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ABSTRACT 

The aim of this doctoral thesis is to research methods and develop tools that allow 

successfully integrating bilingual terminology into statistical machine translation systems so 

that the translation quality of terminology would increase and that the overall translation quality 

of the source text would increase. The author presents novel methods for terminology 

integration in SMT systems during training (through static integration) and during translation 

(through dynamic integration). The work focusses not only on the SMT integration techniques, 

but also on methods for acquisition of linguistic resources necessary for different tasks involved 

in workflows for terminology integration in SMT systems. 

The thesis describes and evaluates methods designed and implemented by the author for: 

1) monolingual term identification in SMT system training data as well as documents submitted 

for translation, 2) term normalisation for acquisition of canonical forms of terms from terms in 

different inflected forms, 3) cross-lingual term mapping in parallel and comparable corpora 

collected from the Web, 4) probabilistic dictionary filtering in order to acquire resources for 

cross-lingual term mapping, 5) development of character-based SMT transliteration systems 

from probabilistic dictionaries, 6) inflected form generation for terms through rule-based 

morphological synthesis or monolingual corpus look-up, and other methods involved in the 

workflows for static and dynamic terminology integration in SMT systems. 

The terminology integration methods have been evaluated using the Moses SMT system 

and the LetsMT platform. The evaluation efforts show that the methods for monolingual term 

identification and cross-lingual term mapping allow achieving state-of-the-art performance, 

which has been also validated by third party (independent) evaluation efforts. The static 

terminology integration methods allow achieving a cumulative SMT quality improvement by 

up to 28.1% (or 3.56 absolute BLEU points) over an initial baseline system for the English-

Latvian language pair. However, the most impressive achievement of the author’s work is the 

dynamic terminology integration method in SMT systems using a source text pre-processing 

workflow. In almost all experiments performed in the scope of the thesis the methods allowed 

achieving SMT quality improvements. Automatic evaluation for four investigated language 

pairs in the automotive domain shows SMT quality improvements by up to 26.9% (or 3.41 

absolute BLEU points) over baseline systems. Manual comparative evaluation performed for 

seven language pairs in the information technology domain shows that the proportion of 

correctly translated terms increases for all language pairs by up to +52.6%. 
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INTRODUCTION 

Machine translation (MT) is “the use of computers to automate translation from one 

language to another” (Jurafsky & Martin, 2009). Machine translation solutions have many 

different applications. Three of the most important applications (in the author’s opinion) are: 

1) To provide access to information written in a language that is unknown to the 

consumer of the information. For instance, MT systems can provide access to 

information on the Web (news, blog articles, product descriptions, product or service 

reviews, etc.) that is written in many different languages. Popular publicly available 

MT services, such as, the Google Translate1 and the Bing Translator2 are widely used 

for automated translation of such information. 

2) To lower the language barriers that may not allow people effectively communicating 

(or communicating at all) between each other if a common language is not known. 

For instance, for a tourist who gets lost in a foreign country SMT can provide a 

possibility to communicate with local people. 

3) To increase productivity of professional translators. In recent years, due to the rapid 

development of MT technologies, automated translation services have been also 

introduced in professional translation workflows. Language service providers as well 

as leading software developers (for instance, Flournoy & Duran, 2009; Schmidtke, 

2008; Skadiņš et al., 2014, and many others) have shown that SMT integration into 

translation workflows allows to significantly improve the translation productivity of 

translators, which in turn may result in cost savings and higher competitiveness of the 

translator and the localisation service provider in the localisation industry. 

The first two application areas do not have very high quality requirements as the task of 

MT is to allow understanding the contents rather than to provide perfect translations. Whereas 

the third application area requires MT systems to be able to provide precise translations of very 

high quality, otherwise, the usage of MT services may not be economically justifiable. 

However, all three scenarios require that the translations would contain correct terminology, 

because incorrectly used terms may not even allow understanding the correct meaning of the 

translated text. 

                                                 
1 Google Translate is an SMT service available online at: https://translate.google.com. 
2 Bing Translator is an SMT service, which is available online at: http://www.bing.com/translator/. 

https://translate.google.com/
http://www.bing.com/translator/
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From the theoretical point of view, SMT systems in the translation process try to solve 

the following problem: 

 

(1) 

That is, for each source sentence 𝑆 they try to find the target sentence �̂�, which is the most 

likely translation of the source sentence 𝑆. Most commonly, the problem (solving the 

argmax
𝑇

(𝑇|𝑆)) is decomposed using the Bayes theorem into a noisy-channel model 

(Brown et al., 1993) (argmax
𝑇

𝑃(𝑆|𝑇)𝑃(𝑇)), which allows solving two separate problems: 1) 

we want to identify target language sentences (hypotheses), which are possible translation 

equivalents of the source sentence, and 2) we want to make sure that the translation hypothesis 

that we generate are correct sentences in the target language. The first problem we solve with a 

translation model that is trained on a large parallel sentence corpus and the second problem we 

solve with a language model that is trained using a large monolingual sentence corpus (often 

even much larger than the parallel corpus) in the target language. 

Current SMT phrase-based models, including the popular Moses SMT system (Koehn et 

al., 2007), do not explicitly handle terminology translation. Although domain adaptation can be 

performed using additional in-domain training data (Koehn and Schroeder, 2007), such an 

approach is very resource demanding as it requires gathering of the resources (parallel and 

monolingual corpora) for each individual domain and for smaller projects or for languages with 

limited resources this is not feasible. This makes terminology integration with the standard 

approaches expensive (in terms of time) and for less resourced languages in many cases also 

impossible (due to lack of parallel or monolingual in-domain corpora). Therefore, this work 

addresses an unsolved problem in SMT of how to integrate (bilingual) terminology into SMT 

systems so that the terminology translation quality would be increased and the SMT systems 

would be easily adaptable to different domains with the help of bilingual terminology. 

Relevance of the Research Problem 

In professional translation services the quality of translations is evaluated using quality 

assessment (QA) forms that are based on a specific QA model. For instance, the QA form for 

Translation 

model 

Language 

model 

Constant 
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translations in the Baltic localisation service provider Tilde3 is based on the QA Model4 of the 

Localization Industry Standards Association (LISA). The QA form requires to identify different 

types of error classes in translated texts, which are grouped in four main categories: accuracy 

(e.g., whether the translation contains omissions or unnecessary additions, whether the 

translation is comprehensible, etc.), language quality (e.g., grammar, punctuation, and spelling 

mistakes), style (e.g., the word order, whether the translator followed style guidelines, etc.), and 

terminology (consistency and adherence to a pre-defined collection). 

Because terminology is one of key elements that is assessed when performing manual 

quality evaluation of translations in professional translation and localisation services, it is 

important that any automated translation solution (if it is to be introduced in professional 

translation services) provides support for correct handling of terminology by assuring the two 

main quality requirements: 

1. Terminology has to be used correctly (i.e., if a term collection is provided, the 

translations for terms have to be selected only from the provided collection). 

2. Terminology has to be used consistently (i.e., if a term appears multiple times in 

a document, only one translation should be used for the translation of the term). 

For MT systems, the first requirement is difficult to achieve, because the context (or more 

precisely, the lack of enough context) may not always allow identifying the correct translations 

of terms. The second requirement challenges statistical5 MT (SMT) systems more than rule-

based MT systems as the statistics of large amounts of data are difficult to control if not 

constrained by means of, e.g., bilingual term collections or translation model or language model 

domain adaptation techniques. If SMT systems are not developed and “taught” to understand 

terminology, ambiguous or unknown contexts in the parallel training data may result in the 

selection of an incorrect translation hypothesis because of higher contextual likelihood. 

Therefore, methods are needed to integrate domain-specific term collections into SMT systems 

in order to perform domain adaptation and produce better quality translations. This necessity 

has been the driving force of this work with the main goal to develop methods and tools that 

allow to perform successful integration of terminology into SMT systems in order to improve 

the quality of terminology translation and at the same time also improving the overall translation 

quality of the source text. 

                                                 
3 More information about Tilde can be found on the company’s Web site at: http://www.tilde.lv. 
4 A description of the LISA QA model in comparison with other QA models is given by Mateo (2014). 
5 The difference between a rule-based MT system and an SMT system is that for a rule-based system the system’s developer 

has to write many (often thousands) different rules (direct translation examples, morpho-syntactic transfer rules, etc.), however 

in an SMT system translations are automatically learned (inferred) from a large parallel corpus without the need for hand-

crafted rules. 

http://www.tilde.lv/
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The main issues of terminology translation without explicit support for terminology 

integration within SMT systems are as follows: 

 Terms may be translated using incorrect translation equivalents. That is, the 

translation equivalents may be: 1) from a different domain, 2) from obsolete variants 

of terms, 3) in abbreviated or non-abbreviated forms (contrary to the terms’ form in 

the source language), 4) used by a client’s competitor, etc. For example, the term 

„tablet” is ambiguous – it can refer to a popular consumer electronics product (a tablet 

computer), a number of sheets of paper fastened together along one edge (according 

to WordNet 3.16), a pill used in medicine, and others. Because SMT system translation 

and language models are built by analysing word and phrase frequencies in parallel 

and monolingual corpora, the correct term translations may occur less frequently than 

different domain term translations in specific contexts. This may result in selection of 

the incorrect translations due to higher probabilities assigned by the SMT system’s 

translation and language models. The sentence “Has anyone seen my tablet?” 

translated with three popular English-Latvian SMT services (Google Translate, Bing 

Translator, and Tilde Translator7) perfectly illustrates this issue (see Table 1). If the 

correct translation would be “planšete” (translated in English as a “tablet [computer]”) 

then all SMT services would have failed to translate the sentence correctly. 

Table 1. Translations of the English sentence “Has anyone seen my tablet?” 

into Latvian with three publicly available SMT services8 

SMT service Translation 

Google Translate Vai kāds ir redzējis manu tableti? 

Bing Translator Vai kāds ir redzējis manu tablet 

Tilde Translator Vai kāds ir redzējis manu tablete? 

 Terms may be missing in the SMT system’s models, which means that out-of-

vocabulary terms would not be translated. Table 2 shows the term “vārsta 

siltumatstarpe” (translated in English as “valve clearance”) in a context translated with 

three popular SMT services. The word “siltumatstarpe” has not been recognised by 

any of the SMT services, therefore, it has been passed through to the English 

translations without translation. 

                                                 
6 More information on WordNet can be found online at: http://wordnet.princeton.edu/. 
7 Tilde Translator is an SMT service available online at: http://translate.tilde.com/. 
8 Note that the translations may have changed already since online SMT services are dynamically improved by the developers. 

http://wordnet.princeton.edu/
http://translate.tilde.com/
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Table 2. Translations of the Latvian sentence “Vārstu siltumatstarpe ir nepieciešama vārstu atvēršanai un 

aizvēršanai pareizā laikā.” into English with three publicly accessible SMT services 

SMT service Translation 

Google Translate Siltumatstarpe valve is required to open and close the valve at the right time. 

Bing Translator Valve siltumatstarp is required for opening and closing of the valve in the correct time. 

Tilde Translator Valve siltumatstarpe requires the valve opening and closing time. 

 Multi-word terms may be split into several parts during translation. This problem 

may occur because SMT systems (including the Moses system) use reordering (also 

known as distortion) models that allow to reorder translated phrases in the target 

language. Different languages may have different word ordering paradigms, e.g., 

English has a subject-verb-object (SVO) word ordering (Lehmann, 1978), Dutch has 

a subject-object-verb (SOV) word ordering (Koster, 1975), Latvian has a relatively 

free word ordering, however it is considered that most commonly it has SVO word 

ordering (Lokmane, 2010). Although, in general, the introduction of reordering models 

has shown to improve SMT quality (Vogel, 2003), as shown in Table 3 it may also 

cause issues for terminology translation. The example shows that the term “attribute 

filter” from the information technology (IT) domain has not been translated as a non-

breakable phrase in one of the SMT systems. 

Table 3. Translations of the English sentence “Using the new attribute filter functionality.” 

into Latvian with three publicly available SMT services9 (the correct translation is underlined) 

SMT service Translation 

Google Translate Izmantojot jauno atribūts filtra funkcijas. 

Bing Translator Jaunu atribūtu filtru funkcionalitātes izmantošana. 

Tilde Translator Izmantojot jauno filtrēšanas funkcionalitātes atribūts. 

 Multi-word terms may also be translated by breaking morpho-syntactic 

agreements between constituents of the terms. It is very important to model 

morpho-syntactic agreements when translating into morphologically rich languages 

(e.g., Latvian, Estonian, Czech, etc.). When translating into Latvian, for instance, 

adjectives need to be generated in same gender, number, and case as the head noun in 

the immediate noun phrase the adjectives belong to. Table 4 shows an example where 

two of the SMT services (except the Bing Translator) failed to model the agreement in 

the noun phrase “modern home”. The first service failed to create agreement in number 

and the third service failed to create agreement in case. If terminology integration 

would be supported, the agreement between the term’s constituents could be explicitly 

modelled, thereby solving such mistakes. However, the translation of the second 

                                                 
9 Note that the translations might have changed already since online SMT services are dynamically improved by the developers. 
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service is also not completely correct, because the source noun phrase was given in a 

singular form. 

Table 4. Translations of the English sentence “A modern home in a valley.” 

into Latvian with three publicly accessible SMT services. 

SMT service Translation 

Google Translate Moderna mājas ielejā. 

Bing Translator Mūsdienu mājas ielejā. 

Tilde Translator Mūsdienīgs mājas ielejā. 

 When localising software or translating documents for specific clients, the clients 

may request the usage of their specific terminology. SMT systems rely on statistics 

when translating terms and not on pre-defined term dictionaries. Therefore, the 

translations may be wrong and also inconsistent (depending on context, different 

translations may be selected for one term). For instance, if we have a term collection 

from a client that specifies that the term “web service” has to be translated as “tīmekļa 

pakalpe”, then the SMT system should be able to support such a user request. 

However, current SMT solutions do not offer this kind of a functionality. Table 5 

shows that none of the publicly accessible SMT services translates the term as required 

by the client. 

Table 5. Translations of the English sentence “The web service is operational.” 

into Latvian with three publicly accessible SMT services. 

SMT service Translation 

Google Translate Web pakalpojums darbojas. 

Bing Translator Web pakalpojums darbojas. 

Tilde Translator Tīmekļa pakalpojums darbojas. 

Research Methods 

The following are the main contemporary research methods used by the author: 

 Scientific literature review - to identify the current state-of-the-art methods related 

to the author's research topics (term identification, cross-lingual term mapping, 

terminology integration in SMT, etc.) and to identify unsolved gaps and deficiencies 

of related research, the author analysed publications from the main natural language 

processing conferences, scientific projects, and journals that cover topics investigated 

by the author. 

 Implementation of algorithms – the tools developed by the author have been 

designed and implemented in an iterative manner, which allows analysing different 

types of algorithms and improving the author’s methods. 
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 Controlled experiments – in order to empirically prove that the author's methods 

perform better than baseline methods and methods designed in relateds work, the 

author performed numerous controlled experiments (Wohlin et al., 2003; Wasterbrook 

et al., 2008) for cross-lingual term mapping and terminology integration methods in 

SMT. 

 Automatic evaluation – standard automatic sequence labelling and information 

extraction (for term identification and cross-lingual term mapping), and machine 

translation (for terminology integration in SMT and character-based SMT 

transliteration) evaluation methods (Jurafsky & Martin, 2009) have been used to 

evaluate the different methods developed in the scope of the thesis. 

 Manual evaluation – where applicable (and necessary) manual evaluation 

experiments (for instance, comparative human evaluation for the evaluation of 

terminology integration in SMT) were performed to validate automatic evaluation 

results. 

 Error analysis – where necessary, the author has performed manual error analysis for 

the developed methods in order to identify possible areas of future improvements. 

Object of Research 

The object of research of this work are methods and algorithms for terminology 

integration in statistical machine translation. The lack of support for terminology integration 

in current SMT models affect (as explained in the previous section) terminology translation 

quality and consistency. Therefore, in this thesis the author proposes novel and effective 

methods for terminology integration in SMT systems. 

Research Hypotheses 

Taking into account the limitations of current SMT systems with respect to terminology 

translation quality and consistency, the author states the following hypothesis: terminology 

translation quality as well as text translation quality in SMT systems can be improved by 

performing static and dynamic terminology integration in SMT systems. As manual 

creation of term collections is an expensive and time consuming process, automatic (or at least 

semi-automatic) methods for term collection creation are necessary. Therefore, to the author 

states the following second hypothesis: in situations when authoritative term collections are 

not available, automatic term identification in comparable corpora and cross-lingual term 
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mapping are effective methods to acquire bilingual term collections for the integration in 

SMT systems. Both research hypotheses in the thesis are proved using experimental methods. 

Aim and Objectives 

To prove the research hypothesis, effective methods are needed to provide means for 

terminology integration in SMT systems. Therefore, the aim of this doctoral thesis has been to 

research methods and develop tools that allow successfully integrating terminology into SMT 

systems so that the translation quality of terminology and the overall translation quality of the 

source text would increase. To reach the aim, the research and development activities were split 

into following objectives: 

 To research methods and develop tools for static terminology integration in SMT 

systems that allow: 1) to adapt SMT systems to the required domain with the help of 

in-domain terminology, and 2) to increase translation quality. 

 To research methods and develop tool for dynamic terminology integration in SMT 

systems during the translation phase that: 1) do not require re-training of SMT systems, 

and 2) allow to increase translation quality. 

 To research and develop methods for term identification in: 

o SMT system training data (for static terminology integration in SMT systems). 

o Text documents intended for translation (for dynamic terminology integration in 

SMT systems). 

o Text documents intended for monolingual term candidate extraction with a goal to 

create monolingual or bilingual term collections usable for integration in SMT 

systems. 

 To research and develop methods for cross-lingual term mapping. In situations where 

in-domain terminology is not available, however, there exists at least some parallel 

data (two/three thousand or even less sentence pairs) or a comparable corpus, cross-

lingual term mapping methods can be used to automatically create term collections. 

 To research and develop methods that address the previous objectives in particular for 

languages with complex morphologies and little (or no) parallel resources in domains 

in which terminology integration has to be performed. 

 To evaluate the developed methods for the English-Latvian language pair and where 

applicable also other European languages in order to prove that the methods are 

general and language independent (not considering language specific resources that 

the methods may require). 
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The methods researched by the author are in general applicable to any phrase-based SMT 

platform. However, to evaluate the methods, the author focusses on the Moses SMT system 

(Koehn et al., 2007) and the LetsMT platform (Vasiļjevs et al., 2012). 

Scientific Novelty 

In the scope of the thesis, the author has researched and developed the following 

innovative methods: 

 A linguistically, statistically, and reference corpus motivated term identification 

method for semi-automatic creation of term collections. The method has been 

implemented in the tool Tilde’s Wrapper System for CollTerm, which allows 

performing monolingual term identification in translatable documents or documents 

used for automatic or semi-automatic term collection creation. 

 A novel method for term identification in SMT system training data and documents 

submitted for translation: the Fast Term Identification. The method has been 

specifically designed for the purpose of terminology integration in SMT and allows to 

perform term identification in parallel and monolingual corpora (used in static 

integration methods) and the source text (documents, translation segments, sentences, 

etc.) that is sent to the SMT system for translation. 

 A context independent cross-lingual term mapping method. The method uses 

probabilistic dictionaries and character-based SMT transliteration systems when 

performing term mapping. It allows mapping multi-word terms and terms with 

different number of tokens in the source and target languages – two term mapping 

scenarios that have not been sufficiently addressed by previous research. The method 

has been implemented in the tool MPAligner. 

 A novel method for probabilistic dictionary10 filtering using character-based SMT 

transliteration systems. As far as the author knows, transliteration systems have not 

been used in related research to filter probabilistic dictionaries. 

 A novel method for SMT-based transliteration system creation using transliteration 

dictionaries that have been automatically extracted from probabilistic dictionaries 

using a bootstrapping method (first of a kind). 

 A novel method for static terminology integration in SMT systems. The method 

proposes to transform SMT system phrase tables into term-aware phrase tables by 

                                                 
10 A probabilistic dictionary is a statistical resource acquired by performing automated word alignment in parallel corpora. 

Popular word alignment tools are, for instance, Giza++ (Och and Ney, 2003), FastAlign (Dyer et al., 2013), Anymalign 

(Lardilleux et al., 2012), and many other tools. 



17 

identifying bilingual terminology in all phrase pairs found in the phrase tables. An 

important difference from other methods is the method’s ability to identify terms in 

different inflected forms. 

 A novel multi-dimensional method for dynamic terminology integration in SMT 

systems. The method proposes a source text pre-processing workflow that can be 

directly integrated into the Moses SMT system. The workflow includes the term 

identification methods and a novel component for rule-based inflected form generation 

for multi-word terms. 

Practical Significance of Work 

The author has created a set of tools and resources that are necessary in various tasks 

related to terminology integration in SMT. The tools and resources can be beneficial also in 

other research areas of natural language processing. 

The most important tools are: 

 Tools for term identification: 

o The Tilde’s Wrapper System for CollTerm (TWSC) for linguistically and 

statistically motivated identification of terms in documents. TWSC can be acquired 

as part of the ACCURAT Toolkit11. It is used in the Terminology as a Service12 

(TaaS) platform (Pinnis et al., 2013) for monolingual term identification when 

creating monolingual and bilingual term collections (see section 2.2). 

o The Fast Term Identification tool for processing of large data sets (e.g., SMT 

training data) using existing term collections (see section 2.4). The tool is integrated 

in the LetsMT13 platform (Vasijevs et al., 2012). 

o The Pattern-Based Term Identification tool for linguistically motivated term 

identification in the source text that is submitted for translation (see section 2.3). 

The tool is used in the TaaS platform for term candidate identification in parallel 

and comparable corpora. The tool has been used to extract term candidates that are 

integrated in the Statistical Data Base (SDB) of the TaaS platform (TaaS, 2014a). 

 A term normalisation tool for Latvian (see section 2.5). The tool is used in the TaaS 

platform for term candidate normalisation after monolingual term identification. 

 A cross-lingual term mapper (the MPAligner14) that supports term mapping for 25 

European languages (i.e., all official languages of the European Union and Russian; 

                                                 
11 The ACCURAT Toolkit can be acquired online at: http://accurat-project.eu/. 
12 The TaaS platform is available online at: https://term.tilde.com/. 
13 The LetsMT platform is available online at: https://www.letsmt.eu. 
14 The MPAligner can be acquired online at: https://github.com/pmarcis/mp-aligner. 

http://accurat-project.eu/
https://term.tilde.com/
https://www.letsmt.eu/
https://github.com/pmarcis/mp-aligner
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see section 3.2). MPAligner is used in the TaaS platform to perform bilingual term 

extraction from term-tagged parallel and comparable corpora. It has been also used to 

extract bilingual terminology for the largest (as far as the author knows) statistical 

resource of bilingual terminology – the TaaS platform’s SDB. 

 A toolkit for terminology integration in SMT systems that is able to perform both static 

integration (see section 4) and dynamic terminology integration (see section 5) tasks. 

The toolkit is integrated in the LetsMT platform and it can be used by SMT system 

developers to integrate terminology in SMT systems. 

The most important linguistic resources are: 

 A multilingual transliteration dictionary15 for 24 European languages (see section 3.4) 

that consists of 1,246,908 transliteration pairs. As far as the author knows, this is the 

first multilingual transliteration dictionary that has been publically released.  

 Bilingual terminology automatically extracted from Wikipedia and other comparable 

and parallel data sources using the MPAligner. The resource contains over twenty 

million unique inflected form pairs of terms distributed over 45 subject fields and 26 

language pairs (see section 3.5). The resource is the main source of bilingual term pair 

candidates of the TaaS platform’s SDB. As far as the author knows, this is the largest 

currently available resource of automatically extracted bilingual terminology. 

Main Results 

The scientific and practical results of the thesis have been already described in the 

sections “Scientific Work” and “Practical Significance of Work”. However, this section names 

three results that the author thinks are the main results of the work: 

1) The author’s designed and developed toolkit for static and dynamic terminology 

integration in SMT systems. The toolkit has shown to increase overall translation and 

term translation quality in both automatic and manual evaluation experiments. 

2) The author’s designed and developed tool for linguistically, statistically, and reference 

corpora motivated term identification - Tilde’s Wrapper System for CollTerm. 

3) The author’s designed and developed tool for context-independent cross-lingual term 

mapping – MPAligner. MPAligner in combination with TWSC have been used to create 

the largest resource of automatically extracted bilingual terminology. 

                                                 
15 The multilingual transliteration dictionary can be acquired online at: 

https://github.com/pmarcis/dict-filtering. 

https://github.com/pmarcis/dict-filtering
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Approbation and Publication of the Author’s Work 

The author’s work (relevant to the thesis) has been published in 17 publications – 10 

publications the thesis is based on and 7 publications relevant to the topics discussed in the 

thesis. 

The thesis is based on the author’s contributions to the following 10 publications: 

 6 publications in peer-reviewed conference proceedings recognised by the Latvian 

Council of Science: 

o Aker, A., Pinnis, M., Paramita, M. L., & Gaizauskas, R. (2014b). Bilingual 

Dictionaries for All EU Languages. In Proceedings of LREC 2014 (pp. 2839–2845). 

Reykjavik, Iceland. Indexed in Web of Science. The author’s contributions to the 

paper are: 1) the transliteration-based dictionary filtering method, and 2) the 

quantitative analysis of evaluation results (the total contribution is 

approximately 20%). 

o Pinnis, M. (2013). Context Independent Term Mapper for European Languages. In 

Proceedings of RANLP 2013 (pp. 562–570). Hissar, Bulgaria. Indexed in Scopus. 

The author’s contribution to the paper is 100%. 

o Pinnis, M. (2014). Bootstrapping of a Multilingual Transliteration Dictionary for 

European Languages. In Proceedings of Baltic HLT 2014. Kaunas, Lithuania: IOS 

Press. Indexed in Web of Science. The author’s contribution to the paper is 100%. 

o Pinnis, M., Ljubešić, N., Ştefănescu, D., Skadiņa, I., Tadić, M., & Gornostay, T. 

(2012). Term Extraction, Tagging, and Mapping Tools for Under-Resourced 

Languages. In Proceedings of TKE 2012 (pp. 193–208). Madrid. Indexed in 

Scopus. The author’s main contributions to the paper are: 1) the role of the leading 

author, 2) the section about term tagging (excluding the evaluation subsection for 

Croatian), 3) the section about the real world scenario, 4) example figures for 

Latvian and Lithuanian, and 5) conclusions of the paper (the total contribution is 

approximately 40%). 

o Pinnis, M., & Skadiņš, R. (2012). MT Adaptation for Under-Resourced Domains – 

What Works and What Not. In Proceedings of Baltic HLT 2012 (Vol. 247, pp. 176–

184). Tartu, Estonia, Estonia: IOS Press. Indexed in Scopus. The author’s main 

contributions to the paper are: 1) the role of the leading author, and 2) all sections 

except the introduction (the total contribution is approximately 90%). 

o Vasiļjevs, A., Pinnis, M., & Gornostay, T. (2014). Service Model for Semi-

Automatic Generation of Multilingual Terminology Resources. In Proceedings of 

TKE 2014 (pp. 67–76). Berlin, Germany. Indexed in Scopus. The author’s main 
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contributions to the paper are: 1) the section about term candidate identification, 

and 2) the section about translation equivalent retrieval from the Web (the total 

contribution is approximately 60%). 

 2 publications in other peer-reviewed conference proceedings: 

o Pinnis, M. (2015). Dynamic Terminology Integration Methods in Statistical 

Machine Translation. In Proceedings of EAMT 2015 (pp. 89–96). Antalya, Turkey. 

The author’s contribution to the paper is 100%. 

o Skadiņš, R., Pinnis, M., Gornostay, T., & Vasiļjevs, A. (2013). Application of 

Online Terminology Services in Statistical Machine Translation. In Proceedings of 

the XIV Machine Translation Summit (pp. 281–286). Nice, France. The author’s 

main contributions to the paper are: 1) the section about related work, and 2) the 

section about the proposed solution (the total contribution is approximately 60%). 

 2 other publications: 

o Pinnis, M., Skadiņš, R., & Vasiļjevs, A. (2014). Real-world challenges in 

application of MT for localization: The Baltic case. In Proceedings of AMTA 2014, 

vol. 2: MT Users (pp. 66–79). Vancouver, BC Canada. The author’s main 

contributions to the paper are: 1) the section about terminology translation, and 2) 

the section about translation productivity analysis (the total contribution is 

approximately 40%). 

o Vasiļjevs, A., Kalniņš, R., Pinnis, M., & Skadiņš, R. (2014). Machine Translation 

for e-Government - the Baltic Case. In Proceedings of AMTA 2014, vol. 2: MT 

Users (pp. 181–193). Vancouver, BC Canada. The author’s main contribution to 

the paper is the section about term translation (the total contribution is 

approximately 20%). 

The 7 publications relevant to the topics discussed in the thesis are: 

 4 publications in peer-reviewed conference proceedings recognised by the Latvian 

Council of Science: 

o Pinnis, M. (2012). Latvian and Lithuanian Named Entity Recognition with 

TildeNER. In Proceedings of LREC 2012 (pp. 1258–1265). Istanbul, Turkey. 

Indexed in Web of Science. The author’s contribution to the paper is 100%. 

o Pinnis, M., & Goba, K. (2011). Maximum Entropy Model for Disambiguation of 

Rich Morphological Tags. In Proceedings of the 2nd International Workshop on 

Systems and Frameworks for Computational Morphology (pp. 14–22). Zurich, 

Switzerland: Springer Berlin Heidelberg. Indexed in Scopus. The author’s main 

contributions to the paper are: 1) the role of the leading author, 2) the section about 
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the morphological tagset, 3) the section about training data, 4) the section about 

feature selection, and 5) the section about results and error analysis (the total 

contribution is approximately 60%). 

o Pinnis, M., Skadiņa, I., & Vasiļjevs, A. (2013). Domain Adaptation in Statistical 

Machine Translation Using Comparable Corpora: Case Study for English Latvian 

IT Localisation. In Proceedings of CICLING 2013 (pp. 224–235). Samos, Greece: 

Springer Berlin Heidelberg. Indexed in Scopus. The paper received the Best Student 

Paper Award at the conference. The author’s main contributions to the paper are: 

1) the role of the leading author, 2) the section about collecting and processing 

comparable corpora, 3) the section about SMT systems, 4) the section about 

automatic and comparative evaluation, and 5) the results subsection of the 

evaluation in localisation (the total contribution is approximately 60%). 

o Skadiņa, I., Aker, A., Mastropavlos, N., Su, F., Tufiș, D., Verlic, M., Vasiļjevs, A., 

Babych, B., Clough, P., Gaizauskas, R., Glaros, N., Paramita, M.L., & Pinnis, M. 

