters, before
it finally reaches the science detector, which is sitting behind a field lens on a movable tray. Table
1.3 gives an overview of the filters that are currently installed inside LUCIFER 1.

1.3 NIR Astronomy

As mentioned at the beginning of this chapter, the origins of astronomy lie in the optical regime of
the electromagnetic spectrum because these photons can be detected by the naked eye. From the
beginning of modern astronomy in the 17t" century, over nearly three centuries every telescope
built was suited for optical wavelengths. Only with the development of modern electronics for
radio receivers and the progress made in rocket science during the first half of the last century,
astronomers were able to explore the universe at other wavelengths. While observations with
radio telescopes can be carried out from the ground, the ability to launch satellites allowed the
exploration of electromagnetic radiation that was inaccessible before because of the atmosphere
of the earth. The transmission of electromagnetic waves in the atmosphere is shown in Fig. 1.6.

For NIR observations optical telescopes can be used. However, unlike its optical counterpart,
NIR astronomy is a relatively young area mainly because suitable detectors are only available
for the last couple of decades. Another problem is that although several windows exist between
0.8 um and 2.5 um where the atmosphere is transparent (see Fig. 1.6), even in these windows the
atmosphere is emitting substantially because of its own average temperature of T~ 250K and

17
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Figure 1.6: A sketch the spectral energy distribution of a spiral galaxy and some prominent
emission lines (upper diagram). The transmission of the earths atmosphere (lower diagram).

line radiation of OH molecules. The glow from the sky is much brighter than most astronomical
sources, implying that it must be removed from the observations before it is possible to analyze
the data. Only modern detectors and data reduction software tools allow the efficient treatment
of this data. The necessity to subtract the night sky brightness leads to significant overheads in
the observations which can be larger than 50% of the total observation time. NIR spectroscopy
is even more challenging than imaging, because the atmosphere has significant absorption lines
even in the transparent windows of the spectrum. These absorption lines need to be carefully
corrected, which requires additional calibration spectra and increases the overhead even more.

In spite of these inefficiencies and difficulties that are inherent in NIR astronomy the observa-
tions have a number of benefits over their optical counterparts. First, NIR emission from stars and
other sources is much less absorbed by the interstellar medium than optical light. This allows to
study objects, e.g., the galactic center, that would otherwise be heavily obscured. Secondly, the
expansion of the universe and the subsequent redshift moves the well known optical spectra from
distant galaxies into the near infrared when it reaches the earth. Thus, modern cosmology relies
heavily on near infrared observations. Subsequently all modern observatories in the world have
been or are being equipped with infrared instruments. One point that emphasizes the importance
of infrared observations for the future of astronomy most is the fact that the James Webb Space
Telescope (JWST), which will replace the Hubble Space Telescope (HST) in the near future, will
operate only at wavelengths A > 0.6um (Gardner et al. 2006).

1.4 Aims and outline of the thesis

Understanding the driving mechanisms leading to the evolution of galaxies is of utmost importance
for our understanding of the universe as a whole. In this context, the secular evolution of galaxies
is one of the main research areas in astronomy nowadays. This thesis approaches this topic by
studying the dominant stellar populations in the centers of galaxies of different Hubble type.
This is done by using NIR K-band spectroscopy to measure absorption line indices of the CO

18



1.4. Aims and outline of the thesis 1. INTRODUCTION

molecule. LUCIFER is an ideally suited instrument for this kind of research, providing unique new
opportunities with its MOS mode. To prepare the planned LUCIFER observations spectra were
obtained with a similar instrument from the European Southern Observatory (ESO), namely the
Infrared Spectrometer and Array Camera (ISAAC) at the Paranal Observatory in Chile. These
observations with ISAAC were successfully proposed during this thesis. During the commissioning
of LUCIFER, additional spectra were obtained.

The focus of the software development for LUCIFER is to maximize the usability of the
instrument for astronomers. Understanding the techniques of near infrared observations, and their
application for the ISAAC observations, greatly helped to improve the software in this respect.
It allowed for designing suitable software components to be able to provide convenient tools and
user interfaces necessary for the operation of the instrument.

Details of the software package to control the LUCIFER instrument are presented in chap-
ter 2. The software includes code that directly controls hardware components as well as more
sophisticated services reflecting complex instrument components. Additionally, the observational
and operational challenges of using a near infrared instrument are addressed by providing suitable
tools to satisfy the needs of engineers as well as the needs of astronomers using the instrument
during the night.

In chapter 3 the results of the ISAAC observations are discussed in the context of secular
evolution. The data is analyzed using a new definition for the CO absorption strength (Dco)
that is proposed by Marmol-Queralté et al. (2008). Because of the locations and width of the
used absorption and continuum bands, this index is better suited to study galaxies than previous
definitions. The observed galaxies are compared with each other and with other studies of stellar
populations that used similar techniques.

Finally, the thesis is summarized and the future work in the project is outlined in chapter 4.
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Chapter

The software

This chapter focuses on the main part of this thesis, the control software for the LUCIFER instru-
ment. The full software package is presented first in an overview, which briefly summarizes the
layout of the software by describing the functions of different layers representing increasing levels
of abstraction. The description of the packages of the Control Layer follows, focusing in particular
on the use of the Journalizer service, environment measurement, and the software control of
the grating tilt and position switch readout electronics. After this, the general concepts of the
Instrument Layer are described and explained using the specific examples of the Grating Unit
and Compensation Mirror services. The last part of the description of the software package
deals with the highest level of the software, namely the Operation Layer. Here, details about the
user interaction principles that are applied for the software interaction are laid out. The man-
agement services of the software are introduced and different observation tools available for the
astronomers are presented. At the end of the chapter a summary of the completed work and an
outlook over the next necessary extensions of the software package for the future are presented.

2.1 Overview of the LUCIFER control software package

Most parts of the LUCIFER control software package (lcsp) are written in the JAVA programming
language. Some external programs necessary for the operation of the instrument are written
in other languages, namely C and C++. This includes the GEneric InfraRed Software (GEIRS)
to control the detector read out. The telescope control commands that the instrument has to
send to the LBT use the Instrument Interface (IIF). These software packages are written at the
MPIA and in Tucson, respectively. To allow for a seamless integration into the control software,
JAVA classes have been implemented to send the necessary commands to these external packages.

The software runs on a Sun Fire V880 server system under the SOLARIS operating system,
because of hardware requirements for the detector readout electronics. However, the software is
implemented as a distributed system, so it could be run on different computers using different
operating systems (the latter as a benefit of the JAVA language) at the same time. This is briefly
introduced in the next paragraph.
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Client service communication | Service
I

Figure 2.1: The communication for RMI services. First the Service registers itself with the
Registry. If a Client needs to communicate with the service for the first time, it looks up the
information using the Registry. The Registry answers with the connection details and starts
(or "activates”) the Service if it is not running. The communication between the client and the
service is then performed directly.

2.1.1 General remarks

The LUCIFER control software is written as a distributed system in JAVA relying heavily on its
remote method invocation (RMI) framework. This means that one or more services of the system
can run on different computers that are connected with each other via a network. Since most
of the software project is written completely in JAVA, using its native RMI functions is a natural
choice. However, to realize the communication between the services, some common middleware
like the Common Object Request Broker Architecture (CORBA) or the Internet Communications
Engine (ICE) could also be used. In fact the communication with with the Telescope Control
Software (TCS) is realized using ICE.

According to Grosso (2002, page 66) “RMI is designed to make communication between two
Java programs, running in separate JVMs', as much like making a method call inside a single
process as possible”. From the programmers point of view this simply means that local objects
and remote objects look the same. Using RMI interfaces to realize the distributed system saves
a lot of programming time, because the necessary client side objects (commonly referred to as
stubs) which handle the communication with the remote service via the network, are automatically
generated by the compiler.

To manage the distributed system a lookup service is needed, to which all remote services
register themselves (see Fig. 2.1). The clients use these lookup service to find out where the remote
service can be contacted. Once the lookup has taken place the client communicates directly with
the remote service. For RMI two lookup services, or registries, are provided: rmiregistry and
rmid. The latter service allows to use Activatable Remote Services. This means that if a remote
service, which is bound to the registry but currently not running, will be started when it is needed.
This creates a very stable software system, because services are still available, even if they were
suspended or have crashed for some reason. In this case a new instance is created automatically.
Further discussion of RMI and its features would be far beyond the scope of this short introduction.
For more details about this topic refer to, e.g., Grosso (2002).

2.1.2 Layered structure of the software

The software system is organized in a layered structure. Each layer reflects a different abstraction
level of interaction with the instrument and/or solves different administration tasks for the system.

! Java Virtual Machines, i.e., processes
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The structure of the software system is shown in Fig. 2.2. Using this approach, the complexity of
the software in each layer remains manageable by shifting unnecessary difficulties to higher layer
services or encapsulating them in lower layer ones. An example for the former benefit would be
that, e.g., observation techniques need not to be known when writing code that controls a single
instrument unit like the Grating Unit. An example for the latter benefit would be that, e.g. the
same software controlling the Grating Unit does not need to deal with the details of sending
the correct commands to the motor electronics to move the unit from one position to the next.
Instead, the GratingUnit software service can focus on the main responsibilities of the unit, like
the mapping of different tilt voltages to central wavelengths on the detector. See section 2.3.2
for more details about the GratingUnit software service.

The following subsections briefly describe the components of each layer of the lcsp as well as
the main tasks that are solved by the corresponding layer. More details of the higher layers are
given in Sects. 2.2 to 2.4.

System Layer

The lowest layer of the software package is the System Layer. It provides basic services necessary
for the whole system. This includes a ConfigService, which provides functions to load and store
configuration data dynamically for the distributed system. Additionally the TimeService provides
time synchronization capabilities and the MessageService is used to store messages generated by
the various services in a database and distribute them to any client which connects to the service.
The System Layer of the software package was already implemented by K. Polsterer when the
work for this thesis began. For details about this layer see Polsterer (in prep.).

Control Layer

The main task of the Control Layer is to provide a connection between the software and any hard-
ware associated with the LUCIFER instrument. This includes components to control units of the
instrument, i.e., motors and switches, as well as components for environment control, e.g., tem-
perature and pressure measurements.

The MCU? service for example handles all communication with the motor control electronics.
The HIRAMO? service controls the grating tilt voltage and is used to query the status of various
switches inside the instrument using the hardware card which carries the same name as the service.
The switches of the MOS Unit are controlled by the SwitchBox service, however. This is due to
the fact that the MOS Unit hardware has been fully developed by the MPE, while the HIRAMO
hardware has been developed at the MPIA.

Environment data is controlled by different services as well. Three separate temperature
measurements are provided by the software. The TemperatureMonitor service measures and
logs eight temperatures inside the instrument structure, while the TemperatureControl ser-
vice controls two temperatures associated with the NIR science detector board. Finally, the
RackCoolingControl service logs and controls the temperatures of the electronics rack outside
the instrument. These electronics include the read-out electronics as well as the motor electronics
mentioned above. The environment data control is completed with the measurement and logging
of two instrument pressures. The CalibrationUnit service allows control of up to 8 lamps for

2Motion Control Unit
3HIgh Resolution Analog Measurement Output board
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wavelength and detector sensitivity (i.e., flatfields) calibrations that are necessary for spectroscopic
observations carried out with LUCIFER.

The logging of all instrument data (excluding messages, since these are stored by the
MessageService directly) is done by the Journalizer service. Each service creates so—called
JournalizerObjects when it needs to store new data and contacts the Journalizer which then
takes care of the storage of this information in the database. The Journalizer can also be used
to query the current instrument setup, since it keeps a collection of all instrument status objects it
receives. Furthermore, the status of the instrument can be reconstructed from the database if this
should be necessary. The Journalizer service plays an important role in the Operation Layer
of the software because the functionality to get the instrument configuration without the need to
interact with the hardware directly is used for user interaction. Details about this interaction with
the instrument are given in Section 2.4.

The access to the two external software packages necessary for the operation of the instrument
is located in the Control Layer, too. The first one, the RMIGEIRSService communicates with
the GEIRS server using a socket connection. The service therefore acts like a client for the read
out software and forwards all requests of the lcsp to this server. The second service, namely the
Telescope service uses an ICE interface to communicate with the TCS which runs under the
CentOS operating system on different machines.

Instrument Layer

The third layer of the software represents a software representation of the LUCIFER instrument
itself. All components of the instrument that need to be controlled or somehow modified by the
software are implemented as separate RMI services. This implies that the services in this layer
rely heavily on the services in the Control Layer, since they know nothing (and should not need
to know in the first place) about motor parameters or switch positions or other hardware related
details. As a consequence, none of these services will run correctly, if needed services in the lower
layer are not available. The Instrument Layer services are presented in detail in Section 2.3.

To model instrument setup changes in the Instrument Layer, the abstract concept of States,
Transitions and Sequences has been used. It allows to view the different units as finite state
machines with well defined conditions. This makes the operation of these units more robust and
possible errors conditions can be detected easily. As an additional benefit complicated movements
of a unit can be separated into smaller entities, which are easier to implement and debug from a
programming side of view.

The services found in this layer focus on solving the operational difficulties of each repre-
sented instrument unit. For the GratingUnit service for example, different positions have to
be selected, depending on the chosen observation mode. If one of the grating positions is se-
lected, different tilt angles have to be applied to place a given central wavelength on the center
of the detector. The conversion of the central wavelength to a corresponding tilt voltage is for
instance one central requirement of the software at this level of interaction. Another example
is the CompensationMirror service used to compensate image motions on the detector due to
instrument flexure caused by changing rotation and elevation angles of the instrument and tele-
scope, respectively. This service needs to calculate mirror movements depending on the current
configuration of the instrument, i.e., the selected camera, rotator angle of the instrument, and
the configuration of the telescope, i.e., the current elevation angle.

Although different services of the Instrument Layer require information from other services
to function properly, direct interaction among the services is not desirable. This "horizontal”
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interaction would induce a dependency between the involved services. As a result, the failure of
one service may cause another service to fail as well. In the absence of horizontal interaction the
other would not be affected, resulting in increased failure tolerance of the software. Furthermore
synchronization problems are present for some services which put constraints on their operation.
The CompensationMirror service provides a good example: when should the mirror be adjusted
to compensate for flexure? This might depend on the observation that is currently running. Taking
the just mentioned issues into account, it is clear that the software design cannot stop at this
point, but instead one higher layer is needed to coordinate all Instrument Layer services. The
Operation Layer of the software package provides these services.

Operation Layer

The Operation Layer is the highest layer of the LUCIFER control software package. It pro-
vides three fundamental services for the operation of the whole instrument, which are called the
InstrumentManager, ReadoutManager, and TelescopeManager. As the name suggests, the
InstrumentManager controls all services located in the Instrument Layer of the software pack-
age, providing the necessary information to each service when they need it and updating them
in a synchronized way. New instrument setups are only committed to the relevant services when
it is allowed to do so. i.e., when no exposures are carried out. This avoids the loss of precious
observing time due to accidental setup changes and ensures secure operation of LUCIFER, which
is especially important when it is used by observers that are inexperienced or unfamiliar with the
instrument.

The InstrumentManager is supported by the ReadoutManager and the TelescopeManager,
controlling the RMIGEIRSService and the Telescope service of the Control Layer, respectively.
The use of additional management services in the Operation Layer which control just one service
of a lower layer is necessary to allow coordinated setup changes of the telescope and the detector
readout, thus allowing fully automated observations with the instrument.

Using the automatic observation capability of the software will be the main operation mode
for the instrument since it provides the highest efficiency for observations in the NIR wavelength
regime (see Section 3.2). However, the instrument can also be controlled manually using the same
software services if this is desired.

All graphical user interfaces (GUIs) written for the software package also belong to the Oper-
ation Layer. These include the Observation Preparation Tool (OPT), written by Schimmelmann
(2007). The other GUIs to mention here are the interfaces that control the three different manager
services, as well as the additional engineer interfaces. Hidden in these interfaces is the mechanism
how different users, i.e., engineers and observers, access the software. These principles together
with a description of the important services of the Operation Layer are worked out in Section 2.4.

2.2 Control Layer

The Control Layer of the software package is the only interaction point between the software for
the LUCIFER instrument and the hardware that controls and/or monitors it. Therefore all services
in higher layers rely on the services of this layer, while these services themselves rely on the services
provided by the System Layer. This includes configuration management and message storage and
delivery for example. The services of the Control Layer can be separated into three different
types: Services that control the instrument hardware (motors and switches), services that control
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JournalizerObject JournalizerKey
- journalizerKey - objectType
- usageType

JournalizerObject()
JournalizerObject(JournalizerKey)
generateFITSHeaderString(): String
getClassName(): String
getldentifier(): String
getJournalizerKey(): JournalizerKey
recalculateNewlnstanceNumber()

JournalizerKey(int, int)
equals(Object): boolean
getObjectClass(): Class
getObjectType(): int
getUsageType(): int
hashCode(): int
toString(): String

uses

+ + + + o+ o+ o+
+ o+ 4+ o+ o+ o+ o+

Figure 2.3: JournalizerObject and JournalizerKey class diagrams. For the JournalizerKey
diagram the two important fields are shown.

environment measurement hardware (mainly temperature and pressure measurements) and services
that control external software. Two services exist of the latter type, namely the Telescope and
the RMIGEIRSService. These services controlling the external software packages are described
at the end of this section. One service of this layer does not fit into the three categories that were
mentioned above. This is the Journalizer service. A description of this service follows in the
next section.

2.2.1 Journalizer

During the development of the software for the LUCIFER instrument it became clear that a central
service, where all information about the instrument itself as well as other environmental data is
stored, would be very beneficial. Since the LUCIFER control software package is realized as a
distributed system of independent services, all of which could store the data they gather while
they run on their own, it would be very laborious to query the current status of the instrument
from the whole software system. Therefore the decision was made to create one service, which
keeps a kind of journal about the status of the instrument. Subsequently, this service was called
Journalizer. The service uses the Hibernate package* to store the data. This package allows
the storage of any JAVA objects in relational databases. It does this using mapping files describing
which fields of the object should be stored. The mapping files also specify the data type of these
fields and table in the database where the objects should be stored. All JAVA objects that are
stored by the Journalizer extend the abstract class JournalizerObject which is shown in Fig.
2.3. Because of this, the complexity of the service could be kept very simple as can be seen in
Fig. 2.4 which shows the class diagram of the service interface. As a trade-off a corresponding
mapping file has to be created for every JournalizerObject.

For the main functionality of the Journalizer service three methods are important: the
store(JournalizerObject), get(JournalizerKey) and get(JournalizerKey, long)
methods. The first method is used to store a JournalizerObject to the database and the
second method is used to retrieve the last JournalizerObject from the database. Since the
Journalizer service is implemented in such a way that it keeps the last copy of any object it
receives from the services of the software system in memory, the get (JournalizerKey) method
does not query the database if the object was stored before. Instead the local copy is returned. This
reduces queries to the database and improves the performance. Only if the Journalizer service

“for a detailed description about this package see www.hibernate.org
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«interface »
RMlJournalizer

store(JournalizerObject)
get(JournalizerKey): JournalizerObject
get(JournalizerKey, long): JournalizerObject
getFITSHeaderString(int): String
isFITSHeaderAccessed(): boolean
setFITSHeaderAccessed(boolean)
getFITSHeaderFileName(): String

+ o+ o+ 4+ o+ o+

Figure 2.4: Journalizer service class diagram.

was recently started and a matching object is not stored in local memory the last object is retrieved
from the database and returned to the calling service. The third method, get (JournalizerKey,
long), can be used to get a JournalizerObject as it was stored at a given time-stamp, which
is passed as the second argument to the method. If there is no matching object for the exact
time-stamp, the last object stored before this time-stamp is returned. This way, any object can be
retrieved from the database and any instrument configuration at a given time can be reconstructed
from the database in principle, assuming that the system runs normally and all services use the
Journalizer.

The JournalizerClient which is used by all services to access the Journalizer, has a
build-in queue for temporary storage of data that should be sent to the Journalizer. This is
similar to the MessageClient of the MessageService package (see Polsterer in prep.). In the
case that the Journalizer service is not available for the requesting client, new data that needs
to be sent is first stored locally in memory and on disk. One possible scenario for such a situation
might be the temporary loss of network connection. As soon as the Journalizer service is
available again, the data that needs to be stored is submitted to the server. This provides that
— under normal operating conditions — no data is lost.

As mentioned already, to store any kind of instrument data so—called JournalizerObjects
are used. Figure 2.3 shows the class diagram of this abstract class. Since the class is abstract
it cannot be instantiated itself, so subclasses of this class have to be created. These subclasses
have fields that contain the relevant data for the service that uses them. To give typical examples,
class diagrams of the GratingUnitStatus and the ReadoutControlTemperatures classes are
shown in Fig. 2.5. In this figure, the left diagram shows the JournalizerObject subclass that
is used by the GratingUnit service of the Instrument Layer, and the right diagram shows the
JournalizerObject subclass that is used by the TemperatureControl service of the Control
Layer. As can be seen in the two diagrams, each class holds different types of data: status
information, i.e., position and grating tilt data and temperatures, respectively.

The JournalizerObject class uses so—called JournalizerKeys to distinguish between data
from different services and determine where to store this data in the database. A JournalizerKey
consists of two identifying numbers: the UsageType, which determines the instrument the data
belongs to (i.e., LUCIFER1 or LUCIFER2) and the ObjectType, which characterizes the type of
data stored in the JournalizerObject (temperature, pressure, etc.).

The Flexible Image Transport System (FITS) data format (Wells et al. 1981; Hanisch et al.
2001) is the standard file format used to store astronomical data. The header of FITS files contains
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JournalizerObject

extends
GratingUnitStatus ReadOutControlTemperatures
- position - temperatures
- name - sensorDescription
- tiltVoltage
- centralWavelength + getSensorValues(): float[]
- gratingOrder + getSensorValue(int): float
- loopClosed + toString(): String
+ generateFITSHeaderString(): String
+ getPosition(): int
+ getName(): String
+ getTiltVoltage(): float
+ getCentralWavelength(): float
+ getGratingOrder(): int
+ isLoopClosed(): boolean
+ toString(): String
+ generateFITSHeaderString(): String

Figure 2.5: Examples for JournalizerObjects. The left diagram shows the status object stored
for the Grating Unit, the right diagram the status object for the detector control temperatures.

information about the telescope and instrument setups at the time the data was taken, which is
essential for the subsequent data reduction of these images. For creation of FITS header infor-
mation the method generateFITSHeaderString() is used. To have the functionality of FITS
header creation also encapsulated in the Journalizer service package is one additional benefit
of the service and shows the strength of the concept. To create an “up to date” FITS header,
one simply calls the generateFITSHeaderString() method of all stored JournalizerObjects.
The getFITSHeaderString(int) method of the Journalizer service does exactly this. The
argument required by the method determines the UsageType, which corresponds to the instru-
ment (LUCIFER 1 or LUCIFER 2) the FITS header should be generated for. A typical FITS header
of a LUCIFER image is shown in Appendix A.

Another benefit of the Journalizer service is that it allows a strict separation of observer
interaction with the services from the Instrument Layer. Together with the manager services of
the Operation Layer (see Section 2.4), the astronomer can interact with the software without
the need to interact with the hardware directly. Although this might seem to be a big drawback
at first, it introduces a very secure way to operate the instrument, eliminating the risk that the
inexperienced or unfamiliar observer can do any harm to the instrument and greatly reducing the
risk of lost observation time due to handling errors. The principles of user interaction with the
instrument are laid out in detail in Section 2.4.1.

Summarizing the above, the usage of the Journalizer service allows:

e to store and retrieve the status of the two LUCIFER instruments at one single point of the
software system,

e to rebuild an instrument state at any given time using the database, if everything runs
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Figure 2.6: The HIRAMO electronic card (image taken from Lehmitz 2005).

correctly,
e easy generation of FITS header information, and finally

e the separation of observer interaction with the hardware of the instrument, introducing a
high level of security during operation.

The work on the Journalizer package was split. The initial implementation and the functionality
to create FITS header information was done during work for this thesis and the implementation
to use the Hibernate package for data storage was done by Polsterer (in prep.).

2.2.2 Instrument and environment control

As noted earlier in this chapter, the main purpose of the Control Layer is the connection between
the software and the hardware for the LUCIFER instruments. This section focuses on this point,
presenting the instrument control services first, followed by a brief description of the environment
control. Finally, the two services controlling the external software packages are introduced.

Instrument control

Instrument control can be split into two major categories:
e motor control and
e switch and other electronics control.

The motor control is realized by the MCU service. There are two instances of the MCU service running
for each instrument: one service controls all instrument units excluding the MOS Unit, which is
controlled by the second service (see Fig. 2.2). The switch and electronics control is realized by
two separate service, called HIRAMO and SwitchBox. The SwitchBox service is responsible for all
switches of the MOS Unit (see Polsterer in prep.). The HIRAMO service is discussed next.
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Table 2.1: Switch value mapping to instrument unit positions for the HIRAMO card.

Bit Pos 15 14| 13 |12 11|10 9 8 7|6 5 4 3|2 1 0
Instrument Unit ~ CC?  unused  CUP FWe2 FW1 Gud

?Cold Clamps for Filter Wheels
bCamera Unit
°Filter Wheel
IGrating Unit

HIRAMO The High Resolution Analog Measurement Output board (Fig. 2.6) is a special pur-
pose electronic card, mainly built to measure and regulate voltages with a very high resolution of
16 Bit (Lehmitz 2005). The voltage control and regulation functions of the board are used to apply
a constant and precise tilt voltage to one of the three grating mounts of the Grating Unit. Three
different input and output channels are used to control the grating tilt. One additional channel is
used for reference voltage measurements. The card also has the capability to test the connection
of the four different motor groups used for the LUCIFER instruments (excluding the MOS Unit).
Furthermore, all switches for position measurements of four different units of the instrument are
connected to the card and can be queried by a special software command. The switch value
is coded as a 16 Bit integer that needs to be resolved to get the position of the corresponding
unit. Table 2.1 shows the bit position mapping of the 16 Bit value. As can be seen from the
table, the position of each unit itself is coded in a binary number, so the decimal position value
has to be converted from this binary value. To request a position value from the HIRAMO service
two methods must be called. The first one, resolveSwitchValueBitPattern(int) is used to
get the correct bit pattern consisting of the starting bit and the bit length of the unit for which
the position should be resolved. The unit identifier is passed as the argument. This pattern is
subsequently used in the getSwitchValue (SwitchValueBitPattern,boolean) method, which
then returns the decoded position value. The second parameter of this method determines if the
switch value should be actively read from the hardware or if the buffered value should be used.
This can safe traffic on the network and reduce the load of the electronics, especially if a lot of
queries arrive in a short time period. Using two separate methods to query the position of the unit
leaves the flexibility to quickly adopt the software should the electronics for LUCIFER 2 change.
In this case only a minor part of the HIRAMO service has to be changed and these changes will
be transparent for higher layer services. The class diagram of the HIRAMO service is shown in
Fig. 2.7. Of all methods provided, only a few need to be examined in more detail, since these
methods are relevant later on (see Section 2.3.2). All other methods are mainly for engineering
purposes, i.e., to control the electronic card or the wiring of motors and will not be discussed here,
since this would be beyond the scope of the description of the software.

The first relevant method is the setGratingUnitTargetVoltage(float) method. As the
method name already suggests, the desired target voltage for the grating tilt regulation loop can
be set. However, the grating tilt voltage is not yet applied by the electronics.To do this, the voltage
regulation loop of the electronic has to be activated by calling the activateLoop() command.
Then the desired voltage u is set by the electronics, which subsequently tilts the grating mount to
an offset angle. The allowed values for the tilt voltage are in the range of =5V < uy < +5V. The
setGratingUnitTargetVoltage (float) method takes care that only sensible values can be set
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«interface »

RMIHIRAMO

activateFilterWheelColdClamps()

activateLoop()

deactivateFilterWheelColdClamps()
deactivateLoop()

getADCOffsetError(boolean): float
getCurrentChannel(boolean): int
getGratingUnitCurrentVoltage(): float
getGratingUnitTargetVoltage(boolean): float
getLastOpenLoopOutputVoltage(): float
getLoopStatus(boolean): boolean
getMotorConnectionStates(): MotorConnectionState[]
getSwitchValue(SwitchValueBitPattern, boolean): int
getTemperatureMode(boolean): int

isTiltStable(): boolean
resolveSwitchValueBitPattern(int): SwitchValueBitPattern
setAutomaticADCOffsetError()
setCurrentChannel(int)
setGratingUnitTargetVoltage(float)
setManualADCOffsetError(float)
setOpenLoopOutputVoltage(float)
setTemperatureMode(int)

+ 0+ + + + + + o+ + o+ o+ o+ o+ + o+ o+ o+ o+ + 4+

Figure 2.7: HIRAMO service interface class diagram.

and throws an Exception otherwise. To keep the tilt angle — and thus the central wavelength on
the detector — of the grating mount fixed, the applied voltage is kept constant by the regulation
loop electronics as long as it is active. If the electronics work properly, the current applied voltage
and the target voltage, which can be queried by calling getGratingUnitTargetVoltage(),
should be identical. This can be tested using the isTiltStable () method. The regulation loop
can be opened using the deactivateLoop() method and the current status of the loop can
be queried with getLoopStatus(boolean). Finally, to get the currently applied voltage, the
getGratingUnitCurrentVoltage () method can be used.

