
 

 
DEGREE PROGRAMME IN ELECTRICAL ENGINEERING 

 
 

 

 

 

 

 

 

 

 

MASTER’S THESIS 
 

LTCC PACKAGING FOR LAB-ON-A-CHIP 

APPLICATION 

 

 

 

 

 
 

 

 

 

   

  Author              Joni Kilpijärvi 

 

  Supervisor  Anita Lloyd Spetz 

 

  Second Examiner Niina Halonen 

 

  (Technical advisor Maciej Sobocinski) 

 

 

May 2015  



 

Kilpijärvi J. (2015), LTCC -pakkaus Lab-on-a-chip -sovellukseen. Oulun 

yliopisto, sähkö- ja tietotekniikan osasto, Mikroelektroniikan ja materiaalifysiikan 

laboratoriot. Diplomityö, 40 s. 

TIIVISTELMÄ 

Tässä työssä suunniteltiin, valmistettiin ja testattiin uusi pakkaustekniikka ”Lab-on-a-

chip” (LOC) -sovellukseen. Pakkaus tehtiin pii-mikrosirulle, jolla voidaan mitata 

solujen kiinnittymistä sirun pintaan solujen elinkelpoisuuden indikaattorina. 

Luotettavuustestaukset tehtiin daisy-chain -resistanssimittauksilla 

solunkasvatusolosuhteissa. Lisäksi työssä selvitettiin LTCC- ja ”Lab-on-a-chip” -

teknologioiden perusteet teoreettiselta pohjalta. 

Mikrosirun pakkauksessa käytettiin joustavaa LTCC-teknologiaa. Sähköisiin 

kontakteihin ja niiden suojauksiin käytettiin sekä johtavia että eristäviä epoksi-liimoja. 

LOC-sovelluksiin on tärkeää kehittää uusia pakkausmenetelmiä jotta näiden 

laitteiden kaikki ominaisuudet saadaan toimimaan luotettavasti. Pakkaus testattiin 

samoissa olosuhteissa missä sitä tullaan käyttämään ja pakkaus kesti kaikki nämä 

haasteet. Lisäksi esitetty valmistusprosessi on sellainen, että sitä voidaan käyttää myös 

muihin ”Lab-on-a-chip” -sovelluksiin. 
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ABSTRACT 

 

This work presents design, manufacturing and testing of new packaging method for 

Lab-on-a-chip (LOC) application. Packaging was made for silicon microchip which 

can measure cell adhesion on chips surface as indication of cell viability. Reliability 

testing was done with daisy-chain resistance measurement in real conditions. 

Moreover basic theory of LTCC and Lab-on-a-chip technology is presented. 

Resilient LTCC technology was used for packaging material and 

conductive/insulating epoxies were applied for electrical contacts and barriers against 

the environment. 

It is fundamentally important to develop new packaging methods for LOC 

applications, so all the properties can be utilized reliably. Packaging was tested under 

the cell growth conditions and the package showed to withstand all these challenges. 

Moreover the presented packaging method is possible to use also in other Lab-on-a-

chip applications. 
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LIST OF ABBREVIATIONS AND SYMBOLS 

ABBREVIATION Explanation 

 

𝑓  frequency 

 

𝑐  light velocity 

 

λ𝑔  wave length 

 

𝜀𝑟  dielectric constant 

 

𝜇0   permeability of vacuum 

 

𝜌   conductor resistance 

 

LOC  Lab-on-a-chip 

 

LTCC  Low Temperature Co-fired Ceramics 

 

CMOS  Complementary metal-oxide-semiconductor 

 

PCB  Printed circuit board 

 

FR-4  Glass-reinforced epoxy laminate sheets, printed circuit boards 

 

CAD  Computer aided design 

 

CCD  Charge-Coupled Device 

 

IC  Integrated circuit 

 

MEMS  Microelectromechanical systems 

 

DNA  Deoxyribonucleic acid 

 

MOSFET  Metal-oxide-semiconductor field-effect transistor 

 

MAGFET  Magnetic field-effect transistor 

 

DEP  Dielectrophoresis 

 

FACS  Fluorescence activated cell sorter 

 

PALS  Phase analysis light scattering 

 

DAQ  High speed data acquisition 

 

ACA  Anisotropic conductive adhesive 



 

 

ICA  Isotropic conductive adhesive 

 

BGA  Ball grid array 

 

PDMS  Polydimethylsiloxane 



 

1. INTRODUCTION 
 

Low temperature co-fired ceramic (LTCC) is very versatile technology due to material 

characteristics and constantly developing manufacturing processes. It has developed 

from a simple substrate material technology to a complex microelectronic system 

which involves packaging, buried passive components, heat sinks, sensors, actuators, 

micro channels and energy harvesters. This evolution started in the 1980s when 

DuPont and Hughes made radar chip for jet plane. [1] 

   Lab-on-a-chip is a technology which incorporates one or more laboratory functions 

in to a single microchip. Idea of this is that everything is small and integrated around 

the microchip. Advantages of this are: low fluid, reagent and sample consumption, 

faster analysis times, better control and accuracy, mobility/disposability, low 

fabrication costs and easy usability. However, lab-on-a-chip needs still more 

developing for killer applications. Challenges involving miniaturization makes 

fabrication and fluid handling more difficult because physical phenomena become 

more complex. [2] 

   The goal of this work is to combine these two technologies and design and 

manufacture robust package for CMOS based lab-on-a-chip ‘Cell Clinic’ with the 

LTCC technology. The Cell Clinic is based on a capacitance sensor chip. Traditional 

packaging methods are inadequate, because CMOS needs dry environment and 

biology needs wet environment. Joining these two worlds together is the problem 

solved in this work. This package needs to withstand hostile environment and still 

enable the chip to make measurements on cells. LTCC ceramic material is well suited 

for this challenge because of the material characteristics and flexibility of LTCC 

processing technology. 

1.1. Low temperature co-fired ceramics technology 

Low temperature co-fired ceramic (LTCC) material which normally consists of 

composite substrate made of ceramic particles and glass (green sheets). Low 

temperature means that maximum process temperature is between 850 - 1000 °C. 

Conductors are made from paste containing high electric conductivity metals and 

which are  typically screen printed on green sheets and then sintered in one step (in the 

other words co-fired). Other methods can also be used like sputtering and 

photolithography. These green sheets can be stacked and made to form multilayer 

structures. This technology allows integration of embedded components like resistors, 

capacitors and coils seamlessly into the substrate. Moreover mounting active and 

passive components, such as, microchips and heat sinks, on surface of the LTCC is 

possible. Because of these LTCC specific features high packaging density is possible. 

[3] 

   Ceramic materials have low transmission loss at high frequencies. Transmission loss 

at high frequencies (1/𝑄) is identified with dielectric loss (1/𝑄𝑑) and conductor loss 

(1/Qc) which depends on surface resistance 𝑅𝑠. Conductor loss dominates attenuation 

on low frequencies (<1 GHz) and dielectric loss at high frequencies (>1 GHz). 

