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Declare the past, diagnose the present, foretell the future. 

Hippocrates. Epidemics, Bk. I, Sect. XI 
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ANNOTATION 

Metformin is the most widely used peroral antidiabetic drug worldwide prescribed 

more than 61.6 billion times in the U.S. alone in 2012 and one of only two peroral 

antidiabetic drugs included in the 18
th 

World Health Organisation (WHO) Essential 

Medicines List. According to FDA (Food and Drug Administration), IDF (International 

Diabetes Federation) and EASD (European Association for the Study of Diabetes) 

guidelines, metformin is the recommended first-line medication for newly diagnosed type 

2 diabetes mellitus (T2D). However, metformin monotherapy is inefficient in ~30% 

patients and associated with common side-effects in 20–60% users, leading to significant 

non-compliance (up to 30% of users) and discontinuation of therapy in 5–10% of all cases. 

Metformin is not metabolised in the human body. Genetic variabilities of 7 metformin 

transporters in the gut (OCT1, OCTN1, OCT3, and PMAT), liver (OCT1, OCT3) and 

kidney (OCT1, OCT2, MATE1, MATE2) have been shown to induce alterations in the 

pharmacokinetics and efficiency of metformin in patients with T2D. 

Our group was the first to demonstrate an association between side-effects of 

metformin and two genetic variants (rs628031 and rs36056065) of the organic cation 

transporter 1 (OCT1/SLC22A1), implying an association between metformin transporters 

and tolerability of metformin. Subsequently, three novel genetic variations (rs3119309, 

rs2481030 and rs7757336) in the upstream region of organic cation transporter 2 

(OCT2/SLC22A2) and organic cation transporter 3 (OCT3/ SLC22A3) coding genes were 

shown to be associated with short-term efficiency of metformin therapy. Two of these 

variants were further analysed in a replication study on 126 T2D patients from Slovakia 

and a pharmacokinetic study involving 15 healthy participants. Overall, 33 genetic variants 

of ATM, STK11 and T2D susceptibility genes were investigated, among which only a few 

showed a nominal association with short-term efficiency of metformin monotherapy.  

The results of this research have confirmed significant effects of genetic variations 

in OCTs on safety and efficiency of metformin therapy, and highlighted a novel 

mechanism of transporter-associated development of common side-effects of metformin. 
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ANOTĀCIJA 
 

Metformīns ir visā pasaulē ļoti plaši lietots perorāls antidiabētisks medicaments; 

2012. gadā tas ir ticis nozīmēts 61.6 miljardus reižu Amerikas Savienotajās Valstīs vien, kā 

arī tas ir viens no tikai diviem perorālajiem antidiabētiskajiem medikamentiem, kas 

iekļauts Pasaules Veselības organizācijas Esenciālo Medikamentu sarakstā (18. versija). 

Atbilstoši ASV Pārtikas un Zāļu administrācijas (FDA), Starptautiskās Diabēta Federācijas 

(IDF) un Eiropas Diabēta Pētniecības asociācijas (EASD) vadlīnijām metformīns ir pirmās 

izvēles medikaments jaundiagnosticētu 2.tipa cukura diabēta pacientu (T2D) ārstēšanā. 

Tomēr metformīna monoterapija ir neefektīva aptuveni 30% pacientu un  20-60% 

gadījumu ir asociēta ar biežu blakņu manifestāciju, kas noved pie būtiskiem zāļu lietošanas 

režīma pārkāpumiem (līdz 30% lietotāju) un 5–10% pacientu liek pārtraukt terapiju. 

Metformīns netiek metabolizēts cilvēka ķermenī un 7 metformīna transportieru, kas 

lokalizēti zarnās (OCT1, OCTN1, OCT3, un PMAT), aknās (OCT1, OCT3) un nierēs 

(OCT1, OCT2, MATE1, MATE2) ģenētiskā variabilitāte ir identificēta kā būtisks 

metformīna terapiju un farmakokinētiku ietekmējošs faktors T2D pacientiem. 

Mēs bijām pirmie, kas identificēja asociāciju starp metformīna blakusparādībām un 

2 ģenētiskiem variantiem (rs628031 and rs36056065) organisko katjonu transportierī 1 

(OCT1/SLC22A1) norādot uz saistību starp metformīna transportieriem un metformīna 

panesamību. Otrkārt, trīs jaunas ģenētiskas variācijas (rs3119309, rs2481030 un 

rs7757336) reģionā (upstream) pirms organisko katjonu transportiera 2 (OCT2/SLC22A2) 

un organisko katjonu transportiera 3 (OCT3/SLC22A3) kodējošiem gēniem tika noteiktas 

kā būtiski asociētas ar metformīna īstermiņa terapijas efektivitāti. Divi no šiem variantiem 

tika analizēti replikācijas pētījumā ar 126 T2D pacientiem no Slovākijas un 

farmakokinētikas pētījumā ar 15 veseliem brīvprātīgajiem. Visbeidzot, 33 ģenētiskas 

variācijas tika izpētītas ATM, STK11 un T2D kandidātgēnos, bet tikai dažas no tām bija 

nomināli asociētas ar metformīna īstermiņa terapijas efektivitāti.  

Pētījuma rezultāti apstiprina OCT kodējošo gēnu ģenētisko variāciju būtisko 

nozīmi metformīna terapijas panesamības un efektivitātes nodrošināšanā un norāda uz 

jaunu, ar transportieru saistītu mehānismu, kuram ir nozīme metformīna biežo 

blakusparādību attīstībā. 
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ABBREVIATIONS 
 

2DG 2-deoxy-d-glucose 
3A1/2 cytochrome P450 3A1/2 

5-HT serotonin  or 5-hydroxytryptamine 

6-AS 6-antroyloxystearic acid 
ABCB1 p-glycoprotein coding gene 

ABCC8 ATP-binding cassette transporter sub-family C 

member 8 coding gene 
ABCG2 cancer resistance protein coding gene 

ABO  blood group system discriminating 0, A, B, AB 

blood types 
AC adenylyl cyclase  

ACC  acetyl-CoA carboxylase 

ACTH adrenocorticotropic hormone  
ADA American Diabetes Association 

ADCY5 adenylate cyclase, type 5 coding gene 

ADIPOR2  adiponectin receptor 2 coding gene 
ADP adenosine diphosphate 

ADRA2A alpha-2A adrenergic receptor coding gene 

AICAR  5-Aminoimidazole-4-carboxamide ribonucleotide 
AKI acute kidney injury  

Akt  protein kinase B (PKB) 

ALT alanine aminotransferase 
AMP adenosine monophosphate 

AMPK 5' AMP-activated protein kinase 

AP apical 
AP-1 activating protein-1 

AP-2rep AP-2rep Transcription Factor 
ASP+ fluorescent organic cation 4-(4-

(dimethylamino)styryl)-N-methylpyridinium 

iodide) 
ATM ataxia telangiectasia mutated (gene) 

ATP adenosine triphosphate 

AUC area under the curve 
B12  vitamin B12 or cobalamin 

BDNF  brain-derived neurotrophic factor  

bFGF basic fibroblast growth factor  
BL basolateral 

BMA British Medical Association  

BMI body mass index 

C2CD4B C2 calcium-dependent domain containing 4B 

cAMP cyclic AMP 

CAPN10  calpain 10 gene 
CARDS Collaborative Atorvastatin Diabetes Study 

CBG capillary blood glucose 

CDKAL1  CDK5 regulatory subunit associated protein 1-like 
1 gene 

CDKN2a [2b] cyclin-dependent kinase inhibitor 2A [2B] 

 genes 
CDV cardio-vascular disease 

CGC cholangiocarcinoma  

CHO cholesterol  
CI confidence interval 

CL/F oral clearance  

Clcr creatinine clearance  
Clrenal renal clearance  

Clsec active secretion clearance  

Cmax maximum plasma concentration 
COSMIC the Catalogue of Somatic Mutations in Cancer 

CRTC2 cAMP response element-binding protein-regulated 

transcription coactivator 2 gene 
CRY2 cryptochrome circadian clock 2 gene 

CT computerized tomography 

CVR  cardio-vascular risk 
CYP2C11 cytochrome P450, subfamily 2, polypeptide 11 (rat) 

CYP2D1 cytochrome P450 2D1 

DA dopamine  
DCS Diabetes Care System West-Friesland 

DGKB diacylglycerol kinase, beta coding gene 

DM diabetes mellitus 
DMSO dimethyl sulfoxide 

DN diabetic nephropathy 

DNA  deoxyribonucleic acid 
DPP Diabetes Prevention Program 

DPP-IV dipeptidyl peptidase-4 

EASD  European Association for the Study of Diabetes 
ECR evolutionary conserved region 

eGFR  estimated glomerular filtration rate 

eNOS endothelial nitric oxide  synthase  
ENT equilibrative nucleoside transporter  

ERGO [3H] ergothioneine  

ESRD end-stage renal disease  
EWS/WT1  fusion oncogene gene 

F bioavailability 

FADS1 fatty acid desaturase 1 coding gene 
FDA  Food and Drug Administration 

FEcreat net tubular creatinine secretion  

FEX  fexofenadine 
FHG fasting hyperglycaemia  

FPG fasting plasma glucose  

FTO  fat mass and obesity associated gene 
FXRs  the farnesoid X Receptors (bile acid receptors) 

G6pc glucose-6 phosphatase  

G6PC2 glucose-6-phosphatase, catalytic, 2 
GCG preprotein of glucagon 

GCK glucokinase (hexokinase 4) gene 

GCKR glucokinase (hexokinase 4) regulator gene 
GFR glomerular filtration rate, e-estimated 

GI gastrointestinal  
GI AE gastrointestinal adverse events  

GIPR gastric inhibitory polypeptide receptor gene 

GLIS3 GLIS family zinc finger 3 gene 
GLP-1 glucagon-like peptide-1 gene 

GLUT2  glucose transporter 2 

GoDARTS Genetics of Diabetes Audit and Research Tayside 
 study 

GR  glucocorticoid receptor 

GWAS  genome-wide association study 
HbA1c glycated haemoglobin 

HCC human hepatocellular carcinoma  

HDL high-density lipoprotein 

HEK human embryonic kidney cel lines 

HFD  high fat diet 

HHEX hematopoietically expressed homeobox gene 
HILIC hydrophilic interaction liquid chromatography  

HNF1A  hepatocyte nuclear factor 1 homeobox A gene 

HNF1B  HNF1 homeobox B gene 
HNF4A hepatocyte nuclear factor 4α gene 

HNSCC head and neck squamous cell carcinomas 

holoTCII bioavailable B12  
HWE Hardy–Weinberg equilibrium 

ICD-10 International Classification of Diseases (ICD) - 

10th revision 
IDF International Diabetes Federation 

IFG impaired fasting glucose  

IGF1  insulin-like growth factor 1 gene 
IGF2BP2 insulin-like growth factor 2 mRNA binding protein 

2 coding gene 

IGT impaired glucose tolerance  
IR immediate-release 

IRS1 insulin receptor substrate 1 gene 

IS internal standard 
ITLN2 intelectin 2 gene 

k constant of the last exponential phase  

KCNJ11 potassium inwardly-rectifying channel, subfamily 
J, member 11 gene 

KCNQ1 potassium voltage-gated channel, KQT-like 

subfamily, member 1 coding gene 
KEGG Kyoto Encyclopedia of Genes and Genomes 

Ki inhibitor constant  

LC-MS/MS liquid chromatography/tandem mass spectrometry  
LD linkage disequilibrium 

LDA Latvian Diabetes association  
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LDL  low density lipoprotein 
LGDB Genome Database of Latvian Population  

LKB1 liver kinase B1, the same as STK11 gene 

LXRa liver X receptor alpha 
MADD MAP-kinase activating death domain 

MAF minor allele frequency 

MAP methamphetamine  
MATE multidrug and toxic compound extrusion proten  

(h – human, r – rat, m – mouse) 

MEF2A myocyte enhancer factor 2A 
MEF2D myocyte enhancer factor 2D 

MMA methymalonic acid 

MODY  maturity-onset diabetes of the young 
MPP 1-methyl-4-phenylpyridinium  

MTNR1B melatonin receptor 1B gene 

mTOR  regulate rapamycin complex 1  
MZF-1 myeloid zinc finger 1 gene 

NAD+ nicotinamide adenine dinucleotide 

NADPH  nicotine adenine disphosphonucleotide, reduced 
NAFLD non-alcoholic fatty liver disease  

NE norepinephrine  

NEGR1  neuronal growth regulator 1 gene 
NO nitri oxide 

NPAT nuclear protein gene, Ataxia-Telangiectasia locus  

OAT organic anion transporter coding gene 
OCT organic cation transporter (h – human, r – rat, m – 

mouse) 

OCTN carnitine/organic cation transporter 
OGTT oral glucose tolerance test  

OMI serine protease 

OR odds ratio 
p53  the p53 tumor suppressor protein 

PARGC1A peroxisome proliferator-activated receptor-gamma  

coactivator 1-alpha (PGC1alpha)  
Pck1 phosphoenolpyruvate carboxykinase  

PCOS polycystic ovary syndrome  

PCR polymerase chain reaction 
PCSK1 proprotein convertase subtilisin/kexin type 1 

PG plasma glucose 

PKA protein kinase A 
PKLR pyruvate kinase 

PMAT plasma membrane monoamine transporter 

POMC pro-opiomelanocortin  

PP2A  protein phosphatase 2 (PP2) 

PPARG  peroxisome proliferator-activated receptor gamma 

gene 
PPARGC1B  peroxisome proliferator-activated receptor 

gamma, coactivator 1 beta gene 

PPARα peroxisome proliferator-activated receptor α gene 
PPHG postprandial hyperglycaemia  

PPI proton pump inhibitors  

PRKAA1 5'-AMP-activated protein kinase catalytic subunit 
alpha-1 gene 

PRKAA2 5'-AMP-activated protein kinase catalytic subunit 
alpha-2 gene 

PRKAB2  5'-AMP-activated protein kinase subunit beta-2 
gene 

PRKAG2  protein kinase, AMP-activated, gamma 2 non-

catalytic subunit gene 
PROX1 prospero homeobox 1 gene 

PSCUH Pauls Stradins Clinical University Hospital  

PXR  pregnane X receptor  
PYY  peptide YY 

QALY quality-adjusted life-years  

RETN resistin coding gene 
RBC  red blood cells 

RR risk ratio 

RT-PCR  real-time polymerase chain reaction 
SCO2  SCO2 cytochrome c oxidase assembly protein 

SCr serum creatinine  

SD standard deviation 
SE standard error 

SGLT-1 sodium-glucose transport protein 1 

SLC22 solute carrier gene family 22  
SLC2A2 solute carrier family 2 coding gene 

SLC30A8 solute carrier family 30 (zinc transporter), member 

8 gene 
SLCO1A2 solute carrier organic anion transporter family, 

member 1A2 gene 

SNP single-nucleotide polymorphism 
Sp1 transcription factor Sp1 

SrCLR net secretion  

SREBP-1 sterol regulatory element-binding protein-1  
STK11 serine/threonine kinase 11, gene 

t1⁄2 terminal half-life 

T1DM  type 1 diabetes mellitus 
T2D type 2 diabetes mellitus 

tagSNPs tagging polymorphism 

TCA cycle the citric acid cycle 
TCAs tricyclic  antidepressants  

TCF7L2 transcription factor 7-like 2 (T-cell specific, HMG- 

 box) gene 
TEA tetraethylammonium 

TGF-β1 transforming growth factor beta 1 

TGR5  the G-protein coupled bile salt receptor  
Tm melting temperature (PCR) 

Tmax time to reach Cmax 

TMEM18 transmembrane protein 18 gene 

TMD transmembrane domain 

TMH transmembrane helices  

TNF-α  tumor necrosis factor gene 
TSC2  tuberous sclerosis complex 2 gene 

Txnip  thioredoxin interacting protein 

UKPDS UK Prospective Diabetes Study 
USFs upstream stimulating factors  

Vd/F  apparent volume of distribution 

VIF variant inflation factor 
VLDL very-low-density lipoprotein  

WFS1 Wolfram syndrome 1 (wolframin) 
WHO  World Health Organisation  

XR extended-release
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INTRODUCTION 

Metformin (1,1-dimethylbiguanide) is prescribed to at least 120 million people 

worldwide as a first-line drug for type 2 diabetes mellitus (T2D) (ADA, 2014; Nathan et 

al., 2008; Viollet et al., 2012). Metformin reduces both fasting and postprandial glucose, 

the surrogate marker of glycaemic control HbA1c (1–1.5%), and insulin resistance (Herman 

SL, 2002; Ou et al., 2006) without significant risk of hypoglycaemia (UKPDS study, 1998; 

DeFronzo and Goodman, 1995). Major limitations have been reported as inefficiency of 

therapy in up to one-third of patients within the first year of therapy (HbA1c, 7%) and 

common gastrointestinal side-effects in ~20–60% of metformin users, leading to non-

compliance (30%) and discontinuation of treatment (5–10%) (Brown et al., 2010; Donnelly 

et al., 2009; Esposito et al. 2012; Graham et al., 2011). 

Metformin is not metabolized, and transported via limited passive diffusion through the 

cell membrane (Pentikainen et al., 1979; Proctor et al., 2008). Metformin distribution in the 

body is facilitated by organic cation transporters (OCTs), multidrug and toxin extrusion 

antiporters (MATEs) and plasma membrane monoamine transporter (PMAT) (Muller et 

al., 2005; Nies et al., 2009; Otsuka et al., 2005; Tanihara et al., 2007; Verhaagh et al., 

1999; Zhou et al., 2007). Data from genome-wide complex trait analysis (GCTA) showed 

that heritability in glycaemic response to metformin varies from 20% to 34% (Zhou et al., 

2014) and the first GWAS of long-term efficiency of metformin identified the rs11212617 

polymorphism in close proximity to the ataxia-telangiectasia mutated gene (ATM) as 

significantly associated with metformin response (OR=1.35), but accounting for only 2.5% 

of the variability (GoDarts et al., 2011). A number of pharmacogenetic studies have 

investigated metformin efficiency to date. However, the results have been inconsistent, 

with limited genetic coverage (Christensen et al., 2011; Tkac et al., 2013; Tzvetkov et al., 

2009; Becker et al., 2010a). 

The aim of this study was to investigate variability in genes coding for metformin 

transporters, metformin molecular targets and type 2 diabetes mellitus (T2D) susceptibility 

loci to identify the specific genetic variants associated with intolerance and efficacy of 

metformin therapy. The main objectives were as follows: 

1. Investigate a possible association of common polymorphisms affecting transport 

activities of OCT1, OCT2 and MATE1 with the presence of metformin side-effects 

and other phenotypic and clinical measurements in T2D patients; 
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2. Assess genetic variability in OCT1, OCT2, OCT3, MATE1, MATE2 and PMAT 

coding genes and determine the genetic predictors of metformin efficacy in a 

prospective study on a group of newly diagnosed, drug-naive subjects with T2D; 

3. Analyse the polymorphisms significantly associated with susceptibility to T2D 

within the population of Latvia with respect to incidence of T2D and metformin 

efficacy; 

4. Estimate the impact of SNPs identified for metformin nonresponsiveness on the 

pharmacokinetics of metformin in healthy volunteers. 
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1 LITERATURE REVIEW 

1.1. Diabetes mellitus 

In 2012 at least 1.5 million deaths were directly caused by diabetes mellitus (DM) 

and in 2014 the global prevalence of DM was estimated to be 9% among adults (>347 

millions of people)(WHO, 2012, 2014). Rising incidence of obesity throughout society, 

and especially in children, will lead to an increase of the number of DM patients DM will 

be the 7th leading cause of death by this time (Mathers and Loncar, 2006; Shaw et al., 

2010; WHO, 2012). DM is a group of metabolic diseases characterized by hyperglycemia 

resulting from defects in insulin secretion, insulin action (insulin resistance in liver, 

adipose tissue and muscles), or both (Kahn, 2003). T2D  is the most common form of DM 

(up to 90–95% of all cases), type 1 diabetes mellitus is diagnosed in up to 5–10% of DM 

patients and more rare forms account for MODY (maturity-onset diabetes of the young) 

and gestational diabetes (altogether up to 4%) (ECDCDM, 1997; Zimmet et al., 2001). 

Between year 2008 and 2013 the total number of T2D patients in Latvia has increased 

from 59 112 to 76 595 and accounts for 94% of all registered DM patients (CSB, 2013 ).  

Glucose homeostasis is regulated by interplay of insulin, glucagon, amylin, and 

incretin hormones and, normally, gluconeogenesis is upregulated in the liver during fasting 

(Magnusson et al., 1992; Woods et al., 2006). Inability of insulin to suppress hepatic 

glucose output is a major aetiological factor of hyperglycemia in the T2D (Cherrington, 

1999). Initial development of hyperglycaemia is characterized by an insulin resistance 

leading to impairment of insulin signaling pathways and down-regulation of activity of 

glucogenic enzymes (Saltiel, 2001). Disease gradually develops when β cells become 

insufficient to compensate for insulin resistance and thus the glucose level increases to 

damaging concentrations (ADA, 2014).  

Genetic studies have shown that both insulin sensitivity (30–40%) and the insulin 

response (38%) are heritable and a vast amount of T2D susceptibility genes are involved in 

the regulation of beta cell functions (Bergman et al., 2003; Elbein et al., 1999). Other T2D 

risk factors are: early pre- and postnatal environment, birthweight, obesity and central body 

composition, age, genetic factors, sedentary lifestyle and western diet (high fat, high sugar 

content and highly processed food) (Berends and Ozanne, 2012; Bi et al.). Symptoms of 

DM range from mild ones like tiredness, polyuria, polydipsia, weight loss, polyphagia, 

blurred vision to severe ones, such as hyperglycemia with ketoacidosis or the nonketotic 

hyperosmolar syndrome (Genuth et al., 2003). The rate of cardiovascular disease is 
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approximately two times higher and overall mortality risk doubles in diabetic patients in 

comparison to non-diabetic patients (Morrish et al., 2001; Sarwar et al., 2010).  

The main biochemical analysis performed on regular basis for diagnostics and 

treatment of T2D are measurements of levels of fasting plasma glucose (FPG), glycated 

haemoglobin (HbA1c) and results of oral glucose tolerance test (OGTT) (Nakagami et al., 

2010; Stevens et al., 1977). FPG is simple and cost-effective biochemical analysis, 

however, it lacks sensitivity in early T2D, is highly variable and dependent on many other 

factors (food, physical activity, disorders, injuries, other drugs than ones used in 

antidiabetic therapy)(Kim et al., 2008a; Somogyi, 1949). OGTT, on the other hand, is 

suitable for early detection of T2D, however, due its greater cost, inconvenience and lower 

reproductibility, it is not recommended for a routine clinical use (Baird and Duncan, 1959). 

HbA1c reflects the average plasma glucose level in the last 2-3 months and has become 

available as routine procedure in most of the counties in the last three decades (Garlick et 

al., 1983; WHO, 2006). Currently HbA1c is not widely recommended for an early 

screening of T2D (ADA, 2004; Alberti and Zimmet, 1998).  

A risk factor for future T2D, as well as cardiovascular disease, is considered “pre-

diabetes” which is characterized by an impaired fasting glucose (IFG) 5.6–6.9 mmol/L 

and/or impaired glucose tolerance (IGT) after 2-h post load glucose 7.8–11.1 mmol/L. 

Criteria for the diagnosis of T2D according to the guidelines of Latvian Diabetes 

association (LDA, 2007) are: 

1) fasting plasma glucose (FPG): 7.0 mmol/l; 

2) symptoms of hyperglycemia and a casual plasma glucose: 11.1 mmol/l; 

3) 2 h plasma glucose: 11.1 mmol/l during an oral glucose tolerance test (OGTT);  

Biochemical analysis should be repeated in other day to ensure accuracy in the diagnosis of 

DM (Brown et al., 2010; CDA, 2013; WHO, 2006). 

Recent study showed that at cut-off values of FPG ≥6.1 mmol/l and HbA1c ≥ 6.1% 

if both criteria were satisfied, the correct prediction of DM was relatively high (82.9%) and 

if both FPG was <6.1 mmol/l and HbA1c was <6.1%, than there was little likelihood of 

T2D (1.7%). Such findings reduce the need for OGTT down to 19.4% when only one of 

the measurements is increased instead of 34.2% according to recommendations by ADA 

(Kim et al., 2008a). Similarly, a good result of HbA1c efficiency as diagnostic tool for early 

T2D was obtained in another study (Nakagami et al., 2010). In the year 2011 WHO 

accepted the use of HbA1c testing in diagnosing T2D with cut-off value of 6.5% (WHO, 

2006).  
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1.1.1. Goals of antidiabetic therapy 

It is thought that patients with a good blood sugar control, life-style changes and 

self-care may prevent or delay onset of T2D and, if early diagnosticed with T2D, have 

good outcomes when treated timely and adequately (DCCTR group. 1993; UKPDS, 1998; 

Gerstein et al., 2008; Holman et al., 2008; van den Berghe et al., 2001). Poor control of 

T2D (long-term hyperglycemia) is associated with development of macrovascular 

complications (coronary artery disease, peripheral arterial disease, and stroke) and wide 

range of microvascular complications associated with damage of the eyes (retinopathy with 

potential loss of vision), kidneys (nephropathy leading to renal failure), nerves (peripheral 

neuropathy with risk of foot ulcers, amputations, Charcot joints and autonomic neuropathy 

causing gastrointestinal, genitourinary, and cardiovascular symptoms and sexual 

dysfunction)(ADA, 2014; Rosolova et al., 2008). Cardiovascular disease is the cause of 

death in up to 70 % of diabetic patients, leading to an approximately 10 years shorter life-

span in comparison to healthy individuals (Amos et al., 1997; Reaven, 1988). 

The diagnostic screening cut-off points should be decided by their relevance for 

likelihood of complications (Nakagami et al., 2007). T2D has asymptomatic period of 4-5 

years and thus newly diagnosed patients are characterized with high frequency 

hyperlipidemia, hypertension, neuropathy, nephropathy and retinopathy (73.5%, 58.5%, 

52%, 10%, and 6%, respectively (Iraj Heydaria, 2010). Cut-off point of 5.6% in study 

investigating T2D patients from Japan (adequate to 5.9% in U.S.) was found to be the most 

proper one in respect to screening test and prediction of vascular complications (Nakagami 

et al., 2007). HbA1c had a similar predictability of future retinopathy to 2 h PG or FPG, and 

the optimal HbA1c associated with future retinopathy was 5.7% in a Hisayama study (or 

6% in U.S.)(Miyazaki et al., 2004) and between 5.9% and 6.2% in the Third National 

Health and Nutrition Examination Survey (U.S.). Marker of increased incidence of 

rethinopathy from longitudinal study in Pima Indians was HbA1c >7% (McCance et al., 

1994). 

Compilation of studies investigating microvascular complications (diabetic 

retinophaty and microalbuminuria) was reflected in the WHO report in year 2006 and it 

showed a high variability in optimal thresholds of HbA1c (5.7-7.6%), FPG (6.4-8.5 

mmol/L) and 2 h PG (OGTT)(9.8-14.4 mmol/L)(Stolar, 2010; WHO, 2006). Correlation 

between HbA1c, FPG, OGTT and incidence of diabetic retinophaty is found to increase 

exponentialy if fasting plasma glucose exceeds >6 mmol/l or HbA1c is >5.8% (Figure 1.1.). 
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Figure 1.1. From World Health Organisation report “Prevalence of diabetes-specific retinopathy” by 

vigintiles of distribution of FPG, 2 h PG and HbA1c from DETECT-2” in 2006 (WHO, 2006). 

In targeted T2D screening group, the prevalence of macrovascular complications 

was found to be similar to that of patients detected in general practice, but with a lower 

degree of hyperglycaemia (Spijkerman et al., 2004). HbA1c, FPG and 2 h PG were shown 

to positively, but not linearly correlation with all of the cause and CVD mortality in 

population-based study albeit association was less clear in comparison to microvascular 

complications (Khaw et al., 2004; Nakagami and Group, 2004). Each 1% reduction in 

HbA1c was shown to reduce risk for 21% for any endpoint related to T2D, 21% for deaths 

related to T2D, 14% for myocardial and 37% for microvascular complications (Stratton et 

al., 2000). Scientists have assessed that the optimal thresholds may be very low due to 

association of even lesser impairments of glucose regulation that are associated with an 

increased CVD risk (Decode Study Group, 2003).  

1.1.2. Treatment guidelines 

At least 7 groups of peroral antidiabetic medications and insulin analogs are 

available for treatment of T2D with considerable variety in efficiency - ranging from 

25.9% to 63.2% of participants reaching for glycaemic goal of HbA1c <7% (Esposito et al., 

2012). The primary factors for choice of drugs for treatment of T2D include efficacy and 

safety of antidiabetic drugs. The UK Prospective Diabetes Study (UKPDS) and other 

studies have found metformin to be more effective than chlorpropamide, glimepiride, 

glibenclamide and insulin (UKPDS study, 1998; Adler et al., 2000; Stratton et al., 2000; 
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Zhu et al., 2013). Other  factors  responsible  for the  variation  in  the  pattern  of  

utilization  of pharmacotherapy are cost, quality of life, and patient preferences (Singh, 

2014).  

Many studies have demonstrated that lifestyle or pharmacological interventions in 

subjects with impaired glucose tolerance (IGT) can delay or prevent T2D (Kawamori et al., 

2009; Knowler et al., 2002; Tuomilehto et al., 2001). Metformin intervention in 

comparison to placebo was estimated to delay the development of T2D by 3 years and to 

reduce the absolute incidence of T2D by 8%, respectively. The cumulative incidence of the 

complications was reduced and survival was improved by 0.2 years. The cost per quality-

adjusted life-years (QALY) was cost-effective ($31 300) in all age groups, except for 

persons older than 65 years. It should be noted that lifestyle intervention was more 

effective and less resource consuming in most of comparisons to metformin therapy 

(Herman et al., 2005). Data from n=1 073 patients in the standard lifestyle management 

plus metformin arm from DPP study suggests, that improved postprandial hyperglycaemia 

(PPHG) was superior  with an intensive  lifestyle  than  metformin, whereas both 

treatments exerted a similar effect on fasting hyperglycaemia (FHG). Metformin was not 

as efficient as intensive life style intervention, but it had a clinically significant effect in 

obese individuals and in those with impaired fasting glucose (IFG)(Herman SL, 2002).  

The International Diabetes Federation (IDF) states that lifestyle changes after T2D 

diagnosis can provide control of blood glucose concentrations to safe levels in a minority 

of patients and usually for a limited period after diagnosis (IDF, 2005). Indeed, 

approximately 15% of type 2 diabetic subjects fail to lower their fasting plasma glucose to 

15.0 mmol/L after 3 months of diet therapy (UKPDS, 1998) and 3 years later 75% of 

subjects treated with only a dietary intervention failed to maintain an HbA1c of 7% (Turner 

et al., 1999). 

The American Diabetes Association (ADA) and European Association for the 

Study of Diabetes (EASD) recommend metformin to be the first-line medication in all 

newly diagnosed patients, regardless of age, if lifestyle changes are not sufficient (Nathan 

et al., 2008). Metformin is moderately favorable in respect to the ease of dosing but it 

should be adjusted for renal impairment. It is recommended to titrate the dose and apply 

multi-dosing of metformin in meal-times over early weeks to minimize incidence of side-

effects and discontinuation due to intolerance. Evidence or risk of renal impairment 

(eGFR<60 ml/min/1.73 m
2
) or serum creatinine >1.5 mg/dl (132.60 µmol/L) in males and 

>1.4 mg/dl (123.76 µmol/L) in females) are contraindication for metformin use. Guidelines 
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of IDF enlist also a need for regular measurements of HbA1c, consultations of healthcare 

professionals, life-style measures, self-monitoring and education to ensure quality of 

treatment (IDF, 2005). 

Retrospective study in 15 516 patients confirmed the effectiveness of initial selection of 

metformin as first line medication. Despite guidelines, only 57.8% of participants began an 

antidiabetic therapy with metformin but this group showed reduced subsequent treatment 

intensification, without differences in rates of hypoglycaemia or other adverse clinical 

events in comparison to sulfonylurea, thiazolidinediones, or dipeptidyl peptidase 4 

inhibitors (Berkowitz et al., 2014). 

Increasing burden of T2D requires economical evaluation of antidiabetic therapy and it 

favors metformin (Diabetes Prevention Program Research, 2012a), however goals of 

therapy are open to discussion. Small study in patients using metformin for 9 months 

showed that HbA1c cut-off values dramatically change proportions between responders and 

non-responders (19% if treatment goal was <7% to 43% if treatment goal was <7.5%), 

leading to assumption that even minor changes in HbA1c goal will change the course of 

therapy for large portion of patients (Moses, 2008). Economically, threshold <9% in 

comparison to <6.5% HbA1c was associated with a shorter time spent on monotherapy, 

ranging from 1.1 years to 13 years, respectively. Lowest thresholds were found to increase 

the total lifetime cost of therapy (McEwan et al., 2015). 

Treatment guidelines of T2D in Latvia are in concordance with recommendations 

developed by ADA, EASD and IDF albeit cut-off values for treatment vary (Figure 1.2.). 

The glycaemic goal of the therapy in Latvia is to reach <6.5% HbA1c but optimal cut-off 

value can be personalized personalized for elderly or patients with concomitant diseases 

(LDA, 2007). Similarly, Canadian Diabetes Association Clinical Practice Guidelines 

reccomends HbA1c goal to be less than <6.5% and <7 mmol/L for FPG, and ≤11.1 mmol/L 

for OGTT (or random postprandial glucose measurement)(CDA, 2013). For patients with 

T2D, the American Diabetes Association (ADA) and European Association  for  the  Study  

of  Diabetes  (EASD) in 2008 recommended a glycated haemoglobin (HbA1c) target of 

<7%, and the British Medical Association (BMA) Quality and Outcomes Framework 

recommends a HbA1c target of ≤7.5% (BMA, 2006; Nathan et al., 2008).  
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Figure 1.2. Clinical Guidelines for the treatment of T2D in Latvia. From “Guidelines for Prevention, 

Diagnostics and Treatment of Type 2 Diabetes”(LDA, 2007). 

1.2. Metformin and its clinical use 

Metformin is a peroral antihyperglycaemic drug which improves glucose tolerance 

in patients with T2D, lowering both basal and postprandial plasma glucose by reduction of 

hepatic neogenesis in non-insulin-dependent diabetes mellitus patients (Stumvoll et al., 

1995). This effect occurs mainly by reducing the rate of gluconeogenesis (Hundal et al., 

2000; Stumvoll et al., 1995), but metformin was shown also to down-regulate 

glycogenolysis (Mithieux et al., 2002). Metformin improves insulin sensitivity in the 

muscle and liver (Ou et al., 2006), increases glucose utilization in gut and insulin-mediated 

glucose uptake in muscles (Wiernsperger and Bailey, 1999), enhances insulin receptor 

expression and tyrosine kinase activity (Gunton et al., 2003). 

 Metformin can be used as a monotherapy or can be combined with all other peroral 

antidiabetic drugs and insulin in the treatment of T2D (LDA, 2007). It also can be 

indicated in case of pre-diabetes (Perreault et al., 2009), type 1 diabetes mellitus (Vella et 

al., 2011) and gestational diabetes (Rowan et al., 2008). Metformin has been successfully 

used in adolescents with a insulin resistance (Love-Osborne et al., 2008). Besides 

antihyperglycaemic action, metformin excerts beneficial effects on β cells (Hinke et al., 

2007), normally does not induce hypoglycaemia and hyperinsulinemia (Garcia, 1950), is 

slimming or at least weight neutral (UKPDS study, 1998). In clinical trials metformin has 

No Yes 

No Yes 

Diagnosis of T2DM 

Lifestyle changes If glucose level >15 mmol/l or/and HbA1c > 9 % 

a short term insulin therapy can be started 

Follow recommendations Metformin Follow recommendations 

Thiazolidine -

diones (TZD) 

Sulfonylurea and glinides Incretine –based 

therapy 

Insulin therapy 

Reach the goals of therapy, including HbA1c ± 6.5 % without hypoglycaemia. If target is not reached, than it is 

recommended to combine different classes of drugs with insulin (if no contraindications are present). Education of 

patients. If patient is elderly or have severe complications, or high risk of hypoglycaemia is present, goals of therapy 

can be personalised. 

HbA1c ± 6.5% 

HbA1c ± 6.5% 
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shown  beneficial effects in case of metabolic syndrome (Pasquali et al., 2000), non-

alcoholic fatty liver disease (NAFLD) (Mazza et al., 2012) and hyperlipidemia in animal 

studies (Ghatak et al., 2011; Pentikainen et al., 1990) by reducing adipose tissue lipolysis 

(Ren et al., 2006), levels of circulating plasma triglycerides (DeFronzo and Goodman, 

1995), nonesterified fatty acids and diminishing production of very-low-density lipoprotein 

(VLDL)(Abbasi et al., 1997). Promising results were obtained from studies investigating 

insulin resistant/obese women with polycystic ovary syndrome (PCOS)(Diamanti-

Kandarakis, 2008), cancer (Rizos and Elisaf, 2013) and hypothyroidism (Krysiak and 

Okopien, 2011). In tissue and animal models metformin has shown a promise regarding 

anti-ageing (De Haes et al., 2014) and Alcheimers disease therapy (Kickstein et al., 2010). 