(2012). Collecting and Using Comparable Corpora for Statistical Machine 

Translation. In Proceedings of LREC 2012 (pp. 438–445). Istanbul, Turkey. 

Indexed in Web of Science. The author’s main contribution to the paper is the 

section about named entity and term extraction (the total contribution is 

approximately 8%). 

 3 publications in other peer-reviewed conference proceedings: 

o Pinnis, M., Gornostay, T., Skadiņš, R., & Vasiļjevs, A. (2013). Online Platform for 

Extracting, Managing, and Utilising Multilingual Terminology. In Proceedings of 

eLex 2013 (pp. 122–131). Tallinn, Estonia. The author’s main contributions to the 

paper are: 1) the role of the leading author, 2) the section about the workflow for 

the creation of a bilingual term collection, and 3) the section about computer-

assisted translation tool and machine translation system interfaces (the total 

contribution is approximately 30%). 

o Pinnis, M., Ion, R., Ştefănescu, D., Su, F., Skadiņa, I., Vasiļjevs, A., & Babych, B. 

(2012). ACCURAT Toolkit for Multi-Level Alignment and Information Extraction 

from Comparable Corpora. In Proceedings of the ACL 2012 System Demonstrations 

(pp. 91–96). South Korea. The author’s main contributions to the paper are: 1) the 

role of the leading author, 2) the section about the overview of the workflows, 3) 

the section about named entity extraction and mapping, and 4) the evaluation results 

for English-Latvian (the total contribution is approximately 25%). 
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o Skadiņš, R., Pinnis, M., Vasiļjevs, A., Skadiņa, I., & Hudík, T. (2014). Application 

of Machine Translation in Localization into Low-resourced Languages. In 

Proceedings of EAMT 2014 (pp. 209–216). The author’s main contributions to the 

paper are: 1) the section about the result analysis of the first experiment, and 2) the 

section about the second experiment (the total contribution is approximately 30%). 

The research topics covered by the thesis as well as research related to the thesis has been 

presented in 10 scientific conferences and 3 workshops: 

 The 18th Annual Conference of the European Association for Machine Translation 

(EAMT 2015), Antalya, Turkey – poster presentation of the paper “Dynamic 

Terminology Integration Methods in Statistical Machine Translation”, May, 2015. 

 The 6th International Conference Baltic HLT 2014, Kaunas, Lithuania – oral 

presentation of the paper “Bootstrapping of a Multilingual Transliteration Dictionary 

for European Languages”, September, 2014. 

 The 9th International Conference on Language Resources and Evaluation, Reykjavik, 

Iceland – poster presentation of the paper “Bilingual Dictionaries for All EU 

Languages”, May, 2014. 

 The 9th International Conference on Recent Advances in Natural Language 

Processing, Hisarya, Bulgaria – oral presentation of the paper “Context Independent 

Term Mapper for European Languages”, September, 2013. 

 The 14th International Conference on Intelligent Text Processing and Computational 

Linguistics, Samos, Greece – oral presentation of the paper “Domain Adaptation in 

Statistical Machine Translation Using Comparable Corpora: Case Study for English 

Latvian IT Localisation”, March, 2013. 

 The W3C Workshop – Making the Multilingual Web Work, Rome, Italy – presentation 

of the posters “The Next Step in Translation Automation: Online Terminology 

Services for Human and Machine Translation” and “ITS 2.0 Enriched Terminology 

Annotation Use Case”, March, 2013. 

 The 3rd International Conference on Terminology – Current Trends in Terminology 

Theory and Practice, Riga, Latvia – oral presentation “Improving Machine Translation 

with Terminology”, October, 2012. 

 Human Language Technologies – The Baltic Perspective, Tartu, Estonia – oral 

presentation of the paper „MT Adaptation for Under-Resourced Domains – What 

Works and What Not”, October, 2012. 

 The 50th Annual Meeting of the Association for Computational Linguistics, Jeju, South 

Korea – system demonstration and poster presentation of the paper „ACCURAT 
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Toolkit for Multi-Level Alignment and Information Extraction from Comparable 

Corpora”, July, 2012. 

 The Second Workshop on Creation, Harmonization and Application of Terminology 

Resources, Madrid, Spain – oral presentation „Toolkit for Multi-Level Alignment and 

Information Extraction from Comparable Corpora”, June, 2012. 

 The 10th Conference on Terminology and Knowledge Engineering, Madrid, Spain – 

oral presentation of the paper „Term extraction, tagging, and mapping tools for under-

resourced languages”, June, 2012. 

 The 8th International Conference on Language Resources and Evaluation, Istanbul, 

Turkey – poster presentation of the paper „Latvian and Lithuanian Named Entity 

Recognition with TildeNER”, May, 2012. 

 The 2nd Workshop on Systems and Frameworks for Computational Morphology, 

Zurich, Switzerland – oral presentation of the paper „Maximum Entropy Model for 

Disambiguation of Rich Morphological Tags”, August, 2011. 

The most important research projects the work has been approbated in are: 

1) Project Analysis and evaluation of Comparable Corpora for Under Resourced Areas 

of machine Translation (ACCURAT) - funded by the European Union Seventh 

Framework Programme (FP7/2007-2013), grant agreement n° 248347 (2010-2012). 

2) Project Terminology as a Service (TaaS) - funded by the European Union Seventh 

Framework Programme (FP7/2007-2013), grant agreement n° 296312 (2012-2014). 

3) Project “2.6. Multilingual Machine Translation” – funded by the ICT Competence 

Centre (www.itkc.lv), contract No. L-KC-11-0003. 

The terminology integration methods have been integrated in the LetsMT platform. The 

public administration SMT solution hugo.lv16 that is based on the LetsMT platform uses 

author’s methods for terminology integration in SMT. The semi-automatic term collection 

creation methods have been integrated in the TaaS platform and allow its users to create 

bilingual term collections from users’ documents. 

Outline 

In order to reach the aim and objectives of the thesis and to prove the hypothesis, the 

thesis has been organised in sections that describe different steps (or processes) defined in a 

                                                 
16 hugo.lv hosts also the SMT systems of the Latvia's presidency of the Council of the European Union (Translate 2015); it is 

accessible online at: https://hugo.lv/. 

https://hugo.lv/
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workflow for terminology integration in SMT systems. The workflow is described in Section 1. 

The different steps of the workflow are described in the following sections: 

1) Section 2 describes methods that the author has designed for automated term 

identification. The section is based on the publications Pinnis et al. (2012), Vasiļjevs 

et al. (2014b), and TaaS (2014b). 

2) Section 3 presents the state-of-the-art context independent cross-lingual term mapping 

tool MPAligner and the methods for probabilistic dictionary filtering and SMT-based 

transliteration system creation. The section is based on the publications Aker et al. 

(2014b), Pinnis (2013), and Pinnis (2014). 

3) Section 4 describes research efforts carried out by the author on static terminology 

integration in SMT systems. The section is based on the publications Pinnis & Skadiņš 

(2012), Pinnis et al. (2014), Skadiņš et al. (2013), and TaaS (2014b). 

4) Section 5 presents a novel multi-dimensional method designed by the author for 

dynamic terminology integration in SMT systems during translation. The section is 

based on the publications Pinnis (2015), Pinnis & Skadiņš (2012), Skadiņš et al. 

(2013), TaaS (2014b), and Vasiļjevs et al. (2014a). 
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1. WORKFLOW FOR TERMINOLOGY 

INTEGRATION IN SMT SYSTEMS 

In order to perform terminology integration into SMT systems, a term collection is 

required. A term collection has to be created or acquired from existing sources (e.g., term banks, 

pre-existing electronic term collections, etc.). The creation can be a completely manual process 

where a terminologist creates bilingual term pairs using, for instance, a spreadsheet. However, 

there exist also semi-automated and fully automated methods for bilingual term collection 

creation. Because a bilingual term collection is a key resource in the author’s research, the thesis 

presents a workflow that allows acquiring bilingual term collections in a semi-automated (or 

even fully automated) manner from comparable corpora collected from the Web, and 

integrating the acquired term collections in SMT systems. The conceptual design of the 

workflow is depicted in Figure 1. 

The workflow consists of two main steps: 1) term collection acquisition, and 2) 

terminology integration in SMT systems. The first step can be skipped completely if a term 

collection in a required domain is already available. However, if such a term collection is not 

available, the first step specifies two tasks: 

1) Using a comparable corpus, terms have to be identified in the comparable corpus. The 

identified terms have to be also normalised (the canonical forms have to be generated 

for terms in different inflected forms) to reduce data redundancy. 

First step - Term collection acquisition Second step – integration into SMT 

* Automatic term 
identification

* Cross-lingual term 
mapping

* Can be skipped if a 
term collection is 

available

Input text for 
translationParallel 

corpus
Monolingual 

corpus

Bilingual term 
collection

Term-tagged 
comparable 

corpus

Comparable 
corpus

Online 
SMT 

service

Translated 
text

SMT System
 training and

 adaptation

Trained SMT 
Model

Dynamic 
integration

Static 
integration

AND / OR

 

Figure 1. The conceptual design of the workflow for terminology integration in SMT systems 

as it is presented in this thesis 

2) When performing fully automated bilingual term extraction from parallel or 

comparable corpora, monolingual terms in the source language after term 
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identification have to be somehow mapped (or aligned) with their translations in the 

target language. This task is performed by automatic cross-lingual term mapping 

tools. These tools analyse the source and target terms identified in corpora and search 

for term pairs that can be considered to be reciprocal translation equivalents. After 

cross-lingual term mapping, the bilingual term collection can be used in SMT 

integration experiments as is or it can be manually filtered by a translator to remove 

noise (i.e., incorrect term pairs), which is introduced by the term mappers. 

When the data (i.e., term collections) have been acquired, work on terminology 

integration in SMT systems can be started. In general, there are two conceptually different 

approaches to SMT system adaptation and integration of user-specific term collections into 

SMT systems (both methods are depicted in Figure 1): 

 Training level (static) integration. Static integration means that an SMT system is 

adapted for a specific term collection during the training phase of the SMT system. If 

a user (an SMT system developer) decides to modify the term collection by deleting, 

adding, or editing terms (or even replacing the term collection with a new term 

collection), the whole SMT system has to be re-trained to adjust to the changes made 

by the user (hence the name “static”). 

 Translation level (dynamic) integration. As static integration cannot be always 

performed (for instance, for small translation tasks for which re-training of SMT 

systems may not be economically justifiable), dynamic integration can be a beneficial 

alternative. Dynamic integration is performed during translation using a pre-trained 

SMT system. The integration is performed by enriching the source text instead of 

modifying the pre-trained SMT models. This means that the dynamic integration 

allows exchanging term collections without having the need to re-train the SMT 

system (hence the name “dynamic”). 

In the author’s work all SMT integration experiments have been carried out within the 

LetsMT SMT platform (Vasiļjevs et al., 2012), which is based on the Moses SMT system 

(Koehn et al., 2007). All SMT and terminology integration in SMT experiments are performed 

using phrase-based SMT systems (Koehn et al., 2003). 

1.1. Types of Term Collections 

The single most important linguistic resource required to perform terminology integration 

in SMT systems is a bilingual term collection. A bilingual term collection consists of one to 

many entries, where each entry describes a bilingual term pair in a specific domain. Each 

bilingual term pair may consist of a definition, a source term and possibly other information 
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describing the source term, and the target term and possibly other information describing the 

target term. The “other information” may be, for instance, linguistic information, provenance 

information, disambiguation information, ontological information, etc.). However, the set of 

the available data describing a term pair may be even limited to just the source term and the 

target term. This means that methods for terminology integration into SMT systems have to 

ensure that they can work even with the limited data set. In order to better understand what 

types of term collections this thesis focusses on, let us look at several types of term collections 

in terms of origins of the term collections. 

The first and possibly the most known type of term collections are authoritative term 

collections, that is, term collections stored in official or publicly available term data bases (or 

term banks), for instance, the Interactive Terminology for Europe17 (IATE), the 

EuroTermBank18 (Vasiļjevs et al., 2008), and many others. Such term collections often contain 

multilingual term entries where each term entry may contain multiple synonymous term phrases 

in source and target languages; usually in their canonical forms. As these term entries are 

usually created by terminologists (maybe even representatives of an authoritative institution for 

standardisation of terminology for a certain language), the only additional information that is 

usually attached to the terms is the definition and the domain (i.e., the subject field) the term 

entry belongs to; further linguistic (e.g., morphological, syntactic, etc.) information is usually 

not provided. Because such term entries are in general intended for human use, they may also 

contain dictionary type mark-up, for instance, the Latvian term “kravietilpība”19 from 

EuroTermBank has the English equivalent “[cargo-]carrying capacity” specified. It is evident 

that the optional constituent “[cargo-]” of the English equivalent is intuitive for humans, 

however, it may not be readable by automated processes. 

A different type of term collections are professional translator created term collections. 

Translators in their professional duties often use custom term collections for specific translation 

tasks or for specific translation domains (even for specific customers). Differently from 

authoritative term collections, these term collections often contain only pairs of term 

translations (without any attached additional information) in their canonical forms. As the term 

collections are usually relatively focussed, they are less ambiguous than the authoritative term 

collections. That is, each source term in most cases has just one translation equivalent in the 

target language. This, of course, is much better suited for automated processes as the search 

                                                 
17 The Interactive Terminology for Europe can be accessed online at: http://iate.europa.eu. 
18 EuroTermBank can be accessed online at: http://www.eurotermbank.com/. 
19 The term entry can be found online at: 

http://www.eurotermbank.com/GetEntryDetailed.aspx?id=0&more=1&item=519766&resource=0. 

http://iate.europa.eu/
http://www.eurotermbank.com/
http://www.eurotermbank.com/GetEntryDetailed.aspx?id=0&more=1&item=519766&resource=0
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space is smaller and the translator usually uses a computer-assisted translation environment, 

which requires term collections to be defined in machine readable formats. 

A completely different type of term collections (because of no human intervention) are 

automatically created term collections. Using bilingual term extraction methods, term 

collections can be extracted automatically from parallel or comparable corpora. Because the 

extraction processes may involve linguistic processing (e.g., morpho-syntactic tagging, 

lemmatisation, etc.), the extracted term pairs may contain structured and machine readable 

meta-data describing the terms. When working with automatically created term collections it is 

important to understand that they will contain also wrongly identified and mapped term pairs 

(the so called “noise” in the data). However, differently from the first two types, automatically 

created term collections can contain term pairs in different inflected forms. This characteristic 

is important when translating into morphologically rich languages (i.e., terms are not always 

translated using canonical forms). For morphologically rich languages in many contexts 

specific inflected forms are required and automatically created term collections can capture the 

necessary morphological variations. 

Because the automatically created term collections usually contain a certain amount of 

noise and very ambiguous term pairs (e.g., terms from the general language, which may 

correspond to many different equivalents in the target language), manual revision of the term 

collection may be necessary. Such manually revised term collections consequently contain less 

(or no) noise and less ambiguous terms, however, the linguistic characteristics that were present 

in the automatically created term collection are kept. 

There are other types of term collections, of which the most known are the ontology-

based term collections. However, in many professional translation scenarios costs for creation 

of such term collections do not satisfy the potential benefits. Therefore, the main focus of the 

author’s work is on bilingual term collections that contain independent term entries in which 

term pairs are described by term phrases in two languages (i.e., term pairs) for which not 

necessarily additional linguistic information is available. 
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2. AUTOMATIC TERM IDENTIFICATION 

To integrate terminology into SMT systems, a term collection is required. In some 

situations the term collections may be available (i.e., created by an authoritative source, a 

translator, a terminologist, an automated process, etc.). If a term collection does not exist, it has 

to be created. This section, describes two types of term identification methods: 1) a method for 

automatic term identification using automatic term extraction methods (see section 2.2) that can 

be used for semi-automatic (Pinnis et al., 2013) and fully automatic (Pinnis et al., 2012) creation 

of term collections, and 2) two methods for automatic term identification using existing term 

collections (see sections 2.3 and 2.4) designed for application in machine translation. 

When creating a term collection, we may want to include in the collection terms in their 

canonical (or dictionary) forms. However, terms in text corpora in a general scenario are not in 

their canonical forms. This means that a term normalisation process is necessary that transforms 

the terms from their inflected forms (as found in the corpora) into their respective canonical 

forms. To address this issue, section 2.5 presents a rule-based method for term normalisation 

developed by the author. 

This section is based on research results published in the papers by Pinnis et al. (2012) 

and Vasiļjevs et al. (2014b) and the TaaS project’s public deliverable D4.4 “Integration in SMT 

Systems” (TaaS, 2014b). 

2.1. Related Work on Term Extraction 

Term extraction20 methods in a general scenario analyse text data (a sentence, a 

paragraph, a document, or even a corpus) and for each phrase (a single-word or multi-word 

unit) try to identify whether it can be a term candidate. The identification is performed by 

estimating (or validating depending on the method): 1) the term unithood (i.e., the phrase 

boundaries of terms), and 2) the term termhood (i.e., how likely a phrase is a term or how 

specific a phrase is within a corpus or a document). There has been extensive related research 

done by other researchers on term extraction that focusses on three types of term extraction 

methods: 

 Linguistically motivated term extraction methods. Terms are identified using 

patterns, which are usually morpho-syntactic (or simply part of speech (POS)) regular 

                                                 
20 Note that different authors use different names for the tasks of “term extraction”, “term recognition”, “term tagging”, and 

“term identification”. In this work the author by “term extraction” means the process of extracting monolingual lists of term 

candidates from documents (i.e., just the extraction process). “Term recognition” means the process of finding term occurrences 

in text using existing lists of terms. “Term tagging” is the process of tagging a document with term identifying tags (e.g., XML 

tags) using monolingual term candidate lists generated by the term extraction component. Finally, “term identification” is the 

whole workflow of processing a document, extracting term candidates (which may be also an optional step if an existing term 

collection has to be used for term recognition), and tagging terms in the documents. 
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expressions (also known as term grammars) for single-word or multi-word units that 

potentially comprise term candidates. The patterns can be hand-crafted by a language 

specialist or extracted from term-tagged corpora using semi-automated methods. As 

terms are mostly noun phrases that correspond to syntactic chunks (Bourigault, 1992; 

Justeson & Katz, 1995), linguistic filtering using morpho-syntactic patterns allows 

extracting term candidates that are syntactically sound (phrases that could be terms, 

but not necessarily are terms in a given context). Term extraction methods that perform 

linguistically motivated term extraction have been investigated by Bourigault (1992) 

in the LEXTER term extractor for French, Justeson & Katz (1995), Dagan & Church 

(1994) in the Termight term extractor for English, Jacquemin et al. (1997) for French, 

and many others. 

 Statistically motivated term extraction methods. Terms are identified by performing 

statistical analysis of words and phrases within a large corpus (Pantel & Lin, 2001). In 

a general scenario, statistical methods perform minimum frequency filtering in order 

to filter out rarely occurring phrases, rank phrases using different co-occurrence 

measures (in literature also named as association measures). Co-occurrence measures 

allow identifying multi-word phrases that are more likely to be found together than as 

individual words or shorter phrases. There are many different co-occurrence measures, 

which have been proposed in related research. Several popular co-occurrence 

measures are, for instance, the Dice coefficient (Dice, 1945), pointwise mutual 

information (Church & Hanks, 1990), log-likelihood ratio (Dunning, 1993), the t-score 

statistic (Church et al., 1991), C-value (Frantzi & Ananiadou, 1997), Q-value (Merkel 

& Foo, 2007), and many other methods. The methods have been successfully applied 

in collocation and term extraction tasks (directly or in customised forms) by Pantel & 

Lin (2001), Pazienza et al. (2005), Wermter & Hahn (2006), Vu et al. (2008), Wong 

et al. (2008), Bouma (2009), Petrović et al. (2010), and many other researchers. An 

extensive overview of such measures (over 80 in total) is given by Pecina (2005) and 

Pecina & Schlesinger (2006). The last step for statistically motivated term extraction 

methods is a statistical cut-off that allows to decide whether a phrase can be considered 

a term candidate or not based on the term rankings. The cut-off can also be performed 

by extracting just the top N highest ranked term candidates (Delač et al., 2009). 

Statistical methods are useful when they are executed on large data sets from which 

they can draw reliable statistical measures. However, if the corpus is not large enough, 

the term extraction results may be poor (Grigonyte et al., 2011). As there is no 

linguistic analysis involved, purely statistical methods wrongly identify phrases 
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starting or ending with stop-words as terms. Therefore, the methods are often enriched 

with stop-word filters (Petrović et al., 2010) that filter out phrases that start or end with 

stop-words, e.g., “and”, “or”, “the”, “in”, etc. This allows improving term unithood 

identification quality. Purely linguistically motivated methods do not perform term 

termhood analysis (except a simple sorting according to term frequency in a corpus) 

as it is assumed that phrases that are valid according to the morpho-syntactic term 

patterns are valid term candidates. Statistical methods, on the other hand allow 

identifying terms, which are more or less specific within a corpus. 

 Reference corpus motivated term extraction methods. Terms are identified using 

statistics extracted from a broad domain corpus in combination with statistics from the 

document (or corpus) that is being analysed. As documents for translation may be very 

short (e.g., even just a sentence long), it can be impossible to obtain reliable statistics 

using statistical methods for the given documents. A large broad domain corpus can 

be used to identify words and phrases, which are more general and which are more 

specific. A commonly used measure is the inverse document frequency (IDF), which 

assigns lower scores to more general words in a corpus (Spärck Jones, 1972). This 

method is used together with other methods, because it acts as a filter that allows 

filtering out too general term candidates (Foo, 2012). 

Above mentioned methods are often combined into hybrid methods that incorporate two 

or all three methods for term extraction (Daille, 1994; Dagan & Church, 1994; Dias et al., 2000; 

Hong et al., 2001, and many others). Extensive overviews of term extraction methods and 

techniques have been published by Pazienza et al. (2005), Wermter (2008), and Foo, (2012). 

Term extraction in recent years has been also addressed for the Baltic languages. For 

instance, Krugļevskis (2010) has shown that for Latvian linguistically motivated term 

extraction methods allow achieving better term extraction results due to the morphological 

richness of the language. Grigonyte et al. (2011) have made similar findings for Lithuanian 

term extraction by comparing linguistically and statistically motivated term extraction methods. 

2.2. Tilde’s Wrapper System for CollTerm 

In this section the author presents a workflow for automatic term identification consisting 

of automatic term candidate extraction from text documents (for instance, news articles, 

technical manuals, knowledge base articles, such as Wikipedia articles, etc.) and term tagging 

in the documents. 

Usually automatic term extraction methods produce just lists of term candidates, for 

instance, TermeX (Delač et al., 2009), CollTerm (developed by Nikola Ljubešić and described 
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in Pinnis et al., 2012), etc. The term candidate lists that the term extraction methods produce 

can contain overlaps of term candidates with different lengths (Frantzi et al., 2000). Consider 

the following example: “A crash course in physics”. Term extraction methods might find two 

term candidates: a single word term candidate “crash” and a bigram term candidate “crash 

course” (both may be correct depending on the context). However, in order to capture a more 

specific representation of terms in the source document, only one of the term candidates is a 

valid term, e.g., in the example above, an intuitive selection is “crash course” if the document 

is about education. The same challenge has to be addressed by term recognition systems. For 

instance, if an existing term collection contains both entries (i.e., “crash” and “crash course” 

at the same time), term recognition systems have to be able to identify, which of the terms in 

the given context is the most probable. The task of selecting the correct term from a term 

candidate’s list in a specific context is performed by term tagging methods. In case of the 

application-oriented scenario of machine translation, the less specific term may cause an SMT 

system to produce a wrong translation. In general, SMT quality has shown to be higher using 

longer phrases (Callison-Burch et al., 2005), because longer phrases allow capturing morpho-

syntactic agreements between the different constituents of the phrases. This can be directly 

transferred to terms, that is, the more specific (the longer) fragment can be identified, the higher 

is the possibility that morpho-syntactic agreements between the term’s constituents will be 

correctly transferred to the target language. 

2.2.1. Term Candidate Extraction 

For term candidate extraction, the author uses CollTerm. CollTerm is a tool for automatic 

extraction of collocation and term candidates from pre-processed (morpho-syntactically tagged) 

documents. The tool incorporates all three previously described types of term extraction 

methods. CollTerm filters terms using morpho-syntactic patterns (see Figure 2 for an example 

excerpt for Latvian and Lithuanian) and stopword lists. Stopword restrictions are specified in 

the term pattern list. 

^[AG].fsn.* ^N...g.* ^N.fsn.* 

^[AG].fsg.* ^N...g.* ^N.fsg.* 

^[AG].fsd.* ^N...g.* ^N.fsd.* 

^A.msg.* ^N.msg.* ^N.* 

^A.mpg.* ^N.mpg.* ^N.* 

Figure 2. Fragment of Latvian morpho-syntactic term patterns defining agreement between adjective (A) and 

noun (N) in gender (m-masculine, f-feminine), number (s- singular, p-plural) and case (n –nominative, g-

genitive, d-dative) 

For Latvian and Lithuanian the term patterns have been created in a semi-automatic 

manner. At first, morpho-syntactic tag sequences were automatically extracted from morpho-
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syntactically tagged texts (Pinnis & Goba, 2011) in which terms were marked by human 

annotators. Then, the obtained morpho-syntactic tag sequences were manually revised and 

generalised into patterns. The rules for Latvian and Lithuanian (as it can be seen in Figure 2) 

are limited to four morphological categories: POS, gender, number, and case. The initial 

generalisation was performed by Dr. Inguna Skadiņa in the ACCURAT project (Pinnis et al., 

2012) and an updated generalisation has been performed by the thesis author for the TaaS 

project resulting in 103 patterns. 

After linguistic filtering, CollTerm performs statistic filtering using a minimum frequency 

threshold. The remaining term candidates are ranked using co-occurrence or reference corpus 

statistics. For multi-word term candidate ranking, CollTerm supports five co-occurrence 

measures (Dice coefficient, modified mutual information (MI), chi-square statistic (CS), log-

likelihood (LL), and t-score statistic) or the reference-corpus based IDF (Spärck Jones, 1972) 

scores of words. Table 6 shows the top 10 lemmatised bigram term candidates extracted from 

the Wikipedia article “Automobile” using the t-score statistic with a minimum frequency of 

three for English and two for Latvian and Lithuanian. The candidates are given as lemma 

sequences since term candidate extraction over lemmatised data allows to perform better 

statistical analysis (due to reduced data sparseness). 

Table 6. Top 10 normalised English, Latvian, and Lithuanian term candidate lemma sequences consisting of two 

words and their scores obtained with the t-score statistic 

English bigram term candidates Latvian bigram term candidates Lithuanian bigram term candidates 

driverless car 1.00 caurejamības automobilis 1.00 antiblokavimas sistema 1.00 

propulsion technology 0.84 iekšdedze dzinējs 0.66 benzininis variklis 0.93 

internal combustion 0.83 protektors raksts 0.57 degimas variklis 0.87 

combustion engine 0.75 lauksaimniecība traktors 0.52 variklis cilindras 0.85 

automotive industry 0.73 tvaiks dzinējs 0.49 sauga diržas 0.84 

automotive market 0.64 ciets segums 0.48 dyzelinis variklis 0.82 

light truck 0.48 krava pārvadāšana 0.46 lenktyninis automobilis 0.78 

assembly line 0.40 dzinējs automobilis 0.38 vidus degimas 0.77 

automobile use 0.37 sacīkstes automobilis 0.37 vairas mechanizmas 0.75 

main article 0.36 ātrums rekords 0.33 įpurškimas sistema 0.72 

The reference corpus for IDF score calculation has to be large enough to represent the 

language (in terms of stopwords in contrast to words that may be important in term extraction). 

For instance, the Latvian corpus from which lemma IDF scores have been extracted consists of 

Wikipedia articles (7.6 million tokens) and Web news articles (8.2 million tokens). If the IDF 

score file is given and a co-occurrence statistic is used for n-gram term candidate ranking, a 
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linear combination of TF-IDF and co-occurrence statistic is computed (Pinnis et al., 2012). 

Single-word terms are ranked using just the TF-IDF measure. 

Finally, after ranking, a cut-off method is applied to filter out low ranked term candidates. 

The resulting list of term candidates is then exported as a sequence of lemmas for term tagging. 

2.2.2. Term Tagging in Documents 

CollTerm creates an output document containing a list of term candidates of a fixed length 

(up to four tokens) where n-grams (phrases) are ranked according to one of the ranking methods. 

This requires CollTerm to be executed multiple times to cover single-word and multi-word term 

candidate extraction. 

Because the term candidate lists contain overlapping phrases, terms in the source 

document are tagged using the Tilde’s Wrapper System for CollTerm (TWSC). TWSC takes as 

input plaintext or pre-processed tab-separated (broken into sentences, tokenised, and POS or 

morpho-syntactically tagged) documents. TWSC then produces either term tagged plaintext 

where term candidates are marked with <TENAME> tags (see Figure 3 for an example) or tab-

separated documents (see Figure 4 for an example) where term candidates are marked with B-

TERM (for the first token) and I-TERM (for the remaining tokens) tags. The plaintext annotation 

format is similar to the named entity annotation format used in the Message Understanding 

Conference 7 (MUC-7; Chinchor, 1997) and the BIO annotation scheme that was introduced in 

the CoNLL 2002 conference (Tjong Kim Sang, 2002) is used to tag terms in tab-separated 

documents. 

