ANÁLISIS EXPERIMENTAL DE GEOMATERIALES CEMENTADOS ARTIFICIALMENTE

CESAR AUGUSTO RAMÍREZ CAVIEDES JUAN SEBASTIÁN LÓPEZ NIÑO

UNIVERSIDAD CATÓLICA DE COLOMBIA PROGRAMA DE INGENIERÍA PROGRAMA INGENIERÍA CIVIL TRABAJO DE GRADO BOGOTÁ 2013

ANÁLISIS EXPERIMENTAL DE GEOMATERIALES CEMENTADOS ARTIFICIALMENTE

CESAR AUGUSTO RAMÍREZ CAVIEDES JUAN SEBASTIÁN LÓPEZ NIÑO

Trabajo de grado para optar al título de Ingeniero Civil

Director
Juan Carlos Ruge Cárdenas
Ingeniero Civil

UNIVERSIDAD CATÓLICA DE COLOMBIA PROGRAMA DE INGENIERÍA PROGRAMA INGENIERÍA CIVIL TRABAJO DE GRADO BOGOTÁ 2013

Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5)

La presente obra está bajo una licencia:
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5)
Para leer el texto completo de la licencia, visita:

http://creativecommons.org/licenses/by-nc-nd/2.5/co/

Usted es libre de:

Compartir - copiar, distribuir, ejecutar y comunicar públicamente la obra

Bajo las condiciones siguientes:

Atribución — Debe reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).

No Comercial — No puede utilizar esta obra para fines comerciales.

Sin Obras Derivadas — No se puede alterar, transformar o generar una obra derivada a partir de esta obra.

Nota de aceptación	
	_
Director de Investigación	
Director de Investigación Ing. Juan Carlos Ruge Cárdenas	
Asesor Metodológico	
Ing. Juan Carlos Ruge Cárdenas	
Jurado	

AGRADECIMIENTOS

Queremos agradecer primeramente a Dios, por darnos la oportunidad de vivir, por permitirnos disfrutar cada momento de nuestras vidas así como de guiarnos por el camino correcto.

El presente trabajo de investigación fue realizado bajo la supervisión del Ing. Juan Carlos Ruge, a quien nos gustaría expresar los más profundos agradecimientos, por hacer posible la realización de este estudio. Además, de agradecer su paciencia y tiempo.

A nuestros padres, por darnos la vida y apoyarnos en todo lo que nos propusimos, por ser el apoyo más grande durante nuestra educación universitaria, puesto que de no haber sido así nuestras metas y sueños no se hubieran logrado.

A nuestras hermanas mayores, a ellas quienes son nuestros ejemplos a seguir y quienes en algún momento de nuestras vidas fueron las encargadas de corregirnos cuando se debía.

CONTENIDO

	pág.
INTRODUCCIÓN	14
1. GENERALIDADES	15
1.1 ANTECEDENTES	15
1.2 PLANTEAMIENTO DEL PROBLEMA	15
1.3 OBJETIVOS	15
1.3.1 Objetivo General	15
1.3.2 Objetivos Específicos	15
1.4 JUSTIFICACIÓN	16
1.5 DELIMITACIÓN	16
1.5.1 Alcances	16
1.5.2 Limitaciones	16
2. MARCO DE REFERENCIA	17
2.1 MARCO TEÓRICO	17
2.1.1 Compresibilidad de Arenas Cementadas en Ambiente Semiárido	17
2.1.1.1 Conclusiones del Estudio	18
2.1.2 Superficie de Fluencia de Materiales Granulares Cementados	18
2.1.3 Determinación de la Presencia de Cementantes	19
2.1.4 Arenas Cementadas Bajo Cargas Estáticas	19
2.1.5 Propiedades Estáticas de Arena Ligeramente Cementada	20
2.1.6 Comportamiento de los Pilotes Perforados Lateralmente Cargado en	
Arenas Cementadas	20
2.1.7 Efectos de Lixiviación en las Propiedades de las Arenas Cementadas en	
Kuwait	21
2.2 MARCO CONCEPTUAL	21 21
2.2.1 Suelo 2.2.2 Cementantes	21
2.2.3 Arenas Cementadas.	23
2.2.3 Alerias Cementadas.	23
3. METODOLOGIA	25
3.1 TIPO DE ESTUDIO	25
3.2 PAUTAS DE TRABAJO	25
3.3 MATERIALES	25
3.3.1 Material Simúlante de Suelo.	25
3.3.1.1 Micro-Esferas de Vidrio	25
3.3.2 Cementante Artificial.	26
3.3.1.2 Silicona Negra o Caucho de Silicona "Pegadit".	26
3.3.3 Balanza Digital	27
3.3.4 Molde para Probetas en PVC Ensayo Compresión Inconfinada	27
3.3.5 Molde Metálico Ensayo Deformación Unidimensional	28

	pág.
3.3.6 Tazón Metálico para Realizar las Mezcla 3.3.7 Espátulas	29 29
4. DESARROLLO METODOLÓGICO 4.1 PROCESO DE ELABORACIÓN PROBETAS Y ENSAYO DE	30
COMPRESIÓN INCONFINADA	30
4.1.1 Elaboración Tubos	30
4.1.2 Elaboración Muestras 4.1.3 Llenado de Probetas	30 33
4.1.4 Desmonte de Probetas.	34
4.1.5 Ensayo de Compresión Inconfinada	35
4.2 PROCESO DE ELABORACIÓN MUESTRAS Y ENSAYO	
CONSOLIDACIÓN UNIDIMENSIONAL	37
4.2.1 Elaboración Molde	37
4.2.2 Elaboración Muestras	37
4.2.3 Llenado de Moldes	39
4.2.4 Desmonte de los Moldes	40
4.2.5 Toma de Datos de las Muestras antes del Ensayo4.2.6 Ensayo de Consolidación Unidimensional	40 40
4.2.0 Elisayo de Colisolidacion officiliterisional	40
5. RESULTADOS	42
5.1 RESULTADOS ENSAYO COMPRESIÓN INCONFINADA	42
5.1.1 Datos y Resultados Muestra 1.	42
5.1.2 Datos y Resultados Muestra 2	44
5.1.3 Datos y Resultados Muestra 3.	46
5.1.4 Datos y Resultados Muestra 4.5.1.5 Datos y Resultados Muestra 5	48 50
5.1.6 Gráfica Esfuerzo vs. Deformación	52
5.3 RESULTADOS CONSOLIDACIÓN UNIDIMENSIONAL	52
5.3.1 Datos y Resultados Muestra 1	52
5.3.2 Datos y Resultados Muestra 2	58
5.3.3 Datos y Resultados Muestra 3	64
5.3.4 Datos y Resultados Muestra 4	70
5.3.4 Datos y Resultados Muestra 5	76
6. ANALISIS DE RESULTADOS	82
6.1 ANÁLISIS RESULTADOS COMPRESIÓN INCONFINADA	82
6.1.1 Muestra 1	82
6.1.2 Muestra 2	82
6.1.3 Muestra 3	82
6.1.4 Muestra 4	82
6.1.5 Muestra 5. 6.2 ANÁLISIS RESULTADOS ENSAYO EDOMETRICO	83 83
V.E ANALIOIO NEOULIADOO ENOATO ITANIII INKA	().)

	pág.
7. CONCLUSIONES	85
8. RECOMENDACIONES	86
BIBLIOGRAFÍA	87

LISTA DE CUADROS

	pág
Cuadro 1. Dimensiones Probetas	30
Cuadro 2. Pesos con Material Probetas	32
Cuadro 3. Dimensiones Moldes	37
Cuadro 4. Pesos con Material Probetas	38
Cuadro 5. Datos de las Muestras	40
Cuadro 6. Datos de Laboratorio Muestra 1	42
Cuadro 7. Cálculo de Esfuerzos Muestra 1.	43
Cuadro 8. Datos de Laboratorio Muestra 2.	44
Cuadro 9. Cálculo de Esfuerzos Muestra 2.	45
Cuadro 10. Datos de Laboratorio Muestra 3.	46
Cuadro 11. Cálculo de Esfuerzos Muestra 3.	47
Cuadro 12. Datos de Laboratorio Muestra 4.	48
Cuadro 13. Cálculo de Esfuerzos Muestra 4	49
Cuadro 14. Datos de Laboratorio Muestra 5	50
Cuadro 15. Cálculo de Esfuerzos Muestra 5.	51
Cuadro 16. Cálculo de la Curva de Compresibilidad de la Muestra 1	52
Cuadro 17. Cálculo de la Curva de Compresibilidad de la Muestra 2.	58
Cuadro 18. Cálculo de la Curva de Compresibilidad de la Muestra 3.	64
Cuadro 19. Cálculo de la Curva de Compresibilidad de la Muestra 4.	70
Cuadro 20. Cálculo de la Curva de Compresibilidad de la Muestra 5.	76

LISTA DE FIGURAS

	pág.
Figura 1. Micro-esferas de Vidrio	26
Figura 2. Silicona Negra	26
Figura 3. Balanza Digital.	27
Figura 4. Tipos de Tubería en PVC.	28
Figura 5. Molde Metálico Estándar Deformación Unidimensional.	28
Figura 6. Tazón Metálico	29
Figura 7. Espátulas	29
Figura 8. Probetas en PVC para Ensayo Compresión Inconfinada	30
Figura 9. Calibración Balanza con Hoja y Probeta	31
Figura 10. Tubos Llenos de Micro-Esferas de Vidrio	31
Figura 11. Balanza en Ceros	32
Figura 12. Mezcla Materiales.	33
Figura 13. Proceso de Compactación de una Muestra	34
Figura 14. Desmonte de las Muestras	35
Figura 15. Montaje de las Muestras en la Máquina de Compresión Inconfinada	36
Figura 16. Calibración Balanza con Hoja y Molde	37
Figura 17. Molde Lleno de Esferas	38
Figura 18. Pesaje Material	38
Figura 19. Mezcla Materiales	39
Figura 20. Llenado Moldes	39
Figura 21. Montaje de la Muestra en el Equipo de Consolidación Unidimension	ıal41
Figura 22. Gráfica Esfuerzo vs. Deformación	52
Figura 23. Curva de Compresibilidad Muestra 1.	53
Figura 24. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 1.	53
Figura 25. Curva de Consolidación Unitaria para 2 Kg. de la Muestra 1	54
Figura 26. Curva de Consolidación Unitaria para 4 Kg. de la Muestra 1	55
Figura 27. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 1	56
Figura 28. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 1	57
Figura 29. Curva de Compresibilidad Muestra 2.	58
Figura 30. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 2	59
Figura 31.Curva de Consolidación Unitaria para 2 Kg. de la Muestra 2.	60
Figura 32. Curva de Consolidación Unitaria para 4 Kg. de la Muestra 2.	61
Figura 33. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 2.	62
Figura 34. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 2.	63
Figura 35. Curva de Compresibilidad Muestra 3.	64
Figura 36. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 3.	65
Figura 37. Curva de Consolidación Unitaria para 2 Kg. de la Muestra 3.	66
Figura 38. Curva de Consolidación Unitaria para 4 Kg. de la Muestra 3.	67
Figura 39. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 3.	68
Figura 40. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 3.	69
Figura 41. Curva de Compresibilidad Muestra 4.	70

p	ág.
Figura 42. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 4.	71
Figura 43. Curva de Consolidación Unitaria para 2 Kg. de la Muestra 4.	72
Figura 44. Curva de Consolidación Unitaria para 4 Kg. de la Muestra 4.	73
Figura 45. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 4.	74
Figura 46. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 4.	75
Figura 47.Curva de Compresibilidad Muestra 5.	76
Figura 48. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 5.	77
Figura 49. Curva de Consolidación Unitaria para 2 Kg. de la Muestra 5.	78
Figura 50. Curva de Consolidación Unitaria para 4 Kg. de la Muestra 5.	79
Figura 51. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 5.	80
Figura 52. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 5.	81
Figura 53. Resumen de Gráficas Curva de Compresibilidad Ensayo Edométrico	83

GLOSARIO

ADHERENCIA: propiedad de los materiales para lograr unirse entre ellos y durar pegados por un lapso de tiempo.

ARENA: es el material fino que varía entre 2mm y 0,05 mm de diámetro y que se genera por la trituración de las rocas mientras son acarreadas por las aguas de ríos y van tomando su forma redondeada.

ARTIFICIAL: producto que ha sido creado por el hombre mediante procesos de manufactura.

ASENTAMIENTO: hundimiento o descenso del nivel de una estructura debido a la compresión y deformación del suelo o roca de cimentación.

CEMENTANTE: materiales aglomerantes que tienen la propiedad de adherir cualquier tipo de partículas entre sí, formando una masa sólida.

COHESIÓN: es la atracción entre moléculas que mantiene unida las partículas de una sustancia, a su vez es la fuerza de atracción entre partículas adyacentes dentro de un mismo cuerpo.

DEFORMACIÓN: es el cambio de forma y tamaño que tiene un cuerpo debido a la aplicación de fuerzas sobre el mismo.

ELASTOPLASTICO: material con la capacidad de soportar deformaciones y con la capacidad de volver a su estado natural.

EPOXI: es un polímero termoestable que se endurece cuando se mezcla con un agente endurecedor. Este material es producto de una reacción entre epiclorohidrina y bisfenol A, los cuales son un tipo de adhesivos llamados estructurales o de ingeniería, la presentación de estos pegantes puede ser de forma rígida o flexible, transparente o de color y de secado rápido o lento dependiendo para el fin que se estén utilizando.

SUELO: sistema estructurado con características biológicamente activas, que se desarrolla en la capa más superficial de la corteza terrestre. Entre las etapas implicadas en la formación del suelo está la disgregación o meteorización mecánica de las rocas; ya sea por frio, calor, lluvia, oxidaciones, hidrataciones, y es de esta manera que la roca es gradualmente fragmentada. Los fragmentos de roca se van mezclando con los restos orgánicos: heces, organismos muertos o en etapa de descomposición, restos vegetales, así como la instalación de seres vivos sobre los sustratos orgánicos, propiciando de esta manera el enriquecimiento del sustrato. Con el paso del tiempo la estratificación de todo este conjunto de materiales da lugar a la formación del suelo

RESUMEN

El presente trabajo de investigación pretende dar a conocer el aporte que realizan los materiales cementantes a la deformación y resistencia de los suelos; esto se logrará mediante la realización de los ensayos de consolidación unidimensional y compresión inconfinada, en muestras hechas en el laboratorio con materiales artificiales micro-esferas de vidrio y silicona negra que simularan una arena cementada.

Los análisis y resultados se basaron principalmente en las gráficas obtenidas en el consolidómetro y máquina de compresión, para de esta forma determinar el porqué de su comportamiento así como también el aporte real del material cementante.

Palabras Clave: Ingeniería Civil-Trabajos de Grado, Suelos, Consolidación Unidimensional, Compresión Inconfinada, Arenas, Micro-esferas de vidrio, Cementantes, Ensayos.

INTRODUCCIÓN

Los suelos son consolidados a partir de procesos naturales como la sedimentación o depositación de materiales, también es claro que algunas muestras de suelos permiten encontrar durante su análisis la presencia de materiales cementantes que se originan fundamentalmente por procesos biogenéticos post-formacionales.

Esto sucede, por ejemplo, en las arenas. Estos materiales aglutinantes por lo general generan procesos del siguiente orden: "Aumento de rigidez, aparición de cohesión efectiva".

En el presente proyecto se trabajará de manera práctica, el que se compone dos ensayos de laboratorio, los cuales son: Compresión inconfinada y Consolidación unidimensional, estos ensayos se realizarán sobre materiales artificiales, tales como esferas de vidrio (simulando un material granular como la arena) y como cementante artificial Silicona Negra. Para el ensayo de Compresión Inconfinada se realizara el proceso descrito por la norma INVÍAS E-152-07; y para el ensayo de Consolidación Unidimensional el ensayo INVIAS E – 151-07.

Luego de haber obtenido los resultados por los dos ensayos mencionados anteriormente, se proseguirá a hacer un análisis en cuanto al comportamiento de las muestras para luego entrar a comparar y encontrar posibles semejanzas con suelos tipo arenas cementadas.

1. GENERALIDADES

1.1 ANTECEDENTES

En investigaciones previas, y textos bibliográficos que han abordado el tema del comportamiento de suelos arenosos y arcillosos cementados por medio de materiales artificiales, son realmente escasos, en razón a esto se usará como referencia principal el trabajo desarrollado por Giraldo, 2011; Adicionalmente a este trabajó, se tomará como apoyo los trabajos de grado de Salamanca & Castellanos (2012) y Cortés & Rozo (2012).