Equations 1 and 2 are used to calculate these characteristics. [1] 

 
1

𝑄𝑑
=

20 ∗ 𝜋 ∗ log 𝑒

λ𝑔
tan 𝛿 = 2,73 ∗  

𝑓

𝑐
 √𝜀𝑟 ∗ tan 𝛿  (

𝑑𝑏

𝑚
)     (1) 
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Where λ𝑔 is wave length, 𝑓 is frequency, 𝑐 is light velocity, 𝜀𝑟 is dielectric constant 

and tan 𝛿 is dielectric loss tangent; 

 

𝑅𝑠 =
1

𝑑 ∗ 𝜎
=  √

𝜋 ∗ 𝑓 ∗ 𝜇0

𝜎
=  √𝜋 ∗ 𝑓 ∗ 𝜇0 ∗ 𝜌      (2) 

 

Where 𝑓 is frequency, 𝜇0 is permeability of vacuum and 𝜌 is conductor resistance 

 

   High frequency properties of LTCC material are superior compared to polymer 

based printed circuit board (PCB). At 2 GHz alumina/borosilicate LTCC material has 

dielectric constant ranging from 5  to 8 and most common PCB material FR-4 (epoxy 

+ EGlass 60 wt.%) 4.3 and dielectric loss tangent for LTCC is 0.005- 0.0016 and for 

PCB 0.015, respectively. With this concept advanced high frequency applications can 

be made on LTCC including communication devices such as Bluetooth, wireless LAN, 

in-car radar and GPS. [3] 

   LTCC has also another perk; excellent mechanical and electrical characteristics in 

harsh environment such as high humidity, chemicals, high temperature and vibration. 

For example thermal expansion coefficient for LTCC 3-4 ppm/°C versus FR-4 16-18 

ppm/°C, if this coefficient is large thermal stress may lower especially silicon chip 

electrical connection reliability significantly [3]. Moreover LTCC enables rapid 

prototyping since layouts are made with computer aided design (CAD) and only few 

process steps are needed. Furthermore this shortens the time to get ready products in 

the open market. Additionally sensors, actuators and microsystems with lab-on-chips 

can be implemented on LTCC substrate enabling a broad spectrum of applications. [1] 

   Typical manufacturing process for making multilayer ceramic substrates is shown in 

figure 1. First raw material powder and binder is chosen for the application. Then 

ceramic, glass and organic binder are mixed to make slurry compound. The slurry is 

poured in container and forced to go between “doctor blade” and moving tape. Then 

after drying, solid sheets, called green sheets, are blanked to specific sized blocks. At 

this stage green sheets are soft and flexible like paper. Next vias are formed by laser 

cutting or mechanically punching followed by via filling with conductive paste. 

Moreover, conductors and other functional materials, such as, resistors and dielectrics, 

are screen printed to the substrate. Then multiple green sheets are arranged in layers 

and they are laminated to form a stack.  Last stage is firing (also called sintering) and 

final inspection. [3] It is also possible to machine the LTCC material also after 

sintering with laser or diamond tools and make post process printing. [4]  
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Figure 1. Typical manufacturing process for multilayer ceramic substrates. 

 

Raw material powder is made from great variety of pretreated materials. This powder 

consists of inorganic ceramic and glass powder. The organic materials added to the 

powders, such as binders, plasticizers, dispersing agents and solvents, have significant 

impact on the ability to shape the material. The compounds are formed into slurry by 

mixing them in ball mill or similar device. [3] 

   In casting stage the green sheets are formed from slurry. Most important part of the 

casting device is the casting head where slurry is dispensed on to the moving carrier 

film through gap formed by doctor blade. This gap height determines thickness of the 

green sheets. Green sheets need to be dried before further processing. This is normally 

done by infrared heaters or hot air. After drying the mechanical strength of the green 

sheets need to be sufficient to withstand handling in the subsequent processes.  

   The green sheets are blanked to desired size and vias for conductors and other uses, 

e.g., heat sinks, are made by punching, drilling or laser cutting. These methods can be 

used also for making cavities and micro-channels [5]. Then using printing technique 

called screen printing (also called gap printing) materials, such as, conductors, 

resistors, and dielectric patterns, are printed on the green sheet. In this method 

conductive, resistor or dielectric paste is squeegeed through screen on to the substrate. 

This process is shown on figure 2. Screen is made from steel wire mesh and polymer 

emulsion with precise gaps patterned on it. As mentioned before green sheets are 

flexible like paper before laminating and sintering, furthermore green sheets are also 

porous. Porosity is desirable because paste solvent can penetrate the surface of the 

green sheet resulting in good adhesion after firing. [3] 

 

 
Figure 2. Screen printing process 

 

Processed green sheets are then laminated to form a multilayer module by aligning the 

sheets to each other. Aligning is done with help of CCD cameras, aligning marks and 

x-y- θ stage. After aligning the stack of green sheets is laminated with heat and 
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pressure. Heat is applied because it activates binders (organic resins) which increase 

the adherence between layers. [3] 

   When using conductors with low resistance, such as  copper (Cu), gold (Au) or silver 

(Ag), the sintering temperatures need to be below melting point of these materials 

which  are 1083, 1063 and 960 °C, respectively. Ceramics (typically alumina (Al2O3)) 

have high melting points so glass is inserted as binder to the LTCC composite. Glass 

acts like a glue which keeps ceramic particles together after sintering. Figure 3 shows 

ceramic composite before and after sintering. Glass particles melt into liquid form and 

as the particles cool down they bind ceramic particles together. Precise control of 

sintering process is the key to manufacture LTCC substrates with desired properties 

and high quality. [3] 

   LTCC Ceramic material shrinks and densifies during sintering due to diffusion of 

particles and the reduction of pores. This phenomenon needs to be taken into account 

as shrinkage rate can be defined and compensated during the design. LTCC ceramic 

manufacturers provide the shrinkage information on the datasheets of the tapes. [3] 

There is also zero shrinkage LTCC tapes, like Heraeus HeraLock® Tape HL2000 

which is used also in this work. 

 

 
         Figure 3. LTCC material before and after sintering. 

 

It is possible to mount active components such as silicon chips on LTCC substrate.  

Common conductor pastes (Ag, Cu, Ni, Au, Pd and their alloys) used in LTCC top 

layer have excellent solder wettability.  Solder wettability in principle means how 

strong the adhesion is between solder and substrate, although conductors with poor 

wettability can be plated with thin layers to improve adhesion.  Two typical bonding 

methods for bonding are flip chip bonding and wire bonding, which are shown in 

figure 4. [3]  

 

 

 
Figure 4. Typical chip bonding methods, flip chip and wire bonding. 
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1.2. Examples of LTCC biological applications 

K. A. Peterson presented, at 2005, a paper where application called Cell Lyser was 

demonstrated. This device has LTCC substrate with channel surrounded by heating 

elements.  The device can heat to 180°C killing unwanted spores from the sample and 

leave proteins intact. Fluidic channels are made so that fluidic ports can be glued on 

input and output. [6]  

   The LTCC technology was used to manufacture Micro Ceramic Cell Analyzer, this 

compact, simple and inexpensive device was presented on paper made by Malecha et 

al. 2007. Device consists of optoelectronic components integrated on LTCC. 