However, recent meta-analysis has questioned whether or not metformin indeed is 

associated with lactic-acidosis and lower CVD risks in T2D patients (UKPDS study, 1998; 

Boussageon et al., 2012). 

 Major weaknesses of metformin are inefficiency of therapy in up to 1/3 of patients  

in the first year of the therapy (primary failure) and common gastrointestinal side-effects in 

approximately 20-60% of metformin users contributing to the non-compliance in as many 

as one-third of patients initially on prescribed therapy (Donnelly et al., 2009; Esposito et 

al., 2012)  and leading to the discontinuation in approximately 5–10% of the cases (Brown 

et al., 2010; Graham et al., 2011). Recent findings have questioned if restriction of 

metformin use in all patients with kidney disease is supported by the scientific evidence 

(GGT2D, 2006; Singh, 2014). 

1.2.1. Discovery of metformin 

 Diabetes mellitus is ancient disease for the first recored at least 3 600 years ago in 

Ebers Papyrus (ancient Egypt). It was described and classified in Type 1 and 2 by Sushruta 

and Charaka approximately 500 - 600 BC in India (Algaonker-SS., 1972; Griffith, 1893). 

The term of disease was derived from the greek verb ''diabaínein'' by Aretaeus of 

Cappadocia (130–200 CE) meaning "a siphon" and implicating polyuria, one of the main 

symptoms of DM. Rediscovery of the diabetes started with Thomas Willis (1675), who 

also added “mellitus” to the term, meaning “honey-sweet” due to specific smell of diabetic 

urine (Araetus, 1856; McGrew, 1985).   

 More than 400 traditional plant treatments for diabetes mellitus have been recorded 

providing a useful source for search of new oral hypoglycaemic compounds. While most of 

the sources have not been evaluated in the clinical trials, excellent findings were obtained 
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from studies dedicated to the toxic weed Galega officinalis (native to Middle East, known 

also as Goat’s rue, French lilac)(Bailey and Day, 1989). Goat's rue is a perennial herb >1 m 

in height, growing in temperate regions. In Europe, aerial parts (leaves and flowering tops 

in an infusion) of this plant were used since medieval times to treat symptoms of T2D such 

as an intense urination; treatment was characterized by mild overall efficiency and 

associated with pronounced side-effects (Bailey and Day, 1989; Witters, 2001). Goat’s rue 

is rich in compounds with antiglycaemic properties - guanidine and galegine (Bailey and 

Day, 1989; Dronsfield A, 2011). Metformin and phenformin were developed from galegine 

(guanidine derivative) (Graham et al., 2011)(Figure 1.3.). 

 

Figure 1.3. Metformin, phenformin and galegine. From (Graham et al., 2011). 

 

 In the 1917 guanidine hydrochloride was shown to reduce blood glucose levels in 

rabbits, but was mistakenly associated with tetany of hypoparathyroidism (Watanabe-K., 

1918). Guanidine itself was proven to be too toxic for clinical use and, instead, galegine 

and alkyl diguanides Synthalin A and Synthalin B were introduced in early 1920s as 

antidiabetic drugs. These compounds were overshadowed by a wide use of insulin and 

discontinued in the next two decades due to various adverse effects, including liver toxicity 

(Bailey CJ, 2004; Mixner et al., 1957; Sterne, 1969). 

 For the first time, metformin was described in 1922 by the Dublin chemists Emil 

Werner and James Bell (Werner EA, 1922). It was shown to reduce blood glucose levels in 

rabbits, but, unlike other similar compounds, did not affected blood pressure and heart rate 

in animals (Dawes and Mott, 1950). Problems experienced with guanidine and diguanides 

prompted the development of biguanides and the later use of metformin (Bailey, 1988). 
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 In late 1940s, renamed as Fluamine, metformin was investigated by Garcia in the 

study as treatment against influenza and it was found to lower blood glucose levels to the 

normal physiological level and appeared to be safe in clinical use (Garcia, 1950). In 1957, 

Sterne reported antihyperglycaemic properties of metformin in human (Sterne, 1957); soon 

properties of metformin were investigated in other clinical trials (Gottlieb and Auld, 1962; 

Supniewski and Chrusciel, 1954). The new antidiabetic drug was well received due to a 

high demand for peroral drug with strong antihyperglycaemic effect but not associated 

with severe hypoglycaemia.  

 In the next few years were published promising results of trials investigating 

properties of other even more efficient biguanides - phenformin and buformin (Bailey CJ, 

2004; Mehnert and Seitz, 1958; Ungar et al., 1957). Phenformin was withdrawn from 

market in late 1970s and use of buformin currently is outlawed in many countries due to 

severe and highly lethal side-effect - lactic acidosis (Misbin, 1977).  

 Nowdays, more lipofilic biguanides and guanidine derivates are being tested as 

potential peroral antidiabetic compounds in order to improve efficiency and biovailability 

of metformin (Rauf et al., 2014). 

1.2.2. Physicochemical properties 

 Metformin hydrochloride (1,1-dimethylbiguanide, C4H11N5 • HCl) belongs to the 

peroral antidiabetic drug class biguanides (Viollet et al., 2012). The original experiment of 

metformin synthesis is a reaction between dimethylamine hydrochloride and 2-

dicyanodiamide (Werner EA, 1922)(Figure 1.4.). 

Figure 1.4. Synthesis of metformin in the reaction between dicyanodiamide 1 and dimethylamine 

hydrochloride 2. Adapted from (Shalmashi, 2008). 

 Metformin hydrochloride is freely soluble in water and is practically insoluble in 

acetone, ether and chloroform (https://pubchem.ncbi.nlm.nih.gov/ Accessed in January 

2015). The dose of metformin is indicated as the hydrochloride salt (molecular weight 

165.63) but concentrations in biological fluids are expressed as the free base (molecular 

https://pubchem.ncbi.nlm.nih.gov/
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weight 129.16)(Graham et al., 2011). Metformin is a hydrophilic base (acid dissociation 

constant values pKA 2.8 and 11.5) with less than 0.01% unionized in blood and 

characterized by low logP value of -1.43 (Brittain, 2013). It indicates low lipophilicity of 

the drug and limited passive diffusion through cell membranes. The hydrophobic tail of 

metformin extends into the hydrocarbon core of membranes. The protonated biguanide 

group gives a positive charge to the surface of the membrane, which acts to displace 

divalent cations and alter membrane potentials. That may affect divalent cation membrane 

functions and act in general as a calcium channel blocker (Schafer, 1976). 

1.2.3.  Formulations 

 Metformin is administred in peroral tablets containing 500, 850 or 1000 mg doses 

for single or multiple-dosing. For the therapeutical effect it is required to use high doses of 

metformin - up to 2500 mg per day (Rena et al., 2013). IC50 of metformin is 275 mmol/L 

(Davidoff and Carr, 1972) and Bioavailability (F) of 500 mg is approximately 50%-61% 

and it decreases when dose is increased (not proportionally)(Graham et al., 2011; 

Pentikainen et al., 1979). Metformin therapy requires repeated administration of doses due 

to fast elimination of drug to maintain effective plasma concentrations (Pentikainen et al., 

1979). In some cases metformin is combined in fixed dose in combination with other 

peroral anditiabetic drugs like glipmipiride, sitaglipin, rosiglitazone, but the majority of 

available formulations are simple immediate-release (IR) tablets (Bailey and Day, 2009; 

Kim et al., 2009). Metformin is not a good candidate for a traditional sustained-release 

dosage form because its absorption is limited largely to the small intestine (Graham et al., 

2011). Sustained- or extended-release formulations are designed to release metformin at a 

constant rate and may reduce side-effects and allow once a day dosing. Sustained-release 

(SR) dosage forms of metformin have been prepared to prolong gastric and, possibly, 

instestinal residence by forming gel-like mass (Davidson J, 2004; Timmins et al., 2005). 

Metformin is also produced in extended-release single-composition osmotic tablet (XT) 

with prolonged  time to peak plasma concentration (Wagstaff and Figgitt, 2004).  

1.3. Efficiency of metformin 

The expected average improvement in HbA1c with the use of metformin is 

approximately 1-1.5% (Bennett et al., 2011). Metformin in doses up to 1500 mg per day 

reduce HbA1c levels by approximately 1 % compared to placebo after 3 months of therapy. 

Higher baseline HbA1c levels are associated with greater declines in HbA1c; however, there 
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is little evidence for additional reduction at higher doses. Most of the treatment effect was 

evident 3 months after the beginning of the therapy and no consistent effect of T2D 

duration was observed on the change in HbA1c (Esposito et al. 2012). Metformin 2000 mg 

per day in subjects inadequately controlled on diet and  exercise resulted in 0.6% decrease 

in HbA 1c from baseline 7.2%, and 76% of patients reached therapy goal of <7% HbA1c 

(Aschner et al. 2010). In other study group of patients over 52 weeks decreased HbA1c for 

1.4 % from a baseline of 8.4% and 45% of patients reached therapy goal of <7% HbA1c 

(Schweizer et al., 2007). Small study investigated changes in fasting plasma glucose 

concentrations (A) and postprandial plasma glucose concentrations (B)(to convert to the 

values for glucose to millimoles per liter, multiply by 0.056) if metformin and troglitozone 

were used as monotherapy or combined. Study was designed as follows - 2 weeks wash-

out period when previous therapy was stopped, then 3 months of monotherapy followed by 

3 months a combined therapy (Inzucchi et al., 1998). Results reflect a fast and significant 

decrease of postprandial and fasting glucose level in serum in case of metformin 

monotherapy (Figure 1.5.). 

 

Figure 1.5. Effects of metformin monotherapy on FPG and PPG levels. From (Inzucchi et al., 1998). 

The UK Prospective Diabetes Study (UKPDS) demonstrated a progressive loss of 

glycaemic control with prolonged use of metformin (Turner et al., 1999) due to decline of 

pancreatic β cell function in the face of persistent insulin resistance, rather than loss of 

action of the drug itself (UKPDS, 1995; Weyer et al., 1999). Metformin was shown to 

maintain control for up to 2 years (Charbonnel et al., 2005). Over the 1 year of treatment 

with metformin drug-naive patients with T2D decreased HbA1c from 8.7% to 7.3%. Most 

of HbA1c reduction was attained by week 12, and the efficacy was sustained through the 
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treatment. Body weight decreased during treatment (– 1.9±0.3 kg, P <0.001). Any adverse 

event incidence was 75.4% and incidence of gastrointestinal side-effects was 43.7% 

(Schweizer et al., 2007). 

 In 1 year study, secondary failure rate of metformin monotheapy (defined as the 

addition or switch to other antihyperglycaemics) was 21.8%. The best HbA1c achieved 

within 1 year of metformin initiation was shown to be the most powerful predictor of 

avoiding secondary failure monotheapy (defined as the addition or switch of 

antihyperglycaemics) (Boccuzzi et al., 2001). In long term, antidiabetic therapy requires 

intensification of monotherapy or add-on of other antidiabetic drugs due to detoriation of β 

cell function (UKPDS, 1998). The 50% secondary failure was identified within 36 months 

in subjects with best HbA1c of 7–7.9% whereas it took >60 months for those with 6–6.9% 

HbA1c (Nichols et al., 2006). A recent study, when compared with sulfonylurea, metformin 

was associated with a delay in secondary failure in those who had used it for at least 2 

years (Eurich et al., 2005). In the U.K. Prospective Diabetes Study approximately 45% of 

overweight patients attained HbA1c <7% after 3 years of first-line use of metformin (Turner 

et al., 1999).  

In almost 1000 T2D patients using metformin for 1 year, therapy was associated with 

decrease of body weight (- 2.5 kg). Best results were observed in patients with highest 

baseline weights. Metformin caused small decreases within the normal range in 

haemoglobin and hematocrit. It may beneficially affect cardio-vascular system by lowering 

hemoconcentration and hypercoagulability (Belcher et al., 2005). In Diabetes Prevention 

Program (DPP) long-term follow-ups metformin was shown to reduce haemoglobin and 

hematocrit levels during first year and effect stabilized after this time-point. In patients 

using metformin versus placebo group weight loss was stable (2.0 vs. 0.2%, P<0.001) and 

durable (up to 10 years), and strongly correlated with drug adherence (Diabetes Prevention 

Program Research, 2012b). 

 Recent meta-analysis of metformin efficacy in 13 110 T2D patients resulted with 

surprising results. Metformin did not significantly affect the primary outcomes of all-cause 

mortality, risk ratio (RR) = 0.99 (95% CI: 0.75 to 1.31), and cardiovascular mortality, 

RR=1.05 (95 % CI: 0.67 to 1.64).  

 The secondary outcomes (all myocardial infarctions, heart failure, peripheral 

vascular disease, leg amputations, microvascular complications) were also unaffected by 

the metformin treatment. For all-cause mortality and cardiovascular mortality, there was a 

significant heterogeneity when including the UK Prospective Diabetes Study subgroups 
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and significant interaction with sulphonylurea as a concomitant treatment for myocardial 

infarction. Thus study reached, actually, controversial results - a 25% reduction or a 31% 

increase in all-cause mortality and 33% reduction or a 64% increase in cardiovascular 

mortality in subgroups. Meta-analysis was performed by including UKPDS subgroup 

(metformin plus sulphonylurea versus sulphonylurea alone) and low number of 

randomized controlled trials with limited number of events in analysis. The deterious effect 

of the combination of metformin plus sulphonylurea remains unexplained. Authors of 

meta-analysis conclude that previous CVR reduction in metformin group may be an effect 

of concomitant therapy or a study bias (absence of placebo group and double-blinding). 

They also point out a common weakness of many of studies dedicated to the research of 

metformin efficacy, which is lack of investigation of patient-relevant outcomes 

(Boussageon et al., 2012). Scientists have stressed that due to absence of clinical evidence 

supported by a double-blind randomized controlled trial versus placebo on the clinical 

efficacy of antidiabetic drugs, it is not possible to prove the ability of HbA1c to predict and 

capture the effect of treatments (Prentice, 1989). For example, previously mentioned 

subgroup of metformin and sulfonylurea in UKPDS study had the better HbA1c reduction 

in comparison to the group of sulfonylurea alone. However, excess of mortality was found 

in the group receiving combined therapy (Boussageon et al., 2012). 

1.4. Side-effects of metformin  

 Metformin therapy irrespectively to the dose is associated with common, usually 

gastrointestinal (GI) side-effects in the 20–30% of all users, leading to the discontuniation 

of therapy in up to 5-6% of cases (Garber et al., 1997; Hirst et al., 2012). For the note, 

titration to the maximal dose in 1 year is reached only in 59% of all metformin users 

(Belcher et al., 2005; Garber et al., 1997). Common side-effects of metformin therapy are 

chest pain, allergic reactions, diarrhea, bloating and abdominal pain, vomiting, stomach 

ache, headache and lethargy (Garber et al., 1997). Use of biguanides for long time was 

thought to be associated with increased risk of severe and highly lethal side-effect (up to 

50%) - lactic-acidosis. While it appears to be true for phenformin, recent studies and meta-

analysis have rejected such correlation in case of metformin. GI side-effects remains major 

limiting factor for optimizing glucose-lowering therapy and negatively affect quality of life 

and adherence in T2D patients, especially during the uptitration in the beginning of the 

therapy and (Florez et al., 2010; Hermans et al., 2012). 
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 Sustained and extended release formulations are recommended by National 

Institute for Health and Clinical Excellence in case if gastrointestinal intolerance prevents 

continuation of the immediate-release preparation (Adler et al., 2009). In 12-weeks of 

clinical trial with 529 participants extended-release tablets showed similar efficiency, 

overall incidence of side-effects and systemic exposure to the metformin as immediate-

release tablets, but, for unknown reason, increased triglyceride levels (Schwartz et al., 

2006). In meta-analysis of 4 studies (95 patients with adverse events in total) investigating 

replacement of IR tablets for sustained-release tablets, incidence of GI side-effects varies 

from 0–38%, however, tolerability seems to be dose dependant (Feher MD, 2007). In a 

small study 45.9% of patients experiencing metformin side-effects from IR metformin, the 

gastrointestinal disturbances were reduced to 33% using extended-release (XR) metformin 

tablets. For the note, this study experienced high (>40%) withdrawal of patients (Levy et 

al., 2010). In other study of extended-release (XR) formulation of metformin 1 240 patients 

were randomized in placebo and 2 groups receiving metformin XR and 742 patients were 

randomized to receive metformin XR in different doses versus placebo group. 

Gastrointestinal side-effects in all groups of metformin XR formulations were higher than 

in placebo group – in Group 1 63.5% versus 59.5%; in Group 2-65.8% versus 59.5%, 

respectively. Discontinuation occurred in 4.4% of metformin XR-treated patients and in 

2.5% of placebo-treated patients in Group 1, and in 2.9% and 0.9% of patients, 

respectively, in Group 2. Gastrointestinal adverse events (GI AE) found in >5% of 

metformin on placebo users are shown in the picture (Fujioka et al., 2005)(Figure 1.6.). 

 

Figure 1.6. Gastrointestinal adverse events (GI AE) found in metformin or placebo users. 

From (Fujioka et al., 2005). 
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1.4.1. Common side-effects 

Pathophysiology of metformin side-effects is unknown and dose of drug positively 

correlates with incidence, however, not in all studies (Feher MD, 2007; Garber et al., 1997; 

Hirst et al., 2012). In a recent publication, 83 cases of metformin discontinuation due to 

severe gastrointestinal (GI) side-effects were analysed versus a larger group of tolerant 

patients. Metformin gastro-intestinal intolerance phenotype was characterized by the low 

rate of ischaemic heart disease, left-handedness, ABO group imbalance, higher ferritine 

levels and an iron load. Previously, ABO groups have beeen linked to the cardiometabolic 

risk (Reilly et al., 2011) and relative proportion of healthy GI microbiota (Makivuokko et 

al., 2012). Elevated ferritine levels may confer to vascular benefit in metformin intolerant 

patients, but association of feritine with metformin gastrointestinal side-effects remains 

elusive. Such heterogenous parts of phenotype possibly can help to characterize cardio-

vascular risk (Hermans et al., 2013), albeit lacks specificity and sensivity to be used as in a 

clinical setting.  

 It is unclear whether adverse effects could be attributed to the drug present in the 

mucosa or in the intestinal lumen. Different hypotheses have been proposed: 1) high local 

metformin concentration in the intestines (Bailey et al., 2008; Wilcock and Bailey, 1994), 

2) metformin effects on glucose-absorption in the gut and changes in microbiota 

(Napolitano et al., 2014), 3) changes in incretin and glucose metabolism (Bouchoucha et 

al., 2011), 4) stimulation  of  intestinal serotonin secretion (Cubeddu et al., 2000) 5) gherlin 

and bile salt handling (Carter et al., 2003; Scarpello et al., 1998).  

 The highest levels of metformin have been detected in the enterocytes and lead to 

an increase in anaerobic processes and elevated production of lactate (Bailey et al., 1994). 

Thakker et al. showed in (Caco-2 cells, in vivo and ex vivo mouse) transporter-dependent 

accumulation of metformin in the enterocytes and also its absorption through the saturable 

paracellular route (up to 90%). It can be speculated that a portion of the metformin dose is 

sequestered in the enterocytes because of the lack of an efficient basolateral (BL) efflux 

transporter mechanism and thus may lead to adverse-effects (Proctor et al., 2008). 

Metformin uptake in the gut is hypotised to have a complicated pattern. Study provides 

strong evidence supporting an “OCT-like” bidirectional uptake/efflux transport mechanism 

on the apical (AP) membrane in Caco-2 cells for metformin, possibly, OCT3. In 

comparison to AL metformin transport, BL transport was quite inefficient and rate-limiting 
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step leading to a paracellular not transcellular metformin uptake (mediated by 

OCT1)(Proctor et al., 2008)(Figure 1.7.). 

 

 

Figure 1.7. Mechanisms underlying saturable intestinal absorption of metformin. From 

(Proctor et al., 2008). 

 

 It should be noted that expression of OCT in cancer tissues is different from normal 

tissues and Caco-2 cells may not be the best model for study. Metformin increase uptake of 

2DG (sugar) in the intestinal tissues from humans and, possibly, may increase glucose 

levels in the enterocytes and affected trafficking of GLUT2 transporters in intestinal 

epithelia. Oxidative metabolism of glucose in the anaerobic condition of intestinal 

epithelium may explain lactic acidosis caused by metformin (Bailey et al., 2008; Han  T, 

2012; Stepensky et al., 2002; Yufeng Xia, 2014). 

 Research in animal models has shown that modulation of the gut microbiota may 

contribute to the antidiabetic effects of metformin. Recently it was shown that metformin 

alters the gut microbiota, disrupts microbial metabolic pathways and promotes longevity in 

the worm C. elegans (Cabreiro et al., 2013). In C57BL/6 mice treated with metformin for 6 

weeks it was shown that metformin HFD (high fat diet) fed mice developed higher 

abundance of the mucin-degrading bacterium Akkermansia muciniphila and increase in 

number of mucin-producing goblet cells than HFD-fed control mice. Interestingly, oral 

administration of Akkermansia to HFD-fed control mice significantly enhanced glucose 

tolerance and reduced adipose tissue inflammation (via T cells). Akkermansia muciniphila 

does not alter gut permeability (Burcelin, 2014; Shin et al., 2014). Further research on 

composition of gut microbiota was examined in the high-fat diet induced obese mouse 

model with and without metformin treatment. Use of metfomin increased abundance of 

Akkermansia mucinophilia and Clostridium cocleatumin mouse model and in vitro. 

Metformin appeared to act as a growth factor for Akkermansia mucinophilia which 

positively correlated with mucus thickness and also may be involved in the regulation of 
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lipid metabolism. In addition, in total 18 KEGG metabolic pathways were significantly 

upregulated in the gut microbiota during a treatment with metformin of mice on high fat 

diet (Lee and Ko, 2014).  

 Metformin effects on human microbiota were investigated in T2D patients using 

metformin at least 3 months. Metformin therapy was stopped for 7 days and re-started in 

the next three weeks, when fasting capillary blood glucose (CBG) had increased for 25% 

of baseline level. Results of the study showed, that that metformin has effects on bile acid 

metabolism, entero-endocrine hormone secretion (GLP-1) and concentration of cholic acid 

and conjugates serum was significantly correlated with Phyla Firmicutes and Bacteroidetes 

abundances. Additionally, these two phyla were significantly correlated with circulating 

concentrations of PYY in patient sera, but correlation of PYY and cholic acid 

concentrations were non-significant. Results confirm, that metformin may inhibit the 

reabsorption of bile acids by altering the function of the sodium-dependent intestinal bile 

acid transporter (Tremaroli and Backhed, 2012).  

 Underlaying causes of metformin effects on PYY and GLP-1 are unknown, but 

may be explained by effects of drug on bile acid tranporters such as FXRs and TGR5 or 

inhibitory effect on the metabolizing enzyme DPP-IV, in addition to enhanced 

secretagogue action of the L cell. Gut microbiome changes in patients with T2D on-

metformin and off-metformin showed greater inter-individual variability than intra-

individual, therefore, alas metformin changed sprectrum, and the results in a small group 

appeared to be non-significant. However, microbiota is constantly changing and diet and 

physical activity was shown to alter amounts of Akkermansia Muciniphilia in humans 

(Anhe et al., 2014).  

 Metformin has been associated with malabsorption of nutrients (folates and B12 

vitamin) and increased homocysteine level that is cardio-vasclar risk factor (Liu et al., 

2014). In more than 6 000 patients (in controls and group with T2D) B12 deficiency was 

significantly increased in the metformin user group. Incidence of deficiency was not 

decreased in T2D patients using B12 containing supplements (Reinstatler et al., 2012). 

Currently, there are no guidelines for  the supplementation and appropriate dose of  

vitamin B12 for T2D patients on metformin (Liu et al., 2014). Vitamin B12 is stored in the 

body in amounts required for 3-6 years; factors influencing B12 absorption are availability 

of metformin in the meals and presence of intrinsic factor. Metformin induced B12 

deficiency incidence was assesed to vary between 5.8–33% (Pflipsen et al., 2009; 

Reinstatler et al., 2012) and is diagnosticed with low total B12 vitamin concentrations in 
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serum (usually <150 pmol/L). B12 deficiency is associated with development of pernicious 

anemia or symptomes similar to T2D neuropathy and neurocognitive symptoms appearing 

as soon as 4 months - 5 years after the beginning of the therapy (Andres et al., 2007; 

Filioussi et al., 2003).  

 In recent meta-analysis with >8 000 T2D patients correlation was confirmed 

between metformin use and higher prevalence of B12 deficiency and reduced serum 

concentrations (Niafar et al., 2015). A small yet clinically relevant study has shown that 

levels of biavailable B12 (holoTCII) may be increased if patients are supplemented with 

calcium. It shows that B12 malabsorption may happen because of antagonism of 

metformin on a calcium-dependent ileal brush-border membrane and B12-intrinsic factor 

complex uptake transporter (Bauman et al., 2000). Currently, it is thought that biavailable 

B12 (holoTCII) is a more precise early marker of B12 deficiency, but with manisfestation 

of symptomes total B12 vitamin will also be reduced. However, other studies investigating 

methylmalonic acid (MMA) or active B12 vitamin concentrations question whether or not 

metformin really is associated with total B12 deficiency as previously thought. It seems 

that metformin-treated objects have improved cellular vitamin B12 metabolism or 

intensive uptake of B12 vitamin in the tissues that may lead to false impression of 

deficiency. However,  measurements of total B12 is less expensive and still more popular 

alternative both for clinic and for research (Obeid et al., 2013).  

1.4.2. Lactic acidosis 

 In case of metformin, the drug label contains list of contraindications for use of 

metformin in elderly people and those with renal impairment due to increased risk of lactic 

acidosis. Lactic acidosis is a rare but extremely severe side-effect which is characterized by 

a low arterial pH (7.35), elevated arterial lactate levels and mortality of up to 50% (5.0 

mEq/l in humans) (Brown, 1998; Kwong and Brubacher, 1998). After withdrawal of 

phenformin and buformin, metformin use has significantly increased, but for years it was 

suspected to increase risk of lactic acidosis.  

 Studies with thousands of patients like COSMIC, UK Prospective Diabetes Study 

and Diabetes Prevention Program (UKPDS study, 1998; Cryer et al., 2005; Knowler et al., 

2002) have found absence of association between metformin use and lactic acidosis. 

Salpeter et al. reviewed 176 metformin trials lasting >1 month and found no lactic acidosis 

in 35 619 patient-years (8.4 cases per 100 000 patient-years) of exposure to metformin in 

comparison to 30 002 patient-years (9 cases per 100 000 patient-years) in the non-
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metformin group. There also were similar lactate levels in metformin users compared to 

placebo or use of other non-biguanides (Salpeter et al., 2003). Even more, no correlation 

was identified in retrospective analysis between metformin and blood lactate 

concentrations in 49 metformin-treated patients with lactic acidosis, strongly indicating, 

that metformin is not the cause of lactic acidosis but rather it is evoked by other underlying 

causes like renal failure, heart failure, infection or cancer (Lalau and Race, 1999; Misbin, 

2004). 

1.5. Drug-drug interactions 

 Drug interactions, involving excretion by addition or removal of concomitant drug 

therapy, cause marked changes in plasma and intracellular concentrations of the affected 

drug and can lead to severe adverse effects or unexpected pharmacological effects. T2D 

patients often use antidiabetic peroral drugs and insulin in addition to metformin, as well as 

concomitant drug therapy (antihypertensive, antilipidemic), possibly, associated with 

similar-adverse effects or drug-drug interactions with metformin or altering glucose levels 

(Dungan K, 2008). A total of 680 drugs (4757 brand and generic names) are known to 

interact with metformin (14 major drug interactions (82 brand and generic names), 608 

moderate drug interactions (4306 brand and generic names) and 58 minor drug interactions 

(369 brand and generic names). Almost the all major drug interactions listed are contrast 

agents used only in a hospital or clinic for certain procedures, like X-rays and CT scans 

(www.drugs.com accessed in January 2015).  

 Metformin is proven to interact with widely used proton pump inhibitors (PPI), like 

omeprazole and anticancer therapy drug cimetidine. It was shown that PPIs inhibit 

metformin uptake by organic cation transporters (Nies et al., 2011a) and cimetidine 

reduced renal clearance of metformin for 27% (Somogyi et al., 1987). A common 

treatment is the co-administration of proton-pump inhibitors (PPIs) and metformin (Dujic 

et al., 2014). Results of the study have shown that proton-pump inhibitors affect metformin 

pharmacokinetics. For example, lansoprazole increase AUC0-24 after the second dosing by 

15 and 17%, respectively, and prolonged the metformin elimination half-life from 3.9 to 

4.5 h and decreased its renal clearance by 13%, but has no effect on maximum glucose 

level and the area under the serum glucose concentration-time curve of metformin (Ding et 

al., 2014).  

 Verapamil shown significant reduce in glucose lowering effect of metformin, 

however with a small impact on pharmacokinetics (Cho et al., 2014). Rifampin was shown 

http://www.drugs.com/
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to increase the OCT1 expression and hepatic uptake of metformin in 16 healthy patients, 

leading to the enhanced glucose-lowering action (Cho et al., 2011). 

 Analysis of the commonly prescribed drugs PPIs, verapamil, doxazosin, codeine 

significantly reduced tolerability of metformin therapy (Figure 1.8.). 

 

 
 

Figure 1.8. Intolerance to metformin in T2D: A GoDARTS Study. Figure and legend from 

(Dujic et al., 2014). 

 1.6. Pharmacokinetics 

 Metformin is characterized by “flip-flop” pharmacokinetics, which are typical for 

drugs with a slower absorption than elimination, thus terminal portion of slope represents 

bioavailability rather than excretion (Pentikainen et al., 1979). In different studies, 

metformin was identified not to be bound to plasma proteins nor in vivo nor in vitro 

(Pentikainen et al., 1979; Tucker et al., 1981) or bound in small amounts up about 10–20% 

(Garrett et al., 1972). Pharmacokinetics in healthy subjects and T2D patients in general are 

similar and comparable (Tucker et al., 1981).  

 The gastrointestinal absorption of metformin is a rate-limiting step in metformin 

pharmacokinetics (Pentikainen et al., 1979). Metformin is mainly absorbed in the small 

intestine up to 6-10 hours after administration with negligible absorption in the stomach 

and the large intestine (Tucker et al., 1981). In animal studies, effect of metformin XR 

dose on dog colonic absorption was small, indicating poor and dose-disproportional 

absorption (Tajiri et al., 2010). Plasma level of metformin in humans decreases upon 

arrival of metformin in the colon, but it may decrease faster if the intestinal transit is 
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significantly slowed (Marathe et al., 2000). Studies have shown that the gastrointestinal 

tract is an important target organ of metformin and these data support compelling evidence 

about superiority of peroral administration over intravenous (Bonora et al., 1984; 

Stepensky et al., 2002). 

 Intestinal mucosa accumulates much higher concentrations of metformin (up to 10
-3 

mol kg-
1
) compared to other tissues such as skeletal muscle (in the range of 10

-5 
mol kg-

1
)(Bailey et al., 1994). At the level of the intestine, metformin firstly was shown to have  a  

negligible effect on glucose absorption, however, it slightly delays the absorption process 

(Cuber et al., 1994), enhances insulin-mediated glucose disposal (Nosadini et al., 1987; 

Riccio et al., 1991). While glucose utilization is sensitive to changes in the regional blood 

flow (DeFronzo et al., 1981) it does not seem to be altered by metformin.  

 The gut can contribute to the control of glucose homeostasis by its high glycolytic 

capacity, gluconeogenesis (up to 25% of endogenous in fasting) and signaling in glucose 

and energy homeostasis (Mithieux, 2009; Mithieux and Gautier-Stein, 2014). In a more 

recent view, metformin was shown to increase glucose utilization in the intestine by 69% 

after intrajejunal administration of metformin in rats (Bailey et al., 1994). Metformin was 

also shown to induce a fast regulation of the two major intestinal glucose transporters 

SGLT-1 (decrease in blood glucose) and GLUT2 (increase in blood glucose), through a 

rapid AMPK phosphorylation and inhibition. Surprisingly, as it means an increase and a 

reduction of the glucose absorption simultaneously (Sakar et al., 2010). Similar results 

were obtained in another study. Metformin was shown to increase the number of low 

affinity insulin receptors in erythrocytes (Holle et al., 1981; Rizkalla et al., 1986) and in 

obese women with normal glucose tolerance metformin increased the number of insulin 

receptors and the tyrosine kinase activity in erythrocytes (Santos et al., 1997).  

 Quantification of metformin in the erythrocytes is proposed as a potential marker of 

metformin accumulation and efficiency, as it does not change so drastically between the 

doses, and, possibly, better reflects metformin accumulation in the target tissues (Tucker et 

al., 1981) and allows to ascertain dose in elderly patients to improve the efficiency and 

safety of the therapy (Robert et al., 2003). It should be noted that metformin accumulation 

in erythrocytes is thought to be time-dependent (Scheen, 1996). Membrane fluidity of 

erythrocytes was also shown to be increased in metformin users in vitro and in vivo 

(measured by monitoring changes in the anisotropy of the fluorescent probe 6-

antroyloxystearic acid (6-AS) (Muller et al., 1997).  Different routes of metformin 

accumulation in erythrocytes and target organs may lead to misleading conclusions. 
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Currently, those measurements are not performed on a daily basis in clinics. In animal 

experiments, metformin  has also been shown to  accumulate in salivary glands, however, 

metformin excretion in saliva and plasma concentration are not proportional in humans and 

thus cannot be used as a precise marker (Wilcock and Bailey, 1994).  

1.6.1. Intravenous administration 

 The 3-compartment model indicates, that the two first  phases (half-lives  of  3.3 

min  and  23 min) represent  the  distribution  of  metformin and considerable elimination 

(1/2 of intravenous dose). The third exponential phase (between 3 and 10 h after 

administration) represented a phase of elimination. Plasma concentrations of metformin 

after intravenous administration have a vague elimination half-life (t½) of 1.7 to 4.5 hours. 

Concentration of metformin rapidly decreases, and, after about 10 - 12 hours is not 

detectable. The total plasma clearance is similar to renal clearance and is about five-times 

the creatinine clearance. No metformin was recovered from faeces. The half-life of 

metformin in saliva after the intravenous dose was 2.9 h and the volume of distribution 

(Vd) range was from 63 to 276 L (last 8–12 hours after intravenous dosage). 

Concentrations of metformin in urine are higher than in plasma, terminal t½ ranges from 9-

19 hours and it is detectable up 48-72 hours (Pentikainen et al., 1979). Longer terminal 

phase is due to a compartment that metformin enters and leaves slowly – erythrocytes (t½ 

20 h)(Graham et al., 2011). After intravenous administration secretion of metformin from 

blood to the gut was negligible. Elimination of metformin from human body is fast and in 

the first 8 h after metformin administration >95% of total urinary output (79% of dose 

administred) are excreted in the urine (Tucker et al., 1981). 

1.6.2. Single peroral dose administration 

 Administration of metformin with meal has been reported to decrease the 

bioavailability of immediate-release (IR) tablets by about 24% and delay peak 

concentration for about 37 min (Sambol et al., 1996), but the reduced absorption is 

unlikely to be clinically significant in most patients (Scheen, 1996). Single dose peak 

plasma concentrations of metformin occur approximately 2.6–3 hours after dosage (in 

erythrocytes - 4.7 h after 850 mg dose) and range from 1.0 to 1.6 mg/L after a 0.5 g dose, 

increasing to about 3 mg/L after a 1.5 g dose (for erythrocytes – approximately 6 times 

lower after 850 mg dose). Area under curve does not differ between plasma and 

erythrocytes due to the longer elimination half-life in erythrocytes (Pentikainen et al., 
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1979; Robert et al., 2003). Metformin concentration in plasma and erythrocytes crossed 

approximately 16 h after 850 mg administration and metformin was undetectable after 24 h 

and 48 h for plasma and erythrocytes, respectively (Robert et al., 2003). Short-term studies 

have shown that metformin is characterized by a long residence time in the liver, 

erythrocytes and other effect compartments (Lalau and Lacroix, 2003; Wilcock and Bailey, 

1994). Renal clearance was similar to the one observed after intravenous drug 

administration. Urinary excretion and erythrocytes has terminal t½ of about 20 hours 

(Scheen, 1996). The recovery of metformin in feces was 29.4% of the dose and the 

recovery in urine was 90.5% of the dose (Pentikainen et al., 1979; Tucker et al., 1981). The 

fecal recovery of metformin was still continuing one week after the administration of the 

drug. Metformin concentrations in saliva at 1 h were only about one tenth of the 

corresponding plasma level. The half-life of metformin in saliva after the the oral dose was 

9.2+1.3 h (Figure 1.9.). No traces of metformin are detectable in the expired air 

(Pentikainen et al., 1979).  

