
Submitted for publication in Baltic Journal of Modern Computing (BJMC), 5-Oct-2016 1

A Systematic Review of SQL-on-Hadoop by Using

Compact Data Formats

Daiga Plase

Faculty of Computing

University of Latvia, Riga, Latvia

Daiga.Plase@gmail.com

Abstract — There are massive amounts of data generated

from IoT, online transactions, click streams, emails, logs, posts,

social networking interactions, sensors, mobile phones, their

applications etc. The question is where and how to store these

data in order to provide faster data access. Understanding and

handling Big Data is a big challenge. The research direction in

Big Data projects using Hadoop Technology, MapReduce kind of

framework and compact data formats such as RCFile,

SequenceFile, ORC, Avro, Parquet shows that only two data

formats (Avro and Parquet) support schema evolution and

compression in order to utilize less storage space. In this paper, a

systematic review of SQL-on-Hadoop by using compact data

formats (Avro and Parquet) has been performed over the past six

years (2010–2015). With the help of search strategy followed, 94

research papers have been identified out of which 17 have been

analyzed as relevant papers. This work outlines the usage of Avro

or Parquet data format using publications of conference

proceedings, journals and magazines of IEEEXplore, ACM

Digital Library and ScienceDirect. At the end of the review, the

conclusion has been made that direct comparison by compactness

and fastness between Avro and Parquet do not exist in data

science.

Keywords – Systematic review, Big Data, Hadoop, HDFS, Avro,

Parquet.

I. INTRODUCTION

The amount of data captured by social media, the Internet
of Things, enterprises and different types of applications is
growing exponentially. There are huge volumes of raw data
every day, but these data do not yield much information until
processed. As a result of processing, raw data sometimes ends
up in a database, which enables the data to become accessible
for further processing and analysis in a number of different
ways.

Towards distributed and real-time processing of large data
sets – the so-called Big Data – the traditional computing
techniques are becoming insufficient [6], [11], [23], [32].
Hadoop is one of the most common open source Big Data
frameworks in the industry today, capable of carrying out
common Big Data related tasks. There is growing business
demand for Hadoop technology usage in Big Data analysis
(storage, biological data, road, traffic, travel and tourism,
telecommunication, enterprise data, citizens’ info) [21]. In
addition, Hadoop technology is becoming popular in such areas

as cloud computing, internet data management (storage, load
balancing), implementing MapReduce algorithms for providing
solutions to various problems of handling large amount of data,
in proposing new models by using HDFS [23].

Often raw data are stored in specific text formats, for
instance: JSON, CSV, XML, etc. These formats allow data to
be structured and available for humans to read and edit them in
most convenient manner. However, storing raw data in a plain
text has a significant drawback – there is a disk space needed to
store such files. But for Big Data cluster powered by Hadoop it
is even a bigger problem because of the high replication factor
of each data block within Hadoop File System – HDFS. For
instance, recommended HDFS replication factor is 3. That
means each raw data block will be replicated 3 times across
data nodes. Thus it is crucial to select appropriate data format
that enables HDFS storage space utilization in a more efficient
manner according to the task defined. Secondly, data storage
format may impact the speed of data processing with Hadoop
tools, like Hive. Several binary data storage formats exist.
Some of them are RCFile, ORC, Avro, Parquet. These formats
are designed for systems that use MapReduce kinds of
framework. It is a structure that is a systematic combination of
multiple components including data storage format, data
compression, and optimization techniques for data reading.

This article investigates the research direction in Big Data
projects using Hadoop Technology, MapReduce kind of
framework and compact data formats such as Avro and Parquet
and answers the research questions what are known about the
differences in performance (query execution time) between
compact data formats Avro and Parquet and which data format
(Avro or Parquet) is more compact?

It is performed as a small-scale literature review. However,
it can be considered as a complete systematic literature review
within the scope of this article, for instance, the chosen search
strategy and the selected time period.

The systematic review is carried out by identification of

research, selection of studies by various authors, deciding upon

the inclusion and exclusion criteria and analyzing the amount

of publications done in this domain during the time period of

year 2010 to 2015. This paper limits its scope to publications

done in IEEE Digital Library (IEEE Xplore), ACM Digital

Library and ScienceDirect.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-resource repository of the University of Latvia

https://core.ac.uk/display/71812377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Daiga.Plase@gmail.com

Submitted for publication in Baltic Journal of Modern Computing (BJMC), 5-Oct-2016 2

II. BACKGROUND

The Hadoop Technology is commonly being used to

manage Big Data projects. Hadoop is now the de facto standard

for storing and processing big data, not only for unstructured

data but also for some structured data [7]. The Hadoop

Distributed File System (HDFS) is designed to reliably store

very large data sets, and to stream those data sets at high

bandwidth to user applications [24]. As a result, providing SQL

analysis functionality to the big data resided in HDFS becomes

more and more important. Hive is a pioneer system that

supports SQL-like analysis to the data in HDFS [7]. This

review focuses not only on Hive. Other SQL-on-Hadoop

systems such as HortonWorks Stinger or Cloudera Impala are

acceptable too, if tests and comparisons of the performance are

based on queries selected or derived from world-renowned

benchmarks like TPC-H or TPC-DS.