Components included light source (UV led), photodetector, light guide and chamber 

for biological material. It measured fluorescence of the biological sample on the LTCC 

substrate. Device showed response to various concentrations of E. coli and S. 

cerevisiae cells, and number of cells can determined. [7] 

1.3. Lab-on-a-chip 

Lab-on-a-chip (LOC) is a device that integrates one or several laboratory functions on 

a single microchip. Size of the microchip is on the scale of few square millimeters to 

centimeters. This small size means also faster measurements, on the order of seconds 

rather than minutes like with conventional measurement systems [8]. LOC may 

possess many applications such as chemical analysis, environmental monitoring, and 

medical diagnostics. [2] However, this chapter presents only medical diagnostics 

focusing cell analysis. Figure 5 presents the number of articles, conference papers and 

reviews in www.scopus.com (31.3.2015), with search word “Lab-on-a-chip”. 

 

 
Figure 5. Search hits on www.scopus.com. 

 

   Key aspects of lab-on-a-chip are miniaturization and integration. These subjects are 

strongly connected to integrated circuit (IC) technology including complementary 

metal oxide semiconductor (CMOS) technology. CMOS is matured technology and it 

is relatively easy to implement to the LOC structures. Also new technologies such as 

microelectromechanical systems (MEMS) has been used. [2] MEMS may be 

135

555

701
746

677

587
561

479

406
346

281

171
117

74
422512441

Search hits

http://www.scopus.com/
http://www.scopus.com/


 

 

13 

implemented also with other substrate materials, such as ceramics, plastics, quartz and 

glass, instead of commonly used silicon. [8] 

   Lab-on-a-chip is usually a very complicated device. LOC devices have extremely 

small cavities and flow systems (in µL and even pL scale) [8]. Therefore these devices 

can utilize small fluid volumes. LOC possess three major function categories: 

actuators, sensors, and readout circuits. Actuating means moving the sample, usually 

in liquid form (e.g., cell medium), inside LOC with mechanical (e.g. syringe) or 

electrical forces (e.g., electric field or magnetic field). Sensors measure electrical, 

optical, magnetic or thermal properties of the sample. Readout circuit handles signals 

(e.g., amplifiers and filters) and provides interface to outside world (e.g., computers). 

[2] 

1.3.1. Electrical and physical behavior of cells 

Lab-on-a-chip can be used to measure cells since these act like particles which have 

electrical and magnetic properties. A cell is the building block of life and the smallest 

unit of an organism that is classified as living. All the cells are formed from preexisting 

cells by division. Cells absorb and emit energy and these processes are called 

metabolism and biochemistry. There are unicellular (single-celled) and multicellular 

(more than one cell e.g., humans) organisms. The cells can be subdivided into two 

categories; simple prokaryotes and more complex eukaryotes. Both cell types have cell 

membranes (which are different for animals and plants cells), but unlike prokaryotes, 

eukaryotes have distinct membrane-bound organelles and nuclei with organized 

chromosomes which contain genetic material known as DNA. Eukaryotes are also 10 

times bigger and 1000 times greater in volume compared to simple prokaryotes. Most 

of the interior of the cells is salty liquid called cytoplasm. [2] 

   Two kind of basic models are used to characterize cells. Single-layer model, shown 

in figure 6, can be used to prokaryotes because of their relatively simple structure. 

Membrane is characterized by effective capacitance and conductance. Cells interior 

(cytoplasm) is simplified as homogenous with permittivity and ohmic conductivity. 

Double-layer model, presented on figure 6, is used for eukaryotic cells. This model 

mimics also nucleus which is located inside the membrane. Four distinct regions with 

different electrical regions are modeled. Cell membrane, cell interior (cytoplasm), 

nuclear membrane with selectively bilayer of lipid protein molecules, and 

nucleoplasm. The cell wall simulates a homogeneous spherical concentric shell of 

finite thickness with bulk permittivity and ohmic conductivity. The membrane is set 

to have effective capacitance and conductance. Cytoplasm is the same like in single-

layer model as mentioned earlier. Nucleoplasm is similar to the cytoplasm, simplified 

to be homogenous model with permittivity and ohmic conductivity. Figure 6 shows 

single-layer and double-layer models. Also more complex models (e.g. Hodgkin-

Huxley model) have been created for the cells which produce electrical signals 

(electrogenic cells) including brain cells, neurons and heart cells. [2] 
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Figure 6. Single-layer and double-layer model of the cells. 

1.3.2. Sensing techniques 

Cell sensing techniques of LOCs are basically the same as in bulky equipment. 

Examples are optical, fluorescent labeling, impedance sensing, capacitive cytometry 

and magnetic field sensing techniques. It is preferable to have a measurement system, 

which can be entirely miniaturized. 

   Optical technique uses photo detectors and laser beam to characterize cells. In 

principle these systems measure optical absorbance of liquid containing cells. Cells 

are manipulated by nonuniform electric field. Force on cells is called DEP 

(dielectrophoresis) force. This way it’s possible to characterize positive, neutral and 

negative cells. One realization of optical technique is dual beam optical spectrometer 

shown in the schematic figure 7. Dual beam arrangement increases tolerance to 

fluctuating light and signal-to-noise ratio is improved. [2] 

 

 
Figure 7. Dual beam optical spectrometer with cell manipulation capabilities (DEP). 

 

Fluorescent labeling technique involves marking the cells with fluorescent dye and 

then detecting them with optical techniques. The fluorescence-activated cell sorter 

FACS device is used for this technique. This machine can identify the cells size from 

wavelength of the scattered radiation they emit. After identification the cells can be 

sorted to separate containers with DEP forces. [2] A schematic picture of the FACS 

measurement system is shown in figure 8. Partly miniaturized device, µFACS, is 

demonstrated in a paper by Fu, A. Y. et al [9].  
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Figure 8. Fluorescence-activated cell sorter (FACS). 

 

Impedance sensing technique may be realized by micromachining and utilizes the 

impedance change ∆R between electrodes when a cell goes through a microchannel. 

There are more than one electrode pair so that reference electrodes are inherently 

switched. This way also the speed of the cell in the microchannel can be measured. In 

these systems it is important that the microchannel between the electrodes is as small 

as possible because sensitivity is then increased. Moreover, energy consumption 

becomes minimal. The output signal is realized by differential variation of the 

impedance Zac-Zbc. Similar capacitive cytometry technique, also based on 

micromachining technology, measures change in total capacitance, ∆CT, across 

electrodes using AC voltage and different frequencies. The current change between 

the electrodes is differentially measured and then analyzed to determine the dielectric 

properties. Dielectric properties reveal information about membrane resistance, 

membrane capacitance and cytoplasmic conductivity [10]. With this method it is 

possible to quantify DNA content because DNA is a highly charged molecule. Figure 

9 presents the idea of impedance and capacitive cytometry technique. 

 

 
Figure 9. Schematic side view of the microchannel with impedance/capacitive 

cytometry sensing capabilities. 

 

The magnetic field sensing technique uses magnetic field and a metal-oxide-

semiconductor field-effect transistor (MOSFET) to measure changes in the field when 

cell passes through. Magnetic field-effect transistor (MAGFET) is a MOSFET with 

two drains and it is implemented for this technique. [2] Table 1 presents comparison 

between different sensing techniques. 

 



 

Table 1. Comparison of different cell detection techniques. 

Technique Tasks Miniaturization Cell damage Advantages Disadvantages 

Optical Selective separation 

depending on charge of 

the cell (positive, negative, 

neutral) 

No No Ability to characterize 

cells with DEP based 

on positive, negative 

or neutral charge. 

Bulky and expensive. 