 

 

Figure 1.9. Pharmacokinetics of metformin after intravenous and oral administration to 

man. Figure and legend from (Pentikainen et al., 1979). 
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1.6.3.  Multiple-dose peroral administration 

 When 1000 mg of metformin are administered twice per day, the mean plasma 

concentrations vary from 0.4 to 1.3 mg/L (t½ is about 5–5.2 h) (Hong et al., 2008). During 

dosage with 2000 mg metformin daily (immediate-release or sustained-release tablets) 

Vd/F is approximately 600 L (actual Vd is about 300 L due to 50% biovailability), 

indicating significant uptake of metformin in the tissues. Fast elimination of metformin in 

subjects with normal renal  function (fraction of dose eliminated with  the terminal half-life 

of about 9 h is less than 5%) in normal setting was thought not to lead to any significant 

accumulation of metformin in the body (Pentikainen et al., 1979). In a study, investigating 

metformin pharmacokinetics for a longer period of time, it was evident that in 24 hours 

additional elimination phase was not detectable, whereas through levels increased slowly 

in 7 days and 14 days due to slow elimination phase. Multiple-dose administration showed 

a small variation of AUC values in the individual subjects - only 13% (range 4–23%) if 

administered for 2 weeks (Tucker et al., 1981). A recent long-term metformin 

accumulation study has shown up to 80-fold difference in metformin plasma levels 

between T2D patients using this drug for 1.5 years indicating high interindividual 

variability of metformin accumulation (Christensen et al.). Slow rises in through plasma 

drug concentrations may reflect much more dramatic increases in the accumulation of drug 

in the tissues (Gonda and Harpur, 1980), no information, however, is available on long-

term accumulation of metformin in target tissues. 

1.6.4. Extended-release tablets 

 In general, absorption of extended-release form increases in opposite to immediate-

release tablets if administered with meal (Wagstaff and Figgitt, 2004). When 2 g sustained-

release tablets are administred once daily the plasma concentrations reach Tmax at about 7-8 

h and Cmax of about 1.8 mg/L (troughs of about 0.16 mg/L)(Graham et al., 2011).   

1.7. Mechanisms of metformin action 

 Metformin exerts its therapeutic effects in people with T2D through pleiotropic 

mechanisms and physiologic pathways (Pawlyk et al., 2014). Metformin enters 

hepatocytes via active transport mechanism - organic cation transporter 1 (OCT1) and 3 

(OCT3) (Figure 1.10.)(Choi et al., 2007; Jonker and Schinkel, 2004; Wright, 2005). 

Metformin is known to be a growth inhibitor that mildly inhibits complex I of the 
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mitochondrial respiratory chain (Owen et al., 2000; Schafer, 1969; Viollet et al., 2012; 

Zakikhani et al., 2006; Zakikhani et al., 2008) thus reducing aerobic oxidation. It 

subsequently leads to the decreased ATP production (Todd and Florez, 2014), inhibition of 

mitochondrial glycerol-3-phosphate dehydrogenase (Madiraju et al., 2014) and activation 

of AMP-activated protein kinase (Kim et al., 2008b).  

 

Figure 1.10. Antihyperglycaemic action of metformin in the hepatocytes. From (Pernicova 

and Korbonits, 2014). 

 In MIN6 cells, metformin reduced mitochondrial complex I activity (- 44%) and 

mitochondrial reducing potential (25% net reduction) but methyl succinate (complex II 

substrate) can bypass metformin blockade and it resulted in a reduced phosphorylation of 

AMPK which decreased biguanide toxicity to b-cells in vitro (Owen et al., 2000). 

However, it is not clear if mitochondrial complex I is only metformin target as metformin 

effects on mitochondrial respiration varies between cells (Hawley et al., 2010).  

 Interestingly, that metformin-induced complex I inhibition is not a consequence of 

a direct interaction with the respiratory chain but rather acts via complex signaling 

pathway, as dimethylbiguanide, which is known for being not metabolized (Pentikainen et 

al., 1979) has no effect on isolated mitochondria. Studies have clearly shown that NO 

pathway and Ca 
2+

 homeostasis are not involved in respiratory inhibition, while effects of 
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oxygen radicals cannot be ruled out. ATP-/ADP-/AMP-independent effects on pyruvate 

carboxylase may also contribute to the inhibition of gluconeogenesis accompanying mild 

self-limiting mitochondrial inhibition by metformin (Owen et al., 2000). In conclusion, 

metformin may act via interaction with membrane receptor; this hypothesis is supported by 

the observed logarithmic dose-dependent effect of dimethylbiguanide on cellular 

respiration (El-Mir et al., 2000).  

 Crystallographic and spectroscopic analysis has shown that metformin effects in 

mitochondria require binding to metal ions, however, no evidence is available of binding 

of the drug to recognized metformin-regulated proteins (Sen D, 1969; Ray RK, 1999; 

Sen_D., 1969; Zhu M, 2002). Metformin decrease the level of sterol regulatory element-

binding protein-1 (SREBP-1) which is a significant lipogenic trancription factor and 

increases fatty acid oxidation in the hepatocytes (Zhou et al., 2001), however, in humans, 

metformin therapy resulted with a suppression of the whole body lipid oxidation (Perriello 

et al., 1994). In isolated preadipocytes metformin (5 mmol/l) decreased the expression of 

lipogenic genes and lipid droplets accumulation while increasing AMP-activated protein 

kinase (AMPK) activation, preventing differentiation of human pre-adipocytes (Moreno-

Navarrete et al., 2011).  

 For many years metformin was thought to directly affect AMPK which is a critical 

sensor and regulator of energy homeostasis in the cell (Hardie et al., 2012; Zhou et al., 

2001). Currently, AMPK is thought to be activated by an increased ADP:ATP and 

AMP:ADP ratio (Figure 1.11.) (Todd and Florez, 2014), and leads to inhibition of 

gluconeogenesis and lipid and cholesterol biosynthesis in the liver, and increased fatty acid 

oxidation in the liver. It also increases glucose uptake in muscle and hepatic cells (Klen et 

al., 2014). Activated AMPK carries the signal to the mTOR pathway (pathway responsible 

for stimulation of cell growth and proliferation if nutrients are available).   
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Figure 1.11. AMPK dependent and independent action of metformin. From (Pernicova and 

Korbonits, 2014). 

 

 It is supported by a study investigating genetic variants of the AMPK complexes 

with wild-type γ2 isoform or Arg531 → Gly mutation that renders γ2 complexes 

insensitive to the effects of ADP and AMP on phosphorylation (Hawley et al., 2010). 

 A study, investigating fat-fed liver-specific Lkb1 (also known as Stk11) knockout 

mouse model (Shaw et al., 2005), showed that tumor suppressor protein LKB1 (upstream 

kinase of AMPK) is a significant part of LKB1 – AMPK signalling control over the 

expression of gluconeogenic genes. Similarly to insulin, inhibition of glucose production is 

obtained through regulation of cAMP response element-binding protein-regulated 

transcription coactivator 2 (CRTC2) which enhances expression of peroxisome 

proliferator-activated receptor-γ coactivator-1α (Ppargc1a), phosphoenolpyruvate 

carboxykinase (Pck1) and glucose-6 phosphatase (G6pc)(Lin and Accili, 2011) or act 

independently of insulin/Akt signalling via LKB1–AMPK pathway.  

 On the opposite, in another study LKB1 knockout mouse and AMPK knockout 

mouse model was shown to respond to metformin treatment as good as control (Foretz et 

al., 2010). Possible explanations of such differences may lay in alternative glucose 

homeostasis pathways in mice and differences in the study design, however, Lkb1 have not 



40 
 

convincingly been reported to play a role in the glycaemic response to metformin in T2D 

(Rena et al., 2013). 

 In the cell lines, metformin inhibits Txnip mRNA and protein expression which is 

known to inhibit cellular glucose uptake and metabolism and promote hepatic 

gluconeogenesis; also it was shown to be a dependent on AMPK activation (Chai et al., 

2012). Metformin was shown to down regulate rapamycin complex 1 (mTORC1) activity 

and thus prevent the conversion of carcinogen-induced oral dysplasias into head and neck 

squamous cell carcinomas (HNSCC) in mouse model (Vitale-Cross et al., 2012). 

Metformin phosphorylates the mTOR inhibitor TSC2 (Inoki et al., 2003) and the mTOR 

interaction factor raptor (Gwinn et al., 2008), which both lead to a reduction of mTOR 

kinase activity and an activation of the major mTOR inhibitor PP2A (Janssens and Goris, 

2001).  

 Metformin at pharmacologically relevant concentrations also directly scavenge • 

OH free radicals which may have protection towards LDL peroxidation which may be 

beneficial in prevention or delay of diabetic complications. Metformin does not have 

significant effects on •O2 free radicals and towards hydrogen peroxide, however it may 

alter activity of the NADPH oxidase (Bonnefont-Rousselot et al., 2003). Metformin was 

shown to attenuate oxidative stress-induced apoptosis in cardiomiocytes, increase 

phosphorylation of adenosine  monophophate (AMP)-activated protein kinase (AMPK) 

and subsequently  endothelial nitric oxide  synthase (eNOS), and reduced the expression of 

TGF-β1, basic fibroblast growth factor (bFGF), and tumor necrosis factor (TNF)-α 

(Ouslimani et al., 2005; Wang et al., 2011). 

 Treatment of primary neurons with metformin and its derivatives leads to an 

immediate reduction of the phosphorylation of PP2A-dependent tau epitopes, but, 

interestingly enough, PP2A activation by metformin seems to be AMPK stimulation 

independent, as it did not lead to an increase of the phosphorylation of the AMPK target 

ACC and induced only a weak stimulation of the phosphorylation of AMPK itself. 

Furthermore, the AMPK activator AICAR did not cause similar effects on tau 

phosphorylation. These findings indicate that metformin may be beneficial ir prevention or 

treatment of Alcheimers disease, as hyperphosphorylated tau is a crucial factor in the 

pathogenesis of disease (Kickstein et al., 2010).  

 Recent studies in knockout animal models have shown, that mice hepatocytes 

without AMPK preserve glucose-lowering effects (Todd and Florez, 2014). Metformin was 

shown to inhibit hepatic gluconeogenesis and increase peripheral glucose uptake by 
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interfering with glucagon and cortisol signalling (insulin counter-regulatory hormones) 

(Cho et al. 2015; Miller et al., 2013).  

 The most recent publication investigated urinary endogenous metabolites and found 

fluctuation of metabolite cortisol (insulin counter-regulatory hormone) levels which 

stimulates gluconeogenesis. It seems that metformin induce phoshorylation of LXRa in the 

pituitaries and supress pro-opiomelanocortin (POMC)/ adrenocorticotropic hormone 

(ACTH)/cortisol levels (Cho et al. 2015). A new discovery also demonstrated that 

biguanides antagonize the glucose-raising effects of glucagon in the liver. Binding of 

glucagon to its receptor on the hepatocyte plasma membranes leads to activation of 

adenylyl cyclase (AC), production of the second messenger cyclic AMP (cAMP), and 

stimulation of protein kinase A (PKA), which phosphorylates protein targets that work in 

concert to increase hepatic glucose output (Figure 1.12.) (Miller et al., 2013). The authors 

suggest that biguanides exert their effect via accumulation of AMP and related nucleotides, 

which can bind an inhibitory `P' site on adenylyl cyclase, the enzyme responsible for 

cAMP production. Subsequent inhibition of adenylate cyclase, reduce levels of cyclic 

AMP and protein kinases A (PKA) activity, abrogate phosphorylation of critical protein 

targets of PKA, and block glucagon-dependent glucose output from hepatocytes. These 

findings were replicated in AMPK-deficient hepatocytes, indicating that the effects are 

independent of AMPK. For the note, it should be investigated if all effects can be referred 

to the metformin action in humans and not restricted to phenformin investigated in 

particular study (Todd and Florez, 2014). 

 Metformin has both AMPK-dependent (Shaw et al., 2005; Zakikhani et al., 2006) 

and AMPK-independent (Foretz et al., 2010; Kalender et al., 2010) antiproliferative 

actions. Metformin decreased MCF-7 cell number, increased glucose consumption, and 

increased lactate production, reduced ATP levels, mitochondrial membrane potential, and 

oxygen consumption, indicating inhibition of oxidative phosphorylation. Metformin also 

increased apoptosis and necrosis, and the fraction   of   mitochondrial respiration devoted 

to uncoupled respiration. Metformin significantly reduced the concentrations of the TCA 

cycle intermediates fumarate, malate, citrate, alpha ketoglutarate and also succinate. NAD+ 

levels are reduced by metformin, probably, by inhibition of complex I. Thus metformin 

could reduce oxidative phosphorylation, and also inhibit TCA cycle.  
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Figure 1.12. Metformin and glucagone effects on glycolysis and gluconeogenesis. From 

(Pernicova and Korbonits, 2014). 

 

 Metformin was also reported to increase plasma active glucagon-like peptide-1 

(GLP-1) in obese nondiabetic subjects after oral glucose loading under an euglycaemic 

hyperinsulinemic clamp protocol (Mannucci et al., 2001), alas results between studies were 

not consistent. This incretin has insulin-like or insulin-potentiating characteristics; it 

stimulates insulin gene expression, inhibits glucagon secretion and promotes satiety, 
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inhibition of food intake, and slowing of gastric emptying (Drucker, 1998; Holst, 1999). 

Elevation of plasma active GLP-1 was detected, but the mechanism through which 

metformin induces GLP-1 secretion from L cells remains to be elusive. In conclusion, 

metformin directly acts as a glucagone antagonist and indirectly inhibits glucagone 

secretion via increase in GLP-1 (Mannucci et al., 2001). 

 Ataxia telangiectasia mutated protein (ATM) loss of function is associated with 

increased carcinogenesis (Lavin, 2008; Savitsky et al., 1995), however, it is also involved 

in insulin signaling through phosphorylation of eIF-4E-binding protein (Ditch and Paull, 

2012; Yang and Kastan, 2000). ATM activates p53 (Canman et al., 1998) and p53 

upregulates oxidative phosphorylation by increasing SCO2 (a protein required for 

cytochrome c oxidase assembly) (Matoba et al., 2006). In the muscle, ATM inhibition 

reduces cytochrome c oxidase activity as consequence to SCO2 reduction which 

subsequently results in the reduced mitochondrial function. Fibroblasts from a patient with 

the ataxia telangiectasia syndrome (Ambrose et al., 2007) showed that ATM deficiency 

could be associated with abnormalities in mitochondrial function independent of DNA 

repair deficits. ATM has other substrates than p53 (Linding et al., 2007; Matsuoka et al., 

2007), including Sp1 (Olofsson et al., 2007), that may alter nuclear gene expression. ATM 

is present in mitochondria and it may regulate oxidative phosphorylation on-site.  

 Metformin was shown to diminish selenium supply to extrahepatic tissues by dose-

dependently downregulating expression of selenoprotein P (associated with T2D 

incidence) in such a manner drug might contribute to the improvement of peripheral 

insulin sensitivity (Hundal et al., 1992). 
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2 DESCRIPTION OF METFORMIN TRANSPORTERS 

2.1. Organic cation transporters (OCTs) 1-3 

Organic cation transporter type 1 (554 amino acids)(OCT1/SLC22A1) (Grundemann et al., 

1994), organic cation transporter type 2 (555 amino acids) (OCT2/SLC22A2) (Gorboulev 

et al., 1997), organic cation transporter type 3 (556 amino acids) (OCT2/SLC22A3) 

(Grundemann et al., 1998b; Kekuda et al., 1998; Wu et al., 1998) coding genes are 

localized nearby on chromosome 6 (GRCh38.p2, NC_000006.12, 6chr:160121789-

160159198, chr6: 160216762-160258931, complement and chr6:160348373-160452581, 

respectively) (Motohashi and Inui, 2013) (Figure 2.1.).  

 

 

Figure 2.1. The human OCT1 (SLC22A1), OCT2 (SLC22A2) and the OCT3 (SLC22A3) 

are located in cluster on chromosome 6 (6q26). From (Zhou et al., 2011). 

 

 OCT 1-3 transporters belong to solute carrier family 22 (SLC 22) of organic ion 

transporters (> 12 members), characterized by a predicted membrane of epithelial cells and 

involved in in the clearance of xenobiotics and elimination of endogenous cationic 

compounds like neurotransmitters (Dresser et al., 1999; He et al., 2009; Koepsell, 1998). 

The human SLC22A family includes 13 well-characterized plasma membrane proteins, 

including 3 organic cation transporters (OCTs) involved in the uptake of cationic drugs 

across the sinusoidal membrane of hepatocytes (Koepsell, 2013) and kidneys. OCTs have 

several highly conserved sequence motifs, localized between TMD2 and TMD3 and 

between TMD8 and TMD9, and N- and C-terminal halve, suggesting a duplication of 

genes and significance of certain residues in establishing the secondary structure of these 

proteins. Hydrophobicity is a principal determinant for substrate recognition by OCTs 

(Ahlin et al., 2008; Bednarczyk et al., 2003; Suhre et al., 2005; Zolk et al., 2009) and at 

least one positive charge is required for transport of small hydrophilic compounds, ranging 

in size from about 60 to 350 Da (Harlfinger et al., 2005; Jonker and Schinkel, 2004). 

However, positive charge of substrates is not prerequisite for hOCT1 and hOCT2 transport 

(Kimura et al., 2002). OCT substrates or inhibitors interact less efficiently with OCT3 (also 



45 
 

designated as extra neuronal monoamine transporter (EMT)) than with OCT1 or OCT2 

(Koepsell et al., 2007). No tridimensional structure of OCTs is available but analysis of 

homology has shown that OCT1 and OCT2 are 70% identical. Both transporters have 

comparable substrate profiles and similarities in biding to predicted binding pockets 

(Wright and Dantzler, 2004). OCT2 transports phenformin better than metformin and thus 

may correlate with lactic acidosis (Sogame et al., 2013). OCT3 orthologs share only 50 % 

of sequence identity with OCT1 or OCT2 has more stringent binding requirements than its 

counterparts (Sala-Rabanal et al., 2013). The rodent transporter - rOCT1 (rOCT1, gene 

SLC22A1) contains 556 amino acids and is characterized by one large, extra-cellularly 

localized, hydrophilic loop between TMD1/2 (Koehler et al., 1997; Zhang et al., 1997b). 

The rOCT2 (rOCT2, gene SLC22A2) encodes a 593-amino acid protein with 67% identity 

with rOCT1 (Okuda et al., 1996) and rOCT3 encodes a 551-amino acid protein with 48% 

identity with rOCT1 (Kekuda et al., 1998). Hepatocyte Nuclear Factor 1 (HNF1) was 

found to bind to evolutionary conserved region (ECR) and increase expression of OCT1 

transporter in the cell lines and also it is associated with OCT1 expression level in the 

human liver (O'Brien et al., 2013). OCT1 is indirectly regulated by GR receptor via 

HNF4α up-regulation in primary human hepatocytes (Hagos et al., 2014; Rulcova et al., 

2013).  

2.2. Carnitine/organic cation transporter OCTN1 

 SLC22A4 solute carrier family 22 (organic cation/zwitterion transporter), member 4 

(551 amino acids) is located on chromosome 5 (GRCh38.p2, NC_000005.10, 

chr5:132294384-132344206) (Motohashi and Inui, 2013) (Figure 2.2.).  

 

Figure 2.2. The human OCTN1 coding gene (SLC22A4) is located on chromosome 5 

(5q31). From (Zhou et al., 2011). 

 

 OCTN1 transporter belongs to solute carrier family 22 (SLC 22) of organic ion 

transporters (>12 members), characterized by a predicted 12-transmembrane-domain 

(TMD) structure  and  generally  localized  in  the  plasma  membrane  of epithelial cells 
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and involved in in the clearance of xenobiotics and elimination of endogenous cationic 

compounds like neurotransmitters (Dresser et al., 1999; Koepsell, 1998). 

 The human SLC22A family includes 13 well-characterized plasma membrane 

proteins, including 3 Na
+
-zwitterion/cation cotransporters (OCTNs) involved in the uptake 

anionic drugs across the sinusoidal membrane of hepatocytes. OCTs and OCTN have 

approximately 30% structural homology (Koepsell, 2013). OCTN1 has been proposed to 

be a bidirectional transporter, possibly affecting oral biovailability of metformin but not 

involved in renal secretion or systemic elimination of the drug (Nakamichi et al., 2013). 

OCTN1 in mice is not functionally expressed on basolateral membranes of hepatocytes, 

but is localized in non-parenchymal hepatic sinusoidal cells thus with unclear impact on 

the hepatic uptake of metformin (Sugiura et al., 2010).  

2.3. The plasma membrane monoamine transporter (PMAT) 

 The plasma membrane monoamine transporter (PMAT) or solute carrier family 29 

(equilibrative nucleoside transporter), member 4 is coded by SLC29A4 gene located on 

chromosome 7 (GRCh38.p2, NC_000007.14, chr7: 5274374-5304073)(Figure 2.3.).  

 

 

Figure 2.3. The human PMAT coding gene (SLC29A4) is located on chromosome 7 

(7p22.1). From (Zhou et al., 2011). 

 It belongs to the equilibrative nucleoside transporter (ENT) family (SLC 29) and 

was alternatively named ENT 4 (Barnes et al., 2006). It shares a similar substrate and 

inhibitor profile with the OCTs (Engel and Wang, 2005; Engel et al., 2004). PMAT-

mediated transport is Na
+
 independent and enhanced by an acidic environment (Barnes et 

al., 2006; Xia et al., 2007). In humans and rodents PMAT is expressed in brain, kidney, 

heart, and small intestine (Barnes et al., 2006; Engel et al., 2004). Interestingly, that PMAT 

is expressed in the podocytes (failure of these cells is main reason for kidney diseases) in 

opposite to other renal OCTs, including OCT2 and MATE1, are primarily localized to 

tubular epithelial cells (Fujita et al., 2006; Li et al., 2006; Otsuka et al., 2005; Xia et al., 
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2009). It was shown that PMAT is a target of the transcription factor, EWS/WT1 (fusion 

oncogene) (Lee and Haber, 2001; Li et al., 2008).  

2.4. Human multidrug and toxin extrusion (MATEs) 1 and 2 

 Human multidrug and toxin extrusion 1 (MATE1/SLC47A1) and human multidrug 

and toxin extrusion 2 (MATE2/2-k /SLC47A2) transporter coding genes are located nearby 

on chromosome 17 (GRCh38.p2, NC_000017.11, chr17: 19533854-19579033 and chr17: 

19678315-19718842, complement, respectively)(Figure 2.4.).  

 

Figure 2.4. The human MATE1 gene (SLC47A1) and the MATE2 gene (SLC47A2) are 

located in tandem on 17p11.2, both consisting of 17 exons From (Zhou et al., 2011). 

 

 Genes encoding mouse homologues are located in tandem on chromosome 11. In 

mouse gene encoding mMATE1 (53 kDa) was predominantly expressed in kidney, liver, 

heart but mMATE2 is expressed in testis (Hiasa et al., 2006; Lickteig et al., 2008; Otsuka 

et al., 2005; Terada et al., 2006). The gene products are designated mMATE1 and 

mMATE2 and are 78.1 and 38.1% identical to hMATE1 (Damme et al.; Yonezawa and 

Inui, 2011). As MATE2 is not suitable for experiments in vitro, mainly experiments are 

performed with MATE2-K splicing variant (Damme et al., 2011). Expression of hMATE2-

B in kidney is low (Komatsu et al., 2011; Masuda et al., 2006). The Smith–Magenis 

syndrome is consequence of large deletion of >80 genes in of chromosome 17p11.2, 

including MATE1. Analysis of phenotypic characteristics of syndrome like distinctive 

physical features, developmental delay, cognitive impairment, and behavioral 

abnormalities, however, does not explain functions of MATE1 in human and are thought to 

be dependent on other genes (http://www.ncbi.nlm.nih.gov/ Accessed in January 2015). 

 Transporters belong to multidrug and toxin extrusion (MATE) family (Brown et al., 

1999; Masuda et al., 2006; Ohta et al., 2006; Putman et al., 2000) and function as an 

exchange of H
+
 and a variety of organic cations (Tsuda et al., 2007). Driving force of 

hMATE1 and hMATE2-K is oppositely directed H
+
 gradient, not inside-negative 

membrane potential. These results suggested that [
14

C] TEA transport via hMATE1 and 
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hMATE2-K is the electroneutral antiport of H
+ 

and similar mechanism was observed in 

rats (Tsuda et al., 2009b). In mammals MATE1 consists of 13 transmembrane helices 

(TMHs) with intracellular NH2 and extracellular COOH (Zhang et al., 2007), but 

MATE2/MATE2-K consist of 12–13 helices and may have intra- or extracellular COOH 

terminus (Zhang et al., 2007).  

2.5. Substrates and inhibitors of metformin transporters 

 OCTs are involved in the elimination of monoamines and cationic xenobiotics and 

transports organic cations such as choline, guanidine, dopamine, serotonin, histamine,  

acetylcholine, norepinephrine, and creatinine as well as drugs such as   

tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), N-methylquinine, N-

(4,4-azo-n-pentyl)-21-deoxyajmalinium, procainamide, desipramine, amantadine and cis-

diammine-biursodeoxycholate-platinum(II) (Muller et al., 2005). However the  affinity of 

some substrates was shown to depend on expression system, either due to phosphorylation 

or minor differences in protein folding (Muller et al., 2005).  OCT2, OCT3 and PMAT are 

low-affinity, high-capacity transporters (Zhu et al., 2012). OCT2 has the capacity for 

uptake of NE, 5-HT, DA, and histamine (Busch et al., 1998), OCT3 transports monoamine 

neurotransmitters including DA, NE, 5-HT, histamine and epinephrine (Amphoux et al., 

2006; Kekuda et al., 1998; Zhu et al., 2010). For discrimination of transporters may be 

used prazosin for hOCT1 (reversibly inhibited by PbA, not inhibited by SKF550 and 

OMI), PbA for hOCT2 (reversibly by SKF550 but not affected by prazosin, b-oestradiol 

and OMI) and hOCT3 is   selectively inhibited by corticosterone, OMI and decynium22 

(Hayer-Zillgen et al., 2002). A number of compounds have been shown to inhibit transport 

via OCT1 in vitro - tricyclic antidepressants (TCAs), citalopram, proton pump inhibitors 

(PPIs), verapamil, diltiazem, doxazosin, spironolactone, clopidogrel, rosiglitazone, 

quinine, tramadol, and codeine (Ahlin et al. 2011; Ahlin et al., 2008; Bachmakov et al., 

2008; Li et al., 2014; Nies et al., 2011a; Nies et al., 2011b; Tzvetkov et al., 2013; Tzvetkov 

et al., 2011).  Interestingly, that verapamil and amitriptyline exhibited drug–drug 

interactions at clinical plasma concentrations of metformin for OCT1-M420del variant 

(Ahlin et al. 2011; Muller et al., 2005). Transport studies showed that the function of the 

variants   decreased in the following order: OCT1-reference = V408M = M420del> R61C 

>>G465R. Variants M420del and R61C showed increased drug inhibition and 23 times 

lower IC50 values up to in comparison with OCT1-reference (Ahlin et al. 2011).  
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 In general, the IC50 values for inhibition of 14C-metformin uptake in HEK293 cells 

and polarized MDCK monolayers via OCT2, MATE1 and MATE2-K transporters were 

similar to or lower than the ones obtained with ASP
+
 (fluorescent organic cation 4-(4-

(dimethylamino)styryl)-N-methylpyridinium iodide) (Wittwer et al., 2013). Cimetidine 

was identified as weak inhibitor of hOCT2 and strong inhibitor of hOCT2-A variant. In 

study by Wang et al. was assessed genetic variability of OCT2 transporter coding gene 

SLC22A2 in 112 healthy chinese participants and showed significantly lower CLt decrease 

of metformin in presence of cimetidine for carriers of TT genotype of 808G>T (18.7 vs. 

48.2%, P =0.029) (in the group of 15 participants; GG n=6; GT n=5 and TT n=4) (Wang et 

al., 2008b). 

 A strong overlap of inhibitors (and substrates) among the organic cation 

transporters in the OCT family and the MATEs is inferred (Wittwer et al., 2013). MATEs 

was shown to transport more than 40 drugs, including cisplatin, oxaliplatin, and 

norfloxacin (Damme et al., 2011; Ohta et al., 2009; Yonezawa et al., 2006). MATE1, but 

not MATE2, substrates are levofloxacin, cephalexin, and cephradine (Masuda et al., 2006; 

Tanihara et al., 2007) and inhibitors - amantadine, diltiazem and famotidine (Tsuda et al., 

2009b). MATE2 can be inhibited by ciprofloxacin and pramipexole (Tanihara et al., 2007; 

Tsuda et al., 2009b). While inhibition in mice kidney slices by OCT2 in clinically relevant 

concentrations was negligible, cimetidine was detected to be potent inhibitor of hMATE1 

and hMATE2-k. Even the largest Kis for hMATE1 and hMATE2-K, which were 

determined using metformin, were 25- and 14-fold smaller than those for hOCT2, and 

could explain observed 50% decrease in tubular secretion by cimetidine (Ito et al., 2012). 

Mitoxantrone and ondansetron in clinically relevant plasma concentration inhibit MATE1 

and MATE2-K over OCTs and irinotecan was a dual inhibitor for OCT2 and MATE1. 

Pantoprazole and pentamidine was selective for OCT2 over the MATEs whereas nifekalant 

is clinically significant inhibitor of MATE1 (Wittwer et al., 2013). In study by Matsushima 

et al. investigated interaction between cimetidine and FEX (fexofenadine) in human kidney 

slices and human embryonic kidney (HEK293) cells expressing human MATE1 

(hMATE1), but no MATE2/k-2 (its specific uptake of FEX was not high enough to 

examine the inhibitory effect of cimetidine). In result, drug-drug interaction between 

cimetidine and FEX was found to be inhibition of hMATE1-mediated efflux of FEX rather 

than the inhibition of its renal uptake process (Matsushima et al., 2009). To investigate 

drug interactions of cationic drugs in basolateral-to-apical transport and intracellular 

secretion process, double-transfected Madin-Darby canine kidney (epithelial) cells were 
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engineered to stably express  both  hOCT2  and hMATE transporters. Inhibition of apical 

hMATE1 was significant, but not OCT2, and obtained results were concordant with results 

in single transport systems. These findings show that interaction of metformin by 

cimetidine is mainly contributed to the MATE1 not OCT2, but accumulation of metformin 

mediated by OCT2 could also have impact (Tsuda et al., 2009b).  

 PMAT uptake is involved in uptake of monoamine neurotransmitters DA, 5-HT 

and NE in the intestines and the brain (Busch et al., 1998). PMAT transports classic OCT 

substrates, such as tetraethylammonium, guanidine, and histamine. Prototype OCT 

inhibitors, including cimetidine, and type II cations (e.g., quinidine, quinine, verapamil, 

and rhodamine123) are also PMAT inhibitors (Engel and Wang, 2005). OCTN1 is a 

carnitine and carnitine esters transporter inhibited by organic cations - cimetidine, 

procainamide, pyrilamine, quinidine, quinine, and verapamil (Yabuuchi et al., 1999). 

2.6. ADME of metformin 

 Metformin is not metabolized in the human body (Hardie, 2007; Pentikainen et al., 

1979) but the drug is widely distributed into body tissues by at least 7 transporters (Figure 

2.5.). The intestinal absorption of metformin is thought to be mediated by plasma 

membrane monoamine transporter (PMAT/SLC29A4), organic cation transporter 1 

(OCT3/SLC22A1) and organic cation transporter 3 (OCT3/SLC22A3). PMAT is expressed 

on the luminal side of the enterocytes (Zhou et al., 2007), OCT3 is expressed in the brush 

boarder of the enterocytes (Muller et al., 2005). Additionally, in smaller amount 

OCT1/SLC22A1 is expressed on epithelial cells and neurons of the intestine (Muller et al., 

2005). While PMAT and OCT3 are thought to be involved in the uptake of metformin, 

OCT1 may facilitate transfer of metformin into the interstitial fluid. It could be assumed 

that common side-effects may be atributed to the local accumulation of metformin in 

enterocytes and therefore affected by OCT1, OCT3 and PMAT transport activity. 

 The liver uptake and removal of metformin is primarily mediated by 

OCT1/SLC22A1 and OCT3/SLC22A3 which are expressed on the basolateral membrane of 

hepatocytes (Nies et al., 2009). MATE1/SLC47A1 is highly expressed in the liver, kidney 

and to some extent in skeletal muscle (Otsuka et al., 2005). Biliary excretion of metformin 

is insignificant in humans (Graham et al., 2011).  
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Figure 2.5. Metformin transporters. Adapted from (Graham et al., 2011). 

  The mean renal clearance of metformin is estimated to be 510±120 mL/min 

and is higher than creatinine clearance, indicating active tubular excretion in kidneys (half-

life approximately 5 hours) (Graham et al., 2011). Indeed in the human proximal tubules 

uptake of metformin from circulation into renal epithelial cells is mediated by human 

organic cation transporter 2 (hOCT2/solute carrier (SLC) 22A2) (Takane et al., 2008). In 

rodents renal clearance is mediated differently by involving both OCT1 and OCT2 

transporters to similar extent (Grundemann et al., 1998a). In situ hybridization reveals that, 

within the kidney, the rOCT2 mRNA is restricted to the outer medulla and deep portions of 

the medullary rays indicating selective expression in the S3 segment of the proximal 

tubule. It supports function of rOCT2 („r” for rodents) to maintain renal dopamine 

handling (Grundemann et al., 1998a). Further metformin is eliminated into the lumen by 

apical H
+
/organic cation antiporters, human multidrug and toxin extrusion 1 

(hMATE1/SLC47A1) and hMATE2-K (SLC47A2) (Masuda et al., 2006; Otsuka et al., 

2005; Sato et al., 2008; Tanihara et al., 2007; Tsuda et al., 2009a; Tsuda et al., 2009b), 

which are expressed on brush border of proximal tubules and apical membrane of the renal 

proximal tubule cells in humans, respectively.  

 Interestingly, that OCT1 and PMAT transporters, which are thought to be involved 

in metformin uptake in the small intestine, are also expressed in kidneys and may be 

involved in reabsorbtion of metformin. OCT1 is expressed on the apical and subapical 

domain side of both the proximal and distal tubules in kidney (Tzvetkov et al., 2009) and 

plasma membrane monoamine transporter (PMAT/SLC29A4) is expressed on the apical 
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membrane of renal epithelial cells in the glomerulus with minimal expression in tubular 

cells (Xia et al., 2009).  

 Besides the main target organs, metformin is also transported by various 

transporters in other tissues. OCT1 was shown to be significantly expressed in adipose 

tissues and thus, possibly, may explain better treatment outcomes for obese patients using 

metformin (Moreno-Navarrete et al., 2011). In lungs OCT2 appears to be involved in the 

alveolar epithelium, whereas basolateral localised OCT3 might play a role in alveolar as 

well as in bronchial epithelial cells (Salomon et al., 2012). Skeletal muscle (OCT3) and 

intestine (OCT3, PMAT, OCT1 and OCTN1) were identified as important targets of 

metformin-stimulated glucose utilization (Adnitt_PI, 1972; Musi N, 2002; Puah, 1986). 

However, it seems that metformin accumulation in muscle cells is too low to have a major 

impact on response to the therapy (Otsuka et al., 2005; Turban et al., 2012; Wilcock and 

Bailey, 1994). OCT1 and OCT3 are expressed in human heart and hypotetically may alter 

metformin cardivascular effects. OCT3 is expressed at high levels in aorta, skeletal muscle, 

prostate, adrenal gland, salivary gland, liver, placenta, lung (fetal)(Verhaagh et al., 1999). 

Apical renal transport system for organic cations (OCT2) exists in dopamine-rich tissues 

such as kidney and brain regions such as the nucleus accumbens, striatum, and substantia 

nigra (Grundemann et al., 1998a). Expression of rOCT2 in HEK293 cells facilitates 

transport of dopamine, noradrenaline, adrenaline, and 5-hydroxytryptamine (5-HT) is 

sensitive to corticosterone as well as to the iso- and pseudoisocyanines (Grundemann et al., 

1998a). PMAT and OCT2 transporters are expressed in the endometrial stroma and can 

potentially regulate re-uptake of monoamines (Bottalico et al., 2007). In the placenta 

metformin is transported by P-glycoprotein (ABCB1) (58±20%) and breast cancer 

resistance protein (ABCG2) (25±14%), MATE1 and OCT3 (Hemauer et al., 2010). No 

differences between OCT1, OCT2 and OCT3 transporters were observed in human 

placenta from pre-eclamptic and normotensive pregnancies (Bottalico et al., 2004). 

Calculated infant dose in breast milk is only approximately 0.3% of the weight-adjusted 

maternal dose and influence of cimetidine on the overall safety of metformin in 

breastfeeding is minimal (Gardiner et al., 2008).  
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2.7. Animal studies 

 Metformin is metabolized in rats by CYP2C11, 2D1 and 3A1/2, but in human body 

no significant metabolization of metformin has been observed (Choi and Lee, 2006; 

Pentikainen et al., 1979). Also, significant differences in transporter expression patterns 

exist between human and rodents. The rOCT1 mRNA is expressed in liver (sinusoidal 

membranes of hepatocytes around the central veins of the hepatic lobuli), kidney, intestine 

(Grundemann et al., 1994), while hOCT1 is primarily expressed in the liver and to a much 

lesser extent in the intestines and kidneys (Gorboulev et al., 1997; Zhang et al., 1997b). 