Note that at this layer of the software, the HIRAMO service does not know anything about
the possible central wavelength on the detector or the relation between tilt angle and tilt voltage,
although this is of central importance for the spectroscopic operation of the LUCIFER instrument.
The service does not need to care about these details because the higher layer services, the
GratingUnit (cf. Section 2.3.2) and InstrumentManager (cf. Section 2.4.3), to be more
specific, will handle these problems.

To conclude this section, Fig. 2.8 shows the graphical user interface that is used by engineers
to control and manage the HIRAMO service. All relevant functions of the service are displayed in
the user interface and can be accessed and modified. In the upper left part of the window, the
switch value is displayed with all 16 bit positions. This display allows to easily identify if one
of the switches is not operational, since the value for this bit would never change under these
circumstances. For ease of use the decoded position values of each unit are shown next to this
display. The lower part of the user interface controls the tilt regulation function of the service.
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Figure 2.8: The graphical user interface for engineering access to the HIRAMO service.

Different tilt voltages can be set and read as well as input channels selected. The HIRAMO card
can be configured for warm environments, i.e., when the instrument is at room temperature, or
for cold environments, when the instrument is cooled to the operation temperature of 70 K. The
different modes affect the resistance of the control loop electronics, to create the same conditions
for both environments. Details are presented in Lehmitz (2005). Finally, the correct cabling of
hardware to the card is displayed in the lower right part of the screen.

At this level of the software, no observer interaction is necessary or desirable, so no observer
type user interface will be provided for the HIRAMO service.

Environment control

The LUCIFER control software package provides different services for environment control. Three
separate services are responsible for temperature measurement.

1. The TemperatureMonitor service measures eight temperatures at different locations inside
the instrument.

2. The TemperatureControl service does this for the detector and shield temperatures and

3. the temperatures of the electronic rack, where the control electronics for the instrument are
located, are measured by the RackCoolingControl service.

Pressure measurement is realized by the PressureMonitor service. All services automatically
log the measured values using the Journalizer service (see Section 2.2.1). Logging of data
can also be disabled if storage of data is not necessary for the given instrument configuration or
situation, i.e., when the instrument is warm and in the lab for maintenance. All logging services
of the Control Layer have the ability to use static logging intervals (e.g., every 60 seconds), or use
adaptive logging instead. When adaptive logging is used, the time interval is changed depending
on how variable the measured data is. The interval stays between a minimum and maximum time,
which can be specified in the service configuration. If the changes in data values are greater than
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«interface »
RMITemperatureControl

enableSendConfiguration(boolean)
getAlarmParameter(String): AlarmParameter
getAudibleAlarm(): boolean
getCurrentTemperature(String): float
getCurrentTemperatures(): float[]
getLogginglInterval(): long
getNumberOfSensors(): int
getSensorDescription(int): DescriptionObject
getTemperature(String): float
getTemperatureSetpoint(int): float
getTemperatures(): float(]
isJournalizerUsed(): boolean
isSendConfigurationEnabled(): boolean
sendConfigurationData(boolean)
setAlarmParameter(String, AlarmParameter)
setAudibleAlarm(boolean)
setLogginginterval(long)
setTemperatureSetpoint(int, float)
useJournalizer(boolean)

+ + + + + + + + + + + + + + + 4+ + + o+

Figure 2.9: The class diagram of the TemperatureControl service as an example for environment
control services.

a defined difference, the current interval is halved until the minimum logging time is reached. If
the data stays below the defined difference for a repeated number of times, the current logging
interval is doubled until the maximum time is reached. This way, changes in the data can be
recorded with great precision, while constant data does not fill up the database quickly.

Temperature Control The detector temperatures are monitored and controlled by the
TemperatureControl service which connects to a LakeShore 331S Temperature Controller.
Fig. 2.9 shows the class diagram for the TemperatureControl service as an example for all
environment control services. There are different methods provided to get the logged tempera-
tures. The getTemperatures() method returns the temperatures as they were measured during
the last automatic logging cycle, and thus these may be a few minutes old. To read the actual
temperatures from the monitor the getCurrentTemperatures() method has to be used. It in-
vokes an active query for the temperatures on the monitor hardware. This distinction for getting
the temperatures (or pressures for the pressure logging service) is used in all logging services. Nor-
mally, the current values do not have to be actively queried from the hardware, since significant
changes are slower than typical logging intervals. Two temperatures are logged and stabilized by
the hardware, the temperature of the detector itself and the cold bench temperature (Lehmitz
2004). The regulation loop setpoints of the hardware temperature controller can also be set using
the service, although this is normally configured on the device directly.

Eight temperatures at different position inside the instrument are monitored by the
TemperatureMonitor service connected to a LakeShore 2185 Temperature Monitor. The tem-
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peratures are measured at the structure (top, bottom) and different units of the instrument.

For the third temperature measurements service, the RackCoolingControl service, four tem-
peratures of the instrument rack are monitored. This service is connected to a Jumo Imago 500
temperature controller (Lehmitz 2004). Three temperatures are measured for different parts of
the rack: the motor electronics, the readout electronics and the temperature inside the rack itself.
These are compared to the ambient temperature, which is measured by the fourth and last input
channel of the controller. The controller hardware has the ability to regulate the temperatures
of the given input channels using different output channels that drive heating or cooling units.
If the ambient temperature is between two given temperature limits the software service sets the
regulation target temperatures for the first three channels to the ambient temperature (with a AT
of 0.5 K to minimize traffic to the monitor). If the ambient temperature drops below the minimum
temperature, the target temperature is set to the minimum temperature, i.e., the rack is heated.
If the ambient temperature rises above the maximum temperature, the target temperature is set
to this maximum temperature, i.e., the rack is cooled.

Pressure Control The PressureMonitor service is able to measure two pressures simultane-
ously using a Pfeiffer Vacuum TGP 262. Normally only one gauge is used at a time and the other
one kept in reserve and for comparison measurements, in case the active gauge provides unrealistic
values. The software service can also be used to control setpoints for two regulation loops, similar
to the TemperatureController service (see above). However, for the pressure control, these
setpoints are configured at the device directly, too. Finally, the TurboPumpMonitor service can
be used to monitor the pump revolutions and the used power of the Pfeiffer Vacuum TCM 1601
turbomolecular pump when it is used during cooling—down or warming—up of the instrument.

External software control

As already mentioned at the beginning of this chapter, the software package for the LUCIFER in-
struments has to rely on two external software packages not developed at AIRUB. These are
the GEIRS package for the readout of the HgCdTe Astronomical Wide Area Infrared Imager-
2 (HAWAII2) detector, developed at the Max-Planck-Institut fiir Astronomie, Heidelberg and
the IIF extension of the TCS developed in Tucson, Arizona. To be able to communicate with
these packages, JAVA RMI services have been created that provide necessary functionality to the
distributed system.

The RMIGEIRSService has been developed in the course of a diploma thesis (Muhlack 2006).
For completeness, the service interface is shown in Fig. 2.10. The service needed to be extended
considerably during the commissioning of the instrument. The changes were necessary in order to
allow the control software to work with the current version of the GEIRS package, which evolved
significantly since the time the original work was finished. In addition, new functionality that
became apparent during the commissioning had to be implemented. This mainly includes the
insertion of the FITS header generated by the Journalizer service (cf. Section 2.2.1) into the
images written by GEIRS. FITS header information is currently written to a temporary text file
and stored on disk. This file is subsequently added to the FITS image by GEIRS. This procedure
will change in the future, however, when a more convenient way is implemented in the readout
package. The RMIGEIRSService communicates with the GEIRS server using a socket connection
and acts itself as a server for GEIRS to receive status information. For more information about
this bidirectional communication and a detailed description of the package see Muhlack (2006).
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«interface »

RMIGEIRSService

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + o+ o+ + o+ o+ o+ o+

abortRead(String)
executeMacro(String)
getAllowedReadOutModes(): String[]
getCurrentCycleTime(): double
getCurrentDIT(): double
getCurrentNDIT(): int
getCurrentROEMode(): String
getCycleTime(): double
getDIT(): double
getLastFileName(): String
getMacroFile(): File

getNDIT(): in
getNextFileName(): String
getNumberOfReads(): int
getObject(): String
getObserver(): String
getROEMode(): String
getSavePath(): String
isAutosave(): boolean
isReading(): boolean
isSaveCubeFITS(): boolean
isSavelntegratedFITS(): boolean
readOut(String)

readOut()

saveFile()

setAutosave(String)
setDIT(double)
setMacroFile(File)
setNDIT(int)
setNextFileName(String)
setNumberOfReads(int)
setObject(String)
setObserver(String)
setROEMode(int)
setROEMode(String)
setROEModeAndNumberOfReads(String, int)
setSaveCubeFITS(boolean)
setSavelntegratedFITS(boolean)
setSavePath(String)
showDisplay()
showGEIRSControls()

Figure 2.10: The class diagram of the RMIGEIRSService used to control the external GEIRS

software package.
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The Telescope service, responsible to provide commands to control the LBT has been im-
plemented by Dr. M. Jiitte using an ICE interface to the TCS. Since the work on this package is
beyond the scope of this thesis, no further details are provided on this issue.

2.3 Instrument Layer

The next higher level above the Control Layer is the Instrument Layer. At this level, all physical
units of the LUCIFER instrument are represented by dedicated software services. Each service
provides the necessary functionality for the unit it represents and does not interact with other
services of the Instrument Layer. Coordination of the different services of the Instrument Layer is
done by the services of the highest layer of the software, the Operation Layer (cf. Section 2.4).

To write services that represent just one physical unit might look a bit narrow minded first,
but it helps to keep the software complexity manageable. It means that only the control over,
and tasks of one unit have to be provided. An additional benefit is that, should some part of
the software or hardware of one unit fail for some reason, only that unit will be affected. Of
course the problem will have to be fixed as soon as possible, but it might not affect the ongoing
observations when the error occurred. For example, if the camera unit fails during the night but
no other camera must be used, the instrument is still operational. If the software services would
be more complex such an error could lead to the failure of the whole instrument in the worst case
scenario.

This section begins with a description of the software concept used to model setup changes
for the instrument. For the instrument units, this is the direct link to the services of the Con-
trol Layer. With the only exception of the service controlling the MOS Unit, which has been
developed by Polsterer (in prep.), all services of the Instrument Layer (see Fig. 2.2) have been
implemented in the scope of the present thesis. Using one of the most complex of all services,
the GratingUnit service, as a first example, the fundamental concepts applied to all services
of the Instrument Layer are examined in detail in Section 2.3.2. The section finishes with the
CompensationMirror service, which is described as a second example. For this service to work
properly, status information of different Instrument Layer services are necessary. This leads then
to the highest level of the software, the Operation Layer, described in detail in Section 2.4.

2.3.1 Modeling instrument changes in software

At first it needs to be decided how changes of the instrument status can be modeled in a software
solution. To do this, a detailed study was carried out of what happens when a unit (in this context
understood as the real physical unit like, e.g., the Grating Unit) is moved inside the instrument.

First of all, the unit can be in an arbitrary position. This can be any position or state, the unit is
physically able to move to or to be in. In the concept of the LUCIFER control software, this position
is represented as a State object. The next step to model are then changes between these states
or positions. The process of moving a unit from one State to another is described in the software
by Transition objects. With these two objects, the software is already able to model instrument
changes completely. However, to allow better structuring and error handling of the software,
these two types were unified in one additional object which is called Sequence. A Sequence may
consists of two States and one or more Transitions. The two States are called precondition
and postcondition, the Transitions are the movements or actions necessary to move the unit
from the precondition state to the postcondition state. Additionally, a Sequence may contain and
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SubSequence : Sequence

«execute sub sequence»

InstrumentChange : Sequence

«check before execution» «check after execution»

«execute Transition»

PreCondition : State Movement : Transition PostCondition : State

Figure 2.11: An object diagram showing the concept of modeling instrument changes using
Sequences, Transitions and States.

execute other Sequences. This allows to group more complex instrument changes together in one
entity and thus structures the available actions for one unit. Complicated movements of the units
can be started in a safe way by executing only one sequence. Fig. 2.11 shows the abstract concept
for an arbitrary instrument change. The Sequence to execute, named InstrumentChange in
the figure, first checks the PreCondition state. If this check succeeds, the Movement transition
is executed and finally the PostCondition state is evaluated. If this test also succeeds, the
Sequence has been executed correctly. If the InstrumentChange sequence was to require the
execution of another sub—sequence (as indicated in the figure), the checks for the sub—sequence
would be performed in the same way as for the main—sequence. The precondition of the sub-—
sequence is checked before its execution and the postcondition is evaluated at the end. Then the
execution of the main—sequence is resumed.

In the following a detailed description of all three abstract objects that are used to model
changes inside the instrument is presented. The implementation of most of these abstract classes
was done by Polsterer (in prep.) and is included here for completeness. The implementation of
the software for the individual units of the instrument, including all States, Transitions, and
Sequences that have been defined for them, is part of the present thesis.

States

In principle, one can distinguish two separate kinds of states:

1. the ones representing positions that can be queried by the control software using hardware
switches or other kinds of measuring equipment (e.g. angle resolvers) and

2. all other states that can not be identified safely by the software.

The former of these are called defined states, the latter are consequently undefined states. To
initialize a unit which is in an undefined state, it has to be moved to a defined state first. This can
be done safely for nearly all units of the instrument with the exception of the MOS Unit. Once a
defined state is reached, the unit is, or usually can be, initialized, again with the exception of the
MOS Unit. See Polsterer (in prep.) for a detailed study about this subject.

The class diagram of the State interface is shown in the upper left part of Fig. 2.12. It
contains only one method, which all States have to implement, the isInState () method, which
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«interface » «interface » Statelmpl
State DecisionTreeNode
+ isInState(): boolean
+ isInState(): boolean + evaluateDecisionTree(): boolean implements| 4+ getvalueOfLastEvaluation(): boolean
+ getChildAt(int): DecisionTreeNode + getDesiredValue(): boolean
+ getChildren(): Enumeration + getParent(): DecisionTreeNode
+ getDesiredValue(): boolean
extends L .

+ getindexOf(DecisionTreeNode): int
+ getNumberOfChildren(): int
+ getParent(): DecisionTreeNode
+ getValueOfLastEvaluation(): boolean
+ hasChildren(): boolean

extends

StateGratingUnitMovable DecisionTreelnnerNode
extends

+ hasChildren(): boolean
+ getNumberOfChildren(): int

depends on + getOperator(): int
+ getChildAt(int): DecisionTreeNode
StateGratingUnitPosition + getindexOf(DecisionTreeNode): int
extends + getChildren(): Enumeration
+ getPosition(): int + addNode(DecisionTreeNode, boolean)
+ haslnputChannel(): boolean + removeNode(DecisionTreeNode): boolean
+ getinputChannel(): int + evaluateDecisionTree(): boolean
+ getExecutionTime(): long

Figure 2.12: The complex dependencies of State objects. See text for details.

either returns true or false. To be able to create more complex states, each state can have
any number of sub-states, organized in a so—called decision tree with nodes (which are defined
as having one or more sub-states) and leaves (which do not have sub—states). A leave can
simply be evaluated by checking the conditions defined for the isInState () method. For a more
complex node, consisting of one or more sub—states, a call to the isInState() method has to
evaluate the condition for all sub—states in the decision tree. This evaluation process is realized
implicitly for all states that extend the StateImpl class shown in the upper right part of Fig. 2.12.
The managing of the decision tree logic, like getting all sub—states, adding new nodes, etc., is
defined in the DecisionTreeNode interface and implemented in the DecisionTreeInnerNode
and DecisionTreeLeaveNode (the latter not shown in Fig. 2.12) classes.

The process of evaluating a complex state is best laid out using an example. The Grating Unit,
which is presented in detail in Section 2.3.2, has a number of complex states, one of which is called
StateGratingUnitMovable. This state is shown in the lower left part of Fig. 2.12. By extending
the DecisionTreeInnerNode class it has all the functionality described above, of course. To use
an object of this class, two parameters must be provided. The first information needed is how to
query the current position of the Grating Unit. This is done by using a Client for the HIRAMO
service (see Section 2.2.2), which is the direct interaction point between the Instrument Layer
and the Control Layer. The second information needed for the state is an integer value, which
determines the position of the unit that should be checked. This could also be expressed in a
different way: the integer argument passed in the constructor call defines, which physical/logical
state of the unit should be represented by this object in software. It can be seen, that the software
concept of this layer does not deal with any hardware related details, i.e., which command syntax
is used to read the current position from the electronics card, or where to find the address of the
card in the instrument network. Instead, only the pure logic of the unit has to be, and is, modeled.
This keeps the complexity of the software low and makes it more robust.
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For the Grating Unit it was defined that the unit should be moved only, if no tilt volt-
age is applied in closed loop operation. This reduces stress on the regulation electronics and
the hardware. To model the behavior in software, two conditions have to be checked. First,
the position of the unit can be one of the grating positions, the mirror position, or the unit
can be in an undefined state. Every StateGratingUnitMovable object therefore has one
StateGratingUnitPosition object (shown in Fig. 2.12 in the lower left), representing one of
the possible positions of the unit. To test if the unit is in the correct position, the getPosition()
method of the StateGratingUnitPosition class is used. If the unit is not in a defined position,
or not in the position it should be, this call will fail.

The hasInputChannel () method is used to test, if the position of the unit also represents
one of the gratings positions. The name for the method is due to the fact that every grating has
one specific input channel on the HIRAMO card associated to it. To determine if the grating unit
is movable, the second condition has to be checked, namely if the regulation loop is currently
closed or not. This is done by adding an additional sub—state to the decision tree. This state is
called StateHIRAMOLoopClosed (not shown in Fig. 2.12). It is a leave state and can be evaluated
directly, returning either true or false. Only if both tests succeed — the unit is in the correct
position and the grating tilt loop is not closed — the StateGratingUnitMovable condition will
be satisfied and the unit can be moved using a Transition.

Transitions

In the most general sense, a Transition is the action that is necessary to bring the instrument
from one defined state to another. This action can be the movement of a motor, the selection of
an input channel or the opening of the regulation loop, to give a few examples. However, between
the execution of two transitions, an intermediate state does not have to be checked, if this is not
needed. This might be the case because the state change of the first transition is a sub—state of
the following one, and checking the final state is sufficient for a safe execution of a sequence (see
next paragraph), for example.

Fig. 2.13 shows the dependencies for some transitions used in the software. Shown are all
transitions that interact with the HIRAMO service (introduced in Section 2.2.2). The Transition
interface shown at the top of the figure, defines the one method that all Transitions have in
common: the execute() method.

To group all classes that interact with the HIRAMO card, the class TransitionHIRAMO
(shown in the center of the diagram) has been defined. All transitions shown at the bottom of the
diagrams are direct sub—classes of this TransitionHIRAMO class, which is indicated by the solid
lines connecting all classes. The different vertical positions of these lower classes are chosen only to
keep the size of the diagram small and do not represent different layers of inheritance. All classes
have to define an implementation of the execute () method. This determines which actions have
to be carried out by the specific Transition. For the example of a TransitionOpenLoop, this
is the call of the deactivateLoop() method of the HIRAMO service (see Fig. 2.7). This call is
forwarded using a HiramoClient object.

With the two types introduced so far, the State object and the Transition object, nearly
everything is in place to work with the instrument from an abstract point of view. The last missing
piece is described next.
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«interface »
Transition

implements

| TransitionHiRAMO |

extends

‘ TransitionCloseLoop | ‘ TransitionOpenLoop | ‘ TransitionSetColdOpeartionMode | ‘ TransitionSetGratingTiltVoltage

‘ TransitionDeactivateColdClamps | ‘TransitionSelechhannel | ‘TransitionSetWarmOperationMode | ‘ TransitionActivateClamps |

Figure 2.13: The dependencies between transitions shown for the example of HIRAMO service
interactions.

«interface »
Sequence

implements

Sequencelmpl

- preConditions

- postConditions

- processedSequenceElements
- executionTime

Sequencelmpl(SequenceDescriptor, State, State)
Sequencelmpl(SequenceDescriptor)
getSequenceDescriptor(): SequenceDescriptor
getPreConditions(): State

getPostConditions(): State
checkPreConditions(SequenceExecutionHandler)
checkPostConditions(SequenceExecutionHandler)
getExecutionTime(): long
getProcessedSequenceElements(): Vector
clearProcessedSequenceElementHistory()
executeStateCheck(State, SequenceExecutionHandler): boolean
executeTransition(Transition, SequenceExecutionHandler)

Foh o+ o+ o+ o+ o+ o+ o+ o+ o+

executeSequence(Sequence, Object[], SequenceExecutionHandler)

Figure 2.14: Class diagram of the SequenceImpl class which implements the Sequence interface
and is the super class of all sequences.

Sequences

To structure the instrument changes that are modeled with States and Transitions, the
Sequence object was introduced. By grouping the complex motions and transitions between
states of the instrument together in one class, an easy-to-understand and easy-to-use mechanism
has been created to work with the instrument. The class diagram of the SequenceImpl class is
shown in Fig. 2.14. Two constructor methods are available to create a new Sequence object. Both
constructor methods need a so—called SequenceDescriptor used to describe what the sequence is
supposed to do. Additionally, pre— and postconditions can be set for the sequence using the second
constructor. These conditions are State objects, as described above. The getPreConditions ()
and getPostCondition() methods can be used to return these State objects. The execu-
tion of sequences is normally started by calling the exceuteSequence (Sequence, Object[],
SequenceExecutionHandler) method. The first parameter of this method defines the sequence
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SequenceExecutionHandler

SequenceExecutionHandler()
setExecutedSequenceElements(Vector)
addSequenceExecutionListener(RMISequenceExecutionListener)
notifySequenceExecutionListener()
waitlfSequencingPaused()
pauseSequencing()
resumeSequencing()
isSequencingPaused(): boolean
nextSequence()

stopSequencing()
isSequencingStopped(): boolean
waitlfTransitionExecutionPaused()
pauseTransitionExecution()
resumeTransitionExecution()
isTransitionExecutionPaused(): boolean
nextTransition()
stopTransitionExecution()
isTransitionExecutionStopped(): boolean
checkPreConditions(): boolean
setCheckPreConditions(boolean)
checkPostConditions(): boolean
setCheckPostConditions(boolean)
isSkippingAllowed(): boolean
allowSkipping(boolean)

o+ o+ o+ o+ F O FF O+ o+ o+ o+ o+ o+ o+ o+

Figure 2.15: Class diagram of the SequenceExecutionHandler class.

to be executed. The second parameter is an array of objects, which can be used to control the
execution of the sequence by specifying further constraints or setting values for pre— and postcon-
ditions, for example. The last parameter is SequenceExecutionHandler that should be used to
manage the execution. The class diagram is shown in Fig. 2.15. Methods are provided to start and
stop the execution of sequences and transitions and enabling or disabling pre— and postcondition
checking. The functionality of this class is primarily needed by the MOS Unit with its complicated
structure of sequences (for implementation details see Polsterer in prep.).

If pre— and postcondition checking is switched on and a precondition has been defined for the
sequence, the handler will start to check this precondition. If it fails, an exception will be thrown.
If the precondition check is passed, the handler will start to execute the actions, i.e., transitions or
sub—sequences that have been defined. If sub—sequences are executed in between, their pre— and
postconditions, if they are present, are checked before and after the execution of the corresponding
sub—sequence. If only Transitions are defined, the post condition check is performed after
successful completion of all of them. If an error occurs, an exception is thrown and the execution
is halted. The corresponding unit maybe in an undefined state after such an error occurs and
must be initialized again.

After successful execution of the sequence the unit is in the postcondition state and ready to
execute another sequence, if needed. One example for this would be the movement of the Grating
Unit from the mirror position to one of the grating positions. After this movement successfully
finishes, the sequence to tilt the grating to a specific central wavelength on the detector can be
executed. The unit and the corresponding GratingUnit software service is discussed in detail in
the next section.
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Figure 2.16: Photo of the Grating Unit mounted with a graticule and dummy weights in the lab
in Heidelberg. The photo was kindly provided by M. Lehmitz.

2.3.2 Example: The GratingUnit service

The first service that is used to describe the main concepts of the Instrument Layer is the
GratingUnit service, because it defines complex Sequences which are good examples for the
implementation of this concept. As a second benefit, this service also uses LookupTables, which
are common throughout this layer to store data that is fundamental for the operation of the in-
strument. First, the physical unit is presented in a short summary adapted from Seltmann et al.
(2004), followed by the description of the software service.

The physical unit

Using the optical beam as a reference, the Grating Unit is located between the Compensation
Mirror, which is described in detail in Section 2.3.3, and the Camera Unit with the three different
cameras. Figs. 1.4 and 1.5 show the optical path of the instrument with the mirror position
selected for the Grating Unit.

The Grating Unit can hold four optical components: one mirror and up to three gratings.
Currently one high dispersion grating (Milton Ray: MR_35_53_*_877) can be used. The grating
has 210 lines per mm and a blaze angle of 31.7° in first order. It is used in different orders (2"
to 5t") to cover the full wavelength range from 0.8 um to 2.5 um. Seifert (2002) gives a detailed
description of it. Two other gratings are currently tested and will be added to the instrument
in the near future. The position of the unit is measured using micro switches. Each position
is also defined by a notch into which a ball bearing locks. This allows to switch off the motors
when the unit is not moved. The three grating mounts are tilted using a moving magnet linear
motor, consisting of two polarized permanent magnets, surrounded by two drive coils. A magneto-
resistive element is used for measuring the tilt position (Seltmann et al. 2004). Fig. 2.16 shows a
photo of the unit taken during the lab tests at the MPIA. One grating has a graticule mounted
for optical alignment, the other unit positions are equipped with dummy weights for balancing.
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service is started

error during tilt or movement error during untilt or change voltage
2 GratingUnitNotlnitialized

initialize

tiltLoopNotClosed &2 GratingUnitlnitialized tiltLoopClosed
moveToPreviousPosition changeTiltVoltage

tiltGrating
&2 GratingUnitMovable &2 GratingTiltActive

untiltGrating

moveToNextPosition

Figure 2.17: State diagram of the finite state machine for the GratingUnit. Normal transitions
between states are marked with thick arrows, transitions due to errors are indicated by thin arrows.

The software service

As pointed out above, the software service uses a number of complex Sequences to operate the
unit. Using this concept allows to model the physical unit like a finite state machine for which
the possible states are shown in Fig. 2.17.

When the service initially starts, the machine is in the GratingUnitNotInitialized state.
This is the default starting point for all Instrument Layer services. No active query for the
current state of a unit is made automatically, since this might lead to unforeseen problems during
the operation of the instrument or can even be dangerous during lab testing. To explain this
reasoning, consider the following examples:

e The switch value decoding for the grating unit position is not working properly because
of some hardware failure. This might lead the software service to assume that the unit
is not initialized, even though it is operational, e.g., because the unit has been moved by
an engineer to a defined position using the motor controls directly. It should stay in this
position until the instrument can be maintained properly. The GratingUnit service is
stopped by the engineer to avoid accidental movement of the unit. If the service would
try to automatically initialize the unit when it is started again this would fail, leaving the
instrument in an undefined state again because the motor would have moved.

e Even worse would be the scenario of a unit moving automatically because someone starts

the software in the lab while the instrument is open and an engineer is working with his
hands inside the instrument.
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An initialization request must therefore be made explicitly. If the initialization succeeds, the unit
is in one of the GratingUnitInitialized sub-states, depending on the conditions that are
present when the unit is initialized. The first of these sub—states is the GratingUnitMovable
state (see Fig. 2.12). This state represents the unit in one of the defined positions with the
grating tilt loop open. If the position of the unit cannot be queried from the electronics, i.e., it
is not locked in one of the notches, the GratingUnitMovable state is normally reached after
a successful initialization, because the initialize() command tries to move the unit to the
nearest defined position. Before this movement starts, the grating tilt loop is opened, regardless
of the state of the tilt before. Here, it is assumed that if the current position of the unit cannot be
determined from the hardware switches, no sensible position of the unit can be present, so opening
the loop is no problem. If the position cannot be read because of some hardware failure (as in
the first example mentioned above) but is in fact operational, there is no way for the software to
determine this. When the unit is successfully moved to the next position, the unit is initialized in
the GratingUnitMovable state of the finite state machine.