There is another sphere of binary data storage format

utilization on direct data sources. For instance, service data

gathering from mobile phones to get specific insights of

people’s behavior or in order to create other kind of location

intelligence reports. Assuming that a GPS data packet

(timestamp, longitude and latitude) is 100 bytes on average and

that the smartphone generates it every 8 seconds, quick math

calculations result in 0.043 MB/h, 1.03 MB/day and

376 MB/year. In 2014 over 1.2 billion smartphones were sold
1
.

If 1 billion devices produce a GPS data packet every 8 seconds,

it results in 1 PB/day. This means that we need ~1000 disk

drives with size 1TB in order to store these data. The volume

of data is enormous. The question is where and how to store

these data in order to provide database for faster execution of

data queries. This is the main rationale for this review.

The data storage formats mentioned in Introduction section

have some advantages and disadvantages. As shown in Table

1, only Avro and Parquet data formats support both important

advantages: schema evolution and compression.

TABLE 1. COMPARISON OF DATA FILE FORMATS

File format Schema integration Compression support

Text/CSV
2
 - -

JSON
3
 + -

Avro
4
 + +

SequenceFile
5
 - +

RCFile [13] - +

ORC file
6
 - +

Parquet [19] + +

Avro [2] is a row-based storage format, also described as a

data serialization system similar to Java Serialization. Avro

provides rich data structures, a compact, fast, binary data

1 http://www.gartner.com/newsroom/id/2996817
2 CSV files, https://tools.ietf.org/html/rfc4180
3 JSON specification, https://tools.ietf.org/html/rfc7159
4 Avro specification, http://avro.apache.org/docs/current/spec.html
5 https://wiki.apache.org/hadoop/SequenceFile
6 https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

format, a container file to store persistent data, remote

procedure call (RPC) features. There is not required code

generation to read or write data files, or to use or implement

RPC protocols. Alternative systems include Java Serialization,

Thrift [3] and Protocol Buffers [22] that only work with

compile time code generation. Furthermore, Avro can provide

more optimized runtime performance [18].

Avro relies on schemas. A schema defines the structure of

the data and is used in data reading and writing process. The

data schema is defined with JSON and stored into Avro file

during data writing process. When Avro data are read, the

schema used when writing are always present. This allows

data to be written with no per-value over-heads.

Avro is used to save many small files in a single Avro file

in HDFS to reduce the namenode memory usage because of

user-defined patterns and specific data encoded into binary

sequence and stored into a large containing file [33].

Parquet [19] is a column-based storage format, optimized

for work with multi column datasets. Parquet use cases

typically involve working with a subset of those columns

rather than entire records. One of the most-often cited

advantages of columnar data organizations is data

compression [27] and reduced disk I/O [1] that improves

performance of analytical queries [10]. Data compression

algorithms perform better on data with low information

entropy (high data value locality). Thus the system achieves

the I/O performance benefits of compression without paying

the CPU cost of decompression [1]. The layout of Parquet data

files is optimized for queries that process large volumes of

data.

Information stated ahead is known part of compact data

formats, such as Avro and Parquet. Thus, Avro and Parquet

choice for the deeper investigation is based on the necessity to

investigate these formats by using various queries (scan,

aggregation and join) from a world-renowned benchmark like

TPC-H and prove the assumption that Avro supported row-

oriented data access should provide better performance on

scan queries, e.g., when all columns are of interest for the

processing, but Parquet format as a counterpart should provide

better performance on column-oriented queries, e.g. when

only a specific set of those is selected.

Considering that short background information (the

rationale for the survey) is given in this and introduction

section, the next section of the paper includes literature

review. Section III discusses the research methodology used to

extract the relevant data for systematic review. Section IV

comprises the result set, followed by the conclusion in Section

V.

http://www.gartner.com/newsroom/id/2996817
https://tools.ietf.org/html/rfc4180
https://tools.ietf.org/html/rfc7159
http://avro.apache.org/docs/current/spec.html
https://wiki.apache.org/hadoop/SequenceFile
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

Submitted for publication in Baltic Journal of Modern Computing (BJMC), 5-Oct-2016 3

III. RESEARCH METHODOLOGY

This study has been undertaken as a systematic literature

review (SLR) based upon guidelines established for the

Software Engineering domain [15]. In this section, the

protocol used in the SLR has been provided, the research

question and its components have been specified, and the

requirements regarding the source and primary study

selection, the evidence collection and the method of synthesis

of such evidence have been established. The results regarding

each step are provided alongside the protocol, except

summary, which is addressed in Section 4.