<TENAME SCORE="0.17" MSD="N-msg---------n-----------f- N-msl---------n---

--------l-" LEMMA="serviss aprīkojums">Servisa aprīkojumā</TENAME> 

ietilpst <TENAME SCORE="0.0" MSD="N-fpg---------n-----------l- N-fsg-----

----n-----------l- N-msn---------n-----------l-" LEMMA="bremze pārbaude 

stends">bremžu pārbaudes stends</TENAME>, <TENAME SCORE="0.61" MSD="N-msg-

--------n-----------l- N-fsg---------n-----------l- N-fsn---------n------

-----l-" LEMMA="motors diagnostika ierīce">motora diagnostikas 

ierīce</TENAME>, <TENAME SCORE="1.0" MSD="N-mpg---------n-----------l- N-

fsg---------n-----------l- N-msn---------n-----------l-" LEMMA="ritenis 

balansēšana stends">riteņu balansēšanas stends</TENAME>, <TENAME 

SCORE="0.44" MSD="N-mpg---------n-----------l- N-fsg---------n-----------

l- N-msn---------n-----------l-" LEMMA="amortizators pārbaude 

stends">amortizatoru pārbaudes stends</TENAME>, <TENAME SCORE="1.0" 

MSD="N-mpg---------n-----------l- N-fsg---------n-----------l- N-msn-----

----n-----------l-" LEMMA="ritenis montēšana stends">riteņu montēšanas 

stends</TENAME> u.c. 

Figure 3. Fragment of a term-tagged plaintext document in Latvian 
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Servisa N serviss N-msg---------n-----------f- 28 111 28 117 B-TERM 0.37 

aprīkojumā N aprīkojums N-msl---------n-----------l- 28 119 28 128 I-TERM 0.37 

ietilpst V ietilpt Vp----3--i----------------l- 28 130 28 137 O 0 

bremžu N bremze N-fpg---------n-----------l- 28 139 28 144 B-TERM 0.45 

pārbaudes N pārbaude N-fsg---------n-----------l- 28 146 28 154 I-TERM 0.45 

stends N stends N-msn---------n-----------l- 28 156 28 161 I-TERM 0.45 

, T , T--------------------------, 28 162 28 162 O 0 

Figure 4. Fragment of a term-tagged tab-separated document in Latvian 

Within one term candidate list, it is possible to select the term candidate that is ranked higher. 

However, if the overlap is between candidates of different lists, the selection is not 

straightforward. Two methods have been applied in order to combine different n-gram term 

candidate lists into one list. The first approach prioritises longer n-grams, while the second 

approach combines all lists in one list using linear interpolation of term candidate confidence 

scores by applying different weights to the different length term candidate lists. 

2.2.3. Term Tagging Evaluation for Latvian and Lithuanian 

TWSC has been evaluated in multiple term tagging and term extraction scenarios. The 

following three sub-sections will describe: 1) evaluation of TWSC in SMT, 2) evaluation of 

TWSC for creation of term collections, and 3) evaluation performed by third party researchers. 

2.2.3.1. Evaluation of TWSC for Term Identification for SMT Purposes 

For term identification in SMT we aim at identifying term phrases that are: 1) non-

breakable when translated, which means that they have to behave like syntactic chunks, 2) as 

specific as possible in order to correctly translate the terms into the target language. For this 

evaluation (published in ACCURAT, 2011 and Pinnis et al., 2012), human annotators were 

asked to manually annotate texts in the IT domain (software manuals, IT news, software 

reviews, etc.) for Latvian and Lithuanian languages. The annotators were specifically instructed 

to prefer longer phrases over shorter phrases as terms whenever in doubt. 

The human annotated corpora were split into two parts – a development set and a test set. 

The former was used for tuning of different parameters of CollTerm and TWSC including: (a) 

minimum n-gram frequencies, (b) CollTerm confidence score thresholds, and (c) linear 

interpolation coefficients for the term candidate list combination method. The statistics of the 

human annotated corpora for Latvian and Lithuanian are given in Table 7. 
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Table 7. Statistics of the Latvian and Lithuanian human annotated corpora 

 Latvian Lithuanian 

Test set Development set Test set Development set 

Tokens 15,230 7,795 4,547 2,339 

Proportion 66.15% 33.85% 66.03% 33.97% 

Terms 2,362 1,127 751 380 

Unigram terms 1,540 656 417 198 

Multi-word terms 822 471 334 182 

During evaluation parameters were tuned on the development set using an iterative 

approach. At first the minimum n-gram frequency constraints were tuned using the prioritised 

list combination method. Also the statistical ranking methods were evaluated to identify, which 

ranking method allows achieving the highest precision, recall, and F-measure (F1) without 

application of CollTerm’s confidence score thresholds. Then term candidate confidence score 

thresholds were tuned in order to achieve better performance. Results using various term 

candidate ranking methods on the Latvian and Lithuanian test sets are given in Table 8. 

The results show that for Latvian the best recall was achieved with the log likelihood 

ranking method (70.66%), the best precision was achieved with the chi square statistic 

(59.85%), and the best F-measure was achieved with the modified mutual information ranking 

method (54.05). The difference between the different methods is, however, relatively 

insignificant. For instance, the best achieved F-measure without confidence score threshold 

tuning with the log likelihood statistic is 54.26 (54.23 on the development set) and with the 

Dice coefficient - 54.05 (54.35 on the development set). As the development set for the 

Lithuanian language is relatively small, all term candidate ranking methods produced identical 

results. Therefore, for further tuning of parameters for Lithuanian the MI measure was selected. 

Table 8. Results of the term tagging evaluation for Latvian and Lithuanian 

Language Configuration Term candidate 

ranking 

method 

Minimum n-gram 

frequency for n-grams 

up to length 4 

R P F1 

Latvian 

No threshold tuning 

LL 1 1 3 3 70.66 42.52 53.09 

MI 2 1 1 2 63.89 46.83 54.05 

CS 11 3 2 3 39.88 59.85 47.87 

Threshold tuning 

LL 1 1 3 3 71.04 41.70 52.55 

MI 2 1 1 2 57.49 52.74 55.01 

CS 11 3 2 3 23.24 64.14 34.12 

Prioritized MI 2 1 1 2 63.89 46.83 54.05 

Linear interpolation MI 2 1 1 2 63.04 42.58 50.83 

Lithuanian 

No threshold tuning 

MI 1 1 1 1 65.11 46.97 54.57 

MI 4 1 2 2 59.79 53.26 56.34 

MI 10 3 2 3 42.08 55.24 47.77 

Threshold tuning 

MI 1 1 1 1 65.78 47.78 55.35 

MI 4 1 2 2 55.79 52.70 54.20 

MI 10 3 2 2 37.55 56.97 45.26 

Prioritized MI 4 1 2 2 59.79 53.26 56.34 

Linear interpolation MI 4 1 2 2 60.32 41.79 49.37 
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Table 8 also shows that threshold tuning on the Latvian development set improves results 

(in terms of recall, precision, and F-measure) on the test set as well. Although the evaluation 

shows an F-measure drop for Lithuanian, the author believes that the size of the tuning corpus 

needs to be increased in order to reliably tune the parameters. 

Finally, the interpolation parameters were tuned in order to achieve better F-measure with 

the interpolation-based term candidate list combination method. The results in Table 8 suggest 

that the prioritisation method significantly outperforms the interpolation-based method. 

Moreover, the tuned parameters suggest that longer n-grams are preferred (even in the 

interpolation-based method). 

The lower performance of the interpolation-based method can partially be explained by 

the fact that in the term candidate extraction step not only a lot of false term-candidates are 

filtered out, but also some good term candidates can be filtered due to the selection of wrong 

term patterns for overlapping terms. For example, for Latvian and Lithuanian term extraction a 

morpho-syntactic tagger is used, which allows defining more complex term patterns requiring 

morpho-syntactic property agreements (for instance, agreement in gender, number, and case). 

Therefore, in many cases, longer n-grams are already valid term candidates. 

The tuning of parameters is very important when it is necessary to tune the system for 

specific tasks (for instance, document alignment, term mapping, information retrieval, question 

answering, etc.), because different tasks may require either higher recall or higher precision. 

2.2.3.2. Evaluation of TWSC for Term Identification for Terminology Creation 

Purposes 

The second evaluation with a goal to evaluate the performance of TWSC for term 

collection creation purposes was performed in the TaaS project (Vasiļjevs et al., 2014b). The 

evaluation covers four languages (English, German, Hungarian, and Latvian) and two subject 

fields (information technology and mechanical engineering). Two annotators (language 

specialists with a focus on terminology) were asked to annotate terms in two documents that 

the annotators would want to have in term bases. The documents across all languages were on 

similar topics and of similar difficulty levels. Each of the annotators has a subjective view on 

what comprises a term in a given context and what does not. This is because termhood and 

unithood of terms can be very ambiguous as well as subjective according to the specialists who 

work with the terminology. Therefore, this evaluation included the individual annotations of 

both annotators. The results are given in Table 9. 
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Table 9. Evaluation results of TWSC for term collection creation 

Language Information Technology Mechanical Engineering 

Correct Total Precision Correct Total Precision 

English 213 365 58.36% 254 503 50.50% 

German 198 338 58.58% 132 380 34.74% 

Hungarian 147 605 24.30% 199 603 33.00% 

Latvian 371 609 60.92% 332 770 43.12% 

The results show that on average around 50% of the identified terms are true positives. 

Although seemingly average, the results are acceptable considering that simultaneous 

identification of termhood and unithood is very challenging. This difficulty is supported also 

by comparing the annotator outputs. The average agreement rate of the two Latvian annotators 

was only at 63.3%. Also the remaining term candidates are not necessarily wrong. Because of 

the linguistically motivated term phrase filtering, the system produces syntactically justified 

term candidates, which can still be useful in some application scenarios, e.g., machine 

translation (Pinnis & Skadiņš, 2012). 

To show the linguistically, statistically, and reference corpora motivated method’s (i.e., 

the TWSC tool’s) superiority over a standard statistical term extraction tool used by translators, 

Table 10 shows evaluation results of TWSC in comparison to the term extraction tool integrated 

in the MemoQ computer assisted translation tool. As previously stated, for statistically 

motivated methods, the document has to be large enough to draw reliable statistics. However, 

the documents used in the evaluation contained approximately 2,000 and 2,200 words. Another 

reason for the significantly lower performance is that Latvian is a morphologically rich 

language and it requires (for better performance) the term extraction methods to be 

linguistically motivated. 

Table 10. Evaluation results of TWSC and the term extraction method in MemoQ for term collection creation 

Tool Information Technology Mechanical Engineering 

Term 

candidates 

Precision Recall F1 Term 

candidates 

Precision Recall F1 

MemoQ 30 33.33% 1.55% 2.95 31 45.94% 2.37% 4.48 

TWSC 609 60.92% 57.34% 59.08 770 43.12% 60.47% 50.34 

2.2.3.3. Third Party Evaluation of TWSC 

TWSC has been also evaluated by other researchers in the ACCURAT and TaaS projects 

as well as by independent (not related to the author) researchers. This section summarises the 

main findings of these evaluation efforts. 

Nikola Ljubešić has evaluated TWSC for Croatian in Pinnis et al. (2012). He performed a 

comparison of purely statistical term identification and linguistically motivated term 

identification with TWSC. The results showed that the linguistic filtering allows improving term 
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identification precision from 4.5% up to 41% on the Croatian test set. This proves the 

superiority of the linguistically motivated term identification method over statistical methods. 

Aker et al. (2014a) have evaluated TWSC in a term extraction task for 21 languages using 

EuroVoc (Steinberger et al., 2002) terminology identified in Wikipedia documents. They 

analysed the impact of different POS taggers and manually and automatically created patterns 

for term extraction. They showed that automatically created patterns for projected POS taggers 

perform similarly to POS taggers trained on language specific part-of-speech tagged corpora 

and manually (or semi-automatically) created patterns. Their evaluation efforts proves the 

applicability of TWSC for morphologically rich languages and also under-resourced languages. 

Very recently, an evaluation performed by Arcan et al. (2014a) of the TaaS platform 

showed that TWSC achieves similar results to an extended version of the Wiki Machine (Arcan 

et al., 2014a) for English and Italian. Out of four data sets it achieved higher results for three 

data sets in terms of F-measure. Their evaluation shows that TWSC allows identifying 

significantly more (from 2.5 to even 16 times more) multi-word term candidates than the Wiki 

Machine. This is due to the fact that TWSC in general prefers longer term phrases over shorter 

term phrases. Their evaluation further shows that integrating such longer terms into SMT 

systems, allows achieving higher SMT quality. 

2.2.4. Application of TWSC in Machine Translation 

The application of TWSC for term identification in SMT has the following benefits: 

 The identified term candidates are linguistically motivated (e.g., we can ensure that 

verbs are not translated as nouns, stop-words are not treated as terms, etc.). 

 The termhood of the identified terms is strengthened by the statistical analysis that is 

performed in TWSC (i.e., we can distinguish domain specific terms from general 

domain phrases). 

 For languages, for which lemmatisation support can be ensured, TWSC allows to 

identify terms in all inflected forms the terms can appear in a text. This is very 

important for short documents where terms may occur multiple times, but in different 

inflected forms. 

However, TWSC has also several issues, which have motivated to investigate different 

term identification methods that could be better suited for integration in SMT systems: 

 In the case if TWSC wrongly identifies the term unithood (i.e., specifies wrong term 

boundaries) for some terms and the correct terms are included in the term collection, 

the correct terms will not be identified. For instance, imagine that we have in our term 

collection the term “crash course” and we need to pre-process the following sentence: 
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“A crash course in physics”. As an output TWSC might find the term “crash”, which 

according to our term collection would not be correct. Because we did not find “crash 

course” with TWSC, but only “crash”, TWSC would not process this example 

correctly. 

 Because of the statistical analysis performed by CollTerm, TWSC cannot be executed 

on very large (e.g., more than 5MB) plaintext documents. When processing 

documents, CollTerm has to read the whole POS-tagged document into memory and 

this can influence system stability. 

 For longer documents, the statistical analysis that is performed by CollTerm can be 

very time consuming (up to several minutes). As in professional translation speed is 

very important, the processing time can result in higher translation costs. 

 Because of the limitations of CollTerm, TWSC is able to identify only terms that 

consist of up to four tokens. Longer terms that contain, e.g., conjunctions often cannot 

be identified because of this limitation. 

2.3. Pattern-Based Term Identification 

The main application of TWSC is term identification for semi-automated creation of term 

collections. However, due to its limitations, TWSC is not suited for terminology integration in 

SMT. When translating a document, a user usually has an existing term collection available. 

This means that it is not necessary to perform statistical analysis of the text. 

This section proposes to perform linguistic term phrase filtering using morpho-syntactic 

patterns to identify terms. The method performs term identification in the following steps: 

 At first, part-of-speech or morpho-syntactic tagging of the source text is performed in 

order to tokenise the content and enrich it with linguistic information. 

 Then, the morpho-syntactic patterns from TWSC are used to identify linguistically 

valid term candidates. At this point, the identified phrases may overlap. For instance, 

for the following sentence: “Do I need a computer mouse?” we can identify the 

following valid term phrases: “computer mouse” (two nouns), “computer” (a noun), 

and “mouse” (a noun). 

 Finally, the identified term phrases are cross-referenced with the bilingual term 

collection. Either the lemma sequences with POS categories or stemmed phrases can 

be used in this process depending on the linguistic support for a language and the 

richness of linguistic information in the bilingual term collection. The identified terms 

are annotated in a left-to-right manner preferring longer term phrases wherever 

possible. Imagine that we have a term collection, which contains the terms “computer” 
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and “computer mouse”. In the example “Do I need a computer mouse?” this method 

would identify “computer mouse” as a term. 

The strength of this method is the ability to filter out morphologically and for 

morphologically rich languages also syntactically invalid term candidates. For instance, if in 

our term collection there is a term “can” (i.e., a cylinder type object) this method can effectively  

deal with the example: “I can can a can”. That is, the first “can” would be identified as a modal 

verb, the second “can” would be identified as a verb, and only the third “can” would be tagged 

as a term (because it is a noun). Of course, the quality of term identification depends heavily 

on the quality of the POS or morpho-syntactic tagger that is used to pre-process the source text. 

For Latvian, the term patterns in TWSC define also morpho-syntactic agreements 

between constituents of a term. The linguistic filtering allows filtering out phrases that do not 

satisfy the agreement requirements. Imagine that we have the term “datora pele” (“computer 

mouse”) in a term collection. The linguistic filtering using patterns allows identifying that the 

sentence “Datoram pele ir svarīgs aksesuārs.” (“For a computer, a mouse is an important 

accessory.”) does not contain the term “datora pele”, because the phrase “datoram pele” does 

not satisfy the agreement requirement for phrases consisting of two nouns. That is, the first 

noun has to be in a genitive case, while “datoram” is in the dative case.  

As this method is not used to create term collections, but rather to identify terms when 

translating text, it is evaluated in SMT integration scenarios (see section 5.5). 

2.4. Fast Term Identification 

TWSC and the Pattern-Based Term Identification methods both require language 

dependent linguistic tools and resources in order to identify terms. However, there are 

languages for which such resources (for instance, POS taggers) are not openly available (e.g., 

Irish). The application of POS (or morpho-syntactic) taggers is also a very time and resource 

consuming process, which in some scenarios may not be applicable due to the necessity to 

provide almost instantaneous results (for instance, term identification in translation segments 

during translation). For such applications a simpler term identification method was investigated 

(the Fast Term Identification method). The goal of this method is to: 1) achieve fast processing 

of both – the source text (e.g., real time or close to real time) and SMT system training data 

(e.g., this method can be used to identify bilingual terminology in Moses phrase tables when 

performing translation model adaptation (see section 4.4)), and 2) to ensure that terms from the 

bilingual term collection would be identified regardless of their specificity (i.e., without 

statistical analysis). In this method terms are treated as multi-word sequences and no morpho-

syntactic restrictions are applied on the identified phrases. 
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The Fast Term Identification method performs term identification using a left-to-right 

search over stemmed tokens of the source text (and stemmed terms from the bilingual term 

collection). Term identification prioritises longer terms over shorter terms. Stemming is 

performed in order to capture morphological variations of terms, i.e., terms in different inflected 

forms. For instance, if we have to pre-process the following text:  

“Vai man ir vajadzīgs peles paliktnis? Datoram peles paliktnis ir svarīgs aksesuārs.” 

and we have an English-Latvian term collection (Table 11) 

Table 11 Example English-Latvian term collection 

English Latvian 

computer dators 

computer mouse datora pele 

mouse pad peles paliktnis 

mouse pele 

the following terms would be identified: 

“Vai man ir vajadzīgs [peles paliktnis]? [Datoram peles] paliktnis ir svarīgs aksesuārs.” 

The example shows that the term “peles paliktnis” was prioritised over “pele”, because 

the Fast Term Identification method also prioritises longer term phrases. However, because of 

the prioritisation, the method can also identify incorrect phrases. For example, the phrase 

“datoram peles” does not represent a term from the term collection (the first word is in the 

dative case instead of a genitive case) as the syntactically correct term would have been “peles 

paliktnis”. Because the Fast Term Identification method does not perform any linguistic 

analysis it can create such mistakes. In a different example “He planted a tree near the power 

plant.” a possible mistake would be to identify “planted” as a term if a term collection would 

contain “plant” (a noun) as a term. In this example, the verb “to plant” would be mistakenly 

identified as the noun “plant”. Similarly to the previous method, this method is intended only 

for term identification in the source text using existing term collections. Therefore, it is 

evaluated in SMT integration scenarios (see section 5.5). 

2.5. Term Normalisation 

For users (translators, terminologists, etc.) who work on morphologically rich languages 

and want to create term collections using semi-automated methods, TWSC may produce 

redundant term candidates. For example, in Czech, Latvian, Estonian, etc., nouns, verbs, 

adjectives (and other types of words) may have numerous different inflected forms. Therefore, 

terms have to be normalised for inclusion in term collections. Term normalisation is a process 

of transforming terms from their inflected forms into their corresponding canonical forms (i.e., 

dictionary forms). This section describes a rule-based method for term normalisation for the 
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Latvian language, however, it can be extended to other languages easily. Term normalisation 

for Latvian has previously been investigated by Vancāne & Krugļevskis (2003). The author 

builds on the idea by Vancāne & Krugļevskis (2003) and proposes a workflow for term 

normalisation that can be used for terms identified with the term patterns from TWSC. 

The method works as follows: 

 At first, terms are identified in a document using TWSC. 

 Then, for each term we identify the corresponding term pattern that matches the term’s 

morpho-syntactic tag sequence. 

 Next, for each pattern a transformation rule for the normalisation is selected from a 

pattern transformation table.  

 Finally, term normalisation is performed by synthesising the required inflected forms 

for each word of a term using a morphological synthesiser. For Latvian, the author 

uses the morphological synthesiser developed by Deksne (2013). 

The pattern transformation table is a manually created tab-separated document in which 

each line specifies a separate morpho-syntactic transformation rule (i.e., how to normalise a 

term that matches a specific pattern). For single-word terms the normalised forms often 

correspond to the lemmas, however, for multi-word terms the normalised forms in many cases 

differ from the corresponding token lemma sequences. For example, the Latvian term “datoru 

tīklu” (transl. “computer network”) is normalised as “datoru tīkls”, however, the lemma 

sequence is different – “dators tīkls”. For Latvian there are in total 230 different normalisation 

rules implemented in the term normaliser. An example excerpt of the pattern transformation 

table for Latvian is given in Figure 5. 

A ^A.[^ ]*$ A*msn* 

G ^G.[^ ]*$ G*msn* 

N ^N[^ ]*$ LEMMA 

A ^A.fpn[^ ]* N.fpn[^ ]*$ A*f!n* LEMMA 

G ^G.fpn[^ ]* N...g[^ ]* N.fpn[^ ]*$ G*f!n* TOKEN LEMMA 

A ^A.fpn[^ ]* G.fpn[^ ]* N.fpn[^ ]*$ A*f!n* G*f!n* LEMMA 

Figure 5. Example excerpt of a pattern transformation table for Latvian 

An entry consists of three parts: 1) the POS of the first token, 2) the term pattern, and 

3) the transformation rule. The transformations in the transformation rule can be as follows: 

 The rule “TOKEN” specifies that the token should remain as it is; 

 The rule “LEMMA” specifies that the token’s lemma should be used. 

 A positional transformation rule (e.g., “A*msn*”) specifies how to transform particular 

morpho-syntactic categories in the morpho-syntactic tag of a token to acquire the tag 
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of the normalised term’s particular token. The morpho-syntactic category 

transformations can be as follows: 

o The symbol “*” denotes that the value of the category has to be kept as it is. 

o The symbol “!” denotes that the value of the category has to be taken from the token 

whose transformation rule is equal to “LEMMA”. This is a syntactic rule that 

requires agreements between two or more tokens of a term. 

o Other symbols denote a specific value for a category. 

The positional transformation rules are shorter than the actual morpho-syntactic tags (for 

Latvian, the tag can describe 28 categories). The remaining category values have to be kept as 

they are (i.e., the rule “*” is applied for the remaining categories). 

Figure 6 shows four examples of how morpho-syntactic transformation rules are applied. 

The examples show data triplets comprising of the original tag sequence, a transformation rule 

and the transformed morpho-syntactic tag sequence. 

Tag sequence 

 Rule 

  Transformed tag sequence 

N-msl---------n-----------l- 

 LEMMA 

  N-msn---------y-----------l- 

N-fsg---------n-----------f- N-fsd---------n-----------l- 

 TOKEN LEMMA 

  N-fsg---------n-----------f- N-fsn---------n-----------l- 

A-fsnc-y------------------l- 

 A*msn* 

  A-msnc-y------------------l- 

Gpfpdc-y---p--------------l- N-fpd---------n-----------l- 

 G*f!n* LEMMA 

  Gpfsnc-y---p--------------l- N-fsn---------n-----------l- 

Figure 6. Examples of morpho-syntactic tag sequence transformation rules 

2.6. Summary of Automatic Term Identification 

In this section the author presented novel methods for term identification. In total, three 

methods were analysed (and implemented): 1) the linguistically and statistically motivated term 

identification method using TWSC, 2) the Pattern-Based Term Identification method, which is 

based on the linguistically motivated part of TWSC, and 3) the Fast Term Identification method, 

which is lightly linguistically motivated. 

The main usage scenario of TWSC is identification of terms in documents for semi-

automated creation of term collections. For this scenario TWSC has been evaluated by different 

parties (the author and other researchers) and it has shown to achieve stat-of-the-art term 

identification performance. It has been also shown by author’s evaluation efforts and third party 
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evaluation efforts that TWSC is applicable for term identification for morphologically rich 

languages (e.g., Latvian, Estonian, Czech, etc.) and for languages that can be considered under-

resourced. 

The Pattern-Based Term Identification and the Fast Term Identification methods were 

specifically designed for SMT purposes. The methods are evaluated in the context of 

terminology integration in SMT (see section 5.5). 

This section introduced also a rule-based term normalisation method for Latvian that is 

built on the ideas for Latvian term normalisation by Vancāne & Krugļevskis (2003). The 

method uses morpho-syntactic transformation rules (a single rule for each morpho-syntactic 

term pattern defined in TWSC) to generate the normalised (or canonical) forms of terms from 

their inflected forms. 
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3. CROSS-LINGUAL TERM MAPPING 

An important step in automated bilingual term extraction workflows is cross-lingual term 

mapping. Term mapping is a process that after monolingual term identification performs a 

cross-lingual analysis over monolingual terms in two languages and identifies term pairs that 

can be considered reciprocal translations. Such automatically extracted bilingual terminology 

is a valuable resource not only in human and machine translation, but also in many other fields, 

for instance, cross-lingual information retrieval, semantic analysis, question answering, and 

many others. 

This section describes a novel method for cross-lingual term mapping that can be used in 

workflows for the automatic or semi-automatic creation of bilingual term collections for SMT 

purposes. The method requires a set of linguistic resources, therefore, this section also describes 

the creation process of the necessary resources, of which the most important resources are 

bilingual probabilistic dictionaries and transliteration systems. The description of the term 

mapping method and its evaluation is based on the research paper by Pinnis (2013). The section 

3.3 on the probabilistic dictionary filtering is based on the author’s contribution to the 

publication by Aker et al. (2014b) and the section 3.4 on character-based SMT transliteration 

systems is based on the publication by Pinnis (2014). 

3.1. Related Work on Term Mapping 

Multi-lingual term collections can be automatically acquired from existing resources 

(monolingual lists of terms, parallel or comparable corpora, etc.) with the help of term mapping. 

Term mapping methods according to previous research in the field can be divided in two 

categories – context dependent methods and context independent methods. 

The context dependent methods are applicable in situations when there is enough context 

from which to draw reliable statistics. The necessary amount of context can differ depending 

on the method. For instance, for term mapping in parallel data it can be enough to have one 

parallel document pair or a sentence-aligned parallel corpus (Federmann et al., 2012; Wolf et 

al., 2011; Lefever et al., 2009; Gaussier et al., 2000). 

For under-resourced languages and numerous domains, however, parallel resources are 

scarce and not always available. Therefore, a more promising resource is comparable corpora, 

which has recently received much attention in the scientific community for its applicability in 

MT (Skadiņa et al., 2012). Most of the context-dependent methods designed for term mapping 

in comparable corpora, however, require relatively large corpora (e.g., hundreds or even 

thousands of documents) in order to calculate reliable cross-lingual association measures (Fung 
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and Yee, 1998; Rapp, 1999; Shao & Ng, 2004; Morin & Daille, 2010). The proposed methods 

have been focussed on language pairs with relatively simple morphology (e.g., German-

English, French-English), but have not been thoroughly investigated for more complex 

languages (e.g., Finnish, Latvian, etc.). A recent study in the European Commission financed 

project TTC (2013) revealed that while the context-dependent methods developed in this project 

(Morin et al., 2010) perform well for English-French, their applicability for English-Latvian is 

questionable because of a term mapping precision below 5%. Laroche & Langlais (2010) also 

reported a relatively low precision (far below 50%) using context-dependent methods for the 

English-French language pair. 

Context independent term mapping methods, on the other hand, are designed for 

situations when there is no context or the context is not large enough to draw statistics. Recent 

work on context independent term mapping has been carried out by Ştefănescu (2012) where a 

cognate similarity measure based on the Levenshtein distance (Levenshtein, 1966) was applied 

in order to estimate how similar two terms are. The method’s weakness, however, is a very 

limited term mapping recall. 

3.2. MPAligner – a Context Independent Term Mapper 

Following related research on context independent term mapping, the author has designed 

a new context independent method for term and term phrase mapping in term-tagged 

comparable corpora. The method allows mapping multi-word terms and terms with different 

numbers of tokens in the source and target language parts – two term mapping scenarios that 

have not been sufficiently addressed by previous research. The mapper has been specifically 

designed to address term mapping between European languages (including languages with 

different alphabets that are based on Latin, Cyrillic and Greek alphabets) and it allows 

integrating linguistic resources to increase recall (while maintaining the same level of precision) 

of the mapped terms. 

The mapper has been evaluated by the author using the EuroVoc thesaurus (Steinberger 

et al., 2002) for 23 language pairs and for the Latvian-English language pair on a medical 

domain comparable corpus that was collected from the Web. The evaluation shows benefits of 

having additional linguistic resources (e.g., probabilistic dictionaries, and transliteration 

support) with respect to having only some of the resources (or none at all) available. 

3.2.1. Term Mapping Method 

Given two lists of terms (in two different languages) the task of the term mapping system 

is to identify which terms from the source language contain translation equivalents in the target 
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language. The system (as shown in Figure 7) consists of two main components – monolingual 

term pre-processing and term mapping. A possible third module that is not discussed in the 

scope of MPAligner is term pair consolidation – a language specific process that performs term 

pair grouping by identifying different inflected forms of terms and allows increasing term 

mapping precision by filtering out possible invalid mappings. However, a method for 

consolidation of MPAligner output has been proposed by the author in Vasiļjevs et al. (2014b). 

MPAligner

Resources for 
pre-processing

Term
pre-processing

module

Source
lang.
termsBilingual 

probabilistic 
dictionaries

Term mapping
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Optional term pair
consolidation

«out of scope»
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Transliteration 
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alignment

Stopword
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Bilingual 
term pairs

Invalid
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dictionaries
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Figure 7. The conceptual design of MPAligner 

3.2.2. Term Pre-processing 

Before mapping, all source and target language terms are tokenized and pre-processed 

using linguistic resources (if such are available). For each token the pre-processing module: 

 Rewrites the token using lower-case letters; 

 Rewrites the token with letters from the English alphabet (simple transliteration); 

letters that cannot be rewritten (e.g., the Russian softening and hardening marks “ь” 

and “ъ”) are removed and letters that correspond to multiple letters in the English 

alphabet are expanded (e.g., the Russian “ш” and Latvian “š” are rewritten as “sh”). 