FACS 

(fluorescent 

activated cell 

sorter) 

Selective separation, and 

size measurement 

Hybrid possibility(e.g. 

µFACS) 

Cell modifying 

by fluorescent 

labeling 

Impressively fast and 

efficient sorting 

Expensive, mechanically 

complex and bulky. 

Complex to operate. Needs 

cell modification 

Impedance 

sensing, 

capacitance 

cytometry 

(CellClinic 

presented on 

this paper uses 

this tecnique) 

Counting, population 

study, trapping, size, 

velocity, information 

inside the cell 

Yes No Reference comes 

naturally, many 

different tasks 

No actuating capability, 

needs microfluidic 

techniques to move cells in 

the device 

Magnetic field 

sensing 

Control and manipulating 

of cells, detection 

Yes Paramagnetic 

micro-bead 

labeling 

Quite simple Temperature dependent 

large offset 



 

1.3.3. Examples of LOC devices 

Chiem and Harrison (1998) presented microchannels and electrodes made on glass 

substrate (7.6 x 7.6 cm) to mix, react, separate and analyze serums. They used 

microlithographic patterning technique and HF/HNO3 acids to etch microchannels and 

cavities. Liquid was moved by electroosmotic pumping, in other words by electric 

fields. Instrumentation was done by two power supplies/relays (30kV) and laser-

induced fluorescence. Emission was measured by microscope objective and optical 

bandpass filter. Also photomultiplier tube was used. The device integrates entire 

groups of laboratory steps used in clinical analysis. Performance is comparable with 

conventional instrumentation, expect analysis times, which was shorter. This device 

was designed for rapid reporting of critical analyses in emergency situations. [11] 

   Müller et al., (1999), introduced a 3-D microelectrode system for handling and 

caging single cells and particles. This device consists of two layers of electrode 

structures separated by a 40um thick polymer spacer. The device can focus, trap and 

separate eukaryotic cells or latex particles with diameter of 10-30um using negative 

dielectrophoresis (nDEP). It operates by changing AC fields between electrodes.  Two 

fabrication methods are presented, laser ablation and photolithography 

   This system can successfully handle and trap single cells/particles and allow 

population of one to several hundred single particles to be controlled and addressed 

individually. This is also a contact free method. Also using electrorotation 

characterization (particle rotation as a function of field frequency shows one peak for 

homogeneous particles) of cells dielectrically is possible. Instrumentation like 

fluorescence correlation spectroscopy, optoelectronic data recording and PALS can be 

used. [12] 

   Manaresi et al. published the paper ‘A CMOS Chip for Individual Cell Manipulation 

and Detection’ (2003), which presents a 8 x 8 mm2 device. The chip can perform 

parallel experiments on individual cells, detect and isolate rare cells from very small 

sample volume, possibly selectively deliver controlled amounts of compounds to 

target cells and has the possibility to investigate in real time the dynamics of cell 

response to chemicals and to cell-cell interactions. Structure is made of two-poly three-

metal 0,35 µm CMOS technology, and it consist of 102 400 actuation electrodes 

arranged on an array of 320 x 320, 20 µm x 20 µm microsites. Every microsite has 

addressing logic, embedded memory and an optical sensor. The software controlled 

device can handle up to 10 000 individual cells. This is a noninvasive method and uses 

DEP force (nDEP and pDEP) to manipulate cells. Also DEP cages are used, which can 

trap cells and then they can be moved. [13] 

   Liu et al. (2004) published the paper “Cell-Lab on a chip”, which describes a MEMS-

on-CMOS device to encage, culture and monitor cells. This system was developed to 

perform long-term measurements on arrays of single electrically active cells. Also a 

MEMS process was developed to manufacture closeable micro-vials for cells. [14] 

   Mina et al. approach “spectrophotometric analysis of biological fluids” presented in 

a paper published 2005. The device included: microfluidic system; optical filtering 

system based on Fabry-Perot optical resonator using a stack of CMOS compatible thin-

film layers; and CMOS detection/readout (photodiode array) system. Output of this 

device is a signal proportional to the intensity of the light transmitted through the 

biological fluids. The Fabry-Perot resonator allows the use of white light illumination, 

so no need of complex light sources. The lab-on-a-chip presented here is inexpensive 
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because of utilizing well established CMOS/SU-8 manufacturing processes. Also, it 

makes this LOC device disposable. Performance was successfully demonstrated 

measuring uric acid and total protein in human urine. Highly selective filtering system 

makes this device broadly applicable to other types of clinical diagnostics. [15] 

   Yun et al. (2005) demonstrated a microfluidic device for a fast and parallel single-

cell based assay. The system captures single-cells or beads passively and specific 

reagents or drugs can be injected to the target cell. The device consists of surface-

modified silicon channels capped with a grooved polydimethylsiloxane (PDMS) cover 

layer, and an electrochemical measurement system. 

   Cells/beads are trapped in a microfluidic channel passively using hook-shape and a 

narrow drain channel where fluid can flow until the cell is immobilized. This is 

achieved using a hydrophilic region. The drug injection channel has hydrophobic 

region, which allows also air/bubbles to leak out, while overflow of drug is drained 

through a separate drain channel.  

   Tests were successful with polystyrene beads and CHO DG44 cells. Also simulated 

drug (ink) was injected into the target cell without air introduction. [16] 

   Group Blazej et al. (2006) developed a bioprocessor for integrated nanolitre-scale 

Sanger DNA sequencing. The Sanger method has ability to generate long and accurate 

sequence reads compared to other methods. The device consists from three Sanger 

sequencing steps, thermal cycling, sample purification and capillary electrophoresis. 

PDMS wafer-scale construction was used to combine 250-nl reactors, affinity-capture 

purification chambers, high-performance capillary electrophoresis channels, and 

pneumatic valves and pumps onto a single microfabricated device. To achieve all steps 

the device is multilayer with hybrid glass-PDMS assembly.  

   The device was constructed from three patterned (100mm diameter) glass wafers and 

a PDMS (254um thick) membrane. Patterns were photolithographically transferred to 

the glass wafers and etched to a depth of 30um. Holes were drilled for electric, 

pneumatic, fluidic and interlayer access. Glass and PDMS wafers were bonded in a 

vacuum furnace, forming all-class enclosed surfaces. Also a 10mm diameter surface 

heater is mounted underneath the thermal cycling reactor.  

   Thermal cycling (voltage) and microvalve actuation (pressure) are controlled by 

computer software (LABVIEW). [17] 

   Research made by Chin et al. (2011) presents a lab-on-a-chip device which can run 

diagnostic tests of infectious diseases in the developing world. They managed to 

integrate all steps of ELISA in an easy-to-use point-of-care (POC) system. (ELISA is 

the clinical standard for detecting most protein-based biomarkers.) POC means that it 

is as easy to use as a mobile phone and does not need user interpretation of the signal. 

The chip had performance equal to reference bench top assays in the diagnostics of 

HIV using only 1uL of unprocessed whole blood.  The presented device is also made 

low cost and available for mass production.  