In accordance with guidelines [15], the following steps
have been performed in order to conduct this research:

 Defining the objective and the research question that
the review is intended to answer.

 Defining the search strategy to be used to do primary
studies including looking for terms and resources to
be searched.

 Selection of primary studies: Individual studies
contributing to a systematic review are called primary
studies. The goal of this step is to find out numberless
primary studies related to the selected domain.

 Piloting the selection of criteria on a subset of
primary studies in order to determine which studies
are relevant or which should be excluded from a
systematic review. There are several
inclusion/exclusion criteria to be considered:

o relevance of the topic;

o relevance of the subjects;

o context;

o publication venue [25].

In addition, it is important to develop a quality
checklist in order to assess the individual studies.

 Assessment of quality. In order to evaluate the
quality of the collected data, it is necessary to
determine the strength of each individual research
paper and give more detailed inclusion/exclusion
criteria. Previously developed and filled in quality
checklist can help to assess the quality of each
individual research paper.

 Extraction of relevant data. It is important to define
how the information required from each primary
study could be obtained.

 Data synthesis. It is necessary to extract data from the
primary studies in order to answer the research
question, tabulate data in a consistent manner and
determine whether the formulated results from the
extracted data are consistent with each other or not.

A. Objective and research questions

In context of the information given in Introduction and
Background section of this article, it is crucial to select an
appropriate data format that reduces HDFS storage space and
improves the speed of data processing with Hadoop tools, like
Hive. The objective of this work is to perform systematic
literature review in order to answer the research question:

RQ.1: What are the differences in performance (query

execution time) between compact data formats Avro and

Parquet?

RQ.2: Which data format (Avro or Parquet) is more

compact?

B. Search strategy

To answer the research question, the search strategy has
been defined and an extensive search for research papers has
been conducted. During data retrieval, the boundaries of the
systematic review have been set. The search strategy includes
definition of the search scope by research keywords, search
strings and sources.

Research keywords have been chosen based on the
research question. The synonyms to the keywords have not
been considered because the term like “Hadoop” is unique
general term that can only be supplemented with related terms
such as “Big data”, “HDFS”, “MapReduce”, “Hive” or
specific data formats, like “RCFile”, “SequenceFile”, “ORC”,
“Avro”, “Parquet” etc. The term “Hadoop” has been
predefined based on the names defined by the Hadoop
developers in the Apache Hadoop website

7
. The final search

string has been based on the experience from the pilot
searches starting from a broadest search by the term “Hadoop”
when IEEEXplore Digital Library’s Full Text & Metadata
search results in 6,348 articles, and ending by a narrow search
by the term “RCFile” when only 4 results have been returned.
Sometimes search strings have to be adapted according to the
specific needs of digital libraries, but it is not necessary in this
case. The search string used to obtain the initial results of this
review consists of a Boolean expression:

((Hadoop OR HDFS) AND (Avro OR Parquet))

The operator OR has been used in Boolean expression in
order to extend the list of results and retrieve more articles
where Avro or Parquet data format is mentioned
independently from each other. The same approach has been
applied for terms Hadoop and HDFS, because in the context of
data compactness and storage some authors, for instance [33],
are using the term HDFS instead of Hadoop.

The criteria used to select sources of studies have been
defined as follows:

 Must have web search mechanism;

 Search mechanisms must allow customized searches
by title and abstract (preferable – full text);

7
 http://hadoop.apache.org

http://hadoop.apache.org/

Submitted for publication in Baltic Journal of Modern Computing (BJMC), 5-Oct-2016 4

 Must support the search using Boolean expressions;

 The abstract of paper should be available for free.
The abstract unavailability is the main reason why
Springer Link has not been chosen as acceptable
source during the first step (selection of primary
studies).

 Full articles must be available for download using
available contracts between University of Latvia and
the digital library. Google Scholar can also be
acceptable;

 The digital libraries should index papers on the Big
Data topic written in English. Thus, the search
strategy limits the search to the papers written in
English.

With the search string defined, the following digital
libraries have been chosen as sources:

 IEEEXplore Digital Library

 ACM Digital Library

 ScienceDirect

There are two additional search criteria: items and the
publication period. The searched items are limited to Journal
articles and conference papers, but the publication period is set
from year 2010 till 2015 including, in order to cover six years
when the most active time of the Hadoop development
was [21].

C. Selection of primary studies

The search query presented in Section B has been used to
retrieve the candidate articles from the digital library systems
in the time period of 2010-2015. As shown in Fig. 1, the first
initial step is based on it.