1.2 PLANTEAMIENTO DEL PROBLEMA

Antes de iniciar el diseño geotécnico de cualquier obra civil, las preocupaciones están orientadas hacia conocer si la capacidad de carga es la mínima para el trabajo seleccionado y si la compresibilidad del suelo es la admisible para la condición requerida.

En este punto la capacidad de carga y el nivel de deformación se pueden conocer experimentalmente variando en diferentes rangos, sin embargo lo que hasta el momento resulta desconocido es el aporte que brinda el material cementante tanto a la resistencia como a la deformación.

1.3 OBJETIVOS

1.3.1 Objetivo General. Estudiar el comportamiento de la cementación en suelos artificiales sometidos a ensayos de compresión simple, y consolidación unidimensional rápida.

1.3.2 Objetivos Específicos

- Describir el proceso exacto que se debe seguir para la elaboración de las muestras.
- ➤ Someter el modelo a ensayos de Compresión Inconfinada según lo descrito en la norma INVÍAS E-152-07, al igual que ensayo de Consolidación Unidimensional descritos en la norma INVÍAS E 151-07.
- Determinar la resistencia a la compresión y a la deformabilidad de suelos artificiales cementados.
- ➤ Observar y analizar los tipos de falla que se presentan en las probetas de suelos artificiales cementados.

Determinar la deformabilidad de las muestras realizadas con micro esferas de vidrio y el aglutinante seleccionado

1.4 JUSTIFICACIÓN

El presente trabajo se fundamentó en demostrar físicamente que el fenómeno de cementación existe en los suelos y mediante esta investigación intentar por medio de muestras artificiales simular artificialmente el comportamiento de estos geomateriales cementados.

En trabajos de grado anteriores se han evaluado de manera similar las propiedades de compactación y la capacidad de carga de los suelos, de este modo en el presente proyecto se pretende comparar de manera paralela estos dos fenómenos y mirar así el comportamiento según la variación de los componentes artificiales los cuales van a componer las muestras de ensayo.

1.5 DELIMITACIÓN

- **1.5.1 Alcances**. El proyecto se desarrolló en las instalaciones y Laboratorios de Suelos de la Universidad Católica de Colombia Sede el Claustro ubicada, en la Diagonal 47 No. 15-50. Durante un periodo de cuatro meses que va del mes de Agosto hasta el día de sustentación en el mes de Noviembre. Durante este tiempo, se evaluara y determinara, cual es el aporte por parte del material cementante a las muestras, en deformación y resistencia, mediante ensayos de Consolidación Unidimensional y Compresión Inconfinada.
- **1.5.2 Limitaciones**. La limitante principal, tiene que ver con la disponibilidad de los laboratorios, y así mismo con poder contar con los equipos en buen estado, pues es parte esencial de un buen resultado, así como también es indispensable contar con los suficientes moldes necesarios para la elaboración de las muestras.

El tiempo estipulado para la ejecución de las pruebas también se presenta como una limitante, pues cada prueba requiere de cómo mínimo dos días.

Para la elaboración del documento escrito, tenemos una limitante importante, que tiene que ver expresamente con la consulta bibliográfica, toda vez que en los libros que abarcan de alguna manera el tema, es casi nulo lo que se puede encontrar; por otro lado se encuentra que en internet existen buenos artículos relacionados con el tema, pero que por cuestiones de derecho de autor, en su mayoría estos artículos se encuentran bloqueados, generando la imposibilidad de utilizarlos en pro del desarrollo del presente trabajo.

2. MARCO DE REFERENCIA

2.1 MARCO TEÓRICO

Realizar modelaciones físicas en ingeniería geotécnica, puede ser muy útil a la hora de comprender el comportamiento del suelo, ya que este tipo de modelaciones pueden ser realizadas desde muestras elementales hasta un modelo físico reducido de una estructura geotécnica. Para lograr una modelación de este tipo, es necesario primero conocer el comportamiento del medio de trabajo, que para el caso de los suelos es muy complejo.

A lo largo del tiempo, se han formulados diferente modelos físicos matemáticos, que permitan superar estos inconvenientes, pero estos modelos en su mayoría son muy complejos, con limitantes de condiciones.

Dentro de los avances, se distingue lo hecho por el grupo de investigación de Nagoya Institute of Technology (NIT, Japón). Estos han propuesto un modelo constitutivo simple y unificado para los suelos, que pueden tener en cuenta varios efectos importantes, la influencia de la densidad, la cementación y el comportamiento dependiendo del tiempo.

Tomando como base el modelo de NIT, el Ingeniero Robinson Giraldo, introduce variables al modelo tales como; la variable de estado interno (ρ) en relación a la densidad que describe el comportamiento de suelos pre densificados, también se introduce la variable de estado (ω) que representa el estado de cementación en suelos estructurados, además que considera efectos de posición de la NCL, tales como la velocidad de deformación, temperatura, succión etc., esto lo logra mediante la variable de estado (Ψ), estableciendo así un modelo general para el comportamiento de los geo materiales.

2.1.1 Compresibilidad de Arenas Cementadas en Ambiente Semiárido.

Las arenas naturalmente cementadas se caracterizan por tener una estructura granular con cementación derivada ya sea de la deposición secundaria de un mineral cementante o de la re-cristalización debida a presiones de confinamiento o temperaturas relativamente elevadas. Este estudio se enfoca en las arenas naturalmente cementadas por la deposición secundaria de carbonato de calcio.

Los suelos arenosos cementados se encuentran en abundancia en regiones desérticas del suroeste de los Estados Unidos (Beckwith y Hansen, 1982), incluyendo Nuevo México y Arizona, y en áreas vecinas del norte de México. En estas regiones de clima árido o semiárido, se presentan horizontes petrocálcicos. En muchos casos, el cemento está compuesto principalmente de carbonato de calcio u otro carbonato proveniente de la descomposición y erosión de rocas de la zona. El origen del carbonato de calcio que sirve de cemento en estos suelos puede ser transportado y depositado en la superficie del terreno por la acción del

viento.

La cementación carbonácea en estos suelos se desarrolló, y continúa desarrollándose en ciertos perfiles, progresivamente y como el resultado de numerosos ciclos alternados de lluvias breves y largos períodos de sequía en climas áridos o semiáridos. Durante la época de lluvias, el polvo de carbonato presente en la superficie del suelo fue arrastrado por el agua hacia dentro del suelo permeable. Sin embargo, las lluvias cortas y las altas temperaturas ambientales que caracterizan los ambientes desérticos provocan la evaporación rápida del agua de lluvia que percola en el suelo de tal manera que el agua solo alcanza a penetrar profundidades relativamente superficiales¹.

2.1.1.1 Conclusiones del Estudio

La matriz arenosa cementada existe en un estado natural muy suelto. De una manera empírica se pudo observar que la permeabilidad de este suelo cementado es muy alta. Al verter agua sobre la superficie de los bloques o en la superficie del corte, el agua desaparece muy rápidamente.

Las pruebas de consolidación confirmaron que este tipo de arena cementada puede ser susceptible al contenido de agua y la saturación del suelo.

➤ Una vez que el contenido de agua aumenta o el suelo se satura, éste pierde rápidamente gran parte de la capacidad de carga y la estructura se ablanda considerablemente.

La matriz cementada, muy porosa y de baja densidad, puede colapsar cuando se sujeta a esfuerzos verticales a medida que el contenido de agua aumenta. Se cree que cuando la arena cementada se humedece o se sumerge pierde la succión que la mantiene fuerte y rígida en condiciones de muy bajo contenido de agua.²

2.1.2 Superficie de Fluencia de Materiales Granulares Cementados. En estado natural es común encontrar geomateriales cementados (Leroueil & Vaughan 1990). Frecuentemente, esto se debe a la precipitación de un material cementante como la calcita, el óxido de hierro, etc. en los contactos entre partículas. Estos materiales son los suelos derivados de cenizas volcánicas, los loess y algunas rocas sedimentarias.

El comportamiento mecánico de estos materiales difiere del observado en los geomateriales no cementados, para los cuales se desarrolló la mecánica de suelos clásica. Esta diferencia de comportamiento se debe al importante rol que

_

¹ BANDINI, Paola y ROSA, Imelda. Compresibilidad de Arenas Cementadas en Ambiente Semiárido. <u>En:</u> Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil. Enero – marzo, 2012. vol.12, no. 1, p.36

² lbíd., p. 40

juegan la cementación y la microestructura en la respuesta mecánica de los geomateriales cementados.

El comportamiento mecánico de los materiales granulares cementados puede ser reproducido por varios modelos constitutivos (e.g., modelos elastoplasticos) desarrollados en el marco de la mecánica de medios continuos (para algunos ejemplos, ver Gens & Nova (1993), Vatsala et al. (2001) y Nova et al. (2003)). Implementados en un formalismo como los elementos finitos, estos modelos pueden ser de gran utilidad práctica. Sin embargo, una característica problemática de estos modelos constitutivos es que se basan en elementos conceptuales complejos (e.g., superficies de fluencia, potenciales plásticos, reglas de endurecimiento, etc.) que, por un lado, son difíciles de medir experimentalmente y, por otro lado, no pueden derivarse fácilmente a partir de parámetros más habituales y con significado físico más simple como la relación de vacíos y la anisotropía.

2.1.3 Determinación de la Presencia de Cementantes. Actualmente, en la Geotecnia existen diferentes métodos que permiten determinar en forma cualitativa si un suelo presenta cementación.

Entre los métodos más comunes, se encuentran el ensayo Pinhole (ASTM D4647) y el Slaking Test o ensayo de desmoronamiento (similar ASTM D4644). El Pinhole consiste en hacer circular agua por un orificio realizado dentro de una muestra de suelo y es generalmente empleado para determinar el grado de dispersividad de un material. El Slaking Test consiste en secar una muestra y sumergirla en agua durante 24 horas para que luego, de acuerdo a como el material se mantenga firme o se desestructure desmoronándose, pueda inferirse si presenta algún grado de cementación.

Una alternativa explorada recientemente (Feda, 1994; Lerouiel y Hight, 2003; Rinaldi et al., 2006) para comprobar la presencia de vínculos cementantes entre las partículas de suelo, es la ejecución de un doble ensayo edométrico sobre muestras en estado de saturación. El primero de los ensayos es realizado sobre una muestra de suelo estructurada y el segundo sobre una muestra re moldeada y compactada a la misma densidad que la muestra anterior. A partir de las diferencias en las curvas de compresibilidad obtenidas, es factible inferir el grado de cementación o estructuración del suelo³.

2.1.4 Arenas Cementadas Bajo Cargas Estáticas. Las arenas cementadas se encuentran en muchas zonas del mundo, una de sus características distintivas es su capacidad para estar en fuertes pendientes naturales.

-

³ RINALDI, Víctor; CLARIÁ, Juan y CAPDEVILLA, Julio. Consideraciones Experimentales a Nivel Microestructural en la Generación de Modelos Constitutivos para Suelos Loéssicos Parcialmente Cementados. En: Mecánica Computacional. Octubre – noviembre, 2007. vol. 26, p. 2834

Grandes depósitos están situados a lo largo de la costa de California, en un fuerte número de áreas de desarrollo urbano cerca a la cima de laderas empinadas. Debido a los peligros planteados por fallas de pendientes en las arenas cementadas, un programa de prueba se llevó a cabo para definir la naturaleza de la cementación y su efecto sobre el comportamiento de los suelos. Un total de 137 laboratorios de compresión y pruebas de carga y tensión se realizaron en muestras inalteradas de arenas cementadas artificialmente. Los materiales presentaron ángulos de fricción similares a las arenas no cementadas, pero tenían una resistencia a la tracción. Los principales agentes de cementación de las arenas ensayadas fueron silicatos óxidos de hierro. Se encontró que la fuerza de las arenas cementadas era una función de la densidad, la cantidad de agente de cementación, la forma del grano y la disposición de grano⁴.

2.1.5 Propiedades Estáticas de Arena Ligeramente Cementada.

Se presenta el comportamiento de una arena ligeramente cementada. La arena bajo investigación era de Formación Vincentown en Nueva Jersey, y el agente de cementación fue calcita. El comportamiento de tensión-deformación, la respuesta de la presión de poros, y la ruta de esfuerzo con parcelas de deformación indican que el comportamiento de la fuerza de arenas cementadas es dependiente de la cepa. En las deformaciones axiales bajas, por debajo de 1%, la cohesión causada por la unión entre las partículas de calcita es el componente principal de la fuerza. La resistencia a la cizalladura cohesiva se destruye alrededor de 1% de deformación, y a continuación, la fuerza de rozamiento se vuelve predominante. También se observó que una muy alta tensión de confinamiento también puede destruir la cementación⁵.

2.1.6 Comportamiento de los Pilotes Perforados Lateralmente Cargado en Arenas Cementadas.

La respuesta de la carga-deflexión lateral de pilotes en arenas cementadas se examinó mediante pruebas de campo sobre pilotes individuales y en pequeños grupos que consisten en dos montones. Todas las 12 pilas eran 0,3 m de diámetro y tenía una longitud de 3 m o 5 m. Dos pilas fueron instrumentadas con sensores de tensión de resistencia eléctrica. Los suelos de la superficie a una profundidad de 3,5 m se caracterizan por tener ambos componentes de resistencia a la cizalladura, y c. El comportamiento de deflexión de carga lateral medida era no lineal, con una respuesta más rígido para las pilas restringidas en los grupos de pilotes. Se emplearon curvas p-y parabólicas Teórica en la arena cementada con las teorías de empuje laterales convencionales. Estas curvas teóricas estaban de acuerdo con las curvas de p-y determinados a partir de las mediciones de galgas extenso métricas. Haciendo caso omiso de la cohesión intersección de arena cementada resultó en una respuesta incorrecta y

⁵ SAXENA, K. y LASTRICO M. (1978). Propiedades Estáticas de Arena Ligeramente Cementada. <u>En:</u> Diario de la División de Ingeniería del Terreno. Junio – julio, 1978. vol.104, no. 12, p. 1449

20

⁴ CLOUGH, W. Arenas Cementadas Bajo Cargas Estáticas. En: Diario de la División de Ingeniería del Terreno. Marzo – abril, 1981. vol. 107, no. 6, p. 799

demasiado flexible en comparación con el comportamiento medido. El nuevo examen de las pilas bajo cargas laterales en una dirección perpendicular indica poca diferencia en la capacidad lateral y deflexión⁶.

2.1.7 Efectos de Lixiviación en las Propiedades de las Arenas Cementadas en Kuwait.

El efecto de la lixiviación de las propiedades de los depósitos de arena cementados en Kuwait se examinó mediante pruebas de laboratorio sobre muestras tomadas a partir de dos sitios con diferentes niveles de cementación. Los agentes cementantes identificados incluyen carbonatos, sulfatos y cloruros. Las pruebas incluyeron propiedades básicas, consolidación y pruebas triaxiales drenadas consolidadas con las medidas de presión de poro. Todas las pruebas se realizaron en muestras naturales y lixiviadas. La lixiviación se llevó a cabo en el laboratorio en condiciones de baja presión usando agua del grifo fresca. Los resultados indican una mayor compresibilidad y una reducción de la resistencia a la cizalladura eficaz parámetros c 'y [©] 'debido a la lixiviación. El efecto es más pronunciado en las arenas débilmente cementadas en comparación con moderada a fuerte arenas cementadas. El efecto de lixiviación depende de varios factores, incluyendo el tipo de suelo, la densidad relativa, características de clasificación, grado de cementación, y la cantidad de agentes de cementación y solubilidad⁷.

2.2 MARCO CONCEPTUAL

Para entrar en el contexto de arenas cementadas es necesario hacer un recuento de conceptos básicos que están inmersos en esta definición; se empezara por los conceptos básicos tales como, que es un suelo, tipos de suelo, con esto se pasara por cementantes y se finalizara con la definición y explicación de arenas cementadas.