The second sub—state of the GratingUnitInitialized state is the GratingTiltActive
state. After initialization this state can be reached, if the unit is in one of the defined positions
and the grating tilt loop is closed. This scenario can be possible, when the software service was
stopped, either on purpose or because of some other internal failure, and restarted at a later time.
This is of course only possible if no interaction that changed the state has occurred in between
with the physical unit.

If an error occurs during initialization of the unit, the finite state machine returns to the
GratingUnitNotInitialized state. In this case, an engineer can try to interact with the unit
using one of the services of the Control Layer services, namely the MCU or the HIRAMO service.
This way it might be possible to set up the unit in such a way that further observations with
LUCIFER are still possible. However, no higher layer functions are likely to work properly under
these circumstances.

Depending on the state that is reached after initialization, different transitions are possible. If
the unit is in the GratingUnitMovable state, it can be moved to the next or the previous position.
If this transition succeeds, the unit is again in the GratingUnitMovable state. Alternatively,
from the GratingUnitMovable state, the GratingTiltActive state can be reached via the
tiltGrating transition. If an error occurs during any of these transitions, the resulting state is
the GratingUnitNotInitialized state.

From the GratingTiltActive state, two transitions are possible, the changeTiltVoltage
transition, which results in a greater or smaller tilt angle of the grating and keeps the unit in
the same state, or the untiltGrating transition, bringing the unit to the GratingUnitMovable
state. When the unit is in the GratingTiltActive state, it is locked there, so no accidental
position changes are possible. Instead, before a movement of the unit can take place, the finite
state machine must be in the GratingUnitMovable state, using the transition mentioned above.
If any of the possible transition fails, the unit returns to the GratingUnitNotInitialized state.

The following example of a spectroscopic observation explains the normal operation of the
Grating Unit using the finite state machine introduced above. The GratingUnit service is started
and the unit is not initialized. An engineer, or the InstrumentManager service (see Section 2.4.3),
initializes the unit. After the initialization routine, the unit is in the GratingUnitMovable state
representing the mirror position. In this position an acquisition image is taken and the observer is
satisfied with the on—sky positioning of the instrument. The desired long slit mask is inserted into
the focal plane (using the MOSUnit service) and another image is taken to verify the slit positioning.
Again the observer is satisfied with the result. To obtain the first spectrum of the object the Grat-
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ing Unit must be moved to the high dispersion grating position. The finite state machine moves
from the GratingUnitMovable state representing the mirror via the moveToPreviousPosition
transition to the GratingUnitMovable state, representing the high dispersion grating position.
Then the desired central wavelength is selected by tilting the grating with an appropriate tilt volt-
age, taken from a LookupTable. The finite state machine moves from the GratingUnitMovable
state to the GratingTiltActive state via the tiltGrating transition. Once the state is reached
the exposure of the spectrum can begin. When all necessary exposures are taken and another
acquisition image should be taken, the finite state machine moves from the GratingTiltActive
state to the GratingUnitMovable state via the untiltGrating transition and afterwards via
the moveToNextPosition transition back to the GratingUnitMovable state representing the
mirror position. Now the process just described can begin again.

Lookup Tables Another important function the GratingUnit service has to provide is the
mapping of tilt voltages to central wavelengths on the detector. To perform this task, the service
uses different LookupTables, one for each grating, that are loaded when the service is started
and can also be changed while the service runs. Fig. 2.18 shows the class diagram for the most
important classes of the lookupTable package. The abstract class LookupTable, shown in
the upper left part of the figure is the super class for all lookup tables that are used by the
software. The tables consist of LookupTableElements, which are shown in the lower left part
of the diagram. The LookupTable class provides basic methods necessary to organize the table.
This includes methods to add elements to the table, edit elements and methods to get elements
or remove elements from the table. The latter two methods are overloaded, to allow to get (or
remove) an element by specifying the position of the element in the table, or by specifying one
particular element directly using its unique key.

Each LookupTableElement has to be unique and can only be added once to a table. This
limitation is necessary to avoid errors due to duplicate entries in the table. If two indistinguishable
elements were present with different data entries, it cannot be determined which of these elements
will be returned when one of these elements is retrieved from the table and this might lead to
unpredictable result when the software runs. To provide the possibility to distinguish different
elements, a unique key has to be specified for each element. This key usually is one of the
entries of the LookupTableElement, but can also consists of more entries or a value computed
from multiple entries of the element. The implemented sub—classes of the LookupTableElement
class provide this method in an appropriate way. The key value can be queried by the getKey ()
method and to test if an entry represents a key value the isKey() method can be used. Since
by this definition two elements are considered equal when their keys are equal, the equals() and
hashCode () methods, which are used by many JAVA classes to test for equality of objects, are
overridden by the class LookupTableElement to provide the correct behavior.

The classes introduced so far are able to provide lookup tables that can be used to query values
stored in the tables. This is sufficient for the FilterUnit service for example, which uses these
tables to map filter names to filter positions and thus allows an easy selection of the correct filter.
However, for many other Instrument Layer services, this functionality is not sufficient, because
not all values that are required during the operation of the service can be stored in the table or it
is just not sensible to do this, because it would require too much effort. To accommodate for this
application, the LookupTable class is extended by the InterpolatingLookupTable class, which
itself is extended by the TwoDInterpolatingLookupTable (see the right part of Fig. 2.18). These
two classes provide a natural enhancement to the LookupTable class, by allowing the selection of
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LookupTable InterpolatingLookupTable
+ LookupTable() + InterpolatingLookupTable()
+ LookupTable(String) extends |, |yierpolatingLookupTable(String)
+ getTableDescription(): String + InterpolatingLookupTable(String, InterpolationFunction)
+ setTableDescription(String) + getinterpolatedElement(Object, Object): InterpolatedLookupTableElement
+ getLookupTable(): Vector + setinterpolationFunction(InterpolationFunction)
+ getNumberOfElements(): int + getlinterpolationFunction(): InterpolationFunction
+ addElement(LookupTableElement]
+ editElement(int, int, Object)
+ getElement(int): LookupTableElemeni
+ getElement(Object): LookupTableElement extends
+ removeElement(Object)
+ removeElement(int) TwoDlInterpolatingLookupTable
+ getNewElement(): LookupTableElement
+ TwoDlInterpolatingLookupTable()
+ TwoDlInterpolatingLookupTable(String)
consists of + TwoDInterpolatingLookupTable(String, InterpolationFunction, InterpolationFunction)
+ getinterpolationFunctionDimensionOne(): InterpolationFunction
+ setinterpolationFunctionDimensionOne(InterpolationFunction)
+ getinterpolationFunctionDimensionTwo(): InterpolationFunction
LookupTabIeEIement + setInterpolationFunctionDimensionTwo(InterpolationFunction)
getNumberOfEntries(): int
getEntry(int): Object
setEntry(int, Object) InterpolatedLookupTableElement
getKey(): Object extends

isKey(int): boolean
getClass(int): Class
getEntryName(int): String

+ InterpolatedLookupTableElement(boolean)
+ isinterpolatedElement(): boolean

+ getinterpolationEntryNumber(): int

getEntryDescription(int): String
equals(Object): boolean
hashCode(): int

+ o+ o+ o+ o+ o+ o+ o+ o+

Figure 2.18: Class diagram of the main classes of the LookupTable package. Shown are the two
basic abstract classes LookupTable and LookupTableElement on the left side as well as the
extending classes for interpolated data on the right side of the diagram.

InterpolationFunction

InterpolatingCoordinate2D

T

InterpolationFunction(DescriptionObject)
calculatelnterpolatatedElement(InterpolatingCoordinate2D): InterpolatingCoordinate2D
setinterpolationData(InterpolatingCoordinate2D[])

getDescription(): DescriptionObject

equals(Object): boolean

hashCode(): int

toString(): String

uses

+ InterpolatingCoordinate2D(double, double)
+ getinterpolationCoefficientX(): double
+ getinterpolatedCoefficientY(): double

extends

LinearinterpolationFunction

+ o+ o+ o+

LinearInterpolationFunction()

LinearInterpolationFunction(InterpolatingCoordinate2D[])
setInterpolationData(InterpolatingCoordinate2D[])
calculatelnterpolatatedElement(InterpolatingCoordinate2D): InterpolatingCoordinate2D

Figure 2.19: Class diagram showing the abstract InterpolationFunction class and one cur-
rently selectable implementation. The InterpolatingCoordinate2D class represents the type
of objects that are used to interpolate data values.
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InterpolationFunctions for one or two dimensions, respectively. It is important to note that
the TwoDInterpolatinglookupTable uses two separate interpolation functions each providing
a one dimensional interpolation for the selected dimension, instead of using one interpolation
function for two dimensional interpolation. This allows to select different interpolation routines
for each dimension and thus reflects the situation where the dependencies of interpolation values
are likely to differ for separate dimensions. This is important for the CompensationMirror service,
which is described in detail in Section 2.3.3.

For InterpolatingLookupTables, the getInterpolatedElement(0bject,0Object)
method can be used to interpolate a given value from the table data. This value is specified
as the first parameter of the method. The second parameter allows to specify an additional filter
before the interpolation is started. The method returns an InterpolatedLookupTableElement
object, whose class diagram is shown in the lower right section of Fig. 2.18. This class extends
the LookupTableElement class by providing one additional field to distinguish interpolated val-
ues from “real” data that can be queried using the isInterpolatedElement () method. The
getInterplolationEntryNumber (int) method may be used to test which of the entries of an
element can be interpolated. For instance, it is possible to interpolate a tilt voltage from a given
central wavelength, but not vice versa, since this is no requirement for the foreseen application of
the software. Inverting the used InterpolationFunction may not be possible in general anyway,
in which case reversing the lookup “direction” would also not be possible.

Fig. 2.19 shows the class diagram of the InterpolationFunction. Objects of this class are
used by the lookup tables to calculate data values. As a super—class it defines the basic methods
that all InterpolationFunctions provide to the tables using them. The computation is done
with InterpolatingCoordinate2D objects that represent simple two dimensional coordinates
with x and y values. It must be noted that the coordinates that are used to interpolate the
data are not automatically taken from all of the values that are stored in the LookupTable. The
coordinates must be set using the setInterpolationData(InterpolatingCoordinate2D[])
method explicitly. Of course the coordinates can be updated prior to any calculation. After a set
of (x[n],y[n]) tuples has been set, for a given value x the corresponding y can be computed
with getInterpolatedValue (InterpolatingCoordinate2D). If the calculation cannot be per-
formed, i.e., because the interpolation data set is not sufficient, an exception is thrown describing
the reason for the failure. The explicit selection of values allows to use only a subset of data pairs
from the table for the interpolation of new data.

One implementation for an InterpolationFunction is shown in Fig. 2.19. It is called
LinearInterpolationFunction and provides the functionality to interpolate any point (x,y)
between two enclosing border points (x1,y;) and (x2,y,) using the formula:

y=702 )ty (2.1)
X1 — X2

Note that this is not the same as a using a linear (first order) polynomial to interpolate the data.
In the latter case it would also be possible to extrapolate values beyond the “boundaries” of the
table, whereas the given implementation always needs two boundary points for the interpolation.
The gradient of the interpolation function will also change between neighboring intervals, which
would not be the case for a linear polynomial fit. The lack of the ability to extrapolate data points
beyond the boundaries is not a drawback in general. Instead, for some services, it can even be
dangerous to extrapolate values. For the GratingUnit service, the tilt voltages that are computed
from the table must always remain between some fixed boundaries (+5V) to avoid damage to
the hardware. By specifying dedicated boundary values in the lookup tables, an inherent safety is
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«interface »

RMIGratingUnit

getCentralWavelength(): float
getCurrentPosition(): int
getCurrentTiltVoltage(): float
getElementName(int): String
getElementPosition(int): int
getGratingOrder(): int
getinterpolationFunction(int): String
getLookupTable(int): GratingTiltLookupTable
getLookupTableFileNames(): String[]
getPosition(): int

getTiltVoltage(): float

initializeGratingUnit(): int

isInitialized(): boolean

isJournalizerUsed(): boolean
isLoopClosed(): boolean

isTiltStable(): boolean

loadLookupTable(int)

setGratingOrder(int)
setInterpolationFunctionForTable(int, String, boolean)
setLookupTable(int, GratingTiltLookupTable)
setPosition(int)

tiltGratingToVoltage(float)
tiltGratingToWavelength(float)

untiltGrating()

useJournalizer(boolean)

P T T S T T S S S G S S S S T

Figure 2.20: Class diagram of the GratingUnit service.

provided that only valid voltages are sent to the hardware. This introduces an additional level of
security for the operation of the LUCIFER instrument.

The implementation of more complex interpolation functions (i.e., polynomials or splines)
that also allow extrapolation of data values is very simple and straightforward using the frame-
work that is in place already. The needed interpolation algorithms have to be written into the
calculateInterpolatedElement (InterpolatingCoordinate2d) method of the correspond-
ing InterpolationFunction sub—class and the new interpolation type can be used.

Implementation details for the GratingUnit service The class diagram of the GratingUnit
service is shown in Fig. 2.20. Similar to the environment control services presented in Section 2.2.2,
different methods are provided to get the position of the unit and the tilt voltages. Two methods
are passive, i.e., return the buffered values, namely getPosition() and getTiltVoltage(),
whereas getCurrentPosition() and getCurrentTiltVoltage () are actively sending a query
to the underlying HIRAMO service of the Control Layer. Whenever one of the latter methods is
called, the Journalizer (see Section 2.2.1) is updated as well.

The GratingUnit service uses up to three different lookup tables, one for each grating,
that can be used to compute tilt voltages from central wavelength values. The tables can be
loaded using the setLookupTable(int, LookupTable) method, with the first parameter spec-
ifying the grating for which the table should be used. The values that are stored in the tables
can be seen in Fig. 2.21, showing the class diagrams for the GratingTiltLookupTable and
GratingTiltLookupTableElement classes. Each element of the table consist of four entries:
central wavelength, tilt voltage, grating order and tilt angle. The tilt angle is currently not used
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‘ InterpolatingLookupTable InterpolatedLookupTableElement |
extends extends
GratingTiltLookupTable GratingTiltTableElement

- centralWavelength
+ GratingTiltLookupTable()

- tiltVoltage
+ GratingTiltLookupTable(String) - gratingOrder
+ GratingTiltLookupTable(String, InterpolationFunction) consists of | iitangle
+ isSorted(): boolean
+ addElement(LookupTableElement] + GratingTiltTableElement(
+ sortTable() + GratingTiltTableElement(Float, Float, Integer, Float, boolean)
+ editElement(int, int, Object) + getNumberOfEntries(): int
+ getinterpolatedElement(Object, Object): InterpolatedLookupTableElement + getEntry(int): Object
+ getNewElement(): LookupTableElement + setEntry(int, Object)

+ getKey(): Object

+ isKey(int): boolean

+ getClass(int): Class

+ getEntryName(int): String

+ getEntryDescription(int): String

+ getinterpolationEntryNumber(): int
+ toString(): String

Figure 2.21: The structure of the GratingTiltLookupTable is illustrated in this figure using
class diagrams. The table consists of GratingTiltLookupTableElements, which are shown on
the right side. The super classes are shown above the two class diagrams.

by the software, it is included for additional information only. The key value (k) that is used to
uniquely identify an element is calculated from the grating order (GO) and central wavelength (CW)
fields, by the simple formula:

k = GO x 100 + CW (2.2)

Since the central wavelength values are usually given in um for the near infrared wavelength regime
the values range from 0.9 um to =~ 2.5 um and therefore the above formula computes a unique
number for all sensible values. Additionally a check for sensible values is performed when a table
entry is created.

With the functionality presented in the last section, the lookup table is able to map central
wavelength values to tilt voltages. To be able to do this, the grating order has to be set using the
setGratingOrder (int) method (see Fig. 2.20) first, because the gratings are used in different
orders to center the desired central wavelength on the detector. This means that the same tilt
voltage, corresponding to the same tilt angle, reflect different central wavelengths on the detector.
Only if the grating order is also known, the mapping is unique. The broad band filters of the
instrument are used to separate the overlapping orders during observations.

Calling the tiltGratingToWavelength(float) method will center the selected wavelength
on the detector using the lookup table and interpolating values if necessary. To do the interpolation
correctly and to make the tables more readable, the table values can be sorted using the key values
for each entry, since the keys provide a logical sort order by the way they are calculated. This
sorting of the table is done implicitly before the lookup of the tilt voltage is performed using the
well established quicksort algorithm that is also used by Schimmelmann (2007), for example.

The method tiltGratingToVoltage (float) is for engineering purposes only, in order to
provide a convenient way to set up the initial table values in the lab as well as for error checking
in the case of some failure of the instrument hardware or software. This function simply calls the
setGratingUnitTargetVoltage (float) of the HIRAMO service shown in Fig. 2.7.

To conclude this section Fig. 2.22 shows the engineering graphical user interface (GUI) for
the GratingUnit service. The left side of the interface is dominated by the lookup table panel,
allowing to edit existing tables as well as loading or creating new ones. Before data that has been
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i GratingUnitEngineerGu|
File

~Lookup Table Control Panel ~Set Grating Unit Position :
Show lookup table for grating: |hl‘gh dispersion grating | - | high dispersion grating
‘ Commit table to service ‘ | Reload table from service | —
\:: Ll lengi sp/dist/export/.JookupT: igh_dispersion_lookup_table.xmi| 200-1 H+K l
\high dispersion grating | 1501 Ks l
LUT position|Central Wavelength® | TiltVoltage |Grating Order*|  Tilt Angle
a 1.4 3.228 3 0 = — .
1 1425 2785 3 0 il Initialize Unit
2 1.45] 2.204| 3 0
3 1.475| 1.761 3 0 -Grating Tilt Control
4 1508 1.072 3 0 i
5 1.518| 0.7649 3 0 | set tilt voltage | | set tilt wavelength ‘
(i 1.541 0.202 El 0 i
7 1.55| =1.077| 3 0| Currently applied voltage: 0.527380 &
8 1.599| -1.313 3 0 = i
g v W] 3 0 Enter central wavelength :
10 1618 -1.815 3 0 [ s Titt | - =
11 1.644| -2.491 3 0 | m
12 1.652| -2.709 3 0 i
13 1655 3786 3 0 Select order: |1 V| Order used: 3
14 1.674 -3.28 3 0|
15 455 =HiTHY 3 o e Temperature Mode Control =
16 1.7 -4.173 3 0 = =
8 e [ — Y
| Remove Entry ‘ =
Set Warm Set Cold :
Interpolation function for this arating: [Linear interpolation Function | | | | | | :
Edit Configuration .. |-

- Automatic Update

Curent update: every secon (inactive)

‘ Q start || O st ‘

| Set update time in seconds: 1 ‘ Set update time

Figure 2.22: The GratingUnit engineer user interface. The lookup tables for the different
gratings are shown on the left side, while the right side holds the panels to move the unit to
different positions and to control the grating tilt.

changed is actually used by the service, the modified table has to be committed to the service
first. The bold column descriptions indicate that these columns are used to compute the key value
for the elements. For GratingTiltLookupTables these columns are the central wavelength and
the grating order, as pointed out before. The current tilt values that are used for the H band can
be seen in the figure.

The right part of the user interface is dominated by active control elements for the unit. In
the top right section, the position of the unit can be selected and the unit can be initialized, if this
is needed. Directly below this panel, the grating tilt control panel is located. The two buttons
named “set tilt voltage” and “set tilt wavelength” change the display mode of the panel. In the
mode shown in the figure, the central wavelength can be set, interpolating the tilt voltages from
the table values if necessary. This is the normal mode when lookup tables have been created and
the instrument is used by an engineer for tests of the GratingUnit service, for example. The
other mode (not shown) allows to select a tilt voltage directly. This mode is useful when the table
values have to be created or modified during lab tests, for instance. It allows to tilt the grating by
applying the desired voltage directly. The resulting central wavelength on the detector can then
be determined and the corresponding data added to the table. In both modes the grating order
can be set using the corresponding selection field of the interface.

The "Temperature Mode Control” section of the user interface was added for convenience
following a request by the engineers and is identical to the panel used in the engineering interface
for the HIRAMO service (see Fig. 2.8). It allows to select the temperature mode for the HIRAMO
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Figure 2.23: Photo of the Compen- Figure 2.24: Drawing of the Telescope Simulator,
sation Mirror, from Seltmann et al. taken from Seltmann et al. (2004). The instru-
(2004). ment is seen from the back side.

electronic card. Details about this issue are given in Section 2.2.2.

2.3.3 Another Example: The CompensationMirror service

The CompensationMirror service is the second example that is used to describe the Instrument
Layer services. One the one hand, it is more complex than the GratingUnit service with respect
to lookup tables that are used and on the other hand, the movement of the physical unit is more
simple, because only the MCU service is involved, i.e., there are no switches that have to be checked
by the HIRAMO service. First the physical unit is introduced very briefly, then the software service
follows afterwards.

The physical unit

Two identical mirrors are mounted inside the instrument that allow compensation of the movement
of the image on the detector due to instrument flexure. This is necessary to keep the image motion
on the detector in the sub—pixel range. Because of the compact optical design with four mirrors
used in the collimator, it is impossible to stiffen the structure enough to fulfill this specification.
Thus, active flexure compensation is required (Seifert, private correspondence). Referring to
Fig. 1.4 in the optical path of the instrument, the movable mirrors are the first (M1) and the
fourth (M4). The mirrors two and three (M2 and M3) are fixed. M1 is called Alignment Mirror
and intended to be used for the initial alignment of the optics only, M4 is called Compensation
Mirror and is used for flexure compensation. Both are identical, however, so in principal M1 could
also be used to compensate instrument flexure. Fig. 2.23 shows the mirror mount with labels for
the important parts. The mirrors can be moved around two axes using stepper motors connected
to a spindle drive. The total tilt range is +1° with an accuracy of +1arcsecond. More details
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about the physical unit are given in Seltmann et al. (2004).

The flexure of the instrument will depend on two variables, both of which have an effect on
the resulting vector of the gravitational force acting on the instrument. The main influence on
this force will be due to the rotator angle of the instrument. Another, less important influence,
will be due to the elevation angle of the telescope. If the LUCIFER instrument was to be mounted
parallel to the elevation axis of the telescope, this angle would effectively compensate some fraction
of the rotation angle of the instrument. But since it is located at the “Bent Gregorian Front”
focus, which is inclined with respect to the elevation axis, the resulting gravitational force on the
instrument also depends on this angle.

The influence of different rotator and elevation angles can be tested in the lab using the
Telescope Simulator (see Fig. 2.24). It is possible to rotate the instrument by +180° and to tilt it
by +£30°, to simulate different elevation angles of the telescope (Seltmann et al. 2004). Detailed
flexure tests have been made again at the telescope during the commissioning of the instrument.
Results form these measurements are presented in the next paragraph after the structure of the
lookup tables has been introduced.

The software service

Since both mirrors are physically identical, the CompensationMirror service is able to control the
Compensation Mirror as well as the Alignment Mirror. To determine that the Alignment Mirror
should be controlled, the command line argument -controlAlignmentMirror can be used when
the service is started. To compensate the instrument flexure the mirror can be moved around two
axes. To do this movement correctly, the position of the mirror must be known. Unfortunately, no
encoders are available for the mirror control motors, so the absolute position of these motors, and
thus the position of the mirror cannot be determined absolutely. The motion control electronics
do have an internal step counter, but due to different effects, this step counter will not always
represent the correct absolute motor position. The most likely effects for this are that the motor
is loosing steps while it is working or a shift in the position due to some external force on the
axis. This problem cannot be avoided completely, but to achieve a reproducible positioning of the
motor an initialization routine has been implemented for the CompensationMirror service. This
initialization tries to move both motors of the mirror to the negative limit switches, resetting the
motor steps counter of the electronics to zero when the switch is reached. From this position, the
motors move a predefined amount of steps to a nominal position that has to be determined by
an engineer. This nominal position must be specified in units of motor steps for both motors and
is stored in the service configuration file. Provided that no steps are lost during the movement
from the negative limit to the reference position, a reproducible positioning of the mirror can be
achieved. Of course this initialization has to be tested repeatedly, to confirm the positioning of the
mirror. As one example for such a test, a special (pinhole) mask that creates one or more reference
points on the detector image could be used, provided that the positioning of the mask in the focal
plane is sufficiently accurate. The correct positioning of the mirror could then be confirmed
by measurements of the reference point coordinates after the initialization and comparison with
previous values.

The MirrorTiltLookupTables that are used by the CompensationMirror service, contain
motor step values for both motors. These table values are defined as relative offsets for a motor
to move in order to re—center a reference point, that can be freely chosen, back to its nominal
position. Fig. 2.25 illustrates this. Suppose the reference point is moved on the detector by dx and
dy pixel. In order to move the point back to its origin, the first motor of the Compensation Mirror
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pixel coordinate (x)

offset due to flexure

pixel coordinate (y)
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\

Motor 1 steps (m1)

Figure 2.25: The flexure compensation principle: the reference point is shifted by dx and dy pixels.
To compensate this, the motors have to be moved by —dm1 and —dm2 steps.

has to be moved by —dm1 steps and the second motor has to be moved by —dm2 steps. Note
that for clarity reasons in Fig. 2.25 it is assumed that the pixel and motor coordinate systems are
parallel. The procedure works just as well, if the two coordinate systems are rotated with respect
to each other. This is the case for Compensation Mirror inside the LUCIFER instrument. There
is a “crosstalk” of ~4% between the two axes. This means that moving one motor for 100 steps
in one direction moves the mirror an equivalent of 4 steps in the second direction. This makes the
calculation of motor step values from pixel coordinates more complex but the procedure works as
illustrated.

The service uses different lookup tables to determine the motor steps to compensate the
instrument flexure. Analog to the GratingUnit service, these tables are loaded when the service
is started, but can be altered and adjusted during operation of the service. For each of the three
cameras, two lookup tables are used. The shift of the image on the detector obviously depends
on the camera that is currently in the optical beam. Additionally, during the flexure tests it has
become clear that a significant hysteresis is present when the instrument is rotated back and forth
by a constant angle. Even after a full rotation by 360° a small residual flexure offset exists and
the instrument is not back at its starting point. To accommodate for this, one lookup table is
used for clockwise rotation and another one for counter—clockwise rotation. Figs. 2.26 and 2.27
show the latest measurements for the N1.8 camera. The telescope was positioned at zenith and
the instrument rotated in 30° intervals from an angle of 0° to 360°. For each rotator angle
position an image was taken with a sieve mask placed in the focal plane of the instrument.
This configuration allowed to measure the movements of reference points for the different rotator
angles precisely. As can be seen in the figures, the two curves show completely different shapes
and are not closed. Flexure measurements have been made for various elevation angles of the
telescope — horizon, 30°, 60°, and zenith — and the hysteresis can be seen at each elevation.
The causes for this behavior is still under investigation. Tests with the Compensation Mirror
service have shown that the flexure can be effectively compensated using different lookup tables
for each rotation direction. The repositioning of the reference point has been better than 0.1 pixel
when the instrument was rotated back and forth. However, the shape of the flexure curve seems
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Camera: N 1.8, Elev.: 90, Rotation: clockwise
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Figure 2.26: Flexure plot for the N1.8 camera for clockwise rotation with the telescope at zenith.
Shown is the movement of a reference position for rotation angles from 0° to 360° in 30° intervals.
The reference coordinates are pixel coordinates. The uncertainty of the position measurements is
indicated by the size of the boxes.

Camera: N 1.8, Elev.: 90, Rotation: counter clockwise
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Figure 2.27: Same as in Fig. 2.26 but for counter—clockwise rotation.
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to vary slightly, so that exact repositioning below 0.5 pixel could not yet be achieved every time.
This value has been aimed for to minimize image shifts due to flexure below the expected image
quality for operation of the instrument in AO mode (Seifert, private correspondence). The cause
for this changes of the flexure curve need to be investigated further during the next months.

A natural choice for the key of an MirrorTiltLookupTableElement is the combination
of a rotator and an elevation angle. For this reason the unique concatenation of both values
to one string has been chosen. Further, to correctly interpolate values from the table data
depending on the given rotator and elevation angles, the table must be sorted differently based
on these angles. To achieve this, the MirrorTiltLookupTableKey class has been created. It
is shown, together with the other lookup table classes for the CompensationMirror service,
in the lower part of Fig. 2.28. To provide the ability to compare two keys, two methods can
be used. The greaterAs(MirrorTiltLookupTableKey, int) returns true if the key object
that is passed as a first parameter is smaller than the object for which this method was called.
The method smallerAs(MirrorTiltLookupTableKey, int) returns true for the other case.
The second parameter defines the sort order, which should be used to compare the elements.
This is effectively defining whether to compare rotator angles or elevation angles. To test if two
MirrorTiltLookupTableKeys are equal, the equals(Object) method can be used as usual.
Together with the key, two motor step values are stored in the MirrorTiltLookupTableElement,
which contain the necessary offsets from the reference position to compensate the flexure for the
corresponding rotator and elevation angle.

