

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vili Seppänen

Open Source Version Control Software

Bachelor’s Thesis

Degree Programme in Computer Science and Engineering

March 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Oulu Repository - Jultika

https://core.ac.uk/display/71812726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Seppänen V. (2015) Open Source Version Control Software. University of Oulu,

Department of Computer Science and Engineering. Bachelor’s Thesis, 22 p.

ABSTRACT

The environment around open source version control software is very

opinionated and therefore it is hard to find unbiased comparison between

different open source version control software. This Bachelor’s thesis provides

background and covers the basics of version control systems. Thesis also

categorizes and differentiates the main types of version control systems, by

investigating the way they handle repositories and by categorizing them to

centralized and distributed. Finally, this thesis provides the unbiased technical

comparison of the selected open source version control software and a way to

map a suitable one for a software project. Comparison of technical details is

collected into tables for easy interpretation and the main differentiators are

explained more carefully. Mapping is achieved by pairing the major

characteristics of different software projects with the technical features of

version control systems and then with version control software that best

supports these specific features. Pairing of the software project and the version

control software is further refined with technical details that are not covered by

the needs of major characteristics of the software project. Selection of the open

source version control software is restricted to the four most popular ones.

Keywords: CVS, Subversion, Git, Mercurial

Seppänen V. (2015) Avoimen lähdekoodin versionhallintaohjemistot. Oulun

yliopisto, tietotekniikan osasto. Kandidaatintyö, 22 s.

TIIVISTELMÄ

Avoimen lähdekoodin versionhallintaohjelmistoista on vaikea löytää

puolueetonta vertailua, koska mielipiteet niiden ympärillä ovat hyvin

polarisoituneita. Tämä kandidaatintyö tarjoaa taustatietoa ja käy läpi

versionhallintajärjestelmien perusteet. Lisäksi tutkielma luokittelee ja erottaa

versionhallintajärjestelmien päätyypit tarkastelemalla järjestelmien tapaa

käyttää versionhallinnan varastoa ja kategorisoimalla järjestelmät sen mukaan

keskitettyihin ja hajautettuihin. Tämä kandidaatintyö esittää myös

puolueettoman teknisen vertailun yleisimmistä avoimen lähdekoodin

versionhallintaohjelmistoista ja tavan kartoittaa ohjelmistoprojektiin sopiva

versionhallintaohjelmisto. Tekninen vertailu on koottu taulukoiksi tulkinnan

helpottamiseksi. Lisäksi pääeroavaisuudet on käyty läpi tarkemmin. Sopivan

versionhallintaohjelmiston kartoittaminen ohjelmistoprojektiin on toteutettu

yhdistämällä ohjelmistoprojektien tunnusomaiset piirteet

versionhallintajärjestelmien ominaisuuksiin ja tämän jälkeen valitsemalla

versionhallintaohjelmisto, joka toteuttaa kyseiset ominaisuudet. Tämän lisäksi

versionhallintaohjelmiston valintaa tarkennetaan ottamalla huomioon ne

tekniset eroavaisuudet, jotka eivät tule esiin tarkasteltaessa ohjelmistoprojektin

tunnusomaisia piirteitä. Avoimen lähdekoodin versionhallintaohjelmistoista

mukaan on valittu vain neljä käytetyintä.

Avainsanat: CVS, Subversion, Git, Mercurial

TABLE OF CONTENTS

ABSTRACT ... 2

TIIVISTELMÄ ... 3

TABLE OF CONTENTS ... 4

FOREWORD.. 5

ABBREVIATIONS .. 6

1. INTRODUCTION .. 7

2. VERSION CONTROL SYSTEMS .. 8

2.1. Background .. 8

2.2. Main types of version control systems ... 8

3. VERSION CONTROL SOFTWARE .. 12

3.1. Repository operations ... 12

3.2. Technical Status and Interfaces .. 14

4. PROJECT DEMANDS FOR VERSION CONTROL SYSTEM 16

4.1. Open and closed source projects .. 16

4.2. Local and multisite projects ... 17

4.3. Small, medium and large amount of code .. 17

4.4. Number of developers .. 17

4.5. Platform support ... 18

5. MAPPING SUITABLE VERSION CONTROL SOFTWARE 19

6. CONCLUSION .. 21

7. REFERENCES ... 22

FOREWORD

The subject and the aim of this thesis are heavily inspired by my personal work

history. While working as build manager in various projects I noticed that the

selection of the version control software was often an afterthought or not thought at

all. The version control system selected was usually the same that was used before,

with no other fact to back up the selection. My personal opinion is that, careful

selection of the version control software, backed up with technical facts, can have a

positive effect in any project. I hope that this thesis encourages and helps to do so.