2.2.1 Suelo. El concepto de suelo tiene diferentes significados dependiendo del punto de vista del que se vea por ejemplo , un concepto alejado a lo que realmente nos interesaría sería el de un agrónomo , el cual ve al suelo como una capa delgada en la parte superior del manto rocoso donde las plantas entierran sus raíces y tomas su alimento para su supervivencia, acercándonos a lo que necesitamos aparece el concepto de un geólogo el cual es el resultado de la descomposición de las rocas producida por la acción del viento , el agua y demás agentes atmosféricos a través del tiempo. Para terminar el concepto de suelo, para ingeniería civil es "Suelo es una capa delgada sobra la corteza terrestre de material que proviene de la desintegración y/o alteración física y/o química de las

⁶ NABIL, Ismael. Comportamiento de pilotes perforados lateralmente cargado en cementados Sands. En: Journal of Geotechnical Engineering. Noviembre – diciembre, 1990. vol. 116, no. 11, p. 1678
⁷NABIL, Ismael y MoLLAH, M.. Efectos de lixiviación en las propiedades de las arenas cementadas en

Kuwait. En: Journal of Geotechnical Engineering. Octubre – noviembre, 1998. vol.124, no. 10, p. 997.

rocas y de los residuos de las actividades de los seres vivos que sobre ella se asientan" 8

Existen diferentes tipos de suelos cada uno generado de forma diferente por la acción de los agentes atmosféricos mencionados anteriormente, dando resultado a las Gravas, Arenas, Limos y Arcillas. Como el objeto de investigación son las arenas se dará una breve explicación de estas.

Arena es el nombre del material fino que varía entre 2mm y 0,05 mm de diámetro y que se genera por la trituración de las rocas mientras son acarreadas por las aguas de ríos y van tomando su forma redondeada. Este material es muy a menudo encontrarla con altas cantidades de gravas y limos ya que su origen es similar, pero cuando está sola es un material no plástico.

2.2.2 Cementantes. Un material cementante posee propiedades de cohesión y adherencia las cuales hacen el trabajo de unir fragmentos de minerales en una aglomeración sólida para adoptar una resistencia y una durabilidad especifica. La cementación se puede evidenciar en los suelos dependiendo de la edad del suelo así que si el suelo es muy joven es más probable que tenga menos estructuración (cementantes) que un suelo con más tiempo de vida.

Los suelos que en su composición tienen altas cantidades de cementantes son también llamados rocas blandas y lo cual les da un comportamiento elastoplástico esto haciendo que haya un valor de tensión de fluencia o colapso, teniendo como resultado deformaciones plásticas importantes.

El vínculo entre el cementante y el suelo presentan un comportamiento de tipo elástico y frágil, lo que implica que ante el aumento del nivel de deformación se produce el colapso de los puentes y el desarrollo de deformaciones plásticas. La identificación de un comportamiento como el descripto, producido por cementantes, tiende a enmascararse en los suelos semi-saturados, en los que las fuerzas capilares producen efectos similares, el proceso de formación de la cementación se origina con la presencia de sales que actúan como agentes cementantes en los estratos superficiales. Cuando el agua percola en el suelo, se lavan las sales presentes y son arrastradas hasta que la concentración de las mismas alcanza un valor lo suficientemente elevado como para precipitar entre las partículas de suelo, produciéndose su deposición⁹.

_

⁸ CRESPO VILLALAZ, Carlos. Mecánica de suelos y cimentaciones. 5 ed. México: Limusa, 2004. p. 20 ⁹RINALDI, Víctor; CLARIÁ, Juan y CAPDEVILA, Julio. Consideraciones experimentales a nivel microestructural en la generación de modelos constitutivos para suelos loéssicos parcialmente cementados. [en línea]. Córdoba: Universidad Nacional de Córdoba [citado 15 agosto, 2013]. Disponible en Internet: <URL: http://www.famaf.unc.edu.ar/~torres/trabajosparapublicacion/23simposio_homenaje_al_dr_carlos_prato/23-simposio_homenaje_prato-38.pdf>

Los minerales que más aportan cimentación a los suelos son el carbonato de calcio, oxido de magnesio, aluminio y hierro. El comportamiento del suelo depende del tipo de cementante ya que cada elemento tiene sus propias características físicas, químicas y también depende de la proporción de cementante que tenga cada suelo.

"El efecto de las fuerzas de succión en estos suelos tiene tres consecuencias concurrentes: el primero de ellos es la rigidización de la estructura del suelo debido a la presencia de fuerzas capilares a causa del desarrollo de meniscos entre partículas. Este efecto se ve magnificado en los suelos por la rigidización de los puentes de arcilla entre las partículas de arena y limo. El segundo efecto es la rigidización de los cementantes. Es sabido que la succión incrementa la resistencia al corte de los cementantes no solubles, efecto que es notorio incluso en hormigones. Finalmente, la desaturación de los suelos aumenta la concentración de sales solubles que se precipitan en los contactos de las partículas incrementando su rigidez. Los efectos provocados por las fuerzas de succión y cementación son muy difíciles de evaluar por separado" 10.

2.2.3 Arenas Cementadas. Las arenas naturalmente cementadas se caracterizan por tener una estructura granular con cementación derivada ya sea de la deposición secundaria de un mineral cementante o der la re-cristalización debida a presiones de confinamiento o temperaturas relativamente elevadas. La cementación natural imparte características a la estructura del suelo que son muy difíciles de reproducir en el laboratorio.

El carbonato cálcico es uno de los más importantes agentes cementantes. Éste, en presencia de dióxido de carbono, se transforma en bicarbonato que es soluble, lo que suele suceder en los horizontes superiores del suelo por la elevada presión parcial del gas debida al desprendimiento del mismo por los procesos respiratorios de los organismos.

A medida que se profundiza decrece la presión parcial del dióxido de carbono al tiempo que se van desecando los restos de solución que impregna los poros finos del suelo, volviendo a formarse el carbonato, muy poco soluble, que precipita y cristaliza formando una tupida red que engloba a los restantes componentes sólidos del suelo. El final es una masa endurecida que puede adquirir una consistencia pétrea.

El cemento está compuesto principalmente de carbonato de calcio u otro carbonato proveniente de la descomposición y erosión de rocas de la zona. La cementación carbonácea en estos suelos se desarrolló, y continúa

23

¹⁰ RINALDI, Víctor; CLARIÁ, Juan y CAPDEVILA, Julio. Consideraciones experimentales a nivel microestructural en la generación de modelos constitutivos para suelos loéssicos parcialmente cementados. [en línea]. Córdoba: Universidad Nacional de Córdoba [citado 15 agosto, 2013]. Disponible en Internet: <URL: http://www.famaf.unc.edu.ar/~torres/trabajosparapublicacion/23simposio_homenaje_al_dr_carlos_prato/23-simposio_homenaje_prato-38.pdf>

desarrollándose en ciertos perfiles, progresivamente y como el resultado de numerosos ciclos alternados de lluvias breves y largos períodos de sequía en climas áridos o semiáridos. Durante la época de lluvias, el polvo de carbonato presente en la superficie del suelo fue arrastrado por el agua hacia dentro del suelo permeable. Sin embargo, las lluvias cortas y las altas temperaturas ambientales que caracterizan los ambientes desérticos provocan la evaporación rápida del agua de lluvia que percola en el suelo de tal manera que el agua solo alcanza a penetrar profundidades relativamente superficiales.

El desarrollo de los perfiles petrocálcicos se inicia en los estratos superficiales a consecuencia de la deposición de carbonato de calcio al nivel de percolación del agua de lluvia. Gradualmente, el carbonato comienza a recubrir los granos de arena y a ocupar los vacíos de la matriz del suelo, propiciando la cementación o unión de los granos de arena. La acumulación continua del carbonato forma nódulos fuertemente cementados, llamados también concreciones, cuya forma, tamaño, resistencia y distribución espacial puede ser muy variada. Adicionalmente, la lluvia provoca la movilización vertical de los finos, que son arrastrados hacia los estratos inferiores. Este proceso, conocido como iluviación, genera el reemplazo gradual de los finos por el carbonato de calcio.

3. METODOLOGIA

3.1 TIPO DE ESTUDIO

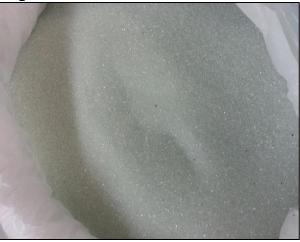
Este es un proyecto que busca describir el aporte del material cementante a la deformación y resistencia de un suelo por medio de geo-materiales artificiales, siendo estos fenómenos de la consolidación y compresión inconfinada, difiere de esto que el estudio a realizar es de tipo descriptivo, toda vez que el presente proyecto está basado en los trabajos realizados por Giraldo, 2011 y Salamanca & Castellanos (2012) y Cortés & Rozo (2012).

3.2 PAUTAS DE TRABAJO

El proceso que se adoptó para la realización del trabajo de grado es el siguiente:

- ➤ Revisión del trabajo desarrollado por el ingeniero Giraldo, 2011 y trabajos de grado por Salamanca & Castellanos (2012) y Cortés & Rozo (2012).
- Delimitación del problema a trabajar.
- ➤ Elección y compra de materiales.
- ➤ Elaboración de los moldes y probetas para las muestras de los ensayos.
- ➤ Desarrollo de los ensayos de Compresión Inconfinada y Consolidación Unidimensional.
- ➤ Resumen de datos
- ➤ Reporte de resultados por medio de gráficas y tablas.

3.3 MATERIALES


3.3.1 Material Simúlante de Suelo.

3.3.1.1 Micro-Esferas de Vidrio. Es un producto necesario en la señalización vial, la cual permite hacerlas más perceptibles en condiciones de poca visibilidad o condiciones lluviosas, el aumento de esta visibilidad se debe a un efecto conocido como RETROREFLECTIVIDAD. Los diámetros promedio de estas micro-esferas esta por el orden de los 0,2 mm, lo que permite una granulometría pareja.

Las principales características son: forma esférica, dureza, ligereza y baja densidad.

El proveedor del producto fue la empresa NSP de Colombia S.A. ubicado en la ciudad de Bogotá D.C., en la Carrera 35 No. 63 C – 59, sector el Coliseo.

Figura 1. Micro-esferas de Vidrio

Fuente. Los Autores.

3.3.2 Cementante Artificial.

3.3.1.2 Silicona Negra o Caucho de Silicona "Pegadit". Es de color negro oscuro; Utilizada comúnmente para sellar y pegar partes automotrices como múltiples de escape, empaques o tapas de válvulas. Dentro de sus recomendaciones más importantes están, mantener fuera del alcance de los niños, evitar el contacto con los ojos, aplicar en lugares ventilados, debido a que libera un olor fuerte a ácido acético (vinagre). Comercialmente fácil de encontrar.

Figura 2. Silicona Negra

Fuente. Los Autores.

3.3.3 Balanza Digital. Es un instrumento de medición que se caracteriza por dos rasgos fundamentales: su gran rango de pesaje y su capacidad para obtener el peso con una gran precisión +- 0,01 g. En cuanto a su constitución, la conforman un plato cuya función es la del pesado, que además es extraíble, con lo cual la limpieza del aparato en su totalidad podrá ser ejecutada sin demasiadas dificultades.

Además del plato, también se encuentran otros elementos constitutivos. Entre ellos están los pies de ajuste y de nivelación que cumplen la función, justamente, de mantener nivelada la balanza. Una de las ventajas de este modelo digital es su capacidad para transmitir el resultado del pesaje que se ha efectuado a la memoria de una computadora.

Figura 3. Balanza Digital.

Fuente. Los Autores

3.3.4 Molde para Probetas en PVC Ensayo Compresión Inconfinada. La denominación de tuberías PVC proviene del policloruro de vinilo, que es un polímero termoplástico. "Termoplástico" implica que a temperatura ambiente los materiales presentan características más rígidas que cuando la temperatura es aumentada. En esos casos, el material se vuelve mucho más blando y maleable, es decir, son más fáciles de manejar. A pesar de esto, no importa cuánto se fundan o moldeen, los materiales termoplásticos no alteran sus propiedades tan fácilmente.

Figura 4. Tipos de Tubería en PVC.

Fuente. MAQUINARIA PRO. Tuberías en PVC [en línea]. Bogotá: La Empresa [citado 22 octubre, 2013]. Disponible en Internet: <URL: http://www.maquinaria pro.com/materiales/tuberias-pvc.html>

3.3.5 Molde Metálico Ensayo Deformación Unidimensional. Anillo metálico que sirve como molde para la realización de muestras; este anillo cuenta con ciertas dimensiones las cuales ya están estandarizadas para que la muestra encaje en el consolidómetro. Medidas del anillo; diámetro interior 63,7 mm y altura 21,1 mm.

Figura 5. Molde Metálico Estándar Deformación Unidimensional.

Fuente, Los Autores

3.3.6 Tazón Metálico para Realizar las Mezcla

Figura 6. Tazón Metálico

Fuente. Los Autores.

3.3.7 Espátulas. Utilizadas principalmente para el enrase de las muestras, y en algunos casos para la mezcla (espátula curvada 3 claveles). En el enrase de las muestras para ensayo de Deformación Unidimensional, se utilizó principalmente la espátula para la preparación de superficies.

Figura 7. Espátulas

Fuente. Los Autores.

4. DESARROLLO METODOLÓGICO

4.1 PROCESO DE ELABORACIÓN PROBETAS Y ENSAYO DE COMPRESIÓN INCONFINADA

En la elaboración de las probetas se utilizaron los siguientes materiales: tubo de PVC con un diámetro de 2 in, vaselina, papel pergamino, micro esferas de vidrio y silicona negra.

4.1.1 Elaboración Tubos. Los cinco tubos fueron cortados con las siguientes especificaciones, un diámetro nominal de 2 in y una altura que va entre 2 y 2,5 veces el diámetro según norma; de acuerdo a esto las medidas definitivas fueron:

Cuadro 1. Dimensiones Probetas

# cilindro	Ø interior (mm)	Ø exterior (mm)	Altura(mm)
1	53.50	60.39	109.48
2	54.24	60.04	109.37
3	54.44	60.52	109.25
4	54.26	60.20	109.16
5	54.85	59.81	109.33

Fuente. Los Autores

Figura 8. Probetas en PVC para Ensayo Compresión Inconfinada

Fuente: Los Autores.

4.1.2 Elaboración Muestras.

➤Se ubica sobre la balanza digital con una precisión de +- 0,01 g, una hoja de papel que sirve como tapa inferior y la probeta, la balanza se calibra en ceros, para luego adicionar el material.

Figura 9. Calibración Balanza con Hoja y Probeta

Fuente. Los Autores

➤ Cada tubo es llenado con las micro-esferas hasta el enrasé, se pesa y posteriormente se realiza el cálculo de la proporción de 85% micro-esferas de vidrio y 15% de silicona negra dando como resultado los siguientes resultados por cada probeta.

Figura 10. Tubos Llenos de Micro-Esferas de Vidrio

Fuente. Los Autores

Cuadro 2. Pesos con Material Probetas

# cilindro	Peso total (g)	85% Esferas (g)	15% silicona (g)
1	483.76	411.20	72.56
2	481.11	408.94	72.17
3	477.60	405.96	71.64
4	482.32	409.98	72.34
5	482.96	410.52	72.44

Fuente. Los Autores

➤ Se procede a elaborar la mezcla; previamente se colocó la balanza en ceros con un tazón sobre ella, para luego verter cada material con su peso respectivo, este proceso se repite para cada probeta.

Figura 11. Balanza en Ceros

Fuente. Los Autores

➤ Con los materiales puestos en el tazón, se procede a mezclar, este proceso se debe realizar hasta que la pasta logre un color negro homogéneo.

Figura 12. Mezcla Materiales.

Fuente.: Los Autores.

4.1.3 Llenado de Probetas. Con la pasta lista, previamente se tuvo que haber engrasado el tubo con vaselina y recubriéndolo en su interior con papel pergamino se procede a llenar la probeta; esto se realiza en tres capas aproximadamente llenando un cuarto del tubo en cada capa. Además a cada capa de material se le deben aplicar 25 golpes en caída libre, los golpes se realizaron con un martillo destinado para tal fin.

Figura 13. Proceso de Compactación de una Muestra

Fuente. Los Autores.

4.1.4 Desmonte de Probetas.

➤ Las muestras se dejaron secar durante tres días (72 horas), esto con el fin de garantizar la total consistencia de las muestras.

➤El proceso de sacar las muestras de la probeta es bastante sencillo, se empuja la muestra con un poco de fuerza hasta sacarla completamente del tubo.