Search in digital libraries results in total 94 candidate
papers: 78 from IEEE, only 1 from ACM, and 15 from
ScienceDirect. As shown in Table 2 and Fig. 3, Hadoop
Technology has drawn interest of researchers in the past six
years. We can clearly see from Fig. 3 that the number of
publications of research papers has increased exponentially
from the year 2010 to 2015.

TABLE 2. SEARCH RESULTS

Year
Digital Library

Total
IEEE ACM ScienceDirect

2010 1 1 2

2011 1 1 2

2012 7 7

2013 10 2 12

2014 21 1 5 27

2015 38 6 44

Total 78 1 15 94

N=94

Step 1

Execute the search query in all the
sources, gathering the results

N=84

Step 2

Exclude duplicating and irrelevant
papers by reviewing the title, keywords

and abstract of each paper

N=27

Step 3

Exclude irrelevant papers by analyzing
the introduction and conclusions

N=17

Step 4

Exclude irrelevant papers by reading
and analyzing the full text

Fig. 1. Article selection process

In the first step, the search results from all digital libraries
have been gathered by using citations download or export
function. Thus, search results have been obtained in CSV or
other delimiter separated format and imported in Excel.
Subsequently, the results from all 3 digital libraries have to be
summarized in one format sheet where common data fields
have been defined. All the relevant studies used for this review
are presented in Excel, available at Dropbox

8
. Several

parameters have been defined for future analysis and
documented for each retrieved article in the summary sheet:

 Document Title

 Authors

 Year

 Abstract

 URL

 Link to PDF

 Keywords

 Article Citation Count

8

https://www.dropbox.com/sh/6o4q8kadqfogusm/AACn43bb2

QFTLbBfsFThMFd1a?dl=0

https://www.dropbox.com/sh/6o4q8kadqfogusm/AACn43bb2QFTLbBfsFThMFd1a?dl=0
https://www.dropbox.com/sh/6o4q8kadqfogusm/AACn43bb2QFTLbBfsFThMFd1a?dl=0

Submitted for publication in Baltic Journal of Modern Computing (BJMC), 5-Oct-2016 5

 Patent Citation Count

 Reference Count

 Source (IEEE, ACM or ScienceDirect)

 Number of pages

 Journal Name if Journal article

 Country

In the second step, Excel macro functionality has been
developed in order to perform faster screening and abstract
text zooming from delimiter separated metadata. Then, the
title, keywords and abstract of all papers have been reviewed.
As a result, only 84 papers have been left as relevant. Two
from 10 skipped papers have been recognized as irrelevant
because the term “Parquet” has been used in the context of
wood, but the search by term “HDFS” has not been performed
precisely, e.g., it has been applied to HDF surface and letter
“S” has been ignored in ScienceDirect search. Although
presented in different conferences, other two papers ([29] and
[30]) have been recognized as very similar and devoted to
NoSQL topic.

In the third step, all remaining 84 papers have to be

analyzed individually to confirm the relevance in the context

of the review. To select or discard papers, inclusion and

exclusion criteria have been defined as follows. The abstract,

introduction and conclusions of the paper should have

something about such topics as storage space utilization,

HIVE, SQL, HDFS, data formats (Avro or Parquet),

compactness measurements, performance measurement,

queries. The checklist regarding these selection criteria has

been developed by supplementing previously created Excel.

Information about the publication venue (country) has been

analyzed in this step as well.

In the fourth step, a full text reading has been performed

for the remaining 27 articles. The quality checklist has been

created and filled in this step. The full text of articles has been

found by using Google Scholar.

D. The assessment of relevance and data synthesis

Table 2 and Fig. 3 depict data synthesis from the year 2010

to 2015 respectively. It can be clearly seen that the number of

selected studies has increased in past six years. There are

2 studies in 2010, 2 in 2011, 7 in 2012, 12 in 2013, 27 in 2014,

and 44 in 2015. After applying the selection criteria, only 17

papers have been selected for data extraction and analysis:

1 study in 2013, 3 in 2014, 13 in 2015. The selection criteria

are based on the assessment of the quality performed with the

help of quality checklist. As shown in Table 3, the relevance

criteria are based on the research questions, e.g., is the article

about Avro, Parquet or both formats, provide comparison by

compactness or the performance based on queries selected or

derived from the world-renowned benchmarks like TPC-H or

TPC-DS. As shown in Table 3, only 7 studies are based on

world-renowned benchmark like TPC-H or TPC-DS. As

shown in Fig. 2, most of all selected primary studies are

originated in the USA.