The aim of this Bachelor’s thesis is to provide background and cover the basics of

version control systems. Aim is also to categorize and differentiate the main types of

version control systems, provide unbiased technical comparison of major open

source version control software and at the end provide a way to map a suitable open

source version control software for a software project. Aim is not to go through every

technical detail, but to select the ones that can be compared and the ones that create

the greatest differences between version control software.

I would like to thank my supervisor Dr. Tech. Acting Professor Jari Hannuksela

(University of Oulu, Department of Computer Science and Engineering) for support,

advice and feedback during the project.

Oulu, 24.3.2015

Vili Seppänen

ABBREVIATIONS

CVS Concurrent Versions System

1. INTRODUCTION

Not so long ago there was only one major player in the open source version control

software field and that was CVS (Concurrent Versions System). CVS started its life

as a bunch of shell scripts in 1986 and evolved from that to be the de facto open

source version control software with barely any competition until the rise of

Subversion in the mid-2000s. Subversion began growing its user base and surpassed

CVS. New de facto open source version control software was born. Again, there was

no real competitor to challenge Subversion in quite a while. It was not until 2005,

with announcement of Git and Mercurial, when Subversion met its major

competitors.

Probably because of these long reigns of CVS and Subversion, they have grown

large amount of devoted supporters. Git and Mercurial have grown their own

supporter base through big open source projects. Large supporter bases and

competing software usually lead to quite polarized atmosphere, but with CVS,

Subversion, Git and Mercurial it does not end there. From the start, Git and

Mercurial were created as competitors, to be the next Linux kernel version control

system, Git winning at the end. This obviously created friction between Git and

Mercurial camp. Another factor that has created discord in the open source version

control scene, is not so praising comments about CVS and Subversion by Git creator

Linus Torvalds [1]. This all adds up to a very opinionated environment where it is

hard to find unbiased comparison between different open source version control

software.

The aim of this Bachelor’s thesis is to provide background and cover the basics of

version control systems. The goal is also to categorize and differentiate the main

types of version control systems, provide the unbiased technical comparison of major

open source version control software and at the end provide a way to map a suitable

open source version control software for a software project. The aim is not to go

through every technical detail, but to select the ones that can be compared and the

ones that create the greatest differences between version control software. Selection

of the open source version control software is restricted to the four most popular

ones.

8

2. VERSION CONTROL SYSTEMS

2.1. Background

In its simplest form, a version control system provides a basic principle and method

of storing files and changes done to them. This is achieved by using a repository. The

repository contains the most recent version of each file and the change history that

has led to that representation. Usually every change includes additional information

such as the author and short description.

This all enables the version controls system to provide its most important features.

It helps each contributor to understand the evolution to the current state of the

software. It helps each contributor to understand the solutions selected. In addition, it

states the author of each change. History tracking also enables to re-create earlier

states of the software by removing the changes done after the wanted state. One more

important feature is that the version control system provides a way for multiple

contributors to work on the same project or even on the same file at the same time in

organized manner [2]. The approach how this is done is the main differentiator

between version control system types.

2.2. Main types of version control systems

Version control systems can be divided into centralized and distributed version

control systems by studying the way they handle repositories and sharing of changes

between contributors.

A centralized version control system relies in one central master repository.

Development is done against checkouts taken from the master repository. Checkout

is a copy of files of the situation of master repository at the moment checkout is

created [3]. After checkout is created, it can be updated to receive the latest changes

from the master repository [4]. Contributors create changes against the checkout and

after the change is complete, it is committed. When change is committed, it is

uploaded to the master repository and if it does not conflict with other changes in

master repository, it is accepted in [2]. Other contributors receive the change from

the master repository when they update their checkout. This workflow is presented in

Fig. 1 [5].

9

Figure 1. Centralized Workflow.

Because centralized version control systems rely on one repository that contains

the correct state of the project, it is common practice restrict write accesses so that

only trusted contributors are allowed to commit changes [3, 5]. This is not usually a

problem in commercial development where all of the developers can be considered

trusted, but can lead more difficult ways of sharing solutions in open source

development where you cannot consider everybody a trusted contributor.