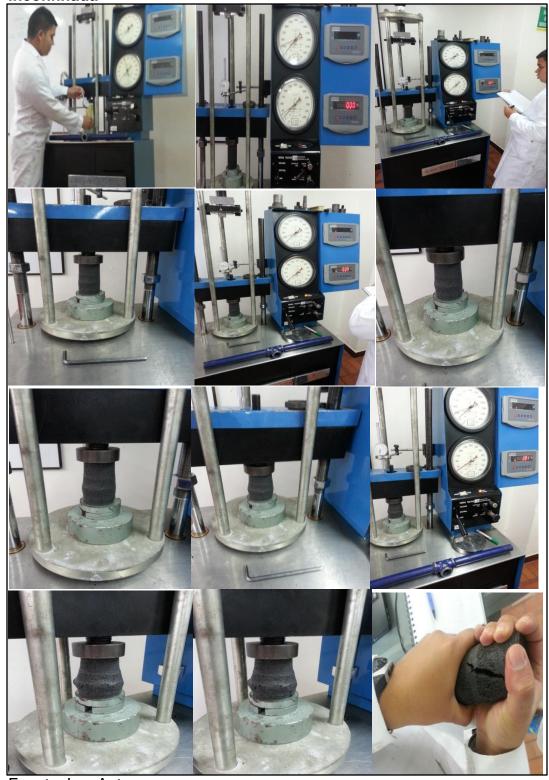


Figura 14. Desmonte de las Muestras

Fuente. Los Autores

4.1.5 Ensayo de Compresión Inconfinada. Las muestras son sometidas a ensayo de compresión simple, de acuerdo a los parámetros establecidos en la norma INVIAS E 152-07.

Figura 15. Montaje de las Muestras en la Máquina de Compresión Inconfinada

Fuente. Los Autores

4.2 PROCESO DE ELABORACIÓN MUESTRAS Y ENSAYO CONSOLIDACIÓN UNIDIMENSIONAL

En la elaboración de los moldes se utilizaron los siguientes materiales: acrílico de 1mm de espesor, vaselina, micro esferas de vidrio y silicona negra.

4.2.1 Elaboración Molde. Los cinco moldes fueron cortados y pegados manualmente con las medidas específicas del molde original (Ø interno de 63,7 mm y una altura de 21,1mm) para este ensayo, debido a que el corte no es exacto las medidas de los moldes fueron las siguientes:

Cuadro 3. Dimensiones Moldes

# molde	Ø Interno (mm)	Altura (mm)
1	63,7	21,04
2	63,62	21,08
3	63,65	21,02
4	63,57	21,07
5	63,67	21,18

Fuente. Los Autores

4.2.2 Elaboración Muestras

➤Se ubica sobre la balanza digital con una precisión de +- 0,01 g, una hoja de papel que sirve como tapa inferior y el molde, la balanza se calibra en ceros, para luego adicionar el material.

Figura 16. Calibración Balanza con Hoja y Molde

Fuente. Los Autores

Cada molde es llenado con las micro-esferas hasta el enrasé, se pesa y posteriormente se realiza el cálculo de la proporción de 85% micro-esferas de vidrio y 15% de silicona negra. Dando como resultado los siguientes datos por cada molde

Cuadro 4. Pesos con Material Probetas

# molde	Peso total (g)	85% Esferas (g)	15% silicona (g)
1	131.57	111.83	19.74
2	132.12	112.30	19.81
3	130.37	110.81	19.56
4	131.63	111.88	19.75
5	130.28	110.73	19.55

Figura 17. Molde Lleno de Esferas

Fuente. Los Autores

>Se procede a elaborar la mezcla; previamente se colocó la balanza en ceros con un tazón sobre ella, para luego verter cada material con su peso respectivo, este proceso se repite para cada molde.

Figura 18. Pesaje Material

Fuente. Los Autores.

➤ Con los materiales puestos en el tazón, se procede a mezclar, este proceso se debe realizar hasta que la pasta logre un color negro homogéneo.

4.2.3 Llenado de Moldes. Con la pasta lista, se procede a llenar el molde, este no necesita ningún tipo de aislante (papel pergamino) ya que el acrílico no permite la adherencia de la pasta; el llenado se hace teniendo en cuenta que el material debe cubrir completamente la superficie del molde para que no queden vacíos en la muestra luego del desmonte; esto se logró presionando cada una de las capas a medida que se iban disponiendo dentro del acrílico.

Figura 20. Llenado Moldes

- **4.2.4 Desmonte de los Moldes**. El proceso de desmonte es exactamente igual al realizado en el desmonte de las probetas del ensayo de compresión inconfinada, este proceso se menciona en el numeral 4.1.3.
- **4.2.5 Toma de Datos de las Muestras antes del Ensayo**. Antes de comenzar el ensayo se hicieron las medidas respectivas a cada muestra.

Cuadro 5. Datos de las Muestras

Muestra	Peso								
#	(gr)		Ø (mm)		Prom.	Altura (mm)		m)	Prom.
1	114,98	64,11	64,07	64,05	64,077	23,79	23,55	23,63	23,66
2	122,03	64,14	64,22	64,06	64,14	23,68	23,5	23,19	23,46
3	122,77	64,13	63,95	63,8	63,96	23,42	23,57	23,5	23,50
4	126,59	64,03	64,27	64,29	64,197	24,07	24,03	23,96	24,02
5	121,49	64,29	64,37	64,14	64,267	23,18	23,28	23,62	23,36

4.2.6 Ensayo de Consolidación Unidimensional. Las muestras son sometidas a ensayo de Consolidación Unidimensional, de acuerdo a los parámetros establecidos en la norma INVIAS E – 151-07; Debido a que la muestra es la representación artificial de una arena seca, el método desarrollado correspondió al método de consolidación Taylor o consolidación rápida, este método tiene como fin determinar la consolidación primaria o consolidación inmediata por medio de métodos gráficos.

La metodología usada fue la siguiente:

- ➤ Cargar la muestra con un peso de 1 kg, posterior a esto tomar datos en los siguientes tiempos, 15", 34", 1',1,34", 2,15", 3', 4', y de ahí en adelante tiempos con raíces exactas.
- ➤El procedimiento que se sigue es el que corresponde al procedimiento al numeral 11,6 de la norma INVIAS E 151-07. Las gráficas para este procedimiento se encuentran en la parte de anexos, al igual que la norma mencionada.

5. RESULTADOS

5.1 RESULTADOS ENSAYO COMPRESIÓN INCONFINADA

A continuación se presentan las tablas con los resultados obtenidos por cada muestra.

5.1.1 Datos y Resultados Muestra 1.

Cuadro 6. Datos de Laboratorio Muestra 1

		Muestr	a 1				
		Datos Muestra					
	P	eso Total (g)		45	2,68		
	Peso	Micro-Esferas(g)	38	4,78		
	Pe	so Silicona (g)		67	7,90		
	Di	ametro (mm)		Altura	(mm)	Area 1 (mm²)	
		53,84		10	9,96	2276,67	
		54,07		10	9,55	2296,16	
		54,15			9,86	2302,96	
Promedio		54,02		10	9,79	2291,93	
		(m)		0	,11	0,0023	
		(in)		4	,32	3,55	
Datos ensay	o compresio	n incofinada	51	20	0,94	410,134	
Deformacion (µin)	Carga (KN)	Esfuerzo (KN/m²)	54	40	1	436,313	
20	0,05	21,816	56	50	1,07	466,855	
40	0,08	34,905		30	1,14	497,397	
60	0,12	52,358				· ·	
80	0,16	69,810		00	1,21	527,939	
100	0,19	82,900	6.	20	1,3	567,207	
120	0,23	100,352	64	10	1,39	606,475	
140	0,26	113,441	60	50	1,48	645,744	
160 180	0,3	130,894 139,620	6	30	1,58	689,375	
200	0,32	152,710	71	00	1,67	728,643	
220	0,38	165,799				 	
240	0,41	178,888		20	1,75	763,548	
260	0,43	187,615		40	1,82	794,090	
280	0,46	200,704	70	50	1,86	811,543	
300	0,5	218,157	78	30	1,89	824,632	
320	0,53	231,246	80	00	1,91	833,358	
340	0,56	244,335	8'	20	1,92	837,721	
360	0,58	253,062		10		<u> </u>	
380	0,62	270,514			1,93	842,085	
400	0,66	287,967		50	1,92	837,721	
420	0,7	305,419	8	30	1,92	837,721	
440	0,74	322,872	90	00	1,91	833,358	
460	0,78	340,324	9:	20	1,9	828,995	
480	0,83	362,140	Q	10	1,89	824,632	
500	0,88	383,956			2,00	027,002	

Cuadro 7. Cálculo de Esfuerzos Muestra 1.

	CÁLCU	LO DE ESFUERZO MI	JESTRA 1	1
Carga	Dial de	Deformacion	Area	Carga unitaria
(KN)	deformacion	unitaria	corregida	(KN/m²)
(KIV)	1*10-3	dilitaria	(m²)	(KN/III)
0,05	20	0,005	0,002	21,715
0,08	40	0,009	0,002	34,582
0,12	60	0,014	0,002	51,631
0,16	80	0,019	0,002	68,518
0,19	100	0,023	0,002	80,982
0,23	120	0,028	0,002	97,566
0,26	140	0,032	0,002	109,767
0,3	160	0,037	0,002	126,049
0,32	180	0,042	0,002	133,806
0,35	200	0,046	0,002	145,644
0,38	220	0,051	0,002	157,360
0,41	240	0,056	0,002	168,956
0,43	260 280	0,060	0,002	176,329
0,46	300	0,065 0,069	0,002	187,703 203,015
0,53	320	0,009	0,002	214,126
0,56	340	0,079	0,002	225,116
0,58	360	0,083	0,003	231,985
0,62	380	0,088	0,003	246,732
0,66	400	0,093	0,003	261,318
0,7	420	0,097	0,003	275,742
0,74	440	0,102	0,003	290,005
0,78	460	0,106	0,003	304,106
0,83	480	0,111	0,003	321,925
0,88	500	0,116	0,003	339,541
0,94	520	0,120	0,003	360,794
1	540	0,125	0,003	381,805
1,07	560	0,130	0,003	406,371
1,14	580	0,134	0,003	430,655
1,21	600	0,139	0,003	454,655
1,3	620	0,143	0,003	485,848
			-	
1,39	640	0,148	0,003	516,678
1,48	660	0,153	0,003	547,144
1,58	680	0,157	0,003	580,923
1,67	700	0,162	0,003	610,642
1,75	720	0,167	0,003	636,362
1,82	740	0,171	0,003	658,142
1,86	760	0,176	0,003	668,852
1,89	780	0,180	0,003	675,824
1,91	800	0,185	0,003	679,120
1,92	820	0,190	0,003	
				678,799
1,93	840	0,194	0,003	678,438
1,92	860	0,199	0,003	671,047
1,92	880	0,204	0,003	667,170
1,91	900	0,208	0,003	659,840
1,9	920	0,213	0,003	652,549
1,89	940	0,217	0,003	645,299

5.1.2 Datos y Resultados Muestra 2

Cuadro 8. Datos de Laboratorio Muestra 2.

Cuadro 8. D	Datos de L	<u>aboratorio Μι</u>	uestra 2.		
		Muestra 2			
		Datos Muestra	1		
		o Total (g)	456,03		
		icro-Esferas(g) Silicona (g)	387,63 68,40		
	Peso	Silicolia (g)	00,40		
	Dian	netro (mm)	Altura (mm		l (mm²)
		53,76	111,97	_	59,91
		53,83 53,90	112,02 111,88		75,82 81,75
Promedio		53,83	111,88		75,83
		(m)	0,11		0023
		(in)	4,41	3	,53
Datos er	sayo compresio	n incofinada	400	1,76	773,345
Deformacion (μί	n) Carga (KN)	Esfuerzo (KN/m²)	420	1,8	790,921
20	0,04	17,576	440	1,85	812,892
40	0,12	52,728	460	1,89	830,468
60	0,2	87,880	480	1,92	843,650
80	0,27	118,638	500	1,96	861,226
100	0,35	153,790	520	1,99	874,408
120	0,43	188,942	540	2	878,802
140	0,51	224,094			
160	0,59	259,246	560	2,02	887,590
180	0,66	290,005	580	2,03	891,984
200	0,74	325,157	600	2,04	896,378
220	0,82	360,309	620	2,05	900,772
240	0,92	404,249	640	2,05	900,772
260	1,03	452,583	660	2,06	905,166
280	1,15	505,311	680	2,05	900,772
300	1,29	566,827	700	2,05	900,772
320	1,42	623,949	720	2,05	900,772
340	1,55	681,071	740		
360	1,63	716,223		2,04	896,378
380	1,7	746,981	760	2,04	896,378

Cuadro 9. Cálculo de Esfuerzos Muestra 2.

CÁLCULO DE ESFUERZO MUESTRA 2								
Carga (KN)	Dial de deformacion	Deformacion unitaria	Area corregida (m²)	Carga unitaria (KN/m²)				
0,04	20	0,005	0,002	17,496				
0,12	40	0,009	0,002	52,250				
0,2	60	0,014	0,002	86,684				
0,27	80	0,018	0,002	116,485				
0,35	100	0,023	0,002	150,301				
0,43	120	0,027	0,002	183,798				
0,51	140	0,032	0,002	216,977				
0,59	160	0,036	0,002	249,836				
0,66	180	0,041	0,002	278,162				
0,74	200	0,045	0,002	310,403				
0,82	220	0,050	0,002	342,325				
0,92	240	0,054	0,002	382,238				
1,03	260	0,059	0,002	425,886				
1,15	280	0,064	0,002	473,211				
1,29	300	0,068	0,002	528,248				
1,42	320	0,073	0,002	578,651				
1,55	340	0,077	0,002	628,535				
1,63	360	0,082	0,002	657,726				
1,7	380	0,086	0,002	682,583				
1,76	400	0,091	0,003	703,165				
1,8	420	0,095	0,003	715,557				
1,85	440	0,100	0,003	731,745				
1,89	460	0,104	0,003	743,798				
1,92	480	0,109	0,003	751,777				
1,96	500	0,113	0,003	763,531				
1,99	520	0,118	0,003	771,250				
2	540	0,123	0,003	771,138				
2,02	560	0,127	0,003	774,822				
2,03	580	0,132	0,003	774,610				
2,04	600	0,136	0,003	774,359				
2,05	620	0,141	0,003	774,067				
2,05	640	0,145	0,003	769,980				
2,06	660	0,150	0,003	769,629				
2,05	680	0,154	0,003	761,806				
2,05	700	0,159	0,003	757,719				
2,05	720	0,163	0,003	753,631				
2,04	740	0,168	0,003	745,888				
2,04	760	0,172	0,003	741,820				

5.1.3 Datos y Resultados Muestra 3.

Cuadro 10. Datos de Laboratorio Muestra 3.

			Muestra 3			_	
	_		_				
		Doco	Datos Muestra	Т	458,43		
	Peso Total (g) Peso Micro-Esferas(g)			+	389,67		
			Silicona (g)	+	68,76		
			187		,		
		Diame	etro (mm)	Α	ltura (mm) Are	a 1 (mm²)
			4,25	\perp	110,68		2311,48
	_		4,33	╀	110,31	_	2318,30
Promedio	\vdash		4,26	+	110,47	_	2312,33
Promedio	_		(m)	+	110,49 0,11	-	0,0023
			(in)	+	4,35		3,59
Detec				i t		-	
		yo compresio		↓ ↓	360	1,99	859,970
Deformacion (μ	in)	Carga (KN)	Esfuerzo (KN/m²)	\prod	380	2,05	885,899
20		0,05	21,607	1	400	2,11	911,828
40		0,14	60,500	1	420	2,15	929,113
60		0,24	103,715		440	2,19	946,399
80		0,35	151,251		460		963,685
100		0,44	190,144		480		980,971
120		0,54	233,359		500		993,935
140		0,65	280,895		520		1002,578
160		0,76	328,431	↓ †			1011,221
180		0,87	375,967	↓ †	560	2,34 2,35	1015,543
200		1,01	436,467	ļ†	580	2,36	1019,864
220		1,17	505,611	ļ†	600	2,37	1024,185
240		1,34	579,075	↓ †	620	2,37	1024,185
260		1,52	656,862	↓ ├	640	2,36	1019,864
280		1,66	717,362	↓			
300		1,76	760,577	↓ ∤	660	2,36	1019,864
320		184	79514,819	↓	680	2,35	1015,543
340		1,92	829,720		700	2,34	1011,221

Cuadro 11. Cálculo de Esfuerzos Muestra 3.