OCT2 mRNA is expressed in the kidney in rats and humans (Gorboulev et al., 1997; 

Karbach et al., 2000; Meyer-Wentrup et al., 1998; Okuda et al., 1996). The rOCT1 and 

rOCT2 are localized in kidneys proximal tubules, unlike analogs in humans (Karbach et 

al., 2000; Urakami et al., 1998). In vitro hOCT2 and rOCT2 was found to have 10- and 

100-fold transport capacity in comparison to the hOCT1 and rOCT1, and in vivo studies in 

rats showed, that accumulation of metformin is dependent on rOCT2 transporter rather 

than rOCT1 (Kimura et al., 2005). Mouse OCT1 is regulated by peroxisome proliferator-

activated receptors α and  (PPARα and PPAR )(Nie et al., 2005) but in rats it was down-

regulated by accumulation of bile acids that inhibit hepatocyte nuclear factor-4α 

(HNF4α)(Denk et al., 2004). Overexpression of PXR rat pregnane X receptor increased 

expression of rOCT1 and rOCT2 (Maeda et al., 2007). The rOCT2 was detected in 

substantia nigra, nucleus accumbens, and striatum (Grundemann et al., 1997), hOCT2 was 

detected in the pyramidal cells of the cerebral cortex and hippocampus. Expression of 

OCT2 in the kidney is gender-dependent (Slitt et al., 2002; Urakami et al., 1999; Urakami 

et al., 2000) and age-dependent. Testosterone induces the expression of rOCT2, but not of 

rOCT1 and rOCT3, via the androgen receptor-mediated transcriptional pathway (Asaka et 

al., 2006). Acute kidney injury (AKI) induced in rat kidneys was showed to decrease renal 

excretion and disposition of organic cations accompanied by the down-regulation of OCT2 

and MATE1 (Matsuzaki et al., 2008). The hOCT3 was detected in brain cortex, heart, liver 

(Grundemann et al., 1998b) aorta, skeletal muscle, prostate, adrenal gland, salivary gland, 

liver, placenta, and fetal lung (Ahmadimoghaddam et al., 2012; Verhaagh et al., 1999). The 

rOCT3 was expressed in the intestine and placenta, cerebellum, hippocampus, pontine 

nucleus, and cerebral cortex, heart, low in kidney and lung, but undetectable in liver 

(Kekuda et al., 1998). The hOCT3 was detected in normal human astrocytes (Inazu et al., 

2003; Wu et al., 1998). Rajan et al. (Rajan et al., 2000) found that in mice mOCT3 mRNA 

http://europepmc.org/abstract/MED/16550473/?whatizit_url_Chemicals=http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A17347
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is also expressed in the retinal pigment epithelium. In the mouse mMATE1 is significantly 

expressed in kidney, liver whereas mMATE2 is specifically expressed in testis, but in 

human both hMATE1 and hMATE2 are expressed in the kidneys (Otsuka et al., 2005). 

OCT3 and MATE1 is expressed in rat placenta (Ahmadimoghaddam and Staud, 2013). In 

summary, metformin transporter protein expression patterns differ significantly between 

human, rat and mouse, indicating that results of studies investigating knock-out animals 

and animal models should be interpreted carrefuly if reffered to human being. 

 Expression changes of compensatory transporters in knockout animals are of 

concern (Giacomini et al., 2010) (Kusuhara et al., 2011), but metformin pharmacokinetic 

parameters (oral bioavailability in human 50%-60% vesus 59–64% in mice), volume of 

distribution (4.7±2.6 l/kg in versus 1.5 l/kg in mice), renal clearance (3.5 times unbound 

GFR in humans versus 4 times in mice) are comparable (Higgins et al., 2012). In mouse 

hepatocytes, deletion of OCT1 resulted in a reduction in the effects of metformin on 

AMPK phosphorylation and gluconeogenesis. In OCT1 (-/-) mice, the hepatic uptake and 

intestinal excretion of organic cations are greatly reduced (Jonker et al., 2003). Metformin 

uptake in primary mouse hepatocytes was significantly lower (3.4-fold; P≤0.0001) in 

OCT1 –/– cells compared with those in cells with a functional OCT1 allele (OCT1 +/– and 

OCT1 +/+ hepatocytes). Metformin (1 mM) significantly suppressed glucagon-stimulated 

glucose production in hepatocytes from wild-type mice (30% suppression; P<0.001) but 

not in hepatocytes from OCT1 –/– mice. Following a single oral dose (15 mg/kg), the 

plasma concentrations of metformin were similar in OCT1 –/– and wild-type mice but 

hepatic accumulation was significantly greater in wild-type mice (4.2-fold; P<0.001; 1 

hour after dosing) than in OCT1 –/– mice, but phosphorylation of both AMPK and ACC 

(acetyl-CoA carboxylase) was substantially reduced in livers from OCT1 –/– mice 

compared with those from wild-type mice. No accumulation differences were measured in 

other major organs. OCT1 –/– and OCT1 +/+ mice were on a high-fat diet for 8 weeks and 

then treated with saline or metformin for 5 days. While baseline fasting blood glucose 

levels between OCT1 –/– and OCT1 +/+  mice on high-fat diets were similar, metformin 

significantly reduced fasting plasma glucose levels by more than 30% in wild-type mice 

fed the high-fat diet (P=0.012) but not in the OCT1 –/–  mice on the same diet. These data 

suggest that OCT1 serves a critical function in metformin’s primary therapeutic effect in 

vivo, but significant metformin uptake and metformin-independent AMPK activation in 

OCT1 –/– primary hepatocytes indicates contribution of other mechanisms, such as passive 

diffusion or impact of OCT3 transporter (Shu et al., 2007). In the study by Wang there was 
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identified a marked difference in the response to intravenous metformin administration 

between wild-type and OCT1 –/–  mice, while plasma  concentration-time profiles of 

metformin were similar. The blood lactate concentration in metformin-treated wild-type 

mice was 2.5-fold greater than that in metformin-treated OCT1 –/– mice. In contrast to the 

significant reduction of metformin concentration   in the liver of OCT1 –/– mice, the 

concentration of metformin in muscle was similar in both groups. The EC50 for metformin 

were determined to be 734±168 µM if calculated from highest blood lactate AUC. In the 

isolated rat hepatocytes oxygen consumption was decreased in the presence of biguanides 

in a concentration-dependent manner and 75% reduction correlated with EC50 values 

determined in vivo in this study for the increase of blood lactate. No significant difference 

in levels of metformin in skeletal muscle between OCT1 –/– and OCT1 +/+ mice, indicates 

that the uptake of metformin in skeletal muscle may involve another transporter, for 

example OCT3 (Wang et al., 2003). Study in OCT1 knockout mice have shown that 

deletion of OCT1 resulted in a more severe off-target toxicities and significantly decreased 

clearance (0.444±0.0391 ml/min*kg versus 0.649±0.0807 ml/min*kg in wild-type mice, 

P<0.05) and volume distribution (1.90±0.161 L/kg versus 3.37±0.196 L/kg in wild-type 

mice, P<0.001) when treated intravenously with anticancer drug cis-diammine (pyridine) 

chloroplatinum (II) (CDPCP) but not oxaliplatin (Li et al., 2011). In the study with mouse 

knockout model OCT1 –/– there was demonstrated that OCT1 is a major thiamine 

transporter in the liver, which is inhibited by action of metformin thus thiamine deficiency 

enhanced the phosphorylation of AMPK and its downstream target, acetyl-CoA 

carboxylase (Chen et al., 2014). OCT2 –/– and OCT1/2 –/– mice are viable and fertile and 

display no obvious phenotypic abnormalities, indicating that these transporters are not 

absolutely essential and may possibly be compensated for by action of redundant 

transporters. OCT1 –/–and OCT2 –/–  knockout versus wild-type mices have 2-fold 

decrease in steady state of TEA levels in plasma and accumulation in kidneys, but at the 

same time no significant changes in plasma and urinary levels of TEA were observed. The 

proposed mechanism was that TEA excretion and accumulation are facilitated separately 

(apical membranes and basolateral membranes), it is based on finding that the apical 

membrane is rate-limiting in the secretion of TEA by renal proximal tubules. In OCT1/2 –

/– renal secretion of TEA was completely abolished, leaving only glomerular filtration as a 

TEA clearance mechanism and increasing TEA concentrations in the plasma (Jonker et al., 

2003). Despite significant changes in metformin clearance and distribution in OCT1/OCT2 

double-knockout mice, hepatic drug exposure was not reduced in expected magnitude, and 
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metformin pharmacodinamic effects were not diminished due to absence of both renal and 

hepatic OCT transport. It provided additional evidence that OCT1 is not the sole 

mechanism of metformin hepatic uptake necessary for inhibition of gluconeogenesis 

(Higgins et al., 2012).  

 Controversial results were obtained from a study investigating implications of 

simultaneously impaired OCT1 and OCT2 transporters (facilitates hepatic uptake and renal 

clearance in mice and humans) on metformin pharmacokinetic/pharmacodinamic (PK/PD) 

changes in knockout mice. Liver- and kidney-to-plasma concentration ratios are lower in 

OCT1/OCT2 knockout mice (4.2-and 2.5-fold). But 2.9-fold increase in oral metformin 

exposure does not affect metformin concentration in tissues. Absolute kidney exposure was 

unchanged and liver exposure was only modestly decreased. Oral glucose area under the 

curve (AUC) lowering by metformin was not impaired in OCT1/OCT2-knockout mice at 

the five dose levels tested (ED50=151 versus 110 mg/kg in knockout versus wild type), but 

higher exposure was required to achieve effect. Despite major changes in metformin 

clearance and volume of distribution in OCT1/OCT2 knockout mice, tissue drug exposure 

and PD were not affected. Observed 4.5-fold decrease in systemic clearance to 

approximately GFR and a 3.5-fold decrease in the volume of distribution in knockout mice  

are consistent with with up to 2.6-fold reduction in secretory renal clearance in humans 

with a functional OCT2 variants (Chen et al., 2009a; Song et al., 2008b), as well as a 2.2-

fold  decrease  in  oral  volume  of  distribution  in  people  with  a functional OCT1 variant 

(Shu et al., 2008; Shu et al., 2007). No differences in oral biovailability were observed. 

 The present findings are conceptually inconsistent with the presumption that 

systemic pan-OCT inhibition will affect metformin pharmacology. OCT1 is estimated to 

mediate 76% of metformin hepatic uptake in mice, whereas OCT1 and OCT2 together 

account for 60% of metformin renal uptake. These calculations assume as much as 24% of 

hepatic and 40% of renal metformin uptake to be facilitated by non-OCT1/OCT2 

transporters, and thought to be effects of OCT3 and possibly other transporters. Anti-

cancer drug cimetidine (Konig et al., 2011; Somogyi et al., 1987; Wang et al., 2008b), 

affects OCT1 (hepatic uptake) and OCT2 (renal excretion) simultaneously and thus should 

inhibit uptake both renal and hepatic similarly. Increased metformin exposure and 

decreased hepatic uptake should minimally affect kinetics of the drug (dX Liver /dt = C 

systemic X CL uptake). Cimetidine, however did not affect metformin induced lactic 

acidosis (Somogyi et al., 1987). Possibly enhanced metformin effects due to inhibition of 

renal clearance would be more relevant for selective OCT2 inhibitors like amantadine or 
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amphetamine (Amphoux et al., 2006; Higgins et al., 2012). In OCT1 and OC2 double-

knockout mice was observed significantly impaired creatinine clearance and no inhibition 

of cation transport in proximal tubules by creatinine and in 68 cancer patients cisplatin 

caused acute elevation of serum creatinine (P value=0.0083) (Ciarimboli et al., 2012). In 

vivo, metformin was actively transported with a high level of accumulation in the salivary 

glands of wild-type mice. In contrast, active uptake and accumulation of metformin in 

salivary glands were abolished in OCT3 –/– mice (Lee et al., 2014). OCT3-deficient mice 

show altered monoamine neurotransmission, anxiety-related behavior, stress response, and 

response to psychostimulants indicating that inhibition of OCT3 may be protective agaist 

depression (Cui et al., 2009; Hengen et al., 2011; Vialou et al., 2008; Wultsch et al., 2009). 

 A defect of MATE1 significantly delayed the systemic elimination of metformin 

and cephalexin in mice (Tsuda et al., 2009a; Watanabe et al., 2010) and MATE inhibitor, 

pyrimethamine, significantly decreased the luminal efflux of TEA and metformin in the 

liver and kidney in mice. It should be noted that MATE1 expression in human liver is 

significantly lower than in rodent liver and biliary excretion of metformin in human is 

almost absent (Ito et al., 2010) and this difference between species is significant and should 

be taken in consideration if data from animal studies are applied to research in humans 

(Gong et al., 2012).  

 The maximum plasma concentration (Cmax) after oral administration of metformin 

to OCNT1 gene knockout mice (OCTN1−/−) differs in response to the dose (lower dose 

leads to higher Cmax) and has similar in terminal half-life. Systemic elimination of 

metformin after intravenous administration was similar in the two strains. OCTN1-

mediated uptake of metformin was observed in human embryonic kidney 293 cells 

transfected with mouse OCTN1 gene, and metformin uptake in intestinal epithelial cell line 

Caco-2 was inhibited by [
3
H] ergothioneine (ERGO) (Nakamichi et al., 2013). OCTN1 is 

expressed on activated intestinal macrophages and could contribute to the altered 

disposition of ERGO in intestinal inflammation associated with Crohn's disease (Shimizu 

T, 2015).  

 The Tsc1 +/– mouse model (tuberous sclerosis) showed no benefit from metformin, 

possibly due to epigenetic suppression of the organic cation transporters 1−3 in renal 

tumors (Yang et al., 2013). 
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3 OVERVIEW OF PHARMACOGENETIC STUDIES 

3.1. OCT1 genetic variants 

 The predominant splice isoform, SLC22A1-001 (OCT1-a) has eleven exons and 

results in a functional 554 amino acid protein. Region -141/-69 was found to be essential 

for the basal core transcriptional activity, has no polymorphisms and as it contained the 

sequence of a cognate E-box (CACGTG) is bound by upstream stimulating factors (USFs), 

and the functional involvements of USF1 and USF2, and also stimulated by transcription 

factor hepatocyte nuclear factor 4 (Kajiwara et al., 2008). Alternative splicing occur in 

rOCT1 (kidney, truncated protein encoded by rOCT1A), however lack of the first two 

TMDs has no significant effect transport activity of TEA (Zhang et al., 1997a). Several 

alternatively spiced variants of OCT1 were detected in human (glioma cell line SK-MG-1, 

human liver). However even lack the last two C-terminal TMDs or the last six TMD does 

not affect uptake of MPP
+
 in transfected human embryonic kidney 293 cells (Hayer et al., 

1999). More interesting finding is SLC22A1-006 splicing variant (exon 7 splicing at the 

duplicate splice site with translated protein of 506 instead of 554 amino acids) that might 

have functional relevance in antidiabetic and cancer treatment (Grinfeld et al., 

2013)(Figure 3.1.). 

 

Figure 3.1. A common novel splice variant of isoform SLC22A1-006. Figure and legend 

from (Grinfeld et al., 2013). 

 OCT1 mRNA and protein expression in liver tissue samples from 150 Caucasian 

subjects varied 113- and 83-fold and transcript levels were on average 15-fold higher 

compared with OCT3. OCT1 is independent of age and sex but was significantly reduced 
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in rat kidney with chronic renal failure and human liver donors diagnosed as cholestatic 

and in the carriers of Arg61Cys variant (rs12208357) (P<0.0001) (Komazawa et al., 2013; 

Nies et al., 2009). Two variants, –43T>G in intron 1 and 408Met>Val  (1222A>G)  in  

exon 7, were predictors of metformin effciency in 33 patients and mRNA in human liver 

tended to be lower (non-significantly) in 408 Met>Val genotype carriers (Shikata et al., 

2007).  

 Organic cation transporter OCT1 have more than 1000 genetic variations and most 

investigated ones are five mutations resulting in the amino acid changes Arg61Cys 

(rs12208357), Cys88Arg (rs55918055), Gly401Ser (rs34130495), and Met420del 

(respective MAF of 9.1%, 0.6%, 3.2%, and 16% in Caucasians) and G465R (rs34059508) 

(Lozano et al., 2013) (Figure 3.2.). Many SNPs in OCT1 have significantly different minor 

allele frequency between populations, for example, Arg61Cys (rs12208357) was not 

detected in Xhosa population and in 202 participants of Asian ancestry SNPs rs12208357, 

rs55918055,  rs34130495, rs34059508 were not found at all but incidence of substitution 

Met420del was low (1.5%) (Jacobs et al., 2014; Perwitasari-DA., 2014). 

 

 

Figure 3.2. SLC22A1 gene structure and location of single nucleotide polymorphisms. 

From (Lozano et al., 2013). 

 Phe160Leu and Met420del exhibited substrate affinities and selectivities identical 

to hOCT1 wild-type, but Arg61Cys, Cys88Arg and Gly401Ser affinities were reduced to 

30%, 1.4% and 0.9% compared to wild-type, respectively (Cys88Arg and Gly401Ser 

mutants exhibit changed substrate selectivity). These results show that Arg61Cys, 

Cys88Arg and Gly401Ser may alter the disposition, duration and intensity of effects of 
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drugs and neurotransmitters which are substrates for hOCT1 (Kerb et al., 2002). In Chinese 

and Japanese population were identified six nonsynonymous polymorphisms and three of 

them were previously functionally non-characterized. Study showed that Q97K, P117L, 

and R206C (MAF 0.017, 0.023 and 0.008) significantly alter transport activity of OCT1 

transporter (a relative acitvity in comparison to OCT1 reference 62±4.3%, 55±6.8%, and 

22±1.5%, respectively) (Chen et al.).  

 In the study by Shu et al. in comparison to OCT1-reference, 7 OCT1 variants 

investigated exhibited significantly reduced or lost metformin uptake (S14F, R61C, S189L, 

G220V, G401S, 420del, G465R), despite similar levels of mRNA in HEK293 (Clone 9, 

3T3-L1) cell lines. R61C, G410S, 420del, and G465R exhibited reduced MPP
+
 transport 

activity in cellular assays and were further investigated in pharmacodinamic study in 20 

healthy volunteers. Plasma glucose levels and areas under the glucose concentration–time 

curve (AUCs) after OGTT in volunteers carrying only reference OCT1 alleles (n=8) and 

those carrying a reduced-function polymorphism (n=12) were similar, however, after 

metformin treatment volunteers carrying the OCT1 polymorphisms had significantly 

higher plasma glucose levels for most of the sampling time points during the 180-minute 

OGTT (polymorphisms as compared with those carrying only reference alleles 

(18,200±1.600 versus 21.300± 2.290 min/mg/dl; P=0.004). An increase in glucose half-life 

in individuals with the OCT1 variants was observed, probably due to delay and decrease in 

glucose absorption (Shu et al., 2007). Similar tendencies were observable in 

pharmacokinetic study in healthy individuals (Figure 3.3.). 

 

Figure 3.3. Figure from (Shu et al., 2008). Pharmacokinetics of metformin in healthy 

individuals who carry an OCT1-variant allele (n=12) and those who carry only OCT1-

reference alleles (n=8). 
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 Individuals who carried a variant OCT1 allele had a significantly higher Cmax and 

53% higher oral clearance (CL/F), 54% lower oral volume of distribution (V/F) than   

those   who   did   not (P=0.004). Area under the plasma concentration time curve (AUC) 

of metformin was significantly greater in the OCT1-variant group than that in the OCT1-

reference group (AUCA, P=0.01)(Shu et al., 2008). 

 In 103 healthy Caucasian males renal versus metformin clearance varied 3.8-fold 

and was significantly dependent on creatinine clearance (r2 = 0.42, P < 0.0001), age (r2 = 

0.09, P=0.002). Carriers of zero, one, and two low-activity OCT1 alleles (arg61Cys, 

gly401ser, 420del, or gly465arg) had mean renal clearances of 30.6, 33.1, and 37.1 l/h, 

respectively (P=0.04, after adjustment for creatinine clearance and age). Variation in 

creatinine clearance accounted for 42% and genetic variants in OCT1 accounted for a 

further 10% of the observed variation in the renal clearance of metformin (Tzvetkov et al., 

2009).  

 Study investigating PCOS found that only the reference allele carriers versus R61C 

(C>T), G401S (G>A), G465R (G>A), and 420del carriers reduced their total cholesterol, 

tryglicerides and hyperinsulinemia in response to 6 months long metformin therapy 

(Gambineri et al., 2010). In the GoDARTS  study with 1 531 T2D patients using 

metformin for 6-18 months R61C and 420del variants did not affect the initial A1C 

reduction in short- and mid-term or reaching the treatment target of HbA1C<7 %, and time 

to monotherapy failure. Similarly, in study with 189 Caucasian patients using metformin 

for 160±52 days association of R61C, G401S, 420Del, and G465R with relative HbA1c 

change was not replicated (Choi et al., 2011). However, many variants in OCT1 coding 

gene have been investigated (Figure 3.4.)(Lozano et al., 2013). 

 

Figure 3.4. Role of the Genetic Variants in OCT1, From (Lozano et al., 2013). 
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 Possibly, more clinically relevant is study by Christensen et al. that was published 

in the year 2011 and showed that metformin excerts high interindividual variability (up to 

80-fold) in through steady state metformin plasma concentration after 1.5 years of therapy. 

The study was performed in a study group of 159 T2D patients and estimated mean 

through steady-state of metformin plasma concentration was 576 ng/ml and interindividual 

variability ranged from 54 to 4133 ng/ml in absolute values. Significantly, it correlated 

with number of reduced function alleles in OCT1 (none, one or two: 642, 542, 397 ng/ml; 

P=0.001, respectively). Accumulation of metformin in serum was predicted by OCT1 

variant rs72552763 (M420del). OCT1 genotypes rs12208357 (R61C), rs34130495 

(G401S), rs72552763 (M420del) and rs34059508 (G465R) resulted in 5 haplotypes 

showing significant and additive decrease in the throgh steady-state plasma concentration 

with increased number of reduced function alleles. PMAT, MATE1, MATE2, OCT2 

(rs316019, A270S) was shown as not affecting metformin pharmacokinetics and 

rs34130495 was associated with Δ HbA1c in response to metformin therapy. OCT3 was not 

included in analysis. In the same study in Danish patients, genetic variants in OCT1 were 

investigated if they were able to predict response to metformin therapy – change in 

absolute HbA1c or ability to reach therapy goals (HbA1c <7% or <6.5%). Decrease in 

Hb1Ac both initially and in long term (6 and 24 months) correlated with the number of 

reduced function alleles in OCT1 (Christensen et al., 2011).  

 It should be noted, that associations found by Shu et al. did not reach statistical  

significance in the Rotterdam study and in study by Christensen and collegues showed 

opposite direction (Goswami et al., 2014). A meta-analysis of genetic studies of OCT1 and 

OCT2 transporter variants found no association between (p.61R>C, p.401G>S, p.420del, 

p.465G>R and metformin efficiency, showing significant impact of enviroment (up to 25% 

on metformin renal clearance) and other genetic factors (metformin transporters like 

MATEs, probably PMAT and OCTN1 transporter and genetic susceptibility variants 

affecting T2D and renal diseases) (Zolk, 2009)(Figure 3.5.). Patients with OCT1 R61C and 

rs622342 polymorphism showed increased HOMA-IR (Berstein et al., 2013). In 122 South 

Indian T2D patients, carriers of two copies of allele (AA) for rs622342 had 5.6 times 

greater  chance  of  responding  to  metformin  treatment (Umamaheswaran et al., 2014). In 

the group of women with polycystic ovary syndrome (PCOS) and controls, references 

versus carriers of polymorphisms R61C (C>T), G401S (G>A), G465R (G>A), and 420del, 

had good effect on total cholesterol (-14 mg/dl (-22 to -5); P=0.002) and triglycerides (-17 
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mg/dl (-29 to -5); P=0.008). An effect on insulin was positive in references and carriers of 

1 risk allele but not in carriers of 2 or more polymorphisms (Gambineri et al., 2010).  

 

Figure 3.5. Meta-analysis of genetic studies of OCT1 and OCT2 transporter variants. 

From (Zolk, 2009). 

 Metformin has demonstrated antineoplastic effects and OCT1 was shown to 

transport antitumor drugs like cisplatin, irinotecan, mitoxantrone, sorafenib, and paclitaxel. 

(Gupta et al., 2012; Li et al., 2011; Segal et al., 2011). Hypermethylation of SLC22A1 

promoter down-regulates expression of OCT1 in human hepatocellular carcinoma (HCC) 

and was associated with tumor progression and a worse patient survival (Heise et al., 2012; 

Schaeffeler et al., 2011). OCT1 is less expressed in case of HCC and cholangiocarcinoma 

(CGC), and R61S fs*10 and C88A fs*16 encode truncated proteins that may reduce 

responce of to sorafenib (Herraez et al., 2013). Results of the studies in cancer patients and 

cell lines proves the concept but effects of OCT1 genetic variants differ depending on the 

substrate (Urban et al., 2006). For example P283L and P341L variants do not affect 

metformin uptake, but reduce  uptake  of  methylpyridinium (Kerb et al., 2002; Shu et al., 

2003) and lamivudine (Choi and Song, 2012), but S14F with impaired metformin uptake 

was shown to increase uptake of methylpyridinium. In respect to primary tumors it was 
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shown that OCT1 expression varies significantly and thus may decrease response to 

concomitant metformin therapy (Segal et al., 2011). OCT1, due to the expression on 

leukocytes, has become an extensively studied in respect to the efficiency of cancer drug 

imatinib (Eechoute et al., 2011). Althought it is worth noting that OCT1 was showed as 

uncapable to transport imatinib in nonleucemic animals and cell lines (Hu et al., 2008). In 

vitro sensitivity to imatinib was correlated with intracellular uptake in mononuclear cells 

from chronic myeloid leukemia (CML). OCT1 inhibitor prazosin leads to requirement of 

increased dose of imatinib to maintain effects in patients (Gardner et al., 2008; White et al., 

2006). However prazosin was shown to be non-specific OCT1 inhibitor and hypothetically 

may affect imatinb uptake indirectly (Burger et al., 2013). In the first study investigating 6 

patients with CML was shown that inhibition of OCT1 decreased intracellular imatinib 

uptake in the blood leukocytes (Thomas et al., 2004). It was validated in other 2 studies 

showing that OCT1 mRNA expression correlates with imatinib uptake in CML cell lines 

(Kim et al., 2014). Results obtained from short and long term studies with cancer patients 

revealed that increased OCT1 expression is good marker of as predictors of outcomes of 

CML (Crossman et al., 2005; Wang et al., 2008a; White et al., 2010). Increased dose of 

imatinib in such patients increased response, however finding remains elusive as it does 

not explain mechanism of action (White et al., 2007). Lately SNPs M420del and M408V 

were show to alter imatinib uptake and M420del modifies clinical outcome in imatinib-

treated chronic myeloid leukemia (Giannoudis et al. 2013). Many mistakes, including 

impossible haplotype and incorrect three-dimensional model explaining interaction 

between genetic variations, were noted by other research group ( 2014). 

However, association with genetic factors in OCT1 were replicated in other studies with 

CML patients (Grinfeld et al., 2013; Singh et al., 2012), but not with OCT1 (SLC22A1) 

R61C polymorphism (Zach et al., 2008). Possible explanation may be in fact that OCT1 

expression is found to be linked to expression level of at least three other transporters 

ABCB1, ABCG2, and SLCO1A2 and therefore may OCT1 may be potential surrogate 

marker (Hu et al., 2008). 

 OCT1 was found to be associated with low-density lipoprotein levels, development 

of primary biliary cirrhosis and prostate cancer as well as to alter pharmakokinetics and 

efficacy of drugs like tropisetron, morhpine, O-demethyltramadol (Fukuda et al., 2013; 

Herraez et al., 2013; Ohishi et al., 2014; Teslovich et al., 2010; Tzvetkov et al., 2013; 

Tzvetkov et al., 2012).  
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3.2. OCT2 genetic variants 

 OCT2 is responsible for up to 80% of metformin clearance (Kashi et al., 2015). The 

hOCT2-A, alternatively spliced variants from human kidney (Urakami et al., 1999). Due to 

premature stop codon this transcript codes for shorter protein with 81% amino acid identity 

with hOCT2 but it lacks the last three C-terminal TMDs. In human embryonic kidney 293 

cells hOCT2-A exhibited normal transport activity of TEA, but reduced transport of MPP
+
 

and cimetidine, and no transport activity of guanidine. The pattern of expression differs as 

OCT2 is detected in kidney, brain, testis, and placenta, but hOCT2-A was found primarily 

in kidney, but liver, colon, skeletal muscle. Age and testesterone alter OCT2 expression in 

the kidneys (Urakami et al., 1999). Cirrhosis upregulates expression of OCT2 in rats and in 

humans increases tubular secretion of creatinine (Lopez-Parra et al., 2006; Sansoe et al., 

2002). Population-genetic analysis demonstrated that OCT2 have lower diversity because 

natural selection has acted against accmulation of non-synonymous variants (Leabman et 

al., 2002). Analysis of regulatory polymorphisms revealed that -578/-576delAAG 

(ss94002365, MAF 8.7% in Asians) reduced promoter activity for 14% but it does not 

significantly affected levels of mRNA (Ogasawara et al., 2008). Region spanning –91 to –

58 base pairs was found to be essential for basal transcriptional activity and contained a 

CCAAT box and an E-box. Upstream stimulating factor 1 (USF-1) was found to act as a 

basal transcriptional regulator of the hOCT2 gene via the E-box. USF-1 is widely 

expressed transcriptional factor, but OCT2 is expressed only in several tissues (Sirito et al., 

1994). Possibly, methylation of the E-box in the kidney or unidentified kidney-specific 

transcription factor may explain kidney-specific expression of OCT2 (Asaka et al., 2007). 

In vitro studies showed that the stable expression of hOCT2 is linked to a significant 

accumulation of creatinine in HEK293 cells and in 590 patients polymorphisms including 

rs2504954 (P=0.000873) were associated with creatinine levels (Ciarimboli et al., 2012). 

Previously also SNPs rs2279463 (located in the OCT2 gene SLC22A2) and rs3127573 

(nearby SLC22A2) were associated with creatinine clearance (Chambers et al., 2010; 

Kottgen et al., 2010) Genetic variants of OCT2 (T199I, T201M (rs145450955), and 

A270S) decreased the transport activity of metformin in oocytes (Song et al., 2008b) and 

also Lys432Gln, 134-135insA, Met165Ile, and Arg400Cys exhibited functional differences 

from the reference OCT2 (Hayer-Zillgen et al., 2002).  

 In 40 patients, OCT2–T201M minor allele T (n=8) was shown to have higher 

HbA1c values, fasting glucose and insulin resistance (HOMA-IR and HOMA-BCF) due to 
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decreased response to metformin therapy (Kashi et al., 2015). Variants A270S (808G>T) 

variant was shown to affect mainly tubular excretion and renal clearance, and increase the 

plasma metformin level. In TT genotype carriers versus reference Cmax of metformin was 

increased 1.62-fold, AUClast was increased 1.74-fold, but active secretion clearance (Clsec) 

(from equatation =creatinine clearance (Clcr) - renal clearance (Clrenal)) was decreased by 

61.8% (Song et al., 2008a). Genetic polymorphism OCT2-808 G>T had a significant 

(P<0.05) effect on metformin pharmacokinetics, yielding a higher peak concentration with 

a larger area under the serum time–concentration curve in Korean patients (Yoon et al., 

2013). Non-synonymous single-nucleotide polymorphism 808G>T (rs316019) in the 

OCT2 coding gene SLC22A2 exon 4 (Serine to Alanine at codon 270) was associated with 

decreased expression of SLC22A2 in a gene-dosage dependent fashion and reduced 

cisplatin-induced nephrotoxicity in patients (Filipski et al., 2009). In a study investigating 

metabolomics in groups of GG, GT and TT genotype carriers, tryptophan and uridine in 

urine were found to be decreased. In vitro functional studies showed significant OCT2 

inhibition potential by tryptophan. Thus, it could be used as a potential biomarker of 

genotype-dependent OCT2 transport activity (Song et al., 2012). 14 tagSNPs (tagging 

polymorphisms) with minor allele frequency ≥5%, including A270S, were not associated 

with renal clearance in 103 healthy Caucasian males. However, in 23 healthy volunteers of 

Caucasian and African American ancestries significantly higher renal clearance (CLR) and 

the net secretion (SrCLR) of metformin were observed in the volunteers heterozygous for 

the variant allele (808G/T) in comparison with the volunteers homozygous for the 

reference allele (808G/G) (P<0.005)(Chen et al., 2009a; Tzvetkov et al., 2009). In three 

studies with participants of Asian anchestry renal clearance of metformin was shown to be 

significantly lower (opposite direction to that found in Caucasians) in homozygous OCT2 

serine 270 carriers in comparison to homozygous alanine 270 carriers in opposite to 

previous results (Song et al., 2008a). In 33 patients OCT2 transporter variants 201Thr>Met 

and 270Ala>Ser were not associated with response to metformin therapy (Shikata et al., 

2007). In study with 189 Caucasian patients using metformin for 160 ± 52 days association 

of 270Ala>Ser with relative HbA1c change was not replicated (Choi et al., 2011).  

 Minor alleles of single nucleotide polymorphism (SNP) rs316009 was associated 

with lower net tubular creatinine secretion (FEcreat), and rs316009 and rs3127573 minor 

alleles associated with increased risk og end-stage renal disease (ESRD) in 1 142 ESRD 

patients receiving renal transplantation and 1 186 kidney donors as controls (Reznichenko 

et al., 2013). 
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 OCT2 is involved in blood pressure homeostasis and variant Ser270 allele was 

associated with a lower incidence of of hypertension than homozygous carriers of the wild 

type allele Ala270 (P=0.028) in 607 patients (Lazar et al., 2006). In other study in 1 086 

Finnish men with T1DM SNPs rs653753, rs596881, rs316019 (OCT2) and rs376563, 

rs2048327, rs2457576, rs1567438 (OCT3) were associated with diabetic nephropathy 

(DN) and hypertension; however data were not replicated in the group of 1 252 patients 

(Sallinen et al., 2010). 

3.3. OCT3 genetic variants 

 In human OCT3 coding gene reduced variability reflects selective mechanisms 

against accumulation of certain amino acid changes or may be associated with population 

subdivision (Lazar et al., 2003). OCT3 mRNA expression in liver tissue samples from 150 

Caucasian subjects varied 27-fold but on average transcript levels were 15-fold lower 

compared with OCT1. OCT3 expression is independent of age and sex but was 

significantly reduced in rat kidney with chronic renal failure and human liver donors 

diagnosed as cholestatic (P=0.01), and carriers of rs2292334, rs2048327, rs1810126, 

rs3088442 SNPs (Komazawa et al., 2013; Nies et al., 2009). Three polymorphisms in 

OCT3 coding gene SLC22A1 (rs8187717 A116S, rs8187725 T400I, and rs12212246 

A439V) exhibited reduced uptake of both [
3
H] histamine and [

3
H] MPP

+ 
(Sakata et al., 

2010). Six tagSNPs in OCT3 was shown not to be associated with real clearance in 103 

healthy Caucasian males (Tzvetkov et al., 2009). OCT3 is involved in salt-intake 

regulation and removal catecholamine and histamine and thus may contribute to processes 

such as hypertension, allergic diseases, and neuropsychiatric diseases (Ogasawara et al., 

2006; Sakata et al., 2010; Schneider et al., 2005; Vialou et al., 2004). Study in mice 

suggested that inhibition of OCT3 may be a target for the treatment of depression (Kitaichi 

et al., 2005). In the OCT3-transfected cells transport activity of OCT3 was inhbited by 

antidepressants (desipramine, sertraline, paroxetine, amitriptyline, imipramine and 

fluoxetine) (Zhu et al., 2012). SNPs rs3088442, rs4709426 and rs3106164 in 

hOCT3/SLC22A3 correlated with polysubstance abuse in Japanese individuals with 

dependence on the amphetamine derivative methamphetamine (MAP) (Aoyama et al., 

2006). But the same SNPs does not correlated with depression in small case-control study 

(Hengen et al., 2011).  
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 SLC22A3 is downregulated in human hepatocellular carcinoma but not associated 

with tumor progression and patient survival (Heise et al., 2012). In a number of head and 

neck squamous cell carcinomas (HNSCC) cell lines, in human oral epithelial dysplasias 

and moderately differentiated HNSCC tumors, only OCT3 is highly expressed. When 

OCT3 activity was inhibited, treatment of HNSCC cells with metformin did not induced 

AMPK activation and mTORC1 pathway inhibition and thus showed lack of anti-tumor 

effects (Patel et al., 2013). In six colorectal cancer-derived cell lines, hOCT3 mRNA levels 

were markedly higher than mRNA levels of hOCT 1-2, hMATE 1-2K. The level of hOCT3 

mRNA in the colon was 9.7-fold higher in cancerous than in normal tissues in six Japanese 

patients (P=0.0247), similar results were found in Caucasian patients and the cytotoxicity 

of oxaliplatin was associated with the expression level of transporter (Yokoo et al., 2008). 