In the left part of Fig. 2.28, the class diagram for the MirrorTiltLookupTable is shown.
It extends the TwoDInterpolatingLookupTable class and the user is therefore able to define
two distinct interpolation functions for each dimension. The first dimension is the rotator angle,
the second dimension is the elevation angle. The interpolation functions for the angle XX can be
set using the corresponding setXXAngleInterpolationFunction(InterpolationFunction)
methods.

The sort order that is used for sorting the data entries can be set using the
setSortOrder (int) method. The selected order is then passed to the compare methods of
the MirrorTiltLookupTableKey objects as described above. When the data is interpolated the
sort order is automatically adjusted for the needs of the current interpolation, however.

The description of the CompensationMirror service as an finite state machine is much simpler
than for the case of the GratingUnit. Basically, only two states are possible:

e the unit is initialized or
e the unit is not initialized.

The difference between the two states is that for the former state the motor positions are known
by the software service, while for the latter one, the positions are not known. Since there is no
encoder available for any of the motors, this position value is somewhat arbitrary. Therefore,
the service can be initialized in two ways. The first way is called passive initialization, and the
current position of the motors are just read form the motion control electronics. This may be
useful if the mirror is already in position (verified by taking an exposure, for example) and the
service should be initialized without mirror movement. Another possible scenario for passive
initialization would be the case of a temporary shutdown of the CompensationMirror service
and a later restart, without any interaction with the mirror motors in between and assuming that
the electronics are not switched off. The second mode is called active initialization and reflects the
procedure presented earlier: both motors are moved to the negative limit first, the step counters
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‘ TwoDlnterpolatingLookupTable InterpolatedLookupTableElement |
extends extends
MirrorTiltLookupTable MirrorTiltLookupTableElement
- key
+ MirrorTiltLookupTable() - motor1Steps
+ MirrorTiltLookupTable(String) - motor2Steps
+ MirrorTiltLookupTable(String, int)
+ isSorted(): boolean + MirrorTiltLookupTableElement()
+ getSortOrder(): int consists of + MirrorTiltLookupTableElement(MirrorTiltLookupTableKey, int, int, boolean)
+ setSortOrder(int) + getinterpolationEntryNumber(): int
+ sortTable() + getNumberOfEntries(): int
+ addElement(LookupTableElement, + getEntry(int): Object
+ editElement(int, int, Object) + setEntry(int, Object)
+ setRotatorAnglelnterpolationFunction(InterpolationFunction) + getKey(): Object
+ setElevationAnglelnterpolationFunction(InterpolationFunction) + isKey(int): boolean
+ getRotatorAnglelnterpolationFunction(): InterpolationFunction + getClass(int): Class
+ getElevationAnglelnterpolationFunction(): InterpolationFunction + getEntryName(int): String
+ getinterpolatedElement(Object, Object): InterpolatedLookupTableElement + getEntryDescription(int): String
+ getNewElement(): LookupTableElement

uses

MirrorTiltLookupTableKey

- rotatorAngle
- elevationAngle

MirrorTiltLookupTableKey()
MirrorTiltLookupTableKey(float, float)
getElevationAngle(): float

setElevationAngle(float)

getRotatorAngle(): float

setRotatorAngle(float)

getAngle(int): float

equals(Object): boolean

hashCode(): int
greaterAs(MirrorTiltLookupTableKey, int): boolean
smallerAs(MirrorTiltLookupTableKey, int): boolean

+ o+ o+ o+ o+ o+ o+ o+ o+ o+ +

Figure 2.28: Class diagram of all classes necessary for lookup data for the CompensationMirror
service.

are reset to zero and afterwards the motors are moved by the reference steps defined in the service
configuration. The active initialization of the mirror is always recommended, if the current mirror
position is not known a priori, or the motion control electronics have been reset or switched off. It
also helps to avoid the problem that the mirror sometimes fails to move correctly when only small
correction movements have been sent to the motors for a longer time period, i.e., a couple of days.
This behavior has shown up during the final lab tests and the commissioning of the instrument,
but can reliably been solved by driving the motors for a larger amount of steps back and forth.

The class diagram of the CompensationMirror service is shown in Fig. 2.29. The two dif-
ferent ways of initialization can be selected by using the initializeMirror(boolean) method,
where the argument set to true defines active initialization. The mirror that is controlled by
the service can be determined with the getMirrorUsage() method. Note that there is no
setMirrorUsage (int) method, so changing the controlled mirror is not possible while the ser-
vice runs. This has been done on purpose to avoid confusion and errors due to misconfiguration
of the service while operating the instrument, i.e., due to mixed up lookup tables. Instead, two
instances of the CompensationMirror service should be run, one controlling the Compensation
Mirror, the second controlling the Alignment Mirror with different lookup tables for each of the
services. These lookup tables can of course be modified or altered while the services are running.

Additional methods are provided to get and set the different values that are needed to inter-
polate the data from the current instrument and telescope configuration, like the camera position,
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«interface »
RMICompensationMirror

adjustMirror()

getCamera(): int

getCurrentMotorSteps(): int[]
getElementName(int): String

getElevationAngle(): float
getinterpolationFunction(int, String, int): String
getLookupTable(int, String): MirrorTiltLookupTable
getLookupTableFileNames(): String[]
getMirrorUsage(): int

getMotorSteps(): int[]

getRotationDirection(): String

getRotatorAngle(): float

initializeMirror(boolean)

islnitialized(): boolean

isJournalizerUsed(): boolean
loadLookupTable(int, String)
resetMirrorMovements()

setBothAngles(float, float)

setCamera(int)

setElevationAngle(float)
setlnterpolationFunctionForTable(int, String, int, String, boolean)
setLookupTable(MirrorTiltLookupTable, int, String)
setRotatorAngle(float)

simulateAdjustMirror(): int[]
useJournalizer(boolean)
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Figure 2.29: Class diagram of the CompensationMirror service.

rotator and elevation angles. It is important to note at this point, that the CompensationMirror
service does not try to get the corresponding values on its own (i.e., by using a client for the other
services). Instead, the values have to be set explicitly. This is done on purpose to ensure that the
service can be used, even in the situation when other services are not available. The coordination
of the necessary interaction between the service is left to the different manager services of the
Operation Layer which will be described in detail in Section 2.4. Of course, the values can also
be set directly by an engineer, if this should be needed.

The adjustMirror () method is used to directly adjust the mirror to compensate the in-
strument flexure depending on the currently set conditions. To test the interpolation routines
before actually moving the mirror the simulateAdjustMirror() method must be used. It
returns two integer values with the calculated motor steps for motor one and motor two, re-
spectively. The motor positions can be read with different methods: the getMotorPositions()
method returns the buffered values as they were last read by the service (passive read), while
the getCurrentMotorPositions () method actively reads the values from the electronics. This
behavior is analog to the GratingUnit service (see last section) and the environment control
services introduced in Section 2.2.2.

To summarize the CompensationMirror service section, Fig. 2.30 shows the engineering user
interface to the service. The mirror usage of the service is shown in the title section of the user
interface. As can be seen in the figure, the Compensation Mirror is controlled in the presented
example. Analog to the engineer interface for the GratingUnit service (see Fig. 2.22), the left
part of the interface shows lookup table data that is used by the service. In the figure some of the
data for the N3.75 camera can be seen for clockwise rotation of the instrument. As mentioned
above the measurements where carried out using 30° intervals for the rotator angle at each chosen
elevation of the telescope. The elevation of the telescope was also varied using 30° steps from
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Figure 2.30: The engineer user interface for the CompensationMirror service. Lookup table data
is placed left, the service control elements are located on the right side of the interface.

the horizon to the zenith. The lookup tables can be edited, saved or loaded locally. Like for the
GratingUnit, before modified tables are actually used, they must be committed explicitly to the
CompensationMirror service.

The right section of the engineer interface contains the control components. The current
camera can be selected using the drop down GUI element. Below the “Select Camera” area the
current rotation direction of the instrument is shown. This cannot be set directly, Instead the
direction is computed from the changing rotator angle values. Next to these two components the
“Mirror control” area is located. Three buttons are available, namely the “Initialize”, "Adjust
Mirror”, and “Reset Mirror” buttons. The check—boxes beneath the upper two buttons determine
the behavior of the corresponding buttons, with the “Force limit adjust” check—box specifying
an active initialization when it is selected, and the “Show adjust first” check—box displaying the
calculated motor steps for the mirror first, without actually moving it. The third button can be
used to reset the mirror to the position it was before the flexure compensation has been started.
The rotator and elevation angle can be set using the corresponding components, and the current
mirror positions are shown in the bottom right section of the interface.

Altogether, the user interface looks very similar to the one used for the GratingUnit service
(Fig. 2.22) to minimize the learning curve for handling of the instrument units for the engineers.
This is the case for all other user interfaces of the Instrument Layer that use lookup table data,
like the DetectorUnit and the FilterUnit services. Different from this layout are the more
simple interfaces to the CameraUnit and PupilViewer services.

While the services of the Instrument Layer provide all the functionality necessary to control
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the LUCIFER instrument and its components, it would be very cumbersome to actually use the
instrument for NIR astronomical observations, if the software development would stop at this point.
Effective observations require the automated interaction of three elements, namely the telescope,
instrument and detector read—out. The detector read out is separated from the instrument in this
case because it is controlled by an external software system. All of the needed functionality is
located in the upper most layer of the LUCIFER control software package, the Operation Layer.

2.4 Operation Layer

The Operation Layer is the highest level of the LUCIFER control software package (see Fig. 2.2).
In this layer, the components that are used to operate the instrument are located, including
software to plan observations, software to carry out these observations in an automated fashion
and software packages to manage the whole system to work seamlessly together.

The section begins with general remarks about the operation of the instrument, followed by
a detailed overview about the user interaction principles that have been implemented to allow
different kinds of access levels to the software system. The work on the Operation Layer is still
in progress at the time of writing of this thesis. A substantial fraction has been implemented
during the commissioning of LUCIFER 1 in the last months. Still, the planned operation mode of
the instrument has not been completely finished. To nevertheless allow for an efficient handling
of the instrument during that time, an intermediate tool for automated use of the instrument
has been implemented. It enables the processing of text scripts and relies on the same operation
mechanisms, i.e., the three managers, as the more sophisticated tools that are finally foreseen.
These observation scripts are thus ideally suited to explain the principles and have been successfully
used during the commissioning. They are presented in 2.4.2. The three manager services, the
Instrument Manager, Readout Manager, and Telescope Manager, that are used to control
the different subsystems are introduced after this.

The work on this layer is and has been carried out by different people, with a substantial fraction
of the planning software as part of a diploma thesis (Schimmelmann 2007). The Instrument
Manager and Telescope Manager have been implemented by Dr. M. Jitte. References to these
works will be clearly stated.

2.4.1 Observing with LUCIFER

Gone are the times when astronomers interacted directly with the telescope, i.e., moving its
axes to get a new pointing on the sky, or with the instruments they were using, like changing
and developing photographic plates. Today, the operation of an astronomical instrument (or
telescope) is more like controlling a complex machine used in industry. The main reason for
this is that modern instruments have become much more complex than in past times, of course.
Only a couple of decades ago observations were made with “simple” photographic plates, which
had to be cut to the right shape, placed in the focal plane of the telescope and developed after
the exposure had been taken. Observations with an instrument like LUCIFER are much more
complex in detail. The instrument has hundreds of switches, many motors and complex electronic
equipment, all of this is working at cryogenic temperatures in a vacuum, so no manual interaction
with the hardware of the instrument is possible. However, the typical astronomer should not have
to worry about these details. This means that nowadays, the control software has to take care
that the observations are nearly as “simple” as with photographic plates.
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The second important reason for the changing needs of operating an astronomical instrument
is high efficiency. Observation time is getting more and more expensive, a single night at the
LBT costs many 10.000 US dollars, for example. Since the weather conditions cannot be changed
— even at the best astronomical sites in the world the weather is bad during some nights of the year
— the available observation time must be used as effectively as possible. This puts high pressure
on the performance of instrument and telescope. Especially for the instrument this means that
setup changes must be done quickly, at best while the telescope is moving to the next target.
For the case of near infrared observations, the efficient interaction between the telescope and the
instrument is of utmost importance. Since these observation require many telescope movements
between exposures (for details about this point see Section 3.2.2), an unnecessary loss of only
a couple of seconds between every exposure and telescope movement can accumulate to many
minutes or even hours for a whole night. The concepts that are applied to achieve an effective
automated operation of the LUCIFER instrument are presented in Section 2.4.2.

Although high efficiency can best be addressed with an automated operation of the instrument,
the operation of an instrument also always involves the interaction with users. The control software
must account for the different interaction needs of these users. They can be distinguished into
two main groups: engineers and observers. The former need access to all components of the
instrument, without having to rely on the more complex software services, which might fail after
all, while the latter want efficient observations, that at the same time can be changed quickly
depending on the needs that arise during the night. Additionally, these observers are not, and need
not to be, very familiar with the details of the instrument, so the interaction possibilities provided
to them must ensure that no damage can be done to the instrument. The different interaction
principles and the tools that are provided in the software package are presented in the following
sections.

User interaction principles

The functionality that a software must provide to the user depends strongly on the intended
type of user. If different user types are supposed to work with the same system, the necessary
functionality also takes multiple characteristics. If one considers the product database system of
a company, the possible user types could be customers that simply use the data that is stored in
the system, e.g., by browsing through the catalog of available products of the company, employees
that are allowed to edit and create new data, and database administrators that are able to change
the layout of the system. Each of these users need a different interface to the system, graphically
as well as with regard to the provided functionality.

For the application of an astronomical instrument, the main user types are engineers and
observers. Included in the first group are the system engineers that work with the instrument
while it is still being integrated in the lab, as well as the instrument scientists that are later
responsible, when the instrument is already commissioned and running at the telescope. To the
observer group belong literally all other users of the instrument that use it in order to carry out
scientific observations. To represent these different user types, their access to the software and
thus to the instrument itself, three different Interfaces have been created in the software:

1. Basic: this interface defines the most rudimentary access to a service that is possible. For
some services this includes only the function to test whether the service is running or not.

2. Observer: this interface defines functions needed by the observer user group, i.e., as-
tronomers.
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3. Engineer: this interface provides full access to all methods offered by a service to allow
full control over the system.

The implementation of this access levels to the software is shown in Fig. 2.31. On the left
side of the diagram are the three main interfaces that were just introduced. As can be seen in
the figure, the three interfaces are linked by inheritance, which means that each level of access
automatically includes all methods that were defined at lower levels. Observers always have at
least the same access as defined for the Basic interface and Engineers inherit the access from
Observer (and subsequently also from Basic) levels. The right side of the figure shows the
access that has been defined for the GratingUnit service (see Section 2.3.2). As can be seen in
the figure, basic access to the GratingUnit service includes the ability to query the position of
the unit (as it was last read by the service, see below) as well as the test if the service is initialized
or running at all. Observer access to the service grants the further rights to set a new position
for the unit, as well as the ability to tilt and untilt the gratings, to name the most important
functions. The Observer interface therefore defines all methods that are necessary for operating
the instrument from the point of view of an astronomer who wants to do his/her science. It
does not include the ability to change the used lookup tables or modify the used interpolation
functions. Further, any active interaction with the hardware as the getCurrentPosition() or
getCurrentTiltVoltage () methods would carry out is also not available at the Observer level,
but is exclusively reserved for Engineer access. If all three interfaces are taken together, the full
functionality of the GratingUnit service is provided (compare with Fig. 2.20).

Furthermore, another distinction between the different access levels is made. Apart from
providing varying access methods at different levels, changing access types are used also. Direct
access, i.e., the method calls defined in the interface are directly forwarded to any of the services,
is only possible at the Engineer level. The other two access levels only provide indirect access
to the service, which means that the client that implements these interfaces does not contact the
corresponding service directly. Instead, depending on the relevant service, one of the three manager
services, i.e., the InstrumentManager, ReadoutManager or TelescopeManager is contacted and
the request is send. The command that was issued by the observer is then carried out by the
manager, by contacting the service of the Instrument Layer or Control Layer when it is save to
do this. This is a necessary requirement to prevent damage to the instrument by an inexperienced
observer.

The differences between the varying interaction principles are discussed in detail in the next
paragraphs.

Engineers vs. Observers

How does access control work in practice? As an example consider again the GratingUnit service.
If, for instance, the lookup table data for the GratingUnit needs to be changed because more
precise measurements have been carried out since the table was set up, this cannot be done using
the Observer interface, because at this level no method exists to change the lookup tables. This
reflects the essential necessity that observers can not mess up the configuration of the instrument
by accident. Therefore, the GratingUnitEngineer interface must be used. An obvious point
to control the access to the software is the interface that is provided for the users. Thus, every
graphical user interface of the control software extends one root class, which is called LPanel (see
Fig. 2.32). It defines three constructor calls, one for each access level. Thus, the access that is
possible with the LPanel is defined when the interface is created, by passing a client of appropriate
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«interface »
Basic

+ isAlive(): boolean

extends

«interface »
Observer

extends

«interface »
Engineer

extends

extends

extends

«interface »
GratingUnitBasic

+ getPosition(): int
+ islnitialized(): boolean

extends

«interface »
GratingUnitObserver

getCentralWavelength(): float
getElementName(int): String
getElementPosition(int): int
getGratingOrder(): int
isJournalizerUsed(): boolean
isLoopClosed(): boolean
isTiltStable(): boolean
setGratingOrder(int)
setPosition(int)
tiltGratingToWavelength(float)
untiltGrating()

+ o+ o+ o+ + o+ 4+ o+ o+ o+

extends

«interface »
GratingUnitEngineer

getCurrentPosition(): int
getCurrentTiltVoltage(): float
getinterpolationFunction(int): String

getLookupTableFileNames(): String[]
getTiltVoltage(): float
initializeGratingUnit(): int
loadLookupTable(int)

getLookupTable(int): GratingTiltLookupTable

+ o+ 4+ o+ + + 4+ o+ o+ o+ +

setinterpolationFunctionForTable(int, String, boolean)
setLookupTable(int, GratingTiltLookupTable)
tiltGratingToVoltage(float)

useJournalizer(boolean)

Figure 2.31: This class diagram illustrates the different service access levels. The general interfaces
shown left distinguish between the main access to a service. On the right side of the figure, the
different levels are shown for the example of access to the GratingUnit service.
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LPanel

+ LPanel(Basic)

+ LPanel(Observer)

+ LPanel(Engineer)

+ getType(): int

+ hasDirectAccess(): boolean
+ getClientReference(): Object

extends

GratingUnitPositionSelectPanel GratingTiltLookupTablePanel

+ GratingUnitPositionSelectPanel(GratingUnitEngineer) + GratingTiltLookupTablePanel(GratingUnitEngineer)
+ GratingUnitPositionSelectPanel(GratingUnitObserver)

uses uses uses
«interface » «interface »
GratingUnitObserver GratingUnitEngineer

Figure 2.32: This class diagram illustrates how access to the GratingUnit service is managed
for graphical user interface component. The LPanel class defines three constructor calls with
different access types as a parameter. The GratingTiltLookupTable class only has one con-
structor, allowing Engineer access, while the GratingUnitPositionSelectPanel allows access
for observers as well as engineers. For clarity, only the most important methods are shown.

access kind (i.e., Basic, Observer, or Engineer) to one of the three constructors. The different
components that the panel consists of for data display and to control the underlying service can
use this client to get their data or invoke actions by calling the getClientReference(). To test
if the panel has engineering access to the underlying service, the method hasDirectAccess() is
provided. This is used to change the background color of the panel, to visualize direct and indirect
access, for example.

In the middle of Fig. 2.32, two implementations of a LPanel are shown, which are used
by the graphical user interface for the GratingUnit service. First, the focus is set on the
GratingTiltLookupTablePanel shown on the right side of the figure. It is the component
that is used to modify lookup table data of the service. The panel has only one constructor,
which takes a GratingUnitEngineer as an argument. This already defines that only clients with
Engineer access to the service can be used with this panel, and therefore clients for Observer
access do not get the chance to modify lookup table data by accident.

Apart from the fact that using the LPanel class easily allows access control to the ser-
vices, another useful feature is provided as well. The same graphical components can be used
for different access types. The GratingUnitPositionSelectPanel, shown on the left side of
Fig. 2.32, illustrates this. The panel allows to select the position of the Grating Unit by clicking on
the appropriate button. Obviously, this functionality is needed both by engineers and observers.
Consequently, the setPosition(int) method is already defined in the GratingUnitObserver
interface (see Fig. 2.31). The GratingUnitPositionSelectPanel defines two constructors, one
for Engineer access, the other for Observer access. From the point of view of the panel compo-
nents, it does not make a difference which client is actually used to invoke the setPosition(int)
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—p setPosition(int) ) ) . —p setPosition(int) ) )
GratingUnitPositionSelectPanel GratingUnitEngineer

+ setPosition(int)

Engineer . " .
GratingUnitService

+ MmoveMotor(MotorAddress)

LUCIFER MCU

Figure 2.33: This collaboration diagram shows the involved classes when an engineer selects
a new position for the GratingUnit service. The call is forwarded directly to the service by
the client.

- setPosition(int) ) setPosition(int) —) commit(InstrumentSetup)
GratingUnitPositionSelectPanel GratingUnitObserver InstrumentManager

« setPosition(int)

Observer
GratingUnitService

« MmoveMotor(MotorAddress)

LUCIFER MCU

Figure 2.34: This collaboration diagram shows the involved classes when an observer selects a
new position for the GratingUnit service. The call is forwarded as a new InstrumentSetup
to the InstrumentManager. When it is safe to do so, the new position is committed to the
GratingUnitService, which itself subsequently sets the position of the unit.

+ getPosition() + getournalizerObject(int)

Engineer
GratingUnitService Observer Journalizer

Figure 2.35: This collaboration diagram shows Figure 2.36: This collaboration diagram shows
the involved classes when an engineer queries the involved classes when an observer queries
the position for the GratingUnit service. The the position for the GratingUnit service. The
call is forwarded directly to the service by the call is not sent to the service. Instead, the
client. Journalizer service is contacted.

getPosition() getPosition() getPosition() getPosition()
> GratingUnitPositionSelectPanel > GratingUnitEngineer > GratingUnitPositionSelectPanel > GratingUnitObserver

method, since for both types the method exists. This is always guaranteed because of inheritance,
as is shown at the bottom of Fig. 2.32. The two access interfaces are the same as the ones shown
on the right side of Fig. 2.31.

What will happen now, when different clients are used with the panel. Fig. 2.33 shows a
collaboration diagram of the involved classes for engineer access. The engineer selects a new
position for the unit by clicking on one of the buttons. This call is then sent from the panel to the
GratingUnitEngineer client. Since the client has Engineer access to the GratingUnit service,
the call is directly forwarded to it. Assuming that the physical unit is able to move, it will begin
to do so immediately, because the GratingUnit service sends a moveMotor (MotorAddress)
command to the MCU service for the instrument. This will happen regardless of the current states
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of the other units, i.e., even if an exposure is currently taken. It is assumed that the engineers
know what they are doing and are experienced enough not to make mistakes easily.

If we look at Observer access on the other hand, the situation is different. Fig. 2.34
shows this case. The observer selects a new position for the unit by clicking on a button of
the panel. This call is sent to the GratingUnitObserver client. This time, the client cre-
ates a new InstrumentSetup and sends it to the InstrumentManager. When it is safe to do
this, i.e., no exposure is currently being taken, the InstrumentManager sets the new position
of the unit by contacting the GratingUnit service. As can be seen by this example, there is no
direct interaction between the observer and the GratingUnit service, although from the point of
view of the graphical component, no difference exists for the two cases.

Observer access does not require direct interaction, even to get a position from any service.
Figs. 2.35 and 2.36 show this for the Engineer and Observer access levels, respectively. For
Engineer access the call of the getPosition() method is forwarded to the GratingUnit service
directly, as usual. The GratingUnitObserver client, does not contact the GratingUnit service
for the position (see Fig. 2.36). Instead, the Journalizer (Section 2.2.1) is queried for the last
GratingUnitStatus object. The position of the unit can be extracted from this object by the
GratingUnitObserver client using the getPosition() method (see Fig. 2.5 on page 29).

Special needs for Observers

As mentioned in the introduction of the Operation Layer section, modern astronomical obser-
vations require efficient operation of telescopes and instruments. This implies that, apart from
distinct access rights between engineers and observers concerning the direct control of the instru-
ment, observers need more tools at their hand to operate the instrument than the simple direct
setup of the instrument using some buttons to select different cameras, filters and gratings. Espe-
cially for near infrared astronomy, observations have to be well planned before they are supposed
to be carried out (see chapter 3). Most observatories with large telescopes today have tools that
allow astronomers to prepare their observations when they successfully proposed for observation
time. One prominent example is the Phase 2 Proposal Preparation (P2PP) tool that is used for
all active telescopes at ESO.

It was thus straightforward to decide that for the LUCIFER control software, an OPT would
be highly beneficial. The development of the tool was part of a diploma thesis (Schimmelmann
2007). However, the OPT has not been used to plan observations with the LUCIFER until now
because it relies on some parts of the Operation Layer that are not fully operational yet. One
missing service is the Scheduler, which has been designed and implemented as a prototype in
the scope of Schimmelmann (2007). For the commissioning of the instrument the prototype could
not be used, however, because it could not yet be adapted to the current state of the software.
Therefore, a another tool has been developed to fill the “gap” until the Operation Layer is fully
completed. It allows the parsing and processing of text files that describe the observations to be
carried out in a fully automated way.

2.4.2 QObservation scripts

Efficient observations require a good coordination between the telescope and instrument. For the
instrument, an additional separation for the detector and all other units is made in the software
architecture. These three entities, telescope, instrument and detector, must be controlled in such
a way that the different work packages that need to be carried out are distributed effectively.
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This task will finally be handled by the Scheduler service. But since it is not available yet (see
above), the decision was made to use scripting files to carry out the observations automatically.
The scripts are simple text files that can be edited easily. They have the following structure:

[START_INSTRUMENT_SETUP]
INSTRUMENT PARAMETER =value #comment

[END_INSTRUMENT_SETUP]

[START_TELESCOPE_SETUP]
TELESCOPE PARAMETER =value #comment

[END_TELESCOPE_SETUP]

[START_READOUT_SETUP]
READOUR PARAMETER =value #comment

[END_READOUT_SETUP]

[START _OBSERVING_SETUP]
OBSERVATION ELEMENT =element parameters  #comment

[END_OSERVING_SETUP]

Every script can have up to four sections. These sections are defined by the special tokens
[START xxx_SETUP] and [END_xxx_SETUP]. The four sections of the script are mapped to the
following objects that describe the observation:

1. An InstrumentSetup containing all information about the configuration of the LUCIFER in-
strument. It is evaluated by the InstrumentManager.

2. A TelescopeScriptInformation with all data that is necessary for pointing the telescope
to a given target. It is evaluated by the TelescopeManager service.

3. The ReadoutSetup holds the necessary information for the ReadoutManager.
4. The observation itself is contained in an ObservationScriptSetup object.

Fig. 2.37 shows a class diagram of the ObservationScriptParser and the important classes
mentioned above. The observation script file that should be analyzed is passed as an argu-
ment when the ObservationScriptParser object is created. By calling the different parsing
methods, parseInstrumentSetup(), parseTelsecopeSetup(), parseReadoutSetup() and
parseObservationSetup(), all necessary information is created. Any errors present in the script
will be detected and a subsequent ScriptParseException will be thrown. The checking in-
cludes both the syntax of the script as well as a basic check for valid parameters, i.e. , for allowed
instrument configurations.

If some sections are not wanted or not needed in a script they can be left out. This is useful
for several situations, e.g., if no InstrumentSetup needs to be specified, because the instrument
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is already in the correct configuration. Additionally, this introduces a great flexibility into the
scripts, since they can also be used for taking calibration data for the instrument, like flat fields
or focus sequences. For these calibration scripts no Telescope Setup is necessary, for instance.
This feature to be able to leave out parts of the script also allows very flexible and easy operation
of the instrument during astronomical observations, because it allows different scripts to be used
for target acquisition and science observations. This is explained in more detail at the end of this
section.

For the setup of the telescope, instrument and detector the parameters are straightforward.
Schimmelmann (2007) gives a detailed description of this. How the scripts model an astronomi-
cal observation is more complex, however. The ObservationScriptSetup class which describes
these observations is shown in Fig. 2.38. The class is a container for ObservationSetupElements.
Using the addNewElement (ObservationSetupElement) method, the parser adds different ele-
ments to this objects as they are encountered in the script. The elements can be retrieved later by
their position in the setup and getNumberOfElements () can be used to query the total number.
This allows to loop through the whole setup, executing one element after the other.