CÁLCULO DE ESFUERZO MUESTRA 3							
Carga (KN)	Dial de deformacion 1*10-3	Deformacion unitaria	Area corregida (m²)	Carga unitaria (KN/m²)			
0,05	20	0,005	0,002	21,508			
0,14	40	0,009	0,002	59,944			
0,24	60	0,014	0,002	102,284			
0,35	80	0,018	0,002	148,469			
0,44	100	0,023	0,002	185,773			
0,54	120	0,028	0,002	226,921			
0,65	140	0,032	0,002	271,854			
0,76	160	0,037	0,002	316,350			
0,87	180	0,041	0,002	360,409			
1,01	200	0,046	0,002	416,399			
1,17	220	0,051	0,002	480,039			
1,34	240	0,055	0,002	547,125			
1,52	260	0,060	0,002	617,600			
1,66	280	0,064	0,002	671,185			
1,76	300	0,069	0,002	708,121			
184	320	0,074	0,002	73665,265			
1,92	340	0,078	0,003	764,866			
1,99	360	0,083	0,003	788,798			
2,05	380	0,087	0,003	808,507			
2,11	400	0,092	0,003	827,979			
2,15	420	0,097	0,003	839,403			
2,19	440	0,101	0,003	850,668			
2,23	460	0,106	0,003	861,775			
2,27	480	0,110	0,003	872,722			
2,3	500	0,115	0,003	879,686			
2,32	520	0,120	0,003	882,726			
2,34	540	0,124	0,003	885,686			
2,35	560	0,129	0,003	884,802			
2,36	580	0,133	0,003	883,878			
2,37	600	0,138	0,003	882,914			
2,37	620	0,143	0,003	878,205			
2,36	640	0,147	0,003	869,810			
2,36	660	0,152	0,003	865,121			
2,35	680	0,156	0,003	856,786			
2,34	700	0,161	0,003	848,491			

5.1.4 Datos y Resultados Muestra 4.

Cuadro 12. Datos de Laboratorio Muestra 4.

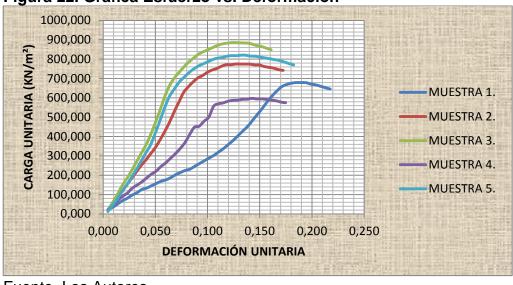
Cuadro 12. I	Jatos de	Laboratorio	wue	stra 4.			
Muestra 4							
	Datos Muestra						
-	Peso Total (g)			444,			
		Micro-Esferas(g) so Silicona (g))	378, 66,			
	Pes	o silicoria (g)		00,	/4		
	Dia	ametro (mm)		Altura ((mm)	Area 1 (mm²)	
		53,63		110,		2258,94	
-		54,1		110, 110,		2298,71	
Promedio		53,98 53,90		110,		2288,52 2282,06	
Fromedio		(m)		0,1		0,0023	
		(in)		4,3		3,54	
Datos ensa	ayo compresio	n incofinada		400	1,12	490,785	
Deformacion (μin)	Carga (KN)	Esfuerzo (KN/m²)		420	1,21	530,223	
20	0,05	21,910		440	1,27	556,515	
40	0,1	43,820		460	1,42	622,245	
60	0,16	70,112		480	1,46	639,773	
80	0,21	92,022		500	1,48	648,537	
100	0,25	109,550		520	1,51	661,683	
120	0,31	135,842		540	1,53	670,447	
140 160	0,35	153,370		560	1,54	674,829	
180	0,39 0,44	170,898 192,808		580	1,56	683,593	
200	0,44	214,718		600	1,57	687,975	
220	0,53	232,246	_	620	1,59	696,739	
240	0,59	258,538		640	1,59	696,739	
260	0,64	280,448		660		· ·	
280	0,7	306,740			1,6	701,121	
300	0,76	333,032		680	1,6	701,121	
320	0,83	363,706		700	1,6	701,121	
340	0,91	398,763		720	1,6	701,121	
360	1,02	446,965		740	1,59	696,739	
380	1,12	490,785		760	1,59	696,739	

Cuadro 13. Cálculo de Esfuerzos Muestra 4

CÁLCULO DE ESFUERZO MUESTRA 4							
Dial de Area							
Carga	deformacion	Deformacion	corregida	Carga unitaria			
(KN)	1*10-3	unitaria	(m²)	(KN/m²)			
0,05	20	0,005	0,002	21,809			
0,10	40	0,009	0,002	43,417			
0,16	60	0,014	0,002	69,144			
0,21	80	0,018	0,002	90,329			
0,25	100	0,023	0,002	107,030			
0,31	120	0,028	0,002	132,093			
0,35	140	0,032	0,002	148,431			
0,39	160	0,037	0,002	164,609			
0,44	180	0,041	0,002	184,826			
0,49	200	0,046	0,002	204,841			
0,53	220	0,051	0,002	220,494			
0,59	240	0,055	0,002	244,266			
0,64	260	0,060	0,002	263,677			
0,70	280	0,064	0,002	286,985			
0,76	300	0,069	0,002	310,052			
0,83	320	0,074	0,002	336,936			
0,91	340	0,078	0,002	367,578			
1,02	360	0,083	0,002	409,954			
1,12	380	0,087	0,003	447,888			
1,12	400	0,092	0,003	445,630			
1,21	420	0,097	0,003	479,001			
1,27	440	0,101	0,003	500,193			
1,42	460	0,106	0,003	556,408			
1,46	480	0,110	0,003	569,139			
1,48	500	0,115	0,003	573,952			
1,51	520	0,120	0,003	582,542			
1,53	540	0,124	0,003	587,174			
1,54	560	0,129	0,003	587,907			
1,56	580	0,133	0,003	592,397			
1,57	600	0,138	0,003	593,030			
1,59	620	0,143	0,003	597,379			
1,59	640	0,147	0,003	594,174			
1,60	660	0,152	0,003	594,686			
1,60	680	0,156	0,003	591,461			
1,60	700	0,161	0,003	588,235			
1,60	720	0,166	0,003	585,010			
1,59	740	0,170	0,003	578,149			
1,59	760	0,175	0,003	574,943			

5.1.5 Datos y Resultados Muestra 5

Cuadro 14. Datos de Laboratorio Muestra 5


		Datos Muestra					
		Peso Total (g)			1,03		
		Micro-Esfera			1,88		
	Р	eso Silicona (g)	69	,15		
		iametro (mm)		Altura	(mm)	Area 1 (mm²)	
	_	54,81			1,28	2359,442976	
		55,35		111	1,43	2406,16	
		55,31			1,34	2402,69	
Promedio		55,15666667			1,35	2389,43	
		(m)			11	0,0024	
I		(in)	-		38	3,70	
Datos ensa	yo compresio	n incofinada	4	20	2,05	857,945	
Deformacion (μin)	Carga (KN)	Esfuerzo (KN/m²)	4	40	2,09	874,685	
20	0,03	12,555	4	60	2,13	891,426	
40	0,11	46,036	. 4	80	2,16	903,981	
60	0,19	79,517	- 5	00	2,18	912,351	
80	0,29	121,368	- 5	20	2,21	924,906	
100	0,37	154,849		40	2,23	933,277	
120	0,47	196,700		60	2,24	937,462	
140	0,57	238,551					
160	0,68	284,587	_	80	2,26	945,832	
180	0,79	330,623	6	00	2,27	950,017	
200	0,9	376,659	6	20	2,27	950,017	
220	1,06	443,620	6	40	2,28	954,202	
240	1,23	514,767	. 6	60	2,28	954,202	
260	1,41	590,099	. 6	80	2,28	954,202	
280	1,56	652,875	. 7	00	2,28	954,202	
300	1,66	694,726	- 7	20	2,28	954,202	
320	1,76	736,577		40	2,28	954,202	
340	1,83	765,873		60	2,27	950,017	
360	1,9	795,168				-	
380	1,96	820,279	_	80	2,26	945,832	
400	2,01	841,204	8	00	2,25	941,647	

Cuadro 15. Cálculo de Esfuerzos Muestra 5.

	CÁLCU	ILO DE ESFUERZO MU	JESTRA 5	
	Dial de	Defensesies	Area	C
Carga	deformacion	Deformacion 	corregida	Carga unitaria
(KN)	1*10-3	unitaria	(m²)	(KN/m²)
0,03	20	0,005	0,002	12,498
0,11	40	0,009	0,002	45,616
0,19	60	0,014	0,002	78,429
0,29	80	0,018	0,002	119,153
0,37	100	0,023	0,002	151,316
0,47	120	0,027	0,002	191,315
0,57	140	0,032	0,002	230,932
0,68	160	0,036	0,002	274,200
0,79	180	0,041	0,002	317,047
0,9	200	0,046	0,003	359,475
1,06	220	0,050	0,003	421,358
1,23	240	0,055	0,003	486,585
1,41	260	0,059	0,003	555,101
1,56	280	0,064	0,003	611,175
1,66	300	0,068	0,003	647,184
1,76	320	0,073	0,003	682,810
1,83	340	0,078	0,003	706,474
1,9	360	0,082	0,003	729,869
1,96	380	0,087	0,003	749,176
2,01	400	0,091	0,003	764,450
2,05	420	0,096	0,003	775,748
2,09	440	0,100	0,003	786,894
2,13	460	0,105	0,003	797,888
2,16	480	0,109	0,003	805,001
2,18	500	0,114	0,003	808,293
2,21	520	0,119	0,003	815,197
2,23	540	0,123	0,003	818,316
2,24	560	0,128	0,003	817,709
2,26	580	0,132	0,003	820,695
2,27	600	0,137	0,003	819,992
2,27	620	0,141	0,003	815,658
2,28	640	0,146	0,003	814,898
2,28	660	0,151	0,003	810,544
2,28	680	0,155	0,003	806,191
2,28	700	0,160	0,003	801,838
2,28	720	0,164	0,003	797,485
2,28	740	0,169	0,003	793,131
2,27	760	0,173	0,003	785,319
2,26	780	0,178	0,003	777,544
2,25	800	0,182	0,003	769,807
	<u> </u>	,	,	-,

5.1.6 Gráfica Esfuerzo vs. Deformación

Figura 22. Gráfica Esfuerzo vs. Deformación

Fuente. Los Autores

5.3 RESULTADOS CONSOLIDACIÓN UNIDIMENSIONAL

Muestra 1

5.3.1 Datos y Resultados Muestra 1

Cuadro 16. Cálculo de la Curva de Compresibilidad de la Muestra 1

Macsaar						
Altura	Altura (m)		Ø (mm)		64,08	
Area (c	m²)	32,25	Volumen (m³)		0,000	00763
Peso (kg)	0,115				
e		0,43	Vs (m	³)	0,0000533	
R.Braz	zo	10	Hs (cr	n)	1,65	5
Lectura Final deformimetro (1E-3in)	Carga rea	Esfuerzo normal (Kg/cm²)	Altura final de cons (cm)	Hv =H-Hs	Deformacion Vertical (%)	Relacion Vacios e
0	0	0	2,37	0,71	0,00	0,431
11	10	0,310	2,34	0,69	1,18	0,419
18,4	20	0,620	2,29	0,64	3,16	0,388
19,5	40	1,240	2,24	0,60	5,25	0,335
28,8	80	2,481	2,17	0,53	8,34	0,252
38,2	160	4,962	2,07	0,43	12,44	0,127
35,4	80	2,481	2,16	0,52	8,64	0,041
30,6	40	1,240	2,24	0,59	5,36	0,095
24,3	20	0,620	2,30	0,65	2,75	0,122
17,7	10	0,310	2,35	0,69	0,85	0,131
7,2	0	0	2,36	0,71	0,08	0,131

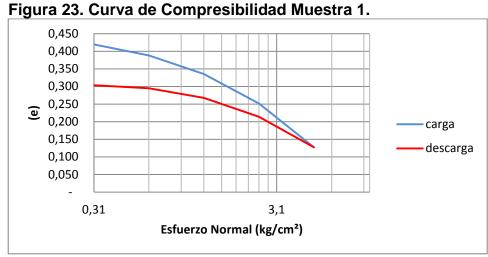


Figura 24. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 1.

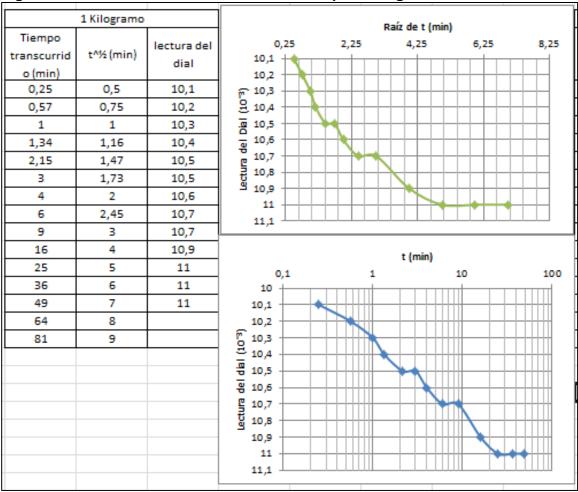


Figura 25. Curva de Consolidación Unitaria para 2 Kg. de la Muestra 1

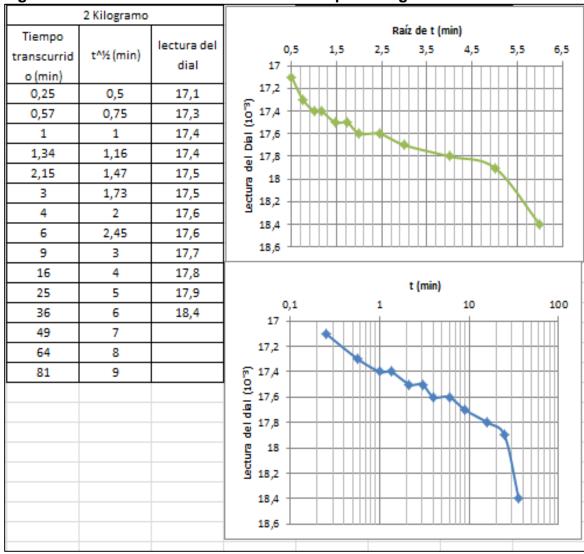


Figura 26. Curva de Consolidación Unitaria para 4 Kg. de la Muestra 1

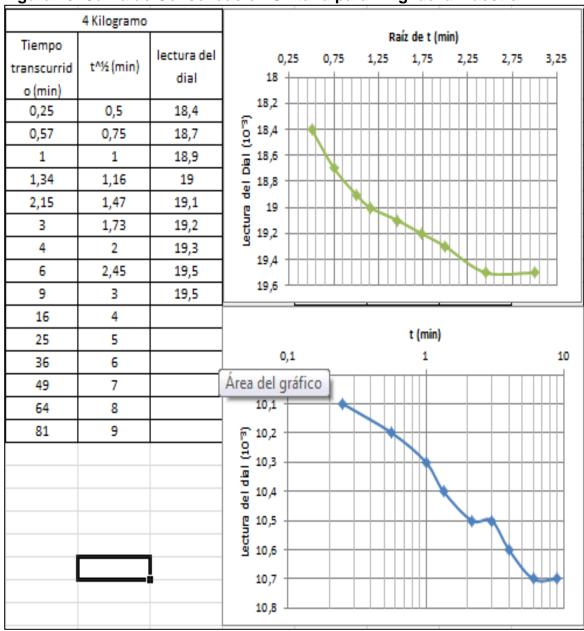


Figura 27. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 1

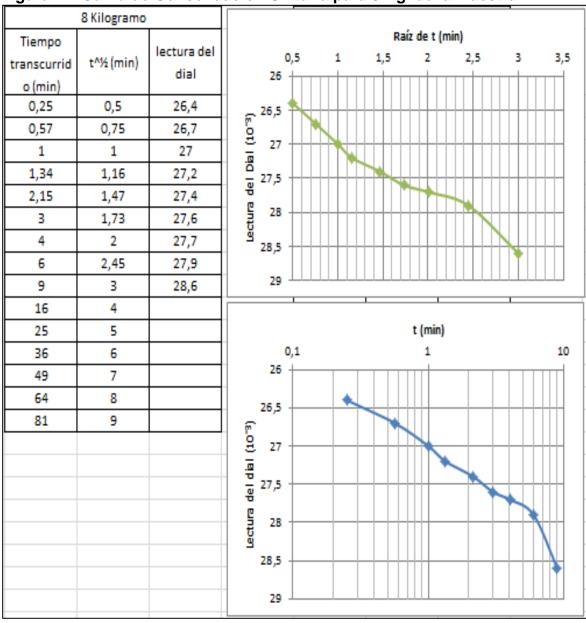
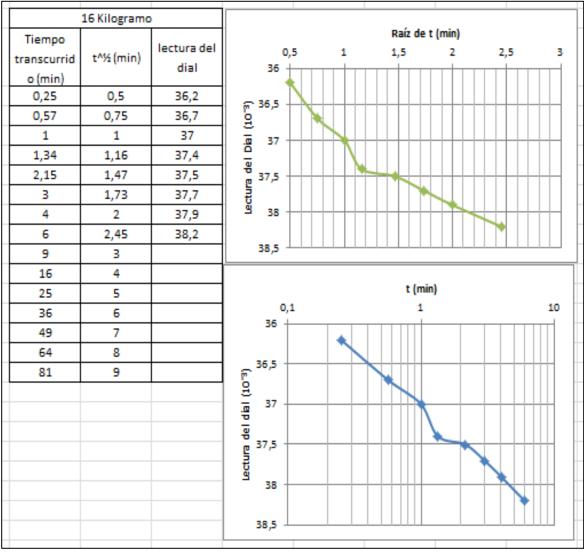



Figura 28. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 1

5.3.2 Datos y Resultados Muestra 2

Cuadro 17. Cálculo de la Curva de Compresibilidad de la Muestra 2.