In cells expressing T400I (located in pore lining) and V423F (located in proximal 

membrane-spanning helixes) uptake of metformin is significantly reduced, but the uptake 

of metformin by T44M was significantly increased for more than 50% (Chen et al., 2010). 

3.4. MATE1 genetic variants 

 The human SLC47A1 gene is located in tandem with the SLC47A2 gene on 

chromosome 17p11.2 and encodes MATE1 transporter protein of 570 amino acids. 

Analysis of MATE1 promoter revealed regions -65/-25 and -146/-38 to be essential for the 

maintenance of basal transcriptional activity both of the hMATE1 and rMATE1 promoter. 

Single nucleotide polymorphism in the promoter region of hMATE1 (G-32A) belongs to a 

Sp1-binding site (MAF 3.7%) and is associated with decreased Sp1-binding and promoter 

activity (Kajiwara et al., 2007). Variant C -44C>T, c.-53C>G increased promoter activity 

in vitro but c.-66T>C reduced expression in kidneys, possibly due to altered binding of 

transcription factors AP-1, AP-2rep; c.1490G>T (or C) was shown to change substrate-

specific activity (Chen et al., 2009b; Ha Choi et al., 2009; Meyer zu Schwabedissen et al., 

2010). A lot of variants affecting transporter activity have been reported in recent years but 

lack information about clinical impact on pharmacokinetics or efficiency (Damme et al., 

2011). Variants c.1557G>C, c.-118G>A, c.191G>A, c.929C>T, c.983A>C, c.1012G>A, 

c.1421A>G, c.1438G>A, c.373C>T, c.476C>T, c.922-158G>A were shown to reduce or 

abolish transport activity in vitro (Becker et al., 2009; Chen et al., 2009b; Ha Choi et al., 

2009; Kajiwara et al., 2009; Toyama et al., 2010; Tzvetkov et al., 2009). Variants 

c.983A>C (p.D328A, ss104806857), c.191G>A (p.G64D, rs77630697) and c.373C>T 
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(p.L125F, rs77474263) were analyzed in clinical trials but showed no impact on metformin 

pharmacokinetics (Toyama et al., 2010; Tzvetkov et al., 2009).  

 Rs2289669 was shown to not be associated with real clearance in 103 healthy 

Caucasian males (Tzvetkov et al., 2009) albeit this SNP is not functional per se and may 

act as enhancer or be in LD with causal variant. In the group of 148 T2D patients 22% 

were homozygous for A allele of SLC47A1 rs2289669 (c.922-158G>A) and had twofold 

reduction in HbA1c in comparison with the patients carrying G allele (GG+GA: 

0.55±0.09% vs. AA: 1.10±0.18%, P=0.018 after 6 months of treatment with metformin 

(Tkac et al., 2013). In the Rotterdam Study MATE1 intronic variant rs2289669 for each 

minor A allele showed HbA1c reduction of 0.30% (95% CI -0.51 to -0.10; P=0.005) larger 

(Becker et al., 2009). In other study in 189 recently diagnosticed DM patients association 

of rs2289669 with relative HbA1c change after 160±52 days of treatment almost reach 

significance (Choi et al., 2011).  

3.5. MATE2 genetic variants 

 The human SLC47A2 gene is located in tandem with SLC47A1gene on 

chromosome 17p11.2 and encodes MATE2 transporter protein of 602 amino acids. 

MATE2 nonsynonymous variants c.485C>T and c.1177G>A correlate with reduced 

protein expression. Its basal promoter haplotypes containing the most common variant, 

g.−130G>A (28% allele frequency in Caucasians), reduced binding to the transcriptional 

repressor myeloid zinc finger 1 (MZF-1) and resulted in decreased response to metformin 

intervention for 160±52 days in patients with newly diagnosticed DM (relative change of 

HbA1c in AA genotype carriers −0.027 (95% CI −0.076, 0.033) versus GG and GA 

genotype carriers -130G (95% CI −0.15 [−0.17, −0.13], P=0.002)(Choi et al., 2011). 

Transporter variants K64N (rs111060529 G>T) and G211V (rs111060532 GC>TT) were 

shown to decrease transport activity of MATE2 (Kajiwara et al., 2009; Toyama et al., 

2010). 

3.6. PMAT genetic variants 

 A cluster of intron SNPs in PMAT could be associated with decreased metformin 

absorption. Interestingly, complete LD was seen for SNPs in OCT1 and PMAT - deletion 

rs72552763 and cSNP rs34059508 (Christensen et al.). 
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3.7. OCTN1 genetic variants 

 OCTN1 transporter binds ergothioneine with low affinity and was  reported  to  be  

driven  by  the proton  gradient  and inhibited by levofloxacin (Shitara et al., 2013). In the 

Caco-2 cells expressing mOCTN1 metformin efflux was inhibited by ERGO, thus 

implicating possible involvement of OCTN1 in intestinal uptake of metformin (Nakamichi 

et al., 2013). The OCTN1 mRNA is highly expressed in the liver of rodents but not 

detectable in the human adult liver (Kato et al., 2010; Sugiura et al., 2010; Tamai et al., 

2000; Tamai et al., 1997; Wu et al., 2000). Organic cation/carnitine transporter 1 (OCTN1) 

was reported to be localized on mitochondria and at least partially affect mitochondrial 

complex I inhbition in case of phenformin (Lamhonwah and Tein, 2006). Besides OCT1 

may be contributing to the toxicity by phenformin (Wang et al., 2003). OCTN1 L503F was 

shown to not be associated with renal clearance of metformin (Tzvetkov et al., 2009). 

Genetic polymorphism of OCTN1 -917C>T had a significant (P<0.05) effect on metformin 

pharmacokinetics, yielding a higher peak concentration with a larger area under the serum 

time–concentration curve in Korean patients (Yoon et al., 2013). OCTN1 variant 

(SLC22A4 1672C>T) (53.6% vs 43%; P=0.0008) and homozygosity for the OCTN1/2-TC 

haplotype (28.4% vs 16%; P=0.0042) were associated with Crohn's disease versus healthy 

controls (Noble et al., 2005). OCTN1 facilitates the Na+-independent active tubular 

secretion of gabapentin and contributes for 56% of the variation in renal clearance. This 

effect is diminished or absent in individuals carrying the OCTN1-L503F polymorphism 

but oral biovailability of gabapentin is not affected (Urban et al., 2008). D165G and 

R282X result in complete loss of transport function, and M205I cause a reduction in 

activity to approximately 50% of the reference sequence protein. L503F showed altered 

substrate specificity (minor allele frequency 42% in the European-Americans)(Urban et al., 

2007). 

3.8. Interactions between genetic variants in transporters 

 In double-transfected cells with MATE1 and OCT2 cellular accumulation of 

compounds was significantly increased in presence of MATE1 specific inhibitors. Two 

genetic variants c.404T>C (p.159T>M) and c.1012G>A (p.338V>A) resulted in a loss of 

transport activity for metformin (Meyer zu Schwabedissen et al., 2010). However, in 53 

patients serum creatinine (SCr) levels in the patients with OCT2 808GG and 808GT were 
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increased by 1.43- and 1.19-fold and during treatment 12 patients (27%) with 808GG 

experienced over grade 2 SCr elevation (assessed by Common Terminology Criteria for 

Adverse Events), but GT genotype carriers do not exprienced adverse effects. Whereas 

rs2289669 G>A SNP in MATE1 was not associated with adverse effects (Iwata et al., 

2012). 

 Additive decrease in HbA1c (–0.52; 95% CI:–0.94 to –0.11; P=0.015) was 

demonstrated in patients carrying the minor SNPs rs2289669 (MATE1) and rs622342 CA 

and CC genotypes (OCT1)(Becker et al., 2010a), but association was not replicated in 

Danish patients (Christensen et al.). Metformin therapy treatment outcome for rs622342 

CC genotype and rs2289669 carriers was shown to be better (-0.68; 95% CI: -1.06 to -0.30; 

P=0.005) but for each C allele prescribed doses of levodopa and other antiparkinson drugs 

were higher (95% CI 0.064, 0.62; P=0.017) and correlated with increased mortality 

(Becker et al., 2010a). 

3.9. T2D susceptibility genes 

 In opposite to few genetic variants coding for monogenic diabetes mellitus 

(MODY, neonatal mitochondrial diabetes, Wolfram syndrome) (Gardner and Tai, 2012; 

Polak and Cave, 2007; Tanabe et al., 2015), the T2D is associated with more than 70 

susceptibility genes (45 identified in Caucasians, 29 in Asians, GWAS, P<5×10
−8

)(Sun et 

al., 2014). Mostly genes appear to be linked to glucose metabolism with majority related to 

the β-cell funtions and to lesser extent related to insulin resistance, obesity and height 

(Kahn et al., 2012). Altogether known genetic loci account for only about 10% of the 

approximately 40% of T2D overall heritability (Markowitz et al., 2011; Sun et al., 2014). 

Genetic risk scores have been developed to identify individuals with high risk for DM and 

to improve motivation and adherence to preventive interventions (Johansen Taber and 

Dickinson, 2015). However, even detection of all linked genetic variants with additional 

variables like age, sex, family history, obesity and other risk factors are not economically 

effective, because calculated effects for T2D are small to modest (OR 1.06-1.10)(Talmud 

et al., 2010) and genetic variants show population specificity (Fesinmeyer et al., 2013). It 

leads to the conclusion that T2D is a complex disease characterized by a unique 

combination of genetic variants, clinical risk factors, and behavior in each individual 

(Malandrino and Smith, 2011).  

 First T2D susceptibility gene PPAR , was discovered in year 2000, which alters 

insulin sensitivity, later GCKR, IGF1 and FTO were added to this list (Burton et al., 2007; 
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Altshuler et al., 2000; Dupuis et al., 2010; Qi et al., 2010; Rung et al., 2009; Scott et al., 

2007; Voight et al., 2010; Zeggini et al., 2008; Zeggini et al., 2007). Most of the genes 

associated with DM are linked to the β-cell disturbances - TCF7L2, SLC30A8, GIPR, 

C2CD4B, PCSK1, MTNR1B, FADS1, DGKB, GCK, KCNJ11/ABCC8, WFS1, CDKAL1 

and other (Bouatia-Naji et al., 2009; Diabetes Genetics Initiative of Broad Institute of et 

al., 2007; Gloyn et al., 2003; Gudmundsson et al., 2007; Sandhu et al., 2007; Sladek et al., 

2007; Steinthorsdottir et al., 2007; Voight et al., 2010; Zeggini et al., 2008).  TCF7L2 

is regarded as the most significant T2D susceptibility gene identified to date as it was 

replicated in the DPP and many populations (Damcott et al., 2006; Groves et al., 2006; 

Scott et al., 2006). Impact of insulin resistance and β-cell dysfunction were studied in a 

relation to the development of T2D in a group of participants with impaired glucose 

tolerance in the Diabetes Prevention Program at baseline and after intensive life-style 

modifications (n=1 079), placebo (n =1 082) and metformin therapy (850 mg twice a day) 

(n=1 073). Results showed that life-style interventions are more effective than metformin, 

and placebo had no significant change in insulin sensitivity and β-cell function after 1 year 

(Kitabchi et al., 2005). Carriers of the Q risk allele at ENPP1 K121Q (rs1044498) have an 

increased incidence of T2D and lifestyle or metformin intervention arms of the DPP 

abolished this effect (HR, 1.08 (95% CI, 0.81–1.43; P=0.60 for metformin arm) (Moore et 

al., 2009). In the study with 2 994 participants from DPP was investigated preventive 

intervention with metformin in respect to >1 500 tagSNPs in some 40 genes selected in 

two ways: 1) SNPs in high-likelihood candidate genes and 2) SNPs identified by ongoing 

GWAS for T2D or related metabolic traits (monogenic forms of diabetes, T2D drug targets 

or drug-metabolizing/transporting enzymes, involved in cellular metabolism, hormonal 

regulation, or response to exercise).  Only three of 7 metformin transporter genes were 

included in the analysis (OCT1, OCT2 and MATE1) and association of variants in the 

metformin transporter gene SLC47A1 (minor, but not major allele of rs8065082 is 

associated with lower T2D incidence in the metformin arm (HR 0.78, 95% CI 0.64–0.96, 

P=0.02)), and a missense SNP in SLC22A1 (rs683369, encoding L160F, 31% risk 

reduction in T2D incidence but only under the action of metformin), were replicated. Also 

many SNPs from genes altering insulin secretion like ABCC8-KCNJ11 region (22 SNPs 

including rs5215), HNF4A, HNF1B were identified as interacting with metformin. 

Additional associations were detected in genes affecting insulin sensitivity - ADIPOR2, 

GCK, CAPN10 and genes involved in the regulation of energy metabolism - MEF2A, 



73 
 

MEF2D. Interestingly, that ITLN2, GCG, PKLR, PPARGC1B also were showed to be 

associated with progression to T2D in metformin arm (Jablonski et al., 2010).  

 Further study revealed that the preventive effect of metformin on T2D progression 

was abolished in KCNJ11 E23K K/K homozygotes. It possibly can be explained by a 

suppression of the beneficial effect of metformin on insulin sensitivity at 1 year (HR 0.89 

(95% CI 0.66–1.19) for E/K heterozygotes; 0.95 (0.54–1.67) for K/K homozygotes and 

0.55 (0.42–0.71) for for E/E (nominal P value <0.0001 vs. placebo)(Florez et al., 2007). In 

other study list of genes, including genes affecting insulin secretion (GLIS3, G6PC2, 

MADD, MTNR1B, and ADCY5), insulin sensitivity (GCK, IRS1, IGF1 and GCKR), and 

energy metabolism (CRY2) as well as other genes like PROX1, DGKB, ADRA2A, FADS1, 

C2CD4B were showed to not interact with metformin at all, albeit in review article they 

appeared as affecting FG levels (Florez et al., 2012a).  

 In 3 234 participants from the DPP study group was investigated potential 

association between 16 obesity-predisposing single nucleotide polymorphisms (SNPs) with 

weight loss in short (up to 6 months) and long term (up to 2 years) and weight regain in the 

Diabetes Prevention Program. Ala12 allele at PPARG associated with short- and long-term 

weight loss (-0.63 and -0.93 kg/allele, P≤0.005, respectively) in lifestyle, placebo and 

metformin groups. In long term metformin weight-loss effect was altered by NEGR1 

rs2815752 and weight regain was affected by NEGR1 rs2815752, BDNF rs6265, PPARG 

rs1801282 (Delahanty et al., 2012).  

 Later in this group (2 993 participants from DPP) were tested for 32 single-

nucleotide polymorphisms (SNPs) associated with dyslipidemia and concentrations of 

lipids and lipoprotein particle sizes and numbers. Higher genetic risk score (GRS) was 

associated with  adverse lipid profile and attenuated response in LDL-C levels and small 

LDL particle number to dietary and physical activity interventions in the lifestyle 

intervention arm but not in the placebo or metformin groups (Pollin et al., 2012).  

 In 148 recently diagnosticed T2D patients PRKAA1 rs249429, STK11 rs741765, 

PCK1 rs4810083,PPARGC1A rs10213440, HNF1A rs11086926, and CAPN10 rs3792269 

variants were investigated in respect to the metformin treatment defined by achieving 

HbA1c <7% and absolute reduction in HbAlc after 6-month metformin therapy. Only 

CAPN10 rs3792269 A>G polymorphism was significantly associated with reduced 

treatment efficiency (OR 0.27 95% CI 0.12–0.62, P=0.002 per G allele) (Tkac et al., 2015). 

 In 402 patients with T2D and 171 healthy controls (all of Asian ancestry) serine 

racemase (SLC30A8) rs391300 G⁄A polymorphism was associated with better 
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improvements in respect to the levels of serum fasting plasma glucose (FPG), postprandial 

plasma glucose (PPG), and cholesterol (CHO) (P<0.05), but not HbA1c in GA or AA 

genotype versus GG genotype carriers after metformin therapy (Dong et al., 2011).  

 Not all investigated T2D susceptibility variants influence outcomes of intervention 

differently in the lifestyle or metformin group in the Diabetes Prevention Program. 

Possible correlation between T2D susceptibility alleles and metformin therapy outcomes 

were analysed in the GoDARTS and DPP studies however TCF7L2 SNPs were not 

associated with therapy goal of HbA1c <7% (Pearson et al., 2007) or T2D incidence (Florez 

et al., 2006). Similarly, no effects were observed in case of SLC30A8 missense 

polymorphism R325W (Majithia et al., 2011). After discovery of >10 new T2D 

susceptibility genes additional study was performed in DPP study sample of 3 548 

participants, but for the most part associations with T2D were not replicated and also had 

no interactions with metformin treatment (Moore et al., 2008). 

3.10. Genetic variants in metformin targets 

 In the Diabetes Prevention Program (DPP) SNPs encoding putative drug targets for 

metformin were identified in the gene encoding the AMPK kinase STK11 and the AMPK 

subunit genes PRKAA1, PRKAA2, PRKAB2 and in genes coding for proteins involved in 

AMP-activated pathway/gluconeogenesis. PPARA, PARGC1A, PCK1 was found to 

influence a response to metformin intervention. The most significant association with T2D 

incidence occurred in the AMPK subunit gene PRKAG2 (hazard ratio 1.24, 95% CI 1.09 –

1.40, P<7x10
-4

) (Jablonski et al., 2010). The Peutz-Jegher syndrome tumor-suppressor 

gene encodes a protein-threonine kinase, LKB1, which phosphorylates and activates 

AMPK (adenosine monophosphate (AMP)–activated protein kinase). In mice, LKB1 

absence results with hyperglycemia, increased gluconeogenic and lipogenic gene 

expression (Shaw et al., 2005).  

 In a study, investigating metformin use in women with Polycystic Ovary syndrome 

(PCOS), C allele of STK11 rs8111699 was significantly associated with a significantly 

lower chance of ovulation (CC versus GG was 0.30) and results were confirmed in other 

studies (Goldenberg N, 2008; Lopez-Bermejo et al., 2010). 

 In the first GWAS locus on 11 chromosome was associated with the response to 

metformin (GoDarts et al., 2011), probably, Npat and Atm genes as the likely causal genes. 

 In meta-analysis of three studies with 4 443 patients the the odds of treatment 

success (HbA1c <7% or 6.5%) with the presence of the C allele resulted with OR of 1.25 
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(95% CI 1.13, 1.38), p=7.8×10
−6

). In the metformin monotherapy group OR was 1.33 

(95% CI 1.16, 1.50), p=1.4×10
-5 

(van Leeuwen et al., 2012). Contrary to the results of first 

GWAS investigating metformin efficiency, analysis in 2 994 DPP metformin users 

revealed that the C allele carriers of rs11212617 showed no preventive advantage on T2D 

incidence, insulin sensitivity, fasting glucose, glycated haemoglobin (Florez et al., 2012b). 

This may be explained by different designs and study outcomes as DPP investigated 

patients with pre-diabetes but GWAS analyzed T2D patients if they reached glycaemic 

goal in 0.5-1.5 years of metformin treatment. 
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4 MATERIALS AND METHODS 

4.1. The study design 

In this work, we applied combined prospective-retrospective design to study the 

metformin intolerance (METFOGENE) and efficiency (OPTIMED), and used prospective 

design in pharmacokinetic study. 

All study participants were recruited by medical personnel in hospitals or general 

practices in Latvia for participation in the Latvian Genome Data Base (LGDB), a 

government-funded biobank with a cross-sectional prevalence. Participants were enrolled 

voluntarily and were not paid for participation, biosamples, clinical and phenotypic data. 

The requirements for participants enrolled in LGDB were the following - 18 years and 

older, signed informed consent, obtained venous blood sample (30 ml). Data of 

anthropometric measurements (including weight and stature) were obtained by direct 

measurements, and ethnic, social, and environmental information and familial health status 

were obtained in the questionnaire-based interview. Information about their health status 

was confirmed by physicians using International Classification of Diseases (ICD)-10 

codes.  

The biobank protocol was approved by Central Medical Ethics Committee of 

Latvia (Protocols No. A-30, 2005 and A-7, 2007), the use of control group in study was 

approved by Central Medical Ethics Committee of Latvia (Protocol No. A-3,2008). 

4.2. Study group 

4.2.1. Intolerance study  

Study (METFOGENE) was performed in the framework of EEA and Norway 

Grants (grant number EEZ09AP-34/01). Patients for the intolerance study were selected 

retrospectively from 1473 participants with T2D (ICD-10: E11) from the LGDB. All 

metformin users, using 500 mg metformin/day or more, with a clearly registered 

metformin tolerance status, were further selected for the study, resulting in a group of 235 

T2D patients without side effects of metformin therapy and 16 T2D patients with 

metformin side effects. To increase the study sample, 58 metformin intolerant patients 

from the Pauls Stradins Clinical University Hospital (PSCUH) where recruited by 

endocrinologists. For the metformin intolerance study we used the outcome - metformin 

intolerance phenotype versus metformin tolerance phenotype. 
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The side effects of metformin were defined (questionnaire of side-effects filled by 

doctor) as the presence of at least one of the following gastro-intestinal symptoms: 

diarrhea, nausea, flatulence, abdominal pain, asthenia, and vomiting within the year after 

the start of the therapy. 19 patients from cases were excluded due to idiosyncratic 

symptoms to metformin therapy. We excluded 42 controls and 2 cases using OCT1-

inhibiting medications (verapamil, amitriptyline, omeprazole, esomeprazole, rosiglitazone, 

and spironolactone). No users of other PPIs or prazosin, quinidine, disopyramide, 

repaglinide were detected in the study group (Ahlin et al., 2011; Ahlin et al., 2008; Nies et 

al., 2011a; Nies et al., 2011b).  

All patients were involved in LGDB and had normal creatine levels. METFOGENE 

project protocol was approved by Central Medical Ethics Committee of Latvia (Protocol 

No. 01 - 29.1/16) and Committee of Ethics (PSCUH) (Nr. 281009 - 15L). 

4.2.2. Metformin efficiency and genetic variability of metformin transporters 

OPTIMED project was performed in the framework of the Latvian National 

Research Programme 2010–2013, ‘Development of new prevention, treatment, diagnostics 

means and practices and biomedicine technologies for improvement of public health’ (VPP 

Biomedicine). The 22 endocrinologists from health care centers and hospitals located in 

Latvia were involved in the recruitment of patients with T2D in order to maintain up to 3 

years long prospective follow–up study. Inclusion criteria were as follows: patients with 

ICD-10 E11 diagnosis (fasting blood glucose test result >=7 mmol/L and/or OGT test 

result >=11 mmol/L), drug naïve or not using antidiabetic medications for at least 3 

months, over 18 years old, signed consent, women who are not pregnant.  

Baseline data about other diagnoses, history of gestational diabetes, anthropometric 

measurements (height, weight, waist circumference and blood pressure), intolerance of 

antidiabetic drugs and available biochemical analysis were gathered on the first visit. All 

information about drugs prescribed during visit and co-medications was collected. Samples 

of blood were collected for testing of HbA1c, C-peptide, triglycerides, cholesterol, ALAT, 

HDL, LDL, creatinine levels and for the DNA extraction. One week following the drug 

prescription, the doctors consulted their patients via phone in order to collect information 

about possible episodes of drug intolerance. Patients were scheduled for planned follow-up 

visits to their endocrinologists at periodic intervals (second visit after 3 months, all 

following visits - every 6 months), information from unplanned visits was also collected 

and biochemical tests were performed (HbA1c, ALAT, C-peptide and creatinine).  
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Overall 315 patients were participating in a follow-up study on May 2015. 102 

patients that had received metformin monotherapy for 3 months and had HbA1c 

measurements were selected for study. Additionally recruitment of 171 T2D patient with 

known history of metformin use and available HbA1c measurements was performed 

(RetroOPTIMED study) and altogether 486 patients were included in the LGDB in May 

2015.  

In the Study group from Slovakia T2D was diagnosed in patients according to the 

criteria of the American Diabetes Association. Study was conducted in a university 

hospital setting. Louis Pasteur University Hospital Review Board gave ethical approval for 

this study. All participating subjects gave a written consent to be included in the study. 148 

patients of Caucasian origin were recruited from three out-patient clinics. Patients with 

malignancies, another endocrine disorders, chronic kidney disease stage 3-5, severe liver 

disease and systemic inflammatory disease were excluded. Only drug-naïve patients with 

HbA1c in the range of 6.5-11% were included. Baseline HbA1c measurement was done 

within one week prior the treatment initiation and second measurement after 6 months of 

metformin monotherapy.  

HbA1c is widely accepted as the gold standard for glycaemic control monitoring 

(Rahbar, 1968) (WHO, 2006). Treatment efficiency was estimated based on the change in 

HbA1c levels measured 3 or 6 months after the beginning of the therapy.  

OPTIMED project protocol was approved by Central Medical Ethics Committee of 

Latvia (Protocol No. 01-29.1/22) and Committee of Ethics (PSCUH)(Nr.3000610 - 18L).  

4.2.3. Pharmacokinetic study 

Recruitment of all participants in the pharmacokinetic study was prospective. The 

ages of these healthy volunteers in the study group ranged between 22 and 41 years, and 

they were previously evaluated by doctors to be healthy. To be eligible for this study, 

subjects were not taking any medications other than vitamin. Level of liver enzymes of 

participants (alanine aminotransferase, g-glutamyltransferase) were less than double of 

respective normal value, none had renal failure (mean serum creatinine 73.5±13.8 mmol/l). 

Women were asked to provide a urine sample to confirm a negative pregnancy test before 

the study.  

Pharmacokinetic research was performed in framework of VPP Biomedicine and 

has permission from Committee of Ethics (PSCUH) Nr. 2012.1212 - 10L. 
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4.2.4. Association of other genetic variants with metformin efficiency 

Design for study investigating metformin efficiency was prospective. In previously 

described group (OPTIMED group) of 102 participants we investigated possible 

association between genetic susceptibility factors for the T2D and metformin efficiency. 

The Project protocol was approved by Central Medical Ethics Committee of Latvia 

(Protocols No. 01-29.1/10 and No. 01-29.1/22), Committee of Ethics 

(PSCUH)(Nr.3000610 - 18L). 

4.2.5. Analysis of T2D susceptibility variants in respect to the incidence of T2D 

Recruitment of participants for the investigation of incidence of T2D has a 

combined prospective - retrospective design. Criteria for enrolment of participants in the 

study were as follows – all patients in LGDB with the data on age, weight, height, and 

information on disease (until year 2010), resulting in 987 T2D patients (cases) and 1080 

controls, and we added a 466 genotyped T2D patients (from all 486 RetroOPTIMED and 

OPTIMED participants) to investigate genetic susceptibility factors for the T2D.  

The Project protocol was approved by Central Medical Ethics Committee of Latvia 

(Protocols No. 01-29.1/10 and No. 01-29.1/22), Committee of Ethics 

(PSCUH)(Nr.3000610 - 18L). 

4.3. Preanalytical sample handling 

Biological materials for this study were provided by LGDB. LGDB maintains a 

collection of human plasma, serum, white blood cells and DNA from participants. Blood 

sample (30 ml) is collected and plasma and white blood cells are separated within 2 days 

from collection. DNA is prepared using phenol extraction method. Sample processing, 

storage, retrieval was performed manually.  

All samples are labeled with 1D barcode, 2D barcode and printed labels (certified 

for intended use). For sample and data administration Nautilus, Delphi IT technology is 

used. For each patient there is an IT based patient record, containing phenotypic and 

genotypic data, and information on available biosamples associated with metadata. 

Nautilus 8.01 LIMS system provides input of samples, data tracking and management, 

label printing, export from database with MS Access. 

DNA samples were stored in -80°C in storage facility equipped with alarm for 

storage temperature and aliquots of samples are stored in independent storage units. For 
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reaction were aliquoted from storage tubes into 96-well PCR plates and normalized 

according to protocol using Tecan Freedom Evo (Tecan Group Ltd, Mannedorf, 

Switzerland) with disposable filter tips.  

4.5. Genetic analysis 

4.5.1. SNP selection and genotyping for intolerance study 

We selected 6 polymorphisms in OCT1-2 and MATE1 previously associated with 

the altered transport activity of metformin to investigate association with metformin 

intolerance. We selected four polymorphisms: rs12208357 (Arg61Cys), rs34059508 

(Gly465Arg), rs628031 (Met408Val), and rs72552763 (420del) in the OCT1 gene and one 

SNP from the OCT2 (rs316019, Ala270S) and MATE1 (rs2289669, intronic) genes 

(Becker et al., 2009, 2010a, 2011; Joerger et al., 2015; Tzvetkov et al., 2012; Tzvetkov et 

al., 2009). Only SNPs with minor allele frequency (MAF) above 0.05 in a Caucasian race 

were selected due to a small study sample.  

4.5.2. Real-Time PCR system based genotyping with TaqMan SNP assays 

Genotyping of rs12208357, rs34059508 (OCT1/SLC22A1), rs316019 

(OCT2/SLC22A2), and rs2289669 (MATE1/SLC47A1), rs7903146 (TCF7L2), rs12255372 

(TCF7L2) and rs7561317 (TMEM18) was carried out using the Applied Biosystems 

TaqMan SNP (Applied Biosystems, Foster City, California, USA) Genotyping assay 

(Table 4.1.). 

Table.4.1. 

RT-PCR genotyping probes 

NR SNP code Gene SNP position Applied Biosystems Allele 1/2 

1. rs12208357 SLC22A1 Chr6:60463138 C__30634096_10 C/T 

2. rs34059508 SLC22A1 Chr6:160495827 C__30634080_20 A/G 

3. rs316019 SLC22A2 Chr6:160590272 C___3111809_20 A/C 

4. rs2289669 SLC47A1 Chr17:19403935 C__15882280_10 A/G 

 

 RT-PCR reaction was performed using modified protocol: 4.75 ml TaqMan 

Genotyping Mix, 0.25 ml SNP genotyping assay, and 5 ml Millipore H2O on a 7500 Real-

Time PCR system (Applied Biosystems). Following conditions were set: 1 cycle: 95˚C, 15 

min, 40 cycles: 95˚C–15 s, 60˚C–60 s. The RT-PCR was carried out on a ViiA™ 7 

 Real-Time PCR System (Life Technologies) with settings for VIC fluorescent dye 

(B filter) 552 and for FAM fluorescent dye (filter A) 518 nm.7500Software v2.0.1 
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(Applied Biosystems, ASV) and AutoCaller 1.1 (Applied Biosystems) software was used 

to assign genotype calls for all samples simultaneously.  

4.5.3. Direct DNA sequencing  

 Genotyping of indel rs72552763 was performed by direct sequencing of PCR 

products in 96-well PCR plates or 8-well PCR strips. Optimization of PCR reaction was 

performed by using variable Tm (47˚C–65˚C), MgCl2 concentrations from 1 to 2.5 mmol 

and addition of DMSO. 

 PCR was performed using previously described primers: 5’ -GCA TTC TAA ACC 

CAG TGA T-3’ and 5’-CAT TCC AGA GGC TTA TCA A-3’ (Shu et al., 2008). The 

following PCR reaction setup was used: 1 mmol/l DB buffer, 2.5 mmol/l MgCl2, 0.5 U Hot 

FirePol, 0.2 mmol/l dNTP mix (SolisBioDyne, Tartu, Estonia), 0.3 mmol/l primers, and 28 

ng of template DNA (Table 4.2.). 

Table. 4.2. 

The standard PCR protocol 
The reagents   Amount for reaction, 25 μl 

10xPCR buffer BD 2.5 μl 

MgCl2 ( 25 mM ) 2.0 μl 

dNTP mix, 10mM 0.5 μl 

Oligonuclotide (100mM) 0.075 μl 

Oligonuclotide (100mM) 0.075 μl 

DNA (28 ng) 1 μl 

HotFIREPol polymerase 0.125 μl 

Deionized H20 18.73 μl 

 PCR reagents were mixed according to protocol and DNA was added later in a 

separate room to avoid contamination, sealed before reaction.  PCR was carried out on a 

Veriti96ThermalCycler (AppliedBiosystems)(Table 4.3). 

Table. 4.3. 

PCR conditions SLC22A1 

No. Temperature Time Cycles 

1. 95˚C 15 min 1 cycle 

2. 95˚C 30 sek 40 cycles 
55˚C 30 sek 
72˚C 1 min 

3. 72˚C 5 min 1 cycle 

4. 4˚C   

 The PCR product was confirmed by agarose gel (1.5%) electrophoresis. 

Dephosphorylation of remaining dNTPs was performed with shrimp alkaline phosphatase 
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(ExoI, SAP)(Fermentas  UAB,  Vilnius,  Lithuania)  according  to  the manufacturer’s 

protocol. Amplification products had both strands  directly  sequenced  using  the  primers  

5’ -TTTCTT CAG TCT CTG ACT CAT GC-3’  and 5’ -TCC CCACAC  TTC  GAT  

TGC-3’ (Table 4.4.).  

Table. 4.4. 

Sequencing reaction protocol 

The reagents Amount for reaction, 10 μl 
5x seq buffer 2 μl 

BD ( Big Dye) 0.5 μl 
Primer 1 0.5 μl 

DNA (afterdephosphorylation) 2 μl 
Deionized H20 5 μl 

 The following sequencing reaction setup as used: 1 ml  BigDye,  2 ml  5 X Big Dye 

sequencing buffer, 0.5 mmol/l  corresponding  primer, 150–250 ng of template DNA (from  

the previously described PCR reaction), and  5.5 ml H2O. Plate was sealed and the reaction 

was carried out on a Veriti96ThermalCycler (AppliedBiosystems) (Table 4.5.). 

Table.4.5. 

Sequencing reaction conditions 

No. Temperature Time Cycles 

1. 95˚C 15 min 1 cycle 

2. 95˚C 30 sek 25 cycles 
55˚C 30 sek 
72˚C 1 min 30 sek 

3. 72˚C 5 min 1 cycle 

4. 4˚C   

 The products were purified using Sephadex G50 (Sigma-Aldrich, St Louis, 

Missouri, USA)(centrifugeUniversal 23), Hi-Di formamide was added and DNA was 

sequenced using an ABI Prism 3100 (AME Bioscience, Toroed, Norway) capillary  

electrophoresis sequencer.   

 All chromatograms were inspected manually using Contig Express software of 

Vector NTI Advance 9.0 package (Invitrogen Corporation, Carlsbad, California, USA).  

The presence of polymorphisms was confirmed by an opposite strand analysis. Two 

additional polymorphisms were found (rs34130495 and indel rs36056065). A minor allele 

of rs34130495 was found only in three samples and this SNP was not considered for 

further association analysis. 
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4.5.4. SNP selection and genotyping with 192-plex SNP genotyping panel 

 For the aim of the study we developed a genotyping panel by using HaploView 4.2 

(27 genome release) (Barrett et al., 2005) for SNP selection from first GWAs of metformin 

efficiency (van Leeuwen et al., 2012) and largest studies investigating genetic factors of 

metformin therapy in participants with T2D and obesity (Assmann et al., 2014; Barros et 

al., 2014; Chauhan et al., 2011; Kalnina et al., 2012; Kalnina et al., 2013; Park et al., 2013; 

Shokouhi et al., 2014; Wang et al., 2013; Xi et al., 2014), pre-diabetic or PCOS 

(Christensen et al., 2011; Goldenberg N, 2008; Jablonski et al., 2010). Due to the relatively 

small sample size only variations exceeding minor allele frequency (MAF) of 0.05 in 

Caucasian race were included. In the BeadXpress primer design (Illumina, San Diego, CA) 

the designability rank score (0 to 1) was calculated for each SNP by Illumina and SNPs 

with scores <0.5 were excluded and list of tagSNPs was updated in Haploview v4.2 until 

tagSNPs with best designability rank score were obtained. Altogether 192 SNPs and 

tagSNPs from 52 genes were selected for analysis.  One hundred and eight tagSNPs of the 

pharmacogenetic panel covered OCT1 (SLC22A1), OCT2 (SLC22A2), OCT3 (SLC22A3), 

MATE1 (SLC47A1), MATE2 (SLC47A2), PMAT (SLC29A4) regions and 37 SNPs were 

associated with T2D susceptibility or accounted for genes possibly involved in metformin 

action. 

 Genotyping was performed in all patients from OPTIMED and pharmacokinetic 

studies by using GoldenGate Genotyping Assay with VeraCode technology (Illumina, 

Inc.). 250 ng of genomic DNA was used for each subject, with control DNA on each plate. 

Genotyping was performed according to the manufacturer's protocol (Hyten et al., 2008). 

Workflow consists of 1) activation which enables genomic DNA samples to bind to 

paramagnetic particles ,2) hybridization of 2 allele-specific and one locus-specific 

oligonucleotides with the template DNA, 3) allele-specific extension/ligation, 4) PCR with 

three universal primers (P1 (Cy3-labelled), P2 (Cy5-labelled), and P3); 5) binding of PCR 

product labeled with Cy3 or Cy5 depending on the allele, and containing an Illumicode 

address sequence, 6) hybridization single-stranded, dye-labeled PCR products on 

VeraCode BeadPlate to their complementary bead type through their unique address 

sequences and 7) Scan address sequence and fluorescence in VeraCode BeadPlate with 

BeadXpress®Reader.  Genotypes for each locus are detected with signal in either the Cy3 

or Cy5 channels (homozygotes) or both (heterozygotes).The automatic allele calling was 
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done using the Illumina Genecall software with a GeneCall threshold of 0.25 which 

analyses fluorescence and assigns 3 genotypes for each SNP (Deulvot et al., 2010).  