The ObservationSetupElement class and the subclasses that have been defined so far are
also shown in Fig. 2.38. The class has one attribute, a field to determine that the current element
describes an acquisition position. When this attribute is set to true the automatic execution of
the script is paused until the observer explicitly resumes it. One possible application is the review
of an initial pointing of the telescope at the beginning of an observation. If the astronomer is not
satisfied with the pointing of the telescope he/she can correct it before the observation script is
resumed. Although such an acquisition is most commonly used at the beginning of a script, it
can be used anywhere in the setup.

Four types of ObservationSetupElements have been defined so far. These are shown with
their most important methods in the lower part of Fig 2.38. Only two of the types are used for
scientific observations, namely the OffsetPosition and the PointingPosition. The former
moves the telescope by a small offset from the initial pointing, the latter can be used to point
the telescope to any position in the sky. This is useful for observations of large targets, where the
telescope has to be moved to sky positions far away from the object. The FlatPosition and
FocusPosition types are used for automatic calibration measurements with the instrument. The
former type allows to take so—called flatfields to determine the detector sensitivity, the latter can be
used to measure the internal focus of LUCIFER. Each ObservationSetupElement has multiple
parameters, e.g., offset values or focus ranges. An exception to this rule is the FlatPosition,
which does not need any parameters. It simply triggers the start of an exposure of the detector.
A description of all parameters that are available would go beyond the scope of this section. A
summary is shown in Fig 2.38 which displays the getter methods — and thus the parameters
— for every type of ObservationElement. Additionally, a template script showing all possible
parameters is printed in Appendix B.

To provide more flexibility for the scripts in the future, it is sufficient to define new types of
ObservationElements. This has already been done in the past, e.g. , the FocusPosition type
was not planned at the beginning. It was implemented following a request from the instrument
engineers for an automated procedure of focus measurements. For the near future some template
types are foreseen to automate imaging scripts even more, than is currently possible. One proposed
type will allow “jittered” imaging. The astronomer will specify the number of exposures to take
within a certain distance from a reference point, rather than every offset explicitly. The template
will then compute random offsets of the telescope for the given constraints. This will increase the
flexibility of observations with LUCIFER even further.
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ObservationScriptParser
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Figure 2.37: This class diagram shows the ObservationScriptParser and the relevant classes
of objects that are created when an observation script is read.

ObservationScriptSetup ObservationSetupElement
+ ObservationScriptSetup() uses + ObservationSetupElement()
+ ObservationScriptSetup(int) + isAcquisitionPosition(): boolean
+ addNewElement(ObservationSetupElement) + setAcquisitionPosition(boolean)
+ getElementAt(int): ObservationSetupElement
+ getNumberOfElements(): int

extends

FlatPosition FocusPosition OffsetPosition PointingPosition
+ FocusPosition() + OffsetPosition() + PointingPosition()
+ FocusPosition(int, int, int) + OffsetPosition(double, double) + PointingPosition(Position, Position, boolean)
+ getFocusStart(): int + OffsetPosition(double, double, double) + getTargetPosition(): Position
+ getFocusEnd(): int + getOffsetCoordOne(): double + getGuideStarPosition(): Position
+ getFocusStep(): int + getOffsetCoordTwo(): double
+ getRotAngle(): double

Figure 2.38: This class diagram shows the various ObservationElements that can be used in
observation scripts. These are stored in an ObservationScriptSetup objects, for which the
class diagram is shown in the upper left part of the figure.

How are these scripts executed, after they have been parsed? This task is completed by
the ScriptExecutionHandler shown in Fig. 2.39. It gets up to four setups, if all four are
specified in the script, from the ObservationScriptParser and sends three of them (for the
instrument, telescope, and readout) parallel to the responsible manager. “Committing a setup”
has become the usual terminology for this sending. The commitInstrumentSetup() instructs
the InstrumentManager (see next section) to change the setup of LUCIFER for the next ob-
servation. At the same as the instrument setup is being sent, the commitTelescopeSetup()
is executed to preset the telescope to the desired position using the TelescopeManager. The
wanted detector configuration parameters are committed to the ReadoutManager also. Since
the needed time to configure all three units is different, with the telescope preset normally taking
longest, and the detector setup being the fastest, the continuation of the script execution has to be
paused until everything is ready. To test this the isInstrumentReady(), isTelescopeReady(),
and isReadoutReady () methods are used. Any errors during the initial setup are reported with
the setError(CommitException) method, which causes the stopping of the script execution
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ScriptExecutionHandler

ScriptExecutionHandler(ScriptingConnector, boolean)
isInstrumentReady(): boolean
isTelescopeReady(): boolean
isReadoutReady(): boolean
setintrumentReady(boolean)
setTelescopeReady(boolean)
setReadoutReady(boolean)
commitlnitiallnstrumentSetup()
commitlnitialReadoutSetup()
commitlnitial TelescopeParameters()
setError(CommitException)
commitlnitalSetups()
executeObservationSetup()
isExecutionPaused(): boolean

+ 4+ + + o+ o+ o+ o+ o+ o+ o+ o+ o+ o+

Figure 2.39: The class diagram of the ScriptExecutionHandler.

and reporting the failure to the user. After the initial setup has successfully been commit-
ted, the executeObservationSetup() method is called. It loops through all elements of the
ObservationScriptSetup, processing one element after another. For each element the specified
ReadoutSetup of the script is executed.

The capability of scripts is explained best by an example of how to use them for observations.
For instance, the acquisition and observation strategy for spectroscopy is the following: two scripts
with different instrument setups are created and executed subsequently. The first script does the
presetting of the telescope and target acquisition using the imaging setup of the instrument.The
second script — without a TelescopeSetup, thus leaving the telescope position unchanged —
changes LUCIFER to a spectroscopic mode and defines the exposure parameters for the science
spectra, i.e., central wavelength, exposure times, number of exposures per position, etc. The
second script further defines the offsets of the telescope to create a suitable observing pattern,
like “nodding on the slit” (see Section 3.2.2). Alternatively the initial setup can be done manually
using the graphical user interfaces. A script is used afterwards to take the exposures automati-
cally. During the commissioning this procedure has turned out to allow very efficient and flexible
operations with the instrument.

Regardless of the operation type, i.e., automatic or manual, that is used to control the instru-
ment, different setups have to be processed. This leads to three very important services that are
used in the Operation Layer: the manager services.

2.4.3 The different managing services

Why does the ScriptExecutionHandler need to contact the different managers to commit the
setups and not contact the Instrument Layer services directly? The answer to this question is the
principle of encapsulation of complexity into different objects to make the software more robust,
readable, and maintainable. To setup the instrument, telescope or detector is a difficult task that
needs careful thinking. We consider the necessary tasks for the InstrumentManager first. Most
of the work on the InstrumentManager, including the creation of the user interface was done by
Dr. M. Jitte. The implementation of the flexure compensation mechanism was done in the scope
of this thesis, however.
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Instrument Control

1| NO MASK IN USE

Figure 2.40: The InstrumentManager GUI.

InstrumentManager

Since the services of the Instrument Layer need information from other services of this layer to
solve their tasks correctly, they have to get this information somehow. One possibility would be to
let the services communicate with each other directly. This approach is however very error prone
in the case of a failing service that is needed by a couple of other services. One example for such a
service is the CameraUnit service. The information about the currently selected camera is needed
by the DetectorFocus service and the two services controlling the Alignment—and Compensation
Mirror. For the former service, the focus position obviously depends on the selected camera (and
on the selected filters), for the latter two services, the movement of the image on the detector will
also vary for different camera optics. The GratingUnit service is not affected, since the central
wavelength on the detector should not change with the camera, only the usable wavelength range.

If the CameraUnit service were to be deactivated or become inoperable for some reason, i.e., a
hardware failure of the camera wheel, and the dependent services would get their information
directly from the CameraUnit service, they would be inoperable as well. The consequence could
be that the whole instrument would become unusable, while in principle it could still be used,
assuming that one camera is still in the optical path. If the InstrumentManager is responsible,
on the other side, this is not a problem. The other services can be used as usual, only the selection
of a new camera would be prevented.
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Another great benefit to avoid direct communication between the services of the Instrument
Layer is the arising complexity of information exchange. Again for the example of the CameraUnit,
this means that this service needs to inform the depending services about a camera change. This
would introduce a level of complexity for the software service, that is not needed for the operation
of the physical unit. The coordination of the instrument is much easier if it is managed by one
central instance instead of many independent services. As a final benefit the current setup of the
instrument is available at one central place.

When the InstrumentManager gets a setup from the ScriptExecutionHandler, it config-
ures the units that need to change according to the information specified in the setup. Furthermore,
it updates the services that depend on setups of other services, like the CompensationMirror or
the DetectorFocus, with the new information. When the InstrumentManager has successfully
set up the instrument, a notification is sent to the ScriptExecutionHandler.

If the flexure compensation is switched on, information about the current elevation angle of the
telescope is needed also. To get this information, the TelescopeManager must be contacted, so
communication between the three manager services is necessary. The current information is queried
in regular intervals for the current values which are subsequently send to the CompensationMirror
service. When no exposure is currently taken the mirror is adjusted to compensate any instrument
flexure.

Fig. 2.40 shows the main observer GUI for the LUCIFER instrument. This user interface
communicates with the InstrumentManager in the same way the ScriptExecutionHandler
does. By selecting the elements represented by the buttons the astronomer creates a new
InstrumentSetup which is send to the instrument when “Commit Instrument Setup” is clicked.
As can nicely been seen, all the complexity of the instrument is hidden from the astronomer. Only
the necessary information is shown and asked. The tilt of the Grating Unit can only be specified
by the central wavelength, and not by the tilt voltage, for example, since the astronomer does not
need to know this detail. When changes are made to the instrument via any other source, e.g., ob-
servation scripts, the GUI is updated automatically. It may therefore also be used to check the
correct execution of scripts.

TelescopeManager

The telescope control package was implemented by Dr. M. Jutte. The following description gives
a short summary of the interaction between the instrument and the telescope and has been added
to this chapter for completeness.

The main task of the TelescopeManager is of course the control of the telescope and the
processing of the TelescopeSetups that it gets from the ScriptExecutionHandler. To do
this, the Telescope service of the Control Layer is used which communicates with the TCS using
an ICE interface provided by J. Borelli who is working at Max-Planck-Institut fiir Astronomie,
Heidelberg. The setup includes pointing and tracking information for the selected astronomical
target, as well as the desired telescope mode, i.e., if active or adaptive optics are to be used. The
current status values of the telescope, like the different coordinates — right ascension, declination,
azimuth and elevation — have to be queried in regular and small time intervals to provide the
necessary information to the Instrument Manager for flexure compensation.

The main observer interface for the TelescopeManager is shown in Fig. 2.41. The basic
layout is similar to that of the InstrumentManager GUI shown in Fig. 2.40. The top right button
commits a new TelescopeSetup to the telescope. The middle section shows current status data
for the telescope, while the lower part of the GUI allows to set new values for the next setup.
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Figure 2.41: The TelescopeManager GUI.

These values will be sent to the TelescopeManager when the “Commit Telescope Setup” button
is pressed. An exception is the lower left area of the interface which lets the user send small offsets
directly to the telescope. After more experience had been gained during the commissioning, this
functionality has been proven necessary.

ReadoutManager

The last of the three manager services of the Operation Layer is the ReadoutManager. It pro-
cesses ReadoutSetups with integration time and readout mode information, that it gets from the
ScriptExecutionHandler. The manager communicates with the GEIRS software, developed
at the Max-Planck-Institut fiir Astronomie, Heidelberg, using the readout package (see Sec-
tion 2.2.2). One important extension over the Control Layer service, that the ReadoutManager
has to provide, is the functionality to synchronize readout cycles with setup changes of the in-
strument and the telescope. This synchronization has to work in two directions, i.e., no exposure
should be started when any setup changes are made to the instrument and telescope on the one
hand, while no setup changes of the telescope or instrument should start during an exposure on

73



2. THE SOFTWARE

2.5.

Summary and Outlook

Readoutrwan@gerGUI

Readout Control

Exposure # © of 1

Last file luci_ 20090318 ptg_0005.fits

MNext file  luci_ 20090318 ptg 0006

Object BS9150

Current Readout Setup

Save image |automatic | ¥,

Mew object
New Readout Setup

DIiT 2.00

DIT 200 ROEMode o2der | ROEMode | o2der v
NDIT 1 Savemode normal NDIT 1 | savemode |normal | x

# exposures 1 (NINT)
Filename root luci_ 20090318 ptg_

Save Path [data/luci/20090318

# exposures 1 (NINT)

Filename root luci_ 20090318 _ptg_

Save Path /data/luci/20090318

=2

Set new values

Figure 2.42: The ReadoutManager GUI.

the other hand. Normally this can be managed by the ScriptExecutionHandler, by making
any changes before the exposure is started. If the flexure compensation is turned on, however,
the Instrument Manager needs to know, if an exposure is taken before it adjusts the mirror. It
can therefore request a pausing of the readout as soon as possible, i.e., between two subsequent
reads. When the Instrument Manager has finished the movement of the mirror, it informs the
Readout Manager that the next exposure can be taken.

Like the other two manager services introduced before, the ReadoutManager can be controlled
manually by observers. The user interface is shown in Fig. 2.42. The left region of the GUI shows
the current status of the manager, indicating if an exposure is currently taken by a countdown
clock. The right part allows active control of the service by setting new values and starting
and stopping exposures. As with the other manager services, setup changes done by scripts are
displayed automatically, so the GUI can be used to check the correct processing of the observation
scripts.

2.5 Summary and Outlook

In this chapter the software package for the LUCIFER instrument was presented. Most of the
software is written in JAVA as a distributed system using the RMI features that are provided
with the language. The software is separated into four different layers, each solving the necessary
tasks for changing levels of abstraction. The Control Layer (Section 2.2) provides the services for
communication with the different hardware units for instrument control and environment mea-
surements. Also located in this layer are the services that connect to external software packages,
namely the service for control of the GEIRS software and the Telescope service for control of
the TCS system. The Instrument Layer (Section 2.3) represents the software abstraction for the
LUCIFER instrument. All movable units of the instrument are modeled by software services like
the GratingUnit or the CompensationMirror. These have been tested and are working very
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well and reliably. All services have been implemented and tested extensively, with one exception:
the physical unit for the atmospheric dispersion corrector (ADC) has not been built yet, since it
is only needed for observations using adaptive optics and these are not scheduled to start before
2010. Subsequently, the ADC software service has not been implemented yet. The MOSUnit ser-
vice of the Instrument Layer is presented in detail in Polsterer (in prep.). Finally, the Operation
Layer (Section 2.4) addresses the specific problems that arise for the astronomical observation
with the instrument. To allow the automatic operation of the instrument for optimal performance,
an ObservationScriptParser and a ScriptExecutionHandler have been developed. Three
manager services, the Instrument—, Telescope—, and ReadoutManager, are used to coordinate
the necessary setup steps for observations with LUCIFER. These managers have been developed
partly by Dr. M. Jiitte (TelescopeManager and most parts of the InstrumentManager).

Commissioning of LUCIFER 1 at the LBT has started in September 2008. From the beginning
the instrument and the control software have been very reliable and performed above expectations.
The structure of the different layers of the software, breaking complex tasks down into more
simple entities, has been proven to be the correct approach for managing the complexity of the
instrument and is working very well in practice. The software provides for very efficient operations
of LUCIFER by the use of scripts. These allow a thorough planning of the science observations
and a flexible as well as efficient execution. Direct interaction with the main observer GUIs allow
quick setup changes also, if needed.

The future work on the software includes the finalization of the Operation Layer with the
main focus on the full integration of the OPT and Scheduler service created by Schimmelmann
(2007). These need to be adapted to the current version of the software. The ADC service will be
implemented by the time of the commissioning of LUCIFER 1 for adaptive optics observations. The
completion of the LUCIFER 2 instrument, together with the necessary extensions of the software
will be worked on at the same time. Finally, the binocular operation of both instruments at the
LBT are scheduled for 2010 and beyond.
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Chapter

Stellar populations in galaxy centers

The understanding of galaxy formation and evolution is essential for our understanding of the
universe. The central parts of spiral galaxies, the bulges, play a vital role in this regard. In the
scenario of hierarchical evolution of galaxies the bulges are thought to be older parts of their host
galaxies and have formed before the disk. However, in the past decade more and more evidence
has been found that this scenario might not be the only possible one. The bulges of spiral galaxies
might have formed slowly, i.e., by secular processes. This second scenario is subsequently called
secular evolution of galaxy bulges.

The LUCIFER instrument will be able to contribute significantly to this research because of
its unique MOS capabilities in the near infrared. In the K-band the absorption features of the
CO molecule around 2.3 um are frequently used to study stellar populations of galaxies. This
technique is applied in this thesis to study the central parts of galaxies of different Hubble type.
These are expected to show different spectral characteristics in the region of the CO absorption
bands.

To prepare the LUCIFER observations NIR spectra have been successfully proposed during
this thesis and were taken with a similar instrument, ISAAC at the Very Large Telescope (VLT)
of ESO. During the commissioning of LUCIFER, additional long slit spectra have been taken for
one of the galaxies that was also observed with ISAAC. The main part of this chapter deals with
the analysis and discussion of these spectra.

At the beginning of this chapter an overview over recent studies and findings regarding the
(secular) evolution of galaxies is presented. In Section 3.2 a short overview of the particularities of
near infrared observations is given. Although there are many similarities with optical observations,
some fundamental differences exist. The data that was gathered during this thesis is presented
in Section 3.3. The CO absorption strength is measured using the new Dco index defined by
Marmol-Queralté et al. (2008). The results of the analysis are presented and discussed. The
chapter closes with a summary of the results and an outlook on how LUCIFER can contribute to
NIR astronomy in the future.

3.1 Secular evolution of galaxies

Galaxies exist in various kinds of shapes and sizes. For a better understanding of these objects,
some kind of classification is very helpful. A crude distinction based solely on morphology leads
to three fundamental classes: elliptical—, spiral-, and irregular galaxies. This was done for the
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first time by Hubble (1926). Sandage (1961) provided typical objects for each class. The galaxies
were classified as EQ to E7 for the ellipticals, with higher numbers reflecting higher ellipticity. SO
galaxies are an intermediate type between ellipticals and spirals, which were originally classified
into Sa to Sc types and SBa to SBc types. The difference between the two spiral types is that
the latter show a bar — an elongated structure — in their central regions, while the former do
not. The letters 'a’ to 'c’ were used to distinguish between more strongly wound spiral arms
('a’) and less strongly wound ones ('c’). The last type, the irregular galaxies, show no apparent
global structure. This initial classification has been extended and revised several times since its
initial proposal by Hubble to be able to accommodate and distinguish better between transition
objects, for example by de Vaucouleurs (1963) and de Vaucouleurs et al. (1991). Sandage (2005)
gives a detailed review about the history of galaxy classification. But even with this revised
classification some galaxies, e.g., the galaxies of Arp (1966), do not fit well in any of the classes.
Other classification schemes for galaxies exist, that are based on other properties of galaxies than
morphology, e.g., spectroscopy (Morgan & Mayall 1957) or more recently combining different
internal and external galaxy properties into a new “multidimensional” system (Conselice 2006).

From the beginning of galaxy classification the question arose, if the different classes represent
different physical properties which could lead to insights of their evolutionary stage. Even though
Hubble himself separated between “early” and “late” types, he noted that this terminology was
solely based on a sequential, not a temporal, meaning of the objects in the classification. Sub-
sequent studies of galaxies showed fundamental physical differences between the different types,
though. On the one hand, most ellipticals were found to be nearly void of cold gas (e.g., Knapp
et al. 1978, and references therein), and complementary observations showed that they do not
have recent star formation. On the other hand, spiral galaxies contain more gas and are actively
forming stars. The fraction of the gas content is rising with the spiral galaxy type. Early types
(Sa) have the lowest fraction of gas, while the later types have increasingly more gas (Roberts &
Haynes 1994). Kennicutt (1998a) presents a review about differences in star formation with the
Hubble type, suggesting fundamental physical differences among the galaxies. The recently found
bimodal separation of global galaxy colors, grouping them into “blue cloud” (mostly late type
spirals and irregular galaxies) and “red sequence” (mostly early type spirals and ellipticals) com-
panions, is another indication for a physically motivated separation between galaxy types (Driver
et al. 2006).

Indications for transitions from one galaxy type to another were observed as well. Dressler
(1980) formulated the morphology density relation (MDR), finding that the number of elliptical
and SO galaxies increases in the centers of galaxy clusters, while spiral galaxies decrease in number
for higher density regions. By looking at more distant clusters at redshift z~0.5 Dressler et al.
(1997), and later Smith et al. (2005) and Postman et al. (2005) for z~1 found that the MDR
changed from the present day numbers. Higher z clusters show a lack of SOs and an increase
in spirals, supporting the picture of the transition, or evolution, from spiral galaxies to SO and
elliptical types. This has recently been questioned by van der Wel et al. (2007) and Holden et al.
(2007), however. These newer studies see no significant evolution of the MDR since z~0.8, at
least for the higher mass galaxies.

To explain the different galaxy types and the formation and evolution of them, different models
were proposed and the two most prominent are examined in more detail next.

3.1.1 Structure formation in the universe

Eggen et al. (1962) suggested the rapid collapse of a protogalactic cloud as a formation scenario
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for galaxies. This idea was extended by Gott & Thuan (1976), who proposed different evolution
scenarios for spirals and ellipticals to explain their various characteristics. In this picture, ellipticals
originated in denser environments of the universe and used up all of their gas in the initial collapse
that formed these galaxies. Spirals form in less dense environments and only a smaller fraction of
the initial gas is converted to stars which subsequently form the bulge of the spiral galaxy. The
remaining gas is rearranged and flattened to form the disk of the galaxy.

Another scenario is examined by Baugh et al. (1996). In this model, galaxies evolve to
different types more than once. Star formation is induced in the disks of spiral galaxies, which
frequently undergo merger events with other galaxies. After such a merger event an elliptical
galaxy is formed (Barnes 1992; Barnes & Hernquist 1996). Onward accretion of surrounding gas
by the newly formed elliptical can create a new disk (Springel & Hernquist 2005). The central
elliptical part becomes the bulge of the new spiral galaxy. This process can occur multiple times,
in which case the galaxy changes its type from spiral to elliptical types back and forth. The
largest elliptical galaxies underwent the highest number of merger events in this scenario. These
results have recently been confirmed by the study of De Lucia et al. (2006), who estimate the
most massive ellipticals to have approximately five progenitors, whereas the less massive elliptic
galaxies with M, < 10! Mg, only have two. Naab & Ostriker (2009) put more strict constraints
on the formation of the most massive ellipticals. According to their study, these cannot form in
a single merger event involving only two spiral galaxies. Instead, mergers of multiple progenitors
are necessary to form a giant present day elliptical.

These two evolution scenarios can explain the existence of two of the main galaxy types,
ellipticals and spiral galaxies. Two main constituents of spiral galaxies are present by both theories
as well:

1. The spiral disk is the decisive place for star formation in the model suggested by Baugh
et al. (1996), implying that a primordial gas cloud collapses to a disk before significant star
formation starts. Gott & Thuan (1976) propose star formation earlier on, if the gas cloud is
dense enough and the collapse times 7. are short. As mentioned before this process creates
the elliptical galaxies. A disk forms mainly in less dense environments where 7 is larger and
only a smaller fraction of the gas cloud is turned into stars in the initial collapse.

2. The central bulge — seen edge—on as a more or less spheroidal component, face—on as a
central light concentration of spiral galaxies — is produced by mergers of galaxies (Baugh
et al. 1996) or by the collapse of the protogalaxy itself (Gott & Thuan 1976).

In both scenarios the evolution of galaxies is mainly triggered by external processes, i.e., the
encounter of two galaxies and subsequent merging and interaction processes, or by the surrounding
environment. Difficulties are present in both models, however:

e The nature of irregular galaxies is not well understood in both models.

e It remains unclear why some spiral galaxies show a central bar, (Fig. 3.1), while other
galaxies do not (Fig. 3.2).

e The bulges of spiral galaxies differ greatly in their sizes and morphologies. Some spirals have

no or very small bulges (Kormendy 2008) while the bulges of other galaxies have peculiar
shapes that are far from spherical. Instead these bulges appear more box/peanut (b/p)
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NGC 4314 / UGC 7443 / IRAS 12200+3010 oo NGC 2967" /"UGC 5180 / IRAS 09394+0033

Figure 3.1: SDSS image of NGC 4314, a spiral  Figure 3.2: SDSS image of NGC 2967, an un-
galaxy with a strong bar. barred spiral galaxy.

Figure 3.3: SDSS image of the galaxy NGC 2424, which shows the peanut (looking like a )
bulge nicely.

shaped (Litticke et al. 2000a,b, 2004). An example of a peanut shaped bulge is shown in
Fig. 3.3%.

With regard to this last point, Kormendy (1982, 1993), noticed that the bulges of some galaxies
show high rotational velocities and flat profiles that are similar to those of galaxy disks (see next
section). Flat profiles of the bulges would mean that they might have formed by different processes

'Figs. 3.1, 3.2 and 3.3 are three color composites of images taken with the 'g’, 'r’, and i’ filters reproduced
with kind permission by David W. Hogg, Michael Blanton, and the Sloan Digital Sky Survey (York et al. 2000).
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Figure 3.4: Vhax/0 — € diagram from Kormendy & Kennicutt (2004). Objects above the “oblate”
line are dominated by rotation. See text for details.

than the collapse or merger events mentioned above. This implies that the structure formation in
galaxies is not only triggered by external properties, i.e., the surrounding environment, but also
by internal processes. This slow — compared to typical collapse timescales — “modification” of
galaxies by purely internal mechanisms is called secular evolution.

3.1.2 Classical bulges vs. pseudo bulges

Athanassoula & Martinez-Valpuesta (2008) discuss three different definitions for a galaxy bulge:
photometric, morphological and kinematic. The photometric one defines the bulge as the “extra
light” around the galaxy's center that remains when the disk brightness profile is modeled and
subsequently subtracted from the total brightness profile of the spiral galaxy. For some bulges
this inner brightness profile is found to follow that for elliptical galaxies — the famous r'/* law by
de Vaucouleurs (1948) — indicating a similar origin and connection between bulges and elliptical
galaxies. Using a generalized form of the law y ox r'/" defined by Sersic (1968), Andredakis et al.
(1995) find that the profile of bulges are better approximated using different Sersic indices n < 2
for the late type spirals and n > 2 for earlier types. The morphological classification defines the
bulge as the extended structure that is visible above the disk of a spiral galaxy seen edge—on. The
kinematic definition compares the maximum radial velocity Vhax to the velocity dispersion 0. The
dominance of rotation is analyzed by a plot of Vhax/0 versus the ellipticity € of the objects (Binney
1978). This plot is shown in Fig. 3.4, taken from Kormendy & Kennicutt (2004). A recent version
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of this plot can be found in Erwin (2008). Larger values of Vimax/o for a given e indicate stronger
rotation. Elliptical galaxies lie below a line which characterizes “oblate” objects. This line takes
the flattening of objects due to rotation into account, leading to higher € values. Bulges of early
type spirals follow this line closely, as well as medium mass ellipticals (Kormendy 1982; Kormendy
& lllingworth 1982; Illingworth & Schechter 1982). Bulges of later type spirals are found above
this line, indicating a more disky structure. Looking at the famous velocity dispersion for elliptical
galaxies by Faber & Jackson (1976), it is found that bulges of early type spirals (Sa) follow this
relation well, while those for late type spirals do not (Kormendy & Kennicutt 2004).

From the discussion above one can draw the conclusion that all three definitions for bulges do
not describe an unique class of object. This has lead to the terminology classical bulge for those
that do share the properties of elliptical galaxies, and pseudo bulge (Kormendy 1993) for those
objects that do not. As more and more evidence has been found that the pseudo bulges themselves
do not represent a single class of objects, Athanassoula (2005) divides the pseudo bulges into two
categories, b/p bulges and disky bulges. Thus, three types of bulges can be distinguished.