				•			
Muestra 2							
Altura (cm)	2,35	Ø (mm)	64,14				
Area (cm²)	32,31	Volumen (m³)	0,0000758				
Peso (kg)	0,122						
e	0,39	Vs (m³)	0,0000544				
R.Brazo	10	Hs (cm)	1,68				
Lectura Final deformimetro (1E-3in)	Carga real (Kg)	Esfuerzo normal (Kg/cm²)	Altura final de cons (cm)	Hv =H-Hs	Deformacion Vertical (%)	Relacion Vacios e	
0	0	0,00	2,35	0,66	0,00	0,392	
15,1	10	0,31	2,31	0,62	1,64	0,376	
18,9	20	0,62	2,26	0,58	3,68	0,339	
24,1	40	1,24	2,20	0,52	6,29	0,276	
30,7	80	2,48	2,12	0,45	9,62	0,180	
38,2	160	4,95	2,02	0,36	13,75	0,043	
36,1	80	2,48	2,11	0,44	9,84	0,141	
31,1	40	1,24	2,19	0,52	6,48	0,206	
27	20	0,62	2,26	0,58	3,55	0,241	
22,2	10	0,31	2,32	0,64	1,15	0,253	
10,1	0	0,00	2,34	0,66	0,05	0,253	

Fuente. Los Autores.

Figura 29. Curva de Compresibilidad Muestra 2.

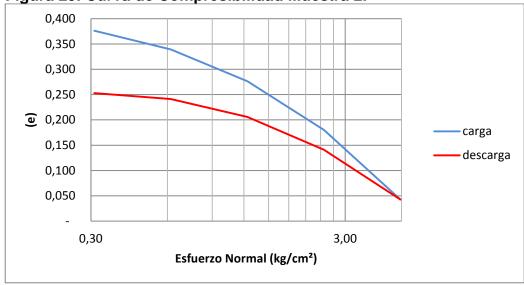


Figura 30. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 2

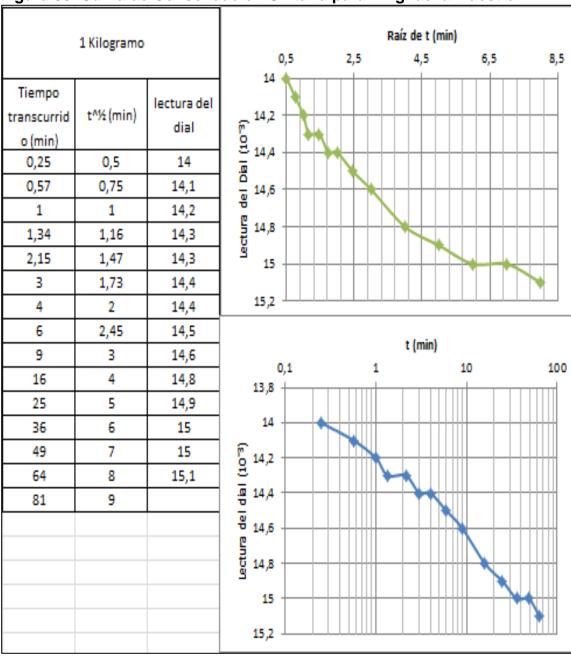
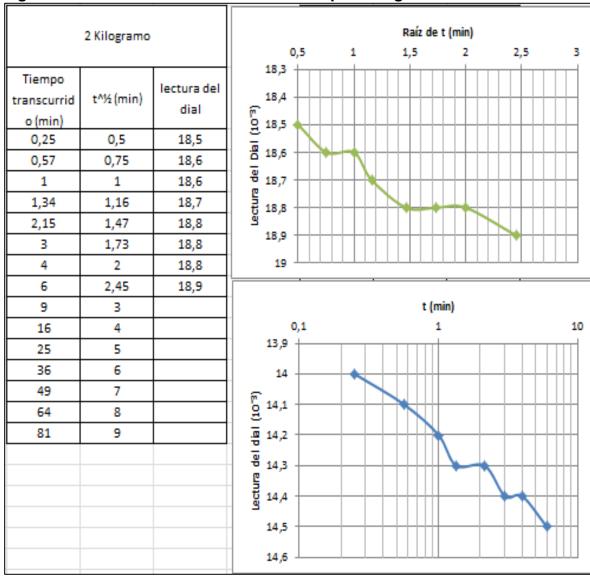



Figura 31. Curva de Consolidación Unitaria para 2 Kg. de la Muestra 2.

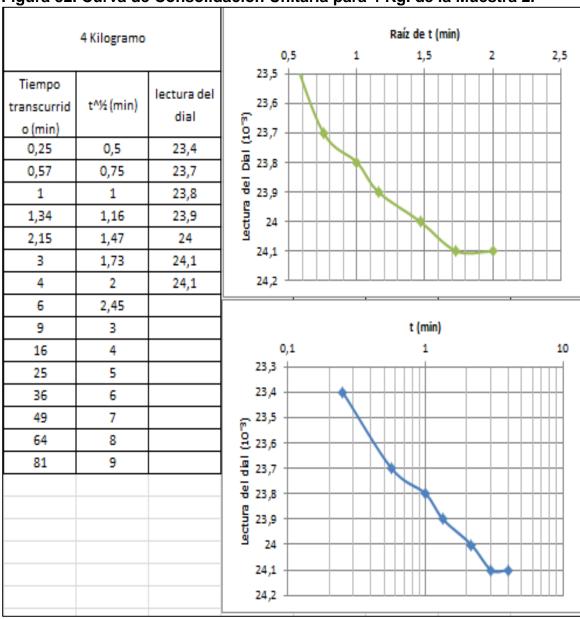
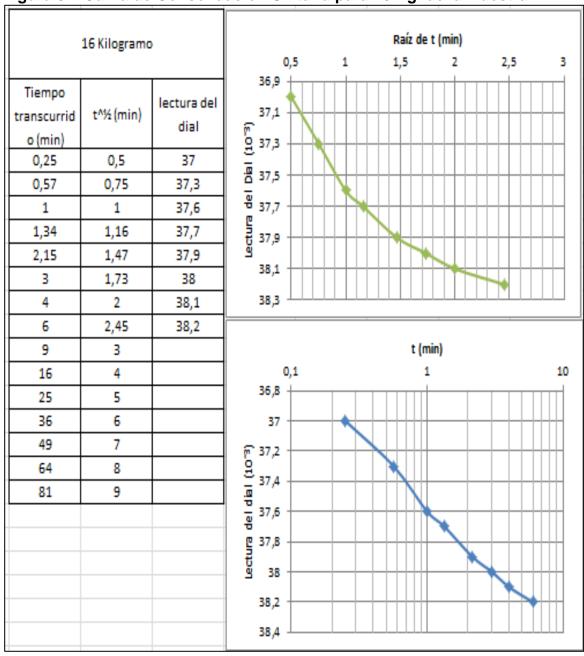



Figura 33. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 2.

	8 Kilogramo			R	aíz de t (min)		
			0,5 29,5 +	1	1,5	2	2,5
Tiempo transcurrid o (min)	t^½ (min)	lectura del dial	29,7 29,9 29,9 30,1 30,5				
0,25	0,5	29,9	·				
0,57	0,75	30,1	30,1				
1	1	30,3	₩ 30,3 				+++
1,34	1,16	30,4	t 30.5				
2,15	1,47	30,5			1		
3	1,73	30,6	30,7				
4	2	30,7	30,9				
6	2,45						
9	3				t (min)		
16	4		0,1		1		10
25	5		29,8				
36	6		29,9				
49	7		F 30 ─				
64	8		9 30,1	`			
81	9		30,2				
			30,3				
			<u>g</u> 30,4				
			(£ 07) 30,2				
			30,6				
			30,7			 	
			30,8				

Figura 34. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 2.

5.3.3 Datos y Resultados Muestra 3

Cuadro 18. Cálculo de la Curva de Compresibilidad de la Muestra 3.

	Mu	estra 3	<u></u>			
Altura (cm)	2,35	Ø (mm)	63,96			
Area (cm²)	32,13	Volumen (m³)	0,0000755			
Peso (kg)	0,123					
e	0,39	Vs (m³)	0,0000545			
R.Brazo	10	Hs (cm)	1,69			
Lectura Final	Carga real	Esfuerzo	Altura final de		Deformacion	Relacion
deformimetro	(Kg)	normal	cons (cm)	Hv =H-Hs	Vertical (%)	Vacios e
(1E-3in)	11187	(Kg/cm²)	cons (cm)		vertical (70)	***************************************
0	0	0,00	2,35	0,65	0,00	0,386
12,6	10	0,31	2,32	0,62	1,36	0,373
16,9	20	0,62	2,27	0,58	3,19	0,341
22,5	40	1,24	2,22	0,53	5,62	0,285
29,7	80	2,49	2,14	0,46	8,83	0,196
36,7	160	4,98	2,05	0,37	12,80	0,068
34,3	80	2,49	2,14	0,45	9,09	0,159
29,7	40	1,24	2,21	0,52	5,88	0,218
24,2	20	0,62	2,27	0,58	3,26	0,251
19	10	0,31	2,32	0,63	1,21	0,263
9,2	0	0,00	2,34	0,65	0,22	0,265

Fuente. Los Autores.

Figura 35. Curva de Compresibilidad Muestra 3.

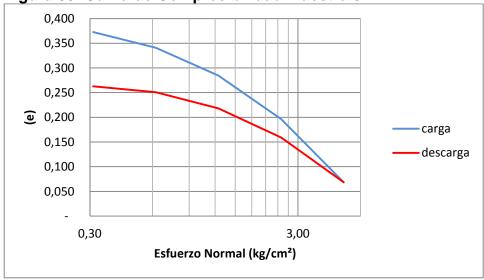


Figura 36. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 3.

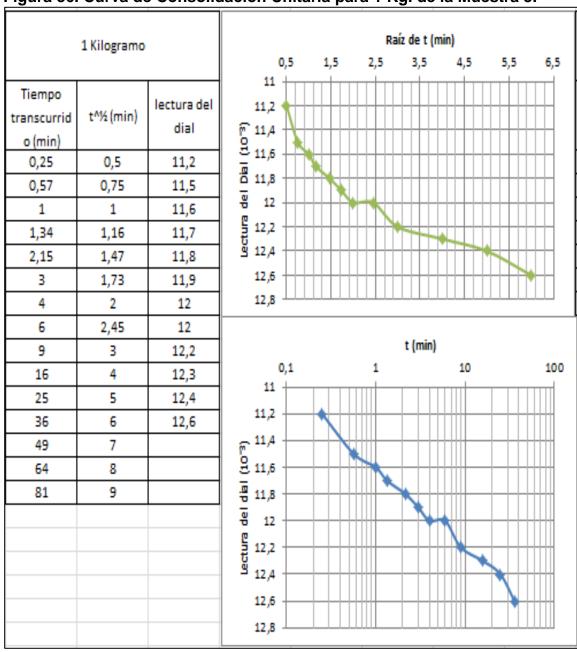
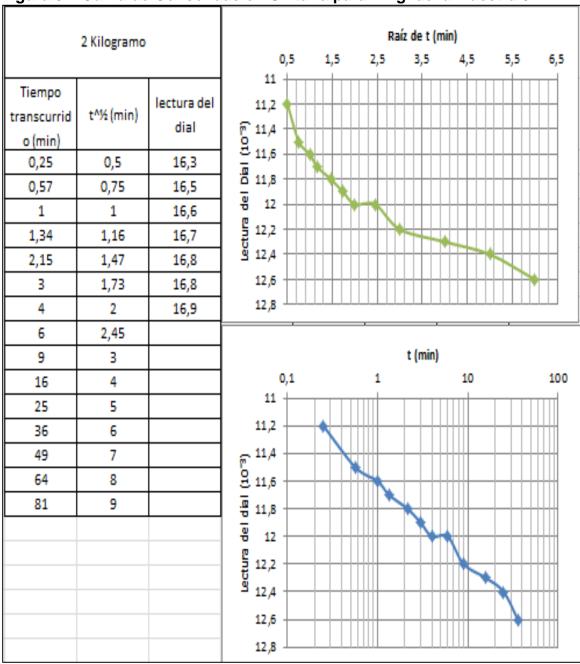



Figura 37. Curva de Consolidación Unitaria para 2 Kg. de la Muestra 3.

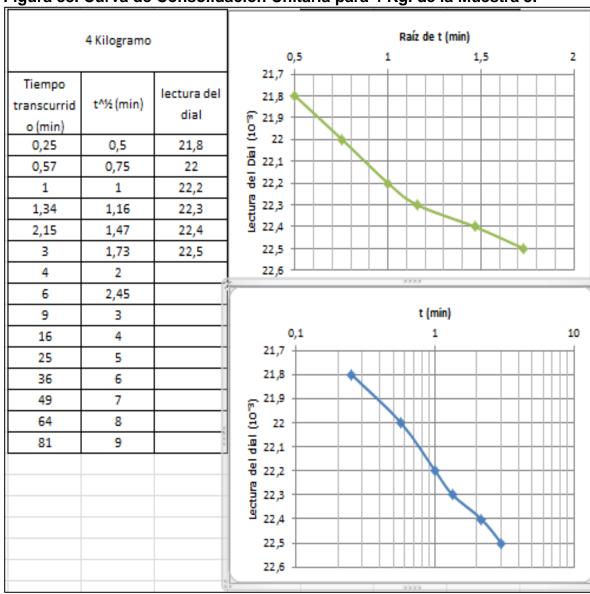


Figura 39. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 3.