 Finds top N translation equivalents using a probabilistic dictionary in Giza++ format 

(Och & Ney, 2003). 

 Finds top M transliteration equivalents in the target language using a Moses (Koehn et 

al., 2007) character-based SMT transliteration system. 

Table 12 gives an example of a term in Latvian and English languages (“extensive 

farming”) that has been pre-processed with direct source-to-target and target-to-source 
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linguistic resources. If direct resources are not available, English can be used as an Interlingua 

for the dictionary-based look-up and the SMT-based transliteration. 

Table 12. Examples of pre-processed terms (a dash means that the particular value could not be acquired) 

Latvian term “Ekstensīvā lauksaimniecība” 

Lowercase form ekstensīvā lauksaimniecība 

Simple transliteration ekstensiva lauksaimnieciba 

SMT transliteration extensiva, extensive lauximnieciba 

Translation - agriculture, farming 

English term “Extensive farming” 

Lowercase form extensive farming 

Simple transliteration extensive farming 

SMT transliteration ekstensīviem, ekstensīvie, ekstensīvai farmēšana, farmings, farming 

Translation apjomīgam, ekstensīvas, izvērstāku turēšanas, saimniekošanas, zemkopībā 

The system allows limiting the retrieved candidates with confidence score thresholds, 

therefore, for the Latvian-to-English direction the example shows no more than three 

transliteration candidates. For translation a limiting factor is also the available number of entries 

in the probabilistic dictionary. 

3.2.3. Term Mapping 
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Figure 8. Bi-directional comparison sets for a single pre-processed term pair 

After pre-processing, the mapping module performs bi-directional term mapping. As 

shown in Figure 8, for each token in a term the mapping module operates with a set of 

constituents - 1 to N translation equivalents, 1 to M transliteration equivalents, one simple 

transliteration equivalent and one lowercased equivalent. The set of available constituents 

depends on the linguistic resources used (e.g., direct dictionaries, interlingua dictionaries, no 

dictionaries, etc.). 

The task of the mapping module is to decide whether a term pair can be mapped or not. 

The mapping process will be explained with the help of an example – the mapping of the 
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English term “dose of chemotherapy” and its German translation “chemotherapiedosis”. The 

mapping is performed in three steps. 

3.2.3.1. Identification of Content Overlaps 

At first, for every pre-processed token’s constituent, we identify the longest common 

substring in all pre-processed constituents of the target term’s tokens that are in the same 

language (in Figure 8 comparison sets of the same language are connected with a bi-directional 

arrow). For the German-English example, the pre-processing module produced 

“chemotherapiedosis” as a simple transliteration of the German term. As the English 

lowercased term and the simple transliteration of the German term are within valid comparison 

sets, the mapper will analyse content overlaps between these constituents. 

When identifying the longest common substring, the positions of the substring within the 

constituents are retained. If the length difference between the substring and the full source or 

target constituents exceeds a threshold (defined in a configuration file), the substring 

information is kept for the next step. 

The results of the first step on the example are given in Figure 9. Two of the three English 

constituents (“dose” and “chemotherapy”) can be nested within the German constituent. The 

third constituent’s (“of”) character overlap does not exceed the threshold (0.75 has been 

empirically selected as an appropriate default value), therefore, the substring information is 

ignored. 

Lowercased
German term

Lowercased 
English term

Source overlap 0.17
Target overlap 0.75

0.06 0.61
0.5 0.92

chemotherap dos isie
 |0           .. .            10|  |13 15|

|4|

dos of chemotherape y
|0...2| |0|

 

Figure 9. Longest common substring overlaps in German and English candidates 

If the longest common substring overlap does not exceed the threshold, the mapper uses 

a fall-back method based on the Levenshtein distance as applied by Ştefănescu (2012). The 

Levenshtein distance metric is transformed to the following similarity metric: 

Sim(s1,s2) = 
max(len(s1),len(s2))-LD(s1,s2) 

(2) 
max(len(s1),len(s2)) 

where LD is the Levenshtein distance between two strings, and len is a string length 

function. Each deletion, insertion and substitution is equally penalised with one point as in the 

first version of the Levenshtein distance (Levenshtein, 1966). 
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The motivation behind application of the alternative metric is that the SMT transliteration 

may introduce additional or different letters in a string and thus the longest common substring-

based method can fail. However, the fall-back method has a limitation. That is, it does not allow 

sub-word level mapping and if the similarity between two strings exceeds a predefined 

threshold, it is assumed that there is a complete overlap between the two strings. Assuming that 

the first comparison did not produce satisfactory results, Figure 10 shows the results of the 

alternative comparison for our example, however, none of the candidate pairs achieves a 

sufficient content overlap. 

dos of chemotherap

Lowercased
German term

Lowercased 
English term
Levenshtein

distance 15
Similarity 0.17

17 7
0.06 0.61

chemotherap dosisie

e y

 

Figure 10. Levenshtein distance-based overlaps in German and English candidates 

The result of this step is a list of binary alignment maps for constituent pairs. For instance, 

the binary alignment maps for “chemotherapiedosis” and “dose” are “000000000000011100” 

and “1110”. 

3.2.3.2. Maximisation of content overlaps 

In the next step the binary alignment lists are used to identify the mapping sequence that 

maximises the content overlap between the two terms. At first, the system iterates through the 

source term’s tokens and tries to find for each token the constituent that has the highest overlap 

in a target term’s constituent. At the same time the system maintains for each target term’s 

token a binary one-dimensional alignment map that defines what part of the token has been 

already mapped in order not to allow conflicting and overlapping alignments. The length of the 

alignment map is determined by the longest constituent of the source and target terms. To find 

similar mappings from the target language, the iterative process is performed also for each token 

of the target term. 

The example above contained two content overlaps (remember that the overlaps of the 

constituent “of” did not exceed thresholds). The overlap maximisation process in two iterations 

is shown in Figure 11. 
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Lowercased
German term

Alignment map after 
mapping of: XXX

2) chemotherapy X XXXXXXXXXXXXX

1) dose

chemotherap dos isie

 

Figure 11. An example of the alignment map generation process for the German-English term pair 

The goal of the mapper is to find term mappings that have a content overlap between 

terms in a way that restricts non-aligned segments (tokens or parts of tokens), but still allows a 

certain degree of imperfect mappings. For instance, we want the system to be able to decide 

that “cost of treatment” in English can be mapped to “ārstēšanas izmaksas” in Latvian (which 

is a direct translation) although it is evident that the token “of” does not have a mapping. On 

the other hand, we do not want the system to decide that “β particles” in English can be mapped 

to “daļiņas” in Latvian (translated as “particles”) as well as we would not want 

“electromagnetic field” in English to be mapped to “magnētiskais lauks” in Latvian (translated 

as “magnetic field”). There is no perfect recipe that allows identifying all good and sufficient 

mappings from all bad and incomplete mappings in a language independent fashion, however, 

the mapper allows users to decide whether non-mapped segments at the beginning or the end 

of terms should be allowed or prohibited. Consequently, the mapper can be executed in order 

to allow trimmed mappings, but not to limit non-mappings in-between of mapped segments. 

When trimmed mappings are allowed, it is important to disallow terms starting or ending with 

stopwords. Therefore, the mapper allows filtering out trimmed term mappings that start or end 

with stopwords if stopword lists are available. 

3.2.3.3. Scoring of consolidated overlaps 

In the final step the aligned constituents and their sequence that produced the character 

alignment map with the maximum content overlap are enrolled in two strings (source and target) 

in order to score the total overlap. The non-aligned source and target tokens (if there are any) 

are attached at the end of each string. At the same time, spaces are added to the other string to 

simulate non-aligned tokens. This allows penalising incomplete overlap segments. 

As both the probabilistic dictionaries and the SMT-based transliteration systems provide 

confidence scores for each candidate, these scores are used as negative multipliers to filter out 

term pairs that have low confidence and may potentially result in invalid mappings. 

The enrolled strings are scored using the Levenshtein distance-based similarity metric 

(described in section 3.2.3.1) multiplied by the negative multipliers. In the example the 

Levenshtein distance between “chemotherapydoseof” (representing the English term) and 
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“chemotherapiedosis$$” (representing the German term; “$$” represent two space symbols) is 

6; the Levenshtein distance-based similarity is 0.7. As the simple transliteration-based pre-

processing does not produce a confidence score that could be used as a negative multiplier, the 

term pair is considered to be mapped if the mapping score (in our example 0.7) is higher than 

the threshold. 

3.2.4. How to Acquire Linguistic Resources? 

MPAligner can benefit (i.e., produce term pairs with higher recall and also quality) from 

four types of optional linguistic resources: 1) probabilistic dictionaries, 2) external Moses SMT-

based transliteration modules, 3) invalid mapping dictionaries, and 4) stopword lists. 

The first three resources integrated in the term mapper can be created using Giza++ 

probabilistic dictionaries that are extracted from the parallel corpora. However, because 

Giza++ probabilistic dictionaries are very noisy, that is, the precision of the entries is close to 

0% (Aker et al., 2014b), the dictionaries have to be somehow filtered in order to minimise the 

proportion of wrong translation equivalents. Section 3.3 presents a method that allows 

effectively filtering probabilistic dictionaries in order to extract good quality probabilistic 

dictionaries and also invalid mapping dictionaries. 

Dictionaries in general (and also probabilistic dictionaries) may contain entries that can 

be considered to be reciprocal transliterations. Probabilistic dictionaries that have been 

extracted from large parallel corpora contain also transliterated words in many different 

inflected forms. Such pairs can be extracted and used to create statistical transliteration systems. 

Therefore, section 3.4 presents methods how such transliteration entries can be extracted and 

effectively used in order to create character-based SMT transliteration systems. 

The fourth resource, namely a stopword list, is a common resource used in language 

processing technologies. A stopword list usually consists of functional words (e.g., 

conjunctions, prepositions, particles, pronouns) and words that appear in almost all documents 

of a broad domain corpus. Such words rarely start or end terms (if we follow the limitation to 

noun phrases), therefore they can be used to filter out wrong candidates. In the author’s work, 

stopwords are also used to filter out potentially wrong term mappings. 

3.2.5. Evaluation 

MPAligner has been evaluated by the author using two evaluation methods – automated 

evaluation and manual evaluation. The automated evaluation was performed for language pairs 

included in the EuroVoc thesaurus. It shows the applicability of the method for European 

languages and allows estimating the upper level of recall that can be expected on comparable 
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Web corpora. The manual evaluation was performed on terms mapped in a Latvian-English 

comparable Web corpora in the medical domain. This evaluation allows estimating the expected 

performance of the method in terms of precision on noisy data. 

3.2.5.1. Automatic Evaluation 

The automatic evaluation has three goals: 1) to show how additional linguistic resources 

influence term mapping, 2) to evaluate the performance on European language pairs, and 3) to 

compare results with previous research using the same evaluation corpus. The EuroVoc 

thesaurus was selected as a suitable test corpus for the automated evaluation because it covers 

24 European languages, it contains a relatively large number of terms (at the time of evaluation 

– 6,797 terms for all languages except Hungarian with 6,790, Italian with 6,643, and Maltese 

with 987 terms), and in average 65.5% of terms across all languages are multi-word terms. 

For each evaluated language pair two monolingual lists of terms were created. Because 

the mapper sees only two independent lists of terms, the search space for mapping is not 6,797 

term pairs, but rather 46.2 million term pairs (e.g., 6,797*6,797 for English-Latvian). In this 

evaluation the highest matching (i.e., the top one) target term is retrieved for each source term. 

For the language pairs for which additional resources are available, for every token a maximum 

of five transliterations and 10 dictionary translations are retrieved. 

At first, the mapping performance when using direct (source-to-target and target-to-

source) linguistic resources, Interlingua-based (source-to-English and target-to-English) 

resources, and no resources was analysed. Figure 12 shows results (in terms of precision “P” 

and recall “R”) for the Latvian-Lithuanian language pair. It is evident that direct resources allow 

achieving significantly higher recall than having Interlingua or no resources. 

The results also suggest that the precision is stable at higher thresholds, however, it drops 

faster when using Interlingua-based resources. This can be explained by the noise that is 

introduced by the Interlingua-based resources. E.g., the term “plakne” (a type of a geometric 

figure) in Latvian can be wrongly be mapped to “самолёт” (a type of an aircraft) in Russian 

because both translate into English as “plane”. 
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Figure 12. Latvian-Lithuanian evaluation results using direct, Interlingua, and no resources 

 

Figure 13. Latvian-English evaluation results using various resource configurations 

Further, the benefits of having the probabilistic dictionaries and SMT-based 

transliteration modules were analysed. Figure 13 gives evaluation results for the Latvian-

English language pair. The results show that without linguistic resources the recall is limited. 

This is due to the small number of terms that can be transliterated with the simple transliteration 

method. An analysis of 100 randomly selected English-Latvian unigram term pairs from the 

EuroVoc thesaurus revealed that 57 pairs were transliterations. 47 out of the 57 pairs were 

mapped using the character-based transliteration module. However, only 24 out of the 57 pairs 

were mapped using the simple transliteration method. 

Evidently, adding resources allows significantly increasing the mapped term recall. It is 

also visible that the best results are achieved by using all linguistic resources. 

Finally, term mapping was performed for 22 language pairs of the EuroVoc thesaurus 

with English as the source language. The results are given in Table 13. The evaluation was 

performed using direct source-to-target and target-to-source linguistic resources. The 
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resources were built using Giza++ probabilistic dictionaries extracted from the DGT-TM 

parallel corpus (Steinberger et al., 2012). 

Table 13. Evaluation results for EuroVoc language pairs with English as the source language 

(languages are given in the ISO 639-1 format; the results are from experiments carried out in 

August, 2015 using an updated version of MPAligner) 

Language pair Precision Recall F1-measure  Language pair Precision Recall F1-measure 

en-mt 90.3% 72.2% 80.2  en-lt 85.4% 58.1% 69.1 

en-ro 89.1% 67.5% 76.8  en-cs 85.3% 57.3% 68.6 

en-es 88.6% 66.8% 76.2  en-pl 85.8% 54.9% 66.9 

en-pt 88.5% 66.9% 76.2  en-el 82.9% 55.0% 66.2 

en-fr 89.9% 64.5% 75.1  en-hu 78.7% 46.5% 58.4 

en-sk 89.4% 64.6% 75.0  en-nl 84.1% 42.9% 56.8 

en-lv 91.3% 62.7% 74.3  en-sv 82.4% 37.1% 51.2 

en-it 87.3% 64.1% 73.9  en-da 83.4% 35.0% 49.4 

en-hr 89.5% 59.8% 71.7  en-et 74.9% 36.6% 49.2 

en-sl 86.8% 60.8% 71.5  en-de 77.7% 33.6% 46.9 

en-bg 85.8% 60.2% 70.8  en-fi 70.7% 31.8% 43.8 

The evaluation results show that the author’s method significantly outperforms results 

reported earlier by Ştefănescu (2012) – an F1 score of 46.3 and 51.1 for English-Latvian and 

English-Romanian respectively when using the same probabilistic dictionaries. The term 

mapping method proposed by Ştefănescu (2012) differs from the author’s method in that it 

maps terms either with the Levenshtein distance based similarity metric or dictionary based 

exact match look-up. The author’s proposed method, however, maps term tokens in sub-word 

level using maximised character alignment maps and applies Levenshtein distance just as a fall-

back method and for scoring of the mapped term pairs. 

The results suggest that the highest performance is achieved for the English-Maltese 

language pair, however, it is not comparable to the remaining results as they are based on only 

987 term pairs from the EuroVoc thesaurus (covering mostly location and organisation named 

entities, which explains the relatively high recall). 

The evaluation results for English as the source language shows that Italic languages (e.g., 

French and Romanian) achieve the highest results, followed by Slavic and Baltic languages. It 

is interesting to note that although English is a Germanic language, the results show that 

Germanic languages achieved considerably worse results than languages from other language 

families. However, the worse results are achieved with Finno-Ugric (or Uralic) languages. 

An important aspect taken into account when designing the mapper was the mapping 

speed. For the evaluation in Table 13 the mapper required in average 86.8 minutes (which is a 

speed of 8,868 term pairs per second) for one language pair on an 8 thread (4 core) Windows 

computer. The speed can be significantly improved by limiting the number of translation and 

transliteration candidates retrieved from the probabilistic dictionary and the character-based 
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SMT module. The mapper requires in average less than 7 minutes for a language pair if no 

linguistic resources are used. 

3.2.5.2. Manual Evaluation 

The automatic evaluation was performed using terms in their base forms. However, in 

written documents terms can be found in many different inflected forms (especially for 

morphologically richer languages). The manual evaluation, therefore, has three goals: 1) to 

show the methods applicability on Web crawled comparable corpora 2) to show the methods 

performance in under-resourced conditions (e.g., the medical domain, which is out-of-domain 

for the DGT-TM corpus), and 3) to show that the method can be applied for morphologically 

rich languages. The manual evaluation was performed for the Latvian-English language pair 

and for terms in the medical domain. 

Following the term mapping workflow proposed by Pinnis et al. (2012), two monolingual 

corpora were collected from the Web using the Focussed Monolingual Crawler (Mastropavlos 

& Papavassiliou, 2011). The acquired corpora (12,697 Latvian and 21,900 English documents) 

were then aligned in document level with the DictMetric (Su and Babych, 2012) comparability 

metric (59,600 document pairs were produced). The terms were then tagged in the monolingual 

documents with TWSC (Pinnis et al., 2012). The term tagging step produced a total of 198,401 

unique Latvian and 352,934 unique English term candidates. The benefits of document level 

pre-alignment are evident when considering the full search space for the mapper without 

document alignment. In order to map 70 billion term pairs the mapper would require over 91 

days to complete (using direct linguistic resources). With document alignments the required 

time can be reduced to less than 2 days. 

Finally, terms were bilingually mapped in the 59,600 document pairs. A maximum of 

three transliteration and translation candidates were retrieved for each token of a term. A total 

of 24,804 term pairs were produced above a threshold of 0.6 (for each source term only the 

target language term with the highest confidence score was returned). 1000 randomly selected 

term pairs were manually evaluated and the results are given in Table 14. The results of the 

method by Ştefănescu (2012) is given for comparison. It produced on the same data set 2,330 

term pairs above a threshold of 0.5. That is, more than ten times less term pairs. 
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Table 14. Manual evaluation results on the medical domain Latvian-English comparable corpus 

Threshold 
All terms Multi-word terms Single-word terms 

Pairs Precision Pairs Precision Pairs Precision 

Author’ s method (random 1000/24,804 term pairs): 

1.0 17 88.2% 0 - 17 88.2% 

0.9 601 91.3% 111 85.6% 490 92.7% 

0.8 724 85.6% 160 73.8% 564 89.0% 

0.7 880 74.8% 203 65.0% 677 77.7% 

0.6 1000 66.6% 267 50.6% 733 72.4% 

Ştefănescu (2012) (random 1000/2,330 term pairs): 

1.0 25 84.0% 2 0.0% 23 91.3% 

0.9 44 90.9% 7 71.4% 37 94.6% 

0.8 88 93.2% 12 83.3% 76 94.7% 

0.7 186 87.6% 46 65.2% 140 95.0% 

0.6 387 73.6% 173 49.7% 214 93.0% 

0.5 1000 44.8% 697 25.1% 303 90.1% 

The results suggest that the author’s method performs significantly better for multi-word 

term mapping, which is the main goal of this method. It is also evident that the majority of true 

positives are scored with a mapping score of over 0.8. 

Another important question left to answer is whether the mapper finds term pairs that are 

unknown to the linguistic resources integrated in the mapper. The mapping method is only 

useful if it is able to identify out-of-vocabulary (OOV) term pairs. Therefore, the 1000 randomly 

selected term pairs from the manual evaluation were looked up in the probabilistic dictionary 

(for the 733 single-word terms) and in a translation model of an SMT system (for the 267 multi-

word terms) that was trained on the same parallel corpus from which the probabilistic dictionary 

was created. The results of the analysis in comparison with the method proposed by Ştefănescu 

(2012) are given in Table 15. 

Table 15 shows that 76.3% of all multi-word term pairs, which were evaluated as 

“correct” during the manual evaluation, could not be found in the translation model of the SMT 

system. The results also suggest that the probabilistic dictionary introduces mapping errors as 

24.75% of the wrongly mapped single-word term pairs were present in the dictionary. 

Table 15. OOV analysis of randomly selected Latvian-English term pairs 

 Single-word term pairs in the 

probabilistic dictionary 

Multi-word term pairs in the 

Moses phrase table 

Correct Wrong Correct Wrong 

Author’ s method: 

Source term OOV rate 13.94% 75.25% 76.30% 97.73% 

Target term OOV rate 14.50% 75.66% 75.19% 97.73% 

Term pair OOV rate 13.94% 75.25% 76.30% 97.73% 

Ştefănescu (2012): 
Source term OOV rate 09.72% 76.00% 63.58% 99.58% 

Target term OOV rate 12.09% 80.00% 62.86% 99.62% 

Term pair OOV rate 12.09% 80.00% 62.86% 99.62% 
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3.3. Filtered Probabilistic Dictionaries and Invalid Mapping Dictionaries 

3.3.1. Filtering of Probabilistic Dictionaries 

Probabilistic dictionaries that are extracted from parallel corpora using automated 

methods, as explained earlier, contain a lot of noise (wrong alignments, partial alignments, etc.). 

In order to use a probabilistic dictionary for term mapping purposes, it is advisable to filter the 

dictionary in order to minimise the noise contained within it. This section describes a method 

for filtering of probabilistic dictionaries and identifying word pairs, which are similarly written, 

but are not translation equivalents. Such invalid translation equivalence pairs can be used by 

MPAligner as a linguistic resource that allows detecting incorrectly aligned term constituents. 

The main idea of the probabilistic dictionary filtering method using transliteration 

systems is that when simply applying fixed thresholds we filter out many good translation 

equivalents from the probabilistic dictionaries, however, identification of translation 

equivalents that are reciprocal transliterations may allow retaining equivalents that would 

otherwise be filtered out. In this approach we are also analysing how far in terms of filtering 

we can get by applying language-specific alphabet filters. The method filters dictionary entries 

using the following 7 steps: 

 The first step performs structural validation of dictionary entries in order to remove 

obvious noise. At first, we remove all entries that contain invalid character sequences 

on either source or target side. Character sequences are considered invalid if according 

to the Unicode21 character table they contain control symbols, surrogate symbols, or 

only whitespace symbols. This step also identifies mismatching character sequences 

by comparing the source and target sides of a dictionary entry. At first it verifies that 

the source and target token letters are equally capitalised (with an exception of the first 

letter, which in some languages, e.g., for nouns in German or days of a week in 

English, is capitalised). Further, it verifies whether the letters contained in the source 

and target sides belong to the source and target language alphabets and whether both 

tokens contain equal numbers of digits, punctuation marks, and symbols, and whether 

they are located in similar positions in the source and target words. As the Giza++ 

probabilistic dictionaries are statistical representations of token alignments in a 

parallel corpus, the alignments contain also easily detectable mistakes, such as, words 

paired with punctuations, incorrectly tokenized strings paired with words, etc. It is 

possible to easily filter out such obvious mistakes in the probabilistic dictionaries by 

applying the character-based validation rules on the source and target language words. 

                                                 
21 For more information about Unicode refer to the http://www.unicode.org/ Web site. 

http://www.unicode.org/
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 The second step identifies dictionary entries that are transliterations. Two different 

transliteration methods are applied (see section 3.4 for more details): 1) the language 

independent (however, fixed to the Latin, Greek, and Cyrillic alphabets) rule-based 

transliteration using Romanisation rules, and 2) the character-based SMT 

transliteration. While the first transliteration method is fast, it is not able to capture 

morphological variations in different languages and it treats each character 

independently of the context. The second method takes context (character n-grams) 

into account and is able to transliterate words not only into English, but also into other 

languages, thus transliterated word identification can be performed bi-directionally 

(from source to target and from target to source languages). To identify transliterated 

words, the transliterations (e.g., the source word transliterated into the target language) 

are compared with the other side’s word (e.g., the target language word) using the 

Levenshtein distance-based string similarity metric described in section 3.2.3.1. If the 

maximum similarity score using any of the transliteration methods and transliteration 

directions (source-to-target or target-to-source) is higher than 0.7 (identified as an 

acceptable threshold through empirical analysis) and the source and target words are 

not equal (because such pairs are often wrong language pairs), we consider the 

dictionary entry as transliterated and we pass it through to the filtered dictionary (the 

further filtering steps are skipped). 

 In the third step the remaining pairs are analysed using reference corpora based IDF 

scores (Spärck Jones, 1972) of the source and target words. All pairs that have a 

difference of word IDF scores greater than 0.9 (also empirically identified) are 

removed. Such pairs often indicate of functional word (or stopword) miss-alignment 

with content words (e.g., in the probabilistic dictionaries created by Giza++ the 

English “a” is usually paired with almost every token of the other language and the 

IDF-based filter reliably removes such entries). 

 In the fourth step the method applies a translation probability value threshold that is 

differentiated for (source language) words that were already containing transliteration 

pairs (i.e., if a dictionary entry containing the source word was identified as a 

transliteration, then all other translation candidates for the source word are required to 

have a high probability in order to be accepted as translation equivalents). 

 Then, the method removes all pairs that partially contain transliterations. For instance, 

consider the dictionary entry “monopoly” (in English) and “monopols” (in Latvian). 

The entry is a transliteration, thus, “monopolsituācijā” (translated as “in the case of a 

monopoly”) would be filtered out as it contains the whole transliterated part. 
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 The method applies also several heuristic filters that have shown to remove further 

noise (e.g., rare words miss-aligned with a probability of one if a source word already 

contains multiple translation hypotheses, equal source and target words if the source 

word already contains multiple translation hypotheses, etc.). 

 Finally, the pairs that have passed all filter tests are written to the filtered dictionary. 

Examples of dictionary entries that were identified using the different filtering steps from 

the English-Latvian Giza++ dictionary are given in Table 16. 

Table 16. English-Latvian dictionary entries identified according to different filtering steps 

Source 

Token 

Target Token Giza++ 

Probability 

Filtering Step 

. 94/65/ek. 0.50 Structural validation (1) –- wrong entries 

standards standarts 0.02 Transliteration identification (2) –- correct entries 

a aprobēt 0.50 IDF score-based filter (3) –- wrong entries 

proven gazprom 0.08 Threshold filter (4) –- wrong entries 

regulatory energoregulatora 0.50 Partial containment and transliteration filter (5) –- wrong entries 

navigational dodamos 1.00 Heuristic filters (6) –- wrong entries 

3.3.2. Creation of Invalid Mapping Dictionaries 

In order to create the invalid mapping dictionary for MPAligner, the filtered dictionary is 

processed one more time. This time, words from one language are compared with all words 

from the other language using the Levenshtein distance-based similarity metric without any 

transliteration. The pairs that have high similarity, but are not defined as translation entries 

within the filtered dictionary, are included in the invalid mapping dictionary. For instance, 

“pants” in English and “pants” in Latvian (translated as “article” or “paragraph”) have a 

similarity score of 1.0. As such entries would result in obvious misalignment by the term 

mapper, the inclusion of such similarly written words in the invalid mapping dictionary allows 

us to reliably filter possible invalid source and target token pairs when performing term 

mapping. 

3.3.3. Evaluation of the Filtered Dictionaries 

The probabilistic dictionary filtering method has been evaluated in co-operation with 

other co-authors of the publication Aker et al. (2014b). The transliteration-based filtering 

method has been compared with two methods developed by Ahmet Aker: 1) a purely statistical 

approach, which was first implemented by Munteanu & Marcu (2006) and uses Log Likelihood 

Ratio (LLR) (Dunning, 1993) in order to test whether two words can be considered translation 

equivalents or not, and 2) a pivot-based approach, which uses an intermediate language in order 

to validate translation entries in a dictionary. That is, if we have to filter, for instance, the 

English-Latvian dictionary, we can use an English-German and German-Latvian dictionary in 
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order to test whether through German as the intermediate language in this example we can 

acquire the same Latvian translation equivalents as by using the direct English-Latvian 

dictionary. Each of the methods produces a different set of filtered dictionary entries, therefore, 

the evaluation analyses individually the entries excluded by all methods, included by just one 

method, included by two methods, or included by all methods. The evaluation was performed 

by two language specialists (more precisely, professional translators) per language pair 

(English-Latvian and English-German dictionaries were evaluated) using a Web-based 

evaluation platform developed by Monica Lestari Paramita that for 40 randomly selected 

dictionary entries per test set asked whether it was a complete translation equivalence, whether 

it was a containment (e.g., for single stem words and compound words). The evaluation results 

for English-Latvian in Table 17 show that out of all individual methods the author’s method 

(the transliteration-based method) allows acquiring dictionary of higher precision than with the 

other methods. However, when looking at the results of the various intersections of the different 

methods, it is evident that much higher precision can be reached by combining the methods. 

Similar results were identified also for the English-German language pair (Aker et al., 2014b). 

Table 17. Results of the English-Latvian manual evaluation by two annotators. The precision figure in each row 

is computed by dividing the figure in column Eq. with the sum of the figures of the columns Eq. to Wrong of that 

row (Aker et al., 2014b). 

Set name All ratings Complete agreement ratings 

Eq. Cont. Wrong Precision Eq. Cont. Wrong Precision 

All 71 2 7 88.75% 33 0 1 97.06% 

Transliteration + LLR 62 4 14 77.50% 25 0 3 89.29% 

Transliteration + Pivot 56 7 17 70.00% 25 1 6 78.13% 

LLR + Pivot 55 5 20 68.75% 25 2 7 73.53% 

Transliteration 49 4 27 61.25% 21 0 11 65.63% 

Pivot 34 11 35 42.50% 14 2 14 46.67% 

LLR 34 4 42 42.50% 15 1 19 42.86% 

Original 5 3 72 6.25% 0 0 32 0.00% 

Furthermore, analysis performed by Aker at al. (2014b) has shown that the different 

methods when applied separately miss out many good translation equivalents. In the term 

mapping experiments performed by the author only the transliteration-based filtering method’s 

produced dictionaries have been used. Therefore, an important direction for future work is the 

combination of different filtering methods as well as concatenation of the different dictionaries 

acquired with the different filtering methods. 