Classical Bulges

Classical bulges are more common in early type spiral galaxies and are similar to elliptical galaxies
in their properties. They are characterized by spheroidal or triaxial shapes, and Sersic indices n>2
(Andredakis et al. 1995). Kinematically they are dominated by random motions and follow the
“oblate” line in the V/o vs. € relation (Erwin 2008; Kormendy & Kennicutt 2004). Drory & Fisher
(2007) show that galaxies belonging to the “red sequence” (Strateva et al. 2001; Balogh et al.
2004; Baldry et al. 2004; Driver et al. 2006) usually have classical bulges, while those of the “blue
cloud” have pseudobulges. The many similarities of classical bulges with elliptical galaxies suggest
a connatural formation scenario. As outlined in Section 3.1.1 this could be merger events between
two galaxies or the collapse of the protogalactic gas cloud that led to the first star formation.
Thomas & Davies (2006) investigate the ages of elliptical galaxies and spiral bulges. Their results
show that the age is related stronger to the mass of the object than to the type of galaxy. Massive
elliptical galaxies are old, while lower mass elliptical and bulges have younger ages around 2-3
Gyrs. Ellipticals and bulges are indistinguishable if they have comparable masses, suggesting that
the bulges are not significantly affected by the presence of a disk. From their sample, Thomas &
Davies (2006) conclude that the secular evolution of bulges is only dominant for spiral galaxies
later than Sc. However, Gadotti (2009) finds offsets in the mass—size relations of ellipticals and
classical bulges that might suggest different formation scenarios and question the picture that
classical bulges are small ellipticals surrounded by spiral disks.

b/p Bulges

The works of Bureau & Freeman (1999), Liitticke et al. (2000b), Aronica et al. (2003) and
Athanassoula (2005) have shown that one class of pseudo bulges, the b/p shaped ones, are in
fact parts of galaxy bars seen edge—on. Using N-body simulations and bar orbit theories (see for
example Englmaier & Gerhard 1997), Patsis et al. (2002), Athanassoula (2003), Debattista et al.
(2006), and others can explain the shape of b/p bulges by instabilities in stellar orbits. These x1
orbits are very elongated and form the bar (Figs. 2, 5, and 8 in Englmaier & Gerhard 1997). The
instabilities raise material in the z direction, out of the disk, causing the characteristic > shaped
bulge (Patsis et al. 2002). Athanassoula (2008) gives an overview of the time evolution of b/p
bulges, describing that the vertical structures that form the characteristic shape appear after the
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bar has had a maximum strength and is weakening again. Once formed, the b/p gets stronger
with time by secular evolution processes. It should be mentioned that once the structure has been
formed it does not fade away over the time of the simulations (12 Gyrs).

Disky Bulges

Disky bulges are the other class of pseudo bulges and are extensively reviewed in Kormendy &
Kennicutt (2004). They form by transport of gas into the centers of galaxies, leading to significant
star formation there, since the surface density of the gas ¥ 4.5 (in M pc~2) and the star formation
rate (SFR) Zsrg (in M, year—! kpc~2) are connected by the Schmidt law Lgpg o Zgasl'4 (Schmidt
1959; Kennicutt 1998b). The gas transported into the center is often arranged in rings (Kormendy
2008, and references therein). Nuclear bars and spirals are other structures found in these disky
bulges. The SFR resulting from the gas transport is comparable to that of the host galaxy (Fisher
2006). The brightness profile of the host galaxies shows a rise in the center, which is better
approximated by lower Sersic indices of n<2 (Fisher & Drory 2008; Kormendy & Kennicutt 2004),
but this is not a strict criterion for disky bulges.

Gadotti (2009) analyzes a large data set from the Sloan Digital Sky Survey (SDSS) performing
a decomposition of the brightness profiles into bulge, bar and disk components. His results
show that disky bulges contribute 3% to the stellar content of the local universe, while 25% are
contributed by classical bulges. The former are less concentrated than the latter and currently
undergoing intense star formation. The same trend is indicated by Peletier et al. (2008), who used
the Spectroscopic Areal Unit for Research on Optical Nebulae (SAURON) instrument (Bacon et al.
2001) to study the stellar populations of the central regions of 42 spiral galaxies. They find a
significant trend towards higher but quiescent star formation for later types. The centers of earlier
types show less star formation in general. However, starbursts are more common for these objects.
Combining their data with that of Kuntschner et al. (2006) for ellipticals and SOs reveals a global
trend. The earliest type galaxies show a low SFR, which is increasing towards later types. SO's
and early type spiral galaxies can show a starburst, however, raising their SFR above those of the
latest types. Hathi et al. (2009) have analyzed the stellar ages of 34 bulges of late type galaxies in
the Hubble Ultra Deep Field (HUDF). They find that these bulges contain significantly younger
stars than elliptical galaxies. They also do not see a significant trend between the stellar ages and
redshift, interpreting the results with a much longer star formation time in these bulges compared
to early type galaxies.

The differentiation between classical and pseudo bulges is not exclusive, however. Erwin
(2008) shows examples of galaxies that have clear kinematic and photometric indications for a
disky bulge as well as for a classical one. The same conclusions are drawn by Peletier et al. (2008)
for two galaxies they studied. Thus classical and pseudo bulges might exist simultaneously in a
galaxy, maybe reflecting different evolutionary phases of it. This scenario is also supported by
MacArthur et al. (2009) in their study of radially resolved long slit spectra of star forming spiral
galaxies. They conclude that although secular evolution effects lead to a young stellar population
of the bulges which contributes for up to 70% of the optical light, only 20% of the total mass
of the bulge are represented by this young population. Thus, 80% of the mass of these bulges
resides in older stars.

Concluding this section it can be said that no formation and evolution scenario for galaxies,
either driven mainly by collapse or by mergers, is completely ruled out by current observations.
However, in the last couple of years many evidence has been found that the evolution of spiral
galaxies is not only affected by external but also significantly by slower secular processes. This
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evolution severely affects the centers of spiral galaxies. The b/p shaped bulges are well understood
as the inner parts of galaxy bars seen edge—on. Material is lifted out of the plane of the galaxy by
perturbations and instabilities of elongated orbits. Disky bulges are mainly seen in late type spiral
galaxies and can be distinguished from classical spheroidal bulges using the following indicators
(Kormendy & Kennicutt 2004). Disky bulges:

e consist primarily of young stars, gas and dust with no indication for a merger,
e show a nuclear spiral, bar or ring,

e have a low Sersic index n < 2,

e are more rotation dominated than classical bulges in the V/o — € diagram and

e do not fit well in the Faber & Jackson (1976) diagram.

3.2 Properties of the NIR regime

Although the near infrared wavelengths are adjacent to optical wavelengths — this is the reason
why optical telescopes can also be used for infrared observations — the observational techniques
differ considerably from their optical counterparts. The main reason is the influence of the earths
atmosphere, which is significantly larger in the near infrared than in the optical. Another reason
for deviations between the optical and NIR observations is of technical nature, since the detectors
used for the latter differ from the ones used for the former.

3.2.1 Influence of the earths atmosphere

The atmosphere of the earth has several influences on the information that reaches us from distant
sources. These influences can be grouped into different categories. Léna (1988) distinguishes the
following distortions:

1. absorption,
2. emission,
3. scattering, and

4. turbulence.

Absorption

The atmosphere of the earth is transparent for electromagnetic radiation in certain windows only
(see Fig. 1.6). The absorption depends on different mechanisms for different frequencies. For
example, for wavelengths smaller than 300 nm electronic transitions of O3 and O as well as the
ionization of Oy are the main cause for absorption, while in the infrared (up to 100 zm) rotational—
vibrational absorption of the HoO and CO» molecules are dominant (Léna 1988). For the NIR
K—band the telluric absorption of water vapor is the prevalent source for absorption of the photons.
A plot of the measured transmission of the atmosphere in the K-band is shown in Fig 3.5. The
data was taken at the Kitt Peak Observatory in Arizona and is made available from the ESOZ?.

2http:/ /www.eso.org/sci/facilities/paranal /instruments /isaac/tools/spectroscopic_standards.html
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Figure 3.5: The transmission of the atmosphere over Kitt Peak between 1.9 um and 2.5 um. The
data was provided on the ESO ISAAC website.

Since the column height of water vapor has a significant impact on the absorption, the measured
transmission values for Kitt Peak, which is considerably lower than Mt. Graham (2070 m compared
to 3220 m), will deviate quantitatively from those for the LBT. However the figure gives a good
impression about the main telluric features present in this wavelength range, e.g., the two broad
absorption features between 20000 Aand 21000 A. To correct for telluric absorption features in
infrared spectra, stars with well known energy distribution — telluric standards — are observed.
More information about the reduction process is given in Section 3.3.

Emission

The atmosphere also emits radiation at various wavelengths. This radiation is composed of discrete
lines as well as of continuum emission. The line emission, or airglow, consists of many constituents.
For the near infrared the dominant source of emission line radiation are the OH radicals in the
stratosphere (Léna 1988). This emission varies significantly over scales >1" as well as on time
scales in the order of minutes.

The continuum emission of the sky is mainly caused by thermal emission of the atmosphere
itself, since it is in local thermodynamical equilibrium up to heights of 60 km. Above this altitude
collisions between molecules become too infrequent (Léna 1988).

Using Wien's law:
Amax X T/ 2.90 x 1073 mK (3.1)

the peak of the emission of a black body with a temperature of T = 250 K (taken as the average
temperature of the atmosphere) lies at a wavelength Apax &~ 11.6 um. Due to fluctuations in the
atmosphere the temporal variability the thermal emission comparable to the variability of the line
emission. Spatial variations are caused by the increasing line of sight through the atmosphere for
growing zenith distances.
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Because of the variability of the sky brightness, sky subtraction is a difficult but vital task
when NIR observations are performed. Sky frames have to be taken frequently before and af-
ter the science exposures, if the sky brightness cannot be calculated from the science frames
directly, i.e., for extended objects. Since the thermal emission of the atmosphere becomes more
important for longer wavelength, in the K—band around 2.3 um the observations begin to be
background dominated and allow only short integration times. For shorter wavelength in the z—
and J-bands (0.9 um and 1.2 um, respectively) line emission is more dominant.

Scattering

The light that enters the atmosphere is scattered by molecules and aerosols. For molecules, Léna
(1988) gives the scattering cross—section o due to Rayleigh scattering as

_ 327 (n—1)?

or(N) = 37

(3.2)

Here, N represents the molecular number density and n the refractive index. The cross—section
is highly dependent on the wavelength of the incident radiation (ogr(A) oc A=%), with smaller
wavelength being much more affected. This is the reason for the blue color of the daytime sky.
Rayleigh scattering is not isotropic but has a 1 + cos?(f) dependence, @ representing the angle
between the incident and scattered light. Aerosols are larger than molecules, so the approximation
that the scattering particles are small compared to the wavelength of the photons used for Rayleigh
scattering is no longer valid. For this case the scattering cross section has to be calculated using
Mie's theory (Mie 1908).

When the intensity of the scattered sunlight becomes comparable to the emission of the
atmosphere, astronomical observations are no longer limited by the daylight. This condition is
valid for sub—millimeter and radio wavelengths, so these telescopes can be used independent of
the time of day.

Turbulence

The atmosphere is not static and has perturbations with scales ranging from low and high pressure
zones (cyclones and anticyclones) with several hundred kilometers in size down to a few millimeters
for distortions due to friction between individual air “cells”. Temporal variations can also be as
fast as milliseconds. The turbulence is caused by different effects, i.e., wind blowing over surface
irregularities, or shear between two laminar flows of air. Additionally the refractive index of air
changes with temperature and H,O variations (Léna 1988).

All of these effects result in a blurring and twinkling of the stars. This is also called “seeing”
and is severely limiting the spatial resolution of astronomical images. Even for the best telescope
sites, the seeing is usually no better than 300 milliarcsecond (mas). Using the well known formula

1.22 )\
o= —-

< (3.3)

for the minimum angle « (in radians) under which the Airy disks of two stars can be distinguished
for a circular aperture of size D at a given wavelength A\, 300 mas correspond to a telescope with
D =16m at A = 2.0um. Thus large telescopes are limited by atmospheric turbulence unless
some technical solution — adaptive optics (AO) — is used.
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3.2.2 NIR observations

Apart from effects of the atmosphere, which cause differences for NIR observations compared with
optical astronomy, the detectors used to collect the information received by the telescope are also
different. This leads to altered observation strategies which are discussed briefly in this section.

NIR detectors

The sensitivity of CCDs is rapidly decreasing in the NIR, with a limit at A =~ 1 um (Kitchin 2008).
For longer wavelengths photoconductive cells are used. The principle detection process of this
detector type is the change in conductivity of a semiconductor with varying illumination. The
difference of the conductivity is caused by electrons that are lifted from the valence band into the
conduction band by the inner photo effect. The conductivity is then measured using a small bias
current. Although many different semiconductors exist that are sensitive in the near infrared, see
table 1.4 in Kitchin (2008) for example, Mercury—Cadmium—Telluride (HgCdTe) is common, and
this material is used for the HAWAII2 detector of LUCIFER as well. Unlike CCDs every pixel of
the HAWAII2 detector can be read out independently and has its own wiring circuit. This implies
several differences between the readout of the LUCIFER detector and CCDs. Since pixel can be
read out non destructively, several reads can be performed on short timescales at the beginning of
the integration and again at the end. The resulting image is computed by subtracting the values
read at the end from those read at the beginning and averaging these differences over the number
of reads. This readout mode is called multiple end point read (mer). Another possible way to get
an image from the detector is to reset the chip first and to perform one read at the beginning of
the exposure and one at the end. The resulting signal is calculated by the difference between the
two reads. This mode is called double correlated read (dcr) because the two reads are correlated
to the same reset level (C. Storz, priv. correspondence). Since only two reads are made, the
readout noise is higher in the dcr mode than in the mer mode. Therefore, dcr is used with a high
signal to noise ratio (S/N), i.e., for imaging. Muhlack (2006) gives a detailed description of the
other possible readout modes for the HAWAII2 detector used in LUCIFER.

Since the pixel are read out individually, using a shutter is usually not necessary for NIR
instruments. The detector is constantly illuminated unless blind filters are used. Therefore, a
minimum detector integration time (DIT) exists because not all pixel of the detector can be read
out simultaneously. This minimum DIT depends on details of the readout electronics, i.e., the
number and clocking of readout channels, but is usually in the order of a couple of seconds for the
20482 pixel array. For LUCIFER the smallest minimum DIT~2s for the dcr mode. A secondary
effect of the limited readout speed is that the signal in different regions of the chip is detected at
different times. For the chip used inside LUCIFER which has four quadrants with 1024 x 1024 pixel,
this means that row 1024 is read the minimum DIT seconds after the first row of the quadrant,
for example. This implies that the flux of row 1024 has been collected the minimum DIT time
after the flux in the first row. Fig. 3.6 illustrates the layout of detector readout for the HAWAII2
chip used in LUCIFER (Ligori 2004).

Because of the larger thermal noise in the infrared, the detectors need to be cooled down
more than CCDs usually need to. For the NIR temperatures of 70K are usually sufficient, for
longer wavelengths temperatures of liquid helium (4 K) or even down to several hundred mK are
necessary to reduce the thermal noise of the detector.
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Figure 3.6: This figure illustrates the detector readout quadrants for the HAWAII2 detector used
in LUCIFER. The figure was taken from Ligori (2004).

Observation strategies

The high variability of the sky background in the NIR forces the observations to account for this
problem. The sky has to be measured as frequently as it typically varies, which is in the order
of minutes. Many different methods exist to approach this problem, but only the most common
ones will be presented here. A recent summary of the different observing techniques for ISAAC at
ESO can be found in Mason & Schmidtobreick (2009), but the best strategy clearly depends on
the unique characteristics of the used instrument.

To reduce the overheads, it is desirable to be able to determine the sky from the science
exposures. To achieve this, a technique called “jittering” is frequently used for imaging. The
telescope is offset by small amounts many times on the science target. By combining adjacent
exposures with suitable removal of the stars, a calibration frame can be constructed and subse-
quently used to subtract the sky. This is of course only possible, if there is “enough” sky in the
images. For extended sources the sky has to be constructed from a nearby region, that is relatively
clean, i.e., void of stars. Although this introduces a huge overhead — the exposure time of the
sky and the object have to be the same — it is sometimes the only possible option. The fact that
for observations in the K-band at 2.3 um the thermal emission of the sky saturates the detectors
within a couple of seconds increases the overheads even more.

For NIR long slit spectroscopy (LSS) the same strategies can be applied as for imaging.
However, the integration times can be longer and are usually limited by the variability of the
background, i.e., in the order of minutes. For compact objects like stars and small galaxies a
technique called “nodding on the slit” is used. Between two exposures the object is moved to
different parts of the slit. The measured sky above and below the object in one exposure can
then be used to subtract the sky in the another one. For extended objects that fill most of the
slit, separate sky spectra have to be taken. As for imaging, this creates large overheads for the
observations.
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Taking all this into account it becomes clear that astronomy in the NIR requires well planned
observations. It is very inefficient to carry out these observations by manually offsetting the
telescope and starting the integrations. The choice of suitable sky positions and/or observation
patterns is also crucial for the success of the science program. It is therefore standard for NIR
instruments to provide some kind of tool to allow automatic observations. For LUCIFER this
has been realized with the implementation of observation scripts, which are described in detail in
Section 2.4.2.

3.3 Data Analysis and Results

To address the question of the dominant stellar population in the center of different galaxy types,
NIR spectra in the K-band from 2.2um to 2.4um are analyzed. The NIR has many benefits over
optical wavelengths because the former is much less affected by dust than the latter. Dust is
common in the centers of spiral galaxies, particularly late time spiral galaxies seen face—on, which
frequently show disky bulges (Section 3.1.2). For galaxies seen edge—on dust absorption is always
a problem, since the centers are hidden behind the disk and its dust. To determine the dominant
stellar populations, the strong absorption bandheads of the CO molecule (see Kleinmann & Hall
1986) are used. The absorption features of the CO molecule have been widely used for studies of
stellar populations. The most recent studies for elliptical galaxies include Davidge et al. (2008),
Silva et al. (2008) and Mannucci et al. (2001). lvanov et al. (2000) and James & Seigar (1999)
used the CO feature in their analysis of spiral galaxies. Mdrmol-Queralté et al. (2008) gives are
more complete list including also other galaxy types.

3.3.1 CO index definitions

Kleinmann & Hall (1986) gave a first definition of the spectroscopic CO index, but the definition
has been changed by different authors in the last two decades (Frogel et al. 2001; Puxley et al. 1997,
see also Fig. 3.7). For the analysis done in the scope of this thesis a new definition of the CO index
introduced by Marmol-Queralté et al. (2008) is used. This new index definition is less sensitive
to wavelength and flux calibration, spectral resolution and S/N of the data. This is important
to produce stable index values in the case of a poorly known or calibrated velocity dispersion or
radial velocity. Marmol-Queralté et al. (2008) define the index as a generic discontinuity. This
is the ratio between the average fluxes in the continuum and absorption bands. They used the

general definition
Nc
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a,in

Z/ Fa,i()\)d/\

i=1 Y Aaip
Na
Z()\a,ig - )\a,il)
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for the index. In the above formula Fci(A) and F,i(\) are the fluxes in the continuum and
absorption bands, respectively. The total number of absorption bands is given by n,, the number
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Table 3.1: Definition of the continuum and absorption bands used for the Dco index defined
in Mdrmol-Queralté et al. (2008). See text for details.

Band Axiin [:um] Axjiz [:um]
continuum 1 (x=c, i=1) 2.246 2.255
continuum 2 (x=c, i=2) 2.271 2.277
absorption 1 (x=a, i=1) 2.288 2.301
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Figure 3.7: The different CO index definitions that are commonly used. Absorption bands are
shown in gray, continuum bands in white. a) Kleinmann & Hall (1986), b) Puxley et al. (1997),
c) Frogel et al. (2001) and d) Madrmol-Queraltd et al. (2008) from which the figure was taken and
that is used in this work.

of continuum bands by nc. A, i, and A, ;, define the lower and upper wavelength limits for the ith
absorption band (analog for the continuum with subscript 'c’). The index Dco is defined by
specifying the absorption bands and continuum bands. According to Table 4 of Mdrmol-Queralté
et al. (2008), two continuum bands (n. = 2) and one absorption band (n, = 1) are used. The
limiting wavelengths for each band are shown in Table 3.1.

With the definition of the generic discontinuity as specified in Equation 3.4 the variance of
the measured index is given by (Marmol-Queralté et al. 2008):

Fo% + Flol.
4 Y
73

(3.5)

2
g [Dgeneric =
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with

i
Ny Npixel

Fr=0=tkEl . (3.6)

Thus, F, with x="a’ or x="c’ is the total flux per wavelength unit in the absorption and
continuum bands, respectively. In Equation 3.6, © is the linear dispersion in A/pixel, N'pixel the
number of pixel of the it" band and A, the central wavelength of the k' pixel. The last missing
piece of Equation 3.5 is the variance of the total flux F; which is defined by:

i
Ny Npixel

> > o ()

05 =02 =LK1 . (3.7)

x Ny 2
[Z()\x,ig - )\x,il)]

i=1

Here, Ul%xa()‘k) is the random error in the k™ pixel. It has been measured as the standard
deviation of the fluxes in the continuum bands, which are dominated by the pixel noise, since they
have been chosen so that they do not show any absorption or emission lines.

To compute the D¢o index, the flux in the two continuum bands is measured and then summed.
This value is divided by the width of the continuum bands to get the mean. The result is finally
divided by the mean flux measured in the absorption band. Marmol-Queralté et al. (2008) provide
a library of stars with spectral types and corresponding Dco values for field and cluster stars that
can be used for a first comparison. Additionally, the authors also provide conversion functions for
the other definitions of the CO index, so the data from this work can be compared with results
from other publications listed above. For the equivalent width (EW) defined by Puxley et al.
(1997) (EWPuxley)

Dco = 1.0488(+0.0033) + 0.0051(=0.0001)EWp ey (3.8)
and for Frogel et al. (2001) (EWFogel)

Dco = 1.0507(%0.0031) + 0.0077(+0.0005) EWFrogel + 0.00007(i0.00002)EW%rogd. (3.9)

The EWs in the last two equations must be given in Angstrom. Figs. 3.8, 3.9, and 3.10
show the measured index values for the field stars presented in Marmol-Queralté et al. (2008)
for [Fe/H] < —1, —1 < [Fe/H] < 0 and [Fe/H] > 0, respectively. The index values are plotted
against the luminosity class of the stars. Intermediate class stars have been grouped into the
higher luminosity class, with class I taken as the highest. Two global trends are visible. For
lower metallicity the Dco values are generally lower than for higher metallicity and within a
given metallicity main sequence stars have lower index values than giants. The largest spread
in index values can be seen for giants (luminosity class III) and supergiants (class I), but the
mean values for these classes are higher than for main sequence stars. These general trends
reflect the fact that the CO absorption features in stars are strongest in the spectra of giant and
supergiant stars, including asymptotic giant branch (AGB) stars. Their strength increases with
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Figure 3.8: The D¢ values from Marmol-Queralté et al. (2008) for stars with [Fe/H] < -1. The
measured index values are plotted against the luminosity class.
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Figure 3.9: Same as Fig. 3.8 but for —1 < [Fe/H] < 0.
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Figure 3.10: Same as Fig. 3.8 but for [Fe/H] > 0.
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Table 3.2: Summary of the ISAAC observations of program 078.B-0234(B).

Galaxy Name Hubble Type z? Date®  Time€ [s] Comments

M 95 SB(r)b 0.002595 03.01.07 900 disky bulge

NGC 1032 S0/a 0.008986 27.12.06 2340 edge on classical bulge
NGC 3585 E7/SO  0.004667 05.01.07 600 elliptical galaxy

17.01.07 600
NGC 4593 (R)SB(rs)b  0.009000 09.02.07 720 disky bulge

“heliocentric
bObservation date(s)
“Total integration time on target

increasing luminosity, increasing metallicity and decreasing temperature (Mobasher & James 2000,
and references therein).

A possible dependency of the higher CO absorption strength, corresponding to higher Dco val-
ues, with younger mean ages has been proposed by James & Seigar (1999). They based their
assumption on theoretical works by Rhoads (1998) and Origlia et al. (1999), who find an EW —
as defined by Puxley et al. (1997) — of EWpyyjey, = 5.3 0.5 for a young stellar population with
T = 10" yrs (log T = 7). Comparing this value with the results of James & Mobasher (1999), mea-
suring EWpyyey = 2.8 £ 0.1 as the lowest value for isolated elliptical galaxies with pure old stellar
populations and high metallicity, a relation between age and CO absorption strength might be jus-
tified. Using Equation 3.8, these EWs correspond to Dcg =1.1924+0.007 and Dco =1.3194+0.028
for a predominantly old and young stellar population, respectively. Cesetti et al. (2009) derived a
template spectrum of an old elliptical galaxy with a mean age of log T = 9.98 and [Fe/H] = 0.16.
The Dco value computed from this spectrum (Fig. D.1) corresponds to Dco=1.1631+0.008. These
values will be used for a rough comparison with the measured index values of this thesis.

3.3.2 ISAAC observations

The Infrared Spectrometer and Array Camera (ISAAC) instrument is operated by ESO at the VLT
on Cerro Paranal in the Atacama desert in Chile. It is a NIR imager and spectrograph, similar
to LUCIFER. ISAAC has no MOS capabilities and the detector is only half the size, however. A
detailed description of the instrument is given in the operation manual (Mason & Schmidtobreick
2009) available from the ESO homepage®.

Four galaxies of different types where observed during the observation program 078.B-0234(B).
The bulges of M 95 and NGC 4593 have been identified as disky bulges by Jogee et al. (2005)
and by Kormendy et al. (2006), respectively. NGC 1032 has a classical bulge (Liitticke et al.
2000a) and NGC 3585 is a late type elliptical galaxy. In the context of secular evolution of
galaxies, the first two galaxies and the last two should be similar in their characteristics. The
question addressed here is if these similarities are also present in the NIR K—band spectra of the
CO absorption features. The data was taken in five nights between December 2006 and February
2007. One galaxy (NGC 3585) was observed in two nights. Details about the observation run are
presented in Table 3.2. The observations where carried out in the long slit spectroscopy (LSS)

Swww.eso.org

93



3. STELLAR POPULATIONS IN GALAXY CENTERS 3.3. Data Analysis and Results

Table 3.3: List of telluric standard stars used for ISAAC observations. The spectral type and
magnitudes are quoted from data provided by ESO.

Galaxy Name  Telluric Standard ~ Spectral type K [mag]

M 95 Hip016792 G2V 7.508

NGC 1032 Hip010449 G1V 7.519

NGC 3585 Hip027727° G1V 7.522

Hip056398® GlV 7.894

NGC 4593 Hip064878 G3V 7.234
905.01.2007
b17.01.2007

mode with the 0”6 slit and at a central wavelength of 2.2um. This setup covered the complete
wavelength range of the K—band.

Data reduction

The data was reduced following the recommendations given in the “Data Reduction Cookbook”
for ISAAC (Mason 2007). The Image Reduction and Analysis Facility (IRAF) package was used
to reduce the data, with the exception of the initial correction for electrical ghosts. These were
corrected using the ghost recipe provided by ESO for the ESO-eclipse data reduction pipeline.
This correction removes the crosstalk between two lines — 512 rows apart — that occurs during
the readout of the chip. After ghost removal, the data were corrected for the dark current and
flatfielded using the master calibration frames provided by the ISAAC data reduction pipeline.
For wavelength calibration and distortion correction, the Xenon and Argon spectra where used.
These were provided in three separate frames, one frame with the both lamps off, serving as a
dark for this calibration, and two frames with the Xenon or the Argon lamps on, respectively.
The dark frame was subtracted from the illuminated frames and the results were summed to
give the final Xenon—Argon calibration frame. The combined frame was used to calculate the
dispersion relation and distortion correction using the IRAF tasks identify, reidentify and
transform. The Xenon—Argon spectrum was then self calibrated using the fitcoords task.
The measured wavelengths in the self calibrated spectra where exact to A ~1A and y ~1 pixel
over both dimensions of the frames, i.e., over the dispersion and spatial axes, respectively. For the
K—band this accuracy corresponds to an error of 0.05% and a spectroscopic resolution of 7.1 A per
pixel. The wavelength calibration was performed for all five nights separately, each with similar
results as mentioned before.

After the spectra have been wavelength calibrated, sky spectra were subtracted from the
object spectra to remove the sky background. Figs. 3.11 and 3.12 show an example spectrum of
NGC 3585 before and after sky removal, respectively. As can be seen, the emission lines are well
corrected for. The spectra have been extracted at various positions along the spatial direction
using the apall task. For each galaxy three to seven spectra could be extracted (details are given
in the next section).

Flux calibration was done implicitly with the correction for telluric absorption (see Sec-
tion 3.2.1). At the end of each science observation a telluric standard star was observed at a
similar airmass as the science observations. The stars observed where G-dwarfs, similar to our
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emission line

telluric absorption
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Figure 3.11: One spectrum of NGC 3585 be-
fore sky subtraction. The emission lines as well
as broad telluric absorption bands are clearly
visible.