   Another paper presents three new microfluidic innovations. First, development of 

high-throughput manufacturing of microfluidic cassettes at low cost. This is achieved 

by manufacturing the device from transparent polystyrene and cyclic olefin polymer 

from single mold. The ELISA technique needs 14 separate reagents to get enough 

strong signal trough enzyme-mediated signal amplification.  Second, they used bubble 

actuated reagent delivery system, therefor no need of moving parts, electricity or 

external instrumentation in the micro channels. Bubbles are moved by a syringe 

integrated in the device. Finally, they needed signal amplification and detection using 

minimal instrumentation. They used reduction of silver ions onto gold nanoparticles 
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in an “immunosandwitch”. This allows signal to be amplified on a solid substrate under 

continuous flow of fluid.  Optical density of the silver film can be measured by LED 

and photo detectors. 

   They made tests with real specimens from 70 known HIV status patients. And only 

one test was false. Also duplex test with HIV and syphilis were successful. So this 

device works like its “big brothers” expect that it uses a hand held instrument that is 

no more expensive or complicated to use than a cell phone. [18] 

1.3.4. CMOS on LOC packaging 

A main challenge for packaging CMOS chip (millimeter scale) on an LOC device is 

harsh environment, e.g., when the active area of the chip needs to be exposed to liquid 

(cell growth medium, e.g., electrolyte solution). In addition living cells often require 

incubator where temperature, humidity and other conditions are controlled. So even 

non active areas are exposed to difficult conditions.  

   Different kind of packages are presented in literature to overcome this problem. 

These approaches are presented in figure 10. To make CMOS chips handheld they are 

e.g., attached to a wafer. Different materials such as silicon wafer, standard chip 

package, a printed circuit board or a flexible substrate can be used.  

   Moreover, the active area of the chip needs to be passivated to prevent cell medium 

to destroy the CMOS circuitry and yet allow measurement signals to pass through. 

Finally, it needs to be biocompatible, micromachinable and allow integration of 

microfluidics. Materials like oxide (SiO2), nitride (Si3N4) or polymers are exploited.  

   When CMOS chips are made in low volume they become expensive (5-metal, 2-poly 

CMOS 60-300$ per mm2). In conclusion, smaller chips are cheaper, but handling of 

the smaller chips become more difficult. Moreover this requires packaging to be a high 

yield process meaning less process steps, more yield. Balance between yield and 

package life-time also need to be carefully considered. [19] 
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A large die with well glued on 

top. 

First layer capsules wires and 

second layer forms 

microchannels. Second layer 

made with sacrificial ink or 

polymer thread 

A “chip in hole” structure on 

PCB. UV curable polymer seals 

chips active area and PDMS 

cap with microchannel. Also 

bottom half is UV polymer. 

  

 

 

A large chip with glass bonded 

on top. Microfluidic channel 

etched in the glass. 

Chip in a cavity with separated 

microchannel. Upper half for 

wires and lid. Bottom side via 

for microchannel. 

Another “chip in hole” 

structure with handle wafer. 

CMOS chip is molded to 

polymer and PI/SiO2 works as 

a passivation layer. 

 

 

 

 
Chip wire bonded to PCB 

substrate. Passivation done 

with parylene inside a well. 

A flip-chip packaged die with 

PCB forming well.  

PDMS top and substrate with 

liquid metal electrodes. 

 

 

 

 
 

Chip in a cavity made in chip 

carriers. And two options for 

passivation layer. 

Conceptual LOC structure. Wire 

connections are buried to 

leveling layer. 

This is packaging method 

described in [19]. 

Figure 10. Different approaches to packaging CMOS on LOC. The critical fluid 

barriers are colored pink and protection for electrical connections green. [19] 



 

2. LOC PACKAGE DESIGN AND MANUFACTURING 
 

The aim of this work is to design and manufacture a package for fully differential 

capacitance sensor chip (cell clinic) for monitoring cell adhesion and viability. Figure 

11 shows the working principle. The cell clinic is used for evaluation of toxic effect of 

nanoparticles and also other applications are possible. 

 

 
Figure 11. Fully differential capacitance chip, also associated capacitances are shown 

[20]. [2009] IEEE. Reprinted, with permission, from [Prakash, S.B. ; Abshire, Pamela, 

Fully Differential Rail-to Rail CMOS Capacitance Sensor With Floating-Gate 

Trimming for Mismatch Compensation, Circuits and Systems I: Regular Papers, 13 

February 2009 

 

   The chip (Cell Clinic) is manufactured by using commercial 0.35 µm CMOS process 

at MOSIS IC foundry. The chip had 40 bond pad configuration without bumping on 

bond pads. Bumping is used normally with flip chip packaging. The area of the chip 

was 3x3mm2 and pad size 80 µm x 80 µm. The package was connected to PC through 

printed circuit board (PCB) and high speed data acquisition (DAQ) USB card. On the 

PCB there were two 1.5 V AA batteries as a low-noise power supply and two shunt 

capacitors to compensate for fluctuating power consumption of the supply. The PC 

used MATLAB code to collect data and to program the chip. Sampling rates were 10 

to 40 kHz. [20] 

   Figure 10 presents the layout of the chip. Each column has finger electrodes for 

capacitance sensing, dummy electrodes, and shielded current bus and sensor 

evaluation module. Amplifiers are inside these modules. The differential sensor was 

reported to have maximum sensitivity of 200 mV/fF, a resolution of 15 aF, and an 

output dynamic range of 65dB. [20] 

 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Prakash,%20S.B..QT.&searchWithin=p_Author_Ids:37429950600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Abshire,%20Pamela.QT.&searchWithin=p_Author_Ids:37270824500&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919
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Figure 10. Layout of the chip, from [20]. [2009] IEEE. Reprinted, with permission, 

from [Prakash, S.B. ; Abshire, Pamela, Fully Differential Rail-to Rail CMOS 

Capacitance Sensor With Floating-Gate Trimming for Mismatch Compensation, 

Circuits and Systems I: Regular Papers, 13 February 2009]  

 

 

   The goal of this work is to combine these two technologies (LTCC and LOC) and 

design and manufacture a robust package for CMOS based lab-on-a-chip ‘cell clinic’ 

with the LTCC technology. Traditional packaging methods are inadequate, because 

CMOS needs dry environment and biology needs wet environment. In this work one 

solution to the problem of joining wet and dry world is introduced. This package needs 

to withstand hostile environment and still enable the chip to make measurements on 

cells. LTCC ceramic material is well suited to this challenge because of the material 

characteristics and flexibility of LTCC processing technology. Electrical connections 

are done with conductive silver epoxy. Two types of conductive epoxy have been 

tested; anisotropic and isotropic.  

2.1. Choosing materials 

2.1.1. LTCC Tape and Conductor material 

LTCC tape material should be selected so that all requirements of the application will 

be fulfilled. Many companies manufacture these tapes and often these materials come 

as readily purpose built paste systems (conductor, resistor and dielectric pastes).  

   In this system Heraeus HeraLock® Tape HL2000 was chosen. System requirements 

for LTCC package are possibility to print fine line conductors, hydrostatic stability 

and near zero x-y shrinkage. The fracture strength is < 200 MPa which is very good. 