A distributed version control system does not require the central repository;

instead, each checkout is a repository by its own right, containing the files and

complete history. Each contributor commits changes in one’s local repository.

Change can then be shared by providing address and access to that repository for

other contributors so they can pull the changes they want to their own repositories or

even clone the whole repository for themselves [2]. Since every contributor owns

their own repository and everyone can choose what changes to pull from others,

there is no need for trusted committers and the quality of the change comes more

defining factor.

Version control systems provide the parallel evolution of software in form of

branches. In the centralized version control, it is common to have a main branch that

contains the current development. Other branches can be created, for example, to

maintain the old version of the software or to develop a new feature without risking

the main branch development. In new feature branches, the goal should still be to

merge it to the main branch once done [3].

In the distributed version control situation is quite different. Distributed version

control systems actually encourage creating a new branch for each change [2, 3].

Everybody has their own repository and therefore they own all of the branches in that

repository. Because of this, no one branch can be automatically considered to contain

the mainline situation of the content, like in the centralized version control. Similar

development lines are still needed. This is achieved by selecting principal branches.

For example, a developer group selects Lucy to maintain the main development

branch as the principal branch in the blessed repository that only she has write access

to. After this, Lucy is one that reviews suggested changes and selects changes to be

pulled from developers and merged to the main development branch. Other

developers can then pull the main development branch changes from blessed

repository. The same kind of selection process is done for all needed development

10

lines, selected persons are called integration managers [3, 5]. This is called the

integration manager workflow, presented in Fig. 2 [5].

Figure 2. Integration manager workflow.

For larger projects with hundreds of contributors and massive amount of changes,

it is not feasible for one person to handle reviewing and merging all of the changes to
the principal branch. The benevolent dictator workflow, presented in Fig. 3 [5],

addresses this problem. First, the project is divided into several parts and integration

manager is selected for each part. These integration managers are called lieutenants.

Lieutenants pull changes from developers, reviews and merge them in their own

repositories. Above all lieutenants is one more integration manager called benevolent

dictator. Benevolent dictator pulls changes from lieutenants’ repositories, reviews

and merges selected changes to the main development branch in blessed repository.

Other developers and lieutenants can then pull the main development branch changes

from the blessed repository [5].

Figure 3. Benevolent dictator workflow.

A distributed version control system can also be used in the centralized manner.

One or few central repositories are provided where all other repositories are cloned

from and contributors are allowed to push the finished changes to the central

repositories [2]. This kind of working is a challenge in respect of code correctness of

11

changes. For ensuring it, usually some kind of staging branches and more

complicated code review methods and tools are used.

In centralized version control, the code correctness of changes has to be ensured

by the professionalism of trusted contributors and by following quality terms agreed

by them. In distributed version control systems, the correctness of changes relies

heavily on the professionalism of the person responsible for each principal branch.

There are also differences between centralized and distributed version control in

respect of content stored. Differences come most obvious when binary files are

stored in version control. Version control systems use methods like storing only the

differences and compressing to keep history data as space saving as possible. These

methods work very well most of time, but not for binary files. Binary files do not

usually compress efficiently and differences between versions can be substantial.

This causes the storage space needed for history data to increase rapidly when large

binary files are stored in version control and modified often. This kind of overhead is

not a problem for centralized version control system since history data is only stored

in central master repository, but in distributed version control system the overhead is

paid in all of the local repositories [2].

Another thing where binary files do not perform well is merging. Essentially one

cannot take two binary files developed parallel to each other and merge them to get

one binary file with all of the changes. Development of binary file needs to be linear.

In centralized version control systems, this can be achieved by the lock system in the

central master repository that enables only one person at the time to edit each binary

file in given branch. In distributed version control systems, the linear development of

binary files has to be achieved by agreement between contributors, because the

distributed version control system cannot provide the lock system [2].

12

3. VERSION CONTROL SOFTWARE

The most popular open source version control software are CVS, Subversion, Git and

Mercurial. From these CVS and Subversion, represent centralized version control

systems. Git and Mercurial fall under distributed version control systems.

CVS or Concurrent Versions System is the oldest of the four and can be

considered as a baseline for open source version control software where all others are

compared. CVS provides the basic functions of version control software, but not

much more. Nevertheless, CVS is still popular in legacy projects because it is stable,

does the job and migrating to new version control software is no minor effort.