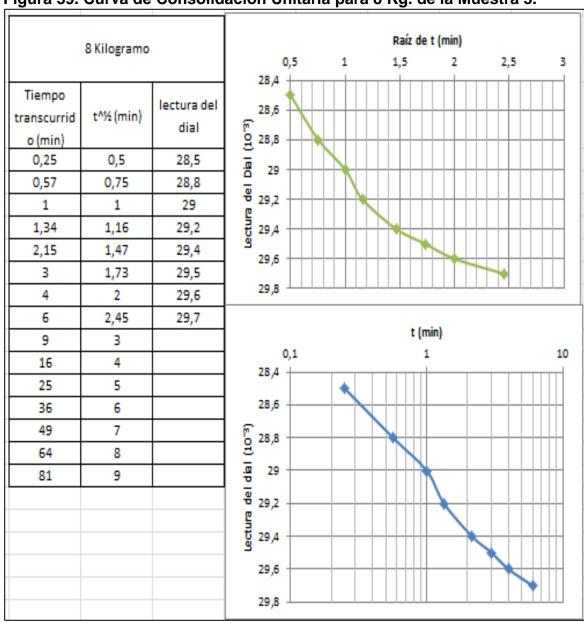
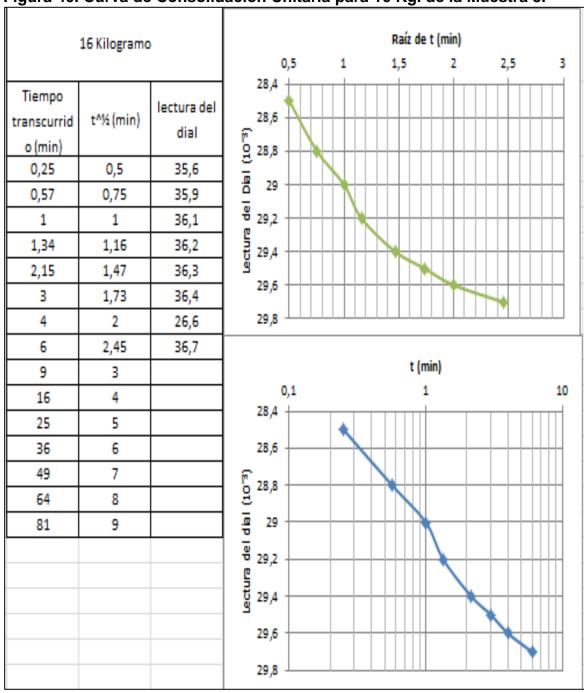



Figura 40. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 3.

5.3.4 Datos y Resultados Muestra 4

Cuadro 19. Cálculo de la Curva de Compresibilidad de la Muestra 4.

Muestra 4 Altura (cm) 2,40 Ø (mm) 64,29				u uo oomp			
Area (cm²) 32,46 Volumen (m²) 0,0000780 Peso (kg) 0,127 0,0000562 0,0000562 R.Brazo 10 Hs (cm) 1,73 0 Lectura Final deformimetro (1E-3in) Carga real (Kg) Esfuerzo normal (Kg/cm²) Altura final de cons (cm) Hv = H-Hs Deformacion Vertical (%) Relacion Vacios e 11,8 10 0,31 2,37 0,64 1,25 0,375 15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263		Mu	iestra 4				
Peso (kg) 0,127 0,39 Vs (m³) 0,0000562 Deformacion Vertical (%) Relacion Vertical (%) Relacion Vertical (%) Relacion Vertical (%) Natura final de cons (cm) Hv = H-Hs Deformacion Vertical (%) Relacion Vertical (%) Vacios e 0 0 0,00 2,40 0,67 0,00 0,387 11,8 10 0,31 2,37 0,64 1,25 0,375 15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 <t< td=""><td>Altura (cm)</td><td>2,40</td><td>Ø (mm)</td><td>64,29</td><td></td><td></td><td></td></t<>	Altura (cm)	2,40	Ø (mm)	64,29			
e 0,39 Vs (m²) 0,0000562 R.Brazo 10 Hs (cm) 1,73 Lectura Final deformimetro (1E-3in) Carga real (Kg) Esfuerzo normal (Kg/cm²) Altura final de cons (cm) Hv =H-Hs Deformacion Vertical (%) Relacion Vacios e 0 0 0,00 2,40 0,67 0,00 0,387 11,8 10 0,31 2,37 0,64 1,25 0,375 15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,2	Area (cm²)	32,46	Volumen (m³)	0,0000780			
R.Brazo	Peso (kg)	0,127					
Lectura Final deformimetro (1E-3in) Carga real (Kg) Esfuerzo normal (Kg/cm²) Altura final de cons (cm) Hv =H-Hs Deformacion Vertical (%) Relacion Vacios e 0 0 0,00 2,40 0,67 0,00 0,387 11,8 10 0,31 2,37 0,64 1,25 0,375 15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	e	0,39	Vs (m³)	0,0000562			
deformimetro (1E-3in) Carga real (Kg) normal (Kg/cm²) Altura final de cons (cm) Hv = H-Hs Deformacion Vertical (%) Relacion Vacios e 0 0 0,00 2,40 0,67 0,00 0,387 11,8 10 0,31 2,37 0,64 1,25 0,375 15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	R.Brazo	10	Hs (cm)	1,73			
deformimetro (1E-3in) Carga real (Kg) normal (Kg/cm²) Altura final de cons (cm) Hv = H-Hs Deformacion Vertical (%) Relacion Vacios e 0 0 0,00 2,40 0,67 0,00 0,387 11,8 10 0,31 2,37 0,64 1,25 0,375 15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275							
deformimetro (1E-3in) (Kg) normal (Kg/cm²) cons (cm) Hv = H-Hs Vertical (%) Vacios e 0 0 0,00 2,40 0,67 0,00 0,387 11,8 10 0,31 2,37 0,64 1,25 0,375 15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	Lectura Final	Carea real	Esfuerzo	Altura final de		Deformacion	Relacion
(1E-3in) (Kg/cm²) 2,40 0,67 0,00 0,387 11,8 10 0,31 2,37 0,64 1,25 0,375 15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	deformimetro	_	normal		Hv =H-Hs		
11,8 10 0,31 2,37 0,64 1,25 0,375 15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	(1E-3in)	(1/18/	(Kg/cm²)	cons (cm)		vertical (x)	vacios e
15,8 20 0,62 2,33 0,60 2,92 0,346 21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	0	0	0,00	2,40	0,67	0,00	0,387
21,6 40 1,23 2,28 0,55 5,20 0,294 28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	11,8	10	0,31	2,37	0,64	1,25	0,375
28,5 80 2,46 2,20 0,48 8,22 0,212 35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	15,8	20	0,62	2,33	0,60	2,92	0,346
35,7 160 4,93 2,11 0,40 11,99 0,092 32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	21,6	40	1,23	2,28	0,55	5,20	0,294
32,8 80 2,46 2,20 0,48 8,52 0,177 28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	28,5	80	2,46	2,20	0,48	8,22	0,212
28,2 40 1,23 2,27 0,54 5,54 0,232 23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	35,7	160	4,93	2,11	0,40	11,99	0,092
23,1 20 0,62 2,33 0,60 3,10 0,263 18,6 10 0,31 2,37 0,64 1,13 0,275	32,8	80	2,46	2,20	0,48	8,52	0,177
18,6 10 0,31 2,37 0,64 1,13 0,275	28,2	40	1,23	2,27	0,54	5,54	0,232
	23,1	20	0,62	2,33	0,60	3,10	0,263
7,5 0 0,00 2,39 0,66 0,34 0,278	18,6	10	0,31	2,37	0,64	1,13	0,275
	7,5	0	0,00	2,39	0,66	0,34	0,278

Fuente. Los Autores

Figura 41. Curva de Compresibilidad Muestra 4.

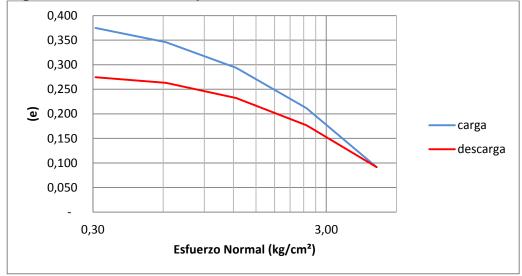


Figura 42. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 4.

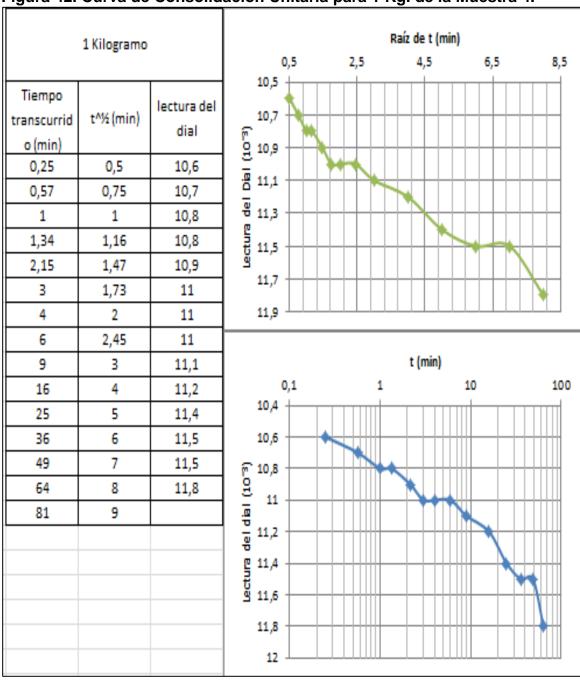


Figura 43. Curva de Consolidación Unitaria para 2 Kg. de la Muestra 4.

	2 Kilogramo		Raíz de t (min)	
Tiempo transcurrid o (min) 0,25 0,57 1 1,34 2,15	t^½ (min) 0,5 0,75 1 1,16 1,47 1,73	lectura del dial 15,3 15,4 15,5 15,6 15,7	0,5 1 1,5 2 15,2 15,3 15,4 15,5 15,6 15,6 15,7 15,8 15,9	2,5
4 6 9 16 25 36 49 64 81	2 2,45 3 4 5 6 7 8 9	15,8	15,9 t (min) 0,1 15,2 15,3 15,4 15,5 15,5 15,6 15,7 15,8 15,9	10

Figura 44. Curva de Consolidación Unitaria para 4 Kg. de la Muestra 4.

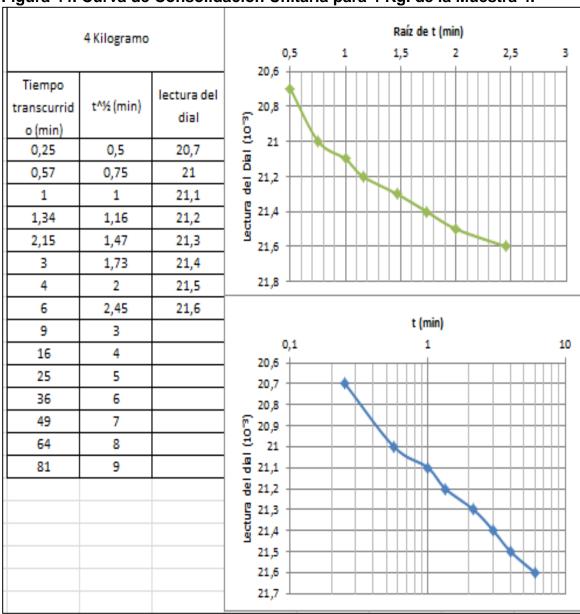
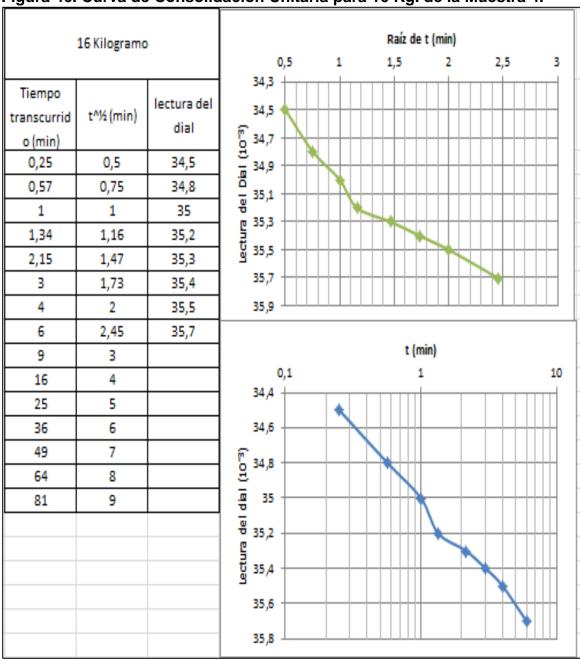



Figura 45. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 4.

l igura 43.	Cui va uc	Consona	acion Unitari	а рага о	rtg. de	ia iviac	311 a 7.	
	8 Kilogramo				Raíz de	t (min)		
	-		0,5	1	1,5	2	2,5	3
Tiempo transcurrid o (min)	t^½ (min)	lectura del dial	27,3 27,5					
0,25	0,5	27,4	9 27,7 ——————————————————————————————————					П
0,57	0,75	27,7	27,9					$\forall \exists$
1	1	27,9	₩ 28,1					++
1,34	1,16	28,1	28,1 P 28,3					Ш
2,15	1,47	28,2	9 20,5			1	\perp	
3	1,73	28,3	28,5					
4	2	28,4	28,7					Ш
6	2,45	28,5						
9	3				t (mi	in)		
16	4		0,1 27,2 +		1			10
25	5		27,2					
36	6		27,4	1				+++
49	7		27,6					Ш
64	8		5		*			
81	9		.0 27,8					$\forall \exists$
			₩ 28 —			\leftarrow		Щ
			27,6			*	+	
			28,4					\mathbb{H}
			28,6				Y	

Figura 46. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 4.

5.3.4 Datos y Resultados Muestra 5

Cuadro 20. Cálculo de la Curva de Compresibilidad de la Muestra 5.

	Mu	estra 5	_			
Altura (cm)	2,34	Ø (mm)	64,37			
Area (cm²)	32,54	Volumen (m³)	0,0000760			
Peso (kg)	0,121					
e	0,40	Vs (m³)	0,0000544			
R.Brazo	10	Hs (cm)	1,67			
Lectura Final	Carga real	Esfuerzo	Altura final de		Deformacion	Relacion
deformimetro	(Kg)	normal	cons (cm)	Hv =H-Hs	Vertical (%)	Vacios e
(1E-3in)		(Kg/cm²)				
0	o	0,00	2,34	0,66	0,00	0,397
12,9	10	0,31	2,30	0,63	1,40	0,383
17,9	20	0,61	2,26	0,59	3,35	0,349
23,5	40	1,23	2,20	0,53	5,90	0,290
28,8	80	2,46	2,12	0,46	9,04	0,200
34,3	160	4,92	2,04	0,38	12,77	0,072
32,8	80	2,46	2,12	0,46	9,20	0,164
29,4	40	1,23	2,20	0,53	6,00	0,224
23,7	20	0,61	2,26	0,59	3,43	0,259
19,2	10	0,31	2,30	0,63	1,34	0,272
8,8	0	0,00	2,33	0,66	0,38	0,276

Fuente. Los Autores.

Figura 47. Curva de Compresibilidad Muestra 5.

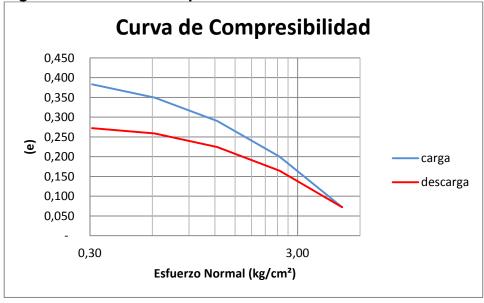


Figura 48. Curva de Consolidación Unitaria para 1 Kg. de la Muestra 5.

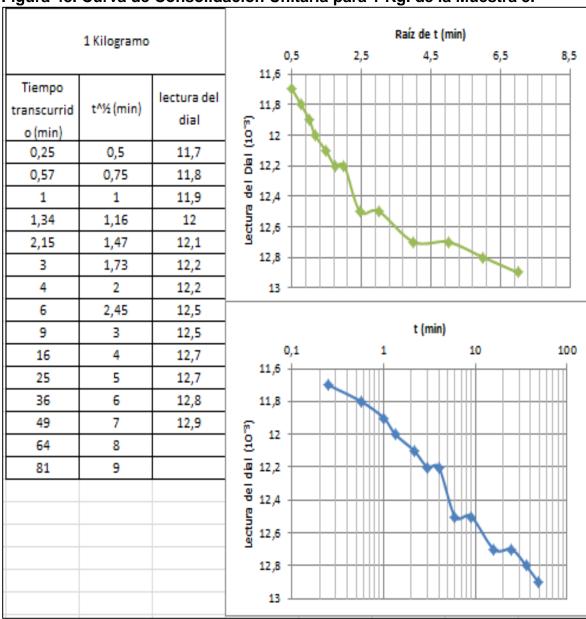


Figura 49. Curva de Consolidación Unitaria para 2 Kg. de la Muestra 5.