Surface roughness is 0.7µm, and this is equivalent to grain size. Roughness is an 

important property because it affects adhesion of the materials. Moreover this tape 

does not shrink in x-y directions so designing is easier. Draw backs of this tape are 

different thermal coefficient of expansion compared to chip material (Si 2.6ppm/°C 

vs. HL2000 6.1ppm/°C) and z shrinkage is significant. Tape properties are shown in 

table 2. [21] 

 

 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Prakash,%20S.B..QT.&searchWithin=p_Author_Ids:37429950600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Abshire,%20Pamela.QT.&searchWithin=p_Author_Ids:37270824500&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8919
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Table 2. Properties of LTCC tape. [21] 

Tape Heraeus HeraLock® Tape HL2000 

Dielectric Constant @ 2.5 GHz 7.3 ±0.3 

Thermal Coefficient of Expansion  6.1 ppm/°C 

x-y shrinkage 0.20%±0.04 

z shrinkage 32% 

Fired layer thickness 225µm 

Fracture Strength >200 MPa 

Surface Roughness 0.7 µm 

 

Heraeus Co-Firing Silver Conductor TC0307 paste recommended by the manufacturer 

was chosen as conductor material. It has low resistivity (≤0.003Ω sheet resistance) 

and good fine line printing characteristics (≥ 100µm). [22] 

 

2.1.2. Anisotropic conductive adhesive (ACA) 

Anisotropic conductive adhesive (ACA) (anisotropic means that conductive particle 

loading is low and therefore only certain “direction” is conductive) chosen due its 

suitability for closely spaced (pitch 160µm) contacts and for the need of good 

hydrolytic stability due the cell growth medium. Moreover the glue needs to be screen 

printable and chip adhesion also needs to be sufficient. Anisotropic glue consists of 

conducting silver particles and adhesive polymer resins. These adhesives have 

conductive particle loading of 5-20%. 

   Creative Materials Anisotropic 115-29 Conductive epoxy adhesive was chosen for 

this work. It seems to fulfill all demands of this application. Properties of this glue are 

shown in table 3. [23] 

 

 

Table 3. Properties of anisotropic conductive adhesive. [23] 

Name Creative Materials 115-29 

Volume resistivity x-y axis 1x1012 Ω-cm 

Volume resistivity z axis 0.0001 Ω-cm 

Temperature range -55 to +200 °C 

Hydrolytic Stability Excellent 

T-Shear Strength (Psi) 1000 

 

2.1.3. Isotropic conductive adhesive (ICA) 

Isotropic conductive adhesive (ICA) (isotropic means that conductive particle loading 

is high and therefore material conducts electricity in all directions) was chosen so that 

it handles closely spaced (pitch 160 µm and pad size 80 µm x 80 µm) contact pads. 

Moreover the glue needs to be suitable for “stamping” process. Epoxy Technology 

EPO-TEK H20E-PFC electrically conductive two component silver epoxy was chosen 

for this work. This epoxy is designed for flip chip interconnects, the glue consists of 

conductive silver particles and adhesive polymer resins. It should have all 



 

 

24 

characteristics to fulfill all demands of this application. Properties of this glue are 

shown in table 4. [24] 

 

Table 4. Properties of isotropic conductive adhesive. [24] 

Name EPO-TEK H20E-PFC 

Volume resistivity  ≤ 0.0004 Ω-cm 

Viscosity (100 RPM / 23°C) 3000 – 4000 cPs 

Temperature range -55 to +225 °C (max 325 °C) 

Particle size ≤  20 µm 

Die Shear ≥ 5 Kg, 1700 psi 

 

2.1.4. Underfill 

Epotek 302-3M is a two component capillary action epoxy that was chosen for flip 

chip underfill application with isotropic conductive adhesive. This adhesive was also 

used to glue container for cell medium on substrate and cover all electrical 

connections. This material has low curing temperature and excellent water (can resist 

85°C /85% moisture soak), chemical and solvent resistant properties. This adhesive is 

also bio-compatible. [25]  

 

Table 5. Properties of underfill epoxy. [25] 

Name EPO-TEK 302-3M 

Volume resistivity ≥ 1x1013 Ω-cm 

Viscosity (100 RPM / 23°C) 800 – 1600 cPs 

Temperature range -55 to +175 °C (max 250 °C) 

Die Shear ≥ 10 Kg, 3400 psi 

Medical USP Class VI bio-compatible 

Hydrolytic Stability Excellent 

 

2.2. Design and manufacturing 

 

Designing of this package started from problems in packaging complementary metal 

oxide semiconductor (CMOS) chip, ‘the cell clinic’, in an epoxy handle wafer.  This 

packaging concept was presented in paper made in Maryland University. Design of 

the packaging is shown in figure 11. [19] This is a relatively easy way of packaging 

tiny chips and it can handle all demands in connection with the Lab-on-a-chip concept. 

Main problems with this method were bubble formation before curing epoxy and 

conductor/passivation layer adhesion on the epoxy.    
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Figure 11. Cross-sectional view of the epoxy package. [19] 

 

    Design of alternative package started with sketch shown in figure 12. LTCC is used 

as substrate and conductors are screen printed on it. Then opening is made with laser 

for CMOS chip (the sensor chip of the Cell Clinic) so that cells and cell medium can 

be placed on the active area of the cell clinic (sensor array). The chip is flip chip 

bonded to LTCC with conductive adhesive (anisotropic and isotropic conductive 

adhesive are tested). The anisotropic glue has two purposes; provide adhesion and 

work as conductor between chip pads and printed conductors. Isotropic adhesive needs 

also underfill to form sufficient adhesion. 40 pin ATA connector is used to provide 

output to the computer.  

 

 
Figure 12. Schematic image of the planned LTCC packaging of the chip. 

 

2.2.1. LTCC design 1 

   First step was to investigate printing of the conductors on the LTCC green sheets. 

For this printing screen was made with CAD tool. Conductor layout was designed with 

AutoCAD 2014 and then it was printed on transparent foil as film mask. Figure 14 

shows the layout of the mask. Then in the clean room the screen (interwoven wire 

mesh with photosensitive emulsion) was exposed to UV-light trough a mask. Next the 

screen was developed (soaked in water) to make openings in the screen mesh and the 

screen was ready for printing. With automated screen printing machine conductors 

were thereafter printed on LTCC green sheets. Then standard LTCC process 

recommended by manufacturer’s datasheet was used [21]. Laminating was done with 

vertical hydraulic press (T = 75°C, t = 10min, P = 130bar) and three layers of LTCC 

tape were used. Sintering profile is shown in figure 13. Thickness of the module after 

sintering was 300 µm.  Printed conductors were inspected and five discontinuities were 
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found. Figure 15 shows photograph of processed prototype LTCC with printed 

conductors. Notice that opening for chip is not yet made.  

 

 
Figure 13. Sintering profile. 

 

 

 

 

 
Figure 14. AutoCAD drawn mask 

layout. 

Figure 15. First sintered LTCC 

prototype with printed conductors 

 

2.2.2. Anisotropically conductive adhesive testing 

Anisotropic adhesive Creative Materials 115-29 (ACA) was tested for dummy chip 

bonding on LTCC substrate. First conductivity of the ACA was confirmed and 

different forces for curing was investigated. A testing jig and brass test samples were 

built and then glue was screen printed on copper plated printed circuit board (PCB). 

ACA was cured in oven as manufacturer recommended (30 – 40 min, 150 °C with 

pressure applied). Twelve samples were tested with different weights to apply different 

pressures. Figure 16 shows principle of bonding process and figure 17 photographs of 

the test setup. All samples were conductive. 
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Figure 16. Principle of anisotropic conducting adhesive bonding process 

 

  
Figure 17. Anisotropic glue test setup, to the left and glued samples on PCB on right 

hand side.   