 Each SNP was evaluated also manually and 15 SNPs were removed from analysis 

due to failed genotyping, weak genotype separation due to low fluorescence and very low 

minor allele frequency. We obtained allelic data for 92.2% of the SNPs (177 out of 192) 

included in the OPTIMED panel. Genotype clusters of rs7757336 and rs2481030 

(SLC22A2 – SLC22A3) after automatic alelle calling and manual corrections of obtained 

clusters (Figure 4.1.). 

 

 

Figure 4.1. Genotype clusters of rs7757336 and rs2481030 

 

 One positive control sample in each assay plate was used; a concordance rate of 19 

randomly distributed duplicate samples was 99.7%. Samples with call rates lower than 0.9 

were excluded. Primary data analyses were performed using Illumina GenomeStudio 

software as previously reported.  

4.5.5. SNP selection and genotyping for investigation of incidence of disease 

 SNPs rs7903146 (TCF7L2), rs12255372 (TCF7L2), rs7561317 (TMEM18) were 

strongly associated with susceptibility to the T2D (Assmann et al., 2014; Barros et al., 

2014; Chauhan et al., 2011; Park et al., 2013; Shokouhi et al., 2014; Wang et al., 2013; Xi 

et al., 2014) and were selected for genotyping in 987 T2D patients (cases) and 1080 

controls from LGDB but not participants from OPTIMED project.  
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 All procedures and reagents were used according to the intolerance study protocol 

described above (Table 4.6.). 

Table.4.6. 

RT-PCR genotyping probes 

Nr. SNP code Gene SNP position Applied Biosystems Allele 1/2 

1. rs12255372 TCF7L2 Chr10:113049143 C__291484_20 G/T 

2. rs7561317 TMEM18 Chr2:644953 C__11804554_10 A/G 

 SNP rs7903146 (TCF7L2) was custom made (B biotin cap, L* photosensitive 

linker): 

Fw ACCGTTGGATGTGTTATTTACTGAACAATTAGAGAGCTAAG 

Rs ACGTTGGATGGCCCAAGCTTCTTCAGTCAC 

B-CAATAGAGAGCTL*AGCACTTTTTAGATA_[T/C] 

4.6. Quantification of metformin 

Venous blood samples (0, 1, 2, 3, 4, 6, 10, 24 h after oral administration of 

metformin) and urine samples (4, 6, 10, 24 h after oral administration of metformin) were 

taken within 24 hours. Whole blood samples were centrifuged immediately and the pellet 

was washed three times with 0.9% sodium chloride. All plasma, urine and pellet samples 

were stored at -20°C until determination of metformin. After acetonitrile-induced (internal 

standard – phenformin containing) protein precipitation of the biological samples, 

metformin and IS were analyzed on hydrophilic interaction liquid chromatography 

(HILIC) using multiple reaction monitoring (MRM) in positive ion electrospray mode. The 

assay was validated for quantitive determination of metformin in human RBC and plasma 

samples. The obtained calibration curves were characterized by correlation coefficient 

R
2
>0.99 over the concentration range of from 5ng/ml to 500 ng/ml for RBC, from 5ng/ml 

to 1500 ng/ml for blood plasma and from 2.5μg/ml to 250 μg/ml for urine samples 

(APPENDIX V, Supplementary methods).  

4.7. Statistical methods 

 Statistical analysis was performed using the PLINK 1.07 open software 

(http://pngu.mgh.harvard.edu/purcell/plink/)(Purcell et al., 2007), HaploView 4.2 open 

software, and SPSS 13.0 (Standard version, Chicago, IL, USA).  

 Tidwell-Box linearity test, Cook’s distance, standartized residual values, leverage 

points, Hosmer-Lemeshow test, standard errors (SE) of independent variables and 

Pearson’s r coeficient were obtained using SPSS 13.0 (Standard version, Chicago, IL, 

USA) to analyse quality of data and confirm the use of samples in logistic and linear 
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regressions performed. Durbin-Watson test, Kalmogorov-Smirnov test and Shapiro-

Wilkson test, VIF (variant inflation factor) and tolerance, standardized residuals were 

obtained using SPSS 13.0 (Standard version, Chicago, IL, USA) to analyse quality of data 

retrieved from pharmacokinetic study. 

 LD was determined using the program Haploview v4.2, considering all the patients 

included in intolerance study and used separately for determination of TagSNPs in 

metformin transporters coding genes as described previously (OPTIMED panel). Statistical 

power was calculated using Quanto v1.2.3. software (Natara Software, Naperville, Illinois, 

USA) according to allele frequencies published in NCBI database 

(http://www.ncbi.nlm.nih.gov/ Accessed in January 2015) for Caucasian race. Variables 

and outcomes were tested for normality by using Kolmogorov-Smirnov test (Neter J, 1988) 

and Shapiro-Wilk test (Royston-P, 1995; Shapiro SS, 1965) and if it was required, were 

normalised according to Box-Cox power transformations (Osborne, 2010). All SNPs 

included in the study were tested for deviation from the Hardy–Weinberg equilibrium by 

the exact test described by Wigginton et al. (Wigginton et al., 2005). Significance level for 

all associations were set as α=0.05 and results were corrected for multiple testing using 

Bonferroni correction and permutation test with 100 000 permutations for each analysis 

(Purcell et al., 2007). Impute2 software was used to perform genotype imputation and 

haplotype phasing (Howie et al., 2012). 

4.7.1. Intolerance study 

 Logistic regression assuming an additive, dominant, or recessive mode of 

inheritance was used to test the difference between the metformin intolerant participants 

and the controls and analysis was adjusted for other non genetic factors - sex, age, body 

mass index (BMI), use of other antidiabetic drugs, and use of co-medications as cofactors. 

Estimated glomerular filtration rate (eGFR) was calculated by using Cocroft-Gault 

equation (eGFRcocroft=(140-age)*(mass,kg)*[1.23 if male or 1.04 if female]/(serum 

creatinine, µmol/L)). BMI was derived from the mass (weight) and height of participants 

(BMI=mass,kg/(height,m)
2
). Waist measurement, BMI, and HbA1c levels showed 

abnormal distribution and were used as outcomes in linear regression analysis using the 

sex, age, and metformin intolerance status as cofactors. Our sample size provided 80% 

power (at α=0.05) to detect an odds ratios from 1.60 to 2.15 depending on MAF. 

 

http://www.ncbi.nlm.nih.gov/
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4.7.2. Metformin efficiency and genetic variability of metformin transporters 

 Logistic regression of responders versus non-responders (defined as positive versus 

no change or negative change of HbA1c) was performed using PLINK 1.07 open software 

assuming an additive mode of inheritance to estimate association of SNPs with non-

responsiveness after 3 or 6 months metformin monotherapy (discovery and replication 

group, respectively) and using number of transformed and non-transformed cofactors (age, 

sex, BMI, time between HbA1c measurements, dose of metformin, eGFR) to adjust the 

analysis for other non-genetic factors. Creatine clearance was estimated by using Cocroft-

Gault equation (eGFRcocroft=(140-age)*(mass,kg)*[1.23 if male or 1.04 if female]/(serum 

creatinine, µmol/L)). BMI was derived from the mass (weight) and height of participants 

(BMI=mass,kg/(height,m)
2
). The 1000 Genomes project browser 

(http://browser.1000genomes.org/index.html Accessed in January 2015) predicted high 

linkage disequilibrium (D’=1.0) between rs7757336, rs3119309 and rs2481030 in the 

Caucasians with variable r
2
 due to differences between MAFs (r2=0.182- 0.657). Statistical 

power of sample size was calculated using Quanto software to provide 80% power (at 

α=0.05) to detect an odds ratios (ORs) from 1.55 to 2.9 depending on MAF of different 

SNPs. 

4.7.3. Pharmacokinetic study 

 Creatinine clearance (Clcr) was calculated from creatinine measurements from 24 

hours urine and corrected for BSA by using the Mosteller formula. The maximum 

observed concentration (Cmax) and the time point of observed Cmax (tmax) were both 

obtained directly from the measured data. Estimation of under the curve (AUC0-24) was 

calculated by trapezoid method and corrected for infinity using the rate constant of the last 

exponential phase (k)(Robert et al., 2003). Extrapolation to infinity was computed 

AUC∞=AUC0-24 + Clast/k. Ratio of AUC0-24 to AUC∞ is <=3%. The k value was calculated 

from final 2 concentrations of the concentration time-curve k=(lnC10h – lnC24h)/t (Bardin et 

al., 2012). The elimination half-life (t1/2) was calculated as 0.693/k. 

Clearance/bioavailability (CL/F) was calculated as dose/AUC∞, where bioavailability was 

estimated as 50% as reported previously (Bailey and Turner, 1996). Volume of 

distribution/bioavailability (V/F) was estimated by dividing CL/F by k. Linear regression 

was performed using PLINK 1.07 open software to estimate association of rs7757336 and 

rs2481030 polymorphisms (100% genotype rate for both variants) with absolute changes in 

http://browser.1000genomes.org/index.html
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obtained pharmacokinetic parameters and to corrected for covariates (weight, age, 

creatinine clearance).  

4.7.4. Association of other genetic variants with metformin efficiency 

 Analysis of correlation between metformin efficiency (responders and non-

responders defined as positive versus no change or negative change of HbA1c) and 33 

genetic variants in T2D susceptibility genes and metformin targets was performed using 

logistic regression with covariates - age, sex, BMI, time between HbA1c measurements, 

dose of metformin, eGFR. Statistical power of sample size was calculated using Quanto 

software to provide 80% power (at α=0.05) to detect an odds ratios (ORs) from 1.55 to 2.9 

depending on MAF of different SNPs.  

4.7.5. Analysis of T2D susceptibility variants in respect to the incidence of T2D 

 Three SNPs - rs7903146 (TCF7L2), rs12255372 (TCF7L2) and rs7561317 

(TMEM18) previously associated with T2D incidence in Latvia, were used in the logistic 

regression with covariates: sex, age, BMI (transformed if required). BMI was derived from 

the mass (weight) and height of participants (BMI = mass, kg/ (height, m)
2
).  
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5 RESULTS 
 

5.1. Intolerance study 

The baseline characteristics of the group of T2D patients divided into case and 

control groups based on the presence of metformin-induced side-effects are shown in Table 

5.1. In the group of T2D patients with available biochemical and metformin prescription 

information, metformin intolerance status was assigned based on details of side-effects 

(patients with non-specific “gastrointestinal side-effects”, “allergy” or similar were 

excluded) in cases diagnosed with at least one of the following: diarrhoea, 

nausea/vomiting, asthenia and abdominal pain and flatulence, leading to a total of 53 cases. 

     Table 5.1. 

Characteristics of the metformin-tolerant T2D patient group (Controls)  

versus T2D patients displaying metformin side-effects (Cases) 
Characteristic

a
 Cases (n=53) Controls (n=193) P value 

Male, n (%)  13 (24.5) 61 (31.6) 0.4069 

Female, n (%)  40 (75.5) 132 (68.4) 0.4069 

Mean age ±SD, years  63.8 ± 8.2 58.9 ± 9.9 0.0011 

Mean BMI ±SD, kg/m
2
 34.8 ± 7.2 34.7 ± 6.6 0.9542 

Duration of diabetes, years 8.3±6.9 9.0±7.5 0. 5172 

Onset of diabetes, years 55.7±8.3  50.13±10.0 0.0003 

Presence of hypertension, n (%)  40 (75.5) 157 (81.4) 0.4478 

Smoking, n (%)  4 (7.55) 25 (13.0) 0.3963 

Regular alcohol consumption, n (%)  17 (32.1) 147 (76.2) < 0.0001 

Physically active, n (%)  2 (3.8) 14 (7.25) 0.5568 

Insulin, n (%)
b
 3 (7.1) 123 (63.7) <0.0001 

Other antidiabetic drugs, n (%)
b
 15 (35.7) 72 (37.3) 0.9854 

Other drugs, n (%)
b
 35 (83.3) 174 (90.2) 0.3069 

Dose of metformin ±SD, mg/per day
 c
 1759.8±605.6 2122.0±337.9 <0.0001 

Creatinine level in blood±SD, mmol/l
d
 71.63±13.75 74.89±18.11 0.3108 

HbA1c ±SD, %
e
 7.8±1.3 9.0±2.1 0.0008 

SD–standard deviation; BMI–body mass index; HbA1c–glycated haemoglobin, %; P<0.05 are marked in 

bold. 
a
- data selected at the time of patient enrolment in the study. 

b 
data available from 235 subjects (193 

controls, 42 cases). 
c
 data available from 234 subjects (193 controls, 41 cases). 

d
 data available from 219 

subjects (184 controls, 35 cases). 
e
 data available from 189 subjects (150 controls, 39 cases) 

We observed significant differences in age, mean dose of metformin, HbA1c levels, 

alcohol consumption, use of insulin and onset of T2D between the case and control groups 

(n=193). The presence of side-effects correlated positively with age (P=0.0011), but 

negatively with alcohol consumption (P<0.0001) between cases and controls. The control 

group included 63% insulin users, while only 3 patients (7.1%) from the case group used 

insulin. From the case group, 41 patients continued to use metformin therapy at the time of 
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recruitment. Mean daily dose of metformin and HbA1c levels were significantly lower in 

patients displaying side-effects (P<0.0001, P=0.0008, respectively).  

No significant differences in the duration of diabetes (9.0±7.5 years in the control 

group (n=189) versus 8.3±6.9 years in the case group (n=52), P=0.52) or blood creatinine 

level (71.63±13.75 mmol/l in the intolerance group (n=35) versus 74.89±18.11 mmol/l in 

the tolerance group (n=184), P=0.31) were evident. However, onset of diabetes was later in 

the case group (55.7±8.3 versus 50.13±10.0, respectively, P=0.0003). Since lack of insulin 

use and lower alcohol consumption are unlikely to be factors that trigger side-effects, 

further association analysis was adjusted using age, sex, and use of other peroral 

antidiabetic drugs and co-medications as covariates in logistic regression (Table 5.2). 

    Table 5.2 

Characteristics of T2D patients with metformin side-effects 

SD – standard error, eGFR – estimated glomerular filtration rate (Cockroft-Gault equation), HbA1c – glycated 

haemoglobin; HDL – high-density lipoproteins; LDL – low-density lipoproteins 

Allelic frequencies of detected polymorphisms ranged from 0.04 to 0.38, and did 

not differ substantially from the minor allele frequencies reported previously 

(http://www.ncbi.nlm.nih.gov/Accessed in January 2015). Genotyping success rate was 

>95%, ranging from 95.5% to 100%. No significant deviation from Hardy-Weinberg 

equilibrium was observed for any of the SNPs. The characteristics of SNPs used in this 

study are presented in Table 5.3. 

 

 

 

 

 

 

Biochemical analysis 

eGFR ±SD, ml/min/1.73 m
2
 81.7±23.6 

HbA1c  ±SD, % 7.8±1.3 

Cholesterol ±SD, mmol/L 5.5±1.1 

HDL ±SD, mmol/L 1.3±0.4 

LDL ±SD, mmol/L 3.3±0.9 

Triglyceride ±SD, mmol/L 2.2±1.1 

Albumin/Creatinine ±SD, mg/mmol 7.7±25.9 

Dose of metformin 

Mean starting dose ±SD, mg/per day 822.8±439.6 

Mean side-effect-inducing dose ±SD mg/per day 1311.8±695.1 

Symptoms of intolerance 

Diarrhoea  19 

Nausea 14 

Vomiting 3 

Abdominal Pain 10 

Asthenia 7 

Flatulence 13 

http://www.ncbi.nlm.nih.gov/
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Table 5.3. 

Characteristics of SNPs used for study 

Gene SNP code Positiona 
AA 

change 

Genotype 

call rate  

% 

Minor 

allele 

Major 

allele 

 

 

MAFb 

 

 

MAFc 

 

HWE 

OCT1 rs12208357 c.181C>T R61C 96.7 T C 0.10 0.07 0.45 

OCT1 rs34059508 c.1393G>A G465R 95.5 A G 0.04 0.05 1 

OCT1 rs628031 c.1222A>G M408V 97.2 A G 0.39 0.42 0.79 

OCT1 rs72552763 
c.1260-

1262delGAT 
M420del 95.5 del GAT 0.18 0.25 1 

OCT1 rs36056065 

c.1276+ 

9_1276 

+16del 

GTAAGTTG 

- 98.4 
GTAAG

TTG 
del 0.39 0.41 0.69 

OCT2 rs316019 c.808T>G A270S 100 T G 0.08 0.09 0.20 

MATE1 rs2289669 
c.922-

158G>A 
- 97.2 A G 0.39 0.45 0.892 

AA – amino acid; 
a 
nucleotide position relative to the gene start codons; MAF minor allele frequency, 

b
 – 

study sample, 
c
 – NCBI; HWE -Hardy-Weinberg P value. 

 

We tested the association of all polymorphisms with HbA1c level, BMI and waist 

circumference measurements in metformin users (patients using metformin for at least 3 

months before enrolment) (Table 5.4). 

     Table 5.4. 

SNP association with quantitative variables in regular metformin users 

SNP 
Mean ± SE per genotype 

a
 P value 

b
 

11 12 22 Additive Dominant Recessive 

BMI, kg/m2, n=274 

rs12208357 38.75±15.54 34.18±7.12 35.00±7.74 0.85 0.65 0.43 

rs34059508 - 35.00±5.57 35.03±7.95 1.00 1.00 - 

rs628031 34.38±6.75 35.45±8.35 34.72±7.51 0.98 0.72 0.61 

rs72552763 36.00±3.90 34.81±7.60 35.10±7.32 0.78 0.89 0.60 

rs36056065 34.12±6.81 35.53±8.30 34.52±7.36 0.94 0.54 0.51 

rs316019 33.33±7.03 36.87±6.82 34.78±7.84 0.36 0.24 0.62 

rs2289669 33.32±6.41 34.50±6.71 36.87±8.12 0.0033* 0.0055* 0.07 

HbA1c, %, n=238 

rs12208357 10±0.00 8.84±2.03 8.33±2.08 0.12 0.13 0.53 

rs34059508 - 7.92±1.68 8.49±2.07 0.26 0.26 - 

rs628031 8.73±2.40 8.51±1.95 8.27±2.08 0.45 0.45 0.66 

rs72552763 7.80±3.27 8.56±2.02 8.43±2.08 0.66 0.48 0.50 

rs36056065 8.71±2.36 8.54±1.95 8.19±2.10 0.27 0.23 0.62 

rs316019 8.00±1.41 8.15±2.20 8.48±2.05 0.19 0.20 0.51 

rs2289669 8.72±2.17 8.22±2.06 8.64±2.01 0.59 0.22 0.48 

Waist, cm, n=262 

rs12208357 132.0±59.7 111.6±14.3 112.1±15.5 0.50 0.89 0.033 

rs34059508 - 112±13.3 112.3±16.6 0.73 0.73 - 

rs628031 113.7±20.4 113.9±15.5 110.2±15.8 0.22 0.17 0.63 

rs72552763 115.2±5.1 110.3±16.0 112.6±16.7 0.72 0.56 0.58 

rs36056065 113.5±20.1 114±15.5 109.8±15.6 0.17 0.09 0.70 

rs316019 125.3±21.0 116.7±15.6 111.9±16.2 0.08 0.12 0.22 

rs2289669 111.1±15.8 110.5±15.6 115.2±17.3 0.044 0.024 0.48 
a Minor allele=1;Major allele=2. SE – standard error.b - P-values estimated using linear regression 

adjusted for age, sex and metformin intolerance status* P-values that remained significant 

(P<0.05) in the permutation test corrected for multiple testing-adjusted (EMP2) 
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Carriers of the SLC47A1 rs2289669 A allele were characterized by significantly 

lower mean BMI (P=0.0033) in the additive genetic model and reduced waist 

circumference in the dominant genetic model (P=0.024). Homozygous A allele carriers of 

another SNP, rs12208357, from the OCT1 gene displayed higher mean waist 

circumference (P=0.033). Associations with waist circumference did not reach the 

significance level when adjusted for multiple testing, and none of the SNPs examined were 

associated with HbA1c level. 

The minor allele frequencies (MAF) of rs628031 and rs36056065 polymorphisms 

in the control group (0.42 for both polymorphisms) were similar to those reported 

previously in the HapMAP project (0.417 for rs628031 and 0.412 for rs36056065 in the 

NCBI SNP database reported by Marshfield et al.). MAF of the same SNPs in the case 

group were significantly lower (0.275 and 0.274 for rs628031 and rs36056065, 

respectively). Estimation of the level of LD between OCT1 and OCT2 polymorphisms 

using HaploViewer software (Figure 5.1) revealed almost complete LD between rs628031 

and rs36056065 (r
2
=0.94). 

 

 
 

Figure 5.1. Graphical representation of LD between analysed SNPs. Pairwise r
2
 

coefficients are shown in each box (expressed as a percentage), with red shading 

corresponding to stronger linkage between polymorphisms. 

 

The A allele of rs628031 as well as an 8 bp insertion (rs36056065) were 

significantly associated with the absence of side-effects when tested independently using 
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the logistic regression test, and remained associated with the presence of metformin side-

effects after adjustment for multiple comparisons using a permutation test (Table 5.5).  

    Table 5.5. 

SNP associations in T2D patients with metformin side-effects 

SNP Genetic model 

Genotype number 
OR 

[95% CI]
a
 

P
a
 Pperm

b
 Intolerance 

group 
Controls 

rs12208357 

 

Additive  

(AA/AG/GG) 
0/5/48 3/34/148 0.34[0.10–1.16] 0.085 0.38 

Dominant 

(AA/AG+GG) 
5/48 37/148 0.34[0.10–1.18] 0.089 0.41 

Recessive 

(AA+AG/GG) 
0/53 3/182 – 0.999 1 

rs34059508 

 

Additive  

(TT/TC/CC) 
0/1/52 0/15/167 0.31[0.04–2.53] 0.28 0.86 

Dominant 

(TT/TC+CC) 
1/52 15/167 0.31[0.04–2.53] 0.28 0.86 

Recessive  

(TT+TC/CC) 
0/53 0/182 NA NA 1 

rs628031 

Additive 

 (AA/AG/GG) 
3/22/26 34/89/65 0.47[0.26–0.82] 0.009 0.042 

Dominant 

(AA/AG+GG) 
25/26 123/65 0.39[0.19–0.82] 0.012 0.062 

Recessive 

(AA+AG/GG) 
3/48 34/154 0.32[0.09–1.18] 0.088 0.31 

rs72552763* 

Additive 

 (DD/ID/II)
C 0/21/32 7/47/128 1.25[0.66–2.34] 0.50 0.99 

Dominant 

(DD/ID+II) 
21/32 54/128 1.62[0.78–3.39] 0.20 0.72 

Recessive 

 (DD+ID/II) 
0/53 7/175 – 1 0.99 

rs36056065* 

Additive 

 (II/ID/DD) 
3/23/27 35/89/65 0.41[0.22–0.72] 0.002 0.010 

Dominant 

(II/ID+DD) 
26/27 124/65 0.36[0.17–0.74] 0.006 0.027 

Recessive 

 (II+ID/DD) 
3/50 35/154 0.20[0.04–0.89] 0.035 0.078 

rs316019 

Additive 

(TT/TG/GG) 
0/7/46 3/27/163 0.86[0.33–2.25] 0.75 1 

Dominant 

(TT/TG+GG) 
7/46 30/163 0.93[0.33–2.64] 0.89 1 

Recessive 

(TT+TG/GG) 
0/53 3/190 – 0.99 1 

rs2289669 

Additive 

(AA/AG/GG) 
5/26/22 30/89/67 0.71[0.42–1.22] 0.22 0.76 

Dominant 

(AA/AG+GG) 
31/22 119/67 0.77[0.37–1.59] 0.48 0.98 

Recessive 

(AA+AG/GG) 
5/48 30/156 0.41[0.11–1.45] 0.17 0.47 

a – OR and P values estimated from logistic regression adjusted for age, sex, use of other peroral antidiabetic 

drugs and co-medications. b – P value obtained from 100 000 permutations and corrected for multiple testing 

(EMP2). * – D deletion, I insertion 

We did not identify specific haplotypes or pairwise interactions between 

investigated SNPs with stronger association effects than those of individual SNPs (data not 
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shown). The additive genetic model provided the best fit for association of both 

polymorphisms with presence of side-effects.  

5.2. Metformin efficiency and genetic variability of metformin transporters 

Metformin efficiency was analyzed in 102 T2D patients from the OPTIMED 

project and 126 patients from Slovakia that served as discovery and replication groups, 

respectively. The baseline HbA1c level was similar in both groups. However, the discovery 

group showed significantly better treatment results over a shorter time-period, compared to 

the replication group (ΔHbA1c, 0.9% versus 0.5%). BMI and metformin dose were 

markedly different between the groups (Table 5.6).  

     Table 5.6. 

Characteristics of T2D patients in the discovery group (Latvia) and replication group 

(Slovakia) 

Characteristics 
Discovery group 

(n=102) 

Replication 

group (n=126) 
P values 

Male, n (%) 33 (32.4) 58 (46.0) 0.0513 

Female, n (%) 69(67.6) 68 (54.0) 0.0513 

Mean age ±SD, years 59.7 ± 10.6 58.3 ± 9.5 0.295 

Mean BMI ±SD, kg/m
2
, baseline 33.8 ± 4.8 30.6 ± 3.3 <0.0001 

eGFR ±SD, mL/min 120.1 ± 43.7 98.1 ± 24.2 <0.0001 

Dose of metformin ±SD, mg/per day 1525.0 ± 533.5 1382.1 ± 532.6  0.0453 

Non-responders to treatment (decrease of HbA1c,  

bilance ) n, % 
18 (17.6) 26 (20.6) 0.6875 

Days between HbA1c measurments ±D 95.5 ± 9.0 6 months
 c
 NA 

HbA1c ±SD, %, baseline 7.4 ± 1.5 7.5 ± 0.8 0.5203 

HbA1c ±SD, %, after treatment, % 6. 5 ± 0.6
a 

7.0 ± 0.7 
b 

<0.0001 

Decrease of HbA1c ±SD, after treatment, % 0.9 ± 1.3 0.5 ± 0.7 0.0034 

SD, standard deviation; BMI, body mass index; P values < 0.05 are marked in bold. 
a 
After 3 months of 

treatment; 
b 
After 6 months of treatment; 

c
  180 days between HbA1c measurements.  P values assessed using 

t-test and comparison of proportions. Nonresponders were defined as subjects with no change or increase in 

HbA1c after treatment. 

 

            In the discovery group, Tidwell-Box linearity test (P>0.05), Cook’s distance values 

<1, unstandardized residual values <2.58 and under maximum leverage value confirmed 

the applicability of logistic regression to ascertain the effects of age, eGFR, BMI, sex, 

length of therapy, dose of metformin and 102 SNPs of the six metformin transporters 

(OCT1, OCT2, OCT3, MATE1, MATE2 and PMAT) on the likelihood of non-responder 

phenotype (no changes versus increased HbA1c level) after 3 months of metformin 

monotherapy, as described previously (Ichimori et al., 2012). In total, 26 SNPs were 

nominally (P≤0.05) (APPENDIX V) associated while 3 SNPs remained significantly 

associated after correction for multiple testing. The 1000 Genomes project browser 
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(http://browser.1000genomes.org/index.html, Assessed in January 2015) predicted high 

linkage disequilibrium (D’=1.0) between rs7757336, rs3119309 and rs2481030 in 

Caucasians with variable r
2
 due to differences between MAFs (r

2
=0.182–0.657).  

        Table 5.7 depicts the three SNPs (rs2481030, rs7757336 and rs3119309) significantly 

associated with non-responder phenotype after Bonferroni correction. 

Table 5.7 

Characteristics of SNPs associated with non-response phenotype following metformin 

monotherapy 

 

Gene 

 

SNP 

code 

Position
a 

Call  rate, 

% 

Minor  

allele 

Major 

allele 

 

MAF, 

AFF 

 

MAF, 

NA 
MAFb HWE 

  

SNPs associated with non-response to metformin in a study sample of 102 T2D patients from Latvia 

SLC22A2- 

SLC22A3 

rs7757336 160689558 100 G T 0.36 0.08 0.17 0.68 

rs3119309 160685072 100 T C 0.28 0.05 0.12 1 

rs2481030 160756435 100 G  A 0.75 0.32 0.40 0.42 

SNPs from a replication study on 126 T2D patients from Slovakia 

SLC22A2- 

SLC22A3 

 

rs7757336 160689558 100 G T 0.10 0.11 0.10 0.36 

rs2481030 160756435 100 G  A 0.31 0.29 0.29 0.83 

AFF – affected, NA – non-affected; HWE – Hardy-Weinberg equilibrium, P value 
 

The results of adjusted logistic regression for each SNP are shown in Table 5.8. 

 

Table 5.8. 

 

SNPs associated with efficiency of metformin monotherapy in patients from Latvia 

and Slovakia 

SNP  

Genotype number 
OR 

[95% CI]
a
 

P
a
 Pperm

b
 Non-

responders 

Responders  

(non-aff) 

 

rs7757336 

 

 

Discovery 

group 
2/9/7 0/14/70 50.360 [5.998-422.900] 3.06*e

-4
    0.004 

Replication 

group 
0/5/21 0/21/79 1.241 [0.368-4.191] 0.728 0.980 

Combined 

analysis 
2/14/28 0/35/149 3.594 [1.670-7.737] 0.001 0.002 

 

rs3119309 

 

Discovery 

group 
1/8/9 0/9/75 26.580 [4.631-152.500] 2.34*e

-4
 0.003 

Replication 

group 
NA NA NA NA NA 

Combined 

analysis 
NA NA NA NA NA 

 

rs2481030 

 

 

Discovery 

group 
10/7/1 8/38/38 13.700 [3.435-54.670] 2.09*e

-4
 0.002 

Replication 

group 
4/8/14 6/46/48 1.225 [0.612-2.454] 0.566 0.917 

Combined 

analysis 
14/15/15 14/84/86 1.635 [1.256-2.129] 1.00*e

-4
 0.005 

Discovery group, Latvia, n=102 patients. a – OR (odds ratio) and P values estimated from logistic regression adjusted for age, 

sex, baseline BMI, number of treatment days, dose of metformin (mg/day), eGFR (Cockroft-Gault equation). b – P values 

obtained from 100 000 permutations and corrected for multiple testing (EMP2). Replication group, Slovakia, 126 participants. a 

– OR and P values estimated from logistic regression adjusted for age, sex, baseline BMI, dose of metformin (mg/day)  

(transformed, ln), eGFR (Cockroft-Gault equation)(Box-Cox power transformation, lambda -2). b – P values obtained from 100 

000 permutations and corrected for multiple testing (EMP2). Combined analysis, n=228 participants. a – OR and P values 

estimated from logistic regression adjusted for age, sex, baseline BMI, number of treatment days (transformed, lambda -1) , dose 

of metformin (mg/day), eGFR (Cockroft-Gault equation)(transformed, lambda 2), rs2481030 (transformed, lambda 2) b – P 

values obtained from 100 000 permutations and corrected for multiple testing (EMP2) 

             Associations of all 102 SNPs in the discovery group are shown in a LD plot of the 

102 tagSNPs in the OCT region (n=72) in APPENDIX I. Linkage disequilibrium of 

http://browser.1000genomes.org/index.html
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tagSNPs in MATE (n=25) and PMAT (n=5) are shown in APPENDIX II and III, 

respectively. 

The logistic regression model of combined negative alleles in the discovery group 

(number of minor alleles of rs3119309, rs2481030 and rs7757336) was statistically 

significant (χ
2 

(4)=57.979, P<0.000). The model explained 71.5% (Nagelkerke R
2
) variance 

in response to metformin, and carriers of negative alleles were 8.4 times more likely to 

exhibit non-responder phenotypes than those of wild-type alleles. Longer time of the 

therapy and increased age were associated with a lower likelihood of exhibiting non-

responder phenotype (p<0.05).  

Wide confidence intervals for models including covariates rs2481030, rs7757336, 

rs3119309 or a combination of negative alleles can be explained by small sample size and 

not as a consequence of high standard errors, as SE values for all logistic regression 

models were ≤1.01 and Pearson’s r<0.8. Two SNPs, rs7757336 and rs2481030, were 

selected for replication in the group of 126 Slovakian T2D patients (replication group). 

Minor allele frequency analysis in the replication group disclosed up to 30% decreased 

frequency of rs7757336 (MAF0.10, 0.13, 0.17) and rs2481030 (MAF 0.29, 0.40, 0.40), 

compared to the discovery group and Caucasian race, respectively.  

We found no significant association of rs7757336 and rs2481030 SNPs with non-

responder phenotype in the group from Slovakia after 6 months of metformin monotherapy 

using the model with the following covariates: sex, age, BMI, length of therapy and 

transformed variables of dose and eGFR (natural and Box-Cox power transformation, 

lambda-2, respectively).  

In combined group analysis (228 participants), the logistic regression model was 

statistically significant (χ
2 

(4)=43.514,P<0.001) for squared number of minor alleles of 

rs2481030 and rs7757336 (Box-Cox power transformation, lambda 2) and the following 

variables: age, sex, baseline BMI, number of treatment days (Box-Cox power 

transformation, lambda-1), dose of metformin (mg/day), eGFR (Box-Cox power 

transformation, lambda 2). Carriers of increased negative alleles (transformed as n
2
) were 

1.34 times more likely to exhibit non-responder phenotypes than those with wild-type 

alleles. Lower creatinine clearance, higher dose of metformin and increased age were 

significantly associated with decreased likelihood of non-responder phenotype (P<0.05). 

The number of risk alleles for rs7757336, rs3119309 and rs2481030 

polymorphisms was assessed for each individual, and the reference group (0 risk alleles) 

analyzed against three groups, specifically, 1, 2-3 or 4-6 risk variant carriers (38 versus 30, 
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29 and 5 subjects, respectively). The number of risk alleles was positively correlated with 

prevalence of non-responders in each group, ranging from 2.6% in the reference group to 

10.0%, 31.0% and 100.0% for 1, 2-3 or 4-6 risk variant carriers, respectively. 

 P values were calculated against the reference with 0 risk alleles (REF) (Figure 

5.2). 

 
 

Figure 5.2. Correlation between the number of OCT2-OCT3 transporter risk alleles and 

metformin efficiency 

 

5.3. Pharmacokinetic study 

The influence of rs2481030 and rs7757336 on metformin pharmacokinetic 

parameters was validated in a group of 15 participants. Four heterozygotes (AG) and 3 

homozygotes (GG) of the rs2481030 risk allele were identified. Two heterozygotes (AC) 

of the rs7757336 risk allele were identified, both of which were also carriers of minor 

alleles of rs2481030 (AG and GG genotypes).  

Due to the small group size, all risk alleles were counted for each participant and 

used as covariates for linear regression analysis. For clarity of presentation, 8 participants 

with 0 risk alleles were assigned to the ‘reference’ group and 7 with at least one risk allele 

to the ‘risk’ group.  

Age was higher in the risk group with borderline significance (30.14±6.04 versus 

24.88±3.27, P=0.05), while no significant differences in sex, weight and creatinine 

Reference                P=0.313                   P= 0.001                     P=6*10-6 
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clearance were observed between groups.  Phenotypic and biochemical data on these 

subjects are presented in Table 5.9. 

Table 5.9 

 
Characteristics and pharmacokinetic parameters of 15 healthy participants in relation to 

combined alleles of rs2481030 and rs7757336-rs3119309 associated with metformin 

inefficiency after oral administration of a single dose of metformin (500 mg) 

Characteristics 
Study 

sample 

Comparison of groups 

Reference, 

n=8 

Risk group, 

n=7 
P value 

a
 

Men n, % 6 (40.00) 2 (25.00) 4 (57.14) 0.460 

Weight, kg, ± SD 73.93±13.73 69.13±15.38 79.43±9.88 0.154 

Age, ± SD 27.33±5.33 24.88±3.27 30.14±6.04 0.052 

Creatinine clearance, mL/min/BSA, SD 127.03±12.21 127.65±13.26 126.33±11.91 0.843 

AUC∞, µg/h/mL, ± SD 5.45±1.66 6.32±1.84 4.67±1.09 0.006 

Cmax, µg/mL, plasma, ± SD 0.72±0.28 0.84±0.32 0.57±0.13 0.077 

Tmax, plasma, h, ± SD 2.20±1.01 2.5±0.93 1.86±1.07 NS 

Cmax, µg/mL, erythrocytes, ± SD 0.17±0.07 0.17±0.07 0.16±0.06 NS 

Tmax, erythrocytes, h, ± SD 9.47±1.41 9.00±1.85 10.00±0.00 NS 

Estimated  half-life, h, ±SD 4.20±0.62 4.24±0.8 4.15±0.34 NS 

CL/F,  L/h ± SD 49.09±15.25 42.51±12.02 56.6±15.85 0.029 

V/F, L ± SD 292.74±89.63 250.71±44.3 340.78±106.79 NS 

Metformin excreted in the urine, % of 

dose
c
, 

39.88±16.14 43.7±11.97 43.05±6.1 NS 

Data are shown as mean values ± standard deviation.
 a

 – P value derived from t-test. 
b
 – P values by linear 

regression with covariates – number of negative alleles, age, sex, weight, Clcr (corrected for body surface 

area). –
 
14 participants included in the analysis. NS – linear regression model is not significant. 