Figure 3.12: The same spectrum after the sky
has been subtracted. Apart from some residuals
the emission lines have vanished. Note that the
telluric absorption is still present, however.

sun and are listed in Tab. 3.3. The reduction of these spectra has been done in the same manner
as for the science data. In particular, the same flatfields where used for the standard stars and
the galaxy spectra to achieve a relative flux calibration. Since the telluric standard stars have
the same spectral type as the sun, the intrinsic absorption lines of the telluric standard can be
corrected for by dividing a solar spectrum into the telluric spectrum. A high resolution (R=40000)
solar spectrum is provided by ESO. Before the two spectra were divided, the solar spectrum has
been converted to the ISAAC resolution (R=4400). The correction for the telluric features was
carried out using the telluric task in IRAF. Using this task, the telluric spectrum can be shifted
and scaled to achieve an optimal correction. The ability to shift the spectrum allows to correct
small variations in the wavelength calibration that might be present. Scaling the spectrum allows
to account for airmass differences between science and calibration exposures. After the telluric
lines have been corrected, the final flux calibration was done by multiplying the spectrum with a
blackbody curve for a temperature of T~ 5800 K, .i.e., the sun’s temperature. Although this is not
an absolute flux calibration, it is appropriate for the measurement of the Dco index, because the
unknown factor to achieve the absolute calibration cancels out in the division of the continuum
bands and the absorption band (see Equation 3.4). The reduction described above is illustrated
in Figs. 3.13 to 3.15, which show the original spectrum, the spectrum after telluric correction and
the final flux calibrated spectrum, respectively.

Since the telluric features change with airmass, the individual spectra could not be combined
before the telluric correction but had to be corrected individually. Variations in the strength of the
absorption lines between one and the next exposure were significantly different, so the shifting and
scaling values found for one was not a good fit for the next. Additionally, the automatic fitting
algorithm of the IRAF task did not perform well. It tended to minimize the noise at the edges of
the spectra, and not the telluric features. Thus, manual adjustment of the parameters resulted in
a much better reduction of the telluric lines.

In the end, all individual spectra of the same spatial region were combined into one final
spectrum. This spectrum was corrected to the rest frequencies with respect to the earth, using
the radial velocities given in the NASA/IPAC Extragalactic Database (NED) and correcting these
for annual effects due to the rotation of the earth around the sun. After this correction the spectra
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Figure 3.13: A spectrum of NGC 3585 before the telluric correction (compare with Fig. 3.5). The

two broad absorption features between 2.0 um (20000 A) and 2.1 um are prominent, although

there are many other, less obvious, ones. The flux values are arbitrary.
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Figure 3.14: The same spectrum after the telluric features have been corrected. The broad features
between 2.0 um and 2.1 um are no longer visible.
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Figure 3.15: The flux calibrated spectrum. Note that the spectrum has been trimmed to the
important range for the data analysis.

could be analyzed and the D¢g index could be measured. The results for each galaxy are presented
next.

Analysis and results

The Do values and their corresponding errors were computed according to Equations 3.4 and 3.5.
To calculate the integral flux values of the continuum and the absorption bands defined in Table 3.1
the tables package of IRAF has been used. These fluxes were then divided by the width of the
bands. To determine the measured uncertainty the sum of the fluxes in the three bands has been
calculated (see Eq. 3.6) together with their variances. The latter was determined by taking the
standard deviation of the flux values of the continuum bands as an estimate for the random error
of each pixel. The variance of the absorption was taken as the mean of the variances of the
continuum bands.

In the following paragraphs each studied galaxy is presented individually. Afterwards, the new
data for all four galaxies is compared to the results of similar stellar population and age studies
for different galaxy types that are published in the literature.

M 95 For M 95 seven spectra could be extracted, the highest number of all galaxies presented
in this thesis. The slit was oriented at a position angle of —65° directly along the bar of the
galaxy, cutting through the center (see Fig. 3.16). The spectra have been extracted from the
two dimensional spectrum by adding up several lines, depending on their distance from the center
of the galaxy. The center is defined by the maximum flux in spatial dimension in this regard.
The regions, or "bins”, that were added have been chosen to cover equally large regions of the
galaxy whenever possible. When the S/N decreased to values where the spectrum could barely
be identified, the last bin was chosen to be twice the size of the previous one.

Throughout this thesis the NED value for the Hubble flow distance relative to the 3K cos-

97



3. STELLAR POPULATIONS IN GALAXY CENTERS 3.3. Data Analysis and Results

Table 3.4: Summary of the properties of the spectra of M 95. Negative distance values
represent positions north—west of the center, positive distances positions south—east of it (slit
position angle = —65°).

Spectrum?  Added up region® ["] mean distance [pc] Dco® op.,?

a) —13.23 to —7.35 =772 1.130 0.098
b) —7.35 to —4.41 —441 1.129 0.073
c) —4.41 to —1.47 =221 1.185 0.045
d) +1.47 0 1.140 0.029
e) 1.47 to 4.41 221 1.176 0.036
f) 4.41 to 7.35 441 1.177 0.040
g) 7.35 to 13.23 772 1.172  0.110

?see Figs. 3.16 and C.1
bdistance from center

¢CO index as defined by Eq. 3.4
9Eq. 3.5

Figure 3.16: DSS image (infrared) of M 95. North is up, east is left. The image size is 4’ x 4’.
The 2’ long slit at the position angle of —=65° is indicated. The outermost distances from which
spectra have been analyzed are also indicated by 'a’ and 'g'(see Table 3.4).

mic microwave background (Dsk) will be taken as the reference, using the Hubble constant
Ho = 73kms~ 1 Mpc~!. For M 95 this is D3k = 15.4 + 1.1 Mpc. This corresponds to an angular
scale of A = 75pc/” projected on the sky. Using this scale the outermost bins that were added
up correspond to mean distances of roughly 750 pc from the center of the galaxy. Table 3.4 sum-
marizes the basic properties of the different spectra including the measured values and errors for
the Dco index. The location of the outermost spectra is indicated in Fig. 3.16 by the characters
'a’ and ‘g’ and all seven are shown in Appendix C (Fig. C.1).

98



3.3. Data Analysis and Results

3. STELLAR POPULATIONS IN GALAXY CENTERS

11—

M 95

12+

R

NGC 1032

12+

11—

NGC 3585

12+

11—

NGC 4593

1

-1000

-500

0

500

Projected distance from center

1000

Figure 3.17: The measured Dco values and their errors plotted against the projected distance
for all galaxies examined in this thesis. The plots from top to bottom are for M 95, NGC 1032,
NGC 3585 and NGC 4593, respectively. The plot for M 95 and for NGC 4593 show variations in
the Dco index values along the slit, while the index values for NGC 1032 and NGC 3585 remain

constant. See text for further discussion.
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Table 3.5: Summary of the properties of the spectra of NGC 1032. Negative distance values
represent positions north of the center, positive distances positions south of it (slit position
angle = 0°). The column definitions are the same as in Table 3.4.

Spectrum?  Added up region [’] Mean distance [pc] Dco  0ope,

a) —6.62 to —2.21 -723 1.127 0.026
b) +2.21 0 1.138 0.014
c) 2.21 to 6.62 723 1.129 0.016

?see Figs. 3.18 and C.2

The Dco index shows a trend to higher values in the center of M 95 after being constant for
the two outermost bounds at the north—western end of the slit. This is shown in Fig. 3.17 in the
uppermost graph. The highest value for the D¢ index value is reached for the nearest bin repre-
senting the position 221 pc north—west of the center (labeled 'c’ in Table 3.4 and Fig. C.1). The
values stay constant, taking their uncertainties into account, from the center until the outermost
bin at the south—eastern end.

The center of M 95 has been found to host a circumnuclear starburst (Hagele et al. 2007,
and references therein). Thus a contribution of a young stellar population is likely to be present
in the center of the galaxy. Using J-K photometry, Elmegreen et al. (1997) derive an age of
log T = 7.1 for the stellar population of several hotspots in the circumnuclear region. They also
find indications for heavy dust absorption in the central region of this galaxy. Comparing Fig. 6 of
Elmegreen et al. (1997) with the slit positioning of this thesis, two hotspots (labeled 'C’ and 'G’
by the authors) might have contributed to the spectra 'f' and 'b’, respectively. Unfortunately, this
cannot be determined more precisely because of the remaining positioning uncertainty of the slit
and the lack of exact coordinates in the reference figure in Elmegreen et al. (1997). If there is a
contribution of the hotspots to the spectra, the same age of log T = 7.1 found by the authors for
both hotspots leads to different Dcg values. For spectra 'b’ and 'g’ the values are of 1.129+0.073
and 1.17740.0040, respectively. Both values agree within their uncertainties, however. Looking
at the innermost parsecs of M 95 with the HST, Sarzi et al. (2005) find a luminosity weighted age
of log T = 9.39 when they apply a model of multiple starburst of various ages. Thus the center
of the galaxy is dominated by older stellar populations. Comparing the D¢ values of M 95 with
the results from the other galaxies (see below), this would imply that the young stellar population
found by Elmegreen et al. (1997) is not covered by the ISAAC observations of this thesis.

NGC 1032 Three spectra could be extracted for NGC 1032 (see Tab. 3.5 and Fig. C.2). In
Fig. 3.18 the outermost positions for the extracted spectra are marked together with the slit,
which was oriented at a position angle of 0°, i.e., cutting diagonally through the bulge and the
the center. The extracted spectra were centered on the peak of the brightness profile and at two
positions equally distant from this peak. The prominent dust lane of the galaxy disk that is visible
in the image could not be identified in the spectrum, indicating that the spectral features are
indeed dominated by the stellar component and not severely affected by dust. Thus the bins of
the extracted spectra represent two bulge positions north and south of the center and the center
itself. Using the NED parameters of D3k = 33.8 +2.4Mpc and A = 164 pc/” the two bulge
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Figure 3.18: DSS image (infrared) of NGC 1032 (4’ x 4’). The position angle of the slit is 0°.
North is up, east is left. The outermost distances from which spectra have been analyzed are
indicated by 'a’ and 'c’ (Table 3.5).

spectra were taken at a mean distance of ~720 pc from the center.

Looking at Table 3.5 and Fig. 3.17 no significant trend or change of the Dco index values is
visible, suggesting that the dominant stellar population does not change significantly with distance
from the center. The mean values are below those of M 95 and NGC 3585 and are among the
lowest that are found in the current sample. Although lower D¢ values for NGC 4593 have been
found these are probably due to different physical effects in that galaxy. This is discussed below.

NGC 1032 has a spheroidal bulge (Liitticke et al. 2000a) and has been used, e.g., by Bureau
et al. (2006) in their study of pseudobulges as part of a control sample representing classical,
merger built bulges. Thus, this bulge is expected to share similar properties with elliptical galaxies.
Terlevich & Forbes (2002) found an age of log T = 9.49 and a metallicity [Fe/H] > 0.5 for this
galaxy, somewhat older than the value for the center of M 95. The lower Dco value of NGC 1032
would then fit to the assumption that younger populations have higher CO absorption strengths
by trend. But the overall picture is more complicated. As mentioned above, the properties of the
bulge of NGC 1032 should be similar to elliptical galaxies, like NGC 3585.

NGC 3585 The properties of the five spectra for NGC 3585 are summarized in Table 3.6 and
the spectra are shown in Fig. C.3. The slit was positioned at an angle of 0°, cutting the galaxy
in north-south direction. The slit positioning and the limits where the outermost spectra were
obtained are indicated in Fig. 3.19. As usual the center has been defined by the peak of the
brightness profile, for which a spectrum covering the central 2/94 of the galaxy was extracted.
Two spectra of the same spatial bin where extracted next to the center, while the outermost
spectra cover twice the area of the galaxy projected on the plane of the sky. The NED values
of D3k =23.9+ 1.7Mpc and A = 116 pc/” have been used to compute the distances from the
center.

Similar to the result found for NGC 1032, the D¢g index values do not show any dependence
on the distance from the center and are basically flat (Fig. 3.17). The dominant stellar population

101



3. STELLAR POPULATIONS IN GALAXY CENTERS 3.3. Data Analysis and Results

Table 3.6: Summary of the properties of the spectra of NGC 3585. Negative distance values
represent positions north of the center, positive distances positions south of it (slit position
angle = 0°). The column definitions are the same as in Table 3.4.

Spectrum?  Added up region [’] Mean distance [pc] Dco  0ope,

a) —10.29 to —4.41 —-853 1.186 0.026
b) —4.41 to —1.47 =341 1.195 0.019
c) +1.47 0 1.193 0.015
d) 1.47 to 4.41 341 1.194 0.019
e) 4.41 to 10.29 853 1.200 0.038

?see Figs. 3.19 and C.3

1 . w -

Figure 3.19: DSS image (infrared) of NGC 3585 (4’ x 4’). The position angle of the slit is 0°.
North is up, east is left. The outermost distances from which spectra have been analyzed are
indicated by 'a" and 'e’ (Table 3.6).

is therefore most likely homogeneously distributed throughout the analyzed region. The measured
values are much higher than the ones for NGC 1032 and by trend also higher than the ones for
M 95. The values agree very well with the results of similar studies of elliptical galaxies carried
out by Silva et al. (2008), Mobasher & James (2000) and James & Mobasher (1999). As for
NGC 1032, Terlevich & Forbes (2002) determine the age of NGC 3585 to log T =9.49 and a
metallicity [Fe/H] > 0.5. Since the age and metallicity for both galaxies are identical within
the 20% uncertainty mentioned by Terlevich & Forbes (2002), the different Dco values are very
conspicuous, since they have been measured with high S/N and cannot be matched even when
the maximum uncertainties are taken into account.

James & Seigar (1999) mention other effects that can change the absorption strength of the
CO bands apart from age and metallicity. The first of these is an extremely young starburst
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log T <7, which can be ruled out for NGC 1032. The other possibility is significant contribution
by a possible non stellar continuum, e.g., by dust. To affect the continuum significantly, the dust
would have to be heated by star forming regions to temperatures of several hundred Kelvin (James
& Seigar 1999). While this is not ruled out in principle for the center of NGC 1032, the similar
Dco values measured for the bulge of the galaxy cannot be explained. A significant contribution
by a non thermal continuum is also highly unlikely for the bulge of NGC 1032. Summarizing
the above, the discrepancy between the Dco values found for NGC 1032 and NGC 3585 remains
peculiar when both galaxies share the same age and metallicity.

NGC 4593 The fourth galaxy studied in this thesis is NGC 4593. Three spectra were extracted
from the observations (Tab. 3.7 and Fig. C.4). The center of this galaxy is extremely bright (see
discussion below), so the central spectrum was extracted from the innermost 1747 and the two
other spectra were combined from the adjacent regions. The slit was oriented at an position
angle of 53°, stretching over most of the bar of the galaxy. This is illustrated together with the
positions of the outermost spectra in Fig. 3.20. Using D3k = 41.7 + 3.0 Mpc and A = 202pc/”
(NED) these two bulge spectra have a mean distance of ~ 740 pc from the center. The extreme
steepness of the brightness profile along the slit for this galaxy means that a substantial amount
of light in the outer two spectra comes from regions significantly closer to the values mentioned
above, however.

Looking at the lowermost panel of Fig. 3.17, an interesting slope is visible. The Dco index
value for the center is considerably lower than the ones found for the adjacent regions. In fact, it
is the lowest value found for all galaxies studied in this thesis. The two bulge spectra have low
values compared to NGC 3585, more similar to those found for NGC 1032, and the north—western
part of the M 95 spectra. The extremely low value that is found for the center is real and not
due to an measurement uncertainty, however. Looking at the spectrum for the center shown in
Fig. C.4, one can see that it is basically flat, showing no signs of CO absorption. The cause for
this continuum slope lies in the contribution of the active galactic nucleus (AGN) that is located
in the center of the galaxy (Kollatschny & Fricke 1985, and references therein). NGC 4593 is
classified as a Seyfert galaxy (Seyfert 1943) and the bright nucleus with its non stellar continuum
completely dominates the spectrum. Thus, any CO absorption that might be due to stars in the
central region of the galaxy is hidden. The effect is most probably also significant for the other
two spectra obtained from the offset positions and thus affecting the measured D¢o values. Due
to the excess of non stellar emission, these measured values are lower compared to the undisturbed
ones. A qualitative interpretation of the index values regarding age and metallicity of the dominant
stellar population is therefore very difficult based on the current set of data.

Comparison of the index values with other publications After the individual discussion of
the examined galaxies, the new results are now compared to other publications that used the CO
absorption feature for stellar population studies. To compare the older results with the new index
definition of Marmol-Queralté et al. (2008), the conversion formulas (Egs. 3.8 and 3.9) were used
to calculate the D¢ values from the published ones in other systems.

Fig. 3.21 shows the measured Do values for elliptical galaxies vs. the Hubble type defined in
de Vaucouleurs et al. (1991). The elliptical galaxy NGC 3583 (brown) and the classical bulge of
NGC 1032 (orange) are shown as larger circles with their measured error values. The data points
from the other publications are not shown with their uncertainties, since this would overcrowd
the diagram significantly. The uncertainties are in the order of 0.005 in absolute index values.
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Table 3.7: Summary of the properties of the spectra of NGC 4593. Negative distance values
represent positions north—east of the center, positive distances positions south—west of it (slit
position angle = 53°). The column definitions are the same as in Table 3.4.

Spectrum?  Added up region [’] Mean distance [pc] Dco  0ope,

a) —6.62 to —0.74 —742 1.140 0.032
b) +0.74 0 1.026 0.037
c) 0.74 to 6.62 742 1.130 0.040

“see Figs. 3.20 and C.4

- -

Figure 3.20: DSS image (infrared) of NGC 4593 (4’ x 4’). The position angle of the slit is 53°.
North is up, east is left. The outermost distances from which spectra have been analyzed are
indicated by 'a’ and 'c’ (Table 3.7).

NGC 3585 is classified as type '-5" in de Vaucouleurs et al. (1991), but has been offset by a small
amount in Fig. 3.21 to make the comparison with other elliptical galaxies easier.

The smaller circles shown in red, green, and blue are the values published by James & Mobasher
(1999), Mobasher & James (2000), and Silva et al. (2008), respectively. The first two publications
used the EW definition of Puxley et al. (1997) for their analysis. The results were converted into
the Dco values using Eq. 3.8. Silva et al. (2008) used the definition by Frogel et al. (2001) for
their study of ellipticals in the Fornax cluster. These values were subsequently converted using
Eq. 3.9 into the D¢ index.

James & Mobasher (1999) divided their sample of galaxies into cluster ellipticals and isolated
ones, including galaxies that belong to small groups in the second category. These field ellipticals
have been included in Fig. 3.21, since NGC 3585 itself has no close neighbors. The sample of
Mobasher & James (2000) is separated into galaxies which are closer than 0.2° angular distance
from the center of the cluster they belong to and those that are further out. The galaxies with
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Figure 3.21: Comparison of the new Dco values with other published values for elliptical galaxies.
The index values are plotted against the Hubble type (de Vaucouleurs et al. 1991). The two
proposed values for a purely old and a young stellar population (James & Seigar 1999) are indicated
by dashed lines at Dco=1.192 and Dco=1.319, respectively. See text for discussion. The value
of Dco=1.163 derived from the template spectrum of Cesetti et al. (2009) is shown as a double
dot—dashed line.

r < 0.2° are shown in Fig. 3.21.

Finally, a subset of galaxies from Ivanov et al. (2000) are shown in Fig. 3.21 as purple stars.
This study focused on AGN and starburst galaxies, measuring the CO absorption with an spectro-
scopic index comparable to the one defined by Doyon et al. (1994). These values were converted
to the EW defined by Puxley et al. (1997) by the formula published therein and subsequently
transformed to Dco values using Eq. 3.8. Three galaxies from lvanov et al. (2000) shown in
Fig. 3.21 are “true” ellipticals (without an AGN) and were included as reference galaxies in that
publication. The data point with galaxy type '—4.3" belongs to NGC 1144, a peculiar AGN that
is interacting with NGC 1141 and appears elliptical on DSS images. The other data points from
Ivanov et al. (2000) belong to AGN with SO type host galaxies. It must be mentioned that only
those galaxies from the other publications for which the galaxy type could be inferred are shown
in Fig. 3.21.

Looking at the data points for NGC 3585 it is obvious that this galaxy is comparable to
many other ellipticals studied in the selected paper. All points lie close to the line that defines a
metal rich, predominantly old stellar population, as suggested by James & Seigar (1999) but are
considerably higher than the value derived from the template spectrum of Cesetti et al. (2009) for
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an old elliptical. The values for NGC 3585 are significantly smaller as those for elliptical galaxies
found in small groups (the red circles with higher Dco values in Fig. 3.21), for which James &
Mobasher (1999) suggest that their larger index values are due to frequent minor mergers, and
thus younger stellar populations. The authors exclude metallicity differences as the cause for the
varying CO absorption strengths based on their measurements.

The measured Dco values for NGC 1032 show striking difference compared with the other
elliptical galaxies. These values lie unambiguously below the ones found for elliptical galaxies,
even lower than the value found for the spectrum of Cesetti et al. (2009). The best agreement for
NGC 1032 exists with the galaxies studied by Ivanov et al. (2000). Although similar in type, all of
these galaxies have an AGN in their center, which can affect the Dco values quite significantly.
NGC 1032 shows no sign of an AGN, however. Instead it has been found to contain a classical
bulge which is thought to be old and similar to ellipticals. At least from the results of the CO
absorption strength, this similarity is definitely not present. The cause for the discrepancy is
difficult to understand, taking the results of Terlevich & Forbes (2002) into account, who find
comparable metallicities and ages for both NGC 1032 and NGC 3585 (see above). If the general
trend of lower CO absorption strengths, equivalent to lower Dco index values, corresponds to
older mean stellar populations (James & Seigar 1999) is valid, either the metallicity of NGC 1032
must be lower than that of NGC 3585 or the mean ages must be different. On the one hand,
Michard (2006) find a slightly younger age of log T = 9.235 for NGC 3585. On the other hand,
the fact that the Do index for NGC 1032 nearly reaches the line defined by Cesetti et al. (2009)
for an elliptic galaxy with log T = 9.978 might suggest that the dominant stellar population of
NGC 1032 is considerably older than that of NGC 3585. The results for NGC 1032 and NGC 3585
also support the results of Gadotti (2009), who find differences between ellipticals and classical
bulges in the mass—size relation that might indicate different formation scenarios.

Fig. 3.22 shows the comparison of the two spiral galaxies studied in this thesis with other
galaxies studied using the same technique. M 95 (green diamonds) and NGC 4593 (purple squares)
are both classified as galaxy type '3’ in de Vaucouleurs et al. (1991). To better distinguish between
the values for both galaxies, the type for M 95 has been slightly shifted from the published one.
For completion, the values for NGC 1032, which were discussed in the last paragraph already, are
also shown as orange circles in Fig. 3.22. The values are compared to the results from James
& Seigar (1999), who studied the three galaxies NGC 613 (galaxy type '4"), NGC 628 (type '5')
and NGC 7741 (type '6'). The values were converted from the published EW values into the
Dco index using Eq. 3.8. Another comparative sample is given by the galaxies studied by lvanov
et al. (2000). The starburst sample is shown as green stars, the AGN sample as purple stars (as
already introduced in Fig. 3.21). Galaxies with peculiar classifications (types ‘90" and '99’) are
included as type '12" in Fig. 3.22 to keep the diagram compact. Only the galaxies from Ivanov
et al. (2000) for which a type classification was available are shown in the Figure.

Most of the measured Dco values for M 95 lie close to the ones derived for the starburst
sample of Ivanov et al. (2000). All values are lower than those of the starburst sample, however.
The two lowest values found for the north-western center of M 95 (see Table 3.4 and Figure 3.16)
come close to this region only when the maximum uncertainties are taken into account. They are
comparable to the lowest values found by James & Seigar (1999) for their galaxy sample. The low
indices are explained by the authors as being affected by significant amounts of dust or other non
stellar emission. Both explanations may also be valid for the case of M 95. The lowest two values
for M 95 also lie significantly below the line defined by the template spectrum of Cesetti et al.
(2009) for an old elliptical galaxy. The other D¢ indices for this galaxy agree fairly well with
this line, however. If the Dco index is governed by the mean stellar population and not seriously

106



3.3. Data Analysis and Results 3. STELLAR POPULATIONS IN GALAXY CENTERS

—+  James & Seigar (1999)
F T T T T T T T T T T % Ivanov etal. (2000) AGN
B % Ivanov et al. (2000) Sbrst
X ® M9
NGC 1032
13 B + B NGC 4593
1,25 * * * " . ]
I v ¥ * ]
L 1 + + * ]
L % + * |
12 * % * * *T %
. i x o ¥+ * * ]
5] L |
a e PR - ..:I-.._..* ......................................... -
1,15 " ol + _
* *
i * + ]
L « « « * ]
1,1+ % _|
- * -
- * * * * -
L * |
- * * -
1,05 _
1 — —
i 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 ]
0 5 10
Galaxy Type

Figure 3.22: Same as Fig. 3.21 but for spiral galaxies, including starburst galaxies and AGN. The
galaxy types for peculiar galaxies from de Vaucouleurs et al. (1991) ('90" and '99") are shown as
type '12’ to keep the diagram compact. See text for discussion.

affected by a non stellar contribution the overall result for the bulge of M 95 is that it consists of a
significant fraction of older stars, and the slit did not cover any star forming regions in the eastern
circumnuclear starburst ring (see Fig. 6 of Elmegreen et al. 1997). This result is consistent with
the results of MacArthur et al. (2009) or Peletier et al. (2008), who find that pseudo bulges also
show significant contributions of older stellar populations.

For NGC 4593 (purple squares), the extremely low Dco index measured for the central AGN
clearly stands out. Even taking the uncertainties into account it is among the lowest values that
have been found for other AGN by lvanov et al. (2000). The two adjacent regions that were
measured show values that are more consistent with this comparative sample. They also agree
well with the lowest indices found for M 95. On the one hand, this might suggest that the affected
regions in both galaxies have a significant contribution of non stellar light in their NIR spectra.
On the other hand, the measured D¢g indices for NGC 4593 and M 95 also agree fairly well to the
ones found for NGC 1032. There is no indication for a starburst or AGN in this galaxy, however.

Concluding this discussion, Fig 3.23 shows the combined data that was already presented in
Figs. 3.21 and 3.22, but covering all galaxy types. The main result from this diagram is that no
overall trend between the D¢ index and galaxy type is visible. Interestingly the scatter of index
values is lowest for the elliptical galaxies, and increases significantly for galaxy types >-3. It it
thus evident that the strength of the CO absorption is affected more by internal physical processes
and environments of the galaxies than by the dominant stellar population. The age—metallicity
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Figure 3.23: Same as Figs. 3.21 and 3.22, but showing all galaxy types. No significant trend of
the Dco values with Hubble type can be inferred. See text for discussion.

degeneracy is another problem that has to be taken care of when the CO absorption is used to
study the ages of galaxies.

The general trend that lower index values are an indication for an older stellar population
is in agreement with the measured value of Dcp=1.162+0.008 for the template elliptical galaxy
spectrum for an old stellar population derived by Cesetti et al. (2009). The value postulated
by James & Seigar (1999) for a very young stellar population is not found for any of the studied
galaxies, however. One possible explanation for this result is that other processes that are common
in star forming regions, like non stellar continuum emission by dust, affects the CO absorption
strength and thus the D¢o index, dragging it to lower values.

3.3.3 LUCIFER observations

It was planned to examine the CO absorption bands at 2.3 um with LUCIFER during the com-
missioning of the instrument at the LBT. Two targets that were suitable for both observations
with ISAAC and LUCIFER were chosen as targets for the spectroscopic commissioning. These
targets were M 95 and NGC 4593. Due to scheduling problems only NGC 4593 could be observed,
however. After the data had been reduced it turned out that it could not be used for a meaningful
scientific examination, unfortunately. This data analysis of the LUCIFER spectra of NGC 4593
and the problems that were encountered are described in the following.
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Data reduction

The LUCIFER observations of NGC 4593 were carried out during the commissioning run in January
2009. The data was acquired on the night of the 13.01.2009. Due to the time of the year the
galaxy could be observed only in the last quarter of the night, and the spectra were taken shortly
before sunrise. In total, five object spectra with a total integration time of 10 minutes were
planned, but due to imperfect positioning of the telescope, the last three object spectra were lost
because the object could not be moved back on the slit after sky frames had been taken. This
resulted in only two usable object spectra of NGC 4593 with two minutes integration time each.
After the object spectra had been taken, the star Hip55122 (spectral type B8) was observed to
correct for telluric features. This observation were severely limited by the increasing background
due to the twilight.