 

Next the anisotropic glue was tested with dummy chips made by photolithography. 

These chips had the same pad size and orientation as the sensor chips for the Cell 

Clinic, but the total chip size was larger. These chips were flip chip bonded to LTCC 

substrate, shown in figure 18, with anisotropic glue. The glue was screen printed on 

LTCC and then flip chip bonding machine (Finetech Electronics Fineplacer Pico 145) 

was used to align and apply heat and pressure. Flip chip bonding machine had a 

maximum of 5 min process time, so after that, the samples were placed in the oven to 

get them fully cured. 2 Nm of force (equals to about 200g weight)  and a temperature 

of ~160°C was applied in the bonding machine for 5 minutes and in the oven 10 

minutes at 155°C (total 15min).  

    Two of these samples were prepared, followed by conductivity testing, and as result, 

none of the samples were conductive. The reason for this is probably incomplete cure 

of ACA, when ACA is not fully cured it exhibits insulating property, but the 

conductivity increases dramatically after sufficient cure.  

    Again two samples were prepared like earlier but the force of 3 Nm was used with 

the temperature of ~165°C of the flip chip bonder. Temperature of 170°C, 30min, was 

applied after that in oven. Also, one sample had weight placed on chip (59.25g) in 

oven to apply continuous force. Still none of the samples were conductive. Again we 

presume that ACA was not cured sufficiently. Samples were examined with X-ray and 

ultrasound, but information with these techniques were not adequate. Figure 18 shows 

sample with bonded dummy chip and 19 shows the ultrasound image of the sample, 

implying  the that glue is not spread evenly, notice the air trapped under the chip made 

error in image (bright areas).  
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Figure 18. Glued sample Figure 19. Ultrasound image of the 

glued sample 

 

2.2.3. LTCC design 2 

For the next prototype a smaller masks was made for printing conductors on LTCC to 

minimize the material consumption and to optimize the manufacturing process. Two 

prints were made on 88x88 mm laser cut green sheets, also aligning holes for more 

precise laminating were made. Tape aligning before laminating was made 

mechanically with four aligning holes. Figure 20 shows the mechanical aligning plate 

and figure 21 shows principle of mechanical aligning. Again three layers of tape was 

used. Green sheets were glued together with ethanol after aligning to avoid movement 

of the tapes during further handling. 

 

 

 

 

 

Figure 20. Aligning of the green sheets 

before laminating, ethanol was injected 

with syringe to glue green sheets together. 

Figure 21. Principle of mechanical 

aligning. 

 

     Laminating was done in isostatic laminating system (PIC PACIFIC TINETICS 

CORPORATION MODEL 1L-4008), this device applies pressure in water providing 

stable laminating conditions compared to hydraulic vertical press. Temperature was 

70 °C, pressure 1400 psi and process time 10 minutes. Samples were put on vacuum 

packs before laminating to keep them dry. After lamination the samples were sintered 

as described earlier. 

    Next we used laser to cut samples apart and then cut hole for the chip. Improved 

dummy chips (450nm aluminum deposited on silicon wafer, daisy chain pattern) were 

manufactured on 4” silicon wafer and scribed by laser. These dummies had the same 
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size (3x3mm) as the real Cell Clinic chip. Figure 22 and 23 shows ready LTCC 

prototype and dummy chip. 

 

  
Figure 22. Two LTCC prototypes, laser 

was used to cut these. 

Figure 23. Dummy chip with aluminum 

daisy chain pattern. 

 

More samples were manufactured with different process parameters and it was noticed 

that anisotropic glue was not suitable for this application. The number of conductive 

particles trapped between the bond pad and the silver conductor was not sufficient. 

  The anisotropic conductive silver epoxy, Creative Materials 115-29, was determined 

to be unsuitable for this application. This epoxy had too few and big conductive silver 

particles which resulted in bad electrical connections with small connection pads. 

Figure 33 and 34 shows particle distribution after the bonding process and after the 

chip is ripped off.  Anisotropic glue would be beneficial because it can be screen 

printed on the sample with relatively imprecise alignment and underfill is not needed. 

Tests could preferably be performed with different loading of conductive particles and 

with bonding pad bumping/modification, but this is out of scope of this work because 

materials are hard to obtain. 

 

  
Figure 33. Conductor on LTCC without 

any conductive particles 

Figure 34. Conductor with some 

conductive particles, the probability to 

have particles on all pads is near zero. 
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2.2.4. Electrical connections using ICA 

Anisotropic glue was changed to isotropic adhesive EPO-TEK H20E-PFC (ICA). The 

process is the same but applying glue precisely onto bond pads is crucial to get good 

electrical connection. Otherwise electrical shortcuts or open circuit between pads are 

common. Silver epoxy was applied to the substrate by stamping technique. To get 

better adhesion and cover conductive epoxy from environment (moisture etc.,) 

underfill is needed. Figure 24 shows conductive epoxy process and the underfilling 

step.  

 

 
Figure 24. Flip chip process: stamping with conductive epoxy and underfill 

application. 

 

Stamp was manufactured from alumina (Al3O2) by laser patterning to form the desired 

structure. Different types of stamps were manufactured and tested.  

   To get even layer of adhesive on stamp silver epoxy was spread on an alumina plate 

with a cavity to make uniform layer of epoxy. Then this epoxy was picked up with the 

alumina stamp, and aligning was made with Finetech flip chip bonder, see figure 24.  

ICA was stamped on LTCC substrate and then FC bonder was used to align and bond 

the dummy chip. Also curing (175°C for 5 minutes) was done in the same process step. 

   The underfill (EPO-TEK 302-3M) was applied with needle tip and capillary action 

made the underfill to fill the space between chip and LTCC. The active area on the 

chip stayed clear because of the capillary phenomenon. The underfill was cured on a 

hot plate.  

   The best stamp had 80x120µm contours aligned to hit connection pads. Figure 25 

shows photograph taken with microscope of the used stamp.  Problem here was the 

size of the ICA bump, if it is too big shortcuts will appear and if the bump is too small 

epoxy won’t cure properly. Also the adhesion needs to be strong enough to withstand 

further handling. Good ICA bump diameter was 100 µm. Moreover FC bonding 

machine needs to be aligned correctly. Figure 26 shows failed stamping process and 

also good stamping print, microscope pictures has been taken after curing the ICA and 

removal of the chip.  
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Figure 25. 3 x 3 mm alumina stamp with 80 

x 120 x 50 µm contours. 

Figure 26. Top: ICA bumps too small at top 

corner and too big at lower part (electrical 

shorts), due to alignment error. 

Down: Good stamping print. 

 

2.2.5. Gold patterned dummy chips 

More samples with dummy chips were made but silver epoxy did not work sufficiently 

with aluminum pads of the dummy chips because aluminum oxidizes readily. This 

causes unreliable contact resistances and also weakens physical adhesion between the 

chip and printed silver conductors. For this reason dummies with gold conductors were 

manufactured by photolithography process and contact resistance descended to one 

tenth (10Ω  1Ω). Figure 26 shows scribed wafer and diced dummy chips.  

 

  
Figure 26. Left: Laser scribed wafer and right: separated dummy chips with 

gold pattern. 
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2.2.6. LTCC design 3. 