 

The concentration of metformin in plasma was higher in individuals from the 

reference group, compared to those from the risk group at 4 sampling points (Figure 5.3). 
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Figure 5.3. Concentration of metformin in plasma of 15 healthy individuals grouped based 

on the presence of risk alleles after oral administration of a single dose of 500 mg 

metformin 

Quality measures for regression analysis including combined risk alleles of 

rs7757336 and rs2481030 polymorphisms and covariates (weight, age, creatinine clearance 
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(calculated from 24 h urine samples)) were as follows: R
2
=83%, Durbin-Watson test= 

2.78, VIF (variant inflation factor) 1.2-1.8, and tolerance 0.55 - 0.86. Standardized 

residuals of linear regression with values less then <±1.5 were normally distributed (P= 

0.2). 

AUC∞ of metformin plasma was significantly lower (P=0.006) in the risk group 

(4.67±1.09 µg/h/mL) versus reference group (6.32±1.84 µg/h/mL) in linear regression 

analysis. The model including number of risk alleles, age, sex and weight significantly 

predicted metformin AUC∞ in plasma (sig. F change (5, 9)=8.803, P<0.003). Weight (P= 

0.001) and number of negative alleles (P=0.006), but not sex (P=0.254) or creatinine 

clearance (P=0.746) were significant variables for prediction, while age had borderline 

significance (P=0.051). 

Apparent clearance (CL/F) was higher in the risk group (56.6±15.85 L/h versus 

42.51±12.02 L/h, P=0.029). No significant differences were observed between groups in 

respect to Tmax and Cmax in plasma and erythrocytes, estimated half-life and apparent 

volume of distribution, as well as dose of metformin excreted in the urine 24 h after drug 

administration. 

All rs7757336 heterozygotes are also carriers of rs2481030 minor alleles. 

Comparison of rs7757336/rs2481030 carriers versus reference allele/rs2481030 allele 

carriers in a linear logistic model with covariates (age, sex, weight and creatinine 

clearance) revealed significant association of rs7757336/rs2481030 carriers with reduced 

AUC∞ (P=0.002), CL/F (P<0.001) and V/F (P<0.001) while association of rs2481030 risk 

variant carriers versus reference allele carriers was of borderline significance (P=0.052).  

5.4. Association of other genetic variants with metformin efficiency 

A significant proportion of SNPs in the OPTIMED genotyping panel include 

polymorphisms previously identified in GWAS studies. Among these are variants 

associated with T2D and obesity susceptibility (CDKN2a [CDKN2b], HNF4A, HHEX, 

PPARG, HNF1B, TCF7L2, PPARG, SLC30A8, IGF2BP2, ABCC8, RETN, KCNQ1, GCK, 

CAPN10, IGF2BP2, SLC2A2, KCNJ11, TMEM18, CDKAL1, FTO) as well as metformin 

efficiency (ATM and LKB11). In this investigation, we attempted to determine whether 

these variants influence metformin efficiency in the group of 102 T2D patients from the 

OPTIMED study. Overall, 37 variants were genotyped, but 4 SNPs were excluded from 

analysis due to low genotyping quality (rs151290 (KCNQ1), rs1801261 (ABCC8), 

rs1801278 (IRS-1) and rs880663 (PPARG)). Rs290487 (TCF7L2) was additionally 
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excluded due to significant deviation from Hardy-Weinberg equilibrium. The average 

genotype call rate of the 33 SNPs was 98.9%. Minor allele frequency of the detected 

polymorphisms in responders and non-responders (defined as positive versus no or 

negative change of HbA1c) ranged from 0 to 0.56 and thus substantially differed from 

previously reported minor allele frequencies (http://www.ncbi.nlm.nih.gov/, Assessed in 

January 2015) (Table 5.10).  

Table 5.10. 

Characteristics of SNPs used for study 

Gene SNP Chr Position
a
 

Minor 

allele 

MAF non-

responders/responders 
MAF

c
 

Hardy-

Weinberg 

P value 

 

Genotype 

call rate,  

% 

CDKN2a 

[CDKN2b] 
rs10811661 9 22134094 G 0.22/0.18 0.21 1.00 100.00 

HNF4A rs11086926 20 43058697 C 0.00/0.04 0.12 1.00 100.00 

HHEX rs1111875 10 94462882 A 0.22/0.41 0.44 1.00 100.00 

ATM rs11212617 11 108283161 C 0.56/0.45 0.47 0.43 100.00 

PPARG rs1152003 3 12477055 G 0.36/0.30 0.48 0.82 100.00 

HNF1B rs11868513 17 36052692 A 0.14/0.23 0.17 0.55 100.00 

TCF7L2 rs12255372 10 114808902 A 0.25/0.21 0.17 1.00 100.00 

PPARG rs13073869 3 12353993 A 0.44/0.30 0.20 1.00 84.31 

PPARG rs13088205 3 12487806 C 0.19/0.26 0.28 1.00 99.02 

SLC30A8 rs13266634 8 118184783 A 0.33/0.32 0.28 0.17 100.00 

IGF2BP2 rs1470579 3 185529080 C 0.22/0.37 0.41 0.27 99.02 

ABCC8 rs1799854 11 17448704 G 0.39/0.47 0.42 0.07 100.00 

PPARG rs1801282 3 12393125 G 0.17/0.19 0.07 1.00 100.00 

RETN rs1862513 19 7733793 G 0.19/0.27 0.32 1.00 96.08 

KCNQ1 rs2237892 11 2839751 A 0.06/0.06 0.17 1.00 100.00 

KCNQ1 rs2237895 11 2857194 C 0.42/0.41 0.32 0.68 100.00 

KCNQ1 rs2237897 11 2858546 A 0.03/0.02 0.16 1.00 100.00 

KCNQ1 rs2283228 11 2849530 C 0.06/0.07 0.18 0.34 100.00 

GCK rs2908289 7 44223942 A 0.06/0.07 0.21 1.00 100.00 

CAPN10 rs3792269 2 241531479 G 0.09/0.11 0.11 1.00 87.25 

PPARG rs4135263 3 12423266 G 0.22/0.11 0.12 0.20 100.00 

ABCC8 rs4148609 11 17484731 A 0.53/0.35 0.35 0.67 100.00 

IGF2BP2 rs4402960 3 185511687 A 0.22/0.38 0.34 0.39 100.00 

TCF7L2 rs5210 11 17408251 A 0.28/0.42 0.47 1.00 98.04 

SLC2A2 rs5400 3 170732300 A 0.06/0.08 0.19 1.00 100.00 

PPARG rs6806708 3 12487650 A 0.19/0.26 0.29 1.00 100.00 

KCNJ11 rs7124355 11 17412960 A 0.39/0.30 0.26 1.00 100.00 

TMEM18 rs7561317 2 644953 A 0.25/0.20 0.17 1.00 100.00 

KCNJ11/ABCC8 rs757110 11 17418477 C 0.44/0.36 0.29 0.40 100.00 

CDKAL1 rs7754840 6 20661250 C 0.31/0.36 0.41 0.83 100.00 

TCF7L2 rs7903146 10 114758349 A 0.31/0.22 0.22 0.58 99.02 

FTO rs8050136 16 53816275 A 0.36/0.46 0.34 0.07 100.00 

STK11 rs8111699 19 1209714 C 0.36/0.38 0.36 0.41 100.00 

MAF minor allele frequency; Chr–chromosome;
 a 

- nucleotide position 

http://www.ncbi.nlm.nih.gov/.
c 

Global MAF obtained from the 1000 genomes project 

(http://www.biomart.org/) Accessed in January 2015. 

http://www.ncbi.nlm.nih.gov/
http://www.biomart.org/
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In a final analysis, all 33 SNPs were included, leading to the identification of 

nominal association (P<0.05) of rs1111875 (HHEX) and rs4148609 (ABCC8) with 

metformin efficiency. All phenotypes (positive or negative changes in HbA1c after 3 

months of treatment) and logistic regression analysis settings were as described previously 

in the analysis of transporter gene SNPs (Table 5.11).  

Table 5.11. 

SNP association with metformin efficiency 

Gene SNP P nominal P a OR a Lower limita Upper limita 
Genetic 

additive model 
P b 

CDKN2a 

[CDKN2b] 
rs10811661 0.54 0.48 1.50 0.49 4.57 3/32/67 1.00 

HNF4A rs11086926 0.21 0.10 1.9*10-9 0.00 ∞ 0/7/95 1.00 

HHEX rs1111875 0.04 0.03 0.29 0.09 0.89 14/48/40 0.57 

ATM rs11212617 0.26 0.30 1.61 0.66 3.91 20/56/26 1.00 

PPARG rs1152003 0.45 0.08 2.38 0.90 6.26 9/45/48 0.91 

HNF1B rs11868513 0.24 0.14 0.43 0.14 1.33 3/37/62 0.99 

TCF7L2 rs12255372 0.64 0.47 1.44 0.53 3.91 5/35/62 1.00 

PPARG rs13073869 0.13 0.13 2.21 0.80 6.06 9/39/38 1.00 

PPARG rs13088205 0.42 0.69 0.80 0.27 2.39 6/38/57 1.00 

SLC30A8 rs13266634 0.84 0.87 0.92 0.35 2.41 7/51/44 1.00 

IGF2BP2 rs1470579 0.10 0.03 0.28 0.09 0.89 9/51/41 0.57 

ABCC8 rs1799854 0.37 0.94 1.03 0.47 2.28 26/41/35 1.00 

PPARG rs1801282 0.80 0.70 0.79 0.26 2.35 3/31/68 1.00 

RETN rs1862513 0.36 0.25 0.57 0.22 1.49 6/38/54 1.00 

KCNQ1 rs2237892 0.93 0.16 4.21 0.57 31.32 0/12/90 0.99 

KCNQ1 rs2237895 0.90 0.70 0.84 0.36 2.00 18/47/37 1.00 

KCNQ1 rs2237897 0.70 0.41 3.11 0.21 46.63 0/4/98 1.00 

KCNQ1 rs2283228 0.83 0.30 2.39 0.46 12.53 1/11/90 1.00 

GCK rs2908289 0.73 0.73 1.37 0.23 8.18 0/14/88 1.00 

CAPN10 rs3792269 0.79 0.86 0.87 0.20 3.89 1/17/71 1.00 

PPARG rs4135263 0.06 0.10 2.49 0.85 7.29 3/20/79 0.94 

ABCC8 rs4148609 0.04 0.11 2.06 0.85 4.99 13/51/38 0.97 

IGF2BP2 rs4402960 0.08 0.03 0.28 0.09 0.89 10/51/41 0.56 

TCF7L2 rs5210 0.11 0.13 0.44 0.16 1.26 15/49/36 0.98 

SLC2A2 rs5400 0.57 0.34 0.40 0.06 2.67 0/16/86 1.00 

PPARG rs6806708 0.40 0.67 0.79 0.26 2.37 6/39/57 1.00 

KCNJ11 rs7124355 0.32 0.31 1.62 0.64 4.09 10/45/47 1.00 

TMEM18 rs7561317 0.53 0.62 0.77 0.27 2.16 4/35/63 1.00 

KCNJ11/ 

ABCC8 
rs757110 0.36 0.42 1.45 0.58 3.61 12/53/37 1.00 

CDKAL1 rs7754840 0.56 0.38 0.67 0.27 1.66 13/45/44 1.00 

TCF7L2 rs7903146 0.29 0.19 1.91 0.73 4.96 7/34/60 1.00 

FTO rs8050136 0.26 0.36 0.68 0.30 1.54 25/41/36 1.00 

STK11 rs8111699 0.88 0.62 0.78 0.30 2.06 12/52/38 1.00 

a – OR and P estimated from logistic regression adjusted for age, sex, baseline BMI, number of  treatment 

days, dose of metformin mg/day, eGFR (Cockroft-Gault equation), b – P obtained from 100 000 

permutations and corrected for multiple testing (EMP2). 

 

           After adjustment for age, sex, baseline BMI, number of treatment days, dose of 

metformin (mg/day) and eGFR, only rs1111875 (HHEX) remained statistically significant. 

Moreover, two other SNPs, rs1470579 and rs4402960 (IGF2BP2), were identified as 
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significantly associated with metformin efficiency in logistic regression adjusted for 

covariates. However, none of the SNPs were significant after Bonferroni correction and 

permutation test. 

5.5. Analysis of T2D susceptibility variants in relation to incidence of T2D 

 

Among the polymorphisms, rs7561317 from the TMEM18 locus and rs12255372 

and rs7903146 from the TCF7L2 locus were included in the OPTIMED genotyping panel. 

Association of these SNPs with obesity and T2D was previously reported in the Latvian 

population by our group (Kalnina et al., 2012; Kalnina et al., 2013). We combined the 

genotyping results from these studies with the group of 466 genotyped T2D patients from 

the OPTIMED study (486 participants) to determine potential associations with T2D. Age 

and BMI were significantly different between case and control groups (P<0.05), and 

included as covariates in logistic regression (Table 5.12).           

Table 5.12. 

Characteristics of the study group 

SD – standard deviation. P – comparison of control and OPTIMED groups/comparison of control and 

Combined groups. 

 

The allelic frequencies of detected polymorphisms and genotyping success rate in 

the combined and control groups ranged from 0.17 to 0.23 and 97.0 to 99.2%, respectively. 

We observed a significant deviation from Hardy-Weinberg equilibrium in the case of 

rs7561317 in the OPTIMED and control group comparison, which was thus excluded from 

analysis. Minor allele frequencies of SNPs were similar to those found in Caucasians 

(Table 5.13). 

Table 5.13. 

Characteristics of SNPs used for study 

Gene SNP code Position
a
 

Genotype 

call rate
 b
,  

% 

Minor 

allele 

Major 

allele 

 

 

MAF
 b
 

 

 

MAF, 

dbSNP
c 

 

 

Hardy-

Weinberg 

P value 

TMEM18 rs7561317 Chr2:644953 99.0/99.0 A G 0.17/0.17 0.14 0.03*/0.10 

TCF7L2 rs12255372 Chr10:113049143 99.2/99.2 T G 0.20/0.21      0.22 0.38/0.59 

TCF7L2 rs7903146 Chr10:112998590 97.0/97.3 T C 0.22/0.23 0.28 0.82/0.46 
a 

According to Genome Reference Consortium Human genome build38 (GRCh38); 
b 

OPTIMED and control 

group/combined group and control group; 
c
http://www.ncbi.nlm.nih.gov/Accessed in January 2015; AA – 

amino acid; MAF minor allele frequency; 
a 
nucleotide position relative to the gene start codon 

Characteristic 
Controls 

(n=1075) 

OPTIMED 

(n=466) 

Combined T2D 

(n=1449) 
P value 

Male, n (%) 344 (32.0) 178 (38.2) 496 (34.2) 0.02/0.26 

Female, n (%) 731 (68.0) 288 (61.8) 953 (65.8) 0.02/0.26 

Mean age ±SD, years 53.7 ± 12.9 59.2 ± 10.3 60.0 ± 10.7 <1*10
-4

/<1*10
-4

 

Mean BMI ±SD, kg/m
2
 27.2 ± 5.2 33.6 ± 5.9 33.0± 6.5 <1*10

-4
/<1*10

-4
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Logistic regression was performed for the rs12255372 and rs7903146 SNPs and 

incidence of T2D in 466 patients from OPTIMED and 1075 controls, and corrected for sex, 

1/BMI and natural logarithm of age to meet the assumptions of logistic regression 

(Tidwell-Box test P value for continuous variables >0.05) (Table 5.14). 

Table 5.14. 

SNP association with incidence of T2D in the OPTIMED study 

SNP Genetic model 
Genotype number OR 

[95% CI] 
P

a
 Pperm

b
 

Cases Controls 

rs7903146* 

(TCF7L2) 

Additive  

(TT/TC/CC) 
34/165/245 38/339/673 1.58 [1.27-1.97] 3.47*10-5 1.1*10-4  

Dominant 

(TT/TC+CC) 
199/245 377/673 1.72 [1.32-2.25] 6.52*10-5 3.6*10-4 

Recessive 

(TT+TC/CC) 
34/410 38/1012 

1.94 [1.11-3.40] 

 
0.02 0.01 

rs12255372* 

(TCF7L2) 

Additive 

(TT/TG/GG) 
31/162/271 36/317/709 1.59 [1.28-1.98] 3.45*10-5 1.1*10-4 

Dominant 

(TT/TG+GG) 
193/271 353/709 1.67 [1.28-2.18] 1.61*10-4 1.4*10-4 

Recessive 

(TT+TG/GG) 
31/433 36/1026 2.30 [1.27-4.14] 5.66*10-3 0.04 

a – OR and P values estimated from logistic regression adjusted for sex, 1/BMI and natural logarithm of age. 

b – P value obtained from 100 000 permutations and corrected for multiple testing (EMP2); *significant after 

Bonferroni correction (P=0.002). After filtering for the presence of genotypes and covariates, 1526 

participants were analyzed. 

              Logistic regression was performed for rs12255372, rs7903146 and rs7561317 SNPs 

and incidence of T2D in the combined group of 466 patients from OPTIMED and 1085 

T2D patients from LGDB, along with 1075 controls, and corrected for sex, natural 

logarithm of BMI and natural logarithm of age to meet assumptions (Tidwell-Box test P 

value for continuous variables >0.05) (Table 5.15). 
Table 5.15. 

SNP association with incidence of T2D in the combined group 

 

SNP Genetic model 
Genotype number OR 

[95% CI] 
Pa Ppermb 

Cases Controls 

rs7561317 

(TMEM18) 

Additive 

(AA/AG/GG) 
34/396/1013 22/317/723 0.96(0.81-1.15) 0.69 0.95 

Dominant 

(AA/AG+GG) 
430/1013 339/723 0.95 (0.78-1.16) 0.63 0.92 

Recessive 

(AA+AG/GG) 
34/1409 22/1040 1.03(0.55-1.93) 0.92 1.00 

rs7903146* 

(TCF7L2) 

Additive  

(TT/TC/CC) 
96/511/798 38/339/673 1.46(1.25-1.72) 2.84*10-6 1.0*10-5 

Dominant 

(TT/TC+CC) 
607/798 377/673 1.53(1.27-1.85) 1.22*10-5 5.0*10-5 

Recessive 

(TT+TC/CC) 
96/1309 38/1012 1.90(1.23-2.93) 3.73*10-3 8.42*10-3 

rs12255372* 

(TCF7L2) 

Additive 

(TT/TG/GG) 
80/507/851 36/317/709 1.44(1.22-1.69) 1.10*10-5 1.0*10-5 

Dominant 

(TT/TG+GG) 
587/851 353/709 1.50(1.24-1.82) 3.26*10-5 1.2*10-4 

Recessive 

(TT+TG/GG) 
80/1358 36/1026 1.82(1.16-2.85) 9.55*10-3  2.32*10-2 

a – OR and P value estimated from logistic regression adjusted for sex, natural logarithm of BMI and natural logarithm of 

age. b – P value obtained from 100 000 permutations and corrected for multiple testing (EMP2); * significant after 

Bonferroni correction (P=0.002). After filtering for the presence of genotypes and covariates, 2505 participants were 

analysed in total. 
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 In all patients, age and BMI were positively correlated with incidence of T2D 

(P<0.001).  Men were more susceptible to T2D (P=0.01), and association with rs7903146 

and rs12255372 polymorphisms was significant after the permutation test (100 000 

permutations) and Bonferroni correction. Estimated LD between rs7903146 (TCF7L2) and 

rs12255372 (TCF7L2) was as follows: R
2
=0.758 and D'=0.921. 

The rs7561317 polymorphism was analyzed in all participants in relation to 

incidence of T2D, as described previously. Without BMI as a covariate, no significant 

association with outcome was observed (P=0.09).  
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6 DISCUSSION 
 

 Metformin pharmacogenetics is an extensively studied field due to worldwide use 

of the drug in antidiabetic therapy and its potential utility in other serious disorders, such as 

PCOS, metabolic syndrome, some cancer types, and delay of aging. In the current study, 

we investigated the correlation between safety and efficiency of this first-line peroral 

antidiabetic drug and genetic variabilities in organic cation transporters 1–3 

(OCT1/SLC22A1, OCT2/SLC22A2, and OCT3/SLC22A3), multidrug and toxin extrusion 

protein 1-2 (MATE1/SLC47A1, MATE2/SLC47A2) and plasma membrane monoamine 

transporter (PMAT/SLC29A4) in T2D patients. To our knowledge, our study appears to be 

first analysis of these genetic variants in association with metformin side-effects. Genetic 

variants associated with nonresponsiveness to metformin were additionally validated in a 

pharmacokinetic study in healthy volunteers.  

 The possibility that genetic factors other than transporter genes, including those 

associated with risk of T2D, influence responsiveness to metformin cannot be excluded. To 

analyze the impact of other genetic factors, we investigated 33 polymorphisms of 21 genes 

identified from previously published GWAS and other studies, the majority of which are 

associated with susceptibility to T2D and obesity, including two variants associated with 

altered response to metformin. T2D patients included in the above analysis were selected 

from the larger OPTIMED cohort. To elucidate the genetic background of the study sample 

and validate genetic associations of well-known T2D variants (TCF7L2 and TMEM18) in 

this cohort, we performed another association study on a large group of T2D patients and 

controls from LGDB that were previously genotyped in the frame of other studies.  

6.1. Genetic variants influencing metformin side-effects 

To our knowledge, at the time of publication, the work described in this section of 

the thesis was the first ever investigation to specifically target the pharmacogenetics of 

metformin side-effects. Common side-effects of metformin are mainly gastrointestinal 

disturbances like diarrhoea, nausea, flatulence, abdominal pain, asthenia and vomiting of 

unknown pathophysiology. High incidence of intolerance in T2D patients leads to poor 

adherence to therapy, and in most severe cases, discontinuation of metformin use (Florez et 

al., 2010; Hermans et al., 2012). The clinical phenotype of patients with gastrointestinal 

side-effects is unclear, and characterized by a low rate of ischaemic heart disease, left-

handedness, ABO group imbalance, higher ferritine levels and iron load. While these traits 
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may aid in characterizing cardiovascular risk, they do not provide stringent criteria in the 

clinical setting (Hermans et al., 2013). We observed significant disproportion among the 

groups regarding insulin use and alcohol consumption. However, lower insulin use or 

alcohol consumption are unlikely to be the factors eliciting side-effects. The recruitment 

criteria for the group of T2D patients with side-effects are not identical to those for patients 

recruited to the biobank on a general basis, which may explain the differences in factors 

such as alcohol consumption and use of insulin between groups. However, we believe that 

these factors are not causal and do not influence the presence or absence of side effects.  

 Our earlier results (Tarasova et al., 2012)(APPENDIX IV) are consistent with those 

of two subsequent studies. Age was positively correlated with drug tolerance and women 

were more likely to suffer from side-effects than men, similar to our findings (Dujic et al., 

2014; Hermans et al., 2013). This may be an effect of reduced metformin excretion in the 

elderly and proportionally higher exposure to metformin in relation to body mass. 

However, we found no differences in serum creatinine measurements between cases and 

controls, suggesting normal renal functioning in both groups. There may be a simple 

explanation regarding the low HbA1c and smaller metformin doses in patients with side-

effects. Firstly, this may be attributable to later onset of T2D in these cases. Secondly, 

these patients continued to use metformin, regardless of side-effects, but at smaller doses 

to avoid further increase in severity of the effects. 

 In this study, we have shown an association of the A allele of rs628031 and 8 bp 

insertion (rs36056065) in the OCT1 gene with absence of common gastrointestinal side-

effects of metformin therapy for the first time. The rs628031 (Met408>Val) polymorphism  

has been identified in all ethnic groups (Perwitasari-DA., 2014) and shown to elicit normal 

metformin uptake in vitro, as it does not alter protein expression (Shu et al., 2008; Shu et 

al., 2007). In a small clinical study, Met408>Val was identified as a weak positive 

predictor of metformin efficacy (Becker et al. 2010b; Shikata et al., 2007) and slightly 

increased OCT1 mRNA expression in human liver samples (Nies et al., 2009). However, 

the polymorphism did not alter renal clearance in healthy male Caucasians (Tzvetkov et 

al., 2009). The rare allele of rs36056065 is characterised by presence of a 8 nt insertion at 

the 3’ end of exon 7 and does not change the amino acid sequence of OCT1, but was 

recently shown to generate an alternative splice site leading to a premature stop codon after 

codon 429. This transcript had not been described previously. Additionally, many studies 

investigating OCT1 expression and 420del appeared to use used probes designed to bind 

sequences lacking 420del and assuming normal exon-intron junction (Grinfeld et al., 
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2013). The hOCT1G/L506 isoform expressed in human liver carries a deletion between 

positions 1385 and 1498 of hOCT1 cDNA and exhibits an altered sequence from aa 462 to 

aa 506 due to a frameshift following the deletion. Transfection of hOCT1G/L506 resulted 

only in marginal (but not significant) decynium-22 (D22)-sensitive uptake of tritiated 1-

methyl-4-phenylpyridinium-sensitive phenylpyridinium ([
3
H]-MPP+), compared to the 

predominant splice isoform. The lack of specific transport by the splice variant is 

presumably not caused through insufficient mRNA expression, but rather due to a change 

in the C-terminal region of the protein and loss of the last two transmembrane domains 

(Hayer et al., 1999). In a recent publication, six alternative splice variants of human 

SLC22A1 mRNA were detected in healthy liver and tumor tissues. At least two of these 

variants were characterized by the c.1276+1insGTAAGTTG mutation. However the study 

focused on the effects of SNPs on sorafenib transport, and further investigation of the 

splice variants was not performed (Herraez et al., 2013). 

 The OCT1 transporter is proposed to participate in hepatic uptake of metformin 

(Kimura et al., 2005; Nies et al., 2009), but can also found in the luminal membranes of 

proximal and distal tubules in kidneys (Tzvetkov et al., 2009), basolateral membrane of 

intestinal cells (Muller et al., 2005) and apical membranes of Caco-2 cancer cells and 

enterocytes (Han et al., 2013). Metformin bioavailability is low and highly variable 

(Pentikainen et al., 1979), and highest levels of metformin can be detected in enterocytes 

(Sakar et al., 2010).  Metformin uptake in the gut is hypothesized to have a complicated 

pattern and basolateral (BL) transport identified as the rate-limiting step, leading to 

paracellular and not transcellular metformin uptake (Proctor et al., 2008). The “bottleneck” 

of metformin uptake in the gastrointestinal tract is the basolateral membrane where the 

OCT1 transport protein is expressed (Bailey et al., 1994; Proctor et al., 2008).  

 We hypothesized that reduced OCT1 transport function in the small intestine leads 

to locally increased metformin concentrations and evokes gastrointestinal disturbance, 

possibly via increased lactate production or altered glucose uptake in cells (Bailey et al., 

1994; Sakar et al., 2010). Horie and co-workers showed that apical uptake of metformin in 

human cancer intestinal epithelial cells is mediated at least partly by OCTs (Horie et al., 

2011). Since OCT1 and OCT2 were expressed in addition to OCT3 in these cells, it is 

possible that OCT1 polymorphisms influence intestinal metformin uptake and trigger 

gastrointestinal side-effects. OCT1 functions in liver are similar to those of OCT3, and 

OCT3 can therefore compensate for the reduced function of OCT1 (Muller et al., 2005). In 

the kidneys, OCT1 reabsorbs metformin, converse to OCT2, MATE1 and MATE2, and is 
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expressed to a lower extent (Grundemann et al., 1998a; Masuda et al., 2006; Otsuka et al., 

2005; Sato et al., 2008; Tanihara et al., 2007; Tsuda et al., 2009a; Tsuda et al., 2009b). 

 Metformin is a superior substrate for OCT2 (Kimura et al., 2005). OCT2 is 

expressed in the kidneys and supports the metformin excretion process (Motohashi et al., 

2002). The genetic diversity of OCT2 is significantly lower than that of OCT1 (Fujita et 

al., 2006), implying more critical functions in the human body. In previous studies, the 

OCT2 allele, Ser270, was shown to be associated with anti-cancer cisplatin-induced 

nephrotoxicity (Filipski et al., 2009), positive and negative findings on lower prevalence 

among patients with essential arterial hypertension (Lazar et al., 2006) (Sallinen et al., 

2010), and alterations in  renal clearance. However, opposite effects were reported in other 

studies (Chen et al., 2009a; Song et al., 2008a; Tzvetkov et al., 2009). The OCT2 allele, 

Ser270, displayed no association with side-effects, BMI, waist circumference or metformin 

efficiency. The rs2289669 A allele in the MATE1 coding gene, SLC47A1, was found to be 

correlated with increased efficiency of metformin therapy, and pairwise interactions with 

SNPs in OCT1 metformin were identified (Becker et al., 2009; Tkac et al., 2013), although 

this was not consistently reported in all studies (Choi et al., 2011). No relationship between 

this SNP and pharmacokinetics of metformin has been detected (Tzvetkov et al., 2009). 

The SNP was associated with BMI changes after metformin therapy in our study.  

 One of the major limitations of the current study is the lack of data representing 

biochemical and phenotypic measures in patients before the start of metformin therapy to 

analyse changes in BMI, waist circumference and HbA1c. For determination of side-

effects, small sample sizes and limited numbers of SNPs and genes were analysed. For 

example, PMAT, OCTN1 and MATE2 transporter coding gene variants were not included. 

These factors may have an impact on metformin tolerability, as the first two are localized 

in enterocytes (Nakamichi et al., 2013; Zhou et al., 2007), and the last, together with 

MATE1, ensures excretion of metformin into urine (Masuda et al., 2006; Otsuka et al., 

2005; Sato et al., 2008; Tanihara et al., 2007; Tsuda et al., 2009a; Tsuda et al., 2009b). 

Gastrointestinal disturbances may also be evoked by other diseases and concomitant drug 

therapy, diet and lifestyle factors. 

 Two years ago, our colleagues from the MetGen consortium investigated OCT1 

genetic variants in relation to metformin intolerance (described as discontinuation of 

therapy due to side-effects) in 2 166 patients from GoDARTS (Dujic et al., 2014). The 

most interesting finding was that that OCT1 genetic variants R61C (rs12208357), C88R 

(rs55918055), M420del (rs72552763), G401S (rs34130495) and G465R (rs34059508) 
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were significant markers of metformin intolerance (in case of two risk alleles for reduced 

function, OR=2.41, 95% CI 1.48-3.93, P<0.001). Interestingly that negative effect of 

OCT1 inhibitors  is more pronounced in carriers of reduced function alleles (OR=4.13, 

95% CI 2.09 - 8.16, P<0.001) (Dujic et al., 2014). We found similar odds ratios for 

Met408>Val and rs36056065, but did not perform analysis including OCT1 inhibitors. The 

issue of whether rs36056065 and Met408>Val are good intolerance markers remains to be 

established, as Dujic and colleagues did not investigate the variants identified by our 

group. However, one of the variants included in analysis, 420del, is less than 50 bp away 

from Met408>Val and the insertion-deletion polymorphism rs36056065. Both associated 

SNPs are in almost complete LD, but 420del was found in 33% patients and never in cis 

with the 8+ allele in four cell lines and patient groups (Grinfeld et al., 2013). In our study, 

2.2% of all 8+ carriers (n=45) were also carriers of 420del. 

 The Met408>Val and rs36056065 variants were established as significant markers 

in two other studies investigating therapy outcomes in cancer patients using imatinib 

(Grinfeld et al., 2013; Singh et al., 2012). However, these results are of limited importance, 

as OCT1 was shown to be incapable of transporting imatinib in nonleucemic animals and 

cell lines (Hu et al., 2008). In another study, OCT1 expression was found to correlate with 

the expression patterns of the imatinib transporters ABCB1, ABCG2, and SLCO1A2, 

supporting its potential utility as an effective surrogate marker (Hu et al., 2008). 

 We conclude that age, sex and genetic susceptibility factors in the OCT1 coding 

gene are significant modulators of metformin safety. The specificity and sensitivity of the 

described genetic markers in the OCT1 coding gene with regard to prediction of metformin 

side-effects requires further investigation in a large prospective study. 

6.2. Metformin efficiency and genetic variability of metformin transporters 

Minor alleles of SNPs rs3119309, rs7757336 and rs2481030 located in the 

intergenic region between OCT2 and OCT3 coding genes (SLC22A2 and SLC22A3) were 

significantly associated with metformin inefficiency in the 102 newly diagnosed T2D 

patients.  

 Logistic analysis was performed using robust segregation of outcomes in the 

responder group showing decreased HbA1c versus the non-responder group displaying no 

change or even increased levels of HbA1c three months after the commencement of 

metformin monotherapy. The main reason for selection of this type of outcome was our 

intention to perform robust analysis better suited for the investigation in the small, well-
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phenotyped group (Ichimori et al., 2012). A number of studies investigating the efficiency 

of metformin, including the only GWAS performed to date (GoDarts et al., 2011), have 

used the treatment goal of HbA1c level <7% or 6.5% as an outcome. Patients with high 

baseline HbA1c levels usually have larger ΔHbA1c in comparison to other participant 

groups. Nevertheless, these patients are often included in the non-response group if 

treatment goals are set as criteria, even if absolute decrease in HbA1c is substantial. For the 

same reason, use of treatment goals or even ΔHbA1c as a quantitative dependent variable 

can be misleading in patients with extreme baseline HbA1c values.  Thus patients with high 

baseline HbA1c display a larger HbA1c decrease over those with HbA1c close to normal 

levels, and patients with low baseline HbA1c have lower ΔHbA1c independent of individual 

metformin response. This may explain the significant deviation of ΔHbA1c from normal 

distribution in our research group.  

 GWAS identified an association between metformin efficiency and rs11212617 

near ATM, but no association was evident in loci of known metformin transporter genes 

(GoDarts et al., 2011). Our detection of an association of SNPs in metformin transporter 

genes with metformin efficiency in contrast to GWAS findings may be explained by the 

relatively short time-period used to estimate the efficiency of metformin. Factors 

influencing the pharmacokinetics (e.g., organic cation transporters) affect efficiency 

mainly at the beginning of the treatment, especially in the case of metformin where gradual 

accumulation of drug is observed over treatment time (Christensen et al., 2011). A shorter 

time-period is also less dependent on factors such as diet, physical activities and adherence 

to drug, compared with long-term treatment where secondary failure due to decreasing 

body functions interferes. In addition, one should take into account the fact that initial 

metformin therapy is subject to change after the first three months in patients who fail to 

show decreased HbA1c. A study investigating metformin therapy outcomes evaluated 

initial non-adherance as 17% in participants starting metformin therapy. A third of the 

patients attempted another pharmacotherapy regime within 6 months, and side-effects were 

found to be one of the major limiting factors (Florez et al., 2010; Hermans et al., 2012; 

Nichols et al., 2010). Thus patients with treatment inefficiency caused by defective 

metformin transport may be eliminated from studies involving longer observation times, 

such as GWAS (Florez et al., 2012b; GoDarts et al., 2011; Tkac et al., 2013). This may 

also explain our failure to reproduce the association of identified SNPs in the replication 

group comprising 126 T2D participants from Slovakia administered metformin for six 

months. Rs7757336, rs2481030, age, sex, BMI, metformin dose and eGFR were not 



111 
 

associated with non-responder phenotype, indicating a strong influence of other 

unidentified genetic variants in metformin transporters or environmental factors like diet, 

physical activity, and adherence to metformin. Notably, MAF of investigated SNPs in the 

replication group was >30% lower, compared to MAF reported in the Caucasian race 

(http://www.ncbi.nlm.nih.gov/Accessed in January 2015).  The absence of association and 

lower prevalence of minor alleles in patients from Slovakia may, at least partially, be 

caused by elimination bias of primary non-responders to metformin therapy or uptitration 

of metformin at the 3 month time-point according to standard antidiabetic treatment 

guidelines. 

 Surprisingly, the minor alleles of associated SNPs rs3119309, rs7757336 and 

rs2481030 were also consistently identified as markers of lower concentrations of 

metformin and AUC∞ of plasma in a small independent group of 15 nondiabetic 

volunteers. In view of the limited number of participants, confirmation of these findings is 

necessary in larger scale studies. Validation of these findings should support the influence 

of OCTs in the pharmacokinetics of metformin and the importance of short-term study 

design in cases where factors influencing bioavailability are investigated. No significant 

differences were observed in AUC0-24 and Cmax in erythrocytes between controls and 

carriers of risk alleles, indicating that changes in metformin pharmacokinetics cannot be 

explained by exposure time to metformin. Analysis of other pharmacokinetic measures 

revealed that oral clearance (CL/F) and apparent volume of distribution (V/F) are higher in 

subjects with at least one inefficiency allele, while the half-life of metformin and total dose 

excreted within the first 24 h after administration are not different. However, it should be 

noted that calculation of renal clearance and apparent volume of distribution were 

performed assuming no differences in the bioavailability of 500 mg metformin ingested 

orally. This assumption may not be true, as a number of factors, including genetic 

variations in transporter genes, may alter bioavailability and absorption.  Thus the 

calculated CL/F and V/F values are strongly related to AUC∞ measurements and their 

differences among groups should be interpreted with caution.  