The data was corrected for the dark current of the detector using calibration frames taken
the day before and the morning after the observations. The flat field was computed from one
image with the halogen lamps switched on that was subtracted from the next image with the
lamp off, thus removing the dark current of the detector. This flat field was severely limited
by flux differences over the spectral range due to the diffusion disk of the calibration unit that
was out of specifications and caused a significant flux deficit beyond 2.2 yum. This problem has
been fixed after the maintenance of the unit in March 2009. A second problem became also
apparent at this time. A significant back reflection exists in the right area of the detector for pixel
values of x > 1000. The cause of this reflection is currently being investigated. The flatfielded
spectra were subsequently wavelength calibrated and distortion corrected using calibration frames
of Argon emission lines. The error in the wavelength calibration was lower compared to the
ISAAC calibrations (see Section 3.3.2). The self calibrated spectrum of the emission line data
showed distortion corrections better than one pixel and the wavelength calibration was on average
better than 0.5 A. The spectral resolution was 2.3 A per pixel, which is better than a factor of two
compared to the ISAAC one (7.1 A per pixel) and near the maximum resolution of LUCIFER which
is R=5000 in seeing limited mode in the K—band. The following sky subtraction revealed some
serious problems. It was not possible to remove the sky emission from the data without creating
strong residuals. The reason for this is probably mainly due to the observation time early in the
morning before sunrise. For the sky frames the same location as for the ISAAC observations was
chosen but this offset was apparently too large at the time with increasing twilight. Even an
attempt to remove the sky emission from the object frame did not result in a good subtraction
because the sky lines changed in intensity over the field of view of the detector.

After the same reduction was performed for the telluric standard star the problems increased
even further. The sky became so variable that it was impossible to extract a suitable sky spectrum
from the only available object spectrum. Consequently, it was not possible to correct the galaxy
spectrum for telluric features and to flux calibrate the spectrum. A scientific analysis of the data
taken with LUCIFER was therefore not possible, unfortunately.

3.4 Summary and Outlook

The CO absorption features prominent in the K—band were studied in this thesis. ISAAC spectra
of four galaxies of different Hubble type have been analyzed in the scope of the new Dco index
definition of Mdrmol-Queralté et al. (2008). The addressed question focuses on the evolution
of spiral galaxies in the context of secular driven processes of bulge formation. The monolithic
collapse model introduced by Eggen et al. (1962) understands the bulge as the oldest part of spiral
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galaxies, similar to elliptical galaxies. In many ways these “classical” bulges of some spirals share
many properties of ellipticals. In the scenario of secular evolution, the bulges of some galaxies
share parameters that are common to the spiral disks that surround them (disky bulges).

The results from this thesis regarding this question are ambiguous. No clear indication is seen
that the stellar population of the two studied spiral galaxies, M95 and NGC 4593, which have
been found to host a disky bulge, have young stellar populations in their centers. However, the
classical bulge of NGC 1032 shows a significantly different Dco index than the elliptical galaxy
NGC 3585. This finding is confirmed by the comparison of the index values with other elliptical
galaxies. Regarding the numerical value for Dco only, most regions studied for M 95 are very
similar or at least not well distinguishable from ellipticals. If the simple assumption that the
strength of the CO absorption feature is dominated only by the stellar population is applied,
this result leads to the conclusion that the stellar population of the center of M 95 is similar
to the ones found in ellipticals. This finding is supported by the measured D¢ index for the
template elliptical from Cesetti et al. (2009), which fits well to most of the values measured for
M 95. However, different internal processes and environments in a galaxy can severely affect the
measured Dcg index. A prominent example is the value measured for the AGN of NGC 4593, which
is among the lowest values that has been found for any galaxy. The main result from the analysis
is that the measurement of the CO absorption itself is not sufficient to constrain the dominant
stellar population. The influence of other physical processes and environmental conditions has to
be determined by additional measurements. The low index value found for NGC 1032, which is
significantly lower than those found for the elliptical galaxies is remarkable. It would therefore
seem worthwhile to extend the study of CO absorption strengths to galaxies showing a classical
bulge to constrain the range of Dco values using a larger sample of galaxies. This would then
clarify if NGC 1032 is an exceptional case or if there is a general trend present which has to be
explained by theories for structure formation in the universe.

A meaningful LUCIFER spectrum to address this scientific question could not be acquired
during the commissioning of the instrument so far. The spectra that were obtained suffer from
internal, i.e., calibration, issues as well as external, i.e., sky subtraction and telluric correction.
However, the measured high spectral resolution of the instrument promises a significant impact
regarding this question in the future. The high resolution of LUCIFER will allow to measure the
Dco index with much greater accuracy compared to other current NIR spectrographs. Additionally,
using the unique MQOS capabilities of the instrument will allow to study environmental effects of
the CO absorption strength with much improved efficiency compared to the current possibilities.
This efficiency grows even further when both LUCIFER instruments will be available and able to
carry out observations with the LBT in parallel.
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Chapter

Conclusions and future work

One of the main research areas of present day astronomy is to understand the formation and
evolution of galaxies. In this context, the currently extensively studied question of secular evolution
of galaxies has been examined in this thesis by means of NIR spectroscopy in the K-band. The
two LUCIFER near infrared instruments for the LBT will be able to make substantial contributions
to this research in the future.

On of the main intentions behind the thesis has been to maximize the astronomical usage
of the LUCIFER instrument. The needs by different user groups, i.e., engineers and observers,
differ greatly. The control software has to has to take care of this problem and provide convenient
and easy to use tools for both user groups. Security issues for the operation of the instrument
that arise have to be solved, too. Taking all of these points into account, it becomes clear that
the design of the control software plays an vital part for the overall success of an instrument like
LUCIFER.

Most of the the software for LUCIFER has been written in JAVA using its RMI capabilities to
create a distributed system. In this paradigm, every service that is essential for the operation of
the instrument or the management of the software is realized as an individual process that provides
the needed functionality to other services or programs, e.g., user interfaces. The separation of
different tasks into individual processes greatly improves the overall stability and availability of
the system. The software is structured in four different layers, where higher layers generally solve
more complex tasks. This keeps the complexity within each layer manageable which also helps to
increase the stability of the software.

The lowest layer, the System Layer, consists of services that are necessary to manage the
distributed system. It provides configuration control and other vital functions.

The Control Layer, located directly above the System Layer is the main interaction point
between the hardware of the LUCIFER instrument and contains all services that communicate
directly with hardware components. This includes services that are responsible to control the mo-
tors and query the position switches of the instruments, as well as services that query environment
data, e.g., temperatures and pressures inside LUCIFER. Control of the external packages for the
detector readout and telescope control are located in this layer as well. Finally, the Journalizer
service that keeps track of the overall state of the instrument and generates the FITS header
information is also part of the Control Layer.

The third layer, the Instrument Layer, models all physical units of the instruments that need
to be controlled with corresponding software services. These services rely on the ones provided
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in the Control Layer to work properly. The focus for these services lies on the tasks that have
to be solved for the corresponding unit, rather than on the problem of how to move a motor, for
example. One excellent example for this concept is the GratingUnit service. From the users
point of view, either the mirror or one of the gratings have to be placed in the optical beam,
depending if the intended science observations are imaging or spectroscopy. For spectroscopy, the
central wavelength that should be used for the observations is a second parameter. To be able to
provide the necessary functionality to the users of the instrument, the GratingUnit service needs
to move the physical unit to different positions and apply a specific voltage to tilt the gratings.
These more basic tasks are solved by the services located in the Control Layer. The responsibility
of the GratingUnit is to select the correct position of the unit and to set the correct tilt voltages
depending on the central wavelength chosen by the user. To do this, the necessary tilt voltages
can be interpolated using LookupTables.

The Operation Layer, which represents the highest layer of the control software, also directly
benefits from the increasing level of abstraction. All user interfaces as well as the three main
managing services for the instrument, telescope and the readout are located here. The manager
services solve the highest level complexities, which include execution of the necessary actions to
change the instrument from one setup to another. The user interfaces used by astronomers directly
communicate with the manager services. Services of lower layers are not directly accessible. This
ensures a safe operation of the instrument by an inexperienced observer since the managers take
care of the correct order in which the commands are send to the instrument in order to execute
the desired setup change. Engineers have full control over the complete software system by
user interfaces that allow them to interact directly with individual services of lower layers. The
efficient operation of the instrument is provided by the use of observation scripts that allow a fully
automatic observation of an astronomical object, including necessary telescope offsets between
individual exposures. Complex observing programs can be created before the observations are
carried out and executed later with minimum overheads.

The development of the observation scripts greatly benefited from the experience gained with
the preparation of the observations with ISAAC that were analyzed in this thesis. Four galaxies of
different Hubble types have been observed with the VLT, in order to study the dominant stellar
population in their centers. NIR K-band long slit spectra where taken and the CO absorption
feature at 2.3 um measured using the new Dco index definition proposed by Mdarmol-Queralté
et al. (2008). For each galaxy, multiple spectra could be extracted along the slit. The measured
index values were analyzed for each galaxy individually, focusing on the change of the index values
with regard to the distance of the center. For two galaxies, NGC 1032 — showing a classical bulge
— and NGC 3585 — an elliptical — no significant change of the index values with distance from
the center could be found. This means that the mean stellar population is very homogeneous
throughout the examined region, if the CO absorption is dominated by the stellar population. For
the two spiral galaxies showing a disky bulge in their center and thus signs of secular evolution
processes at work, the Dco values vary along the slit. The responsible processes causing this
change are likely to be different, however. For M 95 the differences could be due to a change in
the stellar population. Alternatively, influences due to a significant contribution by a non stellar
continuum are possible. For NGC 4593, the spectrum is dominated by the extremely bright AGN
that is located in the center of that galaxy. The Dco value measured for the center is one of the
lowest value found for any galaxy so far. Because of the extreme brightness of the central core the
low index values measured for the adjacent regions are also likely to be caused by contamination
of the spectrum from the center.

Comparing the newly found Dco values with other ones published in the literature shows
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no global trend of index values with Hubble type. The spread of measured values is smallest
for elliptical though and increases significantly for galaxies with types >—-3. This leads to the
conclusion that local environmental effects have to be taken into account when the index values
are analyzed. Interesting is the result that the index values found for the classical bulge of
NGC 1032 are considerably lower than the ones found for NGC 3585. Since the CO absorption
of NGC 3585 is similar to that found for other elliptical galaxies the value for NGC 1032 can be
compared in a broader context. Both galaxies have been found to have the same same mean
age and metallicity (Terlevich & Forbes 2002), ruling out two important factors that affect the
CO absorption index. Other physical effects which are likely to affect the index values, e.g., non
stellar emission of dust or AGN are very unlikely for the bulge of NGC 1032 as well. The values
found for NGC 1032 also lie lower than the one that was measured for a template spectrum of
an old elliptical galaxy derived by Cesetti et al. (2009). This could indicate an predominantly old
stellar population, considerably older than for most elliptical galaxies, or a significantly different
one. Taking all of these indications together, one possible consequence is, that the classical bulges
found in spiral galaxies might not simply be small ellipticals surrounded by stellar disks. This result
thus supports the same findings of Gadotti (2009).

For spiral galaxies the spread in the measured CO absorption strengths is considerably larger
than for ellipticals. The Dco values found for NGC 4593 are dominated by the non stellar contri-
bution of the AGN. Any conclusions for dominant stellar populations are thus difficult to achieve.
Most values found for M 95 are in good agreement with the ones found in elliptical galaxies
with old populations. If the stellar continuum dominates the spectra the stellar population of the
pseudo bulge of M 95 thus will constitute of a significant fraction of older stars. Similar results
have recently been found by MacArthur et al. (2009) for other galaxies.

The observations of NGC 4593 that were carried out with LUCIFER 1 during the commissioning
of the instrument were severely affected by external and internal problems, so that no scientific
meaningful spectrum could be extracted, unfortunately. Nonetheless, the data help to understand
the current issues and provided important insights on how to fix them in the near future.

LUCIFER 1 will be available for the scientific community within the next months. The control
software is ready and working very reliably and above expectations. It allows efficient and save
operation of the instrument. The next steps are the integration of the Scheduler service into the
current design of the Operation Layer and the extension for the AO operation of the instrument
which is due to start in 2010. Finally, the operation of both LUCIFER instruments together at
the LBT has to be supported.

By carrying out the first spectroscopic study using the new Dcgo index of Marmol-Queralté
et al. (2008) for galaxies, differences have been found between elliptical galaxies and classical
bulges. Although the current sample is definitely to small to draw any general results, it is proposed
to extend the study of galaxies showing a classical bulge with regard to the CO absorption in the
K-band. By comparing the results of CO absorption measurements for many galaxies, the main
result of this thesis is that the CO index may be dominated in numerous spiral galaxies by internal
physical properties leading to non stellar radiation rather than by the stellar populations.
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A typi

SIMPLE =
BITPIX =
NAXIS =
NAXIS1 =
NAXIS2

COMMENT =
BSCALE =
BZERO =
COMMENT =
COMMENT =
COMMENT =
COMMENT =
MJD-0BS =
DATE-0BS=
DATE =
UT =
LST =
ORIGIN
OBSERVER=
TELESCOP=
FRATIO =
INSTRUME=
OPTIC =
ELECGAIN=
ENOISE =
ELECTRON=
STRT-INT=
STOP-INT=
OBJECT
EXPO_NO
FILENAME=

cal FITS header

32

2048
2048

1.0
0.0

54844.50903705 / Modified julian date ’days’ of observation end

’2009-01-13T12:13:00.8010°/ UT-date of observation end
72009-01-13T12:13:01.4414°/ UT-date of file creation
43980.8010 / ’12:13:00.8010’ UTC (sec) at EOread
44755.640000 / local siderial time: 12:25:55 (EOread)
’Mount Graham, MGIO, Arizona’
‘master’
’LBT’
'F/15°
’Lucifer’
’high res.’
4.100000 / electrons/DN
12.000000 / electrons/read
’MPIA TR-ROelectronics Vers. 2’
43959.6450 / ’12:12:39.6450° start integration (sec) (UT)
43980.7963 / 212:13:00.7963° stop integration (sec) (UT)
’M95°
544 / exposure/read counter
’1uci_20090112_0156.fits’
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TPLNAME
TIMERO
TIMER1
TIMER2
PTIME
READMODE=
IDLEMODE=
SAVEMODE=
CPAR1 =
ITIME =
CTIME =
CRATE
HCOADDS =
PCOADDS =
SCOADDS =
NCOADDS =
EXPTIME =
FRAMENUM=
SKYFRAME=
SAVEAREA=
SOFTWARE=
COMMENT =
CRVAL1
CRVAL2

RA

DEC =
RADECSYS=
CRPIX1 =
CRPIX2 =
SECPIX1 =
SECPIX2 =
CDELT1 =
CDELT2 =
CTYPE1L =
CTYPE2
CROTA1
CROTA2 =
Cbi_1 =
Cbi_2 =
cb2_1 =
Cb2_2 =
OBJRA
OBJDEC =
TELALT =
TELAZ =
PARANGLE=
POSANGLE=

> /home/luci/GEIRS/MACROS/darks.mac’/ macro/template name
1984 / milliseconds
2000 / milliseconds

’02.double.corr.read’/

’break’

’02.double.corr.read’/

’unknown’

16029
2

/
/

/

microseconds
pixel-time-base index
read cycle-type

idle to read tramsition
save cycle-type

1 / cycle type parameter
2.000000 / (on chip) integration time [secs]
4.105992 / read-mode cycle time [secs]
0.243547 / read-mode cycle rate [Hz]

1 / # of hardware coadds

1 / # of coadded plateaus/periods

5 / # of software coadds

5 / effective coadds (total)

10.000000 / total integ. time [secs]
1 / INTEGRAL OF 5

’[1:2048,1:2048]°

’>GEIRS Vers. hwplx-r251.sv9b-x04 (Sep 17 2008, 22:35:45)°

’your comment’

189.98377500 /

-5.25700000 /
?12:39:56.106000000°/ RA at MJD-0BS
’-05:15:25.210000000°/ DEC at MJD-0BS

"FK5°/

1025.000000 /
1050.000000

-0.120000

0.120000
0.00003333
0.00003333

’RA---TAN’/

’DEC--TAN’/
306.070000
306.070000
0.00001962
0.00002694
-0.00002694
0.00001962 /

NN N NN N

~

~N N NN N

712 39 56.106°/ RA requested
’-05 15 25.21°/ DEC requested

51.823708 / LBT mount altitude at MJD-0BS

173.926315 / LBT mount azimuth at MJD-OBS
-4.9126 / Parallactic angle at start (deg)
53.9300 / position angle at start (deg)
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ROTANGLE= 66.7085 / rotator angle at start (deg)
M1-X = 0.217489 / X pos of PM

M1-Y = -0.876797 / Y pos of PM

M1-Z = 0.435177 / Z pos of PM

M1RX = -45.722590 / X rot of PM

M1RY = -2.801875 / Y rot of PM

M1RZ = 0.000000 / Z roy of PM

M1CTEMP = -0.035333 / temp of PM

M2-X = =7.010000 / X pos od SM

M2-Y = 0.862000 / Y pos of SM

M2-Z = 0.000000 / Z pos of SM

M2RX = 114.280000 / X rot of SM

M2RY = 181.800000 / Y rot of SM

M2RZ = 0.000000 / Z rot of SM

M2CTEMP = -0.031667 / temp of SM

M3TIP = 0.000000 / tip of TM

M3TILT = 0.000000 / tilt of TM

M3PSTN = 0.000000 / position of TM

M3ZROT 0.000000 / Z rot of TM

M3CTEMP = -0.001333 / temp of TM

TTEMP201= 2.699000 / telescope temp at sensor 201
TTEMP202= 6.182000 / telescope temp at sensor 202
TTEMP203= 0.546000 / telescope temp at sensor 203
TTEMP204= 0.369000 / telescope temp at sensor 204
TTEMP205= 2.494000 / telescope temp at sensor 205
TTEMP206= 4.403000 / telescope temp at sensor 206
TTEMP207= 1.394000 / telescope temp at sensor 207
TTEMP208= 1.302000 / telescope temp at sensor 208
TTEMP209= 1.312000 / telescope temp at sensor 209
TTEMP210= 1.394000 / telescope temp at sensor 210
TTEMP301= 0.220000 / telescope temp at sensor 301
TTEMP302= 0.145000 / telescope temp at sensor 302
TTEMP303= -1.113000 / telescope temp at sensor 303
TTEMP304= -0.814000 / telescope temp at sensor 304
TTEMP305= -0.131000 / telescope temp at sensor 305
TTEMP306= -0.660000 / telescope temp at sensor 306
TTEMP307= 0.215000 / telescope temp at sensor 307
TTEMP308= -0.139000 / telescope temp at sensor 308
TTEMP309= 0.033000 / telescope temp at sensor 309
TTEMP310= -0.659000 / telescope temp at sensor 310
SMTTEMP = 0.100000 / ambient temp SMT weather station
SMTPRES = 699.691700 / pressure at SMT weather station
SMTHUM = 24.100000 / humidity at SMT weather station
SMTDWPT = -18.402560 / dewpoint at SMT weather station
LBTTEMP = 0.000000 / ambient temp at LBT weather station
LBTPRES = 0.000000 / pressure at LBT weather station
LBTHUM = 0.000000 / humidity LBT weather station
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LBTDWPT = 0.000000 / dewpoint LBT weather station
GUIRA = ’12 40 13.354°/ RA of guide object

GUIDEC = ’-05 13 26.44’/ DECS of guide object

STATLMP1= ’0FF’/ Ne

STATLMP2= ’0FF’/ Ar

STATLMP3= ’0FF’/ Xe

STATLMP4= ’0FF’/ HALO 1

STATLMP5= ’0FF’/ HALO 2

STATLMP6= ’0FF’/ HALO 3

RACKTEM1= 284.79 / rack sensor 1 (I-Rack)
RACKLVL1= 100.0 / output level channel 1
RACKTEM2= 288.36 / rack sensor 2 (motion control electron
RACKLVL2= 100.0 / output level channel 2
RACKTEM3= 287.13 / rack sensor 3 (readout electronics)
RACKLVL3= 100.0 / output level channel 3
RACKTEM4= 277.30 / rack sensor 4 (ambient)
RACKLVL4= 200004.0 / unused

RACKCLG = ’0N’/ cooling of the electronics rack
PRESSUR1= 5.0900E-7 / mbar

PRESSUR2= 6.9000E-7 / mbar

DETTEMP1= 77.00 / input channel A (detector)
DETTEMP2= 60.00 / input channel B (cold bench)
INSTEMP1= 66.30 / sensor 1 (structure bottom)
INSTEMP2= 70.32 / sensor 2 (focal plane unit)
INSTEMP3= 68.89 / sensor 3 (getter unit)
INSTEMP4= 69.17 / sensor 4 (structure top)
INSTEMP5= 66.96 / sensor 5 (camera unit)
INSTEMP6= 76.97 / sensor 6 (grating unit)
INSTEMP7= 76.69 / sensor 7 (MOS unit)

INSTEMP8= 502.50 / sensor 8 (MOS unit)

M4M1PQS = 0 / position of mirror 4 motor 1
M4M2P0OS = 0 / position of mirror 4 motor 2
CAMPOS = 2 / position of camera unit

CAMNAME = ’N3.75 Camera’/ camera name

PIXSCALE= 0.12000 / arcsec/pixel

INSFOCUS= -350 / detector focus (steps from reference)
FILTPOS1= 3 / position of FW1

FILTER1 = ’clear-1’/ name of filter in FW1

FILTPOS2= 14 / position of FW2

FILTER2 = ’K’/ name of filter in FW2

GRATPOS = 2 / position of the grating unit
GRATNAME= 'mirror’/ name of the grating unit element
GRATVOLT= 0.16781 / tilt voltage

GRATWLEN= ‘not used’/ central wavelength (microns)
GRATORDE= 'not used’/ used grating diffraction order
GRATLOOP= ’0PEN’/ regulation loop status

MOSPOS = ’no mask in use’/ position of the MOS unit
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MASKSLOT= ’unknown’/ number of the used mask
MASKID = >unknown’/ ID of the used mask
MASKNAME= ’unknown’/ description of the used mask
PVSTATUS= ’PUPIL_VIEWER_QUT’/ position of pupil viewer

END

119



Appendix

A template observation script

[START_INSTRUMENT_SETUP]

CAMERA =N3.75
FILTER_ONE =clear-1
FILTER_TWO =Ks
GRATING_UNIT =mirror

CENTRAL_WAVELENGTH

ORDER =

MASK =

MASK_POSITION =no_mask_in_use
FLEXURE_COMP =on

[END_INSTRUMENT_SETUP]

[START_TELESCOPE_SETUP]

TARGET_NAME =NGC4593
TARGET_COORD =12 39 39.4 -05 20 39
GUIDE_NAME =

GUIDE_COORD =12 39 46.4 -05 18 56
ROT_ANG =50

ROT_MODE =position

[END_TELESCOPE_SETUP]

[START_READOUT_SETUP]

DIT =10
NDIT =2
NINT =2

H OH H OHE H H HE H HHEHHEH R

H H OH K H

+*+

N1.8|N3.75|N30

names of filters in FW1
names of filters in FW2
mirror |high_dispersion]|
200_H+K|150_Ks

value or leave blank
value or leave blank
IDxxx = mask id

NBxx = cabinet position
leave blank for no mask
mask_in_fpul
mask_in_turnout |
no_mask_in_use

enable flexure compens

any name or leave blank
hh mm ss dd mm ss

any name or leave blank
hh mm ss dd mm ss

in degrees
position|parallactic|idle

any positive value
any positive value
any positive value
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ROE_MODE =mer

SAVE_MODE =INTEGRATED
SAVE_PATH =/data/1luci/20090211
FILENAME =script_

[END_READOUT_SETUP]

[START_OBSERVING_SETUP]

OFFSET_TYPE =relative
COORD_SYS =DETXY
ACQUISITION =20 20
OFFSET =10 00
OFFSET =10 00 45.6

H H OB H

H H H K H H HH

o2dcr|mer (#reads)
integrated|cube|normal
absolute save path
root of the filenames

relative|absolute

DETXY |RADEC

offset the telescope and
wait for acknowledge
offset the telescope
same as above

but with a rotator angle
offset of 45.6

# a new telescope pointing can be specified with the following command:

POINTING =06 40 40 21 23 30 06 40 59 21
# hh mm ss dd mm ss hh mm ss dd
FOCUS =-420 -200 10 #
#
FLAT #
#

[END_OSERVING_SETUP]
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adjust focus from -420
to 200 in steps of 10
readout the detector

for flats, no parameters
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ISAAC spectra of the galaxies

The following pages show spectra of the different galaxies that are examined in this thesis. For
each galaxy, several spectra could be extracted along the slit. The number of extracted spectra
varied from three (the center and one adjacent regions on each side) for NGC 1032 and NGC 4593,
to seven spectra for M 95 (the center and three adjacent regions on each side). The regions — or
bins — were chosen to provide for equal spatial separation with a reasonable S/N after extraction.
If the S/N dropped significantly, the bin size was doubled and this bin was then the outermost one.
The only exception is NGC 4593 for which the central bin was chosen to cover only the innermost
region hosting the AGN and the other two bins extending to the edges of the detectable emission.
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Figure C.1: Spectra of M 95 for various distances from the center.
normalized to F(\ = 22000 A) = 1. The absorption and the two continuum bands that have been
used for the Dco index calculation are indicated. The projected mean distances from the center
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Figure C.2: Spectra of NGC 1032 for various distances from the center. The spectra have been
normalized to F(\ = 22000 A) = 1. The absorption and the two continuum bands that have been
used for the Dco index calculation are indicated. The projected mean distances from the center
are a) -723 pc, b) Opc, and ¢) 723 pc.
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normalized Flux

Figure C.3: Spectra of NGC 3583 for various distances from the center. The spectra have been
normalized to F(\ = 22000 A) = 1. The absorption and the two continuum bands that have been
used for the Dco index calculation are indicated. The projected mean distances from the center

1,2

0,8

0,6

1,2

0,8

0,6

1,2

0,8

0,6

1,2

0,8

0,6

1,2

0,8
0,6

NGC 3

585

|

QD
~—

5

|

O
N

f

|

(@]
~

f

|

1717
o
N

5

/

D
N

i

%

/

21000 22000

23000

24000

Wavelength (angstroms)

are a) -853 pc, b) -341 pc, c) Opc, d) 341 pc, and e) 853 pc.

125



APPENDIX

NGC 4593
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Figure C.4: Spectra of NGC 4593 for various distances from the center. The spectra have been
normalized to F(A = 22000 A) = 1. The absorption and the two continuum bands that have been
used for the Dco index calculation are indicated. The projected mean distances from the center
are a) -742pc, b) Opc, and c) 742pc. Note that the “absorption feature” near 21500 A is a
residual of the telluric correction.
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Template spectrum of an elliptical galaxy
with an old stellar population
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Figure D.1: The template spectrum of an elliptical galaxy from Cesetti et al. (2009) for a mean
age of the stellar population of log T = 9.98. The absorption and two continuum bands used to
calculate the Dco values are indicated. The spectrum is normalized to F(A = 22000 A) =1






Abbreviations

ADC atmospheric dispersion corrector

AGB asymptotic giant branch

AGN active galactic nucleus

ATRUB Astronomisches Institut Ruhr—Universitat-Bochum
AQO adaptive optics

b/p box/peanut

CCD Charge Coupled Device

CORBA Common Object Request Broker Architecture

dcr double correlated read

DIT detector integration time

DSS Digital Sky Survey

ESO European Southern Observatory

EW equivalent width

FITS Flexible Image Transport System

FOV field of view

GEIRS GEneric InfraRed Software

GUI graphical user interface

HAWATII2 HgCdTe Astronomical Wide Area Infrared Imager-2
HIRAMO Hlgh Resolution Analog Measurement Output board
HST Hubble Space Telescope

HUDF Hubble Ultra Deep Field



ABBREVIATIONS

ICE Internet Communications Engine

ITF Instrument Interface

IRAF Image Reduction and Analysis Facility
ISA AC Infrared Spectrometer and Array Camera
JVM Java Virtual Machine

JWST James Webb Space Telescope

LBT Large Binocular Telescope

LBTI LBT Intefrerometer

LBC Large Binocular Camera

Icsp LUCIFER control software package

LINC/NIRVANA LBT INteferometric Camera / Near-IR Visible Adaptive iNterferometer for
Astronomy

LSS long slit spectroscopy
LSW Landessternwarte Heidelberg

LUCIFER LBT NIR spectroscopic Utility with Camera and Integral-Field Unit for
Extragalactic Research

mas milliarcsecond

MCU Motion Control Unit

MDR. morphology density relation

mer multiple end point read

MODS Multi Object Double Spectrograph

MOS multi object spectroscopy

MPIA Max-Planck-Institut fiir Astronomie, Heidelberg
MPE Max-Planck-Institut fiir Extraterrestrische Physik, Garching
NED NASA/IPAC Extragalactic Database

NGC New General Catalogue

NIR near infrared

OPT Observation Preparation Tool

P2PP Phase 2 Proposal Preparation
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ABBREVIATIONS

PEPSI Potsdam Echelle Polarimetric and Spectroscopic Instrument
RMI remote method invocation

S/N signal to noise ratio

SAURON Spectroscopic Areal Unit for Research on Optical Nebulae
SDSS Sloan Digital Sky Survey

SFR star formation rate

TCS Telescope Control Software

VLT Very Large Telescope
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