3.4. Character-based SMT Transliteration Systems 

Transliteration, which is the process of representing words from one language using the 

writing system of another language (Arbabi et al., 1994; Pouliquen et al., 2005), is a typical 

method for the translation of named entities and technical terms (Knight & Graehl, 1997) (often 
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applying grapheme-to-phoneme and phoneme-to-grapheme transformation rules in the 

translation process). Creation of a rule-based system can be very time consuming, and therefore 

an alternative is to build supervised machine learning based systems (e.g., using statistical 

machine translation technology; Kirschenbaum, & Wintner, 2010). However, to build 

supervised transliteration models that could be integrated in machine translation systems, we 

require a transliteration dictionary. Although there are multilingual named entity dictionaries, 

e.g., JRC Names (Steinberger & Pouliquen, 2011), HeiNER (Wentland et al., 2008), and others, 

available, they are not directly applicable for development of transliteration models, because 

named entities often contain words which are not transliterated. For example, the organisation 

name “European Union” when translated into Latvian (“Eiropas Savienība”) contains a 

transliterated and a translated word. 

Therefore, to address the necessity of transliteration dictionaries, the following 

subsections will present a method for transliteration dictionary extraction using a bootstrapping 

process from existing dictionaries, e.g., automatically extracted probabilistic dictionaries (Aker 

et al., 2004b) or manually created dictionaries containing words in their canonical (or lemma) 

forms. The author describes and analyses a large multilingual transliteration dictionary 

extracted from probabilistic dictionaries for 24 European languages (23 language pairs with 

English as a source language). 

3.4.1. Bootstrapping Method 

To create a transliteration dictionary, the author starts with existing Giza++ (Och & Ney, 

2003) probabilistic dictionaries extracted from the DGT-TM (Steinberger et al., 2012; for 

official languages of the European Union) and MultiUN (Eisele & Chen, 2010; for English-

Russian) parallel corpora. The transliteration dictionaries are bootstrapped from the 

probabilistic dictionaries in two (or more) steps: 

1) In the first step, we apply Romanisation rules (Knight & Graehl, 1997) to all non-

English words. The Romanisation rules have been specifically developed for the term 

mapper MPAligner (Pinnis, 2013) and define one-to-one (e.g., the Greek “β” and the 

Bulgarian “б” correspond to the English letter “b”, etc.), one-to-many (e.g., the Greek 

“φ” corresponds to the English “th”, the Russian “ч” corresponds to the English “ch”, 

etc.), and one-to-none (e.g., the Russian letters “ъ” and “ь” are deleted) correspondences 

of letters from a non-English alphabet into the English alphabet. Then, we compare the 

English words to the Romanised words with the Levenshtein distance-based similarity 

metric, which was introduced in section 3.2.3.1 - equation (2). Word pairs exceeding an 
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empirically set threshold of 0.7 are extracted as reciprocal transliterations for the further 

bootstrapping steps. 

2) In the second step (and further steps if necessary), we use the transliterations identified 

in the previous step to build character-based statistical machine translation (SMT) 

systems using the Moses SMT toolkit (Koehn et al., 2007). The SMT systems are used 

to transliterate entries of the initial dictionary. For the experiments presented in this 

paper, we use the top five SMT transliterations for each non-English word. New 

transliteration pairs are identified using the same similarity function from Equation 1. 

3.4.2. Data Formats 

The extracted multilingual transliteration dictionary is stored in an XML document. The 

dictionary consists of source entries in English (the “SEntry” tag in Figure 14). For each source 

entry, the dictionary provides a list of transliterations in target languages (the “TEntry” tags). 

For each transliteration entry, the dictionary provides the number of the bootstrapping iteration 

in which the transliteration pair has been identified and the bootstrapping method’s confidence 

score (the Levenshtein distance based similarity). This provides traceability for the data within 

the transliteration dictionary and allows fine-tuning the dictionary for different application 

purposes where quality and quantity requirements differ. 

 

Figure 14. Example of the XML format of the multilingual transliteration dictionary 

3.4.3. Statistics of the Multilingual Transliteration Dictionary 

To create the multilingual transliteration dictionary, the author performed two 

bootstrapping iterations. The first bootstrapping iteration produced a total of 598,807 

transliteration pairs for 82,454 English words across all 23 language pairs. The second iteration 

resulted in 1,246,908 transliteration pairs for 104,803 English words. 

The quantitative results for English-Latvian (see Table 18) show a significant increase in 

new transliteration pairs extracted in the second bootstrapping iteration. The increase can be 

explained by the SMT-based transliteration method’s ability to deal with inflectional 

characteristics of different languages. That is, the SMT translation model learns from parallel 

data (transliteration equivalents identified in previous steps) to translate language specific word 

prefixes and suffixes from one language into another. As the rule-based method is not capable 
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of performing such language specific transformations, it cannot identify many good 

transliteration equivalents. 

Table 18. Statistics of new English-Latvian transliteration pairs identified in five bootstrapping iterations 

Iteration New pairs % increase New English words % increase 

1 30,879 - 15,598 - 

2 41,347 134% 11,992 77% 

3 1,704 2% 500 2% 

4 469 1% 125 0% 

5 961 1% 255 1% 

Total 72,226  28,470  

Table 18 also shows that for English-Latvian, the first two out of five total iterations allow 

acquiring approximately 97% of all extracted English words. Because the initial dictionaries 

are exhaustive resources (i.e., they contain a fixed number of entries out of which only a certain 

amount are potential transliterations) and the first two iterations are able to identify the majority 

of transliteration equivalents, all further iterations are less productive. The 97% comprise 

approximately 20% of all 134,146 unique English words present in the initial probabilistic 

dictionary. Taking into account that English and Latvian are not closely related languages, this 

is a relatively large number. 

As a result, only the first two bootstrapping iterations were performed for the multilingual 

transliteration dictionary. The statistics of the dictionary for all 23 language pairs with English 

as the source language are given in Table 19. The extracted pair count for Croatian-English is 

lower due to a smaller size of the initial probabilistic dictionary. 

Table 19. Statistics of the multilingual transliteration dictionary after merging first and second iteration data 

(languages are given in the ISO 639-1 format) 

Target 

language 

Unique English 

words 

Transliteration 

pairs 
 

Target 

language 

Unique 

English words 

Transliteration 

pairs 

bg 17,567 37,901  lt 25,258 66,243 

cs 28,366 58,931  lv 27,590 72,186 

da 27,321 51,383  mt 21,217 62,428 

de 23,862 41,560  nl 23,673 36,741 

el 15,513 31,273  pl 29,723 62,313 

es 35,030 64,480  pt 37,666 67,473 

et 22,188 48,113  ro 27,295 58,531 

fi 18,180 33,860  ru 30,835 71,482 

fr 33,367 59,390  sk 31,536 77,607 

hr 7,368 14,965  sl 30,364 66,365 

hu 26,942 53,664  sv 28,692 53,676 

it 31,147 56,343     

A visual example of an entry in the transliteration dictionary for the Baltic languages is 

given in Figure 15. The light grey to black connectors between English and the target languages 

indicate low (grey) to high (black) confidence scores assigned to the transliteration pairs by the 

bootstrapping method. 
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Figure 15. Transliterations of the English word “conference” in Estonian, Latvian, and Lithuanian 

identified in the Giza++ dictionaries extracted from the DGT-TM corpus 

3.4.4. Evaluation 

The evaluation of the multilingual transliteration dictionary consists of two parts:  

1) manual evaluation for the English-Latvian language pair, and 2) automatic evaluation of the 

transliteration dictionary in an SMT-based transliteration task for 23 language pairs. 

3.4.4.1. Manual Evaluation 

Manual evaluation of the multilingual transliteration dictionary has been performed for 

the English-Latvian language pair. The author executed a total of five bootstrapping iterations 

and extracted only newly identified transliteration pairs from each iteration (the quantitative 

statistics are given in Table 18). Further, 100 transliteration pairs were randomly selected from 

the newly extracted transliteration pairs for manual evaluation. A transliteration pair in the 

manual evaluation is considered correct if: 

1) The pair consists of words that are reciprocal translations. 

2) The pair qualifies to be a transliteration pair. That is, it has to be possible to acquire 

from the source word the target word (and vice versa) by performing alphabet specific 

letter transformations (e.g., the Latvian “č” can correspond to the English “ch”, the 

Greek “ρ” can correspond to the English “r”, etc.) and language specific prefix and 

suffix transformations (e.g., the English suffix “ation” may correspond to the Latvian 

“ācija”, Italian “azione”, the Bulgarian “ация”, and other suffixes in many different 

inflected forms). 

conference

English
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The evaluation results are given in Figure 16. The results show that the precision of the 

transliteration dictionary for English-Latvian is over 90% after the first bootstrapping iteration. 

Taking into account that the initial probabilistic dictionaries are of very low quality (Aker et 

al., 2014b), this is a very good result. The figure also shows that the precision of the newly 

extracted transliteration pairs decreases with each new bootstrapping iteration. Although this 

was to be expected, the thresholds for different bootstrapping iterations could be differentiated 

in order to achieve a stable precision of over 90%. 

 

Figure 16. Manual evaluation results for 100 randomly selected transliteration pairs from the English-Latvian 

transliteration dictionary from different bootstrapping iterations 

3.4.4.2. Automatic Evaluation in an SMT-based Transliteration Task 

Transliteration dictionaries have shown to be beneficial when integrated into SMT 

systems (Kirschenbaum & Wintner, 2010). However, they are also used for development of 

machine transliteration systems (Knight & Graehl, 1997) (e.g., character-based SMT; Finch & 

Sumita, 2008). In the paper by Pinnis (2013) the author has shown that such systems can be 

used for cross-lingual term mapping in comparable corpora. In this section, the extracted 

dictionaries are evaluated in SMT-based transliteration tasks. 

After the second bootstrapping iteration, the source-to-English transliteration data was 

randomly split in 10 data folds. In each data fold, eight parts were used for training, one – for 

tuning, and one – for evaluation. Then, 10-fold cross validation was performed by measuring 

character level SMT quality using SMT evaluation metrics BLEU (Papineni et al., 2002) and 

NIST (Doddington, 2002). The results are given in Table 20. The results are shown with a 99% 

confidence interval. 
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Table 20. Character level 10-fold cross-validation results for character-based SMT transliteration  

(languages are given in the ISO 639-1 format) 

Language pair NIST BLEU  Language pair NIST BLEU 

bg-en 11.48±0.04 90.11±0.23  lt-en 11.71±0.02 89.49±0.15 

cs-en 12.07±0.03 90.46±0.14  lv-en 11.87±0.03 89.78±0.22 

da-en 11.92±0.04 90.37±0.17  mt-en 11.63±0.04 90.35±0.21 

de-en 11.89±0.02 90.30±0.17  nl-en 11.68±0.07 89.42±0.29 

el-en 10.94±0.04 85.29±0.25  pl-en 11.96±0.02 89.85±0.18 

es-en 11.84±0.05 88.20±0.31  pt-en 11.99±0.05 88.83±0.23 

et-en 12.13±0.03 91.93±0.20  ro-en 11.67±0.03 88.67±0.13 

fi-en 12.10±0.05 92.54±0.47  ru-en 11.23±0.04 83.27±0.18 

fr-en 11.99±0.06 88.39±0.27  sk-en 12.15±0.05 90.84±0.18 

hr-en 10.53±0.07 87.60±0.31  sl-en 12.02±0.03 89.71±0.12 

hu-en 12.17±0.02 91.10±0.13  sv-en 11.92±0.02 89.91±0.14 

it-en 11.51±0.05 86.78±0.28     

 

Figure 17. 10-fold cross-validation results for the top N SMT transliteration equivalents for Baltic Languages 

(languages are given in the ISO 639-1 format) 

Depending on usage scenarios, an SMT system can be asked to produce one (e.g., for 

integration of transliteration in machine translation) or many (e.g., for cross-lingual term 

mapping) transliteration equivalents. Figure 17 shows the precision for up to top ten SMT 

generated transliteration equivalents for Baltic languages (results for other language pairs are 

given in Table 21) when transliterated into English. Because of different inflectional forms in 

transliteration pairs (e.g., singular vs. plural forms, verbs in different tenses, etc.), the results 

show a significant increase in precision for the top two to top four transliteration equivalents 

over the results of the top one. 

Another reason for the lower precision for the top one transliteration is the ambiguity of 

different character sequence transformations, which cannot be predicted by analysis of the 

surrounding context (letters to the left and to the right). For instance, the differences between 

writing paradigms in American English and British English allow the Latvian “organizācija” 

to be transliterated as “organization” or “organisation”. Another ambiguous (or non-predictive) 

example is, for instance, the Latvian “Kuba” transliterated in English. It can be either the 

country “Cuba” or a three-dimensional figure “Cube”. Obviously, the top one transliteration 

will not always be the expected transliteration because of such ambiguities. A list of the most 
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frequent top one transliteration errors for Latvian-English is given in Table 22. Note that the 

table shows also ambiguous examples, which are not actual errors, e.g., singular vs. plural 

forms, different verb tenses, etc. 

Table 21. 10-fold cross-validation results for the top 1, top 5, and top 10 SMT transliteration equivalents 

(languages are given in the ISO 639-1 format) 

Language 

pair 
Top 1 Top 5 Top 10  

Language 

pair 
Top 1 Top 5 Top 10 

bg-en 51.36±0.6% 78.20±2.2% 79.87±2.8%  lt-en 47.52±0.6% 75.94±1.6% 77.96±2.1% 

cs-en 49.93±0.7% 75.15±1.9% 76.13±2.2%  lv-en 48.21±0.9% 74.45±2.5% 75.94±3.1% 

da-en 47.37±0.8% 74.94±1.2% 76.38±1.3%  mt-en 53.68±0.9% 75.95±3.2% 76.94±3.6% 

de-en 46.01±0.9% 77.02±2.1% 79.12±2.9%  nl-en 45.31±1.0% 63.09±2.2% 63.67±2.3% 

el-en 41.89±0.8% 66.10±1.8% 68.06±2.1%  pl-en 47.45±0.5% 75.81±2.0% 77.57±2.6% 

es-en 43.94±0.6% 66.42±1.5% 67.37±1.8%  pt-en 46.33±0.8% 66.95±2.7% 67.69±3.1% 

et-en 55.49±1.0% 80.24±2.6% 81.35±3.0%  ro-en 44.48±0.6% 73.88±1.9% 75.67±2.4% 

fi-en 59.89±1.3% 81.70±1.6% 82.59±1.7%  ru-en 37.95±0.5% 61.68±1.5% 63.79±1.9% 

fr-en 42.29±1.0% 63.71±3.3% 64.42±3.6%  sk-en 51.30±0.6% 78.08±1.4% 79.63±2.0% 

hr-en 43.12±1.5% 66.02±4.6% 68.38±5.7%  sl-en 48.17±0.5% 76.91±2.5% 78.77±3.1% 

hu-en 51.94±0.8% 76.50±2.7% 77.37±3.1%  sv-en 46.64±0.8% 75.55±1.4% 77.37±1.8% 

it-en 37.71±0.9% 68.34±2.6% 71.44±3.6%      

Table 22. 15 most frequent character level errors for the Latvian-English SMT-based transliteration system  

(In the table: Insertions – Ins., Deletions – Del., Substitutions – Sub.). 

No. Error % of all 
Latvian (in different 

inflected forms) 

English 

Expected Generated 

1 
Ins. / Del. 

19.79% 
zonā zone[s] zone 

s organismus organism organism[s] 

2 
Ins. / Del. 

6.42% 
krese cress cress[e] 

e validēt validat[e] validat 

3 
Ins. / Del. 

3.82% 
komponentā component component[a] 

a memorandu memorand[a] memorand 

4 
Ins. / Del. 

3.39% 
kvazistatiskas quasi[-]static quasistatic 

- subklīniskas subclinical sub[-]clinical 

5 
Ins. / Del. 

3.29% 
stratēģiskai strategic strategic[al] 

al teorētiskām theoretic[al] theoretic 

6 
Sub. 

3.27% 
realizējis reali[z]ed reali[s]ed 

z ↔ s organizē organi[s]e organi[z]e 

7 
Ins. / Del. 

2.66% 
luksemburga luxemburg luxemb[o]urg 

o fosforu phosphor[o]us phosphorus 

8 
Ins. / Del. 

2.38% 
koncentrētos concentrate[d] concentrate 

d neitralizētu neutralise neutralise[d] 

9 
Ins. / Del. 

2.37% 
homeopātiskas homeopat[h]ic homeopatic 

h metrīta metritis met[h]ritis 

10 
Sub. 

2.01% 
iridovīrusa [i]ridovirus [y]ridovirus 

i ↔ y elektrolīts electrol[y]te electrol[i]te 

Further, for the Latvian-English transliteration direction, Figure 18 depicts the SMT-

based transliteration quality for systems trained on data from the first and second bootstrapping 

iterations. Although the manual evaluation results show that the overall quality of the data after 

the second iteration is lower, the SMT evaluation shows that the data from the second iteration 

allows achieving higher word level precision. The results show that the SMT system is able to 

build a more generalised translation model by using more data. 
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Figure 18. 10-fold cross-validation results for the top N SMT generated transliteration equivalents. The chart 

compares Latvian-English SMT-based transliteration systems trained on the transliteration dictionaries from the 

first and second bootstrapping iterations. The error bars indicate a 99% confidence interval. 

3.5. MPAligner Applied in Practice 

The term mapper MPAligner has been successfully applied in practice in the TaaS project 

where it has been used to perform cross-lingual term mapping in the TaaS platform’s Bilingual 

Term Extraction System (BiTES) (TaaS, 2014a). The BiTES workflows for comparable corpora 

(depicted in Figure 19) are used for acquisition of bilingual terminology for the Statistical Data 

Base (SDB) of the TaaS platform (TaaS, 2014a). 

 

Figure 19. The design of the consolidated multilingual terminology acquisition workflows of the TaaS Bilingual 

Term Extraction System (Vasiļjevs et al., 2014b; TaaS, 2014a) 

When performing bilingual term mapping on large corpora (i.e., tens or hundreds of 

thousands of document pairs) or when term mapping is performed iteratively, repeatedly or 
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separately on multiple corpora, it is important for the solution that uses the term mapper’s output 

to deal with redundancy in the mapped data. Redundancy in the term mapper’s output may be: 

1) duplicate term entries in term lists, and 2) the same terms, but in different inflected forms, 

paired together. Therefore, after cross-lingual term mapping with MPAligner, the bilingual term 

pairs are integrated into the SDB by simultaneously performing term pair morphological 

consolidation. Because for different languages different linguistic tools may be available (i.e., 

POS taggers, morphological analysers, lemmatisers, term normalisers, etc.), term consolidation 

is performed in three levels: 

 For languages, for which lemmatisation of words is not available, however POS 

taggers can be used, terms are grouped together only by their inflected forms and POS 

sequences. 

 For languages with lemmatisation support, terms are grouped by their lemmatised 

forms and POS sequences. This consolidation level ensures that for morphologically 

rich languages redundancy, which is caused by having numerous inflected forms of a 

single word, can be eliminated. However, this method can also group together inflected 

forms belonging to different terms. For example, the term candidates “personālais 

dators” and “personāls dators” from Figure 20 both have identical lemma sequences. 

This issue can be solved by the third level. 

 For languages with term normalisation support, different inflected forms of terms are 

grouped by their normalised forms and the normalised form POS sequences. This 

method ensures that term inflected forms are correctly grouped together in the SDB. 

The different consolidation levels are used in order to provide the most appropriate term 

translation equivalents for a term lookup query in the TaaS platform (TaaS, 2014a). If no 

translation equivalents are identified in the higher consolidation levels, the data from the lower 

levels is used, thus ensuring that the SDB provides as descriptive information for bilingual terms 

produced by BiTES (and the MPAligner) as possible. 

Term translation lookup queries for terms integrated into the SDB can be organised also 

with the help of pivot languages. For instance, Figure 20 shows translation candidates for the 

Lithuanian term “personalinis kompiuteris” (transl. “personal computer”) in Latvian that can 

be acquired using English as a pivot language. 
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Figure 20. Visualised example of terminological data extracted with MPAligner 

and stored in the TaaS Statistical Data Base (Vasiļjevs et al., 2014b) 

For the TaaS platform, MPAligner has been used to cross-lingually map terms in 

Wikipedia, Web news, focussed Web crawled, and parallel corpora. In total, over twenty million 

unique inflected form pairs of terms distributed over 45 subject fields were integrated into the 

TaaS SDB for 26 language pairs. Statistics for different languages are given in Figure 21. This 

resource serves as a valuable term translation candidate look-up source in the TaaS platform. 

 

Figure 21. Unique inflected form pairs of terms integrated in the TaaS SDB 

(languages are given in the ISO 639-1 format) 
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3.6. Summary of Cross-Lingual Term Mapping 

In this section, the author presented a new bilingual term mapping method (MPAligner) 

using maximised character alignment maps. The method has been designed to address multi-

word term pair as well as compound term pair mapping for European Languages that are based 

on Latin, Greek and Cyrillic alphabets. 

The method has been evaluated 1) automatically using the EuroVoc thesaurus for 23 

language pairs, and 2) manually on terms mapped in a comparable corpus in the medical domain 

for the Latvian-English language pair, showing that the mapping method is suitable for handling 

noisy data collected from the Web. The evaluation also shows that up to 76.3% of the correctly 

mapped multi-word term pairs are out-of-vocabulary term pairs. The proposed term mapping 

method is able to find multi-word term pairs with a relatively high precision of up to 85.6%. It 

should, however, be noted that the scores depend on the corpus processed and may differ 

between language pairs as seen in the automatic evaluation. 

An important resource that has been created with MPAligner (in combination with corpus 

collection, term identification, term normalisation, and domain classification methods of the 

TaaS platform’s Bilingual Term Extraction System) in an effort that spanned for more than one 

year is the Statistical Data Base of the TaaS platform. SDB contains over 20 million pairs of 

inflected forms of terms in 25 languages. All pairs have been acquired with the help of 

MPAligner. To the best of the author’s knowledge, this is the largest resource of multilingual 

terminology currently available. 

The author also presented a transliteration-based method for filtering raw probabilistic 

dictionaries extracted from parallel data. The method has been evaluated in comparison with 

two other methods (LLR-based and pivot language-based) developed by Aker et al. (2014b) 

and it has shown to produce better quality (in terms of precision) results than the other methods. 

However, the relatively low recall of all three methods shows that significant improvements 

could be achieved by combining the three methods. The possible combination, as shown by the 

evaluation could improve the overall precision as the intersection of all three methods shows to 

be of much better quality than the quality of all other combinations. 

Another method presented in this section was a bootstrapping method for the creation of 

a multilingual transliteration dictionary from existing probabilistic dictionaries. The 

multilingual transliteration dictionary generated by the author using probabilistic dictionaries 

extracted from the DGT-TM parallel corpus and the MultiUN parallel corpus covers 24 

languages and contains a total of 1,246,908 transliteration pairs. To the best of the author’s 

knowledge, the dictionary is the first publicly available multilingual transliteration dictionary. 

The evaluation has shown that the transliteration dictionary can be effectively applied in SMT-
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based transliteration tasks and also cross-lingual term mapping by integrating the transliteration 

systems into MPAligner. 

The term mapping toolkit together with configuration and evaluation recipes is released 

under a non-commercial (free to use for scientific purposes) license. The toolkit can be 

downloaded from https://github.com/pmarcis/mp-aligner. The multi-lingual transliteration 

dictionary and the tools for creation of the transliteration dictionary as well as tools for filtering 

probabilistic dictionaries and creating invalid mapping dictionaries are freely downloadable 

from https://github.com/pmarcis/dict-filtering. 

 

https://github.com/pmarcis/mp-aligner
https://github.com/pmarcis/dict-filtering
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4. STATIC INTEGRATION OF TERMINOLOGY IN SMT 

SYSTEMS 

As already noted in the introduction, terminology integration in SMT systems can be 

performed in two levels: 1) statically when training SMT systems, and 2) dynamically when 

translating documents using an already pre-trained SMT system. This section focusses on the 

research carried out on static terminology integration in SMT systems. The section is based on 

the author’s contributions for the publications by Pinnis et al. (2014), Pinnis & Skadiņš (2012), 

Skadiņš et al. (2013), and the TaaS project’s Deliverable D4.4 Terminology Integration in SMT 

(TaaS, 2014b). 

All terminology integration experiments reported in this thesis have been performed using 

the LetsMT SMT platform (Vasiļjevs et al., 2012). Just to show the complexity of SMT system 

training, Figure 22 visually depicts an overall training process of a typical SMT system in the 

LetsMT platform, broken down in many different sub-processes. The figure also shows the 

processes that combined in workflows train the translation and language models of an SMT 

system. This section will particularly focus on methods that allow performing efficient domain 

adaptation of translation and language models using bilingual term collections. 

 

Figure 22. A typical SMT system training process in the LetsMT platform 

Translation 

model training 

Language 

model training 



76 

Further, section 4.1 gives insight in related work on static terminology integration in 

SMT, section 4.3 describes a simple method for terminology integration in SMT (for both the 

translation models and the language models) that is a prerequisite for more complex static 

terminology integration methods. The simple method is followed by separately describing 

methods applied for terminology integration in SMT system translation models (section 4.4) 

and SMT system language models (section 4.5). 

4.1. Related Work on Static Terminology Integration in SMT 

There have been numerous research works reporting improvement of translation quality 

in terms of automatic machine translation evaluation after direct (by using in-domain term 

collections) and indirect (by tackling the broader challenge of domain adaptation using in-

domain parallel or monolingual corpora) integration of terms and term phrases in SMT systems. 

Significant research efforts have been spent on using in-domain parallel and monolingual 

corpora (that contain in-domain terminology) to perform SMT system translation model and 

language model adaptation to specific domains (to name but a few, Koehn & Schroeder (2007), 

Bertoldi & Federico (2009), Hildebrand et al. (2005), and many others). The usage of in-domain 

corpora in combination with out-of-domain corpora, however, is challenging. If all parallel data 

(in-domain and out-of-domain) is used to train a single translation model, the out-of-domain 

training data may overwhelm the in-domain data (Koehn & Schroeder, 2007). However, if just 

the in-domain corpora is used, the trained SMT system may fail generalising general language 

characteristics, and this can lead to poor translation quality (Thurmair, 2004). A domain specific 

SMT engine needs to capture the generalisations of an engine trained on large parallel corpora, 

yet not lose domain specificity. It was shown that to achieve this, the translation model of an 

SMT system can be trained on all available parallel data including out-of-domain data, 

however, instead of one language model, the SMT system should utilise two separate language 

models that are trained on in-domain and out-of-domain sets (Koehn & Schroeder, 2007; Lewis 

et al., 2010). Although SMT domain adaptation has been an active field in the machine 

translation research community, the majority of practical SMT applications rely solely on 

collecting big amounts of domain specific corpora. Moreover, there are not so many more 

advanced solutions, which would focus on special handling of terminology. It is assumed that 

training data will contain translations with terminology and correct terminology translation will 

be learned from the training data. However, it is not usually the case as training data, even if it 

is in the same domain, can contain contradicting terminology (e.g., industry specific synonyms, 

product-biased or customer-biased terminology, obsolete terminology, etc.). 
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Terminology integration has been also indirectly addressed by research on multi-word 

unit integration in SMT. E.g., Bouamor et al. (2012) showed that for French-English it is enough 

to simply add multi-word unit pairs to the parallel corpus; however, they observed a limited 

gain of +0.3 BLEU (Papineni et al., 2002) points. They extracted the multi-word units from the 

parallel corpus (for each language separately) with a method similar to the linguistically 

motivated term identification using morpho-syntactic patterns and paired the units using a 

statistically motivated method by building a vector space model (Salton et al., 1975). They 

investigated also two translation model adaptation methods: 1) by extending the SMT system’s 

phrase table with new entries (this method did not show significant quality improvements), and 

2) by extending the first method further by adding a feature that indicates, which entries have 

been newly added as term phrases. The third method showed a significant translation quality 

decrease. Using additional phrase tables and explicit user-specified translations of known 

phrases is a general practice in SMT for different purposes (e.g., Chen & Eisele (2010) use such 

methods to create hybrid SMT systems). 

Although not directly related to terminology translation, Nikoulina et al. (2012) have 

proposed a framework for integrating Named Entities within SMT systems by pre-processing 

parallel corpora and replacing NEs identified in texts with NE category codes. The SMT system 

is trained using the pre-processed parallel and monolingual data. When performing translation, 

the source text is always pre-processed with the same techniques that replace NEs with the NE 

category codes. After the translation with the SMT system, the codes are replaced back with 

translations of the NEs using NE-specific translation methods. It was shown that the introduced 

model could lead to +2-3 BLEU point improvement over a baseline system for two different 

test sets. However, they report results for the translation between languages with little 

morphological inflection (i.e., from English to French) and the NEs are translated with one to 

one translation equivalents (i.e., using just the canonical forms), which for translation into 

morphologically rich languages may not be enough to achieve SMT quality improvement. 

Because NEs in contexts behave orthogonally to terms (i.e., NEs of the same category often 

have common contexts, however terms don’t have a concept for categories and each term can 

have different contexts), the NE translation method using replacement is not directly applicable 

to terminology integration in SMT. 

In terms of direct terminology integration, similar work to the author’s work that shows 

significant quality improvements has been recently performed by Arcan et al. (2014a) for the 

English-Italian language pair (in both translation directions). They use a bilingual term 

collection to create a “fill-up” translation model that consists of a pre-trained SMT system's 

phrase table merged with a phrase table created from the bilingual terminology. The phrases 
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that are present in both phrase tables get the highest probability scores assigned in the fill-up 

model. They introduce also a feature in the fill-up model’s phrase table that identifies phrase 

translations coming from the in-domain phrase table. This way, the method allows assigning 

higher translation probabilities to in-domain term translations over out-of-domain term 

translations. However, the method does not identify correct term translations that are present in 

phrases within the initial phrase table, which could potentially have a greater impact on the 

translation model. Their results show an SMT quality improvement of up to 2 BLEU points. 

4.2. Term Collections for SMT Experiments 

For experiments on static terminology integration in SMT systems, the author uses three 

different types of term collections: 1) an English-Latvian term collection created using 

automatic bilingual term extraction methods from parallel and comparable corpora, 2) a 

manually filtered version of the automatically acquired term collection, and 3) four term 

collections for different language pairs (English-Latvian, English-Lithuanian, English-

Estonian, and English-German) created by professional translators. 