TABLE 3. RELEVANCE CHECKLIST FOR SELECTED PRIMARY STUDIES

Identifier Reference Avro Parquet Compactness

measured

SQL queries

executed

TPC benchmark used

(as indirect quality criteria)

[PS1] Biookaghazadeh et al. [4] x x

[PS2] Cejka et al. [5] x x x

[PS3] Yan and Yuan [31] x x x

[PS4] Choi et al. [8] x x x

[PS5] Luckow et al. [16] x x x

[PS6] Zhang Shuo et al. [33] x x

[PS7] Mammo and Srividya [17] x x

[PS8] Grover et al. [11] x x

[PS9] Dong et al. [9] x x

[PS10] Zhang Zhen'an et al. [34] x x

[PS11] Zhou et al. [35] x x x

[PS12] Haynes et al. [12] x x

[PS13] Pirzadeh et al. [20] x x x

[PS14] Floratou et al. [10] x x x x

[PS15] Son et al. [26] x x x

[PS16] Tapiador et al. [28] x x x x

[PS17] Kilias et al. [14] x x x

Submitted for publication in Baltic Journal of Modern Computing (BJMC), 5-Oct-2016 6

Fig. 2. Countries of origin represented in the selected primary studies

E. Analytics and conclusions

Why have the selected articles been considered as relevant

or excluded from future analysis? In order to answer this

question, the short insight of each article is useful.

Biookaghazadeh et al. [4] introduces a self-describing data

format NetCDF that is not supported by existing big-data

systems. In this article, four type queries are defined and

executed on the raw storage format CSV and NetCDF. The

experiment results obtained from typical queries on a

geoscience dataset show that the introduced approach

substantially outperforms the traditional CSV-based approach.

The authors mention only Parquet format in context of the

need to improve scientific data formats such as NetCDF and

HDF for big-data systems.

Cejka et al. [5] from Siemens AG company compares file

size of four different formats: Java, Protocol Buffers, Thrift

and Avro. Avro’s results show that it is much slower in write

speed, however much faster in read speed than Protocol

Buffers and Thrift. The file compression in Apache Avro is

best. In order to evaluate the time of the retrieval of entries,

the author’s defined benchmark is used to retrieve data from

such databases as Storacle, H2, MongoDB. Parquet format is

not analyzed in this paper.

Yan and Yuan [31] build another TPC-DS benchmark by

removing columnar optimization, they name it TPC-DS2,

optimize the resource utilization, and maintain fairness among

different types of queries. The authors present a price-based

algorithm which achieves optimization objective by

implementing algorithm in the open source Impala system and

conducting a set of experiments in a clustering environment

using the TPCDS workload. Experimental results show that

coordinated resource management solution can increase the

aggregate utility by at least 15.4% compared with simple fair

resource share mechanism, and 63.5% compared with the

FIFO resource management mechanism. This work

demonstrates significant advantage of Parquet format. Avro

format is not mentioned in this paper.

Choi et al. [8] compares the CSV file format and Parquet

file format via MicroBricks and x86 clusters. The authors

carry out the TPC-H benchmark by means of an open source

distributed SQL engine in Hadoop in both architectures. The

experimental results are promising for the MicroBricks

computing, and the results show that the query response times

of the MicroBricks computing architecture outperforms those

of commodity cluster without hurting the innate advantages of

the MicroBricks cluster architecture. Avro format is not

analyzed in this paper.

Luckow et al. [16] compares different queries derived from

TPC-DS and TPC-HS benchmarks and executed on

Hive/Text, Hive/ORC, Hive/Parquet, Spark/ORC,

Spark/Parquet. Hive/Parquet shows better execution time than

Spark/Parquet. Select, aggregate and join queries are executed

on a comparable infrastructure Hive/Spark versus RDBMS.

Generally, the RDBMS can outperform Hive and Spark –

however, both deliver a solid performance at a lower cost. But

Avro format is not analyzed here.

Zhang Shuo et al. [33] compares raw data storage formats

versus Avro and propose an original solution to store, read and

write different small files on HDFS. However, there is no

Submitted for publication in Baltic Journal of Modern Computing (BJMC), 5-Oct-2016 7

direct comparison of different data formats and Parquet is not

presented there. It is worth mentioning that authors select

Avro as a target binary data format and demonstrate its

efficiency in both read and write operations.

Mammo and Srividya [17] propose a Presto-based

architecture, Presto-RDF that can be used to store and process

big RDF data and SPARQL to SQL compiler. The

comparative analysis of the performance of Presto (distributed

SQL query engine) in processing big RDF data against

Apache Hive has been done. However, Parquet format is not

mentioned in this work and Avro is only mentioned in the

context of future work, because the RDF data is stored as a

text file, which is not optimal. This work can be extended to

test using RCFILE, ORC, AVRO formats, which are better

optimized than the text file.