Subversion was created to be the successor of CVS, to improve its features and to

add much more, while staying as similar to CVS as possible. This helped Subversion

achieve firm place among version control software and to attract a substantial user

base. Currently, Subversion is the most popular centralized open source version

control software [6].

Git and Mercurial development started after the free offering of Bitkeeper, the

version control software used in Linux kernel development at the time, was

discontinued. Both projects had a similar aim, to offer distributed, free and

lightweight version control software to replace Bitkeeper, especially in Linux kernel

development. The Linux kernel project selected Git and doing so secured steady

foothold for it among open source version control software. Between Git and

Mercurial, Git is currently more popular. The offering of both is quite similar and

there is no clear agreement in which one is better. Git is widely considered more

powerful in advanced use, while Mercurial is considered easier to learn and to have

better Windows support.

3.1. Repository operations

Even when all of four selected version control software provides the basic functions

of a version control system and the respective characteristic of its centralized or

distributed nature, there are major differences between them. This can be clearly seen

if version control systems are compared in respect how advanced their repository

operations are. This comparison is presented in Table 1 [7].

13

Table 1. Version control software repository operations comparison.

Repository Operations CVS Subversion Git Mercurial

Atomic Commits No Yes Yes Yes

Files and Directories Moves or Renames No Yes Limited Yes

Intelligent Merging after Moves or Renames No No No Yes

File and Directory Copies No Yes No Yes

Remote Repository Replication No Yes, via tool Yes Yes

Propagating Changes to Parent Repositories No Yes, via tool Yes Yes

Repository Permissions Limited Yes Limited Limited

Changesets' Support No Yes Yes Yes

Tracking Line-wise File History Yes Yes Yes Yes

Atomic commits are very important for the stability of version control software.

CVS is the only one of the four not to support atomic commits. This means that CVS

repository can be left in inconsistent state if the commit operation is interrupted. Part

of change implemented and other parts not. Not supporting atomic commits can

cause serious problems if version control software is run in an unstable environment.

Moving and renaming of files and directories under version control is not the same

as in the normal file system, but the history of the changes has to be preserved. CVS

not supporting this causes projects using CVS to lose great deal of history data and

crippling the very essence of version control if renames or moves are frequent. From

the rest, Subversion and Mercurial support this feature and Git has only limited

support for renames. In Git, renames are not recorded as such but renamed files are

detected by the similarity of the file. This can cause problems if the object changes

significantly and it is renamed at the same time.

Intelligent merging after moves and renames is supported, if the system can

correctly merge changes done to the original object to the renamed or moved object.

For example, two branches are created, master branch and the bug fix branch. The

master branch includes change that renames the object and the bug fix branch

includes a change that modifies the content of the object. When the bug fix branch is

merged to the master branch, changes done to the object in the bug fix branch should

then be visible in the renamed object. If version control software does not support

this feature, in a project where renames are frequent and developers are not aware

that this feature is not supported, it can lead to a number of costly conflicts.

Like moving and renaming objects under version control, copying emphasis the

same factor, is the change history preserved? This is more of a nice to have feature

than one that leads to trouble. Copying files under version control can be found

useful if there is need to have two different files derived from one file in the same

branch. For example, two different compilation configuration files are needed, but

only with minor adjustments. In this case, it makes sense to make a copy of the

original file and make the needed adjustments to the copy. If file copying was

supported by version control software, both files would have full change history, but

if it was not supported, the copy has only the history of changes done after the copy

was created.

Ability for remote repository replication and propagating changes between

repositories is especially important in geographically divided projects. Distance in

physical world usually means bigger latency in network traffic and slower the

14

connection to the repository is more time it takes to make even the simplest

operations with the version control software. This can be solved by replicating the

local master repository for each production site and propagating changes between

them. This way the latency is only between replicated master repositories and does

not affect the user of the version control system. Naturally, this is not a problem with

distributed version control since all contributors have their own local repository and

can use version control regardless of network connection.

Defining different permission to different users to different parts of the repository

can sometimes be important. For example, project might contain parts of software

that only accredited developers should modify. In distributed version control, it is not

possible to restrict developers from doing and to committing changes to the restricted

parts of the software. The only way to restrict changes is not to include unwanted

changes in the principal branch, but this does not restrict developers from sharing

unofficial changes with each other. Even if this kind of sharing does not affect the

principal branch, it can lead to situations where other changes are dependent on

unofficially developed changes.