  After successful flip chip bonding of the gold patterned dummy chip the connector 

pins were glued on LTCC with instant glue and then silver conductive paint 

(Elctrolube) was used to make electrical connections. Then silver paint was sealed with 

epoxy. But this was not a good solution because the brittle LTCC substrate cracked 

when female connector was pressed down. The solution to this problem was replacing 

the connector pins with zero insertion force connector (ZIF). 

   ZIF connector had different pin pattern so new LTCC layout was designed with 

AutoCAD. This also enables to make four devices instead of two devices on one 

88x88mm substrate. Thickness was increased from three layers to four and top layer 

was used to cover conductive lines, thickness is 300µm and 400µm respectively. 

   Conductive silver epoxy was used, instead of silver paint, to make electrical 

connections to pins and everything was sealed with underfill. Figure 27 shows the top 

side and the bottom side of the device. 

 

  
Figure 27. Left: bottom side of the device Right: top side of the device. Package size 

is 55 x 20 x 11 mm. 

 

  Last stage was to glue cell well with underfill epoxy on top of the device to hold the 

cell growth medium. The cell well was made of capped tube by cutting it down. Figure 

28 shows ready package with cell well and ZIF connector. Figure 29 presents 

microscope pictures of the cross section of the sample cut from the far end of the hole, 

note that all electrical connections are buried in underfill. This sample had some 

alignment tuning errors with FC bonder and some misalignment can be seen. This was 

fixed on later samples.   
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Figure 28. Device attached to ZIF connector with cell well glued on top.  



 

 
Figure 29. Side view of the package taken with microscope, gap between the chip and LTCC is 20 µm (alignment error can be seen as the right 

side of the chip has bigger gap).



 

3. TESTING 
 

3.1. Resistance measurement 

Testing the performance and the reliability of the package was done by measuring DC 

resistance over dummy chip under different conditions. DC resistance measurement 

was used because it tells when the package fails and therefore the device is not working 

properly anymore. Also, it is relatively simple measurement. The testing conditions 

were the same as the Cell Clinc would encounter. Also testing between process steps 

were performed. Figure 30 shows the dummy chip pattern, this pattern is referred to 

as daisy chain. The resistance through these loops can be measured.  

 

 
Figure 30. Dummy chip layout “daisy chain”. 

 

   First measurement was done with after curing the conductive silver adhesive to 

ensure that electrical connection through all loops is established, then after applying 

and curing the underfill, and finally, after the connector has been attached to the device. 

  A testing PCB, for fast measurement of the resistance, was manufactured. This way 

the overall resistance through all loops can be measured simultaneously, this is also 

referred to as the two point method. Otherwise every loop needs to be measured one 

by one. If resistance changes over 20% in the test, it is considered as packaging failure. 

   A holder for PCB was also manufactured with the 3D printer from ABS plastic. 

Figure 31 shows the device connected to PCB with ABS holder.  

 

 
Figure 31. Package ready for testing, two testing pins to the side of the device. 
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3.2. Testing conditions 

Cell Clinic measurement conditions were used, incubator at 37 °C, 85 % humidity and 

5 % CO2. Cell growth medium was injected into the cell well and cells were grown on 

the chip. Then resistance was measured with multi-meter (Amprobe 5XP-A) for 

several days. If the package would have failed the resistance should have risen 

considerably.  

   In preliminary testing one package was first immersed in tap water for one day and 

after that one week in cell growth medium at 20°C during which the overall resistance 

stayed constant. Also biocompatibility of the used materials was confirmed before 

testing. BEAS2B cells were successfully grown on the surface of the package.  Figure 

32 shows that cells adhered and grew on chip as expected. 

 

 
Figure 32. BEAS2B cells on packaged dummy chip, size of the cells are 10 – 30 µm. 
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4. RESULTS  
 

Two samples were tested in cell growing conditions (incubator with 37 °C, 85 % 

humidity and 5 % CO2) and both had similar design. Two-point DC resistance 

measurement was used and the package was considered to fail if resistance changes 

over 20%.  

   Both samples survived from typical cell growing conditions, resistance 

measurements are presented on figures 35 and 36. There was some resistance change 

when the samples were placed in the incubator. This happens because the temperature 

increases from room temperature 21°C to 37°C.  The electrical resistance increases 

when temperature rises, and also when cell medium is added, and furthermore when 

cells are added. This increase in resistance happens because the package is taken out 

of the incubator during the cell adding procedure. Moreover multi-meter (Amprobe 

5XP-A) is not precise when measuring low resistances.  The maximum resistance 

change is 1.8 Ω and the overall change is 7.2%, which is below 20% that was 

considered package failure.  

 

 
Figure 35. Sample 1 DC resistance measurement. 

 

 
Figure 36. Sample 2 DC resistance measurement, notice less data points. 

21 °C

37 °C

Cell medium + 
serum added

Cells and 5% CO2

Cells washed off

25

25,5

26

26,5

27

0 20 40 60 80 100 120 140 160 180 200

R
e

si
st

an
ce

 (
Ω
)

Time (h)

Sample 1

21 °C

37 °C and Cell 
medium + serum 

added

Cells and 5% CO2

Cells washed off

25,4

25,5

25,6

25,7

25,8

25,9

26

26,1

26,2

0 20 40 60 80 100 120 140 160 180 200

R
e

si
st

an
ce

 (
Ω
)

Time (h)

Sample 2



 

 

38 

5. CONCLUSION 
 

In this work packaging method for lab-on-a-chip was presented, manufactured and the 

functionality was demonstrated. Developing new packaging methods for LOC 

applications are crucial in order for these devices to work properly and reach their full 

potential. In this work LTCC substrate was used with conductive/noncoductive 

epoxies for insulating and electrical contacts. Using epoxies also makes it possible to 

utilize other substrate materials such as plastic and glass, and furthermore, everything 

can be cured at a maximum temperature of 90°C. Moreover, a stamping process allows 

depositing ICA in cavities which is impossible with the screen printing process. Also 

biocompability of the used packaging was confirmed. 

   Limitation of this package is that it has many process steps, all thought they are quite 

simple. Furthermore, the stamping method requires careful calibration of the 

equipment for success. Also, the stamped fine pitch ICA dots are really small and 

mechanically fragile before applying the underfill epoxy. 

   Advantages include package robustness against harsh conditions when growing cells 

and that this packaging method can be easily modified for other lab on a chip 

applications.   

   Further work involves packaging of the real Cell Clinic sensor chip using the 

presented method and performing measurements with living cells. Moreover, 

migration of metals in the conducting leads will be studied, since this might cause short 

circuits between conductors when the chip is under load (influenced by electric fields). 

BGA module version of the package will also be investigated. Also microfluidic 

channels will be built from LTCC or PDMS (PDMS is under testing, figure 37 presents 

the design) on top of the device and maybe an integrated micro incubator around the 

device. Then Cell Clinic would be a really handheld device, which can be used in the 

field, for example for harmful mold spore detection in households. Also, other harmful 

toxins can be detected using different types of cells, since some cells are more sensitive 

to toxins. Figure 38 shows an artistic view of the Cell Clinic in a mini incubator. 

 

 
Figure 37. Package inside PDMS with integrated fluidic channels. 

 

 
Figure 38. Cell Clinic in mini incubator made by the 3D printer, size of incubator is 

12 x 12 x 11 cm.  
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