Grover et al. [11] focuses on benchmarking multiple SQL-

like big data technologies over Hadoop based distributed file

system (HDFS) for Study Data Tabulation Model (SDTM)

used in clinical trial databases for improving the efficiency of

research in clinical trials. The benchmark proposed in this

paper provides an overview of the capabilities of SQL-on-

Hadoop platforms such as Hive, Presto, Drill and Spark. The

authors mention format Avro and Parquet, but they do not

analyze these formats in any kind of comparison. Only

Parquet format is mentioned in the future work section as

lightweight and fast with a columnar layout, hence it can

significantly boost IO performance.

Dong et al. [9] introduces the Record-aware Compression

(RaC) scheme that makes the compressed contents splittable,

uses a lightweight Hadoop Record Reader and preserves the

parallelism and data locality properties as much as possible. In

general, RaC can be used with other analytic platforms such as

Spark and higher level abstractions of MapReduce such as

Hive. In the evaluation, the authors show that using RaC can

greatly reduce data loading time and the required system

memory. More importantly, the authors observe that the time

spent on decompressing data in memory is trivial compared to

the time required for loading data from persistent storage to

memory. The experimental results lead the authors to believe

that content-aware and data-specific compression is very

promising in big data processing and analysis. However, there

is no direct comparison of Avro and Parquet data format in the

SQL point of view.

Zhang Zhen'an et al. [34] introduce Alovera, a fast stream

processing system for large-scale data. Alovera can easily

serialize the records to HDFS by using Avro. The authors

prove that the record-oriented data need nearly half of the time

to be uncompressed while Avro is used to serialize the data

stored in columnar format, and it is efficient to de-serialize the

data. Parquet format is not analyzed in this paper.

Zhou et al. [35] explore a Workload Aware Column Order

solution, WACO, to boost the scan operator in a wide table.

Although this article does not investigate Avro, the authors

implement WACO solution on Parquet data format on top of

Hadoop 2.0. The authors conduct extensive experiments of the

real-world TPC-H benchmark and SDSS dataset for

simulating a wide table to demonstrate the superiority of our

solution. The experiment results show that this approach is 2x

faster than the state-of-the-art.

Haynes et al. [12] introduces Terra Populus that acts as the

bridge between big data sources and researchers. Researchers

are provided with convenient web applications that allow them

to access, analyze, and tabulate different datasets under a

common platform. Terra Populus’ Tabulator application

employs Parquet on Spark to build dynamic queries for

analyzing large population survey data. The authors recognize

that Parquet allows greater compression per data type. Parquet

usage gives a high compression ratio while still allowing for

fast data fetching. However Avro format is not analyzed here.

Pirzadeh et al. [20] reports on an evaluation of four

representative Big Data systems (such as MongoDB, Hive,

AsterixDB, and a commercial parallel shared-nothing

relational database system) using a micro-benchmark called

BigFUN. Parquet is used in benchmarking while Avro is not

mentioned at all.

Floratou et al. [10] compares three analytical job execution

environments available in Hadoop ecosystem. Hive on

MapReduce, Hive on Tez and Impala have been analyzed here

by using a world-renowned benchmark like TPC-H. As a

result, the authors confirm that Impala has better performance

versus Hive (both versions). Although, the authors mention

Parquet and Avro, they do not analyze those formats in any

kind of comparison.

Son et al. [26] proposes a novel column-store method

called SSFile for Hadoop-based distributed systems. SSFile

increases the actual amount of data processed per task and

supports representative columnar execution techniques for

efficient query processing. Through experiments authors show

that SSFile significantly improves the performance of

distributed processing. Avro schema is used in SSFile creating

and benchmarking while Parquet format is not mentioned at

all. Furthermore, the authors use only a few queries from the

TPC-H benchmarking and do not argument this choice.

Tapiador et al. [28] compares the data set size for different

compression and format approaches like CSV(Row),

Plain(Row), Snappy(Row), GBIN(Row), Snappy(Column),

GBIN(Column). Google Snappy codec gives a much better

result as the decompression is faster than Deflate (GBIN). It

takes half of the time to process the histograms (50%) and the

extra size occupied on disk is only around 23%. This confirms

the suitability of Snappy codec for data to be stored in HDFS

and later on analyzed by Hadoop MapReduce work flows.

Although this article gives an answer to the question about

compactness, it does not compare Avro versus Parquet in

another kind of comparison, for instance, SQL query

execution time. The data storage model approaching

Submitted for publication in Baltic Journal of Modern Computing (BJMC), 5-Oct-2016 8

performance comparison does not give a transparent view of

how it is obtained.

Kilias et al. [14] proposes INDREX, a system that provides

a single and comprehensive view of the whole process

combining both relation extraction and later exploitation with

SQL. The authors use Parquet data format to store data in

HDFS and observe a compression ratio of a nearly 10x factor:

The data size in the Parquet.io file format is reduced from

107GB to roughly 10GB. The authors do not analyze Parquet

format in the SQL kind of comparison. Avro format is not

analyzed here at all.