Changeset is a way to group number of modifications, which are relevant to each

other and modify a single or multiple files, to one atomic change. In Subversion, Git

and Mercurial changesets are created on each commit. In CVS, changes are file

specific and changesets are not supported. Changesets enable much easier way of

sharing complete solutions or fixes instead of sharing number of separate changes to

different files.

3.2. Technical Status and Interfaces

Considering technical status CVS, Subversion, Git and Mercurial are all at a good

level. The comparison of version control software technical status is presented in

Table 2 [7]. All four software are mature. Documentation is widely available and

extensive. Although Git documentation can be confusing at times. Mercurial excels

in the ease of deployment, providing binary packages for all popular platforms. CVS

and Git come near behind, Git needing some extra work when used with Windows.

Subversion is not as simple to install, server side requires additional installation of its

own proprietary server or the Apache 2 module.

Table 2. Version control software technical status comparison.

Technical Status CVS Subversion Git Mercurial

Documentation Excellent Very good Good Very good

Ease of Deployment Good Moderate Good Excellent

Command Set Good Good Excellent Good

Networking Support Good Very good Excellent Excellent

Platform support Good Excellent Good Excellent

The real difference in technical status can be found when investigating the

command set and platform support. Even though they all have good command sets,

15

Git goes further and provides a very feature rich command set. This is usually stated

as the tipping point in favor of Git.

Subversion and Mercurial support the most common operating systems

effortlessly. CVS also supports most platforms on the client side, but the server is

designed to run on UNIX derived operating systems. Git supports UNIX derived

platforms well, but need extra effort to run on Windows.

When using any software, interface is important. Comparison of interface

availability is presented in Table 3 [7]. CVS, Subversion, Git and Mercurial all

provide a command line interface. This is a very important feature considering

automation. In addition to this, there are web interfaces and normal graphical user

interfaces available for all four, included either in the basic installation or as an

additional package.

Table 3. Availability of version control software user interfaces.

User Interfaces CVS Subversion Git Mercurial

Availability of Web Interface Yes Yes Yes Yes

Availability of Graphical User-Interfaces Yes Yes Yes Yes

16

4. PROJECT DEMANDS FOR VERSION CONTROL SYSTEM

Version control systems are mostly used in software projects and characteristics of

software projects have much variance. Software projects can be open source

community projects, closed source commercial projects or something in between.

They vary from local projects where all developers work in the same physical space

to geographically divided multisite projects. Software projects can be small or large

in respect of developers and amount of code. Project developers can use variety of

operating systems, and tools used in project has to provide support for those, or the

project might dictate the supported operating systems. Naturally, this variation of

software projects also reflects to the requirements of version control systems and

therefore it is important to map the special needs of each major characteristic.

4.1. Open and closed source projects

The key for a successful open source project is building up a community. This sets

certain demands for the version control system. The version control system should be

easy to learn, so it would not discourage anyone from participating. Sharing and

developing the solutions and bug fixes together is essential, therefore sharing code

changes should be effortless [8]. On the other hand, no one except the project owner

and separately selected people can be considered as trusted developers and granted

full access to the master copy of the project. The version control system should be

able to handle this restriction without sacrificing other usability.

Ease of sharing clearly points towards distributed version control systems. From

distributed version control software, more gently sloping learning curve favors

Mercurial. Restricting access is easy with centralized version control systems and

with distributed version control systems the master copy can be protected by using

principal branches. Considering these facts, it can be said that Mercurial provides

very good support for the characteristics of open source software project, Git good

support and Subversion and CVS moderate.

Closed source projects are different. Only selected developers are allowed to

participate in the project. These selected developers are trusted with access to the

master copy of the project and expected to create quality changes. An easily

approachable version control system and effortless sharing is nice to have features,

but not specially demanded by the nature of closed source development. Overall,

there are no special demands for version control software, derived from the nature of

closed source software project. Therefore, CVS, Subversion, Git and Mercurial can

be considered to provide very good compatibility with the characteristic demands of

closed source project.

17

4.2. Local and multisite projects

When considering the demands for a version control system in respect of local and

multisite software projects the situation is quite similar to comparing closed and open

source development. Local software projects do not enforce any special needs for

version control software. Multisite projects either need fast and reliable connections

to the central repository or good support for repository replication.