4.2.1. Automatically Created Term Collection 

To create the automatically extracted term collection for English-Latvian, a small 

proprietary parallel corpus of 1,745 sentence pairs in the automotive domain was used. At first, 

terms and named entities (NE) were monolingually identified in the data. For terms, the 

methods described in section 2.2 were used and for named entities the TildeNER (Pinnis, 2012) 

named entity recogniser for Latvian and OpenNLP22 for English were used. Then, the 

monolingually identified terms and named entities (542 unique English and 786 unique Latvian 

units in total) were cross-lingually mapped using the parallel tuning data and the methodology 

by Pinnis & Skadiņš (2012). As a result, 783 term and NE phrase pairs were identified. These 

phrases were then used to collect an in-domain comparable corpus from which additional term 

pairs were extracted using cross-lingual term mapping methods. The comparable corpora 

collection procedure is described further. 

4.2.1.1. Comparable Corpora Collection 

The author performed comparable corpora collection instead of parallel corpora 

collection because of two reasons: 1) parallel corpora (especially in narrow domains and for 

under-resourced languages, such as Latvian) is scarce or non-existing (Skadiņa et al., 2012), 

and 2) comparable corpora is widely available (e.g., domain specific news in different 

                                                 
22 Apache OpenNLP is available online at: http://opennlp.apache.org/. 
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languages, open access multi-lingual encyclopaedias, such as Wikipedia, localised industry or 

community created Web sites about specific topics, etc.). 

There are many different parallel and bilingual comparable corpora collection tools 

available. Several of the better known tools are, for instance, Babouk (De Groc, 2011), Bitextor 

(Esplá-Gomis, 2009), Focussed Monolingual Crawler (FMC; Mastropavlos & Papavassiliou, 

2011), BootCAT (Baroni & Bernardini, 2004), and many others. For comparable corpora 

collection, the author uses the FMC tool 

FMC requires seed terms to collect a domain-specific comparable corpus. For this 

purpose, the author used the English-Latvian term and named entity pairs extracted in the 

previous step. As the automatically extracted seed terms can contain also out-of-domain or 

cross-domain terms and named entities, it is necessary to filter the seed term list so that only 

domain-specific terms (and as few as possible cross-domain and out-of domain terms) would 

be included. For instance, if we want to collect a corpus in the automotive domain a natural 

choice of a term for a seed term list could be “oil”. But would it really be a good candidate for 

a seed term? The word “oil” is very ambiguous. When talking about “oil”, we may refer to 

“body oil”, “cooking oil”, “baby oil”, “massage oil”, and many other types of “oil”. When 

ambiguous seed terms are used to collect a Web corpus, the collected corpora will include texts 

from different domains. Therefore, the terms were ranked using a term pair specificity 

estimation method. The method uses reference corpus inverse document frequency (IDF) scores 

of words calculated on general (broad) domain corpora (in the author’s work, the Wikipedia 

and current news corpora) to weigh the specificity of a phrase. Each bilingual phrase was ranked 

using the following equation: 

𝑅(𝑝𝑠𝑟𝑐 , 𝑝𝑡𝑟𝑔) = 𝑚𝑖𝑛(∑ 𝐼𝐷𝐹𝑠𝑟𝑐(𝑝𝑠𝑟𝑐(𝑖))

|𝑝𝑠𝑟𝑐|

𝑖=1

, ∑ 𝐼𝐷𝐹𝑡𝑟𝑔 (𝑝𝑡𝑟𝑔(𝑗))

|𝑝𝑡𝑟𝑔|

𝑗=1

) (3) 

where 𝑝𝑠𝑟𝑐 and 𝑝𝑡𝑟𝑔 denote phrases in the source and target languages and 𝐼𝐷𝐹𝑠𝑟𝑐 and 

𝐼𝐷𝐹𝑡𝑟𝑔 denote the respective language IDF score functions that return an IDF score for a given 

token. The ranking method has been selected through a heuristic analysis process so that 

specific in-domain term and named entity phrases would be ranked higher than broad-domain 

or cross-domain phrases. The method allows filtering out phrase pairs where a phrase may have 

a more general meaning in one language, but a specific meaning in the other language. Thereby, 

the method ensures that the bilingual terminology is domain specific and that the collected 

corpus will be in the required domain. After applying a threshold on the term pair ranks, 614 

phrase pairs remained in the seed term list for corpora collection. 
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Additionally to the seed terms FMC requires seed URLs. Therefore, 55 English and 14 

Latvian URLs for Web resources focussed on the automotive domain were manually collected. 

When the seed terms and seed URLs were acquired, a 48 hour focussed monolingual web 

crawl was initiated for both languages. The statistics of the corpora are given in Table 23. 

Table 23. Monolingual automotive domain corpora statistics 

Language Unique 

Documents 

Sentences Tokens Unique 

Sentences 

Tokens in Unique 

Sentences 

English 34,540 8,743,701 58,526,502 1,481,331 20,134,075 

Latvian 6,155 1,664,403 15,776,967 271,327 4,290,213 

To perform bilingual term extraction from two monolingual corpora, the corpora have to 

be aligned in document level (i.e., documents from one corpus have to be paired with documents 

from the second corpus). For document alignment the author used a cross-lingual comparability 

metric, more specifically, the DictMetric (Su & Babych, 2012) tool. The main task of a 

comparability metric is to estimate how much content of two documents overlaps (translated 

phrases, sentences, whole paragraphs, etc.). DictMetric scores document pair comparability (the 

higher the comparability, the more content overlap is present) and aligns document pairs that 

exceed a specified comparability score threshold. In total, 81,373 document pairs were 

produced in this step. The final comparable corpus statistics are given in Table 24. The Latvian 

part of the comparable corpus has been also used in further SMT experiments. 

Table 24. English-Latvian automotive domain comparable corpus statistics 

Language Unique 

Documents 

Unique 

Sentences 

Tokens in Unique 

Sentences 

English 24,124 1,114,609 15,660,911 

Latvian 5,461 247,846 3,939,921 

Once the corpus was collected, bilingual terminology was extracted from the corpus using 

the Terminology Aligner (TEA; Ştefănescu, 2012). In total, both automatic bilingual term 

extraction methods produced 979 term and named entity pairs. In the SMT experiments 

described further, this term collection is named as the “non-filtered” term collection. 

4.2.2. Filtered Term Collection 

Because the non-filtered term pairs contain noise that is created in the automatic cross-

lingual term mapping process, the term collection was further manually filtered in order to 

remove noise and too general and too ambiguous term pairs. However, note that this is a 

filtering process and not a term collection creation process, where the terms would be 

transformed from their inflected forms to their canonical forms. After filtering, the “filtered” 

term collection consisted of 845 term pairs. 



81 

4.2.3. Professional Term Collection 

In parallel to the automatic bilingual term extraction and manual filtering, a professional 

translator was asked to create a term collection from the parallel automotive domain corpus 

from which the automatically extracted bilingual terms were acquired. The translator produced 

a term collection consisting of 644 term pairs (all terms are given in their canonical forms). 

This term collection is further referred to as the “professional” term collection. 

4.3. Terminology as a Corpus 

The simplest method for terminology integration in SMT systems that is applied also by 

related works on terminology integration in SMT systems (Bouamor et al., 2012) is to add the 

in-domain bilingual term collections to the parallel corpus, which is used for translation model 

training, and the target language terms to the monolingual corpus, which is used for language 

model training. This method, although being very simple, is quite efficient, because it ensures 

that the terms that are not covered by both the parallel corpus and the monolingual corpus (i.e., 

terms that can be considered as out-of-vocabulary terms) will have a larger possibility of having 

at least one translation hypothesis. The conceptual design of this method is depicted in 

Figure 23. 
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Figure 23. The conceptual design of the “Terminology as a Corpus” method 

A requirement for this method to work is that terminology is added to both the parallel 

corpus and the monolingual corpus. Such a requirement is set, because when translating a 

sentence, the translation model is responsible for generating translation hypotheses and the 

language model is responsible for estimating how well the generated hypotheses represent (or 

are likely to belong to) the target language. Therefore, if a term is not present in the parallel 
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corpus, it cannot be present in the translation hypotheses and if the term is not present in the 

monolingual target language’s corpus, the hypotheses containing the term will receive a low 

score from the language model. 

However, this method has a limitation. Because terms in the term collections that are 

acquired from term banks, e.g., EuroTermBank, IATE, the TaaS platform, etc., are usually 

stored in their canonical forms (or base forms), for languages that feature rich morphologies 

where words can be morphologically inflected, this method won’t allow the identification of 

translation equivalents for terms that in contexts appear in inflected forms different from their 

canonical forms. Nevertheless, this method can be efficient in the following three scenarios: 

 When translating from and to languages with little morphological inflection (e.g., from 

or to English, German, French, etc.), terms in contexts are often equal to their 

canonical forms. Consequently, the recall and the effectiveness of the method is higher 

than for morphologically richer languages. E.g., for Latvian, which is a 

morphologically rich language, even when translating from English, as shown by 

Pinnis and Skadiņš (2012), the method does not show quality improvements when 

using a term collection from an authoritative source (the EuroTermBank) because of 

two main reasons: 1) in Latvian terms appear in many different inflected forms, and 2) 

many of the terms in the authoritative data base are ambiguous (they may have multiple 

translation equivalents listed, which all may represent the same terminological 

concept), thus the addition of new term pairs causes more statistical uncertainty for the 

SMT system. However, it also does not show a quality decrease, which for the method 

in general is a positive result. 

 When acquiring term collections in an automatic process from, e.g., parallel data or 

comparable data, the bilingual terms are already stored in inflected forms that are 

common in different contexts. These bilingual term pairs are better suited as possible 

translation hypotheses in different contexts than the canonical forms (for which the 

usage in different contexts may be very limited). For more details on this scenario see 

section 4.3.1. 

 Even if the bilingual terminology is provided by the term data bases in a canonical 

form, it can still be beneficial in the SMT system training process. More specifically, 

by adding the bilingual terminology to the parallel corpus, we indirectly provide the 

word alignment processes (e.g., the Giza++ tool in Moses) and further also the phrase 

extraction process in the SMT training system with a list of valid term alignments 

(single word and multi-word alignments), which can help word alignment and phrase 

extraction processes to produce word and phrase alignments with a higher precision. 
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4.3.1. Evaluation Scenarios and Results 

The static terminology integration methods are all evaluated for the English-Latvian 

language pair using evaluation data from the automotive domain. For baseline systems, the 

publicly available DGT-TM parallel corpus (Steinberger et al., 2012) as the general language 

corpus is used throughout the experiments. More specifically, the DGT-TM releases of 2007, 

2011 and 2012 have been used. The total amount of parallel sentences in the corpus is 3’159,459 

before noise filters (duplicate filters, corrupt sentence filters, etc.) of the LetsMT platform and 

1’954,740 sentence pairs after the filters. The target language side of the parallel corpus is used 

for language modelling. After noise filtering, the monolingual corpus consisted of 1’887,304 

sentences. For tuning of the English-Latvian system, a small in-domain parallel corpus of 2,617 

sentence pairs was used (the same corpus used to create the automatically extracted term 

collection in section 4.2). The corpus was randomly split into a tuning set (1745 sentence pairs) 

and an evaluation set (872 sentence pairs). The tuning set and the evaluation set are static 

throughout the whole English-Latvian experiments presented in this thesis. For the English-

Latvian experiments for static terminology integration in SMT systems three types of term 

collections (described in section 4.2) were used: 

 The automatically extracted bilingual term collection consisting of 979 term pairs 

(“non-filtered” in the results below). 

 The manually revised version of the automatically extracted bilingual term collection 

consisting of 845 term pairs (“filtered” in the results below). 

 The bilingual term collection created by a professional translator consisting of 644 

term pairs (“professional” in the results below). 

Using the publicly available corpus and the tuning data, a baseline system was trained 

within the LetsMT platform. The automatic evaluation results are given in Table 25. Then, the 

non-filtered term collection was added to the parallel and monolingual corpora and the system 

was re-trained. The results show that there is a significant increase over the baseline system in 

translation quality (from 12.68 to 15.51 BLEU points). When training an SMT system using 

the filtered term collection, it is evident that the results are lower than with the non-filtered 

terms. This may be explained with the fact that the automatic alignments were acquired from 

very precise in-domain data with respect to the evaluation data and even though the aligned 

pairs were noisy and ambiguous, they represented the in-domain data better. Therefore, the 

noisy data allows achieving a higher result. Finally, a system was trained using the term 

collection created by the professional translator. The results are lower than with the 

automatically extracted term collection and the manually post-processed (filtered) term 
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collection. Adding the professionally created term collection to the parallel and monolingual 

corpora did not yield a better result than the automatically extracted term collection, because of 

two main reasons: 1) the terms were in their base forms, which when translating into Latvian 

often are not the required inflected forms, and 2) the professional term collection contains terms, 

which in different contexts may be ambiguous and provides just one translation candidate (e.g., 

“cover” may be a noun “pārsegs” or a verb “nosegt”, “fill” may be a noun “uzpilde” or a verb 

“uzpildīt”/“aizpildīt” depending on the context, etc.). The automatically extracted term 

collection is able to provide multiple translation equivalents for each term also in different 

inflected forms (as found in the corpus from which the bilingual term collection is extracted). 

Table 25. Terminology as a Corpus evaluation results 

Scenario BLEU (C) BLEU NIST (C) NIST METEOR (C) METEOR TER (C) TER 

Baseline 12.00 12.68 4.1361 4.2644 0.1439 0.1849 0.7893 0.7801 

Non-filtered 14.60 15.51 4.4756 4.6301 0.1599 0.2011 0.7660 0.7531 

Filtered 13.94 14.76 4.4010 4.5376 0.1580 0.1985 0.7719 0.7604 

Professional 12.97 13.62 4.3422 4.4792 0.1513 0.1941 0.7697 0.7586 

4.4. Translation Model Adaptation 

As described in the introduction, the task of the translation model is to generate translation 

hypotheses for source language sentences. Therefore, the goal of terminology integration in an 

SMT system’s translation model is to either make the translation model prefer in-domain 

translation hypotheses for terms over out-of-domain translation hypotheses in as many in-

domain contexts as possible (i.e., generate in-domain translation hypotheses with higher 

translation likelihood scores than out-of-domain translation hypotheses) or to allow only in-

domain translation hypotheses of terms. The conceptual design of the translation model 

adaptation methods using bilingual term collections is depicted in Figure 24. 
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Figure 24. The conceptual design of the “Translation model adaptation” methods 
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Further subsections will describe two methods that allow performing translation model 

adaptation using bilingual term collections. 

4.4.1. Phrase Table Adaptation 

In this method, following the methodology published in Pinnis and Skadiņš (2012), the 

Moses phrase table of the translation model is transformed into an in-domain term-aware phrase 

table. This is performed by adding a new feature to the default features that are used in Moses 

phrase tables. Figure 25 shows that the phrase table adaptation is performed immediately after 

a phrase table is created in the SMT system’s training process (the “consolidate-ttable-halves” 

process in the LetsMT platform). 

 

Figure 25. Phrase table adaptation as a step in the translation model training workflow in the LetsMT platform 

The term identifying feature receives the following values: 

 “1” if a phrase on both sides (in both languages) does not contain a term pair from a 

bilingual term list. If a phrase contains a term only on one side (in one language), but 

not on the other, it receives the value “1” as such situations indicate about possible out-

of-domain (wrong) translation candidates. 

 “2.718” if a phrase on both sides (in both languages) contains a term pair from the 

bilingual term collection. 

In order to find out whether a phrase in the phrase table contains a given term or not, 

phrases and terms are stemmed prior to comparison. This allows finding inflected forms of term 

phrases even if those are not given in the bilingual term list. The new feature identifies phrases 
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containing in-domain term translations and allows assigning higher translation probabilities to 

in-domain translation hypotheses. Different from the method proposed by Arcan et al. (2014a), 

this method affects the whole phrase table as it identifies terms that are contained within longer 

phrases. An example excerpt from an English-Latvian Moses phrase table with the term 

identifying feature is given in Figure 26. 

 

Figure 26. Example excerpt from an English-Latvian Moses phrase table with the term identifying feature 

When both the translation model and the language model are created, in a typical SMT 

system training workflow the system is tuned, e.g., with Minimum Error Rate Training (MERT; 

Bertoldi et al., 2009). The task of tuning is to learn weights for the different features of an SMT 

model using a representative of the target domain set of parallel sentences – the tuning data. 

The phrase table of the translation model after the adaptation contains an additional feature that 

identifies whether a phrase pair contains bilingual terminology. In order for the new feature to 

be productive, the tuning data has to contain the same terminology that was used to adapt the 

phrase table, otherwise the tuning process will learn that the new feature is “useless” and assign 

it a negative weight. Therefore, an important aspect for the phrase table adaptation method is 

the selection of tuning data. In the scenarios in section 4.4.3 the non-filtered and filtered 

bilingual term collections have been also enriched with terms automatically extracted from the 

tuning data, thereby ensuring the presence of in-domain terminology in the tuning data. 

However, tuning data could be also selected in an automated process from parallel data, e.g., 

by randomly selecting sentence pairs containing 0, 1, 2, etc. bilingual term pairs from the 

bilingual term collections in the sentence pairs. 

4.4.2. Phrase Filtering 

When performing phrase table adaptation the SMT system is trained to prefer in-domain 

translation hypotheses to out-of-domain translation hypotheses. However, in some situations 

we might want to limit the term translation hypotheses to only those that are present in a term 

collection and disallow all out-of-domain translations at all. Such a scenario could be beneficial 

for the translation of, e.g., named entities (which are not terms, but nonetheless), terms that 

have to have a specific translation in domains or use cases that can be considered sensitive (e.g., 
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in a very sensitive scenario we could disallow racist or abusive translations), etc. Thus, this 

section describes a phrase filtering method that allows implementing the above mentioned 

restrictions for translation hypotheses selection in SMT system translation models. 

 

Figure 27. Phrase filtering as a step in the translation model training workflow in the LetsMT platform 

As shown in Figure 27, the phrase filtering can be performed immediately after phrase 

extraction of the Moses SMT system (in the LetsMT platform the phrase extraction process is 

named “extract-phrases”). The filtering has to be performed before phrase scoring in order to 

ensure correct calculation of translation probability scores. In order to identify terms in different 

inflected forms, the filtering process for each word of a term in the first language performs 

lightweight stemming (i.e., removes only endings). For each corresponding term in the second 

language the process keeps only the first four letters (however, if a word is shorter than five 

letters, it is stemmed) of each word. When searching for invalid term pairs that have to be 

filtered out, such a lightweight and “rude” stemming approaches allow limiting the possibility 

of filtering out many correct term pairs because of high possible morphological variations that 

the lightweight stemming approach (if applied for both languages) would not be able to capture. 

The term filtering method is both effective (it filters out all wrong translation hypotheses) 

and very risky. That is, if a term collection contains ambiguous terms, that is, phrases that may 

have multiple meanings and multiple translations also in in-domain texts and not all translations 

will be defined in the term collection, then the phrase pairs that contain such translation 

equivalents, regardless of the fact that they are correct translation hypotheses, will be filtered 
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out. Let us go through a small example. Imagine that we have an English-Latvian term 

collection containing terms from the automotive domain (see Table 26) and we have an example 

excerpt from phrases extracted by the LetsMT platform’s SMT system training process and 

filtered out by the term filtering process (see Table 27), i.e., the filtering process has decided 

that the term pairs are wrong. 

Table 26. An example English-Latvian term collection in the automotive domain 

English term Latvian term  English term Latvian term 

force spēks  rail sliedes 

production ražošana  production ražošana 

version versija  product produkts 

service apkope  instrument instruments 

service serviss  transmission transmisija 

rail dzelzceļš    

Table 27. An example of English-Latvian phrase pairs that were filtered out by the phrase filtering process 

No. English phrase Latvian phrase Correct In-domain? 

1 force majeure majeure No - 

2 for the production par tās izpildi No - 
3 the production tās No - 
4 the Dutch version holandiešu tekstā Yes No 

5 entry into service nodots ekspluatācijā Yes Yes 

6 service pakalpojums Yes Yes * 

7 gateway in the rails ieeju kuģu margās Yes No 

8 plant protection products augu aizsardzības līdzekļu Yes No 

9 products izstrādājumu Yes No * 

10 control instruments kontroles ierīces Yes No 

11 transmission pārnesumkārbas No - 

For each phrase pair the Table 27 also gives information whether the phrase pair is 

correct, i.e., whether such a translation exists regardless the automotive domain constraints and 

it also shows whether the phrase pair, if correct, can be considered an in-domain phrase pair 

regardless of its presence in the term collection. That is, the last column should tell us whether 

there exist term pairs that we have forgotten to include in the term collection. The “*” in the 

last column indicates that the domain affiliation is ambiguous (meaning, it could and could not 

belong to the domain). 

Table 27 shows that the filtering step is able to filter out pairs that are incorrect in terms 

of phrase boundaries (the examples 1, 2, 3, and 4 in the table). The method also correctly filters 

out correct, but out-of-domain phrase pairs. However, it can be seen that the method is not 

forgiving if the term collection lacks an important translation equivalent. All phrases containing 

the missing translation equivalent are filtered out. Nevertheless, section 4.4.3 will show that the 

method can be beneficial if applied wisely and bearing in mind the behaviour of the method; it 

will be also shown that performing phrase filtering with this method using automatically 
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extracted term pairs from parallel or comparable corpora without manual revision is not 

recommended. 

4.4.3. Evaluation Scenarios and Results 

For the evaluation of translation model adaptation with bilingual terminology, a similar 

data combination as for the evaluation of the Terminology as a Corpus scenario (see section 

4.3.1) is used. The difference, however, is that two baseline systems were built and bilingual 

term collections were integrated in the parallel and monolingual corpora (thus also the BLEU 

scores are higher for the baseline systems). Furthermore, the baseline systems were built with 

a second language model – an in-domain language model. The data for the in-domain language 

model was collected from the Web using the Focussed Monolingual Crawler (FMC). The in-

domain monolingual corpus consists of 1’664,403 sentences before the LetsMT platform’s 

noise filter and 224,639 sentences after noise filtering. As the noise filter removes also duplicate 

sentences, there is a large size reduction of the in-domain monolingual corpus. More details on 

the corpus collection process can be found in section 4.2.1.1. 

For both baseline scenarios (with non-filtered and with filtered term collections) the 

translation models were separately adapted in order to evaluate the translation quality changes. 

Then, the phrase table filtering method was evaluated in two separate scenarios – source-to-

target filtering and target-to-source filtering. Because in the filtering scenario invalid phrase 

pairs are removed with respect to the first language (irrelevant of the translation direction), we 

get different filtering results if we consider the source language the first or the target language. 

The evaluation results in Table 28 show that for English-Latvian the source-to-target filtering 

achieves a higher result (in terms of translation quality). It is also evident that using the filtered 

term collection, from which ambiguous terms and too general terms were manually removed, 

the translation quality exceeds even the baseline system’s translation quality. Whereas the non-

filtered term collection causes valid phrase pairs to be filtered out from the phrase table. 

Therefore, the translation quality slightly decreases in comparison to the baseline system. It 

should be noted that the phrase filtering is a challenging method that can have beneficial effects, 

however the term collection has to be very complete (either consisting of non-ambiguous terms 

or all terms that are ambiguous have to have all possible translation equivalents specified in the 

term collection) in order to achieve a translation quality improvement. However, as shown by 

the results with the filtered term collection, translation quality improvements can be achieved. 
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Table 28. Evaluation results of terminology integration in SMT systems 

during training – translation model adaptation 

Scenario BLEU 

(C) 

BLEU NIST 

(C) 

NIST METEOR 

(C) 

METEOR TER 

(C) 

TER 

Non-filtered terms 

Baseline 14.96 15.72 4.5095 4.6825 0.1588 0.2026 0.7660 0.7532 

Source-to-target filtering 14.95 15.68 4.5329 4.6976 0.1609 0.2041 0.7626 0.7507 

Target-to-source filtering 14.34 15.06 4.4613 4.6249 0.1565 0.2005 0.7745 0.7632 

Term identifying feature 15.21 15.96 4.5884 4.7566 0.1623 0.2058 0.7636 0.7514 

Filtered terms 

Baseline 13.12 13.87 3.9872 4.1404 0.1385 0.1811 0.7987 0.7874 

Source-to-target filtering 13.42 14.21 4.0753 4.2273 0.1417 0.1839 0.7877 0.7754 

Target-to-source filtering 12.31 12.95 3.8403 3.9850 0.1314 0.1730 0.8070 0.7963 

Term identifying feature 13.39 14.1 4.1029 4.2458 0.1434 0.1852 0.7857 0.7737 

Finally, the phrase table adaptation with the help of an additional feature in the phrase 

table that identifies bilingual terminology in phrase pairs also achieves a translation quality 

improvement over the baseline systems for both filtered and non-filtered term collection 

scenarios. In addition, it should be noted that this method has not shown a translation quality 

decrease in the author’s experiments. 

4.5. Language Model Adaptation 

The second area of focus after terminology integration in translation models has been the 

usage of bilingual terminology to perform language model adaptation. The conceptual design 

of bilingual terminology integration in SMT system language models is depicted in Figure 28. 

More specifically, this section investigates methods for monolingual corpora splitting with the 

help of in-domain terminology into in-domain and out-of-domain sets. 
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Figure 28. The conceptual design of the “Language model adaptation” methods 
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4.5.1. Monolingual Corpora Splitting 

The idea behind monolingual corpora splitting is that if we already have a large 

monolingual corpus, we could use this large corpus and extract from it sentences that we 

consider as in-domain sentences using a term collection. Because the in-domain sentences 

contain in-domain terminology, combined in a corpus they should represent the in-domain texts 

of the target language better. However, it should be noted that this method is highly 

experimental. By performing just monolingual analysis the method can also extract sentences 

that contain the lexical forms of terms, however with different meanings (i.e., if the lexical 

forms are ambiguous). Nevertheless, several experiments were performed in order to 

understand how much can be achieved by the monolingual corpora splitting method. 

Each monolingual corpus can be split in two parts – an in-domain part and an out-of-

domain part. When we have just one monolingual corpus, we can easily split it in the two parts 

(see Figure 29). However, if we have more than one corpus, we have multiple choices: 

 We can split both corpora in two parts and train four language models – two in-domain 

language models and two out-of-domain language models (see Figure 30). 

 We can split both corpora in two parts and then combine the in-domain and out-of-

domain parts together so that we would end up having again two corpora – an in-

domain and an out-of-domain corpus (see Figure 31). 

 We can also create three language models by splitting just one of the corpora or by 

splitting all of them, but concatenating back just the in-domain or the out-of-domain 

part. 

 

Figure 29. The monolingual corpus splitting method for one target language corpus 
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Figure 30. The monolingual corpus splitting method for two target language corpora (a) 

 

Figure 31. The monolingual corpus splitting method for two target language corpora (b) 

4.5.2. Evaluation Scenarios and Results 

For the evaluation of language model adaptation with bilingual terminology, similar data 

set-up as for the evaluation of the Terminology as a Corpus scenarios (see section 4.3.1) was 

used. The difference, however, is that the in-domain monolingual corpus that was collected 

from the Web (see section 4.2.1.1) was also used to train language models. The baseline system 

has been trained using two language models – the general language model that is based on the 

DGT-TM corpus and the in-domain language model that is based on the comparable Web 

corpus. For these experiments only the “non-filtered” term collection was used as it allowed 

achieving the highest results in previous experiments. 

Additionally to the baseline system, three experiments were performed with monolingual 

corpora splitting techniques. In the first experiment, the general domain corpus and the in-

domain corpus were split in two parts. The resulting in-domain parts were joined together in a 

larger in-domain corpus, however, the out-of-domain parts were kept separated. Thus, we 

trained three language models – one with out-of-domain data (from the DGT-TM corpus), one 
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with pseudo-out-of-domain data (the out-of-domain part of the initial in-domain corpus), and 

one with in-domain data from both initial corpora. For the second experiment all four parts were 

kept separated (thus having two in-domain and two out-of-domain language models). For the 

third experiment the in-domain parts and respectively also the out-of-domain parts were 

concatenated in order to train just two language models. 

The Table 29 shows the evaluation results. It is evident in our results that the system with 

two language models, which were based on the two reorganised monolingual corpora) achieved 

a significantly higher result than all other systems. However, further analysis is needed in order 

to verify that the method works also with different corpora and different term collections. 

The Table 29 shows also results of phrase table adaptation (the scenarios that use the 

“term identifying feature”). For all scenarios with the adapted phrase table, translation quality 

improved. 

Table 29. Evaluation results of terminology integration in 

SMT systems during training – language model adaptation 

Scenario BLEU 

(C) 

BLEU NIST 

(C) 

NIST METEOR 

(C) 

METEOR TER 

(C) 

TER 

Baseline 13.41 14.03 4.0188 4.1510 0.1390 0.1795 0.7991 0.7881 

+ term identifying feature 13.77 14.43 4.0963 4.2284 0.1424 0.1823 0.7838 0.7735 

3 mono corpora 13.79 14.45 4.1979 4.3170 0.1497 0.1903 0.7797 0.7691 

+ term identifying feature 14.03 14.7 4.2493 4.3825 0.1492 0.1913 0.7753 0.7636 

4 mono corpora 13.49 14.3 4.0986 4.2610 0.1418 0.1848 0.7913 0.7778 

+ term identifying feature 13.91 14.69 4.1278 4.2795 0.1470 0.1881 0.7823 0.7695 

2 reorganised mono corpora 14.21 15.06 4.2406 4.3855 0.1501 0.1926 0.7771 0.7667 

+ term identifying feature 15.34 16.24 4.4966 4.6588 0.1603 0.2053 0.7596 0.7470 

4.6. Summary of Static Integration of Terminology in SMT Systems 

In this section the author presented methods for static bilingual terminology integration 

in SMT systems. In total, three different types of methods were discussed: 1) terminology 

injection into SMT system parallel and monolingual data (i.e., the Terminology as a Corpus 

method), 2) methods for SMT system translation model adaptation (i.e., phrase table adaptation 

and phrase table filtering), and 3) methods for language model adaptation using monolingual 

corpus splitting techniques. 