IV. RESULTS

This section presents the results of analysis of the relevant

studies and answer to the research question. Although the field

is in its earliest stages, there is clear evidence of the increasing

interest focused on big data studies, Hadoop Technology,

HDFS and compact, fast, binary data formats. The aim to give

a synthesized overview on the trend of the research

publications of Hadoop technology and answer the research

question is reached by detailed analysis of the relevant studies.

The analysis of extracted data and initially retrieved

studies show that Hadoop Technology and compact data

formats have drawn interest of various researchers in the past

six years. As shown in Fig. 3, the number of publications of

research papers in conference proceedings, journals and

magazines has significantly increased from the year 2010 to

2015. The growth has an exponential trend that means double

amount of articles by the end of 2016. The prognosis 2016 is

calculated by applying exponential trend to the line shown in

Fig.3.

Fig. 3. Importance of topic by years

How about an answer to the research questions?

RQ.1: What are the differences in performance (query

execution time) between compact data formats Avro and

Parquet?

RQ.2: Which data format (Avro or Parquet) is more

compact?

As shown in Table 3, only 1 paper ([PS14]) focuses on

both data formats (Avro and Parquet) but 7 papers use TPC

benchmark (as indirect quality criteria) for one of the formats,

mostly Parquet. This might be because of row-based (Avro)

and column-based (Parquet) data format specifics limiting

comparison. However, it does not satisfy business demand for

knowledge about both data format comparison. This is the gap

for future research.

The only one paper ([PS14]) that focuses on both data

formats (Avro and Parquet) compares row and column based

data formats only from the compression point of view. Other

papers do not provide clear and reliable answer to the research

question about differences in performance (query execution

time) between compact data formats Avro and Parquet. Most

of 17 papers are addressed only to one format (Avro or

Parquet), but not to both.

V. SUMMARY AND FINAL CONCLUSIONS

In this section, far from an exhaustive overview, some of
the final conclusions are given to prevent recurrence.

There are significant gap and need for additional
experiments and studies in order to answer the research
question about Parquet and Avro format. All 17 studies are not
containing direct focus on comparing two binary data storage
formats – Parquet and Avro because of both design specifics.
Parquet as stated in the official documentation [19] is a
column-oriented data storage format. Thus, it should provide
better performance on column-oriented queries, e.g., when only
a specific set of those is selected. As a counterpart, Avro
format is resigned for row-oriented data access, e.g., when all
columns are the interest of processing.

In this review, 17 papers have been studied in order to
evidence Hadoop Technology popularity and fast, compact,
binary data format development necessity. A high diversity of
Hadoop Technologies and used data formats has been noticed.
It was a very time consuming process to classify all studies,
extract relevant information, assess validity and reliability,
develop checklists and make conclusions at the end. Due to
abstract unavailability SpringerLink has been dropped from the
list of digital libraries. Therefore this review can be extended in
the direction to cover studies from SpringerLink.

REFERENCES

[1] Abadi, D., Boncz, A. P., Harizopoulos, S. “Column-oriented database
systems.” Proceedings of the VLDB Endowment 2.2, 2009, pp. 1664-
1666.

[2] Apache Avro, http://avro.apache.org/

[3] Apache Thrift, http://thrift.apache.org

[4] Biookaghazadeh, Saman, et al. "Enabling scientific data storage and
processing on big-data systems." Big Data (Big Data), IEEE
International Conference on. IEEE, 2015.

[5] Cejka, S., Ralf, M., Alfred, E. "Java embedded storage for time series
and meta data in Smart Grids." IEEE International Conference on Smart
Grid Communications (SmartGridComm). IEEE, 2015.

[6] Chandra, D.G., et al. "A study on cloud database." Computational
Intelligence and Communication Networks (CICN), Fourth International
Conference on. IEEE, 2012.

http://avro.apache.org/
http://thrift.apache.org/

Submitted for publication in Baltic Journal of Modern Computing (BJMC), 5-Oct-2016 9

[7] Chen, Y., et al. "A study of sql-on-hadoop systems." Big Data

Benchmarks, Performance Optimization, and Emerging Hardware.
Springer International Publishing, 2014, pp. 154-166.

[8] Choi, H., et al. "An evaluation of alternative shared-nothing architecture
for analytical processing systems." Big Data (Big Data), IEEE
International Conference on. IEEE, 2015.

[9] Dong, D., and John, H. "Record-aware compression for big textual data
analysis acceleration." Big Data (Big Data), IEEE International
Conference on. IEEE, 2015.