2 Kilogramo			Raíz de t (min)						
	-		0,5	1	1,5	2	2,5		
Tiempo ranscurrid o (min)	t^½ (min)	lectura del dial	17,3 17,4 (f) 17,5 (g) 17,5						
0,25	0,5	17,4	5 /						
0,57	0,75	17,5	17,6				\Box		
1	1	17,6	9 17,7 t 17,8				+++		
1,34	1,16	17,7	t 17.8				Ш		
2,15	1,47	17,7							
3	1,73	17,8	17,9				\Box		
4	2	17,9	18						
6	2,45								
9	3				t (min)				
16	4		0,1		1		10		
25	5		17,3						
36	6		17,4				Ш		
49	7								
64	8		9 17,5				++++		
•	9		<u>.0</u> 17,6						
81	9		_						
	9		9 17,7 P						
	9		(F) 17,5						
	3		9 17,7						

Figura 50. Curva de Consolidación Unitaria para 4 Kg. de la Muestra 5.

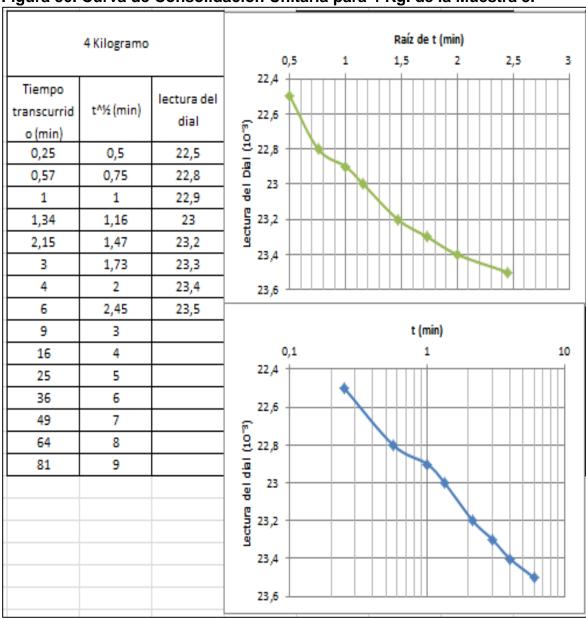
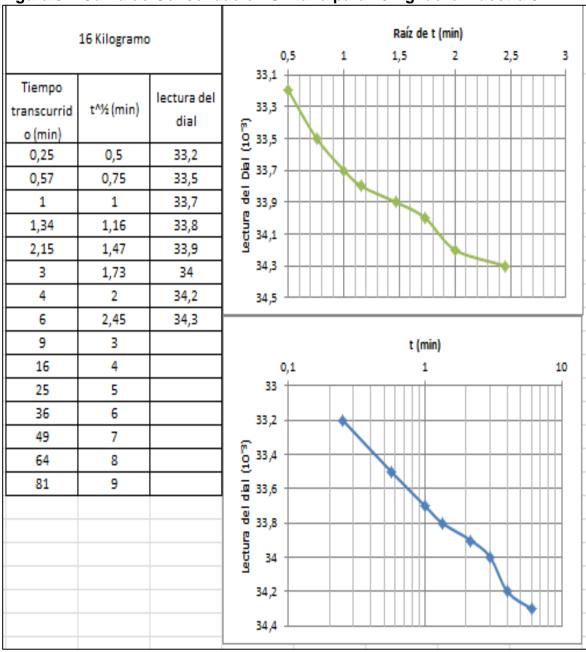



Figura 51. Curva de Consolidación Unitaria para 8 Kg. de la Muestra 5.

8 Kilogramo			Raíz de t (min)							
			0,5	1	1,5	2	2,5	3		
Tiempo transcurrid o (min)	t^½ (min)	lectura del dial	27,5 27,7 (f) 27,9 Q) 27,9							
0,25	0,5	27,6	5 - 7	\mathbb{N}						
0,57	0,75	27,9	28,1					+		
1	1	28,1	8 _{28,3}					₩		
1,34	1,16	28,3	9 28,3 En 28,5							
2,15	1,47	28,5	_		-					
3	1,73	28,6	28,7			1		+		
4	2	28,7	28,9 📖							
6	2,45	28,8	-							
9	3				t (mi	in)				
16	4		0,1		1			10		
25	5		27,4					\prod		
36	6		27,6					+		
49	7		€ 27,8 					Щ		
64	8		9 ,		*					
81	9				*			\Box		
			28,2					+		
			<u>e</u> 28,4					+		
			27,8			*		\mathbb{H}		
			28,8					\mathbb{H}		
			29							

Figura 52. Curva de Consolidación Unitaria para 16 Kg. de la Muestra 5.

6. ANALISIS DE RESULTADOS

6.1 ANÁLISIS RESULTADOS COMPRESIÓN INCONFINADA

6.1.1 Muestra 1. Su altura inicial fue de 109,79 mm, y la altura mínima antes de lograr la ruptura fue de 85,89 mm; tuvo una disminución porcentual en su longitud del 22%. El máximo esfuerzo soportado por la muestra fue de 842,085 kN/m2.

Gráficamente, la muestra presenta que su zona de fluencia en el esfuerzo es de 440 kN/m2 y su punto de ruptura está en el orden de los 765 kN/m2. La zona elástica está dentro de los valores de 0 y 0,05 de la deformación unitaria, la zona elástico- plástica en el rango de 0,05 y 0,1 de la misma deformación, mientras que la zona plástica 0,1 y 0,181. Claramente es un material con condiciones mecánicas plásticas.

6.1.2 Muestra 2. Su altura inicial fue de 111,96 mm, y la altura mínima antes de lograr la ruptura fue de 92,66 mm; tuvo una disminución porcentual en su longitud del 17,23%. El máximo esfuerzo soportado por la muestra fue de 905,166 kN/m2.

Gráficamente, la muestra presenta que su zona de fluencia en el esfuerzo es de 340 kN/m2 y su punto de ruptura está en el orden de los 740 kN/m2. La zona elástica está dentro de los valores de 0 y 0,05 de la deformación unitaria, la zona elástico- plástica en el rango de 0,05 y 0,075 de la misma deformación, mientras que la zona plástica 0,075 y 0,172. Claramente es un material con condiciones mecánicas plásticas.

- **6.1.3 Muestra 3.** Su altura inicial fue de 110,49 mm, y la altura mínima antes de lograr la ruptura fue de 92,71 mm; tuvo una disminución porcentual en su longitud del 16,09%. El máximo esfuerzo soportado por la muestra fue de 1024,185 kN/m2. Gráficamente, la muestra presenta que su zona de fluencia en el esfuerzo es de 400 kN/m2 y su punto de ruptura está en el orden de los 840 kN/m2. La zona elástica está dentro de los valores de 0 y 0,043 de la deformación unitaria, la zona elástico- plástica en el rango de 0,043 y 0,070 de la misma deformación, mientras que la zona plástica 0,070 y 0,160. Claramente es un material con condiciones mecánicas plásticas.
- **6.1.4 Muestra 4.** Su altura inicial fue de 110,43 mm, y la altura mínima antes de lograr la ruptura fue de 91,13 mm; tuvo una disminución porcentual en su longitud del 17,47%. El máximo esfuerzo soportado por la muestra fue de 701,121 kN/m2. Cabe mencionar que esta fue la muestra con menor valor de esfuerzo de las cinco probetas falladas.

La curva gráfica de esta muestra tiene mejor marcadas, los puntos en donde se producen los cambios de estado mecánico de los materiales a pesar de que es la muestra con menores índices de soporte de carga y esfuerzo. La muestra presenta que su zona de fluencia en el esfuerzo es de 440 kN/m2 y su punto de ruptura está en el orden de los 560 kN/m2. La zona elástica está dentro de los valores de 0 y 0,087 de la deformación unitaria, la zona elástico- plástica en el rango de 0,087 y 0,105 de la misma deformación, mientras que la zona plástica 0,105 y 0,175. Claramente es un material con condiciones mecánicas plásticas.

6.1.5 Muestra 5. Su altura inicial fue de 111,35 mm, y la altura mínima antes de lograr la ruptura fue de 91,03 mm; tuvo una disminución porcentual en su longitud del 18,24%. El máximo esfuerzo soportado por la muestra fue de 952,202 kN/m2.

La muestra presenta que su zona de fluencia en el esfuerzo es de 220 kN/m2 y su punto de ruptura está en el orden de los 640 kN/m2. La zona elástica está dentro de los valores de 0 y 0,07 de la deformación unitaria, la zona elástico- plástica en el rango de 0,07 y 0,170 de la misma deformación, mientras que la zona plástica 0,170 y 0,218. Claramente es un material con condiciones mecánicas elástico-plásticas.

6.2 ANÁLISIS RESULTADOS ENSAYO EDOMETRICO

Para el análisis de los resultados de las muestras sometidas a este ensayo se tomó como referencia la gráfica modelo proporcionada por la norma INVIAS E 151-17 la cual se mostrar a continuación en una grafico de resumen.

Grafica Modelo Muestra 1 Muestra 2 Curva de Compresibilidad Curva de Compresibilidad 0.400 0.400 0,350 0,350 0.300 0,300 0,250 0,250 £ € 0,200 0.200 carga cargo 0,150 0.150 descarga descarga 0,100 0.050 0.30 (a) e vs. log_{sp} σ Muestra 3 Muestra 4 Muestra 5 Curva de Compresibilidad Curva de Compresibilidad Curva de Compresibilidad 0.400 0.450 0,400 0.350 0,350 0,350 0.300 0,300 0.300 0,250 0,250 0.250 € 0,200 € 0,200 0,200 carga carga carga 0.150 0,150 0.150 0,100 0,100 0.100 0,050 0,050 0,050 0.30 Estuerzo Normal (kg/cm²) Esfuerzo Normal (kg/cm²)

Figura 53. Resumen de Gráficas Curva de Compresibilidad Ensayo Edométrico

Se puede ver que el comportamiento de las 5 muestras fue casi el mismo mostrando un buen procedimiento de construcción de las mismas, también evidencia que las 5 muestras fueron hechas con el mismo porcentaje de microesferas de vidrio (85%) y silicona negra (15%) lo cual nos da una muy buena exactitud en los cálculos y en los resultados arrojados.

Por otro lado ya comparando las gráficas de las muestras con la gráfica modelo se puede ver que las diferencias que hay son:

Al iniciar la curva de carga de la gráfica modelo tiene una especie de meseta la cual indica que al comienzo de la carga la relación de vacíos no varía tanto con respecto al esfuerzo normal, lo que sucede contrariamente en las 5 graficas restantes de las muestras donde desde el principio tiene un cambio rápido de la relación de vacíos esto debido a que el material cementante utilizado le aporta propiedades elásticas a la muestra. A pesar de esto las muestras realizadas en el laboratorio muestran gran similitud con la gráfica modelo.

➤Otra diferencia entre la gráfica modelo y las gráficas de las muestras es la parte de descarga donde las 5 muestras muestran una gran recuperación en su forma, llevando esto a que la diferencia de vacíos inicial y final se muy pequeña lo cual difiere de la gráfica modelo la cual muestra que entre la relación de vacíos inicial y la relación de vacíos final hay una gran diferencia.

➤La recuperación modelo es casi una recuperación lineal, lo cual difiere de las 5 muestras ya que estas se recuperan de una forma semi-parabolica invertida, también debido al cementante utilizado ya que posee grandes propiedades elásticas y plásticas.

7. CONCLUSIONES

- >Se logró establecer artificialmente que la cementación es un efecto real que puede ocurrir en suelos naturales de ambiente tropical.
- ➤ De acuerdo a investigaciones anteriores con cantidades de material diferente se evidenció que el comportamiento del geomateriales es el esperado.
- La cementación produce una cohesión aparente en el suelo, permitiendo que materiales de tipo granular, presenten una ligación cementicia entre sus partículas.
- ➤El aporte hecho por el material cementante (silicona negra) en materiales granulares le otorga condiciones mecánicas de tipo plástico. Sin embargo al inicio de la aplicación de la carga, presenta un lecho de tipo elástico, que simula las condiciones de un suelo natural.
- >La cantidad de material utilizado en porcentaje para la simulación, además de factores como tiempo de secado, temperatura, y procesos de moldeo pueden alterar el comportamiento.
- Factores tales como el tiempo de secado, el re moldeado de las muestras, son factores que afectan directamente a los resultados obtenidos en los laboratorios.
- ➤El aporte hecho por el material cementante artificial a la muestra, no resulto tan efectivo, pues las muestras presentaron deformaciones superiores al 16%. Sí un suelo en presencia de cementante natural presenta estas condiciones de deformabilidad, es un suelo totalmente inviable al momento de ejecutar una obra civil.
- ➤ La totalidad de las muestras, luego de haber sido cargadas prácticamente hasta la falla, presentaron una recuperación casi total luego de la descarga.
- >Se evidencia un rompimiento de partículas, similar al de una muestra de suelo desestructurada.

8. RECOMENDACIONES

Continuar, la investigación con la variabilidad del cementante, es decir usar un aglutinante que en al momento de su secado no presente condiciones tan plásticas, en las cuales las muestras presenten una falla absoluta y no permita la recuperación de ellas.

Sería interesante también, trabajar estas muestras en condiciones saturadas, para así analizar posibles cambios de estas en presencia de agua.

Finalmente y de ser posible, ubicar una serie de muestras de terrenos áridos o semiáridos, en donde seguramente se encuentre presencia de cementantes naturales, para así realizar estudios más detallados.

BIBLIOGRAFÍA

COLOMBIA. MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL. Reglamento Colombiano De Construcción Sismo Resistente. NSR-10. Bogotá: El Ministerio, 2010.

CRESPO VILLALAZ, Carlos. Mecánica de suelos y cimentaciones. 5 ed. México: Limusa, 2004. p. 20

DIARIO DE LA DIVISIÓN DE INGENIERÍA DEL TERRENO. Junio – julio, 1978. vol.104, no. 12.

-----. Marzo – abril, 1981. vol. 107, no. 6.

ECHARRI PRIM, Luis. Ciencias de la Tierra y el Medio Ambiente [en línea]. Bogotá: TECNUN [citado 20 septiembre, 2013]. Disponible en Internet: <URL: http://www.tecnun.es/asignaturas/Ecologia/Hipertexto/indice.html>

ESCUELA DE INGENIERIA DE ANTIOQUIA. Cohesión [en línea]. Medellín: La Escuela [citado 20 septiembre, 2013]. Disponible en Internet: <URL: http://fluidos.eia.edu.co/hidraulica/articuloses/conceptosbasicosmfluidos/cohesi%C 3%B3n/cohesi%C3%B3n.htm>

GIRALDO ZULUAGA, Robinson Andrés. Uma nova abordagem simples para simular o comportamento de solos em condições unidimensionais: um estudo analítico e experimental [en línea]. Brasilia: Universidad de Brasilia [citado 2 septiembre, 2013]. Disponible en Internet: <URL: http://hdl.handle.net/10482/9299>.

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN. Compendio tesis y otros trabajos de grado. NTC 1486. Sexta actualización. Bogotá: ICONTEC, 2008. 36p.

INSTITUTO NACIONAL DE VÍAS. Normas de ensayo para carreteras. Compresión inconfinada en muestras de suelos. INV E-152-07. Bogotá: INVIAS 2007. 11p.

-----. Normas de ensayo para carreteras. Consolidación unidimensional de los suelos. INV E-151- 07. Bogotá: INVIAS, 2007. 17 p.

JOURNAL OF GEOTECHNICAL ENGINEERING. Noviembre – diciembre, 1990. vol. 116, no. 11.

-----. Octubre – noviembre, 1998. vol.124, no. 10.

JUÁREZ BADILLO, Eulalio y RICO RODRÍGUEZ, Alfonso. Mecánica de suelos. México: Limusa, 414 p.

REVISTA INTERNACIONAL DE DESASTRES NATURALES, ACCIDENTES E INFRAESTRUCTURA CIVIL. Enero – marzo, 2012. vol.12, no. 1.

REVISTA MECÁNICA COMPUTACIONAL. Octubre - noviembre, 2007. vol. 26.

RINALDI, Víctor; CLARIÁ, Juan y CAPDEVILA, Julio. Consideraciones experimentales a nivel microestructural en la generación de modelos constitutivos para suelos loéssicos parcialmente cementados. [en línea]. Córdoba: Universidad Nacional de Córdoba [citado 15 agosto, 2013]. Disponible en Internet: <URL: http://www.famaf.unc.edu.ar/~torres/trabajosparapublicacion/23simposio_homenaj e_al_dr_carlos_prato/23-simposio_homenaje_prato-38.pdf>