The evaluation was performed for the English-Latvian language pair using automatic 

SMT evaluation metrics (i.e., BLEU, NIST, TER, and METEOR). The evaluation showed that 

the Terminology as a Corpus method allows significantly boosting SMT quality by up to 22.3% 

(or 2.83 absolute BLEU points) over the general domain baseline system when using the 

automatically extracted bilingual term collection (i.e., “non-filtered” in the results). This is a 

significant result as it shows that when translating into morphologically rich languages 

terminology integration in SMT systems has to take into account the morphological variability 
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of terms (i.e., the different inflected forms of terms). As a reminder, the “non-filtered” term 

collection contains term pairs in inflected forms as they were found in the in-domain parallel 

corpus used for the SMT system tuning and also in the in-domain comparable corpus collected 

from the Web. 

The translation model adaptation by the introduction of a bilingual terminology 

identifying feature allowed to improve SMT quality cumulatively (comparing to the initial 

baseline system) up to 25.9% (or 3.28 absolute BLEU points) over the baseline system. 

Performing also language model adaptation with corpora splitting techniques allowed to boost 

the SMT quality improvement up to 28.1% (or 3.56 absolute BLEU points) over the initial 

baseline system. 

The author believes that the most stable methods for static terminology integration in 

SMT systems are the Terminology as a Corpus method and the translation model adaptation 

with the term identifying feature in the translation model’s phrase table. However, it has to be 

noted that in order for the new feature to be effective, the tuning data used for tuning of the 

SMT system has to be rich with the in-domain terminology used for adaptation of the translation 

model. If the tuning data will not contain the in-domain terminology, the tuning process will 

not be able to identify that the new feature is of any help to the improvement of the translation 

quality. It may even consider that the new feature has a negative effect on the SMT system’s 

quality.  
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5. DYNAMIC INTEGRATION OF TERMINOLOGY IN SMT 

SYSTEMS 

Terminology integration in SMT systems during training, as shown by the evaluation 

results, allows to tailor SMT systems to a required domain, however, it requires to re-train if 

not the whole SMT system then at least a significant portion of the system (e.g., the translation 

model, the language model, or even both and the systems have to be also re-tuned in order to 

adjust weights of the different features used in the SMT system). For many translation tasks (or 

projects for localisation service providers) re-training of a system could also be uneconomical 

(for instance, if all you need is to translate a five page document). Furthermore, if we have 

already trained a relatively good SMT system (let it be a general domain system or a close-

domain system to the domain that is needed), why should we spend time on re-training it? We 

should instead be able to use the same SMT system, but tailor it to the required domain with 

the help of the right bilingual terminology. This section documents methods developed by the 

author that allow to perform dynamic terminology integration in SMT systems (conceptually 

depicted in Figure 32). The section is based on the author’s contributions for the publications 

by Pinnis (2015), Pinnis & Skadiņš (2012), Skadiņš et al. (2013), Vasiļjevs et al. (2014a), and 

the TaaS project’s Deliverable D4.4 Terminology Integration in SMT (TaaS, 2014b). 

SMT system s 
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SMT system training 
and adaptation

Online translation 
service

Input text for 
translation

Parallel 
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Monolingual 
corpus

Bilingual term 
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Translated text

 

Figure 32. The conceptual design of terminology integration in the SMT system translation level 

The terminology integration is performed with a source text pre-processing workflow (see 

Figure 33) that uses the bilingual term collection in order to identify terms in the source text 

(e.g., sentence, paragraph, even a full document) using term identification methods described 

in section 1, annotates the content with possible translation hypotheses from the bilingual term 

collection using XML mark-up23 that complies with the Moses SMT system’s XML mark-up 

                                                 
23 More details on the Moses XML mark-up can be found on the Moses SMT system’s home page at: 

http://www.statmt.org/moses/?n=Moses.AdvancedFeatures#ntoc7. 

http://www.statmt.org/moses/?n=Moses.AdvancedFeatures#ntoc7
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format, assigns translation likelihood scores for each of the translation hypotheses, and, finally, 

translates the document taking into account the injected mark-up. 

Translation workflow with integrated
 terminology pre-processing
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Term 
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generation
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Figure 33. Source text pre-processing for terminology integration in SMT system translation level 

Further, section 5.1 describes related work on dynamic terminology integration in SMT 

systems, sections 5.2, 5.3, and 5.4 describe the different components involved in the source text 

pre-processing workflow, section 5.5 describes evaluation efforts and evaluation results, and 

section 5.6 gives a summary of the methods for dynamic terminology integration in SMT. 

5.1. Related Work on Dynamic Terminology Integration in SMT 

In recent years considerable research efforts have been spent on methods for integration 

of term collections in SMT that do not require re-training of SMT systems. This section 

describes the most relevant topics in related research to the author’s work. 

A common terminology translation issue is that terms are often not found in phrase-based 

SMT translation models or the translation models contain out-of-domain translation 

equivalents. This issue can be solved if SMT systems provide runtime integration with existing 

terminology databases or term collections provided by users. Carl & Langlais (2002) in their 

research used term dictionaries to pre-process the source text and achieved an increase in 

translation quality for the English-French language pair. Babych & Hartley (2003) showed that 

inclusion of certain named entities (namely, organisation names) in special “do-not-translate” 

lists allowed to increase translation quality for the English-Russian language pair using a pre-

processing method that restricts translation of the identified phrases.  

The popular Moses SMT platform also supports input data in a format (the Moses XML 

format) that can be enriched with externally generated translation candidates for phrases. In a 

recent work for English-Italian (in both translation directions), Arcan et al. (2014a) identify 

exactly matched terms and provide translation equivalents from the Wiki Machine24 using the 

                                                 
24 The Wiki Machine is available online at: https://bitbucket.org/fbk/thewikimachine. 
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Moses XML format. If there are multiple translation equivalents for a term, they perform 

context-based disambiguation using the source context and the relevant Wikipedia documents. 

Their evaluation results show an SMT quality improvement of up to 2 BLEU points. 

Although not directly applicable for terminology integration in SMT, a promising method 

for NE integration in SMT systems has been proposed by Okuma et al. (2008). They substitute 

less frequent NEs (e.g., place names, organisations, person names, etc.) with frequent NEs, 

which are more likely to be present in SMT system phrase tables and translate the substituted 

text with an SMT engine. After translation they substitute the NEs back with the translation of 

the less frequent NEs using a one to one dictionary look-up. This method is not applicable to 

terms, because named entities of an equal NE category can be easily exchanged to different 

NEs of the same category in contexts, but terms in general are not grouped in categories. 

A hot topic due to the increasing popularity of post-editing technologies has recently been 

the development of dynamic translation and language models for online adaptation of SMT 

systems (Bertoldi, 2014). Recently Arcan et al. (2014b) have shown that for English-Italian 

terminology can be successfully integrated in SMT systems using dynamic translation models. 

However, these methods have been investigated either for languages that feature limited 

morphology or phrases that are left untranslated (e.g., many company and organisation names). 

The study in the FP7 project TTC (2013) showed that for English-Latvian such simplified 

methods do not yield positive results. Hálek et al. (2011) also showed that the translation 

performance with on-line pre-processing drops according to BLEU for English-Czech named 

entity translation. This proves that the method is not stable when translating into 

morphologically rich languages (e.g., the Baltic and Slavic languages). For such languages, the 

task of terminology translation requires development of more linguistically rich methods. 

5.2. Identification of Terms in the Source Text 

The first task that has to be performed when pre-processing the source text using a 

bilingual term collection is to identify terms in the source text. For this purpose the three 

methods described in section 1 can be used. The three methods are: 1) the linguistically and 

statistically motivated term identification using TWSC (Pinnis et al., 2012; described in section 

2.2), 2) the linguistically motivated term identification using the Pattern-Based Term 

Identification (escribed in section 2.3), and 3) the Fast Term Identification using minimal 

linguistic support (in the form of stemming tools) in order to identify terms in different inflected 

forms. As explained in the respective sections, all three methods have positive and negative 

aspects. In the further sections all three methods will be evaluated to identify, which method 

achieves the best results in the dynamic terminology integration scenario. 
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5.3. Inflected Form Generation for the Identified Terms 

The next pre-processing step after term identification is the generation of inflected forms 

for the identified terms. Previous research (Nikoulina et al., 2012; Carl & Langlais, 2002; 

Babych & Hartley, 2003, and others) on source text pre-processing methods has not given 

special attention to this task, because the bilingual term collections already “provide” 

translation equivalents. However, the issue is that the terms that are provided in the bilingual 

term collections are usually in their canonical forms and the canonical forms may often not be 

the required inflected forms in various contexts. Previous research has not seen the need to 

address these issues, because of the focus on language pairs that do not require (or require very 

limited) morphological generation (e.g., English-French, English-Italian, etc.). Therefore, to 

address this issue, the following sub-sections will present several approaches that allow to 

generate inflected forms for bilingual terms: 

 The first method (see section 5.3.1) does not perform morphological generation of 

inflected forms. It is intended as a baseline for the inflected form generation methods. 

 The second method (see section 5.3.2) uses morphological synthesis and language 

dependent inflected form generation rules to generate inflected forms for terms in 

canonical forms. Because the rules are language dependent, this method has been 

investigated just for Latvian and English. 

 The third method (see section 5.3.3) uses a monolingual corpus in the target language 

and identifies inflected forms using stemming tools (similarly to the Fast Term 

Identification). 

5.3.1. No Inflected Form Generation 

To evaluate the impact of canonical forms on the translation quality when performing 

source text pre-processing, the first inflected form generation method relies only on the 

translation equivalents from the bilingual term collections. This method is used as a baseline 

method to show whether additional inflected form generation can achieve better results. 

Because bilingual term collections can also be acquired using automatic bilingual term 

mapping methods, e.g., the MPAligner (Pinnis, 2013; described in section 3), the USFD Term 

Aligner (Aker et al., 2013), or TEA (Ştefănescu, 2012), the terms can also be given in the most 

common inflected forms found in various contexts. The evaluation results in section 5.5 will 

show that for term collections that have been acquired using bilingual terminology extraction 

methods, inflected form generation is not necessary. However, for term collections that contain 

terms in their canonical forms, inflected form generation is important. 
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5.3.2. Rule-based Morphological Synthesis 

The second method (and the first real method) for inflected form generation for terms is 

based on morphological synthesis. For each target term from the bilingual term collection, the 

method performs the following steps to generate a list of inflected forms: 

 First, we perform morphological analysis of terms, which do not contain morpho-

syntactic information (morpho-syntactic information is usually included in term 

collections that have been automatically extracted from parallel or comparable corpora 

using the bilingual term extraction methods and tools described in sections 1 and 3). 

For each token of a term we acquire a list of possible morpho-syntactic tags and 

lemmas. For instance, the Table 30 shows the morphological information acquired for 

the Latvian term “tīmekļa lapu”25 (“Web page” in English), using Tilde’s 

morphological analyser for Latvian. The term is not in its canonical form, but in an 

inflected form (the canonical form would be “tīmekļa lapa”). 

Table 30. Morphological information acquired for the Latvian term “tīmekļa lapu” 

from the Tilde’s morphological analyser of Latvian 

Token POS Lemma Morpho-syntactic tag 

tīmekļa N tīmeklis N-msg---------n-----------l- 

lapu N lapa N-fpg---------n-----------l- 

lapu N lapa N-fsa---------n-----------l- 

 Then, based on the morphological analysis all morpho-syntactic term patterns (from 

TWSC) that may correspond to any sequence of the morpho-syntactic tags of the term’s 

tokens are identified. The goal of this step is to identify the morpho-syntactic structure 

of multi-word terms. Single word terms are usually matched to their part-of-speech 

containing morpho-syntactic patterns. For the Latvian term “tīmekļa lapu” the only 

matching term pattern from the pattern list is “^N...g.* ̂ N.*”. The pattern defines 

a two-word term consisting of two nouns. The first noun is in a genitive case, but the 

second noun is allowed to be in any inflected form. 

 Next, we identify a morpho-syntactic inflection rule. Each term pattern has to have a 

manually defined morpho-syntactic inflection rule assigned to it. For the Latvian term 

“tīmekļa lapu” the inflection rule is as follows: “**************************0* 

***00*********************0*”. The morpho-syntactic inflection rule specifies 

that the first token has to be kept as is (the only change that can be applied is 

                                                 
25 “Tīmekļa lapa” is an information technology and data processing term that can be found in EuroTermBank: 

http://www.eurotermbank.com/search.aspx?text=t%C4%ABmek%C4%BCa%20lapa&langfrom=lv&langto=en&where=etb

%20extres&advanced=false#pos=1. 

http://www.eurotermbank.com/search.aspx?text=t%C4%ABmek%C4%BCa%20lapa&langfrom=lv&langto=en&where=etb%20extres&advanced=false#pos=1
http://www.eurotermbank.com/search.aspx?text=t%C4%ABmek%C4%BCa%20lapa&langfrom=lv&langto=en&where=etb%20extres&advanced=false#pos=1
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capitalisation) and the second token can be inflected by changing the number and case 

of the noun. 

 Further, all possible inflected forms for each token of the term are generated. Because 

the lemmas and the parts of speech of the tokens are known, a morphological 

synthesiser can be used to generate the inflected forms of the tokens (Table 31 shows 

inflected forms generated for the term “tīmekļa lapa”). 

Table 31. Inflected forms of words “tīmeklis” (web) and “lapa” (page)  

using Tilde’s Latvian morphological synthesiser 

tīmeklis (noun) lapa (noun) 

Inflected 

form 

Morpho-syntactic tag Inflected 

form 

Morpho-syntactic tag 

tīmekli N-msa---------n-----------l- lapa N-fsn---------n-----------l- 

tīmekli N-msv---------n-----------l- lapa N-fsv---------n-----------l- 

tīmeklim N-msd---------n-----------l- lapai N-fsd---------n-----------l- 

tīmeklis N-msn---------n-----------l- lapas N-fpa---------n-----------l- 

tīmeklī N-msl---------n-----------l- lapas N-fpn---------n-----------l- 

tīmeklīt N-msv---------y-----------l- lapas N-fpv---------n-----------l- 

tīmeklīti N-msa---------y-----------l- lapas N-fsg---------n-----------l- 

tīmeklīti N-msv---------y-----------l- lapiņ N-fsv---------y-----------l- 

tīmeklītim N-msd---------y-----------l- lapiņa N-fsn---------y-----------l- 

tīmeklītis N-msn---------y-----------l- lapiņai N-fsd---------y-----------l- 

tīmeklītī N-msl---------y-----------l- lapiņas N-fpa---------y-----------l- 

tīmeklīša N-msg---------y-----------l- lapiņas N-fpn---------y-----------l- 

tīmeklīši N-mpn---------y-----------l- lapiņas N-fpv---------y-----------l- 

tīmeklīši N-mpv---------y-----------l- lapiņas N-fsg---------y-----------l- 

tīmeklīšiem N-mpd---------y-----------l- lapiņu N-fpg---------y-----------l- 

tīmeklīšos N-mpl---------y-----------l- lapiņu N-fsa---------y-----------l- 

tīmeklīšu N-mpg---------y-----------l- lapiņā N-fsl---------y-----------l- 

tīmeklīšus N-mpa---------y-----------l- lapiņām N-fpd---------y-----------l- 

tīmekļa N-msg---------n-----------l- lapiņās N-fpl---------y-----------l- 

tīmekļi N-mpn---------n-----------l- lapu N-fpg---------n-----------l- 

tīmekļi N-mpv---------n-----------l- lapu N-fsa---------n-----------l- 

tīmekļiem N-mpd---------n-----------l- lapā N-fsl---------n-----------l- 

tīmekļos N-mpl---------n-----------l- lapām N-fpd---------n-----------l- 

tīmekļu N-mpg---------n-----------l- lapās N-fpl---------n-----------l- 

tīmekļus N-mpa---------n-----------l-   

 Once the morpho-syntactic inflection rule and the inflected forms of the term’s tokens 

are known, all possible combinations of the term’s inflected forms can be generated. 

All valid combinations for the term “tīmekļa lapu” are given in Table 32. It is evident 

that just one inflected form of the first token qualifies while for the second token 

multiple inflected forms (in which only the number and case differs) qualify. 
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Table 32. Valid morpho-syntactic combinations for the term “tīmekļa lapu” 

tīmeklis (noun) lapa (noun) 

Inflected 

form 

Morpho-syntactic tag Inflected 

form 

Morpho-syntactic tag 

tīmekli N-msa---------n-----------l- lapa N-fsn---------n-----------l- 

tīmekli N-msv---------n-----------l- lapa N-fsv---------n-----------l- 

tīmeklim N-msd---------n-----------l- lapai N-fsd---------n-----------l- 

tīmeklis N-msn---------n-----------l- lapas N-fpa---------n-----------l- 

tīmeklī N-msl---------n-----------l- lapas N-fpn---------n-----------l- 

tīmeklīt N-msv---------y-----------l- lapas N-fpv---------n-----------l- 

tīmeklīti N-msa---------y-----------l- lapas N-fsg---------n-----------l- 

tīmeklīti N-msv---------y-----------l- lapiņ N-fsv---------y-----------l- 

tīmeklītim N-msd---------y-----------l- lapiņa N-fsn---------y-----------l- 

tīmeklītis N-msn---------y-----------l- lapiņai N-fsd---------y-----------l- 

tīmeklītī N-msl---------y-----------l- lapiņas N-fpa---------y-----------l- 

tīmeklīša N-msg---------y-----------l- lapiņas N-fpn---------y-----------l- 

tīmeklīši N-mpn---------y-----------l- lapiņas N-fpv---------y-----------l- 

tīmeklīši N-mpv---------y-----------l- lapiņas N-fsg---------y-----------l- 

tīmeklīšiem N-mpd---------y-----------l- lapiņu N-fpg---------y-----------l- 

tīmeklīšos N-mpl---------y-----------l- lapiņu N-fsa---------y-----------l- 

tīmeklīšu N-mpg---------y-----------l- lapiņā N-fsl---------y-----------l- 

tīmeklīšus N-mpa---------y-----------l- lapiņām N-fpd---------y-----------l- 

tīmekļa N-msg---------n-----------l- lapiņās N-fpl---------y-----------l- 

tīmekļi N-mpn---------n-----------l- lapu N-fpg---------n-----------l- 

tīmekļi N-mpv---------n-----------l- lapu N-fsa---------n-----------l- 

tīmekļiem N-mpd---------n-----------l- lapā N-fsl---------n-----------l- 

tīmekļos N-mpl---------n-----------l- lapām N-fpd---------n-----------l- 

tīmekļu N-mpg---------n-----------l- lapās N-fpl---------n-----------l- 

tīmekļus N-mpa---------n-----------l-   

This method is very language dependent (because it requires a morphological analyser, 

morphological synthesiser, term patterns, and term morpho-syntactic inflection rules) and 

requires significant manual efforts in order to provide support for additional languages. 

Therefore, the next section describes a method that requires much less manual efforts to provide 

support for a new language. 

5.3.3. Monolingual Corpus Look-up 

For the languages for which the rule-based morphological synthesis method is not 

feasible, a language independent method for the acquisition of term translation equivalents (in 

different inflected forms) has been investigated. The method requires a large monolingual 

corpus in the target language and it performs a look-up (similarly to the way how terms are 

identified in the Fast Term Identification method described in section 2.4) for inflected forms 

for all terms in a given term collection. Of course, not all inflected forms for a term will be 

found, because: 1) the monolingual corpus may not be large enough to contain all inflected 

forms of infrequent terms, and 2) stemmers cannot substitute high quality lemmatisation and 

morpho-syntactic tagging tools (which means that not all inflected forms will be found even if 

they are given in the corpus). However, as the results in section 5.5 will show, it is sufficient to 

achieve SMT quality improvements. 
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5.4. Ranking the Translation Equivalents 

Now that terms in the source text have been identified and the inflected forms have been 

generated, translation likelihood scores still have to be assigned to the translation hypotheses 

(i.e., the inflected forms). It is important to apply the ranking of translation hypotheses, because 

not all translation hypotheses are well suited in the observed contexts. In addition, some 

translation hypotheses are in general more common than others. Two methods have been 

investigated by the author for term translation candidate ranking: 

 The first method assigns equal translation likelihood scores to all translation 

hypotheses of a term. This method is used as a baseline method for translation 

hypotheses ranking. When assigning equal weights to all translation hypotheses the 

language model is allowed to select the translation hypotheses. However, relying 

simply on the language model means that important statistics that come from a 

translation model (e.g., source to target language transfer information) are lost. We 

also lose important information from the source language’s context as that could help 

identifying, which translation hypotheses is more likely in a given context. 

 The second method uses a large monolingual corpus to rank translation hypotheses. 

For each translation hypothesis its relative frequency between all the translation 

hypotheses of a source language term is assigned. Only exact match phrases are 

counted for the translation hypotheses. This method allows assigning higher scores for 

more common translation hypotheses. 

5.5. Evaluation Scenarios and Results 

In total, three different evaluation experiments were performed to evaluate the dynamic 

terminology integration methods: 

 Automatic evaluation in the automotive domain using broad domain SMT systems and 

standard SMT system evaluation metrics (i.e., NIST (Doddington, 2002), BLEU 

(Papineni et al., 2002), METEOR (Denkowski and Lavie, 2011), and TER (Snover et 

al., 2006)). The evaluation is described further in section 5.5.1. 

 Manual comparative system evaluation in the automotive domain. In this experiment, 

professional translators had to compare translations of sentences produced by the same 

broad domain SMT systems as in the automatic evaluation without integrated 

terminology and with integrated terminology. The best performing dynamic 

terminology integration scenario, which was identified in the automatic evaluation, 
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was used for terminology integration in this evaluation experiment. The evaluation is 

described further in section 5.5.2. 

 Manual comparative system evaluation and term translation quality evaluation in the 

information technology domain. In this experiment, professional translators had to 

compare translations of sentences and terms, which were found in the evaluated 

sentences, produced by in-domain SMT systems without and with integrated 

terminology. Additionally, translators had to rate the translation quality of each term. 

The evaluation is described further in section 5.5.3. 

5.5.1. Automatic Evaluation 

The automatic evaluation experiments were performed for four language pairs: English-

Latvian, English-Lithuanian, English-Estonian, and English-German. The baseline systems for 

all four language pairs have been trained using the DGT-TM parallel corpus (the releases of 

2007, 2011, and 2012). For English-Latvian an in-domain tuning set of 1,745 sentence pairs 

was available; for the remaining systems held-out sets of 2,000 sentence pairs were used. For 

evaluation, 872 sentence pairs were used for each of the language pairs. The evaluation set is 

comprised of car service manual translation segments. The original data set was available for 

English-Latvian, therefore, the evaluation data for the remaining three language pairs were 

prepared by professional translators (i.e., the translators translated the 872 English sentences 

into the three remaining languages). 

Similarly to the evaluation data, the English terms from the professional English-Latvian 

term collection were translated into the three remaining target languages. Due to language 

specific characteristics and different translators involved in the term collection creation process, 

the professional term collections consisted of 662 term pairs for English-Lithuanian, 619 term 

pairs for English-Estonian, and 692 term pairs for English-German. 

The automatic evaluation experiments are split in seven dimensions depending on the 

different methods investigated in the pre-processing and SMT integration workflow’s sub-

processes and depending on the data used for pre-processing of the source text: 

 The term collection used for pre-processing: 

o Non-filtered – a raw bilingual term collection automatically extracted from parallel 

corpora (tuning data of the SMT system). 

o Filtered – the raw bilingual term collection manually revised by deleting general 

language phrases and wrong translations. 

o Professional – a bilingual term collection manually created by a professional 

translator. 
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 The term identification method: 

o TWSC – the TWSC-based Term Identification (see section 2.2). 

o Fast – the Fast Term Identification (see section 2.4). 

o Pattern – the Pattern-based Term Identification (see section 2.3). 

 The inflected form generation method: 

o None – only the translation equivalents that are present in the bilingual term 

collection are used as translation equivalents, i.e., we do not generate or acquire any 

other translation equivalents (see section 5.3.1). 

o Synthesis – the Rule-based Morphological Synthesis (see section 5.3.2). 

o Corpus – the Monolingual Corpus Look-up (see section 5.3.3). For the acquisition 

of inflected forms for terms, the broad domain monolingual corpus of the SMT 

system was used. 

o Combined – the combination of Synthesis and Corpus methods. Because the 

Synthesis method does not always produce translation equivalents (e.g., for words 

unknown to the morphological analyser), the combination of the two methods (one 

that acquires through generation and one that acquires through look-up) we can 

identify more translation equivalents for the terms. 

 The monolingual corpus from which inflected forms of terms have been extracted for 

the Corpus and Combined methods: 

o In-domain corpus – the Web crawled in-domain corpus described in section 4.2.1.1. 

o Broad domain corpus – the DGT-TM monolingual target language corpus. 

o In-domain and broad domain corpora combined. 

 The translation equivalent ranking method (see section 5.4): 

o Equal – every translation equivalent of a source term gets an equal translation 

likelihood score assigned. 

o Simple –translation equivalent translation likelihood scores are assigned based on 

the translation equivalent relative frequencies in a large monolingual corpus (the 

broad domain corpus in our experiments). 

 The Moses SMT platform allows treating translation equivalents in the XML input 

documents as “exclusive” (that is, to select a translation only from the equivalents 

specified in the XML document) or “inclusive” (that is, to allow the translation 

equivalents specified in the XML document to compete with translation equivalents 

from the SMT system’s phrase table). The “exclusive” decoding option can ensure 

terminology translation consistency and that only in-domain translation hypotheses 

will be selected. However, if a term collection is ambiguous, then restricting an SMT 
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system to just the pre-defined set of translation equivalents from a term collection can 

actually have a negative effect on translation quality. For instance, the English word 

“application” could represent a term from the IT domain (e.g., a computer program), 

public administration domain (e.g., a formal document signed and submitted to 

someone for a purpose), it can be a participle describing an action, etc. Therefore, 

depending on the level of ambiguity in the lexical forms of terms in a term collection, 

both the “inclusive” or “exclusive” options for translation hypotheses selection can be 

beneficial (as also shown by the experiment results further). 

When terms are identified in the source text the translated content can be POS-tagged and 

lemmatised to find terms in their different inflected forms. When lemmas are available, the Fast 

Term Identification method is based on searching for matching lemma sequences instead of 

stemmed inflected form sequences. This allows to identify more and linguistically more reliable 

inflected forms than with the stemming-based approach (which can also identify forms with 

spelling mistakes). However, as lemmatisers are usually based on a lexicon, they have a limited 

vocabulary, which means that the stemming-based approach can identify inflected forms for 

terms that contain words not covered by the lemmatisers. In the experiment results the scenarios 

with POS-tagging support have been marked with “POS”. Note that the “Pattern” and “TWSC” 

based term identification methods require POS-tagging to perform term identification. 

5.5.1.1. English-Latvian 

The first English-Latvian experiments reported in this section were performed using the 

baseline system that was used in the Terminology as a Corpus experiments (see section 4.3.1). 

The results are distributed in three tables based on the type of term collection used: 

 Table 33 provides results for pre-processing experiments with non-filtered terms. 

 Table 34 provides results for pre-processing experiments with filtered terms. 

 Table 35 provides results for pre-processing experiments with the term collection 

created by a professional translator. 

Each table provides the results of the baseline system and the different pre-processing 

experiments from the first five evaluation scenario dimensions (at the time of evaluation, the 

last two dimensions were not performed, however see below for experiment results with a larger 

language model where also these dimensions have been taken into account). For each pre-

processing scenario, the results provide also a score showing the change over the baseline 

system, i.e., translation quality increase or decrease according to the BLEU metric. 
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Table 33. English-Latvian results of dynamic terminology integration in SMT systems 

using the non-filtered term collection 
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Table 34. English-Latvian results of dynamic terminology integration in SMT systems 

using the filtered term collection 
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Table 35. English-Latvian results of dynamic terminology integration in SMT systems 

using the professional term collection 
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The results show that all combinations produced results that exceed the results of the 

baseline system. The average results for the non-filtered term collection in terms of BLEU were 

lower than for the manually filtered term collection, which on average allowed achieving 0.25% 

higher results over all evaluation scenarios, and much lower than using the professional term 

collection, which on average allowed achieving 1.6% higher results. The best overall results 

were achieved using the professional term collection (on average 1.35% higher results 

compared to the results achieved with the filtered term collection). 

It is also evident that the Fast Term Identification allows achieving better results than the 

other term identification methods. This is mainly because it identifies significantly more terms 

in the translatable content (1,404; compared to 1,261 for the Pattern-Based Term Identification 

and 620 for the TWSC-Based Term Identification). This is a very positive result as we can 

achieve the highest performance (in terms of speed) and still maintain the best quality. 

However, as noted earlier, this can backfire if the terms in the term collection are 

morphologically ambiguous (e.g., if a word is translated differently if it is a noun or a verb and 

the term collection contains only the translation of the noun). 

For translation equivalent acquisition four different methods were applied: 

 The first method used just the translation equivalents from the term collection. For the 

evaluation scenarios based on the non-filtered term collection, this method achieved 

the best result. This is because the automatically extracted term collection already 

contains terms in their potential inflected forms. By generating additional inflected 

forms we create a larger ambiguity and consequently the translation quality drops. For 

the filtered and professional term collection (especially the professional term 

collection), this method did not achieve the highest results, however the results were 

still better than for many of the evaluation scenarios. There are multiple reasons for 

the relatively good performance. For instance, the term collections contain many 

multi-word term pairs (from over 70% in the non-filtered collection to just below 58% 

in the professional collection), for which not all words of the multi-word terms are 

affected by inflection when generating different inflected forms (often just the head 

word is inflected). Because the baseline system’s score is relatively low (just 12.68 

BLEU points), translation quality improves by translating correctly only a part of the 

multi-word terms. Another reason is related to search space. Having term translations 

in their canonical forms means that in contexts where the canonical forms are required 

we will have a 100% precision (of course if the terms have just one translation 

equivalent specified in the term collection). However, if we generate multiple inflected 

forms, the SMT system has a higher possibility of selecting an incorrect translation. 
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 The Rule-Based Morphological Synthesis did not achieve the best overall results, 

however it still exceeded the baseline system’s results in all evaluation scenarios. It is 

evident that when generating all possible inflected forms, it is crucial to be able to rank 

the translation equivalents by taking the source context into account. It can be 

beneficial to drop the least likely translation equivalents as the high ambiguity makes 

it difficult for the SMT system to select the correct form. 