[10] Floratou, A., Umar, F. M., and Fatma, Ö. "Sql-on-hadoop: Full circle
back to shared-nothing database architectures." Proceedings of the
VLDB Endowment 7.12, 2014, pp.1295-1306.

[11] Grover, A., et al. "SQL-like big data environments: Case study in
clinical trial analytics." Big Data (Big Data), IEEE International
Conference on. IEEE, 2015.

[12] Haynes, D., et al. "High performance analysis of big spatial data." Big
Data (Big Data), IEEE International Conference on. IEEE, 2015.

[13] He, Yongqiang, et al. "RCFile: A fast and space-efficient data placement
structure in MapReduce-based warehouse systems." Data Engineering
(ICDE), IEEE 27th International Conference on. IEEE, 2011.

[14] Kilias, T., Alexander, L., and Periklis A. "INDREX: In-database relation
extraction." Information Systems 53, 2015, pp. 124-144.

[15] Kitchenham, B., Charters, S., “Guidelines for Performing Systematic
Literature Reviews in Software Engineering”, EBSE Technical Report,
EBSE-2007-01, 2007.

[16] Luckow, A., et al. "Automotive big data: Applications, workloads and
infrastructures." Big Data (Big Data), IEEE International Conference on.
IEEE, 2015.

[17] Mammo, M., and Srividya K. Bansal. "Distributed SPARQL over Big
RDF Data: A Comparative Analysis Using Presto and MapReduce." Big
Data (BigData Congress), IEEE International Congress on. IEEE, 2015.

[18] Palmer, N., et al. “Towards collaborative editing of structured data on
mobile devices.” Mobile Data Management (MDM), 12th IEEE
International Conference on. Vol. 1. IEEE, 2011.

[19] Parquet official documentation,
https://parquet.apache.org/documentation/latest/

[20] Pirzadeh, P., Michael, J. Carey, and Till, W. "BigFUN: A performance
study of big data management system functionality." Big Data (Big
Data), IEEE International Conference on. IEEE, 2015.

[21] Polato, I., et al. "A comprehensive view of Hadoop research –
A systematic literature review." Journal of Network and Computer
Applications 46: 1-25, 2014.

[22] Protocol Buffers, https://github.com/google/protobuf

[23] Sharma, M., et al. "Investigating the inclinations of research and
practices in hadoop: A systematic review." Confluence The Next
Generation Information Technology Summit (Confluence), 5th
International Conference - IEEE, 2014.

[24] Shvachko, K., et al. "The hadoop distributed file system." Mass Storage
Systems and Technologies (MSST), IEEE 26th Symposium on. IEEE,
2010.

[25] Smite D. Research Methods in Computing, course for PhD & MSc
students, University of Latvia, 2016.

[26] Son, J., et al. "SSFile: A novel column-store for efficient data analysis in
Hadoop-based distributed systems." Information Sciences 316, 2015,
pp. 68-86.

[27] Stonebraker, M., et al. “C-store: a column-oriented DBMS.”
Proceedings of the 31st interna-tional conference on Very large data
bases. VLDB Endowment, 2005.

[28] Tapiador, D., et al. "A framework for building hypercubes using
MapReduce." Computer Physics Communications 185.5, 2014,
pp. 1429-1438.

[29] Tsai, C.-P., and Hung-Chang, H. "Streaming in NoSQL." Parallel and
Distributed Systems (ICPADS), 20th IEEE International Conference on.
IEEE, 2014.

[30] Tsai, C.-P., et al. "Publish/Subscribe in NoSQL." Computational Science
and Engineering (CSE), IEEE 17th International Conference on. IEEE,
2014.

[31] Yan, W., and Yuan, X. "Coordinated Resource Management for Large
Scale Interactive Data Query Systems." Cluster, Cloud and Grid
Computing (CCGrid), 15th IEEE/ACM International Symposium on.
IEEE, 2015.

[32] Wonjin, L., et al. "A big data management system for energy
consumption prediction models." Digital Information Management
(ICDIM), Ninth International Conference on. IEEE, 2014.

[33] Zhang, S., et al. "A strategy to deal with mass small files in HDFS."
Intelligent Human-Machine Systems and Cybernetics (IHMSC), Sixth
International Conference on. Vol. 1. IEEE, 2014.

[34] Zhang, Z., et al. "Alovera: A Fast Stream Processing System for Large-
Scale Data." ChinaGrid Annual Conference (ChinaGrid), 8th. IEEE,
2013.

[35] Zhou, N., Xiao, Z., Shan, W. "WACO: Workload Aware Column Order
for Scan Operator in Wide Table." IEEE Conference on Collaboration
and Internet Computing (CIC). IEEE, 2015.

https://parquet.apache.org/documentation/latest/
https://github.com/google/protobuf