Support for repository replication rules out CVS and while Subversion supports

replications via separate tool it is not at the same level of comfort as with Git and

Mercurial. This leads to conclusion that, CVS, Subversion, Git and Mercurial

provide very good support for the characteristic needs of local software project. Git

and Mercurial provide very good support for the characteristics of multisite project,

Subversion moderate and CVS poor.

4.3. Small, medium and large amount of code

If it is known from the start, that the project is going to be small in respect of the

amount of code, the ease of deployment is essential. For example, if the intention is

to maintain a set of small scripts, it is an overshoot to set up a central master

repository and run server software to provide access to it. It makes more sense to

have a local repository that is easily shared if necessary. The minimal setup and ease

of sharing favors distributed systems. From medium to large projects, all version

control systems are usable.

Git and Mercurial are distributed version control software and can be considered to

offer very good support for the small project characteristics. CVS and Subversion are

centralized version control software, require client server setup, and therefore offer

only moderate support for the characteristics of projects with small amount of code.

CVS, Subversion, Git and Mercurial all suits projects with medium to large amount

of code well, so the compatibility with those kinds of projects can be considered very

good.

4.4. Number of developers

In projects with few developers, the situation is like in projects with a small amount

of code. It is unnecessarily time consuming to setup the central master repository

when sufficient version control system can be achieved with distributed version

control using local repositories and sharing changes between them. From that, we

can conclude that Git and Mercurial provide very good support and CVS and

Subversion only moderate support for the characteristics of project with few

developers.

18

In projects with large numbers of developers, the amount of network traffic and

server load, caused by developers using the version control system can grow to be

substantial. Using the distributed version control system and local repositories

reduces the network traffic and the server load to minimum, because most of the

version control actions are handled locally. Therefore, it can be said that Git and

Mercurial compatibility with the characteristics of project with large amount of

developers is very good while CVS and Subversion are only moderate compatible.

4.5. Platform support

Wide platform support is essential requirement for version control software, if it

cannot be dictated, what operating system all involved developers should use. In

centralized systems, server side support and client side support has to be considered

separately. Subversion has better server platform support than CVS, which does not

really support Windows on the server side. CVS and Subversion both, have good

platform support on the client side. From distributed version control software,

Mercurial has better Windows support than Git, while both support UNIX derived

platforms well. Therefore, Subversion and Mercurial platform support can be

considered very good, while the lack of real Windows support drops CVS and Git

platform support from very good to good.

19

5. MAPPING SUITABLE VERSION CONTROL SOFTWARE

When mapping the version control software that suits the needs of the specific

project, the easiest way is to start by defining major characteristics of the project. For

example, the project is a large open source project with plenty of developers, all

using Linux, located in various countries. Then by using Table 4, derived from the

project demand analysis and showing the comparison of version control software

towards project characteristics, it is easy to rate different software in order. In this

case, Mercurial would be the best choice, Git coming second then Subversion and

CVS.

Table 4. Version control software compatibility comparison.

Project characteristic CVS Subversion Git Mercurial

Open source project Moderate Moderate Good Very Good

Closed source project Very Good Very Good Very Good Very Good

Local project Very Good Very Good Very Good Very Good

Multisite project Poor Moderate Very Good Very Good

Small project Moderate Moderate Very Good Very Good

Medium/Big project Very Good Very Good Very Good Very Good

Few developers Moderate Moderate Very Good Very Good

Plenty of developers Moderate Moderate Very Good Very Good

Platform support Good Very Good Good Very Good

Mercurial clearly stands out in Table 4 with very good support for all major

characteristics. Actually, just by looking at Table 4, Mercurial seems like an obvious

choice for any project. However, individual projects might have technical needs that

can justify selecting version control software that does not have as high marks in

compatibility comparison. Technical differences not considered in compatibility

comparison presented in Table 5 [7].

Table 5. Technical differences of version control software.

Feature CVS Subversion Git Mercurial

Atomic Commits No Yes Yes Yes

Files and Directories Moves or Renames No Yes Limited Yes

Intelligent Merging after Moves or Renames No No No Yes

File and Directory Copies No Yes No Yes

Repository Permissions Limited Yes Limited Limited

Changesets' Support No Yes Yes Yes

Documentation Excellent Very good Good Very good

Command Set Good Good Excellent Good

Mapping the most suitable version control system using Tables 4 and 5 can be

achieved by first rating different version control software in order by using Table 4.

Table 5 can then be used to rule out version control software or to change the order

of them. In earlier example, we got from top to bottom order, Mercurial, Git,

20

Subversion and CVS in the last place. Let us say that a project environment is such

that atomic commit support is needed and we want to emphasize a feature rich

command set. Atomic commit requirement, rules out CVS and feature rich command

set moves Git before Mercurial, the order now being Git, Mercurial, and Subversion

at the last place.

In addition to the factors covered by using Table 4 and 5, it is advised to further

analyze the project for other factors that can influence the matching of the software

project with optimal version control software. These factors can be related, for

example, to the project personnel, the content that is going to be stored in version

control, availability and cost of needed hardware. Defining factor being that

outcome, when paired with any of the version control software, cannot be defined as

good or bad, but have to be evaluated case by case. One good example is binary files.

If the software contains numerous binary files and those are going to change a lot, it

leads the history data of the repository to crow quite large. When using centralized

version control, this overhead is paid only once but with distributed version control,

it is paid in every local repository. This might or might not be an issue depending on

the hardware the project has available.

21

6. CONCLUSION

This Bachelor thesis provides background information on version control systems

and goes through the basic concepts. This was achieved with brief introduction in

Chapter 2 and by deepening the understanding when new item was introduced. The

second goal was to differentiate and categorize the main version control system

types. This was done by investigating the way the version control systems handle

repositories and by categorizing the version control systems into centralized and

distributed version control systems. Third goal was to provide unbiased technical

comparison of the four most popular open source version control software. To

achieve this, comparable technical details were collected into tables for easy

comparison and the main differentiators explained more carefully. Fourth goal was to

provide a way to map a suitable open source version control software for a software

project. This was achieved by defining the major characteristics of different software

projects. Then the needs of each characteristic was paired with the technical features

of the version control system and the version control software that best supports

these specific features. Project characteristics and the level of version control

software support was then paired and collected into table that can be used rate

version control software by a project definition. Second table was collected from

version control technical details that are not covered by the needs of projects major

characteristics, but has to be considered case by case. The open source version

control software suitable for specified project can then be derived by using these two

tables. Considering all defined goals were met, this thesis can be seen successful.

Although, for finding the optimal open source version control software for a software

project, additional research might be needed.

From the technical comparison of the four most popular open source version

control software, it can be seen, that CVS is no more up to bar with the others. In

hindsight, one could argue that CVS could have been left out and replaced with more

modern version control software. On the other hand, including CVS in comparison

that clearly states its shortcomings compared with the other options might encourage

CVS users to migrate to use something more modern and powerful.

For future work, interesting aspect would be to find out why Git is more popular

than Mercurial, while the version control software technical comparison and the

compatibility comparison presented in this thesis suggest that Mercurial is more

optimal choice for most projects. Is the popularity of Git only because of its position

as the version control software used in Linux kernel development or is it there

technical superiority that favors Git? Future work could also extend the comparison

to include more version control software or closer examination of software projects

to find out more characteristics and needs that software projects impose on version

control software. This could be done by examining actual software projects.

22

7. REFERENCES

[1] LinusTalk200705Transcript. URL:

https://git.wiki.kernel.org/index.php/LinusTalk200705Transcript. Accessed

19.3.2015

[2] O’Sullivan B (2009) Making sense of revision-control systems.

Communications of the ACM 52(9): 56-62. DOI:

10.1145/1562164.1562183

[3] De Alwis B & Sillito J (2009) Why are software projects moving from

centralized to decentralized version control systems? Proc. 2009 ICSE

Workshop on Cooperative and Human Aspects on Software Engineering,

CHASE 2009. Vancouver, Canada, 36-39

[4] Spinellis D (2005) Version Control Systems. IEEE Software 22(5): 108-

109.

[5] Chacon S & Straub B (2014) Pro Git (Second Edition). Apress.

[6] Louridas P (2006) Version Control. IEEE Software vol. 23(1): 104-107.

[7] Better SCM Initiative (2012) Version Control System Comparison. URL:

http://better-scm.shlomifish.org/comparison/comparison.html. Accessed

10.3.2015

[8] Rodriguez-Bustos C & Aponte J (2012) How Distributed Version Control

Systems Impact Open Source Software Projects. Proc. 2012 9th IEEE

Working Conference on Mining Software Repositories (MSR). Zurich,

Switzerland, 36-39