 The Monolingual Corpus Look-up allowed achieving the best results. For the filtered 

and professional term collections, it even outperforms the scenarios without inflected 

form generation (by 0.54 BLEU points for the professional term collection). This 

proves that by generating inflected forms we can achieve a higher translation quality. 

 The Combined method achieved the lowest results. The author believes that the low 

results are caused by the high ambiguity that results when combining the two different 

inflected form generation methods. 

The Monolingual Corpus Look-up method for inflected form generation requires a 

monolingual corpus. In the author’s experiments three different corpora were investigated. The 

best results were achieved with the DGT-TM monolingual corpus of the target language. 

Experiments with the in-domain corpus achieved the lowest results. Consequently, the 

combination of both corpora achieved better results than using just the in-domain corpus, 

however, lover results than with the broad domain corpus. Two possible explanations for the 

lower results are: 1) the in-domain corpus contains many spelling mistakes, because it was 

collected from the Web without validation, and 2) the corpus due to its relatively small size 

does not sufficiently represent the different inflected forms of terms. 

It is also evident that ranking is a crucial component, because higher scores for more 

frequent inflected forms in almost all experiments allowed achieving higher results. 

The experiments showed that the translation quality of an SMT system on in-domain data 

can be improved in a source text pre-processing scenario when using an automatically extracted 

bilingual term collection. The highest achieved score in the experiments was 15.34 BLEU 

points. However, an automatically extracted term collection requires that an in-domain parallel 

corpus (e.g., 2000 sentence pairs) is available for the extraction of the term collection. 

Obviously, this requirement cannot be always satisfied. Therefore, a more significant result is 

that by using a term collection created by a professional translator it is possible to achieve even 

better results; as explained earlier, the highest achieved score was 16.09 BLEU points. 

In a summary, the results show that the best results (a maximal score of 16.09 BLEU 

points) were achieved with the combination of the Professional term collection, Fast Term 
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Identification, Monolingual Corpus Look-up of inflected forms from the Broad Domain 

Corpus, and the Monolingual Corpus-based Term Translation Equivalent Ranking. 

According to the methodology described in section 4, when performing static terminology 

integration in SMT systems, terms from a term collection are injected into the monolingual 

corpus used for training of the SMT system’s language model. However, when performing 

dynamic integration, translation equivalents may not be known to the language model. This 

means that the language model may not be able to reliably score correct and incorrect translation 

hypotheses. To address this issue, language models for SMT systems are usually trained on 

much larger corpora than used in the previously described experiments (up to tens of millions 

of sentences). To test whether dynamic terminology integration allows achieving translation 

quality improvements with a much larger language model, the author performed further 

experiments for the English-Latvian language pair using a new baseline system. The new 

baseline system is trained on the same parallel data as in the previous experiments, however for 

language model training, a corpus of 60.9 million unique Latvian sentences was used. The 

experiments were limited to the pre-processing scenario that achieved the highest results in the 

previous experiments. The results are given in Table 36. 

Table 36. English-Latvian results of dynamic terminology integration in SMT systems 

using the professional term collection and a language model based on 60 million sentences 

 

It is evident from the results that the improvement is slightly smaller (in relative 

measures) than when using a smaller language model, however, the source text pre-processing 

workflow still allows achieving a significant translation quality improvement by up to 2.63 

BLEU points over the new baseline system. The experiments also involved the remaining 

evaluation scenario dimensions – inclusive and exclusive decoding as well as POS tagging for 

the Fast Term Identification method. The results suggest that inclusive decoding for this 

evaluation scenario performs better. This means that either the term collection is ambiguous or 

the SMT system’s translation model can generate in some contexts better translation hypotheses 

because of the limitations of the Monolingual Corpus-Based Look-up method for inflected form 

generation. 
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5.5.1.2. English-Lithuanian 

Similarly to results reported for English-Latvian, the Table 37 shows automatic 

evaluation results for English-Lithuanian. 

For English-Lithuanian the results show that the baseline system has a very low automatic 

evaluation result. Therefore, the evaluation of the baseline system was also performed using a 

DGT-TM based evaluation set (in-domain evaluation set for the SMT system). The results 

suggest that the automotive domain texts contain a significantly different language (in terms of 

writing style, terminology, etc.) than in the DGT-TM corpus. Although the baseline system 

shows such a relatively low score, the pre-processing experiments were still performed to 

identify by how much the low score can be improved. 

Table 37. English-Lithuanian automatic evaluation results for dynamic terminology integration in SMT systems 

 

The overall results suggest that for the English-Lithuanian pre-processing experiments 

the best results were achieved by the pre-processing scenario consisting of the Fast Term 

Identification, the Monolingual Corpus-Based Look-up, Exclusive Decoding, and No POS-

tagging Support. The highest measured increase over the baseline system was 1.05 BLEU 

points (a relative improvement of 15.1%). Contrary to the results obtained for the English-

Latvian experiments, for English-Lithuanian the exclusive decoding method allowed achieving 

higher results than the inclusive decoding. This indicates that either the term collection was not 

as ambiguous or the generated inflected forms of terms were in general better than the ones 

offered by the SMT system’s translation model. 
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5.5.1.3. English-Estonian 

The evaluation for English-Estonian was performed similarly to the English-Lithuanian 

evaluation. The results for English-Estonian are given in Table 38. 

Table 38. English-Estonian automatic evaluation results for dynamic terminology integration in SMT systems 

 

The results are quite different from the results obtained for English-Latvian and English-

Lithuanian. The decoding with “inclusive” treatment of translation equivalents has shown to 

work better than the “exclusive” option. As the results do not correlate with the previous results, 

an in-depth analysis of what could the cause be for such results was performed. After analysing 

the term collection used for pre-processing it was identified that the Monolingual Corpus-Based 

Look-up method for inflected form generation for terms failed to produce translation 

equivalents for most of the terms. This was due to issues in the stemmer implemented for 

Estonian. As a result, most of the Estonian terms had only one translation equivalent and that 

was the term in its canonical form. The results show that also for Estonian it is not sufficient to 

provide for terms only their canonical forms as the translation equivalents. The translation 

equivalents have to be provided also in different inflected forms. 

5.5.1.4. English-German 

Similarly to the other language pairs, dynamic terminology integration experiments were 

performed for English-German. The results are given in Table 39. 
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Table 39. English-German automatic evaluation results for dynamic terminology integration in SMT systems 

 

Also for English-German the evaluation results in comparison to the baseline system 

show a stable translation quality increase when performing source text pre-processing (although 

the baseline system’s performance on the in-domain data is also relatively low). Different from 

the other language pairs, it is not evident whether inclusive or exclusive decoding is more 

beneficial as the results fluctuate. However, it is evident that for all language pairs one particular 

evaluation scenario (and pre-processing process chain) allows achieving the highest results: 

“Fast + Corpus + Simple”. 

5.5.2. Manual Evaluation Using Out-of-domain Systems 

The goal of the manual evaluation is to allow human evaluators (instead of automatic 

means) to provide a natural view on whether the terminology integration has achieved its goal 

(that is, whether the SMT quality and terminology translation quality has improved) or not. In 

order to do so, for three language pairs (English-Latvian, English-Lithuanian, and English-

Estonian) the baseline scenario (SMT without integrated terminology support) was compared 

with an improved scenario (with integrated terminology support). Taking into account the 

automatic evaluation results, for the improved scenario the author selected the source text pre-

processing configuration consisting of the “Fast + Corpus + Simple” methods. For the baseline 

scenario, the same broad domain SMT systems (trained on only DGT-TM corpora) from the 

automatic evaluation experiments were used. For terminology integration, the same 

professional term collections in the automotive domain were used as in the automatic 

evaluation. 
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For comparative evaluation the Tilde’s web based evaluation environment (Skadiņš et al. 

2010) was used. The system’s interface is shown in Figure 34. 

 

Figure 34. Tilde’s web based evaluation environment for the system comparison task 

The figure shows that the evaluators (professional translators) were given a source 

segment where terms were marked in different colours. The term entries from the term 

collection were included below the source segment. This is an adaptation of the evaluation 

platform and its purpose is to inform evaluators about in-domain terminology in the source text. 

Then, below the source segment, two translations from the two different scenarios (the baseline 

scenario and the improved scenario) were shown. The system translation hypotheses were 

presented to the evaluators in a randomised order so that evaluators would not be able to identify 

the two systems. 

Translators who took part in the manual evaluation efforts were asked to select the 

translation that they think is better taking into account that the aim was to achieve consistent 

and correct terminology translation with improved overall translation quality (or at least not 

decreased overall translation quality). If the translators could not decide, which translation 

hypothesis is better, they were asked to select the third option “Undecided/similar”. Evaluators 

were asked to evaluate at least 25 sentences. The statistics of the evaluated sentences and 

translators are given in Table 40. 
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Table 40. Evaluator and rating statistics 

Language pair Number of evaluators Total number of ratings 

English-Latvian 7 578 

English-Lithuanian 6 534 

English-Estonian 8 617 

The evaluation methodology is based on the comparative evaluation methodology 

introduced by Skadiņš et al. (2010). The summary of the manual comparative evaluation for 

English-Latvian is presented in Figure 35, for English-Lithuanian – in Figure 36, for English-

Estonian – in Figure 37. In the results, System 1 is the baseline scenario and System 2 is the 

improved scenario using the professional term collection. 

 

Figure 35. English-Latvian system comparison by total points 

 

Figure 36. English-Lithuanian system comparison by total points 

 

Figure 37. English-Estonian system comparison by total points 

The results show that for all three language pairs it is weakly sufficient26 to state that the 

translations of the improved scenario were preferred more than the translations of the baseline 

scenario. The translations of the improved scenario were preferred in 59.86±4.00% cases for 

                                                 
26 According to the methodology by Skadiņš et al. (2010) it is weakly sufficient to say that System 1 is preferred more than the 

System 2 if the proportion of the preferences by total points for System 1 minus the 95% confidence interval of the proportions 

of preferences by total points is greater than 50%. In this analysis the “Undecided/similar” ratings are added to both system 

preferences (thereby minimising the quality difference and penalising both systems). 
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English-Latvian, 55.81±4.21% cases for English-Lithuanian, and 54.62±3.93% cases for 

English-Estonian. Whereas the translations of the baseline scenario were preferred just in 

40.14±4.00% cases for English-Latvian, 44.19±4.21% cases for English-Lithuanian, and 

45.38±3.93% cases for English-Estonian. It has to be noted that indecisive answers have been 

counted for both scenarios. 

Further analysis was performed by identifying sentences with sufficient confidence27 

(sentences rated as “Undecided/similar” were ignored). The analysis revealed that the 

translations of the improved scenario were preferred for 81.25±19.13% of sentences for 

English-Latvian, for 85.71±25.92% – for English-Lithuanian, and for 66.67±37.72% – for 

English-Estonian. For English-Latvian and English-Lithuanian we can conclude that the results 

are sufficient28 to say that the dynamic terminology integration method allows creating 

translations of higher quality. For English-Estonian only six sentences were with sufficient 

confidence. Therefore, the confidence interval is too large and the results are just weakly 

sufficient to prove that the dynamic terminology integration method increases translation 

quality. However, the author believes that if the evaluation for English-Estonian would have 

been extended, a sufficient number of sentences with sufficient confidence would have been 

identified. 

5.5.3. Manual Evaluation Using In-domain Systems 

Although the previous evaluation results showed that the dynamic terminology 

integration method allows achieving significantly better results compared to the baseline 

scenario, the SMT systems in the baseline scenario achieved relatively low results and the term 

collections were relatively small (although focussed to a narrow domain). Therefore, an 

additional manual evaluation experiment was performed for seven language pairs using in-

domain SMT systems (contrary to out-of-domain systems in the previous experiments) in the 

information technology domain that are used also by translators in their professional duties. For 

terminology integration, the author used the Microsoft Terminology Collection29. 

The term collection contains many ambiguous terms that can be confused with general 

language words and phrases (e.g., “AND”, “about”, “name”, “form”, “order”, etc.). The 

combination of “Fast + Corpus + Simple” methods for source text pre-processing (contrary to 

                                                 
27 Sentences with sufficient confidence according to the methodology by Skadiņš et al. (2010) are sentences for which the 

translations of one of the systems have been preferred by at least six evaluators more than the other system’s translation. 
28 According to the methodology by Skadiņš et al. (2010) it is sufficient to say that System 1 is preferred more than the System 

2 if the proportion of the preferences of statistically justified sentences for System 1 minus the 95% confidence interval of the 

proportions of preferences of statistically justified sentences is greater than 50%. In this analysis the “Undecided/similar” 

ratings are ignored. 
29 The Microsoft Terminology Collection can be freely downloaded from: http://www.microsoft.com/Language. 

http://www.microsoft.com/Language
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the more linguistically motivated methods and methods that perform SMT system model 

adaptation) is sensitive to the level of ambiguity of the included terms. Therefore, it is important 

to filter out the ambiguous terms. For term filtering, the author used the term pair specificity 

estimation method (3) that was introduced in section 4.2.1.1. The statistics of the term collection 

before and after filtering are shown in Table 41. 

Table 41. Term collection statistics before and after filtering (languages are given in the ISO 639-1 format) 

Language pair Terms (initial) Terms (filtered) 

en-es 23,094 18,871 

en-fr 24,160 19,665 

en-et 12,648 10,175 

en-lt 12,726 10,352 

en-lv 12,926 10,497 

en-ru 22,669 18,416 

en-de 24,997 20,308 

For the evaluation, pre-trained SMT systems from the LetsMT platform were used. The 

SMT system performance on in-domain evaluation sets (however, different from the evaluation 

data used in the manual evaluation experiment) is given in Table 42. 

Table 42. SMT system performance on held-out evaluation sets; the systems were created by Valters Šics in the 

LetsMT platform (languages are given in the ISO 639-1 format) 

Language pair BLEU 

en-es 74.61 

en-fr 68.76 

en-et 55.23 

en-lt 60.42 

en-lv 66.98 

en-ru 60.79 

en-de 61.35 

The manual evaluation was performed by comparing the SMT system performance 

without (the baseline scenario) and with (the improved scenario) integrated terminology. The 

evaluation data for each language pair consists of 100 in-domain sentences for which the 

outputs of the SMT systems in the two scenarios differed (different translations were produced 

in average for 56% of sentences). For each language pair two professional translators were 

involved in the evaluation. The translators were asked to perform three ratings using an Excel 

spreadsheet (an example of the evaluation task is given in Figure 38): 

 For each sentence, translators had to decide which scenario produced a better translation. 

If both scenarios produced translations of equal quality, the translators had to decide 

whether both scenarios produced acceptable or not acceptable translations. 

 Similarly to the sentence level, for each term that was identified in the source text using 

the Fast Term Identification method, translators had to decide which scenario produced 

a better translation. 
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 The first two are quantitative analysis measures, therefore as a third rating translators were 

asked to rate the term translation quality in both scenarios separately. The translators had 

to decide whether: 

o the term is translated correctly, 

o a wrong inflectional form is used, 

o the term is left untranslated, 

o the term is split up or its words are in a wrong order, 

o a wrong lexical choice is made, 

o the marked phrase is actually not a term and has been wrongly identified as a term, 

o the term is not translated correctly, but there is a different issue. 

 

Figure 38. An example of the evaluation task for English Latvian showing a sentence 

containing one term from the filtered term collection 

The sentence level evaluation summary in Table 43 shows that the translations of the 

improved scenario were preferred more than the baseline scenario for six language pairs (results 

are sufficient to say that the improved scenario produces better quality translations for English-

Latvian, English-German, and English-French; see Figure 39). It is evident that the task of 

comparing sentence level quality is very challenging for evaluators, because the agreement 

scores in terms of the Free-marginal Kappa (Randolph, 2005) are mainly in the levels of fair 

to moderate. 

Table 43. Evaluation summary for sentence level ratings where evaluators were in agreement 

(languages are given in the ISO 639-1 format) 

Language pair Baseline Improved Both None Total Free Kappa 

en-es 11 8 15 19 53 / 99 0.38 

en-fr 8 21 35 18 82 / 221 0.16 

en-et 8 16 3 36 63 / 101 0.50 

en-lt 6 8 23 16 53 / 100 0.37 

en-lv 1 9 9 57 76 / 100 0.68 

en-ru 9 17 7 27 60 / 100 0.47 

en-de 5 15 29 9 58 / 99 0.45 
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Figure 39. Confidence intervals for sentence level summary of ratings for sentences 

where both evaluators were in agreement (languages are given in the ISO 639-1 format) 

The term level evaluation summary is given in Table 44. It is evident that translation 

quality has improved over the baseline scenario for all language pairs that were evaluated. The 

results are sufficient (see Figure 40) for all seven language pairs to state that the dynamic 

terminology integration method allows producing better quality translations for terms than the 

baseline scenario. Even more, the agreement scores for evaluators show that the task of 

comparing in which system terms were translated better was fairly easy and in general well 

understood. 

Table 44. Evaluation summary for term level ratings where evaluators were in agreement 

(languages are given in the ISO 639-1 format) 

Language pair Baseline Improved Both None Total Free Kappa 

en-es 4 34 77 0 115 / 157 0.64 

en-fr 4 71 141 4 220 / 380 0.44 

en-et 21 51 53 0 125 / 162 0.70 

en-lt 1 40 54 3 98 / 158 0.49 

en-lv 6 46 67 4 123 / 151 0.75 

en-ru 1 49 93 0 143 / 166 0.82 

en-de 2 30 87 0 119 / 153 0.70 
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Figure 40. Confidence intervals for term level summary of ratings for terms 

where both evaluators were in agreement (languages are given in the ISO 639-1 format) 

The summary of the term translation quality evaluation for the individual scenarios is 

given in Table 45. The results show that the proportion of correct term translations has improved 

for all language pairs from +1.6% for English-Estonian to +52.6% for English-Lithuanian. The 

minimal improvement for English-Estonian is mainly due to selection of wrong inflected forms 

(which is a lesser quality issue, but an issue nonetheless) rather than wrong term lexical choices 

(which is a greater quality issue). The author believes that the relatively low performance for 

English-Estonian is caused by the under-performance of the word stemming component for 

Estonian that is used for inflectional form acquisition for terms. It is evident that in terms of 

using the correct lexical choice, the quality has improved from +26.4% for English-German to 

+65.2% for English-Lithuanian. This means that the method allows ensuring terminology 

translation consistency better than in the baseline scenario. If we analyse further the reduction 

of term translation mistakes, the English-Russian system achieved the best results with an error 

reduction of 72.7%. 

The results show that for morphologically richer and less resourced languages (e.g., 

Latvian, Lithuanian) the proportion of correct term translations in the baseline scenario is lower 

than for morphologically less rich and well-resourced languages (Spanish, German). This is 

because of two reasons: 1) the amount of training data for SMT system development differs, 

and 2) for morphologically rich languages it is more challenging for the SMT system to select 

the correct inflected form of terms (which is shown by the higher proportion of wrong inflected 

forms selected in translations). For morphologically rich languages the improvement of correct 

selection of term lexical forms is approximately 30%, which is higher by 10% than for 

morphologically simpler languages. However, the results show that the improvement after 
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dynamic terminology integration is over 14% for all language pairs (except for English-

Estonian due to the reasons explained earlier). 

Table 45. Evaluation summary for term translation quality  

(languages are given in the ISO 639-1 format; “B” is the baseline scenario and “I” is the improved scenario) 

Percentage of 

terms 

en-es en-fr en-et en-lt en-lv en-ru en-de 

B I B I B I B I B I B I B I 

Term correct 71.3 85.4 55.9 75 39.8 40.4 42.1 64.2 51.3 67.9 60.2 89.2 70.3 85.6 

Wrong inflection 1.9 11.5 1.6 5.8 19.4 50.3 7.9 18.4 11.3 27.5 6 8.7 1.6 5.2 

Not translated 8.6 0.6 19.2 14.3 9.9 1.2 0.6 0 4.6 0 16.3 0.9 7.8 0.3 

Term split up or 

reordered 
2.2 0.3 6.7 0.9 2.2 0.3 1.9 2.2 2.6 0 6.6 0.6 0.7 1 

Wrong lexical 

choice 
7.3 1.3 13.3 1.6 18.8 4.6 30.4 2.8 20.9 0 10.8 0.6 5.9 5.6 

Not a term 6.4 0.6 1.7 1.7 0.6 0.6 10.8 10.8 1.7 1.7 0 0 0.7 1 

Other 2.2 0.3 1.6 0.7 9.3 2.5 6.3 1.6 7.6 3 0 0 13.1 1.3 

Rel. impr. of 

correct term 

translations 

19.60% 34.10% 1.60% 52.60% 32.30% 48.00% 21.90% 

Rel. impr. of 

correct lexical 

choice 

32.20% 40.50% 53.10% 65.20% 52.40% 47.70% 26.40% 

Rel. red. of errors 48.90% 43.30% 1.00% 38.30% 34.00% 72.70% 51.60% 

5.6. Summary of Dynamic Integration of Terminology in SMT Systems 

In this section, the author presented a novel workflow for dynamic terminology 

integration in SMT systems using source text pre-processing methods. The workflow consists 

of four steps: 1) term identification in the source text, 2) inflected form generation for terms, 3) 

term translation equivalent ranking for translation, and 4) the translation of the pre-processed 

source text with an SMT system. The methods have been evaluated in three evaluation 

experiments: 1) automatic evaluation for four language pairs using standard SMT evaluation 

metrics, 2) manual comparative system evaluation for three language pairs using broad domain 

SMT systems, and 3) manual comparative system evaluation and term translation quality 

evaluation for seven language pairs using production level SMT systems in the information 

technology domain. 

For term identification three methods were analysed: 1) the linguistically and statistically 

motivated term identification using TWSC, 2) the Pattern-Based Term Identification, and 3) the 

Fast Term Identification. The results show that the Fast Term Identification method 

outperforms the linguistically motivated term identification methods (“Pattern” and “TWSC”). 

This may be explained with the fact that recall of the Fast Term Identification method is higher 

than the recall of the Pattern-Based Term Identification method and much higher than that of 

the TWSC-based Term Identification method. This is a very positive result, because it is possible 

to achieve the highest performance (in terms of speed) and still maintain the best translation 
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quality. However, this also means that the linguistically motivated methods (1 and 2), which 

rely on linguistic resources that are exhaustive, may need to be improved. For instance, the term 

patterns may not contain all patterns necessary for a given term collection or the morpho-

syntactic tagger may not know how to tag an unknown word of a term phrase. However, this is 

a possible area for future improvements. 

For inflected form generation four methods were analysed: 1) no inflected form 

generation, 2) Rule-based Morphological Synthesis of inflected forms for terms, 3) 

Monolingual Corpus Look-up of inflected forms, and 4) the combination (through union) of the 

second and third methods. The evaluation results have shown that the highest results can be 

achieved with the Monolingual Corpus Look-up method. The Rule-based Morphological 

Synthesis method and the combined method performed worse than the remaining methods, 

because of high ambiguity introduced to the SMT system’s decoder. 

The experiments have shown that by generating different inflected forms of terms and 

preferring higher scores for more frequent inflected forms (with the frequency-based ranking 

method) it is possible to achieve a higher SMT quality than with equal ranking. 

The results also showed that using just the translation equivalents from a term collection 

(without further inflected form generation for terms) allows achieving the highest results when 

an automatically created bilingual term collection is used. Although the experiment results 

show stable translation quality improvements, this scenario does not allow achieving the highest 

results when using a professional term collection. This proves the hypothesis that for 

morphologically rich languages modelling of correct inflected forms is very important in order 

to achieve as good results as possible. 
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CONCLUSIONS 

The author in this thesis presented novel methods for terminology integration in statistical 

machine translation in both SMT systems during training (through static integration) and during 

translation (through dynamic integration). The work focussed not only on the SMT integration 

techniques, but also on methods for acquisition of linguistic resources (including the bilingual 

term collections) necessary for different tasks involved in the workflows for terminology 

integration in SMT systems. For instance, monolingual term identification, term normalisation 

for acquisition of canonical forms of terms from terms in different inflected forms, and cross-

lingual term mapping for semi-automated creation of bilingual term collections. To increase 

performance of the cross-lingual term mapping methods, the author presented novel methods 

for probabilistic dictionary filtering and character-based SMT transliteration system 

development using probabilistic dictionaries. For static and dynamic terminology integration in 

SMT systems, the author designed and implemented methods that allow performing bilingual 

term identification in SMT training data and the source text (for dynamic integration), inflected 

form generation for terms using rule-based morphological synthesis or monolingual corpus 

look-up methods, etc. 

The terminology integration methods were specifically designed for the Moses SMT 

system and the LetsMT platform (that uses the Moses SMT system), however the methods 

designed are fairly general and can be applied for any phrase-based SMT system that operates 

similarly to the Moses system. 

The methods presented in the thesis have been evaluated using both automated evaluation 

methods as well as manual evaluation methods. The monolingual term identification method 

using TWSC for term collection creation purposes and cross-lingual term mapping method 

using MPAligner have shown to achieve state-of-the-art performance, which has been also 

validated by third party (independent) evaluation efforts. The term mapping quality of 

MPAligner (including also the evaluation of methods for linguistic resource creation for 

MPAligner) and the monolingual term identification method using TWSC have been evaluated 

for all official languages of the European Union by the author and also by third party 

researchers, thus showing the language independence of the methods designed by the author. 

For static terminology integration in SMT systems, the evaluation shows that the designed 

methods for English-Latvian on the automotive domain evaluation data allowed to achieve a 

cumulative SMT quality improvement of up to 28.1% (or 3.56 absolute BLEU points) over an 

initial baseline system. The translation model adaptation method that introduces a bilingual 
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terminology identifying feature in the SMT system’s translation model has shown to be stable 

in increasing SMT quality. 

However, the most significant achievement of the author’s work is the dynamic 

terminology integration method in SMT systems using the source text pre-processing 

workflow. In almost all experiments, different combinations of the pre-processing workflow 

showed SMT quality improvements. The dynamic terminology integration method was also 

evaluated in three different evaluation experiments. Automatic evaluation in the automotive 

domain was performed for four different language pairs (English-Latvian, English-Lithuanian, 

English-Estonian, and English-German). It showed SMT quality improvements for all language 

pairs ranging from 6.4% (or 0.40 absolute BLEU points) for English-Estonian up to 26.9% (or 

3.41 absolute BLEU points) for English-Latvian in terms of BLEU points over the results of 

the baseline systems. Manual comparative system evaluation for three language pairs (English-

Latvian, English-Lithuanian, and English-Estonian) in the automotive domain further validated 

that the dynamic terminology integration methods allow improving SMT system quality using 

bilingual term collections. Furthermore, manual comparative evaluation in the information 

technology domain using production level SMT systems for seven language pairs showed that 

the proportion of correct term translations has improved for all language pairs from +1.6% for 

English-Estonian to +52.6% for English-Lithuanian. The methods allow reducing the 

proportion of mistranslated terms from +1.0% for English-Estonian to an impressive +72.7% 

for English-Russian. 

The positive evaluation results of both the static terminology integration experiments and 

the dynamic terminology integration experiments allow the author to conclude that the research 

hypothesis that terminology translation quality as well as text translation quality in SMT 

systems can be improved by performing static and dynamic terminology integration in SMT 

systems has been successfully proven. The results of the static and dynamic terminology 

integration experiments also prove the second hypothesis that in situations when authoritative 

term collections are not available, automatic term identification in comparable corpora and 

cross-lingual term mapping are effective methods to acquire bilingual term collections for the 

integration in SMT systems. The goal of the thesis has been reached and all objectives have 

been completed. 

The thesis also drafted possible areas of future improvements for the methods designed 

by the author. The possible areas are as follows: 

 TWSC requires a property file that specifies different thresholds. These thresholds are 

sensitive to document length. In future work algorithms could be improved so that the 

performance of TWSC is less affected by document length variations. 
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 TWSC and the Pattern-Based Term Identification methods both rely on term patterns. The 

patterns are exhaustive resources and may not be defined for all terms given in term 

collections. A method for dynamic acquisition of term patterns for terms could be 

investigated. 

 Currently, each term pattern is required to have exactly one normalisation rule. However, 

the normalisation rules could be dynamically predicted. For instance, for multi-word 

terms in Latvian, nouns before the head noun are usually kept in their respective inflected 

forms, however adjectives are inflected corresponding to the head noun they are attached 

to. This behaviour could be captured using dynamic rules that are not fixed to a single 

term pattern, thus eliminating the need for the definition of one-to-one rules. 

 The term mapping tool MPAligner has many parameters that may need to be adjusted for 

different language pairs. Machine learning methods could be investigated to fine-tune the 

system’s parameters in order to achieve higher recall and precision. 

 The evaluation of the probabilistic dictionary filtering methods revealed that better recall 

dictionaries could be acquired by combining the different filtering methods. 

 Currently, the context independent term mapping method does not use any reference 

corpus based statistics, however, using statistics that are calculated on very large (e.g., 

hundred million words or more) monolingual corpora could be beneficial by minimising 

misalignments similarly as it is implemented in the probabilistic dictionary filtering 

method. 

 Regarding transliteration systems, the evaluation has indicated that their application in 

SMT may not be productive due to a limited precision (around 50%) for the top one 

transliteration equivalents. However, if language specific knowledge (in terms of 

morphological analysis) would be introduced, the SMT-based transliteration systems 

could be trained to transliterate words into specific inflected forms. This would allow 

providing SMT systems with linguistically motivated transliteration equivalents and 

could potentially provide a method for translation of out-of-vocabulary words. 

 Regarding static terminology integration, to ensure that the tuning process considers the 

term identifying feature (during translation model adaptation) productive, the SMT 

system training workflow could be modified to validate whether the tuning data is rich 

with in-domain terminology or not. If the tuning data does not contain in-domain 

terminology, a new process could be integrated that selects additional (or even new) 

sentence pairs from the parallel corpus so that the selected tuning data would be rich in 

in-domain terminology. 
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 Regarding dynamic terminology integration, the experiments relied only on the target 

language data in order to rank the inflected forms of terms. By doing so the methods do 

not take into account the linguistic information transfer from the source language to the 

target language, which is important to guess the necessary inflected forms of terms in the 

translated text. Machine learning methods could be investigated that allow ranking the 

inflected forms of terms according to the source text. 
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