 Variations in bioavailability and volume of distribution are considered a major 

source of deviation in the pharmacokinetics of metformin, as it is not metabolised in the 

human body, and slow absorption is thought to be the rate-limiting factor in metformin 

disposition (Pentikainen et al., 1979). A number of studies support the existence of an 

“OCT-like” bidirectional uptake/efflux transport mechanism on the AP membrane in Caco-

2 cells for metformin, possibly involving OCT3. Limited transport activity of OCT1 on the 

http://www.ncbi.nlm.nih.gov/
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basolateral membrane leads to transporter-dependent accumulation of metformin in 

enterocytes as well as its absorption through the paracellular, yet saturable route (up to 

90%) (Proctor et al., 2008). The proportion of metformin sequestered in enterocytes 

remains to be established due to inward net flow and entering blood via OCT-related 

mechanism versus the paracellular route in human small intestine. If the latter case occurs, 

uptake and excretion remain the major factors influencing metformin plasma levels. OCT1 

and OCT3 are responsible for hepatic uptake and excretion, while OCT3 specifically 

ensures uptake and excretion in the small intestine and skeletal muscle. Excretion of 

metformin is maintained by OCT2, which undergoes reduced expression in kidney with 

age and low testosterone level, while the presence of certain diseases and co-medications 

may also play a role (Lopez-Parra et al., 2006; Sansoe et al., 2002; Urakami et al., 1999). 

Previous studies have demonstrated tissue specificity of expression of the OCT2 

transporter, but not OCT1. OCT3 expression in liver tissue samples from 150 Caucasians 

were shown to be independent of age and sex, but significantly reduced in liver donors 

diagnosed as cholestatic (Chen et al., 2013). Lower AUC∞ of metformin in plasma may 

indicate lower metformin uptake in the gastrointestinal tract by the altered OCT3 

transporter. On the other hand, lower AUC∞ may be explained by the OCT2 variant that 

eliminates the drug more quickly, compared to individuals containing the reference alleles. 

 While rs3119309, rs7757336 and rs2481030 are located in the genomic region 

separating SLC22A2 and SLC22A3, the possibility that causal SNPs associated with 

metformin efficiency potentially occur in SLC22A1 and influence OCT1, known as a major 

hepatic uptake transporter, cannot be excluded. The polymorphisms investigated in this 

study are non-coding, and could be in linkage disequilibrium with causal SNPs within the 

coding/regulatory regions of SLC22A2 (OCT2), resulting in increased transport activity or 

expression in target tissues and/or opposite effects on SLC22A3 (OCT3) if its role in 

gastrointestinal absorption is considered significant. In large GWAS, minor allele A of 

rs3127573 (MAF 0.13) located near SLC22A2 (r
2
=0.96 with rs3119309 investigated in our 

study) was shown to be associated with higher serum creatinine and lower eGFR 

(Chambers et al., 2010). Creatinine is mainly eliminated via glomerular filtration and its 

tubular secretion varies between 10-40%, while metformin is excreted mainly via active 

tubular transport mediated by OCT2 (Lepist et al., 2014). While rs3127573 has been 

convincingly associated with the higher creatinine level in GWAS, and predicted to alter 

BRCA1, NF-Y and SP1 motifs with high LD with SNPs involved in binding of CEBPB 

and FOXA1 proteins, the polymorphism was not correlated with renal clearance of 
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metformin in 103 healthy males (Tzvetkov et al., 2009). Significant correlations were 

identified only between renal clearance of metformin and creatinine clearance, combined 

alleles of OCT1 and age. In our study, both rs3119309 and rs7757336 minor allele 

heterozygotes relative to major allele carriers were characterized by similar metformin 

half-life and percentage of metformin excreted in urine in the first 24 h after peroral 

administration, while metformin AUC∞ in plasma was significantly lower in minor allele 

carriers. The relatively small number of rs3119309 and rs7757336 carriers and lack of 

recessive homozygotes in our study limit data interpretation.  

 Recent studies have demonstrated that the OAT2 transporter is characterized by 

three-fold higher RNA expression than OCT2. Moreover, its transport activity is higher 

than that of OCT. These results suggest that OAT2 transporter is a better main creatinine 

transporter candidate than OCT2 (Eisner et al., 2010). Interestingly, OCT1 and OCT2 

absence in mice did not affect creatinine clearance (Eisner et al., 2010). Transporter tissue 

expression differs between species and cell lines, and metformin renal clearance in humans 

is several times higher than creatinine clearance, indicating significant influence on active 

transport in the kidney, compared to creatinine (Lepist et al., 2014). Thus, it is unclear how 

variants in OCT2 or regulatory regions are associated with increased creatinine levels and 

reduced metformin concentrations in plasma. On the other hand, these findings may be 

explained by altered transport activity of creatinine and the metformin transporter, OCT3 

(SLC22A3), which is expressed in liver, small intestine and muscle tissue and located on 

Chr6 near the OCT2 coding gene. Indeed, in earlier experiments with hOCT2- and 

hOCT3-expressing HEK293 cells (Ciarimboli et al., 2012), increased creatine uptake, 

compared to cells transfected with the null vector (5.8-fold and 3.7-fold, respectively), was 

reported, which was not observed for hOCT1. GWAS linked OCT3 with risk of prostate 

and colorectal cancer as well as coronary artery disease, indicating a pleiotropic role of the 

transporter in human physiology and pathophysiology, in view of its involvement in the 

transportation of a spectrum of monoamines, including serotonin, histamine and 

norepinephrine (Cui et al., 2011; Eeles et al., 2008; Lazar et al., 2008; Tomlins et al., 2007; 

Tregouet et al., 2009; True et al., 2006). Previous studies demonstrated that in skeletal 

muscle, metformin significantly enhances AMPK α2 activity via increasing 

phosphorylation of AMPK at Thr172 (Musi et al., 2002). Moreover, the effect of 

metformin on AMPK phosphorylation in cultured skeletal muscle cells was substantially 

inhibited by cimetidine (widely used in previous experiments with OCT2)(Somogyi et al., 

1987) as well as OCT3 shRNA, suggesting that OCT3 plays a major role in the therapeutic 
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action of metformin (Chen et al., 2010). The polymorphisms rs2292334 (MAF 0.37), 

rs2048327 (MAF 0.35), rs1810126 (MAF 0.36), and rs3088442 (MAF 0.33) were 

associated with reduced OCT3 mRNA levels (P = 0.03), while the common variant (MAF 

50%), g.-2G>A (rs555754), was associated with higher transcription rate and expression of 

OCT3 in liver (Chen et al., 2013). Although none of the SNPs altering OCT3 transporter 

efficiency were in strong linkage disequilibrium with those investigated in our study, 

rs2481030 could be used to predict Pou2f2, Pou5f1, and  Sox motif changes and Pax-4, 

and Spz1 motif changes for SNP rs2481031 (LD with rs2481030 r
2
=0.99) (HaploReg v2). 

The rs2481030 polymorphism may be an effective marker of the reduced uptake OCT3 

variant or lower transporter expression, subsequently characterized by slower metformin 

absorption from the gastrointestinal tract and decreased uptake in liver, muscle, heart 

tissues.  

 A major limitation of our study was the small number of participants. Therefore, 

these findings should be evaluated in larger subject groups. Further research is required to 

confirm whether rs7757336, rs3119309 and rs2481030 are valid markers of metformin 

inefficiency and their utility in prediction of clinical response to metformin in T2D 

patients. 

6.3. Association of other genetic variants with metformin efficiency 

In the OPTIMED group alone, we investigated potential associations between 33 SNPs and 

metformin efficiency (defined as positive or negative changes in HbA1c after 3 months of 

treatment). In our study, HHEX rs1111875 showed significant nominal and adjusted 

association that was not significant after correction for multiple testing. The HHEX 

(haematopoietically expressed homeobox) gene encodes a transcription factor protein 

expressed in the embryonic ventral-lateral foregut (Bogue et al., 2000) that is associated 

with T2D in many populations (Cai et al., 2011; Omori et al., 2008; Scott et al., 2007). The 

3’-UTR variant, rs1111875 (10q23.33), was associated with T2D independently of body 

fat (Schulze et al., 2007; van Vliet-Ostaptchouk et al., 2008). Baseline insulin secretion 

was lower in subjects with the risk genotype at HHEX rs1111875 (Moore et al., 2008). 

Conversely, another study showed no impact on glucose and insulin concentrations in the 

fasting state and during OGTT or measurement of insulin sensitivity in non-diabetic 

participants (Staiger et al., 2008). The STK11 rs741765 GG and SLC30A8 rs1326634 TT 

genotypes, but not HHEX variants, were shown to be associated with response rate to 

metformin (Chauhan et al., 2010). Metformin is known to increase insulin sensitivity in 
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tissues, and negative effects of HHEX T2D risk variants on β cells may reduce efficiency 

of therapy (Giannarelli et al., 2003). 

 Another variant showing nominal association with metformin efficiency in our 

study was rs4148609 (ABCC8). However, after adjustment for covariates and Bonferroni 

correction, the significance of this association was lost. The KCNJ11 gene (encoding the 

islet ATP-sensitive potassium channel, Kir6.2) variant harbouring a substitution of 

glutamate to lysine at position 23 (E23K) is associated with T2D (OR near 1.15)(Florez et 

al., 2004; Gloyn et al., 2001; Gloyn et al., 2003; Hani et al., 1998; van Dam et al., 2005) 

and characterized by reduced insulin secretion (Riedel and Light, 2005; Schwanstecher et 

al., 2002). This variant is in strong linkage disequilibrium with A1369S in ABCC8 

(encoding sulfonylurea receptor SUR1)(Inoue et al., 1997), and thus lysine carriers 

(KCNJ11 E23K) almost always contain the alanine allele (ABCC8 A1369S). While 

ABCC8 A1369S/KCNJ11 E23K (high LD) displayed reduced baseline insulin secretion, 

they were less likely to develop T2D. However, protection by metformin was abolished in 

lysine carriers (K/K homozygotes) in a dose-dependent manner, possibly due to 

suppression of the beneficial effect of metformin on insulin sensitivity or beta cells at one 

year of treatment (Florez et al., 2007; Marchetti et al., 2004). In Diabetes Prevention 

Program, 22 SNPs in the ABCC8-KCNJ11 region exhibited nominally significant 

interactions with metformin (Jablonski et al., 2010). Thus correlation of rs4148609 

(ABCC8) with the ability of metformin to prevent T2D has been confirmed in two large-

scale studies. However, its mechanism of action as a therapeutic target for T2D remains to 

be established.  

 Finally, rs1470579 and rs4402960 (IGF2BP2) showed a correlation with metformin 

efficiency when adjusted for covariates, but this association was not significant after 

correction for multiple testing. The SNPs rs1470579 and rs4402960 of IGF2BP2 (coding 

for insulin-like growth factor 2 mRNA-binding protein 2) are associated with development 

of T2D and therapeutic efficacy of repaglinide in Chinese T2D patients (Huang et al., 

2010). The effects of repaglinide were reduced in patients with rs1470579 C allele carriers 

while increased treatment efficiency was observed in patients with the rs4402960 T allele 

(Jacobs et al., 2004). The IGF2BP2 rs1470579 SNP has significantly different allele 

frequencies in distinct populations, and a paradoxical trend is observed towards higher 

insulin secretion in participants with this high-risk genotype (Moore et al., 2008). 

 We were not able to replicate results with the CAPN10 rs3792269 A>G 

polymorphism shown to be significantly associated with reduced metformin treatment 
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efficiency (Tkac et al., 2015) and the serine racemase rs391300 G⁄A polymorphism 

correlated with better response to metformin therapy regarding the levels of serum fasting 

plasma glucose (FPG), postprandial plasma glucose (PPG) and cholesterol (CHO), but not 

HbA1c in T2D patients with Asian ancestry (Dong et al., 2011). 

 No correlation was observed between metformin efficiency and 2 SNPs in ATM 

and STK11. In the first GWAS and subsequent replication studies, common SNPs near 

ATM (rs11212617) were significantly associated with altered metformin efficiency. 

However, these data were not replicated in the DPP study (Florez et al., 2012b; GoDarts et 

al., 2011). The outcome for GWAS was defined as lowest HbA1c 0.5–1.5 years after the 

start of therapy, and the identified genetic marker accounted for only 2.5% variability in 

response to metformin therapy. ATM is involved in DNA repair and cell cycle control, and 

plays a role in the effects of metformin upstream of AMP-activated protein kinase. An 

inhibitor of ATM, KU-55933, reduced metformin-stimulated phosphorylation of AMPK in 

H4IIE rat hepatoma cells. Subsequent investigations disclosed that KU-55933 is an 

inhibitor of OCT1, and its effect on metformin uptake via OCT1 is independent of Atm 

with no detectable influence of Atm on OCT1 activity (Woods et al., 2012; Yee et al., 

2012). The STK11 rs8111699 SNP was identified from studies on metformin efficiency in 

women with polycystic ovary syndrome (PCOS) (Lopez-Bermejo et al., 2010). We could 

not replicate the association between metformin efficiency and rs8111699, possibly due to 

the significantly different design and outcomes of the PCOS study. Moreover, rs11212617 

appeared to be associated with secondary failure and not primary failure of metformin 

therapy in our experiments. 

The major limitations of our study include lack of tagSNPs in OCTN1 and AMPK 

coding genes and small sample size, which may underlie the absence of significant 

associations between the 33 investigated SNPs and metformin efficiency. 

6.4. Analysis of T2D susceptibility variants with respect to incidence of T2D 

We performed analysis of the known T2D-associated SNPs, rs12255372, 

rs7903146 (TCF7L2) and obesity-associated SNP rs7561317 (TMEM18), in a previously 

described group of T2D patients from LGDB (Kalnina et al., 2012; Kalnina et al., 2013). 

We characterized the genetic background of 466 T2D patients from the whole OPTIMED 

study with the aim of determining associations of genetic variants with T2D. To this end, 

we compared the OPTIMED group alone and in combination with other T2D patients from 

LGDB with previously genotyped controls.  In our study group, TCF7L2 rs12255372 and 
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rs7903146 polymorphisms displayed a significant association with T2D risk (Kalnina et 

al., 2012; Tong et al., 2009; Vaxillaire et al., 2008).  The rs12255372 and rs7903146 

polymorphisms demonstrated the strongest association with T2D risk. Thus, as expected, 

our results agree with previous findings in European populations and other ethnic groups 

(Assmann et al., 2014; Barros et al., 2014; Chauhan et al., 2011; Park et al., 2013; 

Shokouhi et al., 2014; Wang et al., 2013; Xi et al., 2014). The ability to replicate this 

association in the OPTIMED group (e.g., OR and significance values), compared to our 

previous analysis on T2D patients selected from the Latvian Genome Database, provides 

additional confidence that the OPTIMED cohort represents a general population of T2D 

patients, at least with respect to genetic architecture. Accordingly, in the case-control 

analysis of 2 524 participants (OPTIMED T2D patients were added to the study sample 

described by Kalnina et al.), we observed an association between increased incidence of 

T2D and rs7903146 (TCF7L2), rs12255372 (TCF7L2), but not rs7561317 (TMEM18), 

when logistic regression was adjusted for sex, age and BMI. Even when logistic regression 

was not corrected for BMI, rs7561317 was not associated with T2D risk, suggesting 

population-specific differences in the genetics. Addition of the OPTIMED group did not 

change the results obtained previously with variants of the TCF7L2 gene. 
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CONCLUSIONS 

 

1. The rs628031 and rs36056065 genetic variants in organic cation transporter 1 

(OCT1/SLC22A1) are correlated with the presence of metformin side-effects, 

possibly due to altered distribution of metformin in enterocytes. 

2. A allele of the intronic variant, rs2289669, in SLC47A1/MATE1 of metformin 

users is associated with significantly lower mean BMI and reduced waist 

circumference. 

3. Minor alleles of rs3119309, rs2481030 and rs7757336 located in the intergenic 

region between OCT2 and OCT3 coding genes are associated with non-

responsiveness to short-term metformin therapy.  

4. The SNPs rs3119309, rs2481030 and rs7757336 are associated with reduced total 

body exposure to metformin, possibly due to reduced gastrointestinal uptake and/or 

increased excretion of metformin from blood into kidney cells. 

5. The impact of the identified pharmacogenetic variants is the most significant in the 

first few months of metformin therapy, and may not be detected in cohorts where 

long-term therapy outcomes are analyzed.  

6. No significant correlations are evident for the 33 polymorphisms in genes encoding 

metformin molecular targets and T2D susceptibility loci with metformin efficacy. 
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MAIN THESIS FOR DEFENSE 
 

1. Genetic variabilities in the loci of OCT coding genes contribute significantly to the 

safety and efficiency of metformin therapy. 

2. A transporter-associated mechanism is involved in the development of common 

side-effects of metformin.  

3. Polymorphisms in the OCT1 coding gene are significant pharmacogenetic 

biomarkers of metformin intolerance.  

4. Polymorphisms in the intergenic region between OCT2 and OCT3 are associated 

with reduced total body exposure to metformin and non-responsiveness to short-

term metformin therapy.  

5. Associations of identified genetic variants with metformin efficacy vary with 

different populations and time-points of antidiabetic therapy.  

6. Genetic variabilities in ATM, LKB11 and type 2 diabetes mellitus susceptibility 

genes do not contribute significantly to the efficacy of short-term metformin 

therapy. 
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APPENDIX I 

 

 Graphical representation of LD between analysed SNPs in OCT1/SLC22A1, 

OCT2/ SLC22A2, OCT3/SLC22A3 region. Red shades corresponding to the stronger 

linkage between polymorphisms. Blue and red arrows represent approximate localization 

of and 3 most significantly associated tagSNPs in the region, respectively. 
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APPENDIX II  

 

 Graphical representation of LD between analysed SNPs in MATE1/SLC47A1, 

MATE2/SLC47A2 region. Dark shades corresponding to the stronger linkage between 

polymorphisms.  

 

 

 

 



168 
 

APPENDIX III 

 

 Graphical representation of LD between analysed SNPs in PMAT/ SLC29A4 

region. Red shades corresponding to the stronger linkage between polymorphisms.  
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APPENDIX IV 

 

Pharmacogenet Genomics. 2012 Sep;22(9):659-66. doi: 10.1097/FPC.0b013e3283561666. 

Association of genetic variation in the organic cation transporters OCT1, OCT2 and 

multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal 

side effects and lower BMI in metformin-treated type 2 diabetes patients. 

Tarasova L
1
, Kalnina I, Geldnere K, Bumbure A, Ritenberga R, Nikitina-Zake L, 

Fridmanis D, Vaivade I, Pirags V, Klovins J. 
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APPENDIX V 

 

Nominal association of TagSNPs in metformin transporters with metformin inefficiency 

defined as no change or increase of HbA1c levels in comparison to baseline HbA1c 3 

months after metformin monotherapy. 

 



Chromosome Gene SNP Gene region Alleles (minor/major) 
Position, 

build 37 

Distance 

between SNPs 

(bp) 

Call rate, % MAF 
Hardy-Weinberg 

p-value 

P-value, 

nominal 
OR, CI 95 % 

7 SLC29A4 rs4724512 intron G/A 5324203 - 97.06 0.26 0.44 0.98 1.01 (0.44 - 2.34) 

7 SLC29A4 rs6958502 intron A/G 5328429 4226 100.00 0.17 0.29 0.62 1.26 (0.50-3.17) 

7 SLC29A4 rs4724524 intron C/A 5334469 10266 100.00 0.44 0.69 0.49 0.77 (0.37-1.61) 

7 SLC29A4 rs4299914 intron G/A 5341570 17367 96.08 0.45 0.07 0.84 0.92 (0.43-1.98) 

7 SLC29A4 rs6942732 intron G/C 5341735 17532 99.02 0.19 0.52 0.36 0.62 (0.23-1.73) 

17 SLC47A1 rs2453580 intron G/A 19438321 - 97.06 0.34 0.51 0.19 0.58 (0.26-1.32) 

17 SLC47A1 rs2018675 intron A/G 19441531 3210 99.02 0.38 0.14 0.84 0.92 (0.44-1.95) 

17 SLC47A1 rs2440154 intron A/G 19444987 6666 100.00 0.40 0.54 0.58 0.81 (0.39-1.71) 

17 SLC47A1 rs11650156 intron G/A 19454374 16053 100.00 0.03 1 0.21 NA 

17 SLC47A1 rs2247518 intron C/A 19454575 16254 99.02 0.18 1 0.45 1.41 (0.58-3.41) 

17 SLC47A1 rs2289668 intron A/G 19454640 16319 100.00 0.06 0.29 0.38 0.41  (0.05-3.26) 

17 SLC47A1 rs2453568 intron A/G 19457509 19188 100.00 0.37 0.39 0.64 0.83 (0.39-1.78) 

17 SLC47A1 rs2244280 intron A/G 19459537 21216 100.00 0.21 0.55 0.47 1.36 (0.59-3.17) 

17 SLC47A1 rs2289669 intron A/G 19463343 25022 100.00 0.40 0.41 0.84 1.08 (0.52-2.24) 

17 SLC47A1 rs8065082 intron A/G 19465191 26870 100.00 0.43 0.42 0.90 0.95 (0.46-1.98) 

17 SLC47A1 rs2250486 intron G/A 19476588 38267 100.00 0.17 1 0.69 1.21 (0.48-3.03) 

17 Intergene rs2453594 

 

G/A 19484951 46630 100.00 0.16 1 0.68 0.81 (0.29-2.25) 

17 Intergene rs2453589 

 

G/A 19488851 50530 89.22 0.39 0.51 0.77 1.12 (0.52-2.39 ) 

17 Intergene rs2165894 

 

G/A 19489796 51475 100.00 0.17 0.73 1 1.00 (0.38-2.63) 

17 Intergene rs2440161 

 

G/A 19497890 59569 99.02 0.26 1 0.59 0.79 (0.34-1.87) 

17 Intergene rs968012 

 

A/G 19523055 84734 100.00 0.34 0.52 0.95 0.97 (0.45-2.09) 

17 Intergene rs9889632 

 

A/C 19544138 105817 100.00 0.42 0.69 0.66 0.85 (0.41-1.77) 

17 SLC47A2 rs2386141 intron A/G 19595936 157615 100.00 0.36 0.52 0.98 0.99 (0.47-2.10) 

17 SLC47A2 rs4925042 intron A/G 19608773 170452 70.59 0.33 1 0.58 0.79 (0.34-1.82) 

17 SLC47A2 rs4925043 intron A/G 19612496 174175 98.04 0.07 1 0.29 1.93 (0.57-6.52) 

17 SLC47A2 rs11657623 intron G/A 19612945 174624 57.84 0.17 0.66 0.08 0.28 (0.06-1.28) 
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Chromosome Gene SNP Gene region Alleles (minor/major) 
Position, 

build 37 

Distance 

between SNPs 

(bp) 

Call rate, % MAF 
Hardy-Weinberg 

p-value 

P-value, 

nominal 
OR, CI 95 % 

17 SLC47A2 rs9897570 intron G/A 19616245 177924 98.04 0.33 0.65 0.96 1.02 (0.47-2.19) 

17 LOC100129125 rs11657205 upstream variant A/G 19623023 184702 100.00 0.40 0.84 0.86 0.94 (0.45-1.96) 

17 Intergene rs11204411 

 

G/A 19623902 185581 99.02 0.30 0.35 0.73 0.87 (0.39-1.93) 

17 Intergene rs1989379 

 

A/G 19631420 193099 71.57 0.42 0.81 0.94 0.97 (0.44-2.11) 

6 IGF2R rs7753051 

 

G/A 160528057 - 100.00 0.28 0.34 0.47 1.33 (0.61-2.87) 

6 SLC22A1 rs12208357 61 Arg>Cys A/G 160543148 15091 84.31 0.09 1 0.88 1.10 (0.29-4.14) 

6 SLC22A1 rs683369 160 Leu>Phe C/G 160551204 23147 100.00 0.16 0.29 0.11 2.00 (0.84-4.77) 

6 SLC22A1 rs3798174 intron A/G 160552803 24746 100.00 0.08 0.47 0.21 0.29 (0.04-2.28) 

6 SLC22A1 rs806383 intron A/G 160556147 28090 99.02 0.34 0.27 0.20 0.59 (0.26-1.34) 

6 SLC22A1 rs3777392 intron A/G 160556642 28585 100.00 0.16 0.72 0.16 0.42 (0.12-1.45) 

6 SLC22A1 rs9457843 intron A/G 160560933 32876 100.00 0.08 0.47 0.90 1.08 (0.29-4.02) 

6 SLC22A1 rs662138 intron C/G 160564476 36419 100.00 0.20 1 0.37 1.47 (0.63-3.44) 

6 SLC22A1 rs3798167 intron A/C 160567928 39871 100.00 0.24 1 0.52 0.75 (0.31-1.83) 

6 SLC22A1 rs2197296 intron A/G 160568997 40940 100.00 0.33 1 0.48 0.75 (0.34-1.66) 

6 SLC22A1 rs650284 intron C/A 160574535 46478 100.00 0.30 0.82 0.04 2.12 (1.01-4.45) 

6 SLC22A1 rs3798164 intron A/G 160575202 47145 100.00 0.36 0.83 0.27 0.64 (0.29-1.42) 

6 SLC22A1 rs11753995 intron A/G 160575366 47309 100.00 0.19 0.76 0.32 1.53 (0.65-3.59) 

6 SLC22A1 rs34059508 465 Gly>Arg A/G 160575837 47780 100.00 0.05 1 0.39 1.82 (0.46-7.22) 

6 SLC22A1 rs609468 intron A/G 160578914 50857 100.00 0.34 0.52 0.40 0.71 (0.32-1.57) 

6 Intergene rs651164 

 

A/G 160581374 53317 99.02 0.32 0.18 0.87 0.94 (0.43-2.05) 

6 Intergene rs4646283 

 

G/A 160581502 53445 100.00 0.11 1 0.27 0.44 (0.10-1.20) 

6 Intergene rs6455682 

 

A/G 160581911 53854 100.00 0.09 0.16 0.04 NA 

6 Intergene rs9456505 

 

A/G 160582340 54283 100.00 0.09 1 0.24 1.92 (0.64-5.78) 

6 Intergene rs3101826 

 

A/G 160584853 56796 100.00 0.29 0.81 0.87 0.93 (0.42-2.08) 

6 Intergene rs10455864 

 

A/T 160585398 57341 100.00 0.34 0.66 0.22 0.60 (0.27-1.36) 
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Chromosome Gene SNP Gene region Alleles (minor/major) 
Position, 

build 37 

Distance 

between SNPs 

(bp) 

Call rate, % MAF 
Hardy-Weinberg 

p-value 

P-value, 

nominal 
OR, CI 95 % 

6 Intergene rs1871389 

 

A/G 160587521 59464 32.35 0.41 0.73 0.79 1.46 (0.09-24.43) 

6 Intergene rs677985 

 

G/A 160619906 91849 100.00 0.26 1 0.54 1.28 (0.58-2.82) 

6 Intergene rs476235 

 

A/G 160622637 94580 100.00 0.29 0.63 0.81 0.91 (0.41-2.02) 

6 Intergene rs2619268 

 

A/C 160625978 97921 100.00 0.21 1 0.24 1.64 (0.72-3.73) 

6 SLC22A2 rs10945656 

 

A/G 160635886 107829 100.00 0.10 0.28 >0.01 4.33 (1.67-11.27) 

6 SLC22A2 rs694812 UTR-3 G/A 160637890 109833 99.02 0.06 1 0.38 0.40 (0.05-3.22) 

6 SLC22A2 rs316002 Intron A/G 160643819 115762 100.00 0.23 1 0.21 1.67 (0.75-3.73) 

6 SLC22A2 rs17588242 Intron G/A 160663230 135173 100.00 0.19 0.35 0.18 0.48 (0.16-1.43) 

6 SLC22A2 rs315996 Intron A/G 160666365 138308 100.00 0.19 0.51 0.28 1.60 (0.68-3.75) 

6 SLC22A2 rs2279463 Intron G/A 160668389 140332 100.00 0.11 0.61 >0.01 3.67 (1.44-9.31) 

6 SLC22A2 rs3912161 Intron G/A 160669718 141661 100.00 0.06 0.33 0.83 0.84 (0.18-3.96) 

6 SLC22A2 rs316019  270 Ser> Ala A/C 160670282 142225 100.00 0.08 1 0.21 0.29 (0.04-2.28) 

6 SLC22A2 rs316012 Intron A/G 160673884 145827 100.00 0.19 0.52 0.15 1.84 (0.80-4.24) 

6 SLC22A2 rs624249     synonymous codon  A/C 160679400 151343 78.43 0.34 0.21 0.05 0.37 (0.13-1.03) 

6 Intergene rs316025 

 

A/G 160683381 155324 100.00 0.23 1 0.21 1.67  (0.75-3.73) 

6 Intergene rs3119309 

 

A/G 160685072 157015 100.00 0.09 1 >0.01 6.80 (2.52-18.31) 

6 Intergene rs316030 

 

C/A 160687866 159809 96.08 0.44 0.84 0.23 1.55 (0.75-3.21) 

6 Intergene rs7757336 

 

C/A 160689558 161501 100.00 0.13 0.68 >0.01 6.22 (2.60-14.88) 

6 Intergene rs492315 

 

A/G 160692694 164637 99.02 0.22 0.56 0.01 0.17 (0.04-0.75) 

6 Intergene rs478112 

 

A/C 160696318 168261 100.00 0.40 0.15 0.63 0.83 (0.39-1.75) 

6 Intergene rs316035 

 

A/G 160696544 168487 100.00 0.13 1 0.05 0.16 (0.02-1.25) 

6 Intergene rs662301 

 

A/G 160696919 168862 99.02 0.04 1 0.15 NA 

6 Intergene rs532440 

 

A/C 160697628 169571 100.00 0.32 1 0.01 0.28 (0.11-0.77) 

6 Intergene rs533452 

 

A/G 160697762 169705 100.00 0.43 0.69 0.20 1.60 (0.78-3.30) 

6 Intergene rs578560 

 

G/A 160699698 171641 100.00 0.16 1 0.02 0.12 (0.02-0.92) 
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Chromosome Gene SNP Gene region Alleles (minor/major) 
Position, 

build 37 

Distance 

between SNPs 

(bp) 

Call rate, % MAF 
Hardy-Weinberg 

p-value 

P-value, 

nominal 
OR, CI 95 % 

6 Intergene rs3119312 

 

G/A 160700301 172244 100.00 0.24 0.27 0.27 1.56 (0.70-3.46) 

6 Intergene rs3127583 

 

A/G 160727131 199074 100.00 0.11 0.32 >0.01 4.00 (1.55-10.21) 

6 Intergene rs3125056 

 

G/A 160735281 207224 100.00 0.10 1 >0.01 4.76 (1.80-12.56) 

6 Intergene rs415639 

 

A/C 160736497 208440 99.02 0.18 0.73 0.03 0.23 (0.05-1.00) 

6 Intergene rs367213 

 

G/A 160741894 213837 100.00 0.43 0.16 0.90 0.95 (0.46-2.00) 

6 Intergene rs316167 

 

G/A 160754752 226695 100.00 0.32 0.82 0.03 0.37 (0.15-0.94) 

6 Intergene rs2481030 

 

G/A 160756435 228378 100.00 0.40 0.41 >0.01 6.33 (2.79-14.39) 

6 SLC22A3 rs2484241 intron A/G 160771618 243561 99.02 0.28 0.13 0.01 2.52 (1.19-5.32) 

6 SLC22A3 rs512077 intron A/G 160774928 246871 100.00 0.14 0.42 0.95 0.97 (0.34-2.73) 

6 SLC22A3 rs518295 intron A/C 160775578 247521 100.00 0.50 0.33 0.46 1.31 (0.64-2.70) 

6 SLC22A3 rs394468 intron A/C 160780912 252855 96.08 0.24 0.05 0.02 0.26 (0.08-0.89) 

6 SLC22A3 rs6905958 intron A/C 160797625 269568 100.00 0.48 0.70 0.97 0.98 (0.48-2.02) 

6 SLC22A3 rs394352 intron A/G 160808395 280338 100.00 0.25 0.11 0.01 0.23 (0.07-0.78) 

6 SLC22A3 rs2221750 intron A/G 160808447 280390 100.00 0.22 1 0.73 0.86 (0.35-2.11) 

6 SLC22A3 rs7740824 intron A/C 160808901 280844 100.00 0.26 0.80 0.79 1.12 (0.50-2.51) 

6 SLC22A3 rs1567441 intron G/A 160812262 284205 100.00 0.18 0.74 0.03 0.22 (0.05-0.98) 

6 SLC22A3 rs2457571 intron G/A 160834828 306771 100.00 0.47 0.69 0.01 0.37 (0.17-0.81) 

6 SLC22A3 rs9456537 intron A/G 160842211 314154 100.00 0.16 1 0.41 0.63 (0.21-1.91) 

6 SLC22A3 rs4708867 intron G/A 160842725 314668 67.65 0.06 1 0.21 2.52 (0.56-11.25) 

6 SLC22A3 rs17593921 intron A/G 160846929 318872 100.00 0.03 1 0.03 5.00 (1.00-25.86) 

6 SLC22A3 rs2504929 intron A/G 160847986 319929 100.00 0.26 0.12 0.02 2.44 (1.15-5.20) 

6 SLC22A3 rs2665357 intron C/A 160848167 320110 99.02 0.49 0.69 0.84 1.10 (0.52-2.21) 

6 SLC22A3 rs2504928 intron A/C 160853995 325938 100.00 0.24 0.18 >0.01 2.92 (1.36-6.27) 

6 SLC22A3 rs2504927 intron A/G 160860430 332373 100.00 0.39 1 >0.01 0.26 (0.10-0.66) 

6 LPAL2 rs2504920 intron C/A 160897872 369815 98.04 0.49 0.69 >0.01 3.32 (1.51-7.33) 

6 LPAL2 rs6914575 intron A/G 160898831 370774 99.02 0.21 0.55 0.26 0.56 (0.20-1.55) 
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SUPPLEMENTARY METHODS 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was used to determine metformin in human RBC, blood plasma and 

urine using phenformin as an internal standard (IS). The Acquity UPLC (Waters) ultra performance liquid chromatography system was used in 

the assay. The chromatographic separation of metformin and IS (phenformin) was achieved on Acquity UPLC BEH HILIC (1.7 μm, 2.1x75 mm) 

(Waters) column. The LC separation was performed using a gradient elution. Mobile phase A was acetonitrile and mobile phase B was 10 mM 

ammonium acetate solution (pH 4.0). The elution gradient program was: 0-3.0 min (85 % A), 3.5-5.0 min (50 % A), 5.2-7.0 min (85 % A). The 

flow rate of the mobile phase was 0.40 ml/min and injection volume was 5 μl. The column and autosampler temperatures were 30 ºC and 10 ºC, 

respectively. The MICROMASS QUATTRO microTM API (Waters) triple quadrupole mass spectrometer in MRM mode (multiple reaction 

monitoring) was used for metformin quantification. The ion source temperature was 120 ºC, the desolvation temperature was 400 ºC, the 

desolvation gas flow was 600 l/h, the cone gas flow was 50 l/h and the capillary voltage was 3.3 kV. Nitrogen was used as desolvation gas and 

argon as collision gas. Metformin was detected using sum of parent to daughter ion transitions m/z 130.1→60.1 and m/z 130.1→71.0 (collision 

energy 12 eV and 20 eV, respectively) and cone voltage 10 V.  IS was detected using transition of m/z 206.1→105.0 (collision 25 eV) and cone 

voltage 23 V. Biological samples were thawed at room temperature; urine samples were diluted 500 times with deionized water before 

extraction. Then all samples were extracted using acetonitrile-induced protein precipitation (sample:ACN, 1:30, v/v), vortexed and centrifuged 

(10000 rpm, 10 min). Supernatants were chromatographed on hydrophilic interaction liquid chromatography (HILIC) analytical column to obtain 

better retention of polar metformin.The assay was validated for quantitative determination of metformin in human RBC and plasmasamples. 

Quality control samples were prepared at four concentration levels. Accuracy (recovery) ranged from 91,6 to 106,6 % and from 98,3 to 105,7 %, 

but deviations for precision ranged from 0,6 to 6,0 % and from 1,6 to 7,7 % for RBC and plasma samples, respectively. The limit of quantitation 

was 5 ng/ml for RBC and plasma and 2,5 μg/ml for urine.Calibration samples were prepared in the matrix, except for urine, where calibration 

was prepared in deionized water. The calibration curve was derived from the peak area ratios (metformin/internal standard) using 1/x weighted 

linear least-squares regression of the area ratio versus the concentration of metformin standard. The obtained six-point calibration curves were 

characterized by correlation coefficient R2 > 0.99 over the concentration range of 5-500 ng/ml for RBC, 5-1500 ng/ml for plasma and 2,5-250 

μg/ml for urine samples. 



 

 

 

 

 

